National Library of Energy BETA

Sample records for agricultural commercial fuel

  1. Agriculture, land use, and commercial biomass energy

    SciTech Connect (OSTI)

    Edmonds, J.A.; Wise, M.A.; Sands, R.D.; Brown, R.A.; Kheshgi, H.

    1996-06-01

    In this paper we have considered commercial biomass energy in the context of overall agriculture and land-use change. We have described a model of energy, agriculture, and land-use and employed that model to examine the implications of commercial biomass energy or both energy sector and land-use change carbon emissions. In general we find that the introduction of biomass energy has a negative effect on the extent of unmanaged ecosystems. Commercial biomass introduces a major new land use which raises land rental rates, and provides an incentive to bring more land into production, increasing the rate of incursion into unmanaged ecosystems. But while the emergence of a commercial biomass industry may increase land-use change emissions, the overall effect is strongly to reduce total anthropogenic carbon emissions. Further, the higher the rate of commercial biomass energy productivity, the lower net emissions. Higher commercial biomass energy productivity, while leading to higher land-use change emissions, has a far stronger effect on fossil fuel carbon emissions. Highly productive and inexpensive commercial biomass energy technologies appear to have a substantial depressing effect on total anthropogenic carbon emissions, though their introduction raises the rental rate on land, providing incentives for greater rates of deforestation than in the reference case.

  2. International Fuel Services and Commercial Engagement | Department...

    Broader source: Energy.gov (indexed) [DOE]

    international commercial nuclear fuel management initiatives, and to support ... of innovative approaches to used fuel storage and permanent disposition, ...

  3. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  4. Canadian Fuel Cell Commercialization Roadmap Update: Progress...

    Open Energy Info (EERE)

    Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

  5. Algenol Announces Commercial Algal Ethanol Fuel Partnership ...

    Energy Savers [EERE]

    Protec Fuel to market and distribute commercial ethanol produced from algae for fleets and retail consumption from Algenol's commercial demonstration module in Fort Myers, Florida. ...

  6. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  7. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations PDF icon ...

  8. Algenol Announces Commercial Algal Ethanol Fuel Partnership

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy’s Bioenergy Technologies Office (BETO) partner Algenol signed an agreement with Protec Fuel to market and distribute commercial ethanol produced from algae for fleets and...

  9. 2010 Hydrogen and Fuel Cell Global Commercialization & Development...

    Office of Environmental Management (EM)

    Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role ...

  10. US National Institute of Hydrogen Fuel Cell Commercialization...

    Open Energy Info (EERE)

    Institute of Hydrogen Fuel Cell Commercialization Jump to: navigation, search Name: US National Institute of Hydrogen Fuel Cell Commercialization Place: Columbia, South Carolina...

  11. Algenol Announces Commercial Algal Ethanol Fuel Partnership

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy’s Bioenergy Technologies Office (BETO) partner Algenol signed an agreement with Protec Fuel to market and distribute commercial ethanol produced from algae for fleets and retail consumption from Algenol’s commercial demonstration module in Fort Myers, Florida. Algenol expects that the first two gas stations offering the fuel will open next year in Tampa and Orlando. The companies will distribute both E15 and E85 blends of ethanol that Algenol will produce at its future full-scale commercial plant upon completion in 2017.

  12. Stationary power fuel cell commercialization status worldwide

    SciTech Connect (OSTI)

    Williams, M.C.

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  13. Economic Impacts Associated With Commercializing Fuel Cell Electric...

    Broader source: Energy.gov (indexed) [DOE]

    with commercializing fuel cell electric vehicles (FCEVs) in California. Successful implementation of the California Road Map for the introduction of hydrogen fueling stations to ...

  14. New catalyst may hasten commercialization of fuel cell vehicles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New catalyst may hasten commercialization of fuel cell vehicles By Vic Comello * August ... National Laboratory have developed a new fuel cell catalyst using earthly abundant ...

  15. Moving toward a commercial market for hydrogen fuel cell vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations 20080910_state_regional_vision.pdf (780.66 KB) More Documents & Publications Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Innovation and Coordination at the Callifornia Fuel Cell Partnership FCEVs and Hydrogen in California

  16. Proliferation prevention in the commercial fuel cycle

    SciTech Connect (OSTI)

    Sutcliffe, W G

    1999-04-09

    This website contains the papers presented on November 17, 1998 during the session, "Proliferation Prevention in the Commercial Fuel Cycle," at the American Nuclear Society meeting in Washington, DC. The abstracts are in a separate section; individual papers also contain the author's bio and e-mail address. In the session planning phase, it was suggested that the following questions and other relevant issues be addressed: * What are the difficulties and issues with defining and enforcing international standards for the physical protection of Pu and HEU (beyond the Convention on the Physical protection of Nuclear Material, which primarily addresses transportation)? * How do we (or can we) keep nuclear technology in general, and reprocessing and enrichment technologies in particular, from spreading to undesirable organizations (including governments), in light of Article IV of the NPT? Specifically, can we (should we) prevent the construction of light-water reactors in Iran; and should we support the construction of light-water reactors in North Korea? * Are there more proliferation-resistant fuel cycles that would be appropriate in developing countries? * Can the concept of "nonproliferation credentials" be defined in a useful way? * Is there historical evidence to indicate that reprocessing (or enrichment of HEU) in the US, Japan, or the EURATOM countries has impacted the acquisition (or attempted acquisition) of nuclear weapons by other nations or groups? * What is the impact of a fissile material cutoff treaty (FMCT) be on commercial nuclear fuel cycles? * Does MOX spent fuel present a greater proliferation risk than LEU spent fuel? Although the authors did not explicitly attempt to answer all these questions, they did enlighten us about a number of these and related issues.

  17. Cellulosic Liquid Fuels Commercial Production Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellulosic Liquid Fuels Commercial Production Today Cellulosic Liquid Fuels Commercial Production Today Keynote Success Story Robert Graham, Chairman and CEO, Ensyn Corporation b13_graham_ensyn.pdf (1.44 MB) More Documents & Publications Advanced Cellulosic Biofuels Production of Renewable Fuels from Biomass by FCC Co-processing 2013 Peer Review Presentations-Integrated Biorefineries

  18. First Commercially Available Fuel Cell Electric Vehicles Hit the Street |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy First Commercially Available Fuel Cell Electric Vehicles Hit the Street First Commercially Available Fuel Cell Electric Vehicles Hit the Street December 10, 2014 - 12:25pm Addthis A fuel cell electric vehicle (FCEV) at a fueling station in California. New Energy Department reports signal rapid growth in America’s fuel cell and hydrogen industry as FCEVs are introduced to the market. | Energy Department photo A fuel cell electric vehicle (FCEV) at a fueling station

  19. International Fuel Services and Commercial Engagement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy International Fuel Services and Commercial Engagement International Fuel Services and Commercial Engagement The Office of International Nuclear Energy Policy and Cooperation (INEPC) primary mission is to oversee and manage the Department's international commercial nuclear fuel management initiatives, and to support Departmental/USG initiatives supporting advocacy for U.S. nuclear exports, including the Team USA initiative. INEPC also supports advancing international civil nuclear

  20. Clean Cities' Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market.

  1. Moving toward a commercial market for hydrogen fuel cell vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promoting fuel cell vehicle commercialization as a means of moving towards a sustainable energy future, increasing energy efficiency and reducing or eliminating air pollution and ...

  2. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role hydrogen and fuel cells can play in a portfolio of technology options available to address the energy-related challenges faced by nations around the world. It offers examples of real-world hydrogen and fuel cell applications and the progress of the technologies, including government policies

  3. Methanol as a fuel for commercial vehicles

    SciTech Connect (OSTI)

    Heinrich, W.; Marquardt, K.J.; Schaefer, A.J.

    1986-01-01

    This paper discusses two possibilities for using methanol in heavy-duty engines. If the engine is modified according to the fuel properties, pure methanol can be used as fuel for a spark ignition methanol-gas engine. When the fuel is adapted to meet the requirements of the engine additized methanol serves as a fuel for an only slightly modified direct-injection diesel engine. The comparison takes into consideration fuel cost, convertibility of vehicles already in use, operational safety and reliability, requirements regarding fuel production and distribution, conventional fuel/alternative fuel reversibility, and environmental aspects.

  4. Complex System Method to Assess Commercial Vehicle Fuel Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Complex System Method to Assess Commercial Vehicle Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle with advanced, future options. p-08_kasab.pdf (273.12 KB) More Documents & Publications Particle Number & Particulate Mass Emissions Measurements on a 'Euro VI' Heavy-duty Engine using the PMP Methodologies A High Temperature Direct

  5. Fuel alcohol production from agricultural lignocellulosic feedstocks

    SciTech Connect (OSTI)

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L. )

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa, kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.

  6. Dynalene Fuel Cell Coolants Achieve Commercial Success

    Broader source: Energy.gov [DOE]

    Dynalene has been working with several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power systems.

  7. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    SciTech Connect (OSTI)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  8. National Fuel (Gas)- Small Commercial Conservation Program

    Broader source: Energy.gov [DOE]

    National Fuel has partnered with Blue Spring Energy to provide outreach, education, and technical assistance services to small business customers. Blue Spring energy will provide consultation at no...

  9. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    SciTech Connect (OSTI)

    none,

    2010-11-01

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and commercialization.

  10. Economic Impacts Associated With Commercializing Fuel Cell Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model | Department of Energy Impacts Associated With Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model Economic Impacts Associated With Commercializing Fuel Cell Electric Vehicles in California: An Analysis of the California Road Map Using the JOBS H2 Model This report by Argonne National Laboratory summarizes an analysis of the economic

  11. Commercialization of IH2® Biomass Direct-to-Hydrocarbon Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Commercialization of IH2 Biomass Direct-to-Hydrocarbon Fuel Technology Breakout Session 2: Frontiers and ...

  12. Toward An Affordable Commercial Fuel Cell (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Visco, Steve

    2014-05-06

    Steve Visco, a materials scientist, has come up with a solid oxide fuel cell that promises to generate electricity as cheaply as the most efficient gas turbine engine. But there's a lot more work to do before commercially viable fuel cells and pollution-free power generators become reality.

  13. California: Agricultural Residues Produce Renewable Fuel | Department...

    Broader source: Energy.gov (indexed) [DOE]

    technology is expected to produce biofuel that reduces greenhouse gas emissions by 80% compared to fossil fuel and help make California a leader in advanced biofuel production. ...

  14. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Guide explains the different types of alternative fuel commercial mowers and lists the makes and models of the ones available on the market. Turf grass is a fixture of the American landscape and the American economy. It is the nation's largest irrigated crop, covering more than 40 million acres. Legions of lawnmowers care for this expanse during the growing season-up to year-round in the warmest climates. The annual economic impact of the U.S. turf grass industry has been estimated at more than $62 billion. Lawn mowing also contributes to the nation's petroleum consumption and pollutant emissions. Mowers consume 1.2 billion gallons of gasoline annually, about 1% of U.S. motor gasoline consumption. Commercial mowing accounts for about 35% of this total and is the highest-intensity use. Large property owners and mowing companies cut lawns, sports fields, golf courses, parks, roadsides, and other grassy areas for 7 hours per day and consume 900 to 2,000 gallons of fuel annually depending on climate and length of the growing season. In addition to gasoline, commercial mowing consumes more than 100 million gallons of diesel annually. Alternative fuel mowers are one way to reduce the energy and environmental impacts of commercial lawn mowing. They can reduce petroleum use and emissions compared with gasoline- and diesel-fueled mowers. They may also save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and promote a 'green' image. And on ozone alert days, alternative fuel mowers may not be subject to the operational restrictions that gasoline mowers must abide by. To help inform the commercial mowing industry about product options and potential benefits, Clean Cities produced this guide to alternative fuel commercial lawn equipment. Although the guide's focus is on original equipment manufacturer (OEM) mowers, some mowers can be converted to run on alternative fuels. For more information about propane conversions. This guide may be

  15. Agricultural

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand...

  16. SUPPLEMENT ANALYSIS PROPOSED SHIPMENT OF COMMERCIAL SPENT NUCLEAR FUEL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUPPLEMENT ANALYSIS PROPOSED SHIPMENT OF COMMERCIAL SPENT NUCLEAR FUEL TO DOE NATIONAL LABORATORIES FOR RESEARCH AND DEVELOPMENT PURPOSES Office of Nuclear Energy U.S. DEPARTMENT OF ENERGY DECEMBER 2015 DOE/EIS-0203-SA-07 DOE/EIS-0250F-S-1-SA-02 Commercial Fuel Shipment SA DOE/EIS-0203-SA-07 December 2015 CONVERSION FACTORS Metric to English English to Metric Multiply by To get Multiply by To get Area Square kilometers 247.1 Acres Square kilometers 0.3861 Square miles Square meters 10.764 Square

  17. EERE Success Story-Algenol Announces Commercial Algal Ethanol Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership | Department of Energy Algenol Announces Commercial Algal Ethanol Fuel Partnership EERE Success Story-Algenol Announces Commercial Algal Ethanol Fuel Partnership October 21, 2015 - 10:35am Addthis Algenol is a company located in Fort Myers, FL that is working with its unique photosynthetic algae to take carbon dioxide that is in the atmosphere and produce a variety of affordable and sustainable biofuels. The scale-up of this work by Algenol was funded in part by the U.S.

  18. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  19. Alternative Fuel and Advanced Technology Commercial Lawn Equipment

    SciTech Connect (OSTI)

    2014-10-10

    The U.S. Department of Energy's Clean Cities program produced this guide to help inform the commercial mowing industry about product options and potential benefits. This guide provides information about equipment powered by propane, ethanol, compressed natural gas, biodiesel, and electricity, as well as advanced engine technology. In addition to providing an overview for organizations considering alternative fuel lawn equipment, this guide may also be helpful for organizations that want to consider using additional alternative fueled equipment.

  20. HYDROGEN COMMERCIALIZATION: TRANSPORTATION FUEL FOR THE 21ST CENTURY

    SciTech Connect (OSTI)

    APOLONIO DEL TORO

    2008-05-27

    Since 1999, SunLine Transit Agency has worked with the U.S. Department of Energy (DOE), U.S. Department of Defense (DOD), and the U.S. Department of Transportation (DOT) to develop and test hydrogen infrastructure, fuel cell buses, a heavy-duty fuel cell truck, a fuel cell neighborhood electric vehicle, fuel cell golf carts and internal combustion engine buses operating on a mixture of hydrogen and compressed natural gas (CNG). SunLine has cultivated a rich history of testing and demonstrating equipment for leading industry manufacturers in a pre-commercial environment. Visitors to SunLine's "Clean Fuels Mall" from around the world have included government delegations and agencies, international journalists and media, industry leaders and experts and environmental and educational groups.

  1. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies

  2. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  3. Commercialization strategies for coal-derived transportation fuels

    SciTech Connect (OSTI)

    Tomlinson, G.; Gray, D.

    1992-12-31

    The objective of this paper is to analyze a program that can stimulate the development of a synthetic liquid transportation fuels from coal industry, by requiring that the products be bought at their true cost of production. These coal-derived liquids will then be assimulated into the nation`s fuel supply system. The cost of this program will be borne by increased cost of all fuels in the marketplace. The justification of the program is the assumption that, because of increasing demand, the world oil price (WOP) will increase to a level that will make coal-derived fuels economical in the relatively near future. However, as noted in the International Energy Outlook of 1990: ``Given current costs and Technologies, it is estimated the cost of crude oil would have to exceed $35 per barrel in 1989 dollars for at least four consecutive years for commercial production, in the range of 100,000 barrels per day, of synthetic liquids to occur. This delayed response of production to price increases reflects the planning and construction time required to complete a coal liquefaction plant``. This program is designed to reduce this time lag so that coal-derived fuels will be available when they are needed. This timely production capability of coal liquids may be able to limit future world oil prices to the actual cost of synthetic alternatives. In addition, the program is structured so that it will provide synthetic fuel producers with a cushion in the event that the WOP continues to remain low.

  4. What to Expect When Readying to Move Spent Nuclear Fuel from Commercial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Power Plants | Department of Energy What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants (397.39 KB) More Documents & Publications Nuclear Fuel Storage and Transportation Planning Project Overview Indiana Department of Homeland Security - NNPP Exercise

  5. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative fuel mowers are one way to reduce the energy and environmental impacts of ... extend mower life, reduce fuel spillage and fuel theft, and promote a "green" image. ...

  6. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

  7. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

  8. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technolog

  9. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2011

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell

  10. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Fuel Cell Technologies Publication and Product Library (EERE)

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell T

  11. Report of the DOE Advanced Fuel-Cell Commercialization Working Group

    SciTech Connect (OSTI)

    Penner, S.S.

    1995-03-01

    This report describes commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  12. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    SciTech Connect (OSTI)

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These

  13. EERE Success Story-Dynalene Fuel Cell Coolants Achieve Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power systems. Location Whitehall, PA ...

  14. Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Guide to Alternative Fuel Commercial Lawn Equipment Contents Introduction........................... 4 Compressed Natural Gas ........................ 6 Biodiesel ................................. 6 Electricity ............................... 7 Propane .................................. 8 Incentives ............................... 14 Special Considerations ...... 14 Resources............................... 15 A single commercial lawnmower can annually use as much gaso- line or diesel fuel as a

  15. Electronic Safety Resource Tools -- Supporting Hydrogen and Fuel Cell Commercialization

    SciTech Connect (OSTI)

    Barilo, Nick F.

    2014-09-29

    The Pacific Northwest National Laboratory (PNNL) Hydrogen Safety Program conducted a planning session in Los Angeles, CA on April 1, 2014 to consider what electronic safety tools would benefit the next phase of hydrogen and fuel cell commercialization. A diverse, 20-person team led by an experienced facilitator considered the question as it applied to the eight most relevant user groups. The results and subsequent evaluation activities revealed several possible resource tools that could greatly benefit users. The tool identified as having the greatest potential for impact is a hydrogen safety portal, which can be the central location for integrating and disseminating safety information (including most of the tools identified in this report). Such a tool can provide credible and reliable information from a trustworthy source. Other impactful tools identified include a codes and standards wizard to guide users through a series of questions relating to application and specific features of the requirements; a scenario-based virtual reality training for first responders; peer networking tools to bring users from focused groups together to discuss and collaborate on hydrogen safety issues; and a focused tool for training inspectors. Table ES.1 provides results of the planning session, including proposed new tools and changes to existing tools.

  16. Take a Test Drive in the World's First Commercial Fuel Cell SUV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Take a Test Drive in the World's First Commercial Fuel Cell SUV Take a Test Drive in the World's First Commercial Fuel Cell SUV October 23, 2015 - 2:25pm Addthis Sunita Satyapal Director, Fuel Cell Technologies Office The Department of Energy hosted an exciting and unique visitor last week: the world's first commercially available, zero emissions fuel cell electric SUV. The first-of-its-kind vehicle was brought to Washington, D.C. by Hyundai executives from South Korea

  17. Dynalene Fuel Cell Coolants Achieve Commercial Success | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynalene has been working with several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power ...

  18. Trends in Commercial Buildings--Fuel Oil Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    confidence ranges. If you have trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial...

  19. Complex System Method to Assess Commercial Vehicle Fuel Consumption...

    Broader source: Energy.gov (indexed) [DOE]

    Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle with advanced, future options. p-08kasab.pdf (273.12 KB) More Documents & ...

  20. SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES

    SciTech Connect (OSTI)

    BSC

    2004-12-01

    Waste packages are loaded with commercial spent nuclear fuel (SNF) that satisfies the minimum burnup requirements of a criticality loading curve. The burnup value assigned by the originating nuclear utility to each SNF assembly (assigned burnup) is used to load waste packages in compliance with a criticality loading curve. The burnup provided by a nuclear utility has uncertainties, so conservative calculation methods are used to characterize those uncertainties for incorporation into the criticality loading curves. Procedural safety controls ensure that the correct assembly is loaded into each waste package to prevent a misload that could create a condition affecting the safety margins. Probabilistic analyses show that procedural safety controls can minimize the chance of a misload but can not completely eliminate the possibility. Physical measurements of burnup with instrumentation in the surface facility are not necessary due to the conservative calculation methods used to produce the criticality loading curves. The reactor records assigned burnup of a commercial SNF assembly contains about two percent uncertainty, which is increased to five-percent to ensure conservatism. This five-percent uncertainty is accommodated by adjusting the criticality loading curve. Also, the record keeping methods of nuclear utilities are not uniform and the level of detail required by the NRC has varied over the last several decades. Thus, some SNF assemblies may have assigned burnups that are averages for a batch of assemblies with similar characteristics. Utilities typically have access to more detailed core-follow records that allow the batch average burnup to be changed to an assembly specific burnup. Alternatively, an additional safety margin is incorporated into the criticality loading curve to accommodate SNF assemblies with batch average burnups or greater uncertainties due to the methodology used by the nuclear utility. The utility records provide the assembly identifier

  1. Overview of fuel alcohol from agricultural crops with emphasis on the Tennessee Valley. Bulletin Y-171

    SciTech Connect (OSTI)

    Roetheli, J.C.; Pile, R.S.; Young, H.C.

    1982-02-01

    An overview is presented of the factors and concerns associated with producing fuel alcohol from agricultural crops. Areas covered include: an assessment of energy used in agriculture; a categorization of grain crop production, land suitable for energy crop production, and livestock production in the 201-county TVA region; a summary of technical and economic information on fuel alcohol production; a discussion of acreages required to produce fuel for benchmark farms in the Tennessee Valley and possible erosion impacts; and a discussion of other pertinent advantages and disadvantages of fuel alcohol production from crops.

  2. Fuel Cell Electric Vehicles: Paving the Way to Commercial Success...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered by a fuel cell system with light-weight, high-pressure hydrogen tanks, an electric motor, a ... Automakers have made steady progress reducing the cost and ...

  3. Economic Impacts Associated with Commercializing Fuel Cell Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of Energy's Fuel Cell Technologies Office (FCTO). The analysis assumes that the cost and technical ... the significance of local manufacturing in benefit estimation. ...

  4. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Fuel Cell Technologies Publication and Product Library (EERE)

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to

  5. Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

  6. Cheyenne Light, Fuel and Power (Electric)- Commercial and Industrial Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cheyenne Light, Fuel and Power offers incentives to commercial and industrial electric customers who wish to install energy efficient equipment and measures in eligible facilities. Incentives are...

  7. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment

  8. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.

  9. Computerized simulation of fuel consumption in the agriculture industry

    SciTech Connect (OSTI)

    Fontana, C.; Rotz, C.A.

    1982-07-01

    A computer model was developed to simulate conventional and ethanol fuel consumption for crop production. The model was validated by obtaining a close comparison between simulated and actual diesel requirements for farms in Michigan. Parameters for ethanol consumption were obtained from laboratory tests using total fueling of spark-ignition engines and dual-fueling of diesel engines with ethanol. Ethanol fuel will always be more economically used in spark-ignition engines than in dual-fueled diesel engines. The price of gasoline must inflate at least 14 percent/yr greater than that of ethanol and diesel must inflate at least 23 percent/yr more than ethanol to allow economic use of ethanol as tractor fuel within the next 5 years.

  10. Energy Department Invests $7 Million to Commercialize Fuel Cells

    Broader source: Energy.gov [DOE]

    The Energy Department announced more than $7 million in funding for projects in Georgia, Kansas, Pennsylvania, and Tennessee that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster.

  11. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and com

  12. Fuel Cell Combined Heat and Power Commercial Demonstration

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-09-02

    This is the annual report for the Market Transformation project as required by DOE EERE's Fuel Cell Technologies Office. We have been provided with a specific format. It describes the work that was done in developing evaluating the performance of 5 kW stationary combined heat and power fuel cell systems that have been deployed in Oregon and California. It also describes the business case that was developed to identify markets and address cost.

  13. Oak Ridge National Laboratory (ORNL): Industrial Collaborations with the Fuel Cell Technologies Program: Accelerating Widespread Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCTO T2M Event at the 2014 Fuel Cell Seminar (11/11/14) Industrial Collaborations with the ORNL Fuel Cell Technologies Program: Accelerating Widespread Commercialization David L. Wood, III, Ph.D. Senior Scientist & Fuel Cell Technologies Program Manager T2M Event at the 2014 Fuel Cell Seminar Los Angeles, CA 11/11/14 2 FCTO T2M Event at the 2014 Fuel Cell Seminar (11/11/14) ORNL Overview * Founded: 1943 as a key Manhattan Project location. * Location: Oak Ridge, TN * 4250 Employees * Budget:

  14. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    SciTech Connect (OSTI)

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  15. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    SciTech Connect (OSTI)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  16. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  17. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    SciTech Connect (OSTI)

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  18. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  19. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    SciTech Connect (OSTI)

    Snead, Lance Lewis; Terrani, Kurt A.; Powers, Jeffrey J.; Worrall, Andrew; Robb, Kevin R.; Snead, Mary A.

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  20. Addendum: Tenth International Symposium on Alcohol Fuels, The road to commercialization

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The Tenth International Symposium on ALCOHOL FUELS ``THE ROAD TO COMMERCIALIZATION`` was held at the Broadmoor Hotel, Colorado Springs, Colorado, USA November 7--10, 1993. Twenty-seven papers on the production of alcohol fuels, specifications, their use in automobiles, buses and trucks, emission control, and government policies were presented. Individual papers have been processed separately for entry into the data base.

  1. Agriculture Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Industrial Federal Agriculture SIS Variable Frequency Drives Irrigation Pump Testing Irrigation Hardware Upgrades LESA Agricultural Marketing Toolkit BPA's...

  2. Table 3. Annual commercial spent fuel discharges and burnup

    Gasoline and Diesel Fuel Update (EIA)

    1 Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(c) LPG and Coal and Breeze NAICS Total Fuel Oil Fuel Oil(b) (billion NGL(d) (million (million Other(e) Code(a) Subsector and Industry (trillion Btu) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 10 * * 4 Q 0 0 2 3112 Grain and

  3. Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.

    SciTech Connect (OSTI)

    Curgus, Dita Brigitte; Munoz-Ramos, Karina; Pratt, Joseph William; Akhil, Abbas Ali; Klebanoff, Leonard E.; Schenkman, Benjamin L.

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  4. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    SciTech Connect (OSTI)

    Pratt, Joesph W.; Klebanoff, Leonard E.; Munoz-Ramos, Karina; Akhil, Abbas A.; Curgus, Dita B.; Schenkman, Benjamin L.

    2011-05-01

    Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today’s technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

  5. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Commercial Incentive Pilot Program (CIPP). Final Impact Evaluation Report. Cambridge Systematics. (1292) Commercial Incentives Pilot Program (CIPP) Database for the...

  6. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

  7. Composition of high fission product wastes resulting from future reprocessing of commercial nuclear fuels

    SciTech Connect (OSTI)

    Swanson, J.L

    1986-07-01

    Pacific Northwest Laboratory studies, aimed at defining appropriate glass compositions for future disposal of high-level wastes, have developed composition ranges for the waste that will likely result during reprocessing of Light Water Reactor (LWR) and Liquid Metal Reactor (LMR) fuels. The purpose of these studies was to provide baseline waste characterizations for possible future commercial high-level waste so that waste immobilization technologies (e.g., vitrification) can be studied. Ranges in waste composition are emphasized because the waste will vary with time as different fuels are reprocesses, because choice of process chemicals is nuclear, and because fuel burnups will vary. Consequently, composition ranges are based on trends in fuel reprocessing procedures and on achievable burnups in operating reactors. In addition to the fission product and actinide elements, which are the primary hazardous materials in the waste, likely composition ranges are given for inert elements that may be present in the waste. These other elements may be present because of being present in the fuel, because of being added as process chemical during reprocessing, because of being added during equipment decontamination, or because of corrosion of plant equipment and/or fuel element cladding. This report includes a discussion of the chemicals added in variation of the PUREX process, which is likely to remain the favored reprocessing technique for commercial nuclear fuels. Consideration is also given to a pyrochemical process proposed for the reprocessing of some LMR fuels.

  8. Commercial Current Promotions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture This page features all current special promotions for commercial programs....

  9. Commercial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a large efficiency program in Commercial and Industrial Lighting. BPA continues to invest in improving the lighting program as a critical component to achieving regional...

  10. Influence of FRAPCON-1 evaluation models on fuel behavior calculations for commercial power reactors. [PWR; BWR

    SciTech Connect (OSTI)

    Chambers, R.; Laats, E.T.

    1981-01-01

    A preliminary set of nine evaluation models (EMs) was added to the FRAPCON-1 computer code, which is used to calculate fuel rod behavior in a nuclear reactor during steady-state operation. The intent was to provide an audit code to be used in the United States Nuclear Regulatory Commission (NRC) licensing activities when calculations of conservative fuel rod temperatures are required. The EMs place conservatisms on the calculation of rod temperature by modifying the calculation of rod power history, fuel and cladding behavior models, and materials properties correlations. Three of the nine EMs provide either input or model specifications, or set the reference temperature for stored energy calculations. The remaining six EMs were intended to add thermal conservatism through model changes. To determine the relative influence of these six EMs upon fuel behavior calculations for commercial power reactors, a sensitivity study was conducted. That study is the subject of this paper.

  11. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  12. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    SciTech Connect (OSTI)

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  13. Low-temperature fuel cell systems for commercial airplane auxiliary power.

    SciTech Connect (OSTI)

    Curgus, Dita Brigitte; Pratt, Joseph William; Akhil, Abbas Ali; Klebanoff, Leonard E.

    2010-11-01

    This presentation briefly describes the ongoing study of fuel cell systems on-board a commercial airplane. Sandia's current project is focused on Proton Exchange Membrane (PEM) fuel cells applied to specific on-board electrical power needs. They are trying to understand how having a fuel cell on an airplane would affect overall performance. The fuel required to accomplish a mission is used to quantify the performance. Our analysis shows the differences between the base airplane and the airplane with the fuel cell. There are many ways of designing a system, depending on what you do with the waste heat. A system that requires ram air cooling has a large mass penalty due to increased drag. The bottom-line impact can be expressed as additional fuel required to complete the mission. Early results suggest PEM fuel cells can be used on airplanes with manageable performance impact if heat is rejected properly. For PEMs on aircraft, we are continuing to perform: (1) thermodynamic analysis (investigate configurations); (2) integrated electrical design (with dynamic modeling of the micro grid); (3) hardware assessment (performance, weight, and volume); and (4) galley and peaker application.

  14. Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11-3119 Unlimited Release Printed May 2011 Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Joseph W. Pratt, Leonard E. Klebanoff, Karina Munoz-Ramos, Abbas A. Akhil, Dita B. Curgus, and Benjamin L. Schenkman Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  15. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    SciTech Connect (OSTI)

    DelCul, Guillermo Daniel; Trowbridge, Lee D; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B; Collins, Emory D

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  16. Development of Advanced Accident Tolerant Fuels for Commercial Light Water Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bragg-Sitton, Shannon M.

    2014-03-01

    ensure that proposed new fuels will be economically viable. The goal of the ATF development effort is to demonstrate performance with a lead test assembly or lead test rod (LTR) or lead test assembly (LTA) irradiation in a commercial power reactor by 2022. Research and development activities are being conducted at multiple DOE national laboratories, universities and within industry with support from the DOE program. A brief program overview and status are provided.« less

  17. Development of Advanced Accident Tolerant Fuels for Commercial Light Water Reactors

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon M.

    2014-03-01

    that proposed new fuels will be economically viable. The goal of the ATF development effort is to demonstrate performance with a lead test assembly or lead test rod (LTR) or lead test assembly (LTA) irradiation in a commercial power reactor by 2022. Research and development activities are being conducted at multiple DOE national laboratories, universities and within industry with support from the DOE program. A brief program overview and status are provided.

  18. IMHEX{sup {reg_sign}} fuel cells progress toward commercialization

    SciTech Connect (OSTI)

    Scroppo, J.A.; Laurens, R.M.; Petraglia, V.J.

    1995-12-31

    The overall goal of M-C Power is the development and subsequent commercialization of Molten Carbonate Fuel Cell (MCFC) stacks. More specifically, MCFC`s Manifolded Heat Exchange (IMHEX{sup {reg_sign}}) plate design created by the Institute of Technology. In order to achieve the aforementioned goal, M-C Power assembled a formidable team of industry leaders. This group, refered to as the (IHMEX{sup {reg_sign}}) Team, has developed a strategy to move decisively through the stages of Technology Development and Product Design and Improvement through commercialization. This paper is to review the status of the overall commercialization program and activities. It will also provide an overview of the market entry product. Furthermore, we will evaluate the opportunities and benefits this product brings to a competitive power industry.

  19. Breaking down the barriers to commercialization of fuel cells in transportation through Government - industry R&D programs

    SciTech Connect (OSTI)

    Chalk, S.G.; Venkateswaran, S.R.

    1996-12-31

    PEM fuel cell technology is rapidly emerging as a viable propulsion alternative to the internal combustion engine. Fuel cells offer the advantages of low emissions, high efficiency, fuel flexibility, quiet and continuous operation, and modularity. Over the last decade, dramatic advances have been achieved in the performance and cost of PEM fuel cell technologies for automotive applications. However, significant technical barriers remain to making fuel cell propulsion systems viable alternatives to the internal combustion engine. This paper focuses on the progress achieved and remaining technical barriers while highlighting Government-industry R&D efforts that are accelerating fuel cell technology toward commercialization.

  20. COMMERCIALIZING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMERCIALIZING TECHNOLOGIES & CREATING JOBS Our location in the SS&TP plays a vital role in our ability to leverage the deep domain expertise of Sandia. Our proximity to the Labs has facilitated teaming with them on Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) efforts that develop cutting-edge technology in the areas of precision pointing and inertial measurement." Dan Gillings President Applied Technology Associates NMSBA reduced my

  1. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    SciTech Connect (OSTI)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  2. Evaluation of alternative treatments for spent fuel rod consolidation wastes and other miscellaneous commercial transuranic wastes

    SciTech Connect (OSTI)

    Ross, W.A.; Schneider, K.J.; Oma, K.H.; Smith, R.I.; Bunnell, L.R.

    1986-05-01

    Eight alternative treatments (and four subalternatives) are considered for both existing commercial transuranic wastes and future wastes from spent fuel consolidation. Waste treatment is assumed to occur at a hypothetical central treatment facility (a Monitored Retrieval Storage facility was used as a reference). Disposal in a geologic repository is also assumed. The cost, process characteristics, and waste form characteristics are evaluated for each waste treatment alternative. The evaluation indicates that selection of a high-volume-reduction alternative can save almost $1 billion in life-cycle costs for the management of transuranic and high-activity wastes from 70,000 MTU of spent fuel compared to the reference MRS process. The supercompaction, arc pyrolysis and melting, and maximum volume reduction alternatives are recommended for further consideration; the latter two are recommended for further testing and demonstration.

  3. Comminution phenomena during the fluidized bed combustion of a commercial refuse-derived fuel

    SciTech Connect (OSTI)

    Arena, U.; Cammarota, A.; Chirone, R.; D`Anna, G.

    1995-12-31

    A commercial densified refuse-derived fuel (RDF), obtained as pellets from municipal solid wastes, was burned in two laboratory scale bubbling fluidized bed combustors, having an internal diameter of 41 mm. The apparatus were both batchwise operated at 850 C by injecting batches of RDF particles into a bed of silica sand (300--400 {micro}m as size range) fluidized at a superficial gas velocity of 0.8 m/s. RDF particles with equivalent mean diameter ranging from 4 to 9 mm were used. Different experimental procedures were set up to separately investigate comminution phenomena of fuel particles. Results were compared with those obtained burning a South African bituminous coal. Results pointed out that RDF particles undergo a strong primary fragmentation phenomenon, with a probability of particle breakage equal to 1 for fuel particles larger than 6 mm. Attrition and char fragmentation phenomena are particularly relevant under both inert and oxidizing conditions, generating a large amount of unburned fines which may affect overall combustion efficiency.

  4. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect (OSTI)

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  5. Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Mueller, Don; Goluoglu, Sedat; Hollenbach, Daniel F; Fox, Patricia B

    2007-10-01

    The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform postclosure criticality calculations. The validation process applies the criticality analysis methodology approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report. The application systems for this validation consist of waste packages containing transport, aging, and disposal canisters (TAD) loaded with commercial spent nuclear fuel (CSNF) of varying assembly types, initial enrichments, and burnup values that are expected from the waste stream and of varying degree of internal component degradation that may occur over the 10,000-year regulatory time period. The criticality computational tool being evaluated is the general-purpose Monte Carlo N-Particle (MCNP) transport code. The nuclear cross-section data distributed with MCNP 5.1.40 and used to model the various physical processes are based primarily on the Evaluated Nuclear Data File/B Version VI (ENDF/B-VI) library. Criticality calculation bias and bias uncertainty and lower bound tolerance limit (LBTL) functions for CSNF waste packages are determined based on the guidance in ANSI/ANS 8.1-1998 (Ref. 4) and ANSI/ANS 8.17-2004 (Ref. 5), as described in Section 3.5.3 of Ref. 1. The development of this report is consistent with Test Plan for: Range of Applicability and Bias Determination for Postclosure Criticality. This calculation report has been developed in support of licensing activities for the proposed repository at Yucca Mountain, Nevada, and the results of the calculation may be used in the criticality evaluation for CSNF waste packages based on a conceptual TAD canister.

  6. New Commercial Program Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Beginning in spring of 2015, the BPA Commercial Team will be working with utilities...

  7. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    SciTech Connect (OSTI)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  8. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    SciTech Connect (OSTI)

    Lebersorger, S.; Beigl, P.

    2011-09-15

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  9. Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

    2013-10-30

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative

  10. Commercial demonstration of atmospheric medium BTU fuel gas production from biomass without oxygen the Burlington, Vermont Project

    SciTech Connect (OSTI)

    Rohrer, J.W.

    1995-12-31

    The first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification of biomass occurred at Battelle Columbus Labs (BCL) during 1994 using their high throughput indirect medium Btu gasification Process Research Unit (PRU). Zurn/NEPCO was retained to build a commercial scale gas plant utilizing this technology. This plant will have a throughput rating of 8 to 12 dry tons per hour. During a subsequent phase of the Burlington project, this fuel gas will be utilized in a commercial scale gas turbine. It is felt that this process holds unique promise for economically converting a wide variety of biomass feedstocks efficiently into both a medium Btu (500 Btu/scf) gas turbine and IC engine quality fuel gas that can be burned in engines without modification, derating or efficiency loss. Others are currently demonstrating sub-commercial scale thermal biomass gasification processes for turbine gas, utilizing both atmospheric and pressurized air and oxygen-blown fluid bed processes. While some of these approaches hold merit for coal, there is significant question as to whether they will prove economically viable in biomass facilities which are typically scale limited by fuel availability and transportation logistics below 60 MW. Atmospheric air-blown technologies suffer from large sensible heat loss, high gas volume and cleaning cost, huge gas compressor power consumption and engine deratings. Pressurized units and/or oxygen-blown gas plants are extremely expensive for plant scales below 250 MW. The FERCO/BCL process shows great promise for overcoming the above limitations by utilizing an extremely high throughout circulation fluid bed (CFB) gasifier, in which biomass is fully devolitalized with hot sand from a CFB char combustor. The fuel gas can be cooled and cleaned by a conventional scrubbing system. Fuel gas compressor power consumption is reduced 3 to 4 fold verses low Btu biomass gas.

  11. THE TESTING OF COMMERCIALLY AVAILABLE ENGINEERING AND PLANT SCALE ANNULAR CENTRIFUGAL CONTACTORS FOR THE PROCESSING OF SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Jack D. Law; David Meikrantz; Troy Garn; Nick Mann; Scott Herbst

    2006-10-01

    Annular centrifugal contactors are being evaluated for process scale solvent extraction operations in support of United State Advanced Fuel Cycle Initiative goals. These contactors have the potential for high stage efficiency if properly employed and optimized for the application. Commercially available centrifugal contactors are being tested at the Idaho National Laboratory to support this program. Hydraulic performance and mass transfer efficiency have been measured for portions of an advanced nuclear fuel cycle using 5-cm diameter annular centrifugal contactors. Advanced features, including low mix sleeves and clean-in-place rotors, have also been evaluated in 5-cm and 12.5-cm contactors.

  12. EERE Success Story—Dynalene Fuel Cell Coolants Achieve Commercial Success

    Broader source: Energy.gov [DOE]

    Dynalene has been working with several automotive and fuel cell manufacturers on using the coolants in their PEM fuel cells, hybrid electric, electric vehicles and back-up power systems.

  13. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  14. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuels

    SciTech Connect (OSTI)

    Matti Maricq, M.

    2011-01-15

    Data are presented to compare soot formation in both surrogate and practical fatty acid methyl ester biodiesel and petroleum fuel diffusion flames. The approach here uses differential mobility analysis to follow the size distributions and electrical charge of soot particles as they evolve in the flame, and laser ablation particle mass spectrometry to elucidate their composition. Qualitatively, these soot properties exhibit a remarkably similar development along the flames. The size distributions begin as a single mode of precursor nanoparticles, evolve through a bimodal phase marking the onset of aggregate formation, and end in a self preserving mode of fractal-like particles. Both biodiesel and hydrocarbon fuels yield a common soot composition dominated by C{sub x}H{sub y}{sup +} ions, stabilomer PAHs, and fullerenes in the positive ion mass spectrum, and C{sub x}{sup -} and C{sub 2x}H{sup -} in the negative ion spectrum. These ion intensities initially grow with height in the diffusion flames, but then decline during later stages, consistent with soot carbonization. There are important quantitative differences between fuels. The surrogate biodiesel fuel methyl butanoate substantially reduces soot levels, but soot formation and evolution in this flame are delayed relative to both soy and petroleum fuels. In contrast, soots from soy and hexadecane flames exhibit nearly quantitative agreement in their size distribution and composition profiles with height, suggesting similar soot precursor chemistry. (author)

  15. Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster.

  16. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect (OSTI)

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  17. Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster.

  18. Verifying the Benefits and Resolving the Issues in the Commercialization of Ethanol Containing Diesel Fuels

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  19. Feasibility study of the commercial production of densified biomass fuel at Klamath Falls, Oregon. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    The project began with assessments of local biomass resources which could serve as feedstock for a DBF plant, and the potential customer markets for DBF. Based on these analyses, a pilot densification plant was designed and installed for purposes of trial operations and evaluation. In addition, exploration for geothermal resources was conducted in order to confirm a suitable feedstock dehydration heat source. The results of this exploration, and of the pilot plant's trial operations, were then used to determine requirements for a commercial-scale DBF plant, and the feasibility of upgrading the pilot plant for commercial-scale operations.

  20. INVENTORY AND DESCRIPTION OF COMMERCIAL REACTOR FUELS WITHIN THE UNITED STATES

    SciTech Connect (OSTI)

    Vinson, D.

    2011-03-31

    There are currently 104 nuclear reactors in 31 states, operated by 51 different utilities. Operation of these reactors generates used fuel assemblies that require storage prior to final disposition. The regulatory framework within the United States (U.S.) allows for the licensing of used nuclear fuel storage facilities for an initial licensing period of up to 40 years with potential for license extensions in 40 years increments. Extended storage, for periods of up to 300 years, is being considered within the U.S. Therefore, there is an emerging need to develop the technical bases to support the licensing for long-term storage. In support of the Research and Development (R&D) activities required to support the technical bases, a comprehensive assessment of the current inventory of used nuclear fuel based upon publicly available resources has been completed that includes the most current projections of used fuel discharges from operating reactors. Negotiations with the nuclear power industry are ongoing concerning the willingness of individual utilities to provide information and material needed to complete the R&D activities required to develop the technical bases for used fuel storage for up to 300 years. This report includes a status of negotiations between DOE and industry in these regards. These negotiations are expected to result in a framework for cooperation between the Department and industry in which industry will provide and specific information on used fuel inventory and the Department will compensate industry for the material required for Research and Development and Testing and Evaluation Facility activities.

  1. Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; McLarty, D.; Sullivan, R.; Brouwer, J.

    2013-10-01

    This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

  2. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    SciTech Connect (OSTI)

    Kessler, John H.; Kemeny, John; King, Fraser; Ross, Alan M.; Ross, Benjamen

    2006-07-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

  3. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    SciTech Connect (OSTI)

    W. L. Poe, Jr.; P.F. Wise

    1998-11-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  4. Estimation of Inherent Safety Margins in Loaded Commercial Spent Nuclear Fuel Casks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Banerjee, Kaushik; Robb, Kevin R.; Radulescu, Georgeta; Scaglione, John M.

    2016-06-15

    We completed a novel assessment to determine the unquantified and uncredited safety margins (i.e., the difference between the licensing basis and as-loaded calculations) available in as-loaded spent nuclear fuel (SNF) casks. This assessment was performed as part of a broader effort to assess issues and uncertainties related to the continued safety of casks during extended storage and transportability following extended storage periods. Detailed analyses crediting the actual as-loaded cask inventory were performed for each of the casks at three decommissioned pressurized water reactor (PWR) sites to determine their characteristics relative to regulatory safety criteria for criticality, thermal, and shielding performance.more » These detailed analyses were performed in an automated fashion by employing a comprehensive and integrated data and analysis tool—Used Nuclear Fuel-Storage, Transportation & Disposal Analysis Resource and Data System (UNF-ST&DARDS). Calculated uncredited criticality margins from 0.07 to almost 0.30 Δkeff were observed; calculated decay heat margins ranged from 4 to almost 22 kW (as of 2014); and significant uncredited transportation dose rate margins were also observed. The results demonstrate that, at least for the casks analyzed here, significant uncredited safety margins are available that could potentially be used to compensate for SNF assembly and canister structural performance related uncertainties associated with long-term storage and subsequent transportation. The results also suggest that these inherent margins associated with how casks are loaded could support future changes in cask licensing to directly or indirectly credit the margins. Work continues to quantify the uncredited safety margins in the SNF casks loaded at other nuclear reactor sites.« less

  5. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect (OSTI)

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  6. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response Cross-sector Demand Response...

  7. Commercial Refrigeration Rebate Program

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural, and institutional buildings. 

  8. Feasibility Study For Use Of Commercial Cask Vendor Dry Transfer Systems To Unload Used Fuel Assemblies In L-Area

    SciTech Connect (OSTI)

    Krementz, Dan; Rose, David; Dunsmuir, Mike

    2014-02-06

    The purpose of this study is to determine whether a commercial dry transfer system (DTS) could be used for loading or unloading used nuclear fuel (UNF) in L-Basin and to determine if a DTS pool adapter could be made for L-Basin Transfer Pit #2 that could accommodate a variety of DTS casks and fuel baskets or canisters up to 24” diameter.[1, 2] This study outlines the technical feasibility of accommodating different vendor dry transfer systems in the L-Basin Transfer Bay with a general work scope. It identifies equipment needing development, facility modifications, and describes the needed analyses and calculations. After reviewing the L-Basin Transfer Bay area layout and information on the only DTS system currently in use for the Nuclear Assurance Corporation Legal Weight Truck cask (NAC LWT), the authors conclude that use of a dry transfer cask is feasible. AREVA was contacted and acknowledged that they currently do not have a design for a dry transfer cask for their new Transnuclear Long Cask (TN-LC) cask. Nonetheless, this study accounted for a potential future DTS from AREVA to handle fuel baskets up to 18” in diameter. Due to the layout of the Transfer Bay, it was determined that a DTS cask pool adapter designed specifically for spanning Pit #2 and placed just north of the 70 Ton Cask lid lifting superstructure would be needed. The proposed pool adapter could be used to transition a fuel basket up to 24” in diameter and ~11 feet long from a dry transfer cask to the basin. The 18” and 24” applications of the pool adapter are pending vendor development of dry transfer casks that accommodate these diameters. Once a fuel basket has been lowered into Pit #2 through a pool adapter, a basket cart could be used to move the basket out from under the pool adapter for access by the 5 Ton Crane. The cost to install a dry transfer cask handling system in L-Area capable of handling multiple vendor provided transport and dry transfer casks and baskets with

  9. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  10. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  11. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  12. Vehicle Technologies Office Merit Review 2015: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  13. Vehicle Technologies Office Merit Review 2014: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about low temperature...

  14. Vehicle Technologies Office Merit Review 2016: Low Temperature Emission Control to Enable Fuel-Efficient Engine Commercialization

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  15. Departments of Energy, Navy, and Agriculture Invest $210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military

    Broader source: Energy.gov [DOE]

    In 2014, the U.S. Departments of Energy, Navy, and Agriculture announced that Emerald Biofuels, Fulcrum Energy, and Red Rock Biofuels have been awarded contracts to construct biorefineries capable...

  16. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  17. Energy Department Invests Over $7 Million to Commercialize Cost...

    Office of Environmental Management (EM)

    Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell ...

  18. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F9: Residual Fuel Oil Consumption Estimates, 2014 State Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total Thousand ...

  19. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    0: Residual Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation ...

  20. Fuel Tables.indd

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    F4: Fuel ethanol consumption estimates, 2014 State Commercial Industrial Transportation ... a In estimating the Btu consumption of fuel ethanol, the Btu content of denaturant ...

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Dispenser Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains ethanol or methanol. (Reference Texas Statutes, Agriculture Code 17.051

  2. Distillate Fuel Oil Sales for Residential Use

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  3. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to

  4. Modesto Irrigation District- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Modesto Irrigation District’s Commercial Power Saver Rebate Program offers incentives to commercial, industrial, and agricultural customers for the purchase and installation of qualifying energy...

  5. No Fossil Fuel - Kingston | Open Energy Information

    Open Energy Info (EERE)

    Fossil Fuel - Kingston Jump to: navigation, search Name No Fossil Fuel - Kingston Facility No Fossil Fuel - Kingston Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. American Renewable Fuels | Open Energy Information

    Open Energy Info (EERE)

    Fuels Jump to: navigation, search Name: American Renewable Fuels Place: Dallas, Texas Zip: TX 75201 Sector: Renewable Energy Product: Developer of commercial scale renewable fuels...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) requires that hydrogen fuel used in internal combustion engines and fuel cells must meet the SAE International J2719 standard for hydrogen fuel quality. For more information, see the DMS Hydrogen Fuel News website. (Reference California Code of Regulations Title 4, Section 4180-4181

  8. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  9. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    SciTech Connect (OSTI)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)’s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNL’s research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $15–19,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by

  10. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Program describing hydrogen fuel cell technology. Fuel Cells Fact Sheet (545.14 KB) More Documents & Publications Comparison of Fuel Cell Technologies: Fact Sheet Fuel Cells Fact Sheet 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies

  11. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  12. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  13. ERC commercialization activities

    SciTech Connect (OSTI)

    1995-08-01

    The ERC family of companies is anticipating market entry of their first commercial product, a 2.8-MW power plant, in the second quarter of 1999. The present Cooperative Agreement provides for: (1) Commercialization planning and organizational development, (2) Completion of the pre-commercial DFC technology development, (3) Systems and plant design, (4) Manufacturing processes` scale-up to full-sized stack components and assemblies, (5) Upgrades to ERC`s test facility for full-sized stack testing, (6) Sub-scale testing of a DFC Stack and BOP fueled with landfill gas. This paper discusses the first item, that of preparing for commercialization. ERC`s formal commercialization program began in 1990 with the selection of the 2-MW Direct Fuel Cell power plant by the American Public Power Association (APPA) for promotion to the over 2000 municipal utilities comprising APPA`s segment of the utility sector. Since that beginning, the APPA core group expanded to become the Fuel Cell Commercialization Group (FCCG) which includes representation from all markets - utilities and other power generation equipment buyers.

  14. 2011 Pathways to Commercial Success: Technologies and Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and Products Supported ...

  15. 2013 Pathways to Commercial Success: Technologies and Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2013 Pathways to Commercial Success: Technologies and Products Supported ...

  16. 2014 Pathways to Commercial Success: Technologies and Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2014 Pathways to Commercial Success: Technologies and Products Supported ...

  17. 2012 Pathways to Commercial Success: Technologies and Products...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2012 Pathways to Commercial Success: Technologies and Products ...

  18. 2010 Pathways to Commercial Success: Technologies and Products...

    Office of Environmental Management (EM)

    0 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2010 Pathways to Commercial Success: Technologies and Products Supported ...

  19. Energy Department Invests Over $7 Million to Commercialize Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize Cost-Effective ...

  20. EERE Success Story-Algenol Announces Commercial Algal Ethanol...

    Energy Savers [EERE]

    Protec Fuel to market and distribute commercial ethanol produced from algae for fleets and retail consumption from Algenol's commercial demonstration module in Fort Myers, Florida. ...

  1. Pathways to Commercial Success: Technologies and Products Supported...

    Office of Scientific and Technical Information (OSTI)

    the Fuel Cell Technologies Office - 2015 Citation Details In-Document Search Title: Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell ...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Wisconsin Department of Agriculture, Trade and Consumer Protection must pursue the establishment and maintenance of sufficient alternative fueling infrastructure at public ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Agricultural Growth, Research, and Innovation Program may offer grants, loans, or other financial incentives to alternative fuel retailers for the installation of ethanol ...

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 Infrastructure Grant Program The Minnesota Department of Agriculture may establish a program to provide grants to eligible fuel retailers for equipment and installation costs ...

  5. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect (OSTI)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  6. Project Profile: Commercial Development of an Advanced Linear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Profile: Commercial Development of an Advanced Linear-Fresnel-Based CSP Concept SkyFuel logo SkyFuel, under the CSP R&D FOA, is developing a commercial linear-Fresnel-based ...

  7. Adjusted Distillate Fuel Oil Sales for Residential Use

    Gasoline and Diesel Fuel Update (EIA)

    End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate ...

  8. Commercial Buildings Energy Consumption and Expenditures 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil, and district heat consumption and expenditures for commercial buildings by building characteristics. Previous Page Arrow Separater Bar File Last Modified: January 29,...

  9. 2015 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Office | Department of Energy 5 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2015 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office This 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that

  10. 2010 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Program | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2010 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program This FY 2010 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office

  11. 2011 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Program | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office

  12. 2012 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Program | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office

  13. 2013 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Office | Department of Energy 3 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2013 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and

  14. 2014 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Office | Department of Energy 4 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and

  15. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7/14/2015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy June 24, 2015 Washington, DC Fuel Cell Technologies Office | 2 7/14/2015 7/14/2015 DOE Hydrogen and Fuel Cells Program Integrated approach to widespread commercialization of H 2 and fuel cells Fuel Cell Cost Durability H 2 Cost

  16. Reformulated diesel fuel

    DOE Patents [OSTI]

    McAdams, Hiramie T [Carrollton, IL; Crawford, Robert W [Tucson, AZ; Hadder, Gerald R [Oak Ridge, TN; McNutt, Barry D [Arlington, VA

    2006-03-28

    Reformulated diesel fuels for automotive diesel engines which meet the requirements of ASTM 975-02 and provide significantly reduced emissions of nitrogen oxides (NO.sub.x) and particulate matter (PM) relative to commercially available diesel fuels.

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Hybrid electric vehicles and motor vehicles licensed as historic vehicles are exempt from the alternative fuel decal

  18. Opportunities with Fuel Cells

    Reports and Publications (EIA)

    1994-01-01

    The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

  19. Spent Nuclear Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent nuclear fuel data are collected by the U.S. Energy Information Administration (EIA) for the Department of Energy's Office of Standard Contract Management (Office of the General Counsel) on the Form GC-859, "Nuclear Fuel Data Survey." The data include detailed characteristics of spent nuclear fuel discharged from commercial U.S. nuclear power plants and currently stored at commercial sites in the United

  20. Commercial SNF Accident Release Fractions

    SciTech Connect (OSTI)

    J. Schulz

    2004-11-05

    The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the

  1. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  2. Webinar: California Fuel Cell Partnership's Roadmap to the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Hydrogen Fuel Cell Electric Vehicles | Department of Energy California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles Above is the video recording for the webinar, "California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles," originally held on

  3. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From

  4. Bioenergy Impacts Â… Renewable Jet Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    able to produce renewable jet fuel for the commercial aviation industry and the military. ... Biofuel is becoming an option for commercial and military airplanes BIOENERGY To learn ...

  5. National Hydrogen and Fuel Cell Day

    Office of Energy Efficiency and Renewable Energy (EERE)

    Join us on Thursday, October 8, in celebrating the first National Hydrogen and Fuel Cell Day! In 2013, auto manufacturers started announcing fuel cell electric vehicle (FCEV) commercialization...

  6. Fuel Cells News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Photos by Sarah Gerrity, Energy Department EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle Fuel cell electric vehicles (FCEVs) are now commercially...

  7. 2009 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Hydrogen, Fuel Cells and Infrastructure Technologies Program | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program 2009 Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dealer and Commercial User License Beginning January 1, 2017, alternative fuel dealers and alternative fuel commercial users must apply for a license from the Michigan Department of Treasury. Commercial users are defined as those operating vehicles with three or more axles, or two axles and a gross vehicle weight rating exceeding 26,000 pounds, that operate in more than one state. Alternative fuel dealers must pay a license fee of $500 and commercial users must pay a license fee of $50. For the

  9. No Fossils in This Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... that burn diesel fuel. biomass - any organic plant or animal matter (wood, wood wastes, agricultural residues, animal wastes, micro-algae and other aquatic plants) that can be ...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Commercial Vehicle Tax Credit Businesses are eligible to receive tax credits for purchasing new alternative fuel commercial vehicles. Qualified commercial vehicles must be powered primarily by natural gas, propane, hydrogen, dimethyl ether, or electricity. Tax credit amounts vary based on gross vehicle weight rating (GVWR) and are up to 50% of the incremental cost, with maximum credit values as follows: GVWR Maximum Credit Amount Per Vehicle Up to 14,000 pounds (lbs.) $5,000

  11. Norwich Public Utilities- Commercial Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Norwich Public Utilities (NPU) provides rebates to its commercial, industrial, institutional, and agricultural customers for high-efficiency HVAC systems, premium efficiency electric motors,...

  12. Modesto Irrigation District- Commercial New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    The MPower Business New Construction Rebate Program is available to commercial, industrial, or agricultural customers that presently or will receive electric service from MID. Accounts billed on FL...

  13. Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

  14. DECREASE Final Technical Report: Development of a Commercial...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 09 BIOMASS FUELS; 02 PETROLEUM; AGRICULTURAL WASTES; BENCHMARKS; BIOFUELS; BIOMASS; CELLULOSIC ETHANOL; DIGESTION; ...

  15. What to Expect When Readying to Move Spent Nuclear Fuel from...

    Energy Savers [EERE]

    Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move ...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.14 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor fuel that is typically derived from agricultural products that have been denatured. Methyl alcohol is a motor fuel that is most commonly derived from wood products. (Reference South Dakota Statutes 10-47B-3 and 10-47B-4

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel sales volumes based on annual renewable fuel volumes required under the federal Renewable Fuel Standard. On an annual basis, the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP), in cooperation with the Department of Commerce, the Department of Revenue, and the Energy Office, must determine whether the annual goals for the previous year were met. If the goals were

  18. EERE Success Story-California: Agricultural Residues Produce Renewable

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel | Department of Energy Agricultural Residues Produce Renewable Fuel EERE Success Story-California: Agricultural Residues Produce Renewable Fuel April 18, 2013 - 12:00am Addthis Logos Technologies and EERE partnered with EdeniQ of Visalia, California, to construct a pilot plant that processes 1.2 tons per day of agricultural residues, such as corn stover (leaves and stalks), as well as other California-sourced indigenous, nonfood feedstock sources (wood chips and switchgrass). The

  19. Fuel Cell Europe | Open Energy Information

    Open Energy Info (EERE)

    Name: Fuel Cell Europe Place: FrankfurtM, Germany Zip: D-60313 Product: Fuel Cell Europe was set up to promote the commercial application of fuel cell across Europe. Coordinates:...

  20. Compare All CBECS Activities: Fuel Oil Use

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Oil Use Compare Activities by ... Fuel Oil Use Total Fuel Oil Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 1.3 billion gallons...

  1. H.R. 5299: A Bill to amend the Internal Revenue Code of 1986 to phase out the tax subsidies for alcohol fuels involving alcohol produced from feedstocks eligible to receive Federal agricultural subsidies. Introduced in the House of Representatives, One Hundred Third Congress, Second Session, November 29, 1994

    SciTech Connect (OSTI)

    1994-12-31

    The report H.R. 5299 is a bill to amend the Internal Revenue Code of 1986 to phase out the tax subsidies of alcohol fuels involving alcohol produced from feedstocks eligible to receive Federal agriculture subsidies. The proposed legislative text is included.

  2. Low contaminant formic acid fuel for direct liquid fuel cell

    DOE Patents [OSTI]

    Masel, Richard I.; Zhu, Yimin; Kahn, Zakia; Man, Malcolm

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  3. Development and Commercialization of a Novel Low-Cost Carbon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of a Novel Low-Cost Carbon Fiber Development and Commercialization of a Novel Low-Cost Carbon Fiber 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in California (Million Cubic Feet) Year Jan Feb Mar Apr May Jun ...

  5. 2009 Pathways to Commercial Success: Technologies and Products...

    Office of Environmental Management (EM)

    Office of Energy Efficiency and Renewable Energy. 2009 Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure ...

  6. PECO Energy (Gas)- Commercial Heating Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    PECO offers financial incentives to its business and commercial gas customers to install energy efficient equipment. Incentives are available for energy efficient boilers, furnaces, and for fuel...

  7. The Next Regulatory Chapter for Commercial Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D partnerships and regulations worked together to establish near zero emissions standards and fuel economygreenhouse gas emissions (GHG) standards for commercial vehicles ...

  8. Analysis of the Hydrogen Infrastructure Needed to Enable Commercial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Paper Analysis of the Hydrogen NRELCP-540-37903 Infrastructure Needed to March 2005 Enable Commercial Introduction of Hydrogen- Fueled Vehicles Preprint M. Melendez and...

  9. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  10. Manufacturing Barriers to High Temperature PEM Commercialization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Barriers to High Temperature PEM Commercialization Manufacturing Barriers to High Temperature PEM Commercialization Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Manufacturing Barriers to High Temperature PEM Commercialization (785.02 KB) More Documents & Publications PBI-Phosphoric Acid Based Membrane Electrode Assemblies: Status Update MCFC and PAFC R&D Workshop Summary Report 2012 Pathways to

  11. Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000

    SciTech Connect (OSTI)

    Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

    2000-10-12

    A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

  12. Waste-to-Energy and Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary Fuel Cell Products Currently on the Market are Configured to Operate on Natural Gas UTC Power, Inc. ... commercial technology. gy * Integration of stationary fuel cells ...

  13. Webinar: California Fuel Cell Partnership's Roadmap to theCommerciali...

    Broader source: Energy.gov (indexed) [DOE]

    California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles," originally held on October 16, 2012. In addition to this recording, ...

  14. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board ...

  15. DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes BCA Perspective on Fuel Cell APUs Report of the ...

  16. Sustainable Alternative Fuels Cost Workshop Roster of Participants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuels Cost Workshop Roster of Participants Richard Altman - Commercial Aviation Alternative Fuels Initiative Andrew Argo - National Renewable Energy Labortory- Systems ...

  17. Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and fuel cells. On December 10, 2014, Linde opened the first-ever, fully certified commercial ... DOE. California's Alternative and Renewable Fuel and Vehicle Technology Program ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota Department of Agriculture offer funding assistance to fuel retailers for the installation of equipment to dispense ethanol fuel blends ranging from E15 through E85. Grant amounts are based on the extent to which the installation meets project priorities. For more information, refer to the Clean Air Choice E85 Retailer Information website. Point of Contact Kelly Marczak Director American

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    In Electric Vehicle (PEV) Annual Fee PEV owners are required to pay an annual license fee of $200 for non-commercial PEVs and $300 for commercial PEVs. The Georgia Department of Revenue may adjust fees annually based on vehicle fuel economy and the Consumer Price Index through July 1, 2018. (Reference Georgia Code 40-2-15

  20. Fuel Processors for PEM Fuel Cells

    SciTech Connect (OSTI)

    Levi T. Thompson

    2008-08-08

    Fuel cells are being developed to power cleaner, more fuel efficient automobiles. The fuel cell technology favored by many automobile manufacturers is PEM fuel cells operating with H2 from liquid fuels like gasoline and diesel. A key challenge to the commercialization of PEM fuel cell based powertrains is the lack of sufficiently small and inexpensive fuel processors. Improving the performance and cost of the fuel processor will require the development of better performing catalysts, new reactor designs and better integration of the various fuel processing components. These components and systems could also find use in natural gas fuel processing for stationary, distributed generation applications. Prototype fuel processors were produced, and evaluated against the Department of Energy technical targets. Significant advances were made by integrating low-cost microreactor systems, high activity catalysts, π-complexation adsorbents, and high efficiency microcombustor/microvaporizers developed at the University of Michigan. The microreactor system allowed (1) more efficient thermal coupling of the fuel processor operations thereby minimizing heat exchanger requirements, (2) improved catalyst performance due to optimal reactor temperature profiles and increased heat and mass transport rates, and (3) better cold-start and transient responses.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; information on alternative fuels, AFVs, HEVs, plug-in hybrid electric vehicles; and advanced vehicle technology research, development, and demonstration. Projects that result in product commercialization and the expansion of Pennsylvania companies are favored in the selection process. The AFIG Program also offers

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technology Advancement Funding - South Coast The South Coast Air Quality Management District's (SCAQMD) Clean Fuels Program provides funding for research, development, demonstration, and deployment projects that are expected to help accelerate the commercialization of advanced low emission transportation technologies. Eligible projects include powertrains and energy storage or conversion devices (e.g., fuel cells and batteries), and implementation of clean fuels (e.g., natural gas, propane, and

  3. Algenol Announces Commercial Algal Ethanol Fuel Partnership ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This achievement was made possible in part with 25 million in cost-shared funding from ... The Bioenergy Technologies Office works with many national laboratories, academic ...

  4. Cellulosic Liquid Fuels Commercial Production Today

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is UOP, a Honeywell company 4 Business Plan Build-own-operate model - with strategic partners ... RFS2 Approved Diesel Power Generation Stand-alone Upgrading - ...

  5. Carbonate fuel cell powerplant development and commercialization

    SciTech Connect (OSTI)

    Williams, M.C.

    1997-04-01

    CFC powerplants offer the potential for ultrahigh efficiency energy conversion and the enhancement of the quality of our environment. Since combustion is not utilized, CFCs generate very low amounts of NOx. CFC powerplants have been exempt from air permitting requirements in California, Massachusetts. CFC is attractive for both polluted urban areas and remote applications. It is ideal as a distributed generator (sited at or near the electricity user). The US CFC developers enjoy the support of user groups (utility, other end-user members). DOE cooperates with GRI and EPRI in funding the US CFC program.

  6. Residual Fuel Oil for Commercial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    415,107 356,343 316,713 226,150 177,196 68,438 1984-2014 East Coast (PADD 1) 404,122 343,935 303,217 220,543 175,260 65,966 1984-2014 New England (PADD 1A) 64,826 47,270 33,350...

  7. Distillate Fuel Oil Sales for Commercial Use

    U.S. Energy Information Administration (EIA) Indexed Site

    785,246 2,738,304 2,715,335 2,557,543 2,471,897 2,543,778 1984-2014 East Coast (PADD 1) 1,565,353 1,528,778 1,433,828 1,286,053 1,295,125 1,348,704 1984-2014 New England (PADD 1A)...

  8. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    SciTech Connect (OSTI)

    S.O. Bader

    1999-10-18

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be

  9. Proton Exchange Membrane Fuel Cells for Electrical Power Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    On-Board Commercial Airplanes | Department of Energy Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes This report, prepared by Sandia National Laboratories, is an initial investigation of the use of proton exchange membrane (PEM) fuel cells on-board commercial aircraft. The report examines whether on-board airplane fuel cell systems are

  10. Fuel cell report to congress

    SciTech Connect (OSTI)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  11. Perennial grasses for energy and conservation: Evaluating some ecological agricultural, and economic issues

    SciTech Connect (OSTI)

    Downing, M.; Walsh, M.; McLaughlin, S.

    1995-11-01

    Perennial prairie grasses offer many advantages to the developing biofuels industry. High yielding varieties of native prairie grasses such as switchgrass, which combine lower levels of nutrient demand, diverse geographical growing range, high net energy yields and high soil and water conservation potential indicate that these grasses could and should supplement annual row crops such as corn in developing alternative fuels markets. Favorable net energy returns, increased soil erosion prevention, and a geographically diverse land base that can incorporate energy grasses into conventional farm practices will provide direct benefits to local and regional farm economies and lead to accelerated commercialization of conversion technologies. Displacement of row crops with perennial grasses will have major agricultural, economic, sociologic and cross-market implications. Thus, perennial grass production for biofuels offers significant economic advantages to a national energy strategy which considers both agricultural and environmental issues.

  12. Alternative transportation fuels

    SciTech Connect (OSTI)

    Askew, W.S.; McNamara, T.M.; Maxfield, D.P.

    1980-01-01

    The commercialization of alternative fuels is analyzed. Following a synopsis of US energy use, the concept of commercialization, the impacts of supply shortages and demand inelasticity upon commercialization, and the status of alternative fuels commercialization to date in the US are discussed. The US energy market is viewed as essentially numerous submarkets. The interrelationship among these submarkets precludes the need to commercialize for a specific fuel/use. However, the level of consumption, the projected growth in demand, and the inordinate dependence upon foreign fuels dictate that additional fuel supplies in general be brought to the US energy marketplace. Commercialization efforts encompass a range of measures designed to accelerate the arrival of technologies or products in the marketplace. As discussed in this paper, such a union of willing buyers and willing sellers requires that three general conditions be met: product quality comparable to existing products; price competitiveness; and adequate availability of supply. Product comparability presently appears to be the least problematic of these three requirements. Ethanol/gasoline and methanol/gasoline blends, for example, demonstrate the fact that alternative fuel technologies exist. Yet price and availability (i.e., production capacity) remain major obstacles. Given inelasticity (with respect to price) in the US and abroad, supply shortages - actual or contrived - generate upward price pressure and should make once-unattractive alternative fuels more price competitive. It is noted, however, that actual price competitiveness has been slow to occur and that even with price competitiveness, the lengthy time frame needed to achieve significant production capacity limits the near-term impact of alternative fuels.

  13. California: Agricultural Residues Produce Renewable Fuel

    Broader source: Energy.gov [DOE]

    Logos Technologies and EERE are partnering with Edeniq of Visalia to build a plant that will produce cellulosic ethanol from switchgrass, wood chips, and corn leaves, stalks, and husks--all plentiful, nonfood feedstock sources in California.

  14. Fuel performance annual report for 1990. Volume 8

    SciTech Connect (OSTI)

    Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A.; Wu, S.L.

    1993-11-01

    This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate.

  15. Fuel performance annual report for 1981. [PWR; BWR

    SciTech Connect (OSTI)

    Bailey, W.J.; Tokar, M.

    1982-12-01

    This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

  16. Fuel performance annual report for 1983. Volume 1

    SciTech Connect (OSTI)

    Bailey, W.J.; Dunenfeld, M.S.

    1985-03-01

    This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

  17. Fuel Cells Today: Early Market Applications and Learning Demonstrations

    SciTech Connect (OSTI)

    2015-09-09

    This MP3 provides an overview of early market fuel cell applications including today's commercially available fuel cells and "learning demonstrations" to validate fuel cell technology in real world conditions.

  18. Improving Desulfurization to Enable Fuel Cell Utilization of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Both TDA and its project partner FuelCell Energy have suc- cessfully commercialized and ... FuelCell Energy has built numerous fuel cell plants fed by anaerobic digester gas, giving ...

  19. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration courtesy of FuelCell Energy, Inc. Project Description The goal of this ... It is now be- ing incorporated into FuelCell Energy's commercial Direct FuelCell ...

  20. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  1. Green Fuels Ltd | Open Energy Information

    Open Energy Info (EERE)

    Green Fuels Ltd Place: Malmesbury, Wiltshire, United Kingdom Zip: SN16 9SG Product: Designer of small-scale and commercial-scale biodiesel plants. References: Green Fuels Ltd1...

  2. BCA Perspective on Fuel Cell APUs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joe Breit BCA Perspective on Associate Technical Fellow Fuel Cell APUs Boeing Commercial Airplanes September 30, 2010 DOD-DOE Fuel Cell APU Workshop The following technical data is ...

  3. Fuel performance annual report for 1986

    SciTech Connect (OSTI)

    Bailey, W.J.; Wu, S.

    1988-03-01

    This annual report, the ninth in a series, provides a brief description of fuel performance during 1986 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related U.S. Nuclear Regulatory Commission evaluations are included. 550 refs., 12 figs., 31 tabs.

  4. Fuel performance: Annual report for 1987

    SciTech Connect (OSTI)

    Bailey, W.J.; Wu, S.

    1989-03-01

    This annual report, the tenth in a series, provides a brief description of fuel performance during 1987 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulator Commission evaluations are included. 384 refs., 13 figs., 33 tabs.

  5. Fuel performance annual report for 1989

    SciTech Connect (OSTI)

    Bailey, W.J.; Berting, F.M. ); Wu, S. . Div. of Systems Technology)

    1992-06-01

    This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included.

  6. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Seminar Orlando, FL Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 11/1/2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov DOE Program Overview Budget Progress Next Steps Agenda 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov DOE Program Structure The Program is an integrated effort, structured to address all the key challenges and obstacles facing widespread commercialization. The

  7. Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs - Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Commercial Outlook | Department of Energy APUs - Fuel Cell Commercial Outlook Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs - Fuel Cell Commercial Outlook Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_3_devlin.pdf (808.15 KB) More Documents & Publications Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview PEMFC R&D at the DOE Fuel Cell Technologies Program Overview of Hydrogen and Fuel Cell Activities:

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    On-Farm Biofuel Production Grants The Governor's Office of Agricultural Policy provides grants through the County Agricultural Investment Program for on-farm energy efficiency and renewable energy production projects, including funding for equipment, structures, or other supplies necessary to convert biomass crops into useable energy or to convert grains and oilseeds into ethanol or biodiesel for use in on-farm equipment. Fuels produced on a farm with assistance through this program may not be

  9. Modesto Irrigation District- Custom Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The MPower Custom Rebate Program is available to larger commercial, industrial or agricultural customers that replace existing equipment or systems with high efficiency equipment.  To be eligible...

  10. 1999 Commercial Buildings Characteristics

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Reports > 2003 Building Characteristics Overview 1999 Commercial Buildings Energy Consumption SurveyCommercial Buildings Characteristics Released: May 2002 Topics: Energy...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a significant part of the energy industry in Texas by January 1, 2019. The Policy Council is tasked with the following: Provide a vision for unifying the state's agricultural, energy, and research strengths in a successful launch of a cellulosic biofuel and bioenergy industry; Foster development of cellulosic and bio-based fuels; Pursue

  12. Agricultural and Industrial Process-Heat-Market Sector workbook

    SciTech Connect (OSTI)

    Shulman, M. J.; Kannan, N. P.; deJong, D. L.

    1980-01-01

    This workbook summarizes the preliminary data and assumptions of the Agricultural and Industrial Process Heat Market Sector prepared in conjunction with the development of inputs for a National Plan for the Accelerated Commercialization of Solar Energy.

  13. Fuel Cell Demonstration Program

    SciTech Connect (OSTI)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation

  14. Fuel cell systems program plan, Fiscal year 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    Goal of the fuel cell program is to increase energy efficiency and economic effectiveness through development and commercialization of fuel cell systems which operate on fossil fuels in multiple end use sectors. DOE is participating with the private sector in sponsoring development of molten carbonate fuel cells and solid oxide fuel cells for application in the utility, commercial, and industrial sectors. Commercialization of phosphoric acid fuel cells is well underway. Besides the introduction, this document is divided into: goal/objectives, program strategy, technology description, technical status, program description/implementation, coordinated fuel cell activities, and international activities.

  15. Commercialization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization Commercialization <a href="http://energy.gov/node/307033/">See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries</a>. See an example of these steps in the commercialization process of Nickel Metal Hydride Batteries. Commercialization is the process by which technologies and innovations developed in the lab make their way to market. By licensing patents or using Energy Department facilities, researchers from the

  16. Benton PUD- Commercial and Agricultural Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Interested customers should visit the program website for more information.  To check the availability of funding 2012 incentives, contact Kevin Fisher at (509) 585-5395.

  17. Transportation engine commercialization at Ballard Power Systems

    SciTech Connect (OSTI)

    Otto, N.C.; Howard, P.F.

    1996-12-31

    Ballard is adapting its leading fuel cell technology for transit bus engines in three phases. In the first phase, completed in 1993, Ballard developed and demonstrated a 125 HP fuel cell engine in a 32-foot light duty transit bus. This was the world`s first zero-emission vehicle (ZEV) powered completely by PEM fuel cells. The bus is a reliable, smooth performing vehicle that clearly established the viability of Ballard Fuel Cells for zero-emission transit bus operation. In the second phase, completed in 1995, Ballard refined its fuel cell technology, building a 275 HP fuel cell engine for a 40-foot heavy duty transit bus. The fuel cell engine fits in the existing engine compartment and meets the performance of a combustion powered vehicle, but with no pollution. In the third phase, small fleets of ZEV buses will be tested with Chicago Transit Authority and BC Transit. These test fleets will provide the performance, cost and reliability data necessary for commercial production. Commercial production of Ballard`s environmentally clean engines will begin in the 1998-1999 timeframe.

  18. Fuel Cells for Transportation - FY 2001 Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FY 2001 Progress Report Fuel Cells for Transportation - FY 2001 Progress Report V. PEM STACK COMPONENT COST REDUCTION 159.pdf (4.54 MB) More Documents & Publications 2013 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell

  19. NETL: Solid Oxide Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The NETL Fuel Cell Program maintains a portfolio of RD&D projects that address the technical issues facing the commercialization of SOFC technology and a series of increasingly ...

  20. Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations This document establishes the California Fuel Cell Partnership's current consensus vision of next steps for vehicles and hydrogen stations in California. 200707_complete_vision_deployment.pdf (239.09 KB) More Documents & Publications Moving toward a commercial market for hydrogen fuel cell vehicles FCEVs and Hydrogen in California

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentive - Propane Education Foundation of Florida Incentives for the purchase or conversion of propane commercial mowers are available to public and private entities that have not previously used propane as a fuel. New and converted propane commercial mowers are eligible for $1,000. Multi-state marketers are limited to ten incentives per company annually, and independent dealers are limited to five incentives annually. Applicants must submit a pre- and post-purchase survey and additional

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Zero Emission Vehicle (ZEV) Promotion Plan All state agencies must support and facilitate the rapid commercialization of ZEVs in California. In particular, the California Air Resources Board, California Energy Commission, Public Utilities Commission, and other relevant state agencies must work with the Plug-in Electric Vehicle Collaborative and the California Fuel Cell Partnership to establish benchmarks to achieve targets for ZEV commercialization. These targets include: By 2015, all major

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Rate Reduction - SoCalGas Southern California Gas Company (SoCalGas) offers natural gas at discounted rates to customers fueling natural gas vehicles (NGVs). G-NGVR, Natural Gas Service for Home Fueling of Motor Vehicles, is available to residential customers; G-NGV, Natural Gas Service for Motor Vehicles, is available to commercial customers. For more information, see the SoCalGas NGVs website.

  4. Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2009-11-19

    Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

  5. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  6. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  7. Hydrogen Storage Technologies: Long-Term Commercialization Approach...

    Broader source: Energy.gov (indexed) [DOE]

    Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. Hydrogen Storage Technologies: Long-Term Commercialization Approach ...

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in New Mexico (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul ...

  9. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  10. Regulatory and Commercial Barriers to Introduction of Renewable Super

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Premium | Department of Energy Regulatory and Commercial Barriers to Introduction of Renewable Super Premium Regulatory and Commercial Barriers to Introduction of Renewable Super Premium Breakout Session 2: Frontiers and Horizons Session 2-B: End Use and Fuel Certification Robert McCormick, Principal Engineer in Fuels Performance, National Renewable Energy Laboratory b13_mccormick_2-b.pdf (974.85 KB) More Documents & Publications The Impact of Low Octane Hydrocarbon Blending Streams on

  11. Basic Research for the Hydrogen Fuel Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative Basic Research for the Hydrogen Fuel Initiative (143.96 KB) More Documents & Publications FTA - SunLine Transit Agency - Final Report 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office

  12. Fuel oil and kerosene sales 1997

    SciTech Connect (OSTI)

    1998-08-01

    The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

  13. Preparation for commercial demonstration of biomass-to-ethanol conversion technology. Final report

    SciTech Connect (OSTI)

    1997-07-01

    The objective of this program was to complete the development of a commercially viable process to produce fuel ethanol from renewable cellulosic biomass. The program focused on pretreatment, enzymatic hydrolysis, and fermentation technologies where Amoco has a unique proprietary position. Assured access to low-cost feedstock is a cornerstone of attractive economics for cellulose to ethanol conversion in the 1990s. Most of Amoco`s efforts in converting cellulosic feedstocks to ethanol before 1994 focused on using paper from municipal solid waste as the feed. However, while many municipalities and MSW haulers expressed interest in Amoco`s technology, none were willing to commit funding to process development. In May, 1994 several large agricultural products companies showed interest in Amoco`s technology, particularly for application to corn fiber. Amoco`s initial work with corn fiber was encouraging. The project work plan was designed to provide sufficient data on corn fiber conversion to convince a major agriculture products company to participate in the construction of a commercial demonstration facility.

  14. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation team analyzes hydrogen fuel cell electric vehicles (FCEVs) operating in a real-world setting to identify the current status of the technology, compare it to Department of Energy (DOE) performance and durability targets, and evaluate progress between multiple generations of technology, some of which will include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the

  15. Energy Department Invests Over $7 Million to Commercialize Cost-Effective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies | Department of Energy Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies December 17, 2013 - 11:37am Addthis As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel

  16. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Association of State Energy Officials ...owners, the commercial real estate community, financial ... * Milestone: create marketing and deployment plan for ...

  17. Commercialization Assistance Program | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science & Innovation » Energy Efficiency » Commercial Buildings Commercial Buildings At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's <a href="/node/712411">National Renewable Energy Lab</a> could help commercial buildings save on lighting and ventilation costs by improving the accuracy of motion detection. At an estimated cost of

  18. Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS;...

    Office of Scientific and Technical Information (OSTI)

    Level Panel of Experts on Food Security and Nutrition NONE 09 BIOMASS FUELS; BIOFUELS; PRODUCTION; AGRICULTURE; ENERGY POLICY; SOCIO-ECONOMIC FACTORS; SUSTAINABLE DEVELOPMENT;...

  19. Phillips BioFuel Supply Co | Open Energy Information

    Open Energy Info (EERE)

    to create an area wide marketing and distribution network for agriculturally sourced biodiesel fuel in Vermont, eastern upstate NY, western NH and Quebec south in Canada....

  20. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  1. Aviation Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Demonstration & Market Transformation » Aviation Fuels Aviation Fuels A Navy plane in flight. The Bioenergy Technologies Office (BETO) sees the potential for biofuels produced for the aviation industry to help enable the growth of an advanced bioeconomy. Drop-in jet fuel replacements remain the only true alternative for the commercial aviation industry and the military, both facing ambitious near-term greenhouse gas reduction targets. BETO has been working with

  2. Nuclear Fuel Reprocessing

    SciTech Connect (OSTI)

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  3. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  4. Economics of sunflower oil as an extender or substitute for diesel fuel

    SciTech Connect (OSTI)

    Helgeson, D.L.; Schaffner, L.W.

    1982-05-01

    The economics of sunflower oil as an extender or substitute for diesel fuel in US agriculture, with particular emphasis on North Dakota, is examined. A study of the spot market prices indicates that crude sunflower oil has moved closer competitively with bulk diesel prices. On the question of energy efficiency, it is estimated, that using current production and processing estimates, there is a positive net energy ratio of 5.78 to 1. Processing can take place at the commercial leveL, in intermediate sized plants or on-farm. Costs were analyzed for three sizes of farm presses. (Refs. 6).

  5. USDA Agricultural Conservation Easement Program

    Broader source: Energy.gov [DOE]

    The U.S. Department of Agriculture's (USDA's) Agricultural Conservation Easement Program (ACEP) provides financial and technical assistance to help conserve agricultural lands, wetlands, and their related benefits.

  6. USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel

  7. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  8. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect (OSTI)

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  9. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of

  10. Actinide management with commercial fast reactors

    SciTech Connect (OSTI)

    Ohki, Shigeo

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  11. Commercial Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial-Marketing-Toolkit Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors Technology...

  12. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... with industry: Better Buildings Alliance, federal and other partners 2. Developing core tools, guides and products * Energy data access and analysis: Commercial Building Asset ...

  13. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    more comprehensive understanding of commercial lighting and the potential for lighting energy savings. Steps to build on this analysis can be taken in many directions. One...

  14. Transmission Commercial Project Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Expand Projects Skip navigation links Ancillary and Control Area Services (ACS) Practices Forum Attachment K Commercial Business Process Improvement (CBPI) Customer...

  15. Advanced Commercial Buildings Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Current cost share percentage is 56%. Budget History Oct 1, 2014- FY2014 (past) FY2015 ... and GoNo-Go Criteria including: * Benchmarking existing small commercial buildings * ...

  16. NREL Commercialization & Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The NREL Industry Growth Forum accelerates the commercialization of clean energy technologies by: * Fostering hands-on-management and coaching for evolving clean energy companies * ...

  17. Commercial Sector Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    the State Energy Data System (SEDS) historical commercial sector consumption, applying an additive correction term to ensure that simulated model results correspond to published...

  18. Commercial Buildings Characteristics 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    electricity, natural gas, fuel oil, district heat, district chilled water, propane, wood, coal, and active solar. In this survey, information about the use of these energy sources...

  19. RWE Fuel Cells GmbH | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cells GmbH Jump to: navigation, search Name: RWE Fuel Cells GmbH Place: Essen, North Rhine-Westphalia, Germany Zip: 45128 Sector: Services Product: Develops and commercializes...

  20. Agricultural Marketing Toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agricultural-Marketing-Toolkit Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  1. 10 Questions Regarding SAE Hydrogen Fueling Standards | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 10 Questions Regarding SAE Hydrogen Fueling Standards 10 Questions Regarding SAE Hydrogen Fueling Standards November 7, 2014 - 4:03pm Addthis The Department of Energy's (DOE's) Fuel Cell Technologies Office has made significant investment in hydrogen and fuel cell research and development (R&D) over the last decade, helping to cut fuel cell cost in half and enabling the commercialization of fuel cells for several early market applications. Working closely with industry has been

  2. Fuel Cell Technologies Office Accomplishments and Progress | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy About the Fuel Cell Technologies Office » Fuel Cell Technologies Office Accomplishments and Progress Fuel Cell Technologies Office Accomplishments and Progress The U.S. Department of Energy's (DOE's) efforts have advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming key challenges to widespread commercialization. See the Fuel Cell Technologies Office's accomplishments fact sheet. Chart showing fuel cell system cost and

  3. Fuel Cell Technologies Office Key Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Fuel Cell Technologies Office » Fuel Cell Technologies Office Key Activities Fuel Cell Technologies Office Key Activities The Fuel Cell Technologies Office conducts work in several key areas to advance the development and commercialization of hydrogen and fuel cell technologies. Research, Development, and Demonstration Key areas of research, development, and demonstration (RD&D) include the following: Fuel Cell R&D, which seeks to improve the durability, reduce the cost, and

  4. Symbiosis Biofeedstock Conference: Expanding Commercialization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase Feedstock Production Symbiosis Biofeedstock Conference: Expanding Commercialization of ...

  5. Fuel Cell Handbook, Fifth Edition

    SciTech Connect (OSTI)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  6. Fuel Cell Technologies Office: Technology Validation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Fuel Cell Technologies (FCT) Office, through its Technology Validation program, provides a crucial step in the transition of a technology from the lab to commercialization. ...

  7. Fuel Mix and Emissions Disclosure | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    to disclose to residential and small commercial customers details regarding the fuel mix and emissions of electric generation. Such information is provided to customers four...

  8. California and Connecticut: National Fuel Cell Bus Programs Drive...

    Energy Savers [EERE]

    Office (FCTO) conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. ...

  9. New Training Resource Prepares Rescuers for Hydrogen and Fuel...

    Energy Savers [EERE]

    Office (FCTO) conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. ...

  10. Franklin Fuel Cells Inc FFC | Open Energy Information

    Open Energy Info (EERE)

    Inc FFC Jump to: navigation, search Name: Franklin Fuel Cells Inc (FFC) Place: Wayne, Pennsylvania Zip: PA 19087 Product: A startup company formed to commercialize copper-based...

  11. Progress and Accomplishments in Hydrogen and Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the art of hydrogen and fuel cell technologies-making signifcant progress toward overcoming key challenges to widespread commercialization. Reducing Cost and Improving ...

  12. DOE Announces Webinars on Integrating Hydrogen and Fuel Cell...

    Office of Environmental Management (EM)

    Integrating Hydrogen and Fuel Cell Technologies, a Site Selection Tool for Utility-Scale PV, ... and small commercial buildings - a low-cost process to identify and correct ...

  13. New Catalyst Opens Way to Next-Generation Fuel Cells

    DOE R&D Accomplishments [OSTI]

    Snyder, Kendra

    2011-03-28

    A new highly stable catalyst developed at Brookhaven Lab lowers barriers to commercial use of fuel cells in vehicles and stationary applications.

  14. Renewable Jet Fuel Is Taking Flight | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    efforts to develop renewable jet fuel for the military and commercial aviation industry. ... advanced biofuels, which can be utilized by both the military and civil aviation sectors. ...

  15. Advances in X-Ray Diagnostics of Diesel Fuel Sprays

    Broader source: Energy.gov [DOE]

    Recent advances in high-speed X-ray imaging has shown several distinct behaviors of commercial fuel injectors that cannot be seen with more conventional techniques.

  16. Innovation and Coordination at the Callifornia Fuel Cell Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Promoting fuel cell vehicle commercialization as a means of moving towards a sustainable energy future, increasing energy efficiency and reducing or eliminating air pollution and ...

  17. Global Climate Change and Agriculture

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.

    2009-01-01

    The Fourth Assessment Report of the Intergovernmental Panel on Climate Change released in 2007 significantly increased our confidence about the role that humans play in forcing climate change. There is now a high degree of confidence that the (a) current atmospheric concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) far exceed those of the pre-industrial era, (b) global increases in CO2 arise mainly from fossil fuel use and land use change while those of CH4 and N2O originate primarily from agricultural activities, and (c) the net effect of human activities since 1750 has led to a warming of the lower layers of the atmosphere, with an increased radiative forcing of 1.6 W m-2. Depending on the scenario of human population growth and global development, mean global temperatures could rise between 1.8 and 4.0 °C by the end of the 21st century.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Infrastructure Grants and Loan Guarantees The Rural Energy for America Program (REAP) provides loan guarantees and grants to agricultural producers and rural small businesses to purchase renewable energy systems or make energy efficiency improvements. Eligible renewable energy systems include flexible fuel pumps, or blender pumps, that dispense intermediate ethanol blends. The maximum loan guarantee is $25 million and the maximum grant funding is 25% of project costs. At least 20% of the

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Agency Vehicle Procurement and Management Requirement When purchasing a motor vehicle, a state agency must select one that is capable of being powered by cleaner fuels, including electricity and natural gas, if the total life cycle cost of ownership is less than or comparable to that of a gasoline-powered vehicle. A committee of representatives from the Minnesota Departments of Administration, Agriculture, Commerce, Natural Resources, and Transportation, as well as the Pollution Control

  20. Fuel alcohol opportunities for Indiana

    SciTech Connect (OSTI)

    Greenglass, Bert

    1980-08-01

    Prepared at the request of US Senator Birch Bayh, Chairman of the National Alcohol Fuels Commission, this study may be best utilized as a guidebook and resource manual to foster the development of a statewide fuel alcohol plan. It examines sectors in Indiana which will impact or be impacted upon by the fuel alcohol industry. The study describes fuel alcohol technologies that could be pertinent to Indiana and also looks closely at how such a fuel alcohol industry may affect the economic and policy development of the State. Finally, the study presents options for Indiana, taking into account the national context of the developing fuel alcohol industry which, unlike many others, will be highly decentralized and more under the control of the lifeblood of our society - the agricultural community.

  1. Commercial industry on the horizon

    SciTech Connect (OSTI)

    Belcher, J.

    2000-01-01

    About 5,000 Tcf of stranded gas reserves exist worldwide--gas that is not economically feasible to recover and move to market through pipelines. For oil producers, this is problematic for a number of reasons. What do you do with associated gas when environmental regulations worldwide are banning flaring due to concerns over greenhouse gas emissions? Reinjection is costly and may not be the best solution in every reservoir. While many producers have enormous gas reserves, they are of no value if that gas is just sitting in the ground with no potential markets at hand. How can you monetize these reserves? A potential solution to the problem of stranded gas reserves is GTL processing. This process takes methane and converts it to synthesis gas, uses the Fischer-Tropsch (FT) process to convert the synthesis gas to syncrude, and upgrades the syncrude to various hydrocarbon chains to produce a variety of refined products. Three recent developments favor commercial GTL development: environmental regulations are creating a premium for ultraclean fuels; new technology is lowering the capital costs and operating costs of GTL development; and world oil prices have risen above $20/bbl. Therefore, the oil and gas industry is taking a serious look at commercialization of GTL.

  2. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  3. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  4. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  5. Aerogel commercialization pilot project. Final program report

    SciTech Connect (OSTI)

    NONE

    1996-02-13

    Aerogels are extremely light weight, high surface area, very insulative materials that offer many potential improvements to commercial products. Aerogels have been the subject of extensive research at Department of Energy Laboratories and have been considered one of the technology most ready for commercialization. However, commercialization of the technology had been difficult for the National Laboratories since end users were not interested in the high temperature and high pressure chemical processes involved in manufacturing the raw material. Whereas, Aerojet as a supplier of rocket fuels, specialty chemicals and materials had the manufacturing facilities and experience to commercially produce aerogel-type products. Hence the TRP provided a link between the technology source (National Laboratories), the manufacturing (Aerojet) and the potential end users (other TRP partners). The program successfully produced approximately 500 ft{sup 2} of organic aerogel but failed to make significant quantities of silica aerogel. It is significant that this production represents both the largest volume and biggest pieces of organic aerogel ever produced. Aerogels, available from this program, when tested in several prototype commercial products were expected to improve the products performance, but higher than expected projected production costs for large scale manufacture of aerogels has limited continued commercial interest from these partners. Aerogels do, however, offer potential as a specialty material for some high value technology and defense products.

  6. Fuel Cell Seminar, 1992: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  7. Internet Fuel Cells Forum

    SciTech Connect (OSTI)

    Sudhoff, Frederick A.

    1996-08-01

    The rapid development and integration of the Internet into the mainstream of professional life provides the fuel cell industry with the opportunity to share new ideas with unprecedented capabilities. The U.S. Department of Energy's (DOE's) Morgantown Energy Technology Center (METC) has undertaken the task to maintain a Fuel Cell Forum on the Internet. Here, members can exchange ideas and information pertaining to fuel cell technologies. The purpose of this forum is to promote a better understanding of fuel cell concepts, terminology, processes, and issues relating to commercialization of fuel cell power technology. The Forum was developed by METC to provide those interested with fuel cell conference information for its current concept of exchanging ideas and information pertaining to fuel cells. Last August, the Forum expanded to an on-line and world-wide network. There are 250 members, and membership is growing at a rate of several new subscribers per week. The forum currently provides updated conference information and interactive information exchange. Forum membership is encouraged from utilities, industry, universities, and government. Because of the public nature of the internet, business sensitive, confidential, or proprietary information should not be placed on this system. The Forum is unmoderated; therefore, the views and opinions of authors expressed in the forum do not necessarily state or reflect those of the U.S. government or METC.

  8. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  9. Fuel Cells Go Live

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    green h y d r o g e n f u e l i n g POWer Fuel Cells Go live A closer look at the requirements to create a hydrogen-based warehouse M anagers of distribution centers are always on the lookout for new ways to gain competitive advantage through increased operational efficiency, productivity and worker safety. Around North America, some are finding success by integrating commercially available hydrogen fuel cell systems into their lift truck fleets. For operations with large fleets of electric lift

  10. Commercial Items Test Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Attached for your information is a copy of Civilian Agency Acquisition Council (CAAC) Letter 2009-04. It advises that the National Defense Authorization Act for Fiscal Year 201 0, Section 8 16 authorizes extension of the Commercial Items Test Program from January 1,20 10 to January 1,20 12 and that an expedited FAR Case is being processed to insert the new date at FAR 13.500(d). Also attached is a class deviation authorizing the use of simplified acquisition procedures for commercial items up to $5.5 million [$I1 million for acquisitions of commercial items under FAR 13.500(e)

  11. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    SciTech Connect (OSTI)

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt; Hanbury, Orion; Schuetzle, Robert; Rodriguez, Ramer; Johnson, Alex; Deichert, Fred; Jorgensen, Roger; Struble, Doug

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  12. Commercial Grade Dedication RM

    Broader source: Energy.gov [DOE]

    The objective of this Standard Review Plan (SRP) on Commercial Grade Dedication (CGD) is to provide guidance for a uniform review of the CGD activities for office of Environmental Management...

  13. Lighting in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    5.2 152.6 160.5 54.6 Assembly Health Care Lodging Office 0 20 40 60 80 100 120 140 160 180 Energy Information Administration Energy Consumption Series: Lighting in Commercial...

  14. Commercial PACE Financing

    Broader source: Energy.gov [DOE]

    Senate Bill 221 of 2013 authorizes local governments to adopt Commercial* Property Assessed Clean Energy (C-PACE) financing programs. C-PACE allows property owners to finance energy efficiency and...

  15. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  16. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  17. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  18. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  19. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  20. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  1. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  2. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Improved Energy Technology Loans The U.S. Department of Energy (DOE) provides loan guarantees through the Loan Guarantee Program to eligible projects that reduce air pollution and greenhouse gases, and support early commercial use of advanced technologies, including biofuels and alternative fuel vehicles. The program is not intended for research and development projects. DOE may issue loan guarantees for up to 100% of the amount of the loan for an eligible project. Eligible projects may include

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Grants and Loan Guarantees The Biorefinery Assistance Program (Section 9003) provides loan guarantees for the development, construction, and retrofitting of commercial-scale biorefineries that produce advanced biofuels. Grants for demonstration scale biorefineries are also available. Advanced biofuel is defined as fuel derived from renewable biomass other than corn kernel starch. Eligible applicants include, but are not limited to, individuals, state or local governments, farm cooperatives,

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Idle Reduction Revolving Loan Program for Private Entities The Alabama Department of Economic and Community Affairs provides an energy efficiency and renewable energy loan through its AlabamaSAVES program to commercial, industrial, and non-profit entities. Eligible energy efficiency improvements include those involving idle reduction equipment, natural gas and propane vehicle conversions or purchases, and alternative fueling infrastructure installation at existing facilities in Alabama.

  6. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  7. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  8. Melvin Calvin: Fuels from Plants

    SciTech Connect (OSTI)

    Taylor, S.E.; Otvos, J.W.

    1998-11-24

    A logical extension of his early work on the path of carbon during photosynthesis, Calvin's studies on the production of hydrocarbons by plants introduced many in the scientific and agricultural worlds to the potential of renewable fuel and chemical feedstocks. He and his co-workers identified numerous candidate compounds from plants found in tropical and temperate climates from around the world. His travels and lectures concerning the development of alternative fuel supplies inspired laboratories worldwide to take up the investigation of plant-derived energy sources as an alternative to fossil fuels.

  9. BioFuel Oasis | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94710 Product: A worker-owned cooperative to sell commercial biodiesel that meets ASTM standards. References: BioFuel Oasis1 This article is a stub. You can help OpenEI by...

  10. Micro and Man-Portable Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Power Power Tool (commercial) Power Tool (consumer) Digital Still Camera Fuel Cell Sweet Spot ??? ??? ??? ??? ??? 5 Handset Chargers Comparative Analysis 3 h 16 Pack 1-3 h 3 h ...

  11. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  12. Kentucky Department of Agriculture

    Broader source: Energy.gov [DOE]

    At the August 7, 2008 quarterly joint Web conference of DOE's Biomass and Clean Cities programs, Wilbur Frye (Office of Consumer & Environmental Protection, Kentucky Department of Agriculture) described Biofuel Quality Testing in Kentucky.

  13. International Stationary Fuel Cell Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTERNATIONAL STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to

  14. Farmstead production of fuel alcohol

    SciTech Connect (OSTI)

    Badger, P.C.; Pile, R.S.; Waddell, E.L. Jr.

    1981-01-01

    The Tennessee Valley Authority Agricultural Energy Applications Section (Muscle Shoals, AL) has designed and constructed a small-scale fuel alcohol production facility which can produce 10 gph of 190-proof alcohol. Information presented includes some factors relative to facility design, layout, and construction, plus operation and performance experiences.

  15. Fuel oil and kerosene sales 1996

    SciTech Connect (OSTI)

    1997-08-01

    The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

  16. Fuel performance annual report for 1991. Volume 9

    SciTech Connect (OSTI)

    Painter, C.L.; Alvis, J.M.; Beyer, C.E.; Marion, A.L.; Payne, G.A.; Kendrick, E.D.

    1994-08-01

    This report is the fourteenth in a series that provides a compilation of information regarding commercial nuclear fuel performance. The series of annual reports were developed as a result of interest expressed by the public, advising bodies, and the US Nuclear Regulatory Commission (NRC) for public availability of information pertaining to commercial nuclear fuel performance. During 1991, the nuclear industry`s focus regarding fuel continued to be on extending burnup while maintaining fuel rod reliability. Utilities realize that high-burnup fuel reduces the amount of generated spent fuel, reduces fuel costs, reduces operational and maintenance costs, and improves plant capacity factors by extending operating cycles. Brief summaries of fuel operating experience, fuel design changes, fuel surveillance programs, high-burnup experience, problem areas, and items of general significance are provided.

  17. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  18. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  19. IID Energy- Commercial Rebate Program

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District (IID) offers incentives to its commercial customers to encourage the adoption of energy efficient technologies, including commercial heating and cooling equipment,...

  20. Commercial Building Demonstration and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Building Demonstration and Deployment 2014 Building Technologies Office Peer ... April 23 rd 11:15-11:30 Commercial DemonstrationDeployment Overview Kristen Taddonio, ...

  1. Lighting in Commercial Buildings, 1986

    U.S. Energy Information Administration (EIA) Indexed Site

    Lighting in Commercial Buildings --1986 Overview Full Report and Tables Detailed analysis of energy consumption for lighting for U.S. commercial buildings. previous page...

  2. SBSP Commercial Upstream Incentive Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and commercial sales) 1. EIA Commercial Buildings Energy Consumption Survey (2003) 2. Industry Research and Recommendations for Small Buildings and Small Portfolios, NREL 2013. ...

  3. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation Energy Efficiency Commercial Buildings Commercial Buildings At an estimated cost of 38 ... questions -- from how to lower your cooling costs to ways ...

  4. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis &

    Gasoline and Diesel Fuel Update (EIA)

    Projections - U.S. Energy Information Administration (EIA) All Reports & Publications Search By: Go Pick a date range: From: To: Go Commercial Buildings Available formats Commercial Buildings Energy Consumption Survey 2012 - Detailed Tables Released: May 17, 2016 The 2012 CBECS consumption and expenditures detailed tables are comprised of Tables C1-C38, which cover overall electricity, natural gas, fuel oil and district heat consumption, and tables E1-E11, which disaggregate the same

  5. DOE Commercial Building Energy Asset Score: Software Development for Phase

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    II Building Types | Department of Energy Score: Software Development for Phase II Building Types DOE Commercial Building Energy Asset Score: Software Development for Phase II Building Types DOE Commercial Building Energy Asset Score: Software Development for Phase II Building Types asset_score_assumptions_july_2013.pdf (534.26 KB) More Documents & Publications Weekend/Weekday Ozone Study in the South Coast Air Basin Users Perspective on Advanced Fuel Cell Bus Technology Vehicle

  6. Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool | Department of Energy Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation

  7. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Relationship of CBECS Coverage to EIA Supply Surveys The primary purpose of the CBECS is to collect accurate statistics of energy consumption by individual buildings. EIA also collects data on total energy supply (sales). For the information on sales totals, a different reporting system is used for each fuel and the boundaries between the different sectors (e.g., residential, commercial, industrial) are drawn differently for each fuel. Background EIA sales

  8. R-Cubed: Assessing Commercial Viability of Biofuel Technologies | Bioenergy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL R-Cubed: Assessing Commercial Viability of Biofuel Technologies July 20, 2016 Cleaner, domestic, renewable, and sustainable. The benefits of making fuels from plants seem obvious. The challenge is to do it more cost-effectively. The National Bioenergy Center at NREL, with its extensive bioenergy research expertise and capabilities, is working to reduce costs and overcome technical barriers-an effort that will bring more bio-derived fuels and chemicals into the marketplace. A recent

  9. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-01

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved

  10. BCA Perspective on Fuel Cell APUs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BCA Perspective on Fuel Cell APUs BCA Perspective on Fuel Cell APUs Presentation at DOE-DOE Aircraft Petroleum Use Reduction Workshop, September 30, 2010 aircraft_6_breit.pdf (1.55 MB) More Documents & Publications Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells

  11. Innovation and Coordination at the Callifornia Fuel Cell Partnership |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovation and Coordination at the Callifornia Fuel Cell Partnership Innovation and Coordination at the Callifornia Fuel Cell Partnership Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California dunwoody_innovation_coordination_cafcp.pdf (606.38 KB) More Documents & Publications Vision for Rollout of Fuel Cell Vehicles and Hydrogen Fuel Stations Moving toward a commercial

  12. DOE Releases 2013 Fuel Cell Technologies Market Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Releases 2013 Fuel Cell Technologies Market Report DOE Releases 2013 Fuel Cell Technologies Market Report November 12, 2014 - 11:13am Addthis The Energy Department today released the 2013 Fuel Cell Technologies Market Report, detailing trends in the U.S. fuel cell and hydrogen technologies market. The report highlights continued growth in fuel cell commercial deployments, including material handling equipment such as forklifts as well as combined heat and power systems and back-up and

  13. Powering Business in Ohio with Cellex Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powering Business in Ohio with Cellex Fuel Cells Cellex powered twelve class 3 electric pallet trucks with its fuel cell power units at two Ohio based Wal-Mart distribution centers for four months to demonstrate the commercial viability of hydrogen fuel cells. This project was funded by the Ohio Department of Development's Third Frontier Fuel Cell Program, which provides grants to support the growth of Ohio's fuel cell industry through collaborations between research organizations, businesses

  14. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  15. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  16. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  17. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect (OSTI)

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  18. Navy fuel cell demonstration project.

    SciTech Connect (OSTI)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  19. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  20. Agricultural Equipment Technology Conference

    Broader source: Energy.gov [DOE]

    The 20th Agricultural Equipment Technology Conference will be held Feb. 8–10, 2016, in Louisville, Kentucky. The conference will bring together professionals and experts in the agricultural and biological engineering fields. Bioenergy Technologies Office (BETO) Terrestrial Feedstocks Technology Manager Sam Tagore will be in attendance. Mr. Tagore will moderate a technical session titled “Ash Reduction Strategies for Improving Biomass Feedstock Quality.” The session will include presentations by researchers from Idaho National Laboratory and Oak Ridge National Laboratory supporting BETO, as well as from university and industry.

  1. Advanced Fuels Campaign FY 2014 Accomplishments Report

    SciTech Connect (OSTI)

    Lori Braase; W. Edgar May

    2014-10-01

    The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness, and economics of commercial nuclear power. The complex multiphysics behavior of LWR nuclear fuel in the integrated reactor system makes defining specific material or design improvements difficult; as such, establishing desirable performance attributes is critical in guiding the design and development of fuels and cladding with enhanced accident tolerance.

  2. Hydrogen and Fuel Cells Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Program U.S. Department of Energy Hydrogen + Fuel Cells 2011 International Conference and Exhibition Vancouver, Canada May 17, 2011 Enable widespread commercialization of hydrogen and fuel cell technologies: * Early markets such as stationary power, lift trucks, and portable power * Mid-term markets such as residential CHP systems, auxiliary power units, fleets and buses * Long-term markets including mainstream transportation applications/light duty vehicles Updated

  3. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  4. Midstate Electric Cooperative - Commercial and Industrial Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial and Industrial Energy Efficiency Rebate Program Midstate Electric Cooperative - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial...

  5. LADWP FUEL CELL DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Thai Ta

    2003-09-12

    Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

  6. Agricultural Mixed Waster Biorefinery Using Thermal Conversion Process

    SciTech Connect (OSTI)

    2006-08-01

    This Congressionally-mandated project is supporting efforts to develop a demonstration facility that will use the patented Thermal Conversion Process (TCP) to produce fuel, power and chemicals from poultry waste and agricultural wastes such as animal and vegetable grease and wastewater sludge.

  7. Activities dedicated to FCPP commercialization at Toshiba

    SciTech Connect (OSTI)

    Ikeda, Shin-ichi; Ozono, Jiro; Sato, Nobuaki

    1996-12-31

    The present line-up of fuel cell power plants (FCPPs) at Toshiba consists of 11MW FCPP for pressurized operation, 1000kW on-site FCPP and 200kW on-site FCPP. In these, an 11MW FCPP installed at Goi Power Station of Tokyo Electric Power Company (TEPCO) is providing valuable experience through more than 20,000 cumulative hours of operation. Also, a 1000kW on-site FCPP, which Toshiba manufactured under the joint program of NEDO and PAFC Technology Research Association, has cumulative operation of 7,500 hours. Toshiba, however, believes that the 200kW on-site FCPP is the leader in the commercialization of phosphoric acid FCPP. This paper therefore presents the development status of 200kW power plants and our strategic considerations for full commercialization of PC25 type 200kW FCPP.

  8. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  9. Annotated Bibliography for Drying Nuclear Fuel

    SciTech Connect (OSTI)

    Rebecca E. Smith

    2011-09-01

    Internationally, the nuclear industry is represented by both commercial utilities and research institutions. Over the past two decades many of these entities have had to relocate inventories of spent nuclear fuel from underwater storage to dry storage. These efforts were primarily prompted by two factors: insufficient storage capacity (potentially precipitated by an open-ended nuclear fuel cycle) or deteriorating quality of existing underwater facilities. The intent of developing this bibliography is to assess what issues associated with fuel drying have been identified, to consider where concerns have been satisfactorily addressed, and to recommend where additional research would offer the most value to the commercial industry and the U. S. Department of Energy.

  10. ISOTOPIC MODEL FOR COMMERCIAL SNF BURNUP CREDIT

    SciTech Connect (OSTI)

    A.H. Wells

    2004-11-17

    The purpose of this report is to demonstrate a process for selecting bounding depletion parameters, show that they are conservative for pressurized water reactor (PWR) and boiling water reactor (BWR) spent nuclear fuel (SNF), and establish the range of burnup for which the parameters are conservative. The general range of applicability is for commercial light water reactor (LWR) SNF with initial enrichments between 2.0 and 5.0 weight percent {sup 235}U and burnups between 10 and 50 gigawatt-day per metric ton of uranium (GWd/MTU).

  11. Renewable Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... and Air protection 11. Use of technology, inputs and management of wastes 12. Land Rights. ... & air and the application of Good Agricultural Practices * Working conditions * ...

  12. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand)...

  13. Average Commercial Price

    U.S. Energy Information Administration (EIA) Indexed Site

    Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground

  14. President Reagan Calls for a National Spent Fuel Storage Facility |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Reagan Calls for a National Spent Fuel Storage Facility President Reagan Calls for a National Spent Fuel Storage Facility Washington, DC The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of high-level radioactive waste and lifts the ban on commercial reprocessing of nuclear fuel

  15. Proceedings of the 1996 Windsor workshop on alternative fuels

    SciTech Connect (OSTI)

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  16. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  17. Fuel Cell Technology Status Analysis Project: Partnership Opportunities

    SciTech Connect (OSTI)

    2015-09-01

    Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Propane Vehicle Rebates The Florida Department of Agriculture and Consumer Services offers a rebate for up to 50% of the incremental cost to purchase or lease a new original equipment manufacturer NGV or propane vehicle, or convert a vehicle to run on natural gas or propane, up to $25,000 per vehicle and $250,000 per applicant per fiscal year. To qualify, the dedicated or bi-fuel vehicle must be part of a public or private fleet and must be placed into service on or after July 1, 2013. Of

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels, Microturbines City of New Orleans- Net Metering Origin Eligibility: Commercial, Residential, Agricultural Savings Category: Geothermal...

  20. Spent Fuel Background Report Volume I

    SciTech Connect (OSTI)

    Abbott, D.

    1994-03-01

    This report is an overview of current spent nuclear fuel management in the DOE complex. Sources of information include published literature, internal DOE documents, interviews with site personnel, and information provided by individual sites. Much of the specific information on facilities and fuels was provided by the DOE sites in response to the questionnaire for data for spent fuels and facilities data bases. This information is as accurate as is currently available, but is subject to revision pending results of further data calls. Spent fuel is broadly classified into three categories: (a) production fuels, (b) special fuels, and (c) naval fuels. Production fuels, comprising about 80% of the total inventory, are those used at Hanford and Savannah River to produce nuclear materials for defense. Special fuels are those used in a wide variety of research, development, and testing activities. Special fuels include fuel from DOE and commercial reactors used in research activities at DOE sites. Naval fuels are those developed and used for nuclear-powered naval vessels and for related research and development. Given the recent DOE decision to curtail reprocessing, the topic of main concern in the management of spent fuel is its storage. Of the DOE sites that have spent nuclear fuel, the vast majority is located at three sites-Hanford, INEL, and Savannah River. Other sites with spent fuel include Oak Ridge, West Valley, Brookhaven, Argonne, Los Alamos, and Sandia. B&W NESI Lynchburg Technology Center and General Atomics are commercial facilities with DOE fuel. DOE may also receive fuel from foreign research reactors, university reactors, and other commercial and government research reactors. Most DOE spent fuel is stored in water-filled pools at the reactor facilities. Currently an engineering study is being performed to determine the feasibility of using dry storage for DOE-owned spent fuel currently stored at various facilities. Delays in opening the deep geologic

  1. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    SciTech Connect (OSTI)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  2. Vehicle Technologies Office Merit Review 2015: A Commercially Scalable Process for Silicon Anode Prelithiation

    Broader source: Energy.gov [DOE]

    Presentation given by Amprius at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a commercially scalable process for...

  3. California and New Mexico: Sapphire Energy Advances the Commercialization of Algae Crude Oil

    Broader source: Energy.gov [DOE]

    The Sapphire Green Crude Farm is the first algae-to-energy facility. If adopted and commercialized by other refineries, this algae-based crude oil is a viable “green” alternative fuel option.

  4. Establish the Commercial Pacakge Air Conditioners and Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    commercial package air conditioners, heat pumps, and commercial warm air furnaces is an action issued by the Department of Energy. Though it is not intended or expected, should any...

  5. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  6. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  7. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F7: Distillate Fuel Oil Consumption Estimates, 2014 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial Transportation Electric Power Total Thousand Barrels Trillion Btu Alabama 18 677 3,447 20,567 177 24,885 0.1 3.9 19.9 118.8 1.0 143.7 Alaska 1,155 1,264 4,022 5,738 507 12,686 6.7 7.3 23.2 33.1 2.9 73.2 Arizona 2 1,025 5,201 18,452 108 24,789 (s) 5.9 30.0 106.5 0.6 143.1 Arkansas 5 570 5,157 15,448 45 21,225 (s) 3.3 29.8 89.2 0.3 122.6

  8. Overview of Commercial Buildings, 2003

    Reports and Publications (EIA)

    2008-01-01

    The Energy Information Administration conducts the Commercial Buildings Energy Consumption Survey (CBECS) to collect information on energy-related building characteristics and types and amounts of energy consumed in commercial buildings in the United States.

  9. Fuels Technologies

    Office of Environmental Management (EM)

    Displacement of petroleum n Approach n Example Project Accomplishments n Research Directions Fuels Technologies R&D Budget by Activities Major Activities FY 2007 ...

  10. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  11. Commercial Buildings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science & Innovation » Energy Efficiency » Commercial Buildings Commercial Buildings At an estimated cost of $38 billion a year, lighting represents the largest source of electricity consumption in U.S. commercial buildings. A new breakthrough by the Energy Department's <a href="/node/712411">National Renewable Energy Lab</a> could help commercial buildings save on lighting and ventilation costs by improving the accuracy of motion detection. At an estimated cost of

  12. Aerocapacitor commercialization plan

    SciTech Connect (OSTI)

    1995-09-12

    The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

  13. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  14. Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  15. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    SciTech Connect (OSTI)

    H.C. Maru; M. Farooque

    2004-08-01

    The ongoing program is designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE) for stationary power plant applications. The program efforts are focused on technology and system optimization for cost reduction, leading to commercial design development and prototype system field trials. FCE, Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where the fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several FCE sub-megawatt power plants are currently operating in Europe, Japan and the US. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and waste water treatment gas, DFC power plants are ready today and do not require the creation of a hydrogen infrastructure. Product improvement progress made during the reporting period in the areas of technology, manufacturing processes, cost reduction and balance of plant equipment designs is discussed in this report.

  16. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N.

    1994-12-31

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  17. CLIMATE CHANGE FUEL CELL PROGRAM

    SciTech Connect (OSTI)

    Mike Walneuski

    2004-09-16

    ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

  18. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  19. Nuclear Fuels: Promise and Limitations

    SciTech Connect (OSTI)

    Harold F. McFarlane

    2012-03-01

    From 1950 through 1980, scientists, engineers and national leaders confidently predicted an early twenty-first century where fast breeder reactors and commercial nuclear fuel reprocessing were commonplace. Such a scenario seemed necessary for a world with the more than 1000 GWe of nuclear energy needed to meet such an ever-increasing thirst for energy. Thirty years later uranium reserves are increasing on pace with consumption, the growth of nuclear power has been slowed, commercial breeder reactors have yet to enter the marketplace, and less than a handful of commercial reprocessing plants operate. As Nobel Laureate Niels Bohr famously said, “Prediction is very difficult, especially if it’s about the future.” The programme for IChemE’s 2012 conference on the nuclear fuel cycle features a graphic of an idealized nuclear fuel cycle that symbolizes the quest for a closed nuclear fuel cycle featuring careful husbanding of precious resources while minimizing the waste footprint. Progress toward achieving this ideal has been disrupted by technology innovations in the mining and petrochemical industries, as well as within the nuclear industry.

  20. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  1. EERE Success Story-Departments of Energy, Navy, and Agriculture Invest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    $210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military | Department of Energy Departments of Energy, Navy, and Agriculture Invest $210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military EERE Success Story-Departments of Energy, Navy, and Agriculture Invest $210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military January 30, 2015 - 5:49pm Addthis In 2014, the U.S. Departments of Energy,

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35,295 37,886 39,962 1970's 39,169 30,832 32,457 33,789 31,040 33,291 34,011 33,913 34,612 33,442 1980's 30,690 28,282 29,438 27,739 28,995 26,731 24,949 24,603 27,457 27,271 1990's 25,129 25,986 25,314 28,998 27,407 27,409 31,006 29,441 28,062 27,898 2000's 33,180 32,031 32,928 31,746 29,821 31,521 31,286 32,187 36,924 36,373 2010's 40,232 39,986 41,435 47,636

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 184,630 189,903 206,861 1970's 209,945 239,685 231,536 232,774 228,988 240,239 219,840 227,543 221,441 258,490 1980's 258,151 236,910 236,202 215,918 191,838 205,044 182,794 212,904 248,397 259,118 1990's 285,090 287,608 285,008 250,283 261,989 278,761 235,068 253,923 282,153 244,701 2000's 246,439 245,795 238,308 232,912 231,597 233,082 244,432 251,024 251,045

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 39,942 47,287 52,256 1970's 59,081 62,805 63,154 69,844 68,322 76,288 75,959 72,597 71,422 74,831 1980's 66,952 58,913 66,991 64,615 71,890 68,975 61,620 64,355 68,515 67,477 1990's 66,290 68,938 66,420 71,647 65,870 66,639 68,914 69,074 63,132 59,346 2000's 60,874 65,011 66,939 62,616 61,956 62,099 59,851 63,231 65,806 62,441 2010's 57,658 55,843 51,795 58,787

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,968 2,084 2,526 1970's 2,804 3,010 3,205 3,093 3,169 2,964 3,078 2,815 3,005 2,842 1980's 3,246 3,783 3,577 3,428 3,827 3,412 3,514 3,741 4,041 4,184 1990's 4,042 4,253 4,965 5,195 5,459 5,743 6,694 6,608 5,590 6,119 2000's 5,125 5,680 7,477 8,437 8,465 8,383 8,134 8,628 8,868 11,684 2010's 12,193 10,478 10,034 11,170 11,882 11,189

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,501 21,890 24,721 1970's 26,914 25,478 23,243 24,315 22,527 31,745 39,681 41,236 35,386 36,638 1980's 30,182 33,702 29,788 29,228 30,481 30,674 35,829 37,492 37,834 35,105 1990's 36,306 39,264 41,727 41,151 39,935 40,383 41,810 36,700 37,659 36,269 2000's 47,904 49,286 55,803 54,283 56,321 57,690 50,625 51,097 50,901 50,371 2010's 54,065 53,532 54,659 59,971

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,202 36,034 39,020 1970's 38,726 41,881 44,992 47,253 44,317 49,438 46,351 55,268 60,266 62,437 1980's 58,763 57,139 54,718 56,280 55,909 51,519 50,405 54,592 55,963 53,089 1990's 49,486 51,036 53,861 57,525 54,051 56,536 61,377 57,220 55,419 43,581 2000's 58,793 50,645 48,631 50,273 55,047 52,902 48,137 48,591 51,518 53,627 2010's 60,153 56,602 51,918 57,195

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Hawaii (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,715 1,610 1,607 1,548 1,328 1,858 1,883 2,019 2,049 2,129 1990's 2,223 2,148 2,144 2,123 2,200 2,199 2,132 1,751 1,747 1,749 2000's 1,771 1,749 1,720 1,751 1,803 1,838 1,813 1,836 1,769 1,752 2010's 1,777 1,768 1,850 1,873 1,931 1,908

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,972 6,374 6,613 1970's 5,851 8,232 10,712 9,387 8,040 12,177 8,742 8,405 5,503 6,923 1980's 5,756 5,422 5,729 5,758 8,493 8,999 8,543 7,618 8,252 9,024 1990's 8,535 9,582 8,932 10,675 10,088 10,360 11,506 11,433 11,676 12,618 2000's 13,414 13,623 13,592 12,019 12,995 13,231 13,573 14,274 16,333 15,740 2010's 15,033 16,855 15,838 18,485 16,963 16,171

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 175,281 174,565 189,006 1970's 193,434 210,424 224,488 218,530 216,114 215,718 246,659 243,686 251,895 237,199 1980's 228,178 223,427 218,751 204,834 232,170 213,528 204,979 191,047 215,257 196,171 1990's 200,267 193,844 196,964 203,157 197,558 203,802 218,054 202,850 174,687 188,520 2000's 201,768 189,160 204,570 211,710 204,039 201,882 196,361 203,368 222,382

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 37,141 46,232 54,062 1970's 52,632 56,246 61,286 52,674 53,461 51,705 57,310 51,815 64,532 60,931 1980's 58,880 52,036 55,470 52,535 57,516 56,522 55,730 53,609 61,120 58,554 1990's 56,045 58,571 53,973 56,023 52,253 53,122 57,229 41,482 41,788 38,952 2000's 40,297 37,560 38,802 37,781 36,779 29,616 27,505 30,546 33,531 32,512 2010's 31,799 32,117 25,452 33,198

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kentucky (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 32,313 36,089 41,934 1970's 42,461 42,352 42,843 45,797 42,320 38,497 57,203 50,170 46,647 40,509 1980's 39,359 36,379 35,260 34,111 36,138 33,758 32,666 33,298 35,718 36,148 1990's 31,806 33,700 35,419 37,817 36,744 38,610 40,972 38,627 32,464 35,798 2000's 38,669 35,255 35,942 38,212 36,989 36,894 32,590 34,386 37,167 35,438 2010's 36,818 34,592 30,771 37,422

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 51,062 56,937 54,010 1970's 70,321 67,515 66,331 59,518 58,097 50,662 43,567 44,563 65,300 115,743 1980's 39,996 39,507 33,729 34,906 33,088 30,228 27,985 27,845 27,475 27,156 1990's 24,937 25,452 28,445 25,157 24,184 23,833 25,746 25,613 24,042 24,559 2000's 25,687 24,604 25,540 25,161 24,700 25,085 22,240 23,863 22,869 23,672 2010's 27,009 25,925 26,294 28,875

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864 1,043 1,192 1,124 1,124 1,139 1,214 1,250 1,461 1,660 1990's 1,678 1,860 2,209 2,311 2,381 2,426 2,566 2,713 2,456 2,547 2000's 2,770 2,642 5,167 4,781 4,811 4,792 4,701 5,749 5,878 5,541 2010's 5,830 6,593 7,313 8,146 9,030 9,795

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maryland (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,154 30,419 34,674 1970's 37,529 40,988 43,950 42,953 43,080 37,466 42,422 40,532 39,821 47,326 1980's 28,576 32,055 30,871 30,758 25,299 24,134 23,816 25,544 25,879 26,920 1990's 24,051 38,117 42,464 43,635 44,136 46,874 45,842 49,802 57,370 58,103 2000's 55,669 59,802 63,999 70,557 70,195 69,718 62,868 70,852 70,411 69,119 2010's 67,555 67,505 64,146 71,145

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 24,737 25,396 29,821 1970's 35,356 36,994 36,778 39,288 37,384 37,812 37,763 40,598 45,657 46,701 1980's 53,462 50,131 61,286 39,640 41,271 41,382 43,661 46,522 48,915 51,508 1990's 50,618 53,188 64,352 65,429 84,534 82,270 96,187 105,813 90,092 65,136 2000's 63,793 61,677 64,763 62,590 56,879 56,665 52,283 61,504 72,303 71,546 2010's 72,053 81,068 73,040

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 16,547 18,297 17,667 1970's 23,846 25,853 24,604 23,701 25,504 23,922 20,214 19,304 21,312 27,224 1980's 20,886 19,267 17,213 17,158 17,860 16,591 16,891 17,922 18,108 17,568 1990's 17,548 17,743 17,942 19,199 19,232 19,904 22,225 22,070 21,358 20,208 2000's 21,673 21,585 21,221 22,933 22,130 20,882 19,425 20,774 20,181 19,095 2010's 21,179 20,247 17,834

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,524 79,821 79,019 1970's 87,644 89,534 97,506 91,038 90,291 90,719 98,435 93,323 98,680 94,629 1980's 76,054 68,455 69,913 66,106 67,218 60,345 61,890 58,205 63,839 63,039 1990's 59,387 63,191 60,963 69,670 66,196 65,086 72,802 69,829 61,995 63,100 2000's 62,673 64,924 61,897 61,516 61,755 60,369 56,722 59,224 64,993 61,433 2010's 61,194 62,304 54,736 64,522

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,516 13,651 16,593 1970's 18,564 18,109 19,151 19,143 16,602 18,654 17,831 16,706 17,766 17,396 1980's 14,265 13,725 15,987 13,534 14,256 14,820 12,536 10,989 12,041 13,141 1990's 12,164 12,846 11,557 13,880 12,981 13,489 14,823 13,911 12,952 12,088 2000's 13,533 13,245 14,704 15,119 13,407 13,136 13,181 13,223 14,340 23,575 2010's 20,459 22,336 19,205 20,971

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,443 41,765 46,041 1970's 46,824 47,261 45,518 38,690 42,298 43,117 48,713 46,989 40,736 43,507 1980's 43,356 40,612 43,022 39,055 41,900 39,404 36,357 34,205 39,388 37,351 1990's 36,489 40,291 34,490 34,745 38,946 40,044 40,833 33,853 28,911 27,586 2000's 28,907 27,792 28,185 28,368 29,858 27,401 28,087 30,067 34,813 31,790 2010's 31,993 32,115 26,503 32,214

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,164 6,997 8,204 1970's 9,633 11,014 12,755 13,144 14,078 14,965 18,389 17,436 19,940 19,638 1980's 10,207 8,294 8,449 11,758 12,012 12,232 11,451 13,747 14,879 15,116 1990's 15,073 16,960 16,101 17,549 18,694 18,703 20,421 21,958 23,314 22,710 2000's 25,586 22,912 22,685 24,099 26,862 26,552 28,046 28,224 28,920 29,531 2010's 29,475 30,763 28,991 31,211 29,105

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Jersey (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,656 32,546 34,510 1970's 55,953 60,230 62,917 61,846 58,210 53,346 90,463 53,896 48,005 52,314 1980's 60,481 74,627 78,750 79,624 83,906 83,467 85,775 94,459 101,325 117,385 1990's 115,591 121,240 130,891 128,942 132,008 138,965 150,432 168,760 146,653 163,759 2000's 158,543 131,417 146,176 159,647 168,768 169,857 152,501 168,778 168,574 180,404 2010's

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 27,447 30,713 28,680 1970's 33,035 33,760 32,354 25,569 25,221 22,800 33,708 25,476 25,706 26,371 1980's 24,505 20,446 21,715 22,413 22,947 16,733 20,642 19,939 31,032 28,459 1990's 23,694 24,993 27,884 27,898 24,964 23,934 26,466 27,403 27,206 27,103 2000's 27,009 27,133 25,476 23,745 25,458 24,186 23,404 24,876 25,183 24,701 2010's 25,155 25,035 24,898 26,790

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New York (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 122,050 122,885 128,282 1970's 139,498 145,458 147,326 142,736 136,332 128,273 143,530 130,898 142,988 143,512 1980's 161,813 167,253 164,784 161,770 170,365 165,498 167,503 167,178 188,037 196,380 1990's 194,990 199,598 217,214 220,729 223,256 231,352 253,075 320,862 335,343 360,188 2000's 365,879 347,253 362,247 339,371 359,070 275,721 259,972 285,030 290,150

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Carolina (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 17,100 20,624 24,524 1970's 21,532 26,331 24,200 23,044 21,002 21,615 20,042 18,303 20,366 23,916 1980's 26,172 26,367 24,891 24,705 26,174 25,029 25,474 30,010 32,464 33,145 1990's 31,277 34,313 36,418 37,370 38,940 37,362 40,467 38,021 36,427 38,019 2000's 43,113 38,583 40,198 44,262 45,383 47,696 46,321 45,434 48,567 51,303 2010's 56,225 49,898 48,951

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,059 7,072 7,444 1970's 8,315 9,059 9,874 9,875 11,528 12,425 12,202 11,234 11,845 12,044 1980's 11,026 9,419 11,361 9,828 9,961 10,118 9,084 7,908 9,827 10,609 1990's 10,236 10,732 9,759 10,642 10,783 11,644 12,150 10,870 10,082 10,023 2000's 11,060 10,456 11,675 10,952 10,473 9,903 9,355 10,296 11,101 10,987 2010's 10,302 10,973 10,364 13,236 13,999 12,334

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 153,376 165,414 175,372 1970's 183,412 189,791 208,068 196,663 192,497 169,357 179,392 149,011 172,429 158,117 1980's 166,210 161,110 157,664 143,568 155,350 143,311 139,119 146,983 158,790 161,516 1990's 143,503 150,339 160,645 164,044 166,798 175,160 189,966 183,838 156,630 167,573 2000's 177,917 172,555 163,274 179,611 170,240 166,693 146,930 160,580 167,070

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 38,459 42,751 41,151 1970's 43,921 41,978 43,852 40,403 41,074 41,806 44,862 48,253 45,729 52,036 1980's 47,135 40,833 45,664 44,177 44,423 40,791 36,517 32,428 47,870 38,509 1990's 37,208 39,588 35,190 40,766 36,504 39,639 46,152 45,086 43,800 39,565 2000's 43,125 40,558 40,229 37,472 37,103 39,359 35,492 40,846 40,772 41,421 2010's 41,822 40,393 36,106 44,238

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oregon (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,961 7,874 9,965 1970's 11,360 13,563 14,530 13,722 13,401 15,896 13,995 10,861 12,124 13,820 1980's 15,171 14,922 16,330 15,143 17,012 19,043 16,843 16,718 18,406 20,249 1990's 20,449 22,328 19,570 24,047 22,960 22,419 25,597 25,465 25,986 28,510 2000's 28,589 27,884 27,714 26,110 26,214 27,631 27,844 29,007 30,444 29,744 2010's 27,246 30,359 28,805 30,566 28,377

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Pennsylvania (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,702 87,620 95,720 1970's 99,339 110,014 122,518 116,265 102,495 98,991 124,517 111,885 110,620 111,498 1980's 118,462 128,561 125,557 115,222 126,211 115,329 114,442 114,800 127,382 132,421 1990's 125,673 125,546 134,254 131,776 138,473 143,735 154,642 144,084 130,996 143,256 2000's 145,319 136,468 136,202 149,458 142,608 144,971 130,328 145,852 144,603

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Rhode Island (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,142 3,416 3,850 1970's 5,064 4,530 4,734 4,648 4,397 4,233 2,895 3,019 4,783 6,169 1980's 6,751 6,867 7,156 6,976 7,466 7,590 6,718 9,395 8,352 8,767 1990's 8,071 8,269 9,080 9,205 12,049 12,064 12,298 12,303 11,477 11,804 2000's 12,974 12,808 11,468 11,391 11,289 11,043 9,950 11,247 10,843 10,725 2010's 10,458 10,843 10,090 11,633 13,178 11,734

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Carolina (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,840 10,544 12,938 1970's 13,850 14,371 14,137 16,053 14,820 17,202 35,062 32,117 24,681 17,943 1980's 22,885 19,436 15,560 16,548 16,635 15,270 15,894 17,195 17,472 16,525 1990's 15,394 15,796 16,644 17,014 17,870 18,868 20,328 19,560 19,828 20,566 2000's 22,105 20,743 21,029 22,365 22,255 22,048 20,691 20,927 22,283 21,953 2010's 24,119 22,113 21,416

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,444 10,723 11,201 1970's 11,361 10,592 11,204 10,568 11,671 11,488 15,344 14,786 13,547 9,951 1980's 8,507 8,188 9,384 8,651 9,128 9,987 9,166 8,199 8,396 8,826 1990's 8,555 9,473 9,122 10,696 10,274 10,685 11,598 10,422 9,264 9,564 2000's 10,119 9,711 10,258 10,375 9,958 9,819 9,525 10,337 11,362 11,563 2010's 11,025 11,101 9,330 12,151 12,310 10,497

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Tennessee (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,380 38,325 41,069 1970's 42,720 44,062 45,704 45,974 44,651 42,488 38,244 35,127 30,917 42,714 1980's 44,048 42,686 38,697 42,903 46,544 43,399 42,589 44,144 45,852 47,513 1990's 43,552 45,953 46,532 50,754 50,760 51,235 58,497 55,117 52,394 52,572 2000's 53,365 53,010 53,710 56,576 54,201 54,264 51,537 51,056 54,094 51,879 2010's 56,194 52,156 44,928 53,888

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 139,727 139,442 140,854 1970's 146,090 142,423 141,128 155,070 134,418 116,749 135,452 158,683 168,946 233,758 1980's 168,513 157,199 189,447 157,481 165,700 151,774 146,972 156,509 175,368 182,670 1990's 172,333 180,973 184,673 175,988 180,232 209,584 178,549 216,333 169,610 171,714 2000's 190,453 171,847 226,274 218,565 192,901 159,972 147,366 161,255 167,129

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,905 8,114 9,443 1970's 10,180 8,504 7,933 8,997 5,806 6,055 14,681 9,661 8,430 6 1980's 330 343 21,831 7,986 8,569 8,505 4,636 14,811 17,911 16,522 1990's 16,220 19,276 16,584 22,588 26,501 26,825 29,543 31,129 30,955 30,361 2000's 31,282 30,917 33,501 30,994 31,156 34,447 34,051 34,447 37,612 37,024 2010's 38,461 40,444 35,363 41,398 38,156 35,552

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Vermont (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 828 831 853 856 1,467 1,575 1,688 1,833 1,941 2,081 1990's 2,049 2,058 2,319 2,382 2,669 2,672 2,825 3,051 2,979 2,309 2000's 2,595 2,473 2,470 2,757 2,724 2,610 2,374 2,631 2,495 2,483 2010's 2,384 2,479 2,314 4,748 4,830 5,949

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,756 24,594 27,155 1970's 30,090 34,672 34,176 37,632 35,281 32,358 34,887 34,685 43,064 33,946 1980's 38,467 35,255 38,157 38,457 34,825 33,975 35,453 39,401 42,013 44,181 1990's 41,038 44,077 50,757 52,880 52,944 56,948 59,262 61,895 58,283 61,516 2000's 66,098 59,809 62,699 64,004 64,518 65,838 62,352 66,444 67,006 67,709 2010's 68,911 64,282 60,217 68,126

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Washington (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,133 16,244 17,166 1970's 18,490 20,612 23,254 32,333 33,221 31,988 31,652 29,946 25,330 33,369 1980's 30,754 28,629 30,559 28,728 32,371 35,459 32,022 32,366 36,674 38,502 1990's 38,671 41,738 37,800 43,620 42,982 42,568 48,139 46,686 45,561 50,735 2000's 50,462 57,160 46,455 47,845 48,455 49,745 51,292 53,689 56,205 55,697 2010's 51,335 56,487 53,420 55,805

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 18,511 20,402 21,534 1970's 21,678 23,106 26,654 25,854 24,586 24,776 20,462 19,556 22,501 22,337 1980's 21,980 22,191 20,548 18,771 18,780 17,224 15,995 16,792 22,416 23,258 1990's 21,391 21,043 24,419 24,381 24,979 25,872 28,025 25,913 24,986 27,301 2000's 26,167 27,737 24,729 26,681 25,177 25,084 23,477 22,633 25,299 23,761 2010's 24,907 24,094 22,634

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wisconsin (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 33,610 36,067 52,315 1970's 54,555 47,662 43,753 55,012 65,705 67,485 57,702 61,280 77,890 80,756 1980's 77,107 68,075 69,694 68,020 70,230 72,803 55,275 57,750 66,939 70,090 1990's 66,339 71,516 71,314 77,079 78,609 84,888 93,816 88,729 81,316 81,689 2000's 81,139 76,095 85,811 87,131 82,187 86,086 86,342 89,016 97,137 91,459 2010's 82,204 87,040 76,949 99,434

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,865 11,637 14,069 1970's 14,026 14,072 17,287 13,206 13,241 10,253 9,152 8,767 8,100 8,211 1980's 4,980 4,511 10,098 9,182 9,431 9,139 8,045 8,443 8,700 8,551 1990's 8,440 9,101 8,009 10,268 9,231 9,833 9,721 10,754 10,414 9,838 2000's 9,752 9,535 10,414 9,986 9,916 9,184 9,500 9,442 10,180 10,372 2010's 11,153 11,680 10,482 12,013 12,188 12,498

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the District of Columbia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,752 14,993 15,881 15,945 11,680 11,921 11,934 13,999 15,012 15,741 1990's 13,473 15,550 16,103 16,229 14,742 17,035 16,347 18,012 16,862 17,837 2000's 17,728 16,546 18,332 17,098 17,384 17,683 17,107 19,297 18,411 18,705 2010's 18,547 16,892 15,363 17,234 17,498 15,79

  4. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Broader source: Energy.gov (indexed) [DOE]

    Energy DOE Geothermal Technology Program Peer Review 2010_gtp_peer_review_report_final.pdf (2.53 MB) More Documents & Publications Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program Peer Review Report Fielding of HT-seismic Tools and Evaluation of HT-FPGA Module - Development of a HT-seismic Tool; 2010 Geothermal Technology Program Peer Review Report Analysis of Geothermal Reservoir

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,401 34,749 37,275 1970's 36,254 36,657 37,389 33,126 35,349 33,439 34,450 34,303 29,649 36,717 1980's 28,525 26,860 25,876 26,665 27,567 25,836 25,128 22,384 25,562 26,469 1990's 24,287 23,711 25,232 25,723 25,526 26,228 29,000 32,360 25,705 27,581 2000's 25,580 26,391 25,011 25,356 26,456 25,046 24,396 23,420 25,217 24,293 2010's 27,071 25,144 21,551 25,324

  6. Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies

    SciTech Connect (OSTI)

    2010-01-15

    Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leaving behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.

  7. Energy Department Invests $7 Million to Commercialize Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Allentown, Pennsylvania, and Structural Composites Industries will develop a cost-effective tube trailer for hydrogen delivery and storage that can withstand high pressures. ...

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the U.S. (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 392,315 394,281 310,799 231,943 174,258 135,165 107,728 105,681 103,831 126,540 216,762 297,734 1974 406,440 335,562 301,588 243,041 165,233 128,032 109,694 107,828 106,510 143,295 199,514 308,879 1975 346,998 345,520 312,362 289,341 164,629 119,960 107,077 104,332 106,655 133,055 179,518 298,845 1976 405,483 364,339 285,912 221,383 169,209 129,058 112,070 113,174 113,284 145,824 252,710

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,434 3,514 3,395 2,369 1,720 1,215 1,673 1,117 1,189 1,382 1,955 3,507 1990 4,550 3,040 2,645 2,167 1,626 984 1,157 1,164 1,195 1,353 1,921 2,487 1991 3,334 3,576 2,761 1,886 1,332 1,149 1,128 1,052 1,093 1,311 2,120 2,968 1992 3,739 3,833 2,671 2,287 1,513 1,225 1,108 1,078 1,136 1,320 1,983 3,338 1993 3,532 3,599 3,655 2,569 1,551 1,179 1,084 1,070 1,111 1,259 2,073 3,041 1994 4,325

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alaska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,500 2,691 2,258 1,949 1,569 1,287 1,042 1,091 1,202 1,577 2,144 2,429 1990 2,447 2,584 2,429 1,809 1,456 1,134 1,061 1,077 1,148 1,554 2,106 2,818 1991 2,579 2,388 2,149 1,896 1,576 1,171 1,069 1,073 1,198 1,561 1,930 2,308 1992 2,414 2,372 2,319 1,935 1,597 1,206 1,084 1,013 1,252 1,790 1,928 2,390 1993 2,487 2,471 2,051 1,863 1,441 1,055 917 957 1,112 1,563 1,785 2,301 1994 2,367 2,156

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arizona (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,945 3,572 2,845 2,275 1,994 1,951 1,805 1,579 1,597 1,634 2,296 3,108 1990 3,706 3,577 3,165 2,338 2,174 1,854 1,686 1,580 1,610 1,555 2,018 3,139 1991 3,716 3,091 2,935 2,785 2,039 1,637 1,669 1,722 1,375 1,609 1,941 3,077 1992 3,647 3,011 2,898 2,352 1,620 1,754 1,690 1,505 1,601 1,580 1,858 3,573 1993 3,422 2,954 3,056 2,408 1,851 2,035 1,654 1,601 1,521 1,551 2,100 3,416 1994 3,689

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,522 10,845 9,208 6,135 4,160 3,082 2,328 2,119 2,303 3,232 5,441 8,102 1990 10,718 9,546 8,633 6,902 5,116 3,122 2,167 2,127 2,069 2,918 5,301 7,682 1991 12,120 9,991 7,910 6,328 4,849 2,826 2,180 2,040 2,087 3,017 6,096 9,494 1992 10,794 9,450 7,609 5,965 3,631 3,055 2,430 2,183 2,312 3,078 5,594 10,319 1993 11,775 10,132 9,435 6,499 4,292 3,119 2,445 2,357 3,012 3,108 6,080 9,396

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Connecticut (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,909 3,749 3,937 2,897 2,106 1,625 1,528 1,579 1,551 1,685 2,324 3,891 1990 4,318 3,869 3,369 3,009 1,743 1,483 1,358 1,315 1,352 1,603 2,456 3,534 1991 4,341 3,973 3,566 2,352 1,462 1,030 995 1,020 884 1,423 2,396 3,396 1992 4,417 4,374 3,940 2,941 1,779 1,149 1,046 1,061 1,075 1,562 2,623 3,871 1993 4,666 4,995 4,461 3,038 1,583 1,161 1,122 1,070 1,121 1,789 2,896 3,525 1994 5,882

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 632 605 624 398 249 166 128 133 144 182 294 630 1990 784 530 530 419 239 174 139 138 136 163 309 480 1991 677 653 579 414 237 161 146 142 145 203 354 541 1992 744 755 686 537 308 198 166 152 162 240 395 622 1993 739 818 858 574 284 140 165 155 155 229 412 666 1994 945 1,076 856 510 259 209 157 156 172 221 345 554 1995 829 935 854 527 341 223 182 168 205 209 417 851 1996 1,099 1,181 885

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,127 7,499 5,163 3,921 2,982 2,340 2,411 2,360 2,589 3,475 4,834 8,389 1990 8,162 5,935 5,172 3,960 2,844 2,498 2,359 2,535 2,416 3,098 4,228 6,280 1991 7,680 6,782 5,905 3,348 2,820 2,387 2,381 2,482 2,346 3,082 5,153 6,670 1992 8,066 6,952 5,778 4,381 3,103 2,596 2,536 2,503 2,462 3,201 4,640 7,642 1993 7,627 7,915 7,796 4,837 3,069 2,544 2,570 2,481 2,440 3,312 5,214 7,719 1994 9,543

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Hawaii (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 187 178 174 175 181 175 182 173 175 179 172 177 1990 190 188 188 180 181 188 195 180 180 183 184 185 1991 192 177 169 187 173 173 187 172 179 177 178 185 1992 190 180 174 183 177 184 174 173 178 168 178 184 1993 185 190 179 177 168 183 174 170 168 173 183 172 1994 195 176 190 185 181 184 177 178 184 177 189 185 1995 200 180 185 183 185 188 186 178 179 179 178 177 1996 200 192 184 190 172

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Indiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 11,170 11,376 9,613 5,768 3,297 1,904 1,579 1,659 2,217 3,850 7,577 13,614 1990 11,991 9,374 7,958 6,087 3,191 1,963 1,658 1,860 1,991 4,087 6,640 10,462 1991 13,081 10,656 8,567 4,535 2,546 1,648 1,613 1,710 2,358 3,614 7,821 10,233 1992 12,060 10,265 8,437 6,172 3,400 2,004 1,811 1,955 2,131 4,253 8,135 12,097 1993 12,941 12,125 10,972 6,557 2,866 2,100 1,819 1,838 2,442 4,559 8,381

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Iowa (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,372 7,466 6,928 4,133 2,216 1,380 1,190 1,234 1,247 179 3,738 7,110 1990 8,087 6,374 5,719 4,261 2,409 1,602 1,226 1,204 1,302 2,087 3,726 5,955 1991 9,237 6,828 5,412 3,305 1,993 1,308 1,090 1,198 1,308 2,482 5,287 7,167 1992 7,145 6,709 4,949 3,883 1,877 1,427 1,100 1,257 1,433 2,645 5,843 7,827 1993 8,688 7,779 6,773 4,316 2,029 1,481 1,214 1,214 1,637 2,869 5,694 6,642 1994 9,353 8,260

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,155 7,697 6,870 5,433 3,660 2,547 3,366 4,812 3,081 2,785 4,386 6,763 1990 8,061 6,230 5,114 4,800 3,112 2,848 4,906 4,462 3,836 2,893 3,877 5,907 1991 10,250 7,397 5,694 4,278 3,082 2,657 4,321 3,994 2,629 2,656 6,075 5,538 1992 6,844 5,862 4,372 4,571 3,736 2,814 3,609 3,462 3,132 3,162 4,867 7,543 1993 8,768 7,385 7,019 4,938 2,840 2,559 3,348 3,324 2,395 2,469 4,413 6,565 1994 8,139

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kentucky (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,139 5,507 4,546 2,840 1,766 1,167 1,099 991 1,147 954 3,327 6,648 1990 5,355 4,280 3,496 2,702 1,576 1,129 1,037 1,077 1,025 2,050 3,194 4,884 1991 6,313 5,098 3,647 1,925 1,198 1,029 941 991 1,338 1,862 4,197 5,161 1992 6,191 4,758 3,874 2,612 1,600 1,132 1,066 1,158 1,209 2,237 4,064 5,519 1993 5,878 5,863 5,207 2,934 1,330 1,449 1,029 1,060 1,220 2,417 3,997 5,433 1994 8,181 6,018

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,399 3,365 3,462 2,362 1,790 1,479 1,399 1,340 1,433 1,568 2,035 3,524 1990 4,528 2,757 2,490 2,135 1,628 1,499 1,361 1,238 1,275 1,487 2,082 2,491 1991 3,639 3,555 2,713 1,974 1,539 1,418 1,504 1,253 1,229 1,440 2,347 2,842 1992 4,060 4,003 2,743 2,367 1,769 1,564 1,556 1,431 1,508 1,577 2,295 3,574 1993 3,260 3,207 3,075 2,376 1,742 1,454 1,267 1,277 1,290 1,346 2,091 2,771 1994 3,925

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 229 226 221 160 106 63 51 50 60 96 128 269 1990 268 227 211 175 108 70 52 47 62 83 157 219 1991 282 265 236 180 101 73 65 65 59 103 152 278 1992 322 318 315 229 157 80 79 52 67 116 188 285 1993 356 364 291 192 107 80 71 67 77 166 224 316 1994 458 364 302 181 128 79 63 71 84 135 207 309 1995 350 373 288 211 128 77 70 71 86 129 254 389 1996 413 386 356 208 132 82 74 75 78 172 280 310 1997 433

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,394 6,984 7,234 5,392 3,703 2,150 1,726 1,894 1,799 2,720 3,647 6,864 1990 8,247 6,548 6,367 5,235 3,381 2,491 2,009 2,040 1,906 2,416 4,275 5,704 1991 7,617 7,579 6,948 5,504 3,772 2,466 2,435 2,188 1,939 2,666 4,048 6,027 1992 8,184 8,736 8,217 7,049 4,450 2,768 3,072 2,884 2,753 3,776 5,530 6,933 1993 8,556 9,118 9,026 6,491 4,195 3,184 2,692 2,802 2,766 3,878 5,622 7,098 1994

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Michigan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Minnesota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 13,112 13,607 11,411 6,916 3,980 2,416 2,112 2,011 2,475 4,718 8,764 13,661 1990 12,696 11,412 9,846 6,734 4,032 2,369 2,100 2,060 2,342 4,865 7,491 12,066 1991 15,649 11,426 10,026 6,092 4,220 2,541 2,315 2,304 2,930 5,399 10,392 12,580 1992 13,000 11,075 10,134 7,517 3,602 2,467 2,244 2,296 2,631 5,092 9,526 12,795 1993 14,685 12,874 11,396 7,267 3,588 2,549 2,190 2,207 2,952 5,614

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,372 2,502 2,411 1,407 947 739 718 701 754 939 1,350 2,727 1990 3,199 2,007 1,675 1,541 1,070 884 819 818 841 1,137 1,508 2,050 1991 2,704 2,572 1,977 1,291 901 875 806 834 865 989 1,721 2,208 1992 2,817 2,595 1,758 1,473 994 888 885 867 847 942 1,489 2,387 1993 2,663 2,583 2,559 1,756 1,108 925 904 864 843 985 1,710 2,298 1994 3,417 2,993 2,136 1,456 1,012 942 992 973 1,000 1,050

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,118 10,280 9,192 5,246 2,799 2,359 1,829 1,780 2,021 2,798 4,716 9,903 1990 11,634 7,979 6,849 5,622 3,309 2,310 2,034 1,971 2,083 2,863 4,811 7,921 1991 12,748 9,932 7,479 4,261 2,760 2,181 1,853 1,896 2,056 2,689 6,471 8,864 1992 10,201 9,060 6,835 5,601 3,144 2,547 1,849 1,993 2,024 2,728 5,335 9,646 1993 12,062 10,467 10,336 6,750 3,580 2,266 2,066 1,959 2,222 2,864 5,974 9,124

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,029 1,923 1,841 1,208 687 478 330 381 442 806 1,235 1,781 1990 1,912 1,705 1,402 998 766 487 323 348 347 782 1,206 1,889 1991 2,425 1,435 1,450 1,053 843 431 357 341 438 724 1,559 1,790 1992 1,726 1,464 1,099 930 568 377 365 331 523 810 1,271 2,095 1993 2,465 1,705 1,741 1,137 682 434 437 416 535 819 1,508 1,999 1994 1,844 1,936 1,465 1,100 699 452 362 348 423 860 1,447 2,043 1995 2,085

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,202 4,825 4,252 2,505 1,648 1,757 3,381 4,240 1,634 2,109 2,602 4,196 1990 4,765 4,019 3,355 2,799 1,480 1,325 4,837 2,596 2,333 2,334 2,552 4,094 1991 5,452 4,111 3,382 2,193 1,771 1,779 5,675 4,406 1,961 2,056 3,468 4,037 1992 4,332 3,760 2,970 2,411 1,781 1,330 2,366 2,393 1,710 2,508 3,988 4,941 1993 5,784 3,806 4,611 3,119 1,629 1,388 1,324 1,828 1,333 2,164 3,495 4,263 1994 5,469

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New York (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 25,565 24,630 25,344 18,494 12,079 8,747 8,382 8,305 8,812 11,741 16,631 27,650 1990 24,659 23,697 22,939 17,706 11,586 10,272 9,602 9,683 10,261 12,661 17,210 24,715 1991 28,442 25,685 23,462 17,684 11,669 9,641 10,331 9,764 9,195 11,571 17,033 25,121 1992 29,246 29,912 27,748 23,039 13,518 9,915 9,327 9,456 9,582 12,860 16,804 25,808 1993 28,857 29,740 28,926 20,266 11,667 11,221 10,477

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,789 1,669 1,514 1,027 508 335 269 238 340 464 951 1,506 1990 1,666 1,457 1,243 1,048 616 383 315 298 370 561 916 1,363 1991 1,917 1,394 1,253 847 629 320 302 314 348 633 1,241 1,535 1992 1,489 1,380 1,082 937 529 298 279 262 363 576 1,015 1,549 1993 1,911 1,477 1,339 925 477 347 317 294 381 629 1,068 1,478 1994 2,016 1,812 1,339 932 526 302 284 288 315 530 1,241 1,198 1995 1,807

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Ohio (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oklahoma (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oregon (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,884 3,283 2,761 1,724 1,140 989 823 804 882 972 1,624 2,363 1990 2,984 3,031 2,562 1,550 1,268 1,157 821 769 823 1,050 1,697 2,737 1991 4,074 2,764 2,407 2,048 1,610 1,274 902 812 855 927 1,898 2,758 1992 3,231 2,465 1,925 1,542 1,171 884 784 782 863 1,105 1,652 3,166 1993 4,148 3,370 2,880 1,927 1,448 1,010 915 840 934 1,099 1,918 3,557 1994 3,388 3,166 2,480 1,836 1,234 1,078 865 801

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Rhode Island (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901