Powered by Deep Web Technologies
Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Agri Ethanol Products LLC AEPNC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Products LLC AEPNC Jump to: navigation, search Name Agri-Ethanol Products LLC (AEPNC) Place Raleigh, North Carolina Zip 27615 Product Ethanol producer and project...

2

Mid America Agri Products | Open Energy Information  

Open Energy Info (EERE)

Mid America Agri Products Mid America Agri Products Jump to: navigation, search Name Mid America Agri Products Place Madrid, Nebraska Zip 69150 Product Ethanol producer located in Madrid, Nebraska. Coordinates 40.4203°, -3.705774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4203,"lon":-3.705774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

Agri Energy Funding Solutions | Open Energy Information  

Open Energy Info (EERE)

Agri Energy Funding Solutions Agri Energy Funding Solutions Jump to: navigation, search Name Agri-Energy Funding Solutions Place Omaha, Nebraska Zip 68137-2495 Sector Biomass, Wind energy Product AGRI-ENERGY FUNDING SOLUTIONS is a market consultant for BioDiesel, Ethanol as well as Biomass and Wind Energy projects both nationally and internationally and is based in Omaha, Nebraska. References Agri-Energy Funding Solutions[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Agri-Energy Funding Solutions is a company located in Omaha, Nebraska . References ↑ "Agri-Energy Funding Solutions" Retrieved from "http://en.openei.org/w/index.php?title=Agri_Energy_Funding_Solutions&oldid=341887

4

Reeve Agri Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Reeve Agri Energy Inc Reeve Agri Energy Inc Jump to: navigation, search Name Reeve Agri-Energy Inc. Place Garden City, Kansas Zip 67846-8927 Product Owns and operates a 12m gallon (45.4m litre)per year ethanol production facility located in Garden City, Kansas. References Reeve Agri-Energy Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Reeve Agri-Energy Inc. is a company located in Garden City, Kansas . References ↑ "Reeve Agri-Energy Inc." Retrieved from "http://en.openei.org/w/index.php?title=Reeve_Agri_Energy_Inc&oldid=350246" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

5

Ethanol production from lignocellulose  

DOE Patents (OSTI)

This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

Ingram, Lonnie O. (Gainesville, FL); Wood, Brent E. (Gainesville, FL)

2001-01-01T23:59:59.000Z

6

Fuel Ethanol Oxygenate Production  

Gasoline and Diesel Fuel Update (EIA)

Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 27,197 26,722 26,923 26,320 25,564 27,995 1981-2013 East Coast (PADD 1) 628 784 836 842 527 636 2004-2013 Midwest (PADD 2) 25,209 24,689 24,786 24,186 23,810 26,040 2004-2013 Gulf Coast (PADD 3) 523 404 487 460 431 473 2004-2013 Rocky Mountain (PADD 4) 450 432 430 432 415 429 2004-2013 West Coast (PADD 5)

7

American Agri diesel LLC | Open Energy Information  

Open Energy Info (EERE)

diesel LLC Jump to: navigation, search Name American Agri-diesel LLC Place Colorado Springs, Colorado Product Biodiesel producer in Colorado. References American Agri-diesel LLC1...

8

AgriFuel Company | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name AgriFuel Company Place Cranford, New Jersey Sector Biofuels Product AgriFuel produces and markets biofuels refined from waste vegetable oil,...

9

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Ethanol Production Incentive provides qualified ethanol producers with quarterly payments based on production volume during times when ethanol

10

Ethanol production in non-recombinant hosts  

DOE Patents (OSTI)

Non-recombinant bacteria that produce ethanol as the primary fermentation product, associated nucleic acids and polypeptides, methods for producing ethanol using the bacteria, and kits are disclosed.

Kim, Youngnyun; Shanmugam, Keelnatham; Ingram, Lonnie O.

2013-06-18T23:59:59.000Z

11

Production of ethanol from cellulose (sawdust).  

E-Print Network (OSTI)

??The production of ethanol from food such as corn, cassava etc. is the most predominate way of producing ethanol. This has led to a shortage (more)

Otulugbu, Kingsley

2012-01-01T23:59:59.000Z

12

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Ethanol producers may qualify for an income tax credit equal to 30% of production facility nameplate capacity between 500,000 and 15 million

13

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Qualified ethanol producers are eligible for a production incentive payable from the Kansas Qualified Agricultural Ethyl Alcohol Producer Fund. An

14

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Missouri Department of Agriculture manages the Missouri Ethanol Producer Incentive Fund (Fund), which provides monthly grants to qualified

15

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Montana-based ethanol producers are eligible for a tax incentive of $0.20 per gallon of ethanol produced solely from Montana agricultural products or

16

Alternative Fuels Data Center: Ethanol Production  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production to Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Production and Distribution Ethanol is a domestically produced alternative fuel that's most commonly made from corn. It can also be made from cellulosic feedstocks, such as

17

Ethanol production method and system  

DOE Patents (OSTI)

Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

Chen, M.J.; Rathke, J.W.

1983-05-26T23:59:59.000Z

18

Alternative Fuels Data Center: Ethanol Production Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Credit County governments are eligible to receive waste reduction credits for using yard clippings, clean wood waste, or paper waste as feedstock for the

19

Ethanol Tolerant Yeast for Improved Production of Ethanol from ...  

Inventors: Audrey Gasch, Jeffrey Lewis Ethanol production from cellulosic biomass can make a significant contribution toward decreasing our dependence on fossil fuels.

20

Ethanol production by recombinant hosts  

DOE Patents (OSTI)

Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

Fowler, David E. (Gainesville, FL); Horton, Philip G. (Gainesville, FL); Ben-Bassat, Arie (Gainesville, FL)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ethanol production by recombinant hosts  

DOE Patents (OSTI)

Novel plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase are described. Also described are recombinant hosts which have been transformed with genes coding for alcohol dehydrogenase and pyruvate. By virtue of their transformation with these genes, the recombinant hosts are capable of producing significant amounts of ethanol as a fermentation product. Also disclosed are methods for increasing the growth of recombinant hosts and methods for reducing the accumulation of undesirable metabolic products in the growth medium of these hosts. Also disclosed are recombinant host capable of producing significant amounts of ethanol as a fermentation product of oligosaccharides and plasmids comprising genes encoding polysaccharases, in addition to the genes described above which code for the alcohol dehydrogenase and pyruvate decarboxylase. Further, methods are described for producing ethanol from oligomeric feedstock using the recombinant hosts described above. Also provided is a method for enhancing the production of functional proteins in a recombinant host comprising overexpressing an adhB gene in the host. Further provided are process designs for fermenting oligosaccharide-containing biomass to ethanol.

Ingram, Lonnie O. (Gainesville, FL); Beall, David S. (Gainesville, FL); Burchhardt, Gerhard F. H. (Gainesville, FL); Guimaraes, Walter V. (Vicosa, BR); Ohta, Kazuyoshi (Miyazaki, JP); Wood, Brent E. (Gainesville, FL); Shanmugam, Keelnatham T. (Gainesville, FL)

1995-01-01T23:59:59.000Z

22

Agri Source Fuels | Open Energy Information  

Open Energy Info (EERE)

Agri-Source Fuels Place Pensacola, Florida Zip 32505 Product Biodiesel producer located in Florida that owns a plant in Dade City. References Agri-Source Fuels1 LinkedIn...

23

Agri Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Name Agri-Energy LLC Place Luverne, Minnesota Zip 56156 Product Corn trader and bioethanol producer. References Agri-Energy LLC1 LinkedIn Connections CrunchBase Profile No...

24

Ethanol Demand in United States Gasoline Production  

SciTech Connect

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

25

Grain & Wood Based Technologies for Production of Ethanol  

U.S. Energy Information Administration (EIA)

Outline Sources of Ethanol Grain Based Dry Mill Process Cellulosic Based Processes Costs Conclusions The Production of Ethanol Bioethanol ...

26

Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Equipment Tax Exemption

27

Alternative Fuels Data Center: Ethanol Production Investment Tax Credits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Investment Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Google Bookmark Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Delicious Rank Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Investment Tax Credits

28

Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Biobutanol Ethanol and Biobutanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Biobutanol Production Incentive

29

Ethanol production using engineered mutant E. coli  

DOE Patents (OSTI)

The subject invention concerns novel means and materials for producing ethanol as a fermentation product. Mutant E. coli are transformed with a gene coding for pyruvate decarboxylase activity. The resulting system is capable of producing relatively large amounts of ethanol from a variety of biomass sources.

Ingram, Lonnie O. (Gainesville, FL); Clark, David P. (Carbondale, IL)

1991-01-01T23:59:59.000Z

30

US Ethanol Production and Use Under Alternative  

E-Print Network (OSTI)

gasoline as a motor fuel, use of ethanol-blended gasoline results in lower carbon monoxide emission encourages ethanol production. Two prominent policy instruments are currently employed: a federal excise tax are currently employed: a federal excise tax credit on each gallon produced and a "renewable fuel standard" (RFS

31

Outlook for Biomass Ethanol Production and Demand  

Reports and Publications (EIA)

This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

Information Center

2000-04-01T23:59:59.000Z

32

Alternative Fuels Data Center: Ethanol Production Facility Environmental  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Environmental Assessment Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on AddThis.com...

33

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Tax Ethanol Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit An ethanol producer located in Indiana is entitled to a credit of $0.125 per gallon of ethanol produced, including cellulosic ethanol. The Indiana

34

Agri Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Inc Place Nashville, Tennessee Zip 37201 Product Biodiesel producer, located in Nashville, Tennessee. References Agri-Energy Inc1 LinkedIn Connections CrunchBase Profile No...

35

Sunrise Agri Fuels | Open Energy Information  

Open Energy Info (EERE)

Zip 55310 Sector Biomass Product Manufacturer of Biomass Fuel Pellets for Pellet Burning Stoves. References Sunrise Agri Fuels1 LinkedIn Connections CrunchBase Profile No...

36

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Tax Ethanol Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit Qualified ethanol producers are eligible for an income tax credit of $1.00 per gallon of corn- or cellulosic-based ethanol that meets ASTM

37

Ethanol Production, Distribution, and Use: Discussions on Key Issues (Presentation)  

Science Conference Proceedings (OSTI)

From production to the environment, presentation discusses issues surrounding ethanol as a transportation fuel.

Harrow, G.

2008-05-14T23:59:59.000Z

38

Wastepaper as a feedstock for ethanol production  

DOE Green Energy (OSTI)

The possibility of using wastepaper as a cheap feedstock for production of ethanol is discussed. As the single largest material category in the municipal solid waste (MSW) stream, wastepaper is the main target of efforts to reduce the volume of MSW. And in the process for producing ethanol from lignocellulosics, the feedstock represents the highest cost. If wastepaper could be obtained cheaply in large enough quantities and if conversion process cost and efficiency prove to be similar to those for wood, the cost of ethanol could be significantly reduced. At the same time, the volume of wastepaper that must be disposed of in landfills could be lessened. 13 refs., 3 figs., 7 tabs.

Bergeron, P.W.; Riley, C.J.

1991-11-01T23:59:59.000Z

39

Alternative Fuels Data Center: Ethanol Production Facility Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Fee to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Fee on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Fee on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Fee on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Facility Fee The cost to submit an air quality permit application for an ethanol production plant is $1,000. An annual renewal fee is also required for the

40

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

Feder, Harold M. (Darien, IL); Chen, Michael J. (Darien, IL)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by-product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

Feder, H.M.; Chen, M.J.

1980-05-21T23:59:59.000Z

42

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Tax Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit An ethanol facility is eligible for a credit of $0.075 per gallon of ethanol, before denaturing, for new production for up to 36 consecutive

43

Biological production of ethanol from coal  

DOE Green Energy (OSTI)

Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H[sub 2], CO[sub 2], CH[sub 4] and sulfur gases, is first produced using traditional gasification techniques. The CO, CO[sub 2] and H[sub 2] are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the wild strain'' produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

Not Available

1992-12-01T23:59:59.000Z

44

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

Feder, Harold M. (Darien, IL); Chen, Michael J. (Darien, IL)

1983-01-01T23:59:59.000Z

45

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium, ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

Feder, H.M.; Chen, M.J.

1981-09-24T23:59:59.000Z

46

Biological production of ethanol from coal  

DOE Green Energy (OSTI)

Two batch and one continuous reactor study involving Clostridium ljungdahlii were carried out. First, the effects of H{sub 2} partial pressure on growth, CO and H{sub 2} uptake and product formation by C. ljungdahlii were investigated in batch culture. Over the concentration range studied, it was observed that CO was preferentially utilized in favor of H{sub 2}. It was also seen that increasing H{sub 2} partial pressures increased the ratio of ethanol to acetate. Finally, a two-stage CSTR system was successfully operated with C. ljungdahlii in which growth occurred in the first stage and ethanol production occurred in the second stage.

Not Available

1989-01-01T23:59:59.000Z

47

Alternative Fuels Data Center: Cellulosic Ethanol Production Financing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Production Financing to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Production Financing The Kansas Development Finance Authority may issue revenue bonds to cover

48

Biological production of ethanol from coal  

DOE Green Energy (OSTI)

The fermentation pH has been observed to be the key parameter affecting the ratio of ethanol to acetate produced by Clostridium ljungdahlii. The effects of controlled pH on cell growth and product formation by C. ljungdahlii were measured. It was found that cell concentration and acetate concentration increased with pH, while the ethanol concentration was highest at the lower pH. The molar product ratio of ethanol to acetate was 0.74 at pH 4.0, 0.39 at pH 4.5 and 0.12 at pH 5.0. Future experiments will concentrate on studying other important parameters such as agitation rate and nutrients concentrations with controlled pH as a preclude to continuous reactor studies.

Not Available

1990-01-01T23:59:59.000Z

49

An Indirect Route for Ethanol Production  

DOE Green Energy (OSTI)

The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

Eggeman, T.; Verser, D.; Weber, E.

2005-04-29T23:59:59.000Z

50

An Indirect Route for Ethanol Production  

SciTech Connect

The ZeaChem indirect method is a radically new approach to producing fuel ethanol from renewable resources. Sugar and syngas processing platforms are combined in a novel way that allows all fractions of biomass feedstocks (e.g. carbohydrates, lignins, etc.) to contribute their energy directly into the ethanol product via fermentation and hydrogen based chemical process technologies. The goals of this project were: (1) Collect engineering data necessary for scale-up of the indirect route for ethanol production, and (2) Produce process and economic models to guide the development effort. Both goals were successfully accomplished. The projected economics of the Base Case developed in this work are comparable to today's corn based ethanol technology. Sensitivity analysis shows that significant improvements in economics for the indirect route would result if a biomass feedstock rather that starch hydrolyzate were used as the carbohydrate source. The energy ratio, defined as the ratio of green energy produced divided by the amount of fossil energy consumed, is projected to be 3.11 to 12.32 for the indirect route depending upon the details of implementation. Conventional technology has an energy ratio of 1.34, thus the indirect route will have a significant environmental advantage over today's technology. Energy savings of 7.48 trillion Btu/yr will result when 100 MMgal/yr (neat) of ethanol capacity via the indirect route is placed on-line by the year 2010.

Eggeman, T.; Verser, D.; Weber, E.

2005-04-29T23:59:59.000Z

51

Ethanol production in Gram-positive microbes  

DOE Patents (OSTI)

The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

Ingram, L.O.; Barbosa-Alleyne, M.D.F.

1996-01-09T23:59:59.000Z

52

Ethanol production in gram-positive microbes  

DOE Patents (OSTI)

The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

Ingram, Lonnie O' Neal (Gainesville, FL); Barbosa-Alleyne, Maria D. F. (Gainesville, FL)

1999-01-01T23:59:59.000Z

53

Ethanol production in Gram-positive microbes  

DOE Patents (OSTI)

The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase.

Ingram, Lonnie O' Neal (Gainesville, FL); Barbosa-Alleyne, Maria D. F. (Gainesville, FL)

1996-01-01T23:59:59.000Z

54

Ethanol production in Gram-positive microbes  

DOE Patents (OSTI)

The subject invention concerns the transformation of Gram-positive bacteria with heterologous genes which confer upon these microbes the ability to produce ethanol as a fermentation product. Specifically exemplified is the transformation of bacteria with genes, obtainable from Zymomonas mobilis, which encode pyruvate decarboxylase and alcohol dehydrogenase. 2 figs.

Ingram, L.O.; Barbosa-Alleyne, M.D.F.

1999-06-29T23:59:59.000Z

55

Alternative Fuels Data Center: Ethanol Production Facility Property Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Property Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

56

Ethanol Production Facility in Decatur,  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Facility in Decatur, Illinois. A processing plant Production Facility in Decatur, Illinois. A processing plant built for this project removes water from the CO 2 stream and then compresses the dry CO 2 to a supercritical phase. The compressed CO 2 then travels through a 1 mile-long pipeline to the wellhead where it is injected into the Mt. Simon Sandstone at a depth of about 7,000 feet. November 21, 2011, http://www.netl.doe.gov/publications/

57

Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Hydrogen Ethanol and Hydrogen Production Facility Permits to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Google Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Delicious Rank Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

58

Ethanol Production Tax Credit (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) < Back Eligibility Agricultural Program Info State Kentucky Program Type Corporate Tax Incentive Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all corn and cellulosic ethanol producers is $5 million for each taxable year. Unused ethanol credits from one ethanol-based cap, such as corn, may be applied to another ethanol-based cap, such as cellulosic, in the same taxable year. Unused credits may not be carried forward. Kentucky statute information regarding alternative fuel producer tax credits can be found within KRS Chapters 141.422-141.430

59

The feasibility of ethanol production in Texas  

E-Print Network (OSTI)

Agricultural interests across Texas are looking at the possibility of an ethanol industry in Texas. Continued conflict in the Middle East, the ban of methyl tertiary butyl ether (MTBE) in California, and low commodity prices have all lead to increased interest in ethanol throughout the state of Texas. There have been several ethanol feasibility studies conducted. Most studies have been focused in other states, and only one incorporated risk on input and output prices. Very little research has been done in Texas. Previous studies are typically for a generic location and only looked at ethanol production from corn. This study looks at four different plant sizes in three different regions using corn and grain sorghum. This study incorporates risk on input prices (corn, grain sorghum, natural gas, and electricity) and the output prices of ethanol and dried distillers grain with solubles (DDGS). The regions that were analyzed in the study are the Texas Panhandle, the Central Texas region, and the Southeast Texas region. The results indicate that the only plants expected to generate a positive net present value (NPV) were the larger grain sorghum based plants in the Texas Panhandle. The smaller sorghum based plants in the Panhandle did not have a positive NPV. The only other plants that were close to having a positive net present value were the grain sorghum plants in the Central Texas Region. Sorghum in the Southeast Texas Region was not feasible. Using corn as the feedstock was not as feasible in any region. The results of a sensitivity analysis show that a small increase in the net income in the form of increased revenue or reduced costs would make all the plants profitable.

Herbst, Brian Keith

2003-01-01T23:59:59.000Z

60

Ethanol Production for Automotive Fuel Usage  

SciTech Connect

The conceptual design of the 20 million gallon per year anhydrous ethanol facility a t Raft River has been completed. The corresponding geothermal gathering, extraction and reinjection systems to supply the process heating requirement were also completed. The ethanol facility operating on sugar beets, potatoes and wheat will share common fermentation and product recovery equipment. The geothermal fluid requirement will be approximately 6,000 gpm. It is anticipated that this flow will be supplied by 9 supply wells spaced at no closer than 1/4 mile in order to prevent mutual interferences. The geothermal fluid will be flashed in three stages to supply process steam at 250 F, 225 F and 205 F for various process needs. Steam condensate plus liquid remaining after the third flash will all be reinjected through 9 reinjection wells. The capital cost estimated for this ethanol plant employing all three feedstocks is $64 million. If only a single feedstock were used (for the same 20 mm gal/yr plant) the capital costs are estimated at $51.6 million, $43.1 million and $40. 5 million for sugar beets, potatoes and wheat respectively. The estimated capital cost for the geothermal system is $18 million.

Lindemuth, T.E.; Stenzel, R.A.; Yim, Y.J.; Yu, J.

1980-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

62

Biological production of ethanol from coal  

DOE Green Energy (OSTI)

Research is continuing in attempting to increase both the ethanol concentration and product ratio (acetate to ethanol) from the C. ljungdahlii fermentation. Both batch and continuous reactors are being used for this purpose. The purpose of this report is four-fold. First, the data presented in PETC Report No. 2-4-91 (June--September, 1991) are analyzed and interpreted using normalized specific growth and production rates. This technique eliminates experimental variation due to differences in inoculum history. Secondly, the effects of the sulfur gases H{sub 2}S and COS on the performance of C. ljungdahlii are presented and discussed. Although these are preliminary results, they illustrate the tolerance of the bacterium to low levels of sulfur gases. Thirdly, the results of continuous stirred tank reactor studies are presented, where cell and product concentrations are shown as a function of agitation rate and gas flow rate. Finally, additional data are presented showing the performance of C. ljungdahlii in a CSTR with cell recycle.

Not Available

1992-05-01T23:59:59.000Z

63

Agri capital GmbH | Open Energy Information  

Open Energy Info (EERE)

Zip 48155 Product Muenster-based agri.capital develops and operates decentralised biogas plants. Coordinates 33.652, -97.376364 Loading map... "minzoom":false,"mappingser...

64

Ethanol production by vapor compression distillation  

DOE Green Energy (OSTI)

The goal of this project is to develop and demonstrate a one gallon per hour vapor compression distillation unit for fuel ethanol production that can be profitably manufactured and economically operated by individual family units. Vapor compression distillation is already an industrially accepted process and this project's goal is to demonstrate that it can be done economically on a small scale. Theoretically, the process is independent of absolute pressure. It is only necessary that the condenser be at higher pressure than the evaporator. By reducing the entire process to a pressure of approximately 0.1 atmosphere, the evaporation and condensation can occur at near ambient temperature. Even though this approach requires a vacuum pump, and thus will not represent the final cost effective design, it does not require preheaters, high temperature materials, or as much insulation as if it were to operate a near ambient pressure. Therefore, the operation of the ambient temperature unit constitutes the first phase of this project. Presently, the ambient temperature unit is fully assembled and has begun testing. So far it has successfully separated ethanol from a nine to one diluted input solution. However the production rate has been very low.

Ellis, G.S.

1981-01-01T23:59:59.000Z

65

Ethanol production from paper sludge by simultaneous saccharification...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol Production From Paper Sludge by Simultaneous Saccharification and Co-Fermentation Using Recombinant Xylose-Fermenting Microorganisms Jiayi Zhang, 1 Lee R. Lynd 1,2 1...

66

Biochemical Production of Ethanol from Corn Stover: 2008 State...  

NLE Websites -- All DOE Office Websites (Extended Search)

10-46214 August 2009 Biochemical Production of Ethanol from Corn Stover: 2008 State of Technology Model D. Humbird and A. Aden National Renewable Energy Laboratory 1617 Cole...

67

Ethanol Production Incentive (South Dakota) | Open Energy Information  

Open Energy Info (EERE)

History Share this page on Facebook icon Twitter icon Ethanol Production Incentive (South Dakota) This is the approved revision of this page, as well as being the most...

68

Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production  

SciTech Connect

The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of succinic acid production were such that it could not compete with current commercial practice. To allow recovery of commercial amounts of ethanol from bagasse fermentation, research was conducted on high solids loading fermentations (using S. cerevisiae) with commercial cellulase on pretreated material. A combination of SHF/SSF treatment with fed-batch operation allowed fermentation at 30% solids loading. Supplementation of the fermentation with a small amount of black-strap molasses had results beyond expectation. There was an enhancement of conversion as well as production of ethanol levels above 6.0% w/w, which is required both for efficient distillation as well as contaminant repression. The focus of fermentation development was only on converting the cellulose to ethanol, as this yeast is not capable of fermenting both glucose and xylose (from hemicellulose). In anticipation of the future development of such an organism, we screened the commercially available xylanases to find the optimum mix for conversion of both cellulose and hemicellulose. A different mixture than the spezyme/novozyme mix used in our fermentation research was found to be more efficient at converting both cellulose and hemicellulose. Efforts were made to select a mutant of Pichia stipitis for ability to co-ferment glucose and xylose to ethanol. New mutation technology was developed, but an appropriate mutant has not yet been isolated. The ability to convert to stillage from biomass fermentations were determined to be suitable for anaerobic degradation and methane production. An economic model of a current sugar factory was developed in order to provide a baseline for the cost/benefit analysis of adding cellulosic ethanol production.

Donal F. Day

2009-03-31T23:59:59.000Z

69

Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower  

E-Print Network (OSTI)

Energy outputs from ethanol produced using corn, switchgrass, and wood biomass were each less than the respective fossil energy inputs. The same was true for producing biodiesel using soybeans and sunflower, however, the energy cost for producing soybean biodiesel was only slightly negative compared with ethanol production. Findings in terms of energy outputs compared with the energy inputs were: Ethanol production using corn grain required 29% more fossil energy than the ethanol fuel produced. Ethanol production using switchgrass required 50 % more fossil energy than the ethanol fuel produced. Ethanol production using wood biomass required 57 % more fossil energy than the ethanol fuel produced. Biodiesel production using soybean required 27 % more fossil energy than the biodiesel fuel produced (Note, the energy yield from soy oil per hectare is far lower than the ethanol yield from corn). Biodiesel production using sunflower required 118 % more fossil energy than the biodiesel fuel produced.

David Pimentel; Tad W. Patzek

2005-01-01T23:59:59.000Z

70

Biological production of ethanol from coal  

DOE Green Energy (OSTI)

Research is continuing in attempting to increase both the ethanol concentration and product ratio from the C. ljungdahlii fermentation. Both batch and continuous reactors are being used for this purpose. The purpose of this report is four-fold. First, the data presented in PETC Report No. 2-4-91 (June--September 1991) are analyzed and interpreted using normalized specific growth and production rates. This technique eliminates experimental variation due to the differences in inoculum history. Secondly, the effects of the sulfur gases H{sub 2}S and COS on the performance of C. ljungdahlii are presented and discussed. Although these are preliminary results, they illustrate the tolerance of the bacterium to low levels of sulfur gases. Thirdly, the results of continuous stirred tank reactor studies are presented, where cell and product concentrations are shown as a function of agitation rate and gas flow rate. Finally, additional data are presented showing the performance of C. ljungdahlii in a CSTR with cell recycle.

Not Available

1991-01-01T23:59:59.000Z

71

Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production  

DOE Green Energy (OSTI)

Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of succinic acid production were such that it could not compete with current commercial practice. To allow recovery of commercial amounts of ethanol from bagasse fermentation, research was conducted on high solids loading fermentations (using S. cerevisiae) with commercial cellulase on pretreated material. A combination of SHF/SSF treatment with fed-batch operation allowed fermentation at 30% solids loading. Supplementation of the fermentation with a small amount of black-strap molasses had results beyond expectation. There was an enhancement of conversion as well as production of ethanol levels above 6.0% w/w, which is required both for efficient distillation as well as contaminant repression. The focus of fermentation development was only on converting the cellulose to ethanol, as this yeast is not capable of fermenting both glucose and xylose (from hemicellulose). In anticipation of the future development of such an organism, we screened the commercially available xylanases to find the optimum mix for conversion of both cellulose and hemicellulose. A different mixture than the spezyme/novozyme mix used in our fermentation research was found to be more efficient at converting both cellulose and hemicellulose. Efforts were made to select a mutant of Pichia stipitis for ability to co-ferment glucose and xylose to ethanol. New mutation technology was developed, but an appropriate mutant has not yet been isolated. The ability to convert to stillage from biomass fermentations were determined to be suitable for anaerobic degradation and methane production. An economic model of a current sugar factory was developed in order to provide a baseline for the cost/benefit analysis of adding cellulosic ethanol production.

Donal F. Day

2009-03-31T23:59:59.000Z

72

Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge  

E-Print Network (OSTI)

4 ORIGINAL PAPER Ethanol production of semi-simultaneousAbstract Ethanol production from the steam-exploded mixtureperiod during ethanol production of SSF from the mixture.

Shen, Jiacheng; Agblevor, Foster A.

2011-01-01T23:59:59.000Z

73

Ethanol Production Tax Credit (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Production Tax Credit (Kentucky) Production Tax Credit (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 13, 2013. EZFeed Policy Place Kentucky Name Ethanol Production Tax Credit (Kentucky) Policy Category Financial Incentive Policy Type Corporate Tax Incentive Affected Technologies Biomass/Biogas Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/biofuels/Pages/biofuelsIncentives.aspx Summary Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all corn and cellulosic ethanol producers is $5 million for each taxable year. Unused ethanol credits from

74

Development of rapid methods to determine the quality of corn for ethanol production.  

E-Print Network (OSTI)

??As ethanol production greatly increased in recent years in the U.S., there has been interest to make the ethanol production process more efficient and economical, (more)

Burgers, Allison Palmer

2009-01-01T23:59:59.000Z

75

Energy Utilization in Fermentation Ethanol Production  

E-Print Network (OSTI)

The fuel ethanol industry has put into practice several techniques for minimizing energy requirements for ethanol manufacture. Thermal energy usage in fermentation grain ethanol plants has been reduced from the prior practice of 80,900 Btu per gallon ethanol to current demonstrated practice of 49,700 Btu per gallon. Future, state-of-the-art improvements are expected to reduce usage further to 37,000 Btu per gallon or less. The total energy input is projected at 52,000 Btu per gallon after adding in the electrical power. Energy savings have been achieved primarily by flash vapor reuse, pressure cascading of distillation units, and use of more efficient byproduct drying methods. These energy saving techniques should also be useful in other commercial processing applications.

Easley, C. E.

1987-09-01T23:59:59.000Z

76

Ethanol production capacity little changed in past year - Today in ...  

U.S. Energy Information Administration (EIA)

U.S. fuel ethanol production capacity was 13.9 billion gallons per year (903,000 barrels per day), as of January 1, 2013, according to a report released by EIA on May ...

77

U.S. Fuel Ethanol Plant Production Capacity  

U.S. Energy Information Administration (EIA)

U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District: Number of Plants: 2013 Nameplate Capacity: 2012 Nameplate Capacity

78

Enhancing dry-grind corn ethanol production with fungal cultivation and ozonation.  

E-Print Network (OSTI)

??Public opinion of the U.S. fuel ethanol industry has suffered in recent years despite record ethanol production. Debates sparked over the environmental impacts of corn (more)

Rasmussen, Mary

2009-01-01T23:59:59.000Z

79

Ethanol Production and Gasoline Prices: A Spurious Correlation  

E-Print Network (OSTI)

Ethanol made from corn comprises 10 % of US gasoline, up from 3 % in 2003. This dramatic increase was spurred by recent policy initiatives such as the Renewable Fuel Standard and state-level blend mandates, and supported by direct subsidies such as the Volumetric Ethanol Excise Tax Credit. Some proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry group claiming it reduced gasoline prices by 89 cents in 2010 and $1.09 in 2011. The estimates have been cited in numerous speeches by Secretary of Agriculture Thomas Vilsack. These estimates are based on a series of papers by Xiaodong Du and Dermot Hayes. We show that these results are driven by implausible economic assumptions and spurious statistical correlations. To support this last point, we use the same statistical models and find that ethanol production decreases natural gas prices, but increases unemployment in both the US and Europe. We even show that ethanol production increases the ages of our children.

Christopher R. Knittel; Aaron Smith

2012-01-01T23:59:59.000Z

80

East Kansas Agri Energy | Open Energy Information  

Open Energy Info (EERE)

Kansas Agri Energy Kansas Agri Energy Jump to: navigation, search Name East Kansas Agri-Energy Place Garnett, Kansas Zip 66032 Product Dry-mill bioethanol producer Coordinates 32.609607°, -81.244377° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.609607,"lon":-81.244377,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Bootheel Agri Energy | Open Energy Information  

Open Energy Info (EERE)

Bootheel Agri Energy Bootheel Agri Energy Jump to: navigation, search Name Bootheel Agri-Energy Place Sikeston, Missouri Zip 63801 Product Developer of a now-postponed 100m gallon (378m litre) per year bioethanol plant in Sikeston, Missouri. Coordinates 36.876525°, -89.588284° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.876525,"lon":-89.588284,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Commonwealth AgriEnergy | Open Energy Information  

Open Energy Info (EERE)

Commonwealth AgriEnergy Commonwealth AgriEnergy Jump to: navigation, search Name Commonwealth AgriEnergy Place Hopkinsville, Kentucky Zip 42241 Product Bioethanol producer using corn as feedstock Coordinates 36.867275°, -87.487699° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.867275,"lon":-87.487699,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Methods for increasing the production of ethanol from microbial fermentation  

DOE Patents (OSTI)

A stable continuous method for producing ethanol from the anaerobic bacterial fermentation of a gaseous substrate containing at least one reducing gas involves culturing a fermentation bioreactor anaerobic, acetogenic bacteria in a liquid nutrient medium; supplying the gaseous substrate to the bioreactor; and manipulating the bacteria in the bioreactor by reducing the redox potential, or increasing the NAD(P)H TO NAD(P) ratio, in the fermentation broth after the bacteria achieves a steady state and stable cell concentration in the bioreactor. The free acetic acid concentration in the bioreactor is maintained at less than 5 g/L free acid. This method allows ethanol to be produced in the fermentation broth in the bioreactor at a productivity greater than 10 g/L per day. Both ethanol and acetate are produced in a ratio of ethanol to acetate ranging from 1:1 to 20:1.

Gaddy, James L. (Fayetteville, AR); Arora, Dinesh K. (Fayetteville, AR); Ko, Ching-Whan (Fayetteville, AR); Phillips, John Randall (Fayetteville, AR); Basu, Rahul (Bethlehem, PA); Wikstrom, Carl V. (Fayetteville, AR); Clausen, Edgar C. (Fayetteville, AR)

2007-10-23T23:59:59.000Z

84

Comparing Scales of Environmental Effects from Gasoline and Ethanol Production  

Science Conference Proceedings (OSTI)

Understanding the environmental effects of alternative fuel production is critical to characterizing the sustainability of energy resources to inform policy and regulatory decisions. The magnitudes of these environmental effects vary according to the intensity and scale of fuel production along each step of the supply chain. We compare the scales (i.e., spatial extent and temporal duration) of ethanol and gasoline production processes and environmental effects based on a literature review, and then synthesize the scale differences on space-time diagrams. Comprehensive assessment of any fuel-production system is a moving target, and our analysis shows that decisions regarding the selection of spatial and temporal boundaries of analysis have tremendous influences on the comparisons. Effects that strongly differentiate gasoline and ethanol supply chains in terms of scale are associated with when and where energy resources are formed and how they are extracted. Although both gasoline and ethanol production may result in negative environmental effects, this study indicates that ethanol production traced through a supply chain may impact less area and result in more easily reversed effects of a shorter duration than gasoline production.

Parish, Esther S [ORNL; Kline, Keith L [ORNL; Dale, Virginia H [ORNL; Efroymson, Rebecca Ann [ORNL; McBride, Allen [ORNL; Johnson, Timothy L [U.S. Environmental Protection Agency, Raleigh, North Carolina; Hilliard, Michael R [ORNL; Bielicki, Dr Jeffrey M [University of Minnesota

2013-01-01T23:59:59.000Z

85

Biological production of ethanol from coal. Final report  

DOE Green Energy (OSTI)

Due to the abundant supply of coal in the United States, significant research efforts have occurred over the past 15 years concerning the conversion of coal to liquid fuels. Researchers at the University of Arkansas have concentrated on a biological approach to coal liquefaction, starting with coal-derived synthesis gas as the raw material. Synthesis gas, a mixture of CO, H{sub 2}, CO{sub 2}, CH{sub 4} and sulfur gases, is first produced using traditional gasification techniques. The CO, CO{sub 2} and H{sub 2} are then converted to ethanol using a bacterial culture of Clostridium 1jungdahlii. Ethanol is the desired product if the resultant product stream is to be used as a liquid fuel. However, under normal operating conditions, the ``wild strain`` produces acetate in favor of ethanol in conjunction with growth in a 20:1 molar ratio. Research was performed to determine the conditions necessary to maximize not only the ratio of ethanol to acetate, but also to maximize the concentration of ethanol resulting in the product stream.

Not Available

1992-12-01T23:59:59.000Z

86

AgriKomp GmbH | Open Energy Information  

Open Energy Info (EERE)

Germany Zip D-91732 Product A major German and international group specializing in biogas plants. Subdidiaries France, Italy, Czech Rep, Poland References agriKomp GmbH1...

87

Ethanol production in fermentation of mixed sugars containing xylose  

DOE Patents (OSTI)

Xylose-utilizing Z. mobilis strains were found to have improved ethanol production when grown in medium containing mixed sugars including xylose if sorbitol or mannitol was included in the medium. The effect was seen in concentrations of mixed sugars where no growth lag period occurs, as well as in higher sugars concentrations.

Viitanen, Paul V. (West Chester, PA); Mc Cutchen, Carol M. (Wilmington, DE); Li; Xu (Newark, DE); Emptage, Mark (Wilmington, DE); Caimi, Perry G. (Kennett Square, PA); Zhang, Min (Lakewood, CO); Chou, Yat-Chen (Lakewood, CO); Franden, Mary Ann (Centennial, CO)

2009-12-08T23:59:59.000Z

88

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ... Fuel Ethanol Oxygenate Production;

89

An Update on Ethanol Production and Utilization in Thailand  

DOE Green Energy (OSTI)

Thailand has continued to promote domestic biofuel utilization. Production and consumption of biofuel in Thailand have continued to increase at a fast rate due to aggressive policies of the Thai government in reducing foreign oil import and increasing domestic renewable energy utilization. This paper focuses on ethanol production and consumption, and the use of gasohol in Thailand. The paper is an update on the previous paper--Biofuel Infrastructure Development and Utilization in Thailand--in August 2008.

Bloyd, Cary N.

2009-10-01T23:59:59.000Z

90

A stochastic feasibility study of Texas ethanol production: analysis of Texas Legislature ethanol subsidy proposal  

E-Print Network (OSTI)

The recent resurgence of interest in ethanol production has prompted the Texas State Legislature to investigate the feasibility of ethanol production in Texas. The reasons for the increased interest in ethanol production could possibly relate to depressed commodity prices, gasoline price volatility, environmental regulations and a renewed push towards increased fuel sufficiently given national and world events following September 11, 2001. Past feasibility studies have failed to incorporate the risk of input and output prices in their analyses. Furthermore, it is evident from the literature, that unrealistic values were used in many of the studies, to perhaps, entice prospective investors in providing capital for the construction and operation of the ethanol facilities. This study provides an unbiased, stochastic simulation feasibility study incorporating the risks of ethanol, corn, dry distillers grains (DDGS), soybean meal, electricity, and natural gas prices on three size facilities in Texas. In addition, four different scenarios were included incorporating four levels of the proposed Texas State Producer Grant into the feasibility study. Those levels were the $0.00, $0.10, $0.20, and $0.30/gal on the first 30 million gallons per year (MMGPY) of production for each registered plant. Rather than assuming point values for input variables and providing a deterministic analysis, the advantage of this study is that it provides a feasibility study that includes risks of input and output prices in its results. For each of the three size facilities analyzed (15, 30, and 80 MMGPY) the results of probability of negative cash flows and simple statistics, probability of dividend payments and simple statistics, present value of ending owners equity in 2022, net present value, certainty equivalents and absolute certainty equivalents risk premiums of net present value are described in the study. The study found that neither the 15, 30, or the 80 MMGPY facilities would be feasible in Texas. The facilities have little chance of economic success under the best scenario ($0.30/gal) and all have a zero percent chance of maintaining beginning equity.

Gill, Robert Chope

2002-01-01T23:59:59.000Z

91

Feasibility Study for Co-Locating and Integrating Ethanol Production Plants from Corn Starch and Lignocellulosic Feedstocks (Revised)  

DOE Green Energy (OSTI)

Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation. Although none of the scenarios identified could produce ethanol at lower cost than a straight grain ethanol plant, several were lower cost than a straight cellulosic ethanol plant.

Wallace, R.; Ibsen, K.; McAloon, A.; Yee, W.

2005-01-01T23:59:59.000Z

92

AGRI-SCIENCE CHEMICAL BIOLOGY  

E-Print Network (OSTI)

AGRI-SCIENCE CHEMICAL BIOLOGY NETWORK Vehicle for translation: Pioneering a cross-academic, -industry and -government network Chemical Biology Community Agri- Sciences Community Industry Policy makers), with multidisciplinary approaches being the drivers enabling this. Chemical Biology through physical science innovation

93

Cellulosic Biomass Feedstocks and Logistics for Ethanol Production  

Science Conference Proceedings (OSTI)

The economic competitiveness of cellulosic ethanol production is highly dependent on feedstock cost, which constitutes 3550% of the total ethanol production cost, depending on various geographical factors and the types of systems used for harvesting, collecting, preprocessing, transporting, and handling the material. Consequently, as the deployment of cellulosic ethanol biorefi neries approaches, feedstock cost and availability are the driving factors that infl uence pioneer biorefi nery locations and will largely control the rate at which this industry grows. Initial scenarios were postulated to develop a pioneer dry feedstock supply system design case as a demonstration of the current state of technology. Based on this pioneer design, advanced scenarios were developed to determine key cost barriers, needed supply system improvements, and technology advancements to achieve government and private sector cost targets. Analysis of the pioneer supply system resulted in a delivered feedstock cost to the throat of the pretreatment reactor of $37.00 per dry tonne (2002 $). Pioneer supply systems will start by using current infrastructure and technologies and be individually designed for biorefi neries using specifi c feedstock types and varieties based on local geographic conditions. As the industry develops and cost barriers are addressed, the supply systems will incorporate advanced technologies that will eliminate downstream diversity and provide a uniform, tailored feedstock for multiple biorefi neries located in different regions.

J. Richard Hess; Christopher T. Wright; Kevin L. Kenney

2007-10-01T23:59:59.000Z

94

Ethanol production using a soy hydrolysate-based medium or a yeast autolysate-based medium  

DOE Patents (OSTI)

This invention presents a method for the production of ethanol that utilizes a soy hydrolysate-based nutrient medium or a yeast autolysate-based medium nutrient medium in conjunction with ethanologenic bacteria and a fermentable sugar for the cost-effective production of ethanol from lignocellulosic biomass. The invention offers several advantages over presently available media for use in ethanol production, including consistent quality, lack of toxins and wide availability.

Ingram, Lonnie O. (Gainesville, FL)

2000-01-01T23:59:59.000Z

95

Method for producing ethanol and co-products from cellulosic biomass  

DOE Patents (OSTI)

The present invention generally relates to processes for production of ethanol from cellulosic biomass. The present invention also relates to production of various co-products of preparation of ethanol from cellulosic biomass. The present invention further relates to improvements in one or more aspects of preparation of ethanol from cellulosic biomass including, for example, improved methods for cleaning biomass feedstocks, improved acid impregnation, and improved steam treatment, or "steam explosion."

Nguyen, Quang A

2013-10-01T23:59:59.000Z

96

U.S. ethanol production and the Renewable Fuel Standard ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

97

FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION  

SciTech Connect

PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

F.D. Guffey; R.C. Wingerson

2002-10-01T23:59:59.000Z

98

Federal Reserve Bank of of Kansas City Markets, Not Mandates, Shape Ethanol Production  

E-Print Network (OSTI)

The 2012 drought has reignited the food versus fuel debate. After cutting U.S. corn production below recent years consumption, the drought sparked a U.S. grain shortage and sent global food prices soaring. As the grain shortage intensified, pressure to relieve the shortage by easing ethanol mandates mounted. Escalating ethanol mandates under the Renewable Fuel Standard (RFS), which fueled the expansion of the U.S. ethanol industry, will soon exceed the amount of ethanol than can be used in current U.S. gasoline blends. Some industry participants believe that a waiver of the mandate has the potential to reduce ethanol production and relieve high corn prices. However, ethanol production may not decline significantly, even if the mandates are waived temporarily,

Main Street; Nathan Kauffman

2012-01-01T23:59:59.000Z

99

Pathway engineering to improve ethanol production by thermophilic bacteria  

DOE Green Energy (OSTI)

Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

Lynd, L.R.

1998-12-31T23:59:59.000Z

100

Ethanol and Biodiesel Production Incentive (Texas) | Open Energy...  

Open Energy Info (EERE)

Eligible Technologies Ethanol, Biodiesel Active Incentive No Implementing Sector StateTerritory Energy Category Renewable Energy Incentive Programs Amount Net grant of...

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

2012 Brief: U.S. ethanol prices and production lower ...  

U.S. Energy Information Administration (EIA)

... and weaker gasoline demand contributed to U.S. ethanol output falling from an average 900,000 barrels ... 2012, the United States ... sold in the ...

102

Biomass to ethanol : potential production and environmental impacts.  

E-Print Network (OSTI)

??This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn (more)

Groode, Tiffany Amber, 1979-

2008-01-01T23:59:59.000Z

103

UNDERSTANDING THE LINK BETWEEN ETHANOL PRODUCTION AND FOOD PRICES.  

E-Print Network (OSTI)

??Food prices have increased rapidly in recent years, and so has ethanol consumption. Some studies have claimed that there is a connection between those two. (more)

Monteiro, Nathalia Ferreira

2009-01-01T23:59:59.000Z

104

Effect of lactose concentration on batch production of ethanol from cheese whey using Candida pseudotropicalis  

SciTech Connect

The effect of lactose concentration on growth of Candida pseudotropicalis and ethanol production from cheese whey under batch conditions was investigated. Four initial lactose concentrations ranging from 50 to 200 g/L (5 to 20% wt/vol) were used. High concentration of lactose had an inhibitory effect on the specific growth rate, lactose utilization rate, and ethanol production rate. The maximum cell concentration was influenced by the initial substrate concentration as well as ethanol concentration. Inhibition of ethanol production was more pronounced at higher initial lactose concentrations. The maximum ethanol yield (96.6% of the theoretical yield) was achieved with the 100 g/L initial substrate concentration. The results indicated that pH control during alcohol fermentation of cheese whey is not necessary. 41 refs., 12 figs., 1 tab.

Ghaly, A.E.; El-Taweel, A.A. [Technical Univ. of Nova Scotia, Halifax (Canada)

1995-07-01T23:59:59.000Z

105

Biological production of ethanol from coal. [Quarterly report], September 22, 1990--December 21, 1990  

DOE Green Energy (OSTI)

Previous results have shown that the medium pH, the composition of the medium and concentration of medium constituents significantly affect the ratio of ethanol to acetate in the product stream when fermenting CO, CO{sub 2} and H{sub 2} in synthesis gas to products by Clostridium ljungdahlii. An additional batch study was carried out varying the agitation rate at pH 4, 4.5 and 5.0. It was speculated that increased agitation rates in combination with low pH might result in increased ethanol production while, at the same time, yielding higher cell concentrations which could eventually result in higher ethanol concentrations.

Not Available

1990-12-31T23:59:59.000Z

106

Regional Differences in Corn Ethanol Production: Profitability and Potential Water Demands  

E-Print Network (OSTI)

Through the use of a stochastic simulation model this project analyzes both the impacts of the expanding biofuels sector on water demand in selected regions of the United States and variations in the profitability of ethanol production due to location differences. Changes in consumptive water use in the Texas High Plains, Southern Minnesota, and the Central Valley of California, as impacted by current and proposed grain-based ethanol plants were addressed. In addition, this research assesses the potential impacts of technologies to reduce consumptive water use in the production of ethanol in terms of water usage and the economic viability of each ethanol facility. This research quantifies the role of corn ethanol production on water resource availability and identifies the alternative water pricing schemes at which ethanol production is no longer profitable. The results of this research show that the expansion of regional ethanol production and the resulting changes in the regional agricultural landscapes do relatively little to change consumptive water usage in each location. The California Central Valley has the highest potential for increased water usage with annual water usage in 2017 at levels 15% higher than historical estimates, whereas Southern Minnesota and the Texas High Plains are predicted to have increases of less than 5% during the same time period. Although water use by ethanol plants is extremely minor relative to consumptive regional agricultural water usage, technological adaptations by ethanol facilities have the potential to slightly reduce water usage and prove to be economically beneficial adaptations to make. The sensitivity of net present value (NPV) with respect to changes in water price is shown to be extremely inelastic, indicating that ethanol producers have the ability to pay significantly more for their fresh water with little impact on their 10 year economic performance.

Higgins, Lindsey M.

2009-05-01T23:59:59.000Z

107

Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery  

Science Conference Proceedings (OSTI)

Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

Jones, Susanne B.; Zhu, Yunhua

2009-04-01T23:59:59.000Z

108

More Efficient Ethanol Production from Mixed Sugars Using Spathaspora Yeast  

Ethanol obtained from the fermentation of grains and sugars is being blended with gasoline to bolster dwindling petroleum supplies. The alcohol increases combustion efficiency and octane value, and can be fermented from renewable corn cobs, stalks, ...

109

Continuous production of ethanol by use of flocculent zymomonas mobilis  

DOE Patents (OSTI)

Ethanol is produced by means of a floc-forming strain of Zymomonas mobilis bacteria. Gas is vented along the length of a column containing the flocculent bacteria to preclude disruption of liquid flow.

Arcuri, Edward J. (Del Mar, CA); Donaldson, Terrence L. (Lenoir City, TN)

1983-01-01T23:59:59.000Z

110

Biomass to ethanol : potential production and environmental impacts  

E-Print Network (OSTI)

This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn stover, and switchgrass. A life-cycle assessment approach ...

Groode, Tiffany Amber, 1979-

2008-01-01T23:59:59.000Z

111

Farm ethanol production demonstration. Progress report, September 1, 1981-August 30, 1983. [Small-scale facility  

SciTech Connect

This report contains engineering drawings of an ethanol demonstration production unit at the Agricultural Technical Institute Campus in Wooster, Ohio. A brief description of the cooking unit and distillation unit are included. (DMC)

Longbrake, W.R.

1983-12-01T23:59:59.000Z

112

Solid-state production of ethanol from sorghum  

Science Conference Proceedings (OSTI)

The main goal of this research is to study the solid-state fermentation of sorghum-sudangrass, Grazex II (F{sub 1} hybrid of Sorghum vulgare X Sorghum sudanese), to ethanol. Our research focuses on using a modified method of ensiling to produce ethanol directly in the silo. Thirty-eight liters of ethanol/metric ton (L/MT) on a wet-weight basis were produced from sorghum receiving cellulose compared to 23.4 L/MT for sorghum not receiving cellulose additives. Based on total free sugar content, 101 and 84% of theoretical yield are achieved for cellulase-amended and nonamended sorghum, respectively. 47 refs., 4 figs., 4 tabs.

Henk, L.L.; Linden, J.C. [Colorado State Univ., Fort Collins, CO (United States)

1996-12-31T23:59:59.000Z

113

Continuous Ethanol Production Using Immobilized-Cell/Enzyme Biocatalysts in Fluidized-Bed Bioreactor (FBR)  

DOE Green Energy (OSTI)

The immobilized-cell fluidized-bed bioreactor (FBR) was developed at Oak Ridge National Laboratory (ORNL). Previous studies at ORNL using immobilized Zymomonas mobilis in FBR at both laboratory and demonstration scale (4-in-ID by 20-ft-tall) have shown that the system was more than 50 times as productive as industrial benchmarks (batch and fed-batch free cell fermentations for ethanol production from glucose). Economic analysis showed that a continuous process employing the FBR technology to produce ethanol from corn-derived glucose would offer savings of three to six cents per gallon of ethanol compared to a typical batch process. The application of the FBR technology for ethanol production was extended to investigate more complex feedstocks, which included starch and lignocellulosic-derived mixed sugars. Economic analysis and mathematical modeling of the reactor were included in the investigation. This report summarizes the results of these extensive studies.

Nghiem, NP

2003-11-16T23:59:59.000Z

114

Economic feasibility of ethanol production from sweet sorghum juice in Texas  

E-Print Network (OSTI)

Environmental and political concerns centered on energy use from gasoline have led to a great deal of research on ethanol production. The goal of this thesis is to determine if it is profitable to produce ethanol in Texas using sweet sorghum juice. Four different areas, Moore, Hill, Willacy, and Wharton Counties, using two feedstock alternatives, sweet sorghum only and sweet sorghum and corn, will be analyzed using Monte Carlo simulation to determine the probability of economic success. Economic returns to the farmers in the form of a contract price for the average sweet sorghum yield per acre in each study area and to the ethanol plant buying sweet sorghum at the contract price will be simulated and ranked. The calculated sweet sorghum contract prices offered to farmers are $9.94, $11.44, $29.98, and $36.21 per ton in Wharton, Willacy, Moore, and Hill Counties, respectively. The contract prices are equal to the next most profitable crop returns or ten percent more than the total cost to produce sweet sorghum in the study area. The wide variation in the price is due to competing crop returns and the sweet sorghum growing season. Ethanol production using sweet sorghum and corn is the most profitable alternative analyzed for an ethanol plant. A Moore County ethanol plant has the highest average net present value of $492.39 million and is most preferred overall when using sweet sorghum and corn to produce ethanol. Sweet sorghum ethanol production is most profitable in Willacy County but is not economically successful with an average net present value of $-11.06 million. Ethanol production in Hill County is least preferred with an average net present value of $-712.00 and $48.40 million when using sweet sorghum only and sweet sorghum and corn, respectively. Producing unsubsidized ethanol from sweet sorghum juice alone is not profitable in Texas. Sweet sorghum ethanol supplemented by grain is more economical but would not be as profitable as producing ethanol from only grain in the Texas Panhandle. Farmers profit on average from contract prices for sweet sorghum when prices cover total production costs for the crop.

Morris, Brittany Danielle

2008-12-01T23:59:59.000Z

115

Continuous production of ethanol by use of flocculent Zymomonas mobilis  

DOE Patents (OSTI)

Improved means and process for producing ethanol by fermentation are provided. Another object of the invention is to produce ethanol in a continuous-flow process by means of a biological catalyst that can be retained in a continuous-flow reactor vessel without being bonded to or held within a support material. An additional object of the invention is to provide a fermentation reactor vessel wherein disturbance of the desirable plug flow of sugar solution is minimized. These objects are attained by the preferred apparatus and process of the invention which utilize a newly-discovered flocculent strain of Zymomonas mobilis for converting sugar to ethanol in a continuous flow-type reactor vessel. The flow rate of a sugar-containing solution through a column containing the floc-forming strain of Z. mobilis is adjusted so that a sufficient conversion of sugar to ethanol is achieved in the column and the flocculent Z. mobilis is not washed away in effluent from the column. Carbon dioxide gas generated by the fermentation process is vented from a plurality of points spaced along an inclined column in which the process is conducted, thus minimizing disturbance of the plug flow of liquid by this gas.

Arcuri, E.J.; Donaldson, T.L.

1982-01-28T23:59:59.000Z

116

Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics  

DOE Patents (OSTI)

A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

Nguyen, Quang A. (Chesterfield, MO); Keller, Fred A. (Lakewood, CO); Tucker, Melvin P. (Lakewood, CO)

2003-12-09T23:59:59.000Z

117

Production of ethanol from refinery waste gases. Phase 2, technology development, annual report  

DOE Green Energy (OSTI)

Oil refineries discharge large volumes of H{sub 2}, CO, and CO{sub 2} from cracking, coking, and hydrotreating operations. This program seeks to develop a biological process for converting these waste gases into ethanol, which can be blended with gasoline to reduce emissions. Production of ethanol from all 194 US refineries would save 450 billion BTU annually, would reduce crude oil imports by 110 million barrels/year and emissions by 19 million tons/year. Phase II efforts has yielded at least 3 cultures (Clostridium ljungdahlii, Isolate O-52, Isolate C-01) which are able to produce commercially viable concentrations of ethanol from CO, CO{sub 2}, and H{sub 2} in petroleum waste gas. Single continuous stirred tank reactor studies have shown that 15-20 g/L of ethanol can be produced, with less than 5 g/L acetic acid byproduct. Culture and reactor optimization in Phase III should yield even higher ethanol concentrations and minimal acetic acid. Product recovery studies showed that ethanol is best recovered in a multi-step process involving solvent extraction/distillation to azeotrope/azeotropic distillation or pervaporation, or direct distillation to the azeotrope/azeotropic distillation or pervaporation. Projections show that the ethanol facility for a typical refinery would require an investment of about $30 million, which would be returned in less than 2 years.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C.; Gaddy, J.L.

1995-07-01T23:59:59.000Z

118

Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production  

SciTech Connect

California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

Coughlin, Katie; Fridley, David

2008-07-17T23:59:59.000Z

119

Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production  

SciTech Connect

California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

Coughlin, Katie; Fridley, David

2008-07-17T23:59:59.000Z

120

Evaluation of the Potential for the Production of Lignocellulosic Based Ethanol at Existing Corn Ethanol Facilities: Final Subcontract Report, 2 March 2000 - 30 March 2002  

DOE Green Energy (OSTI)

Subcontract report on opportunities to explore the business potential provided by converting biomass to products such as ethanol. The goals of this study were: (1) To provide the opportunity to explore the business potential provided by converting biomass to products such as ethanol. (2) To take advantage of the grain-processing infrastructure by investigating the co-location of additional biomass conversion facilities at an existing plant site.

Not Available

2002-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Exploring Potential U.S. Switchgrass Production for Lignocellulosic Ethanol  

Science Conference Proceedings (OSTI)

In response to concerns about oil dependency and the contributions of fossil fuel use to climatic change, the U.S. Department of Energy has begun a research initiative to make 20% of motor fuels biofuel based in 10 years, and make 30% of fuels bio-based by 2030. Fundamental to this objective is developing an understanding of feedstock dynamics of crops suitable for cellulosic ethanol production. This report focuses on switchgrass, reviewing the existing literature from field trials across the United States, and compiling it for the first time into a single database. Data available from the literature included cultivar and crop management information, and location of the field trial. For each location we determined latitude and longitude, and used this information to add temperature and precipitation records from the nearest weather station. Within this broad database we were able to identify the major sources of variation in biomass yield, and to characterize yield as a function of some of the more influential factors, e.g., stand age, ecotype, precipitation and temperature in the year of harvest, site latitude, and fertilization regime. We then used a modeling approach, based chiefly on climatic factors and ecotype, to predict potential yields for a given temperature and weather pattern (based on 95th percentile response curves), assuming the choice of optimal cultivars and harvest schedules. For upland ecotype varieties, potential yields were as high as 18 to 20 Mg/ha, given ideal growing conditions, whereas yields in lowland ecotype varieties could reach 23 to 27 Mg/ha. The predictive equations were used to produce maps of potential yield across the continental United States, based on precipitation and temperature in the long term climate record, using the Parameter-elevation Regressions on Independent Slopes Model (PRISM) in a Geographic Information System (GIS). Potential yields calculated via this characterization were subsequently compared to the Oak Ridge Energy Crop County Level data base (ORECCL), which was created at Oak Ridge National Laboratory (Graham et al. 1996) to predict biofuel crop yields at the county level within a limited geographic area. Mapped output using the model was relatively consistent with known switchgrass distribution. It correctly showed higher yields for lowland switchgrass when compared with upland varieties at most locations. Projections for the most northern parts of the range suggest comparable yields for the two ecotypes, but inadequate data for lowland ecotypes grown at high latitudes make it difficult to fully assess this projection. The final model is a predictor of optimal yields for a given climate scenario, but does not attempt to identify or account for other limiting or interacting factors. The statistical model is nevertheless an improvement over historical efforts, in that it is based on quantifiable climatic differences, and it can be used to extrapolate beyond the historic range of switchgrass. Additional refinement of the current statistical model, or the use of different empirical or process-based models, might improve the prediction of switchgrass yields with respect to climate and interactions with cultivar and management practices, assisting growers in choosing high-yielding cultivars within the context of local environmental growing conditions.

Gunderson, Carla A [ORNL; Davis, Ethan [ORNL; Jager, Yetta [ORNL; West, Tristram O. [ORNL; Perlack, Robert D [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Baskaran, Latha Malar [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

2008-08-01T23:59:59.000Z

122

Effect of different crop species and mixtures and storage methods on ethanol production. Final report  

Science Conference Proceedings (OSTI)

Corn, grain sorghum, wheat and barley were tested for ethanol production as pure species and in mixtures. Some compensatory responses were discovered such as foam reduction in barley feedstocks. Cull potatoes were also tested for ethanol production in their pure state and in combination with grain sorghum. Potato producers could derive additional income if cull potatoes could be profitably used in the production of ethanol. A potato and grain mixture may alleviate the necessity of adding additional grinding equipment to process fleshy high moisture material. It is noteworthy to point out that the hammer mill employed at NMSU Agricultural Science Center at Clovis had no problems in processing potatoes in their pure form. Ensiling storage for high moisture corn and sweet sorghum was tested to determine the effect on ethanol production. High moisture corn proved to be an acceptable feedstock for ethanol production. Because of significant deterioration of the ensiled sweet sorghum samples, further investigation into appropriate techniques to simulate silage on a small-scale is needed. 6 refs., 16 figs., 9 tabs.

Houck, W.S.

1986-08-01T23:59:59.000Z

123

Fuel from farms: a guide to small-scale ethanol production  

DOE Green Energy (OSTI)

A guide on fermentation processes with emphasis on small-scale production of ethanol using farm crops as a source of raw material is published. The current status of on-farm ethanol production as well as an overview of some of the technical and economic factors is presented. Decision and planning worksheets and a sample business plan for use in decision making are included. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Diagrams of fermentors and distilling apparatus are included. (DC)

None

1980-02-01T23:59:59.000Z

124

Fuel from farms: A guide to small-scale ethanol production: Second edition  

DOE Green Energy (OSTI)

This guide presents the current status of on-farm fermentation ethanol production as well as an overview of some of the technical and economic factors. Tools such as decision and planning worksheets and a sample business plan for use in exploring whether or not to go into ethanol production are given. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Recommendation of any particular process is deliberately avoided because the choice must be tailored to the needs and resources of each individual producer. The emphasis is on providing the facts necessary to make informed judgments. 98 refs., 14 figs., 9 tabs.

Not Available

1982-05-01T23:59:59.000Z

125

Chief Ethanol Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

Chief Ethanol Fuels Inc Jump to: navigation, search Name Chief Ethanol Fuels Inc Place Hastings, Nebraska Product Ethanol producer and supplier References Chief Ethanol Fuels...

126

Sioux River Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

River Ethanol LLC Jump to: navigation, search Name Sioux River Ethanol LLC Place Hudson, South Dakota Zip 57034 Product Farmer owned ethanol producer, Sioux River Ethanol is...

127

Starch properties, endogenous amylase activity, and ethanol production of corn kernels with different planting dates and drying conditions.  

E-Print Network (OSTI)

??This study was conducted with aim to understand how planting dates and drying conditions affected starch properties and dry-grind ethanol production of corn kernels. Three (more)

Medic, Jelena

2011-01-01T23:59:59.000Z

128

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor .  

E-Print Network (OSTI)

??Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected (more)

Wilkinson, Andrea

2011-01-01T23:59:59.000Z

129

Biological production of ethanol from coal. Task 4 report, Continuous reactor studies  

DOE Green Energy (OSTI)

The production of ethanol from synthesis gas by the anaerobic bacterium C. ljungdahlii has been demonstrated in continuous stirred tank reactors (CSTRs), CSTRs with cell recycle and trickle bed reactors. Various liquid media were utilized in these studies including basal medium, basal media with 1/2 B-vitamins and no yeast extract and a medium specifically designed for the growth of C. ljungdahlii in the CSTR. Ethanol production was successful in each of the three reactor types, although trickle bed operation with C. ljungdahlii was not as good as with the stirred tank reactors. Operation in the CSTR with cell recycle was particularly promising, producing 47 g/L ethanol with only minor concentrations of the by-product acetate.

Not Available

1992-10-01T23:59:59.000Z

130

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

SciTech Connect

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

131

Designer organisms for photosynthetic production of ethanol from carbon dioxide and water  

DOE Patents (OSTI)

The present invention provides a revolutionary photosynthetic ethanol production technology based on designer transgenic plants, algae, or plant cells. The designer plants, designer algae, and designer plant cells are created such that the endogenous photosynthesis regulation mechanism is tamed, and the reducing power (NADPH) and energy (ATP) acquired from the photosynthetic water splitting and proton gradient-coupled electron transport process are used for immediate synthesis of ethanol (CH.sub.3CH.sub.2OH) directly from carbon dioxide (CO.sub.2) and water (H.sub.2O). The ethanol production methods of the present invention completely eliminate the problem of recalcitrant lignocellulosics by bypassing the bottleneck problem of the biomass technology. The photosynthetic ethanol-production technology of the present invention is expected to have a much higher solar-to-ethanol energy-conversion efficiency than the current technology and could also help protect the Earth's environment from the dangerous accumulation of CO.sub.2 in the atmosphere.

Lee, James Weifu (Knoxville, TN)

2011-07-05T23:59:59.000Z

132

Biological production of ethanol from coal. [Fourth quarterly report], October 22, 1989--December 1989  

Science Conference Proceedings (OSTI)

Two batch and one continuous reactor study involving Clostridium ljungdahlii were carried out. First, the effects of H{sub 2} partial pressure on growth, CO and H{sub 2} uptake and product formation by C. ljungdahlii were investigated in batch culture. Over the concentration range studied, it was observed that CO was preferentially utilized in favor of H{sub 2}. It was also seen that increasing H{sub 2} partial pressures increased the ratio of ethanol to acetate. Finally, a two-stage CSTR system was successfully operated with C. ljungdahlii in which growth occurred in the first stage and ethanol production occurred in the second stage.

Not Available

1989-12-31T23:59:59.000Z

133

Ethanol Demand in United States Production of Oxygenate-limited Gasoline  

SciTech Connect

Ethanol competes with methyl tertiary butyl ether (MTBE) to satisfy oxygen, octane, and volume requirements of certain gasolines. However, MTBE has water quality problems that may create significant market opportunities for ethanol. Oak Ridge National Laboratory (ORNL) has used its Refinery Yield Model to estimate ethanol demand in gasolines with restricted use of MTBE. Reduction of the use of MTBE would increase the costs of gasoline production and possibly reduce the gasoline output of U.S. refineries. The potential gasoline supply problems of an MTBE ban could be mitigated by allowing a modest 3 vol percent MTBE in all gasoline. In the U.S. East and Gulf Coast gasoline producing regions, the 3 vol percent MTBE option results in costs that are 40 percent less than an MTBE ban. In the U.S. Midwest gasoline producing region, with already high use of ethanol, an MTBE ban has minimal effect on ethanol demand unless gasoline producers in other regions bid away the local supply of ethanol. The ethanol/MTBE issue gained momentum in March 2000 when the Clinton Administration announced that it would ask Congress to amend the Clean Air Act to provide the authority to significantly reduce or eliminate the use of MTBE; to ensure that air quality gains are not diminished as MTBE use is reduced; and to replace the existing oxygenate requirement in the Clean Air Act with a renewable fuel standard for all gasoline. Premises for the ORNL study are consistent with the Administration announcement, and the ethanol demand curve estimates of this study can be used to evaluate the impact of the Administration principles and related policy initiatives.

Hadder, G.R.

2000-08-16T23:59:59.000Z

134

Guide to commercial-scale ethanol production and financing  

DOE Green Energy (OSTI)

This document is designed to lead the potential investor through all the steps necessary to develop a business plan and prepare a feasibility analysis for a site-specific project. Emphasis is placed on marketing, financing, management, and incentives rather than primarily technical matters. The introduction provides an overview of the perspectives and issues in the alcohol fuels industry. Chapter II seeks to surface factors which affect the decisionmaking process. The chapter attempts to lead the investor step-by-step through the series of decisions and choices to be made before reaching the final decision to enter the business. Chapter III describes the types of feedstocks available and relates them to areas within the United States. Trends and fluctuations in the price of the major grain feedstocks are also discussed in terms of their potential use and value compared to other feeds. Chapter IV discusses the market potential of ethanol and its coproducts, and examines how the location of the ethanol markets in relation to those of the feedstock supplies may influence selection of a plant site. Various aspects of plant design are discussed. A 50 million gallon per year plant is analyzed to provide the general technical background and costing data required in analyzing plants of various sizes and designs. Safety aspects and environmental concerns are treated in Chapters VI and VII. The regulations are reviewed and their impact on plant design and operation is discussed. The basic elements of a business plan are described which lead to an approach for development of the feasibility study. Other information on financial assistance, regulations, current legislation, and reference material is given in the Appendices.

None

1980-11-01T23:59:59.000Z

135

Biological production of ethanol from coal. [Quarterly report], March 22, 1990--June 21, 1990  

DOE Green Energy (OSTI)

The fermentation pH has been observed to be the key parameter affecting the ratio of ethanol to acetate produced by Clostridium ljungdahlii. The effects of controlled pH on cell growth and product formation by C. ljungdahlii were measured. It was found that cell concentration and acetate concentration increased with pH, while the ethanol concentration was highest at the lower pH. The molar product ratio of ethanol to acetate was 0.74 at pH 4.0, 0.39 at pH 4.5 and 0.12 at pH 5.0. Future experiments will concentrate on studying other important parameters such as agitation rate and nutrients concentrations with controlled pH as a preclude to continuous reactor studies.

Not Available

1990-12-31T23:59:59.000Z

136

Feasibility of converting a sugar beet plant to fuel ethanol production  

DOE Green Energy (OSTI)

This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

Hammaker, G.S.; Pfost, H.B.; David, M.L.; Marino, M.L.

1981-04-01T23:59:59.000Z

137

Ethanol production from dry-mill corn starch in a fluidized-bed bioreactor  

DOE Green Energy (OSTI)

The development of a high-rate process for the production of fuel ethanol from dry-mill corn starch using fluidized-bed bioreactor (FBR) technology is discussed. Experiments were conducted in a laboratory scale FBR using immobilized biocatalysts. Two ethanol production process designs were considered in this study. In the first design, simultaneous saccharification and fermentation was performed at 35 C using {kappa}-carageenan beads (1.5 mm to 1.5 mm in diameter) of co-immobilized glucoamylase and Zymomonas mobilis. For dextrin feed concentration of 100 g/L, the single-pass conversion ranged from 54% to 89%. Ethanol concentrations of 23 to 36 g/L were obtained at volumetric productivities of 9 to 15 g/L-h. No accumulation of glucose was observed, indicating that saccharification was the rate-limiting step. In the second design, saccharification and fermentation were carried out sequentially. In the first stage, solutions of 150 to 160 g/L dextrins were pumped through an immobilized glucoamylase packed column maintained at 55 C. Greater than 95% conversion was obtained at a residence time of 1 h, giving a product of 165 to 170 g glucose/L. In the second stage, these glucose solutions were fed to the FBR containing Z. mobilis immobilized in {kappa}-carageenan beads. At a residence time of 2 h, 94% conversion and ethanol concentration of 70 g/L was achieved, giving an overall productivity of 23 g/L-h.

Krishnan, M.S.; Nghiem, N.P.; Davison, B.H.

1998-08-01T23:59:59.000Z

138

Biological production of ethanol from waste gases with Clostridium ljungdahlii  

DOE Patents (OSTI)

A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

Gaddy, James L. (Fayetteville, AR)

2000-01-01T23:59:59.000Z

139

Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate  

DOE Patents (OSTI)

Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in medium comprising xylose and acetate.

Caimi, Perry G. (Kennett Square, PA); Chou, Yat-Chen (Lakewood, CO); Franden, Mary Ann (Centennial, CO); Knoke, Kyle (Newark, DE); Tao, Luan (Havertown, PA); Viitanen, Paul V. (West Chester, PA); Zhang, Min (Lakewood, CO); Zhang, Yuying (New Hope, PA)

2010-09-28T23:59:59.000Z

140

The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report  

DOE Green Energy (OSTI)

The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

Grethlein, H.E.; Dill, T.

1993-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Process development studies of the bioconversion of cellulose and production of ethanol. Semi annual report  

Science Conference Proceedings (OSTI)

Progress in the following process development studio is reported: economic evaluation of hydrolysis and ethanol fermentation schemes, economic evaluation of alternative fermentation processes, raw materials evaluation, and evaluation of pretreatment process. Microbiological and enzymatic studies reported are: production of cellulase enzyme from high yielding mutants, hydrolysis reactor development, xylose fermentation, and xylanese production. Fermentation and separation processes include: process development studies on vacuum fermentation and distillation, evaluation of low energy separations processes, large scale hollow fiber reactor development. (MHR)

Wilke, C.R.; Blanch, H.W.

1981-04-01T23:59:59.000Z

142

Texas AgriLife Research Rule 34.05.99.A1 Smoking in Texas AgriLife Research Facilities and Vehicles Page 1 of 1  

E-Print Network (OSTI)

Texas AgriLife Research Rule 34.05.99.A1 Smoking in Texas AgriLife Research Facilities and Vehicles Page 1 of 1 Texas AgriLife Research Rules 34.05.99.A1 SMOKING IN TEXAS AGRILIFE RESEARCH FACILITIES To provide guidelines concerning smoking in Texas AgriLife Research (AgriLife Research) facilities

143

The Economic Impact of Ethanol Production in Iowa David Swenson  

E-Print Network (OSTI)

production and, through the processing, adds value to the commodity as additional payments to workers, Iowa's total GDP grew by 30 percent, all manufacturing GDP by 24 percent, and the chemical manufacturing industry by 29 percent ­ better than the manufacturing average but below the overall average

Beresnev, Igor

144

Fermentation guide for potatoes. A step-by-step procedure for small-scale ethanol fuel production  

Science Conference Proceedings (OSTI)

This guide describes the steps involved in the successful batch starch conversion and fermentation of potatoes for the production of fuel grade ethanol. The first part of this manual provides an overview of ethanol production from feedstock to fermentation. The second part of the manual is a recipe section that gives step-by-step procedures necessary for successful fermentation. Chapter titles are: major steps in ethanol production; equipment and chemicals; water testing and treatment; feedstock cleaning and crushing; precooking; hydration and dextrinization; cooking; choosing the best enzymes; fermentation; core and cleaning, step-by-step procedure; refinements; and supplies. (DMC)

Not Available

1981-09-01T23:59:59.000Z

145

Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 June 2010 Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol F. Kabir Kazi, J. Fortman, and R. Anex Iowa State University G. Kothandaraman ConocoPhillips Company D. Hsu, A. Aden, and A. Dutta National Renewable Energy Laboratory National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report NREL/TP-6A2-46588 June 2010 Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol F. Kabir Kazi, J. Fortman, and R. Anex

146

Genetic manipulation of lignin reduces recalcitrance and improves biomass ethanol production from switchgrass  

Science Conference Proceedings (OSTI)

Switchgrass is a leading dedicated bioenergy feedstock because it is a native, high yielding, perennial prairie grass with broad cultivation range and low agronomic input requirements. Biomass conversion research has developed pilot scale processes for production of ethanol and other alcohols but they remain costly primarily due to the intrinsic recalcitrance of biomass. We show here that switchgrass genetic modification can produce normal plants that have reduced thermochemical and enzymatic recalcitrance. Downregulation of the switchgrass caffeic O-methyltransferase gene decreases lignin content modestly, reduces the syringyl to guaiacyl lignin monomer ratio and increases the ethanol yield by up to a third using conventional biomass fermentation processes. The downregulated lines have wild-type biomass yields but require reduced pretreatment severity and 300-400% lower cellulase dosages for equivalent product yields significantly lowering processing costs. Alternately, our modified transgenic switchgrass lines should yield significantly more fermentation chemicals per hectare under identical process conditions.

Hamilton, Choo Yieng [ORNL; Fu, Chunxiang [Noble Foundation; Xiao, Xirong [Noble Foundation; Ge, Yaxin [Noble Foundation; Chen, Fang [Noble Foundation; Bouton, Joseph [Noble Foundation; Foston, Marcus [Georgia Institute of Technology; Dixon, Richard A [Noble Foundation; Wang, Zeng-Yu [Noble Foundation; Mielenz, Jonathan R [ORNL

2011-01-01T23:59:59.000Z

147

Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate  

DOE Patents (OSTI)

Through screening of a Zymomonas mutant library the himA gene was found to be involved in the inhibitory effect of acetate on Zymomonas performance. Xylose-utilizing Zymomonas strains further engineered to reduce activity of the himA gene were found to have increased ethanol production in comparison to a parental strain, when cultured in mixed-sugars medium comprising xylose, and, in particular, in the presence of acetate.

Caimi, Perry G. (Kennett Square, PA); Chou, Yat-Chen (Lakewood, CO); Franden, Mary Ann (Centennial, CO); Knoke, Kyle (Newark, DE); Tao, Luan (Havertown, PA); Viitanen, Paul V. (West Chester, PA); Zhang, Min (Lakewood, CO); Zhang, Yuying (New Hope, PA)

2011-03-01T23:59:59.000Z

148

Biological production of ethanol from coal. [Quarterly report], December 22, 1989--March 21, 1990  

DOE Green Energy (OSTI)

A batch kinetic study involving Clostridium lungdahlii in a mineral medium was carried out in order to provide baseline data for the effects of nutrients on product ratio and kinetics. The use of this minimal medium containing vitamins, minerals, select amino acids and salts showed both a lower maximum specific growth rate and a lower maximum specific uptake rate than found when using a complex medium supplemented with 0.01% yeast extract. At the same time, the product ratio was improved slightly in favor of ethanol over acetate. Future experiments will measure the effects of ammonia and phosphate limitation on product ratio and process kinetics.

Not Available

1990-12-31T23:59:59.000Z

149

Texas AgriLife Extension Service and Texas AgriLife Research, and Texas Veterinary Medical Diagnostic  

E-Print Network (OSTI)

Vendor Guide Texas AgriLife Extension Service and Texas AgriLife Research, and Texas Veterinary Medical Diagnostic Laboratory are members of The Texas A&M University System. All purchases made by Texas A&M AgriLife follow State Law, the Texas A&M University System Procurement Code, and the Texas A

150

Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol  

Science Conference Proceedings (OSTI)

A techno-economic analysis on the production of cellulosic ethanol by fermentation was conducted to understand the viability of liquid biofuel production processes within the next 5-8 years. Initially, 35 technologies were reviewed, then a two-step down selection was performed to choose scenarios to be evaluated in a more detailed economic analysis. The lignocellulosic ethanol process was selected because it is well studied and portions of the process have been tested at pilot scales. Seven process variations were selected and examined in detail. Process designs were constrained to public data published in 2007 or earlier, without projecting for future process improvements. Economic analysis was performed for an 'nth plant' (mature technology) to obtain total investment and product value (PV). Sensitivity analysis was performed on PV to assess the impact of variations in process and economic parameters. Results show that the modeled dilute acid pretreatment process without any downstream process variation had the lowest PV of $3.40/gal of ethanol ($5.15/gallon of gasoline equivalent) in 2007 dollars. Sensitivity analysis shows that PV is most sensitive to feedstock and enzyme costs.

Kazi, F. K.; Fortman, J.; Anex, R.; Kothandaraman, G.; Hsu, D.; Aden, A.; Dutta, A.

2010-06-01T23:59:59.000Z

151

Evaluation of the Natick enzymatic hydrolysis process for use in the production of ethanol from municipal solid waste or from wood. Final report  

DOE Green Energy (OSTI)

Economic evaluation of a conceptual, large-scale, commercial ethanol production facility using the enzymatic hydrolysis technology are presented. Designs and cost estimates for the mechanical processing and the ethanol fermentation and recovery are included. Production of ethanol from both wood and solid wastes is covered. (MHR)

Jones, J. L.; Fong, W. S.; Chatterjee, A. K.

1979-10-01T23:59:59.000Z

152

Economic impact of ethanol production on U.S. livestock sector: a spatial analysis of corn and distillers grain shipment.  

E-Print Network (OSTI)

??The production of corn-based ethanol in the U.S. has increased from 1,630 million gallons in 2000 to 4,855 million gallons in 2006, representing a 198% (more)

N'Guessan, Yapo Genevier

2007-01-01T23:59:59.000Z

153

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network (OSTI)

techno-economic models of corn stover ethanol processes wereprice $0.91/gallon ethanol as using corn stover, which waswaste corn stover (112.7 gallon ethanol/ton). Compared to

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

154

Simultaneous Saccharification and Fermentation of Dry-grind Highly Digestible Grain Sorghum Lines for Ethanol Production  

E-Print Network (OSTI)

The potential of high digestible grain sorghum (HDGS) with a modified starch protein endosperm matrix to replace corn in ethanol production was investigated using dry grind simultaneous saccharification and fermentation (SSF). Preliminary experiments showed that HDGS yielded higher amounts of glucose and ethanol than normal digestible grain sorghum (NDGS) and corn particularly in the first 48 hrs of fermentation. It was hypothesized that fast conversion of starch to glucose and ethanol during hydrolysis and fermentation are results of improved protein digestibility of HDGS. The invagination of protein structures in HDGS produced a flourier endosperm texture, softer kernels and lower starch content than the normal digestible protein (ND) lines. Highly digestible protein (HD) lines have better pasting properties (significantly lower pasting temperature, faster rate of gelatinization and higher peak viscosity) than ND lines based on the RVA profile. Increasing protein digestibility of the HDGS improved starch digestibility (increased rate of glucose conversion and total glucose yield during saccharification), which is supported by highly significant correlation of turbidity with rate of glucose conversion and efficiency of enzymatic conversion. The efficiency of ethanol conversion is significantly correlated with starch digestibility, pasting properties, and protein digestibility. Results also showed that HD sorghum lines had significantly faster rate of conversion and shorter reaction time needed to achieve completion than ND sorghum lines and corn. Increasing the dry solid concentration from 22% to 30% (w/v) increased the ethanol yield from 8% v/v to 13%v/v. This will allow considerable saving of water, reduced distillation cost and increased ethanol production for a given plant capacity and labor cost. Fineness of grind influences the amount of sugar formed due to variation in surface area of the flour. The hypothesis that finer particles has faster and higher glucose yield, defined as g of glucose converted per g of theoretical glucose, is supported by highly significant correlation of mass fraction of 3 to 60 mu m size range and mass median diameter (MMD) of 60 to 1000 mu m size range with glucose conversion efficiency and glucose conversion rate during saccharification and fermentation.

Hernandez, Joan R.

2009-05-01T23:59:59.000Z

155

Small scale ethanol production: design manual. [10 to 15 gallons per hour  

DOE Green Energy (OSTI)

The purpose of the project was to design, fabricate, and evaluate a small scale continuous ethanol plant. The scope of the study was to satisfy four specific objectives. The first objective was to design a small scale continuous distillation unit capable of producing 10 to 15 gallons per hour of 170 to 190 proof ethanol. A second objective was to economically fabricate the distillation unit. A third objective was to thoroughly evaluate the unit with emphasis on production potential, operation considerations, and energy balance. The fourth objective was to work with the Farm Bureau in identifying an organization that would place the unit in a production environment. The results of the study indicate that the distillation unit is capable of producing and average of 9 to 14 gallons per hour (based on alcohol percent in beer) of 174 proof ethanol. The energy ratio for distillation is a positive 3:1. Once the unit has reached steady state very little operator attention is required with the exception of periodically refluxing. Material cost of the plate column is approximately $5000. The unit could be built by an individual provided he is trained in welding and has the necessary shop equipment. 39 figures, 12 tables.

Adcock, L.E. II; Eley, M.H.; Schroer, B.J.

1981-09-01T23:59:59.000Z

156

Commercial production of ethanol in the San Luis Valley, Colorado. Final report  

DOE Green Energy (OSTI)

The commercial feasibility of producing between 76 and 189 million liters (20 to 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source was assessed. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (IGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstocks for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Boswell, B.S.; Walter, K.M.; Hart, M.L.; Sherwood, P.B.

1983-07-01T23:59:59.000Z

157

Commercial production of ethanol in the San Luis Valley, Colorado. Final Report  

DOE Green Energy (OSTI)

The purpose of this study is to assess the commercial feasibility of producing between 76 and 189 million liters (20 and 50 million gallons) of ethanol annually in the San Luis Valley, Colorado using geothermal energy as the primary heat source. The San Luis Valley is located in south-central Colorado. The valley is a high basin situated approximately 2316 meters (7600 feet) above sea level which contains numerous warm water wells and springs. A known geothermal resource area (KGRA) is located in the east-central area of the valley. The main industry in the valley is agriculture, while the main industry in the surrounding mountains is lumber. Both of these industries can provide feedstock for the production of ethanol.

Hewlett, E.M.; Erickson, M.V.; Ferguson, C.D.; Sherwood, P.B.; Boswell, B.S.; Walter, K.M.; Hart, M.L.

1983-07-01T23:59:59.000Z

158

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen-from- Hydrogen-from- Ethanol: A Distributed Production System Presented at the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting Laurel, Maryland Tuesday, November 6, 2007 H 2 Gen Innovations, Inc. Alexandria, Virginia www.h2gen.com 2 Topics * H 2 Gen Reformer System Innovation * Natural Gas Reformer - Key performance metrics - Summary unique H2A inputs * Ethanol Reformer - Key performance metrics - Summary unique H2A inputs * Questions from 2007 Merit Review 3 H 2 Gen Innovations' Commercial SMR * Compact, low-cost 115 kg/day natural gas reformer proven in commercial practice [13 US Patents granted] * Built-in, unique, low-cost PSA system * Unique sulfur-tolerant catalyst developed with Süd Chemie 4 DOE Program Results * Task 1- Natural Gas Reformer Scaling:

159

Characterization, Genetic Variation, and Combining Ability of Maize Traits Relevant to the Production of Cellulosic Ethanol  

SciTech Connect

Maize (Zea mays L.) stover has been identified as an important feedstock for the production of cellulosic ethanol. Our objectives were to measure hybrid effect and combining ability patterns of traits related to cellulosic ethanol production, determine if germplasm and mutations used for silage production would also be beneficial for feedstock production, and examine relationships between traits that are relevant to selective breeding. We evaluated grain hybrids, germplasm bred for silage production, brown-midrib hybrids, and a leafy hybrid. Yield and composition traits were measured in four environments. There was a 53% difference in stover yield between commercial grain hybrids that were equivalent for other production-related traits. Silage germplasm may be useful for increasing stover yield and reducing lignin concentration. We found much more variation among hybrids than either in vitro ruminal fermentability or polysaccharide concentration. Correlations between traits were mostly favorable or nonexistent. Our results suggest that utilizing standing genetic variation of maize in breeding programs could substantially increase the amount of biofuels produced from stover per unit area of land.

Lorenz, A. J.; Coors, J. G.; de Leon, N.; Wolfrum, E. J.; Hames, B. R.; Sluiter, A. D.; Weimer, P. J.

2009-01-01T23:59:59.000Z

160

Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline  

E-Print Network (OSTI)

........................................................... ix EXECUTIVE SUMMARY ...............................................S-1 1. INTRODUCTION ....................................................1 2. THE ORNL REFINERY YIELD MODEL ..................................5 3. THE ORNL-RYM REPRESENTATION OF CLEANER GASOLINES ...........7 3.1 FORMULA AND EMISSIONS STANDARDS ........................7 3.2 REPRESENTATION OF NON-LINEAR EMISSIONS MODELS IN A LINEAR PROGRAM .............................................8 4. STUDY PREMISES ..................................................11 4.1 REFINERY PRODUCTS ........................................11 4.2 REFINERY RAW MATERIALS ................................. 26 4.3 PRODUCT REVENUES AND RAW MATERIAL COSTS ..............27 4.4 FEDERAL TAX IMPLICATIONS FOR ETHANOL CONCENTRATIONS ....................................... 27 4.5 REFINERY CAPACITY ....................................... 27 4.6 STUDY CASES ...............................................

G. R. Hadder; Office Of Transportation Technologies

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Ethanol Production from Glucose and Xylose by Immobilized Zymomonas mobilis CP4(pZB5)  

DOE Green Energy (OSTI)

Fermentation of glucose-xylose mixtures to ethanol was investigated in batch and continuous experiments using immobilized recombinant Zymomonas mobilis CP4(pZB5). This microorganism was immobilized by entrapment in k-carrageenan beads having a diameter of 1.5-2.5 mm. Batch experiments showed that the immobilized cells co-fermented glucose and xylose to ethanol and that the presence of glucose improved the xylose utilization rate. Batch fermentation of rice straw hydrolyzate containing 76 g/L glucose and 33.8 g/L xylose gave an ethanol concentration of 44.3 g/L after 24 hours, corresponding to a yeild of 0.46 g ethanol/g sugars. Comparable results were achieved with a synthetic sugar control. Continuous fermentation runs were performed in a laboratory scale fluidized-bed bioreactor (FBR). Glucose-xylose feed mixtures were run through the FBR at residence times of 2 to 4 hours. Glucose conversion to ethanol was maintained above 98% in all continuous runs. Xylose conversion to ethanol was highest at 91.5% for a feed containing 50 g/L glucose-13 g/L xylose at a dilution rate of 0.24 h-1. The xylose conversion to ethanol decreased with increasing feed xylose concentration, dilution rate and age of the immobilized cells. Volumetric ethanol productivities in the range of 6.5 to 15.3 g/L-h were obtained.

Blanco, M.; Davison, B.H.; Krishnan, M.S.; Nghiem, n.P.; Shattuck, C.K.

1999-05-02T23:59:59.000Z

162

Vehicle Technologies Office: DOE Brochure Highlights Ethanol...  

NLE Websites -- All DOE Office Websites (Extended Search)

ethanol production beginning with fertilizer manufacture, GREET determined that producing ethanol from corn requires 0.74 million Btu fossil energy input per million Btu of ethanol...

163

Central Indiana Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Central Indiana Ethanol LLC Jump to: navigation, search Name Central Indiana Ethanol LLC Place Marion, Indiana Zip 46952 Product Ethanol producer developina a 151 mlpa plant in...

164

Biological production of ethanol from coal. [Quarterly report], June 22, 1990--September 21, 1990  

DOE Green Energy (OSTI)

Previous results have shown that the yeast extract concentration and the medium pH significantly affect the ratio of ethanol to acetate in the product stream when fermenting CO, CO{sub 2} and H{sub 2} in synthesis gas to products by Clostridium ljungdahlii. Further experimentation has demonstrated the impact of eliminating yeast extract from the medium (except for the slight quantity transferred with the inoculm), especially when coupled with low pH. An ethanol to acetate product ratio of 4.0 was obtained at pH 4.5 without yeast extract present in the medium when using culture previously exposed to growth-limiting H{sub 2}S. The product ratio was 2.0 at pH 4.0 (nearly three times the value of pH 4.5 and nine times the value of pH 5.0) without yeast extract present in the media when using the standard (unexposed) culture.

Not Available

1990-12-31T23:59:59.000Z

165

Plasma Kinetics in Electrical Discharge in Mixture of Air, Water and Ethanol Vapors for Hydrogen Enriched Syngas Production  

E-Print Network (OSTI)

The complex theoretical and experimental investigation of plasma kinetics of the electric discharge in the mixture of air and ethanol-water vapors is carried out. The discharge was burning in the cavity, formed by air jets pumping between electrodes, placed in aqueous ethanol solution. It is found out that the hydrogen yield from the discharge is maximal in the case when ethanol and water in the solution are in equal amounts. It is shown that the hydrogen production increases with the discharge power and reaches the saturation at high value. The concentrations of the main stable gas-phase components, measured experimentally and calculated numerically, agree well in the most cases.

Shchedrin, A I; Ryabtsev, A V; Chernyak, V Ya; Yukhymenko, V V; Olszewski, S V; Naumov, V V; Prysiazhnevych, I V; Solomenko, E V; Demchina, V P; Kudryavtsev, V S

2008-01-01T23:59:59.000Z

166

Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline G. R. Hadder Center for Transportation Analysis Oak Ridge National Laboratory Oak Ridge, Tennessee August 2000 Prepared for Office of Fuels Development Office of Transportation Technologies U.S. Department of Energy Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831 managed by UT-BATTELLE, LLC for the U. S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725 iii TABLE OF CONTENTS LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi ACRONYMS AND ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix EXECUTIVE SUMMARY

167

Ethanol production for automotive fuel usage. Final technical report, July 1979-August 1980  

DOE Green Energy (OSTI)

Production of ethanol from potatoes, sugar beets, and wheat using geothermal resources in the Raft River area of Idaho was evaluated. The south-central region of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beets, and 27 million cwt potatoes annually. A 20-million-gallon-per-year ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The conceptual plant was designed to operate on each of these three feedstocks for a portion of the year, but could operate year-round on any of them. The processing facility uses conventional alcohol technology and uses geothermal energy for all process heating. There are three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat involve common equipment. The fermentation, distillation, and by-product handling sections are common to all three feedstocks. Maximum geothermal fluid requirements are approximately 6000 gpm. It is anticipated that this flow will be supplied by nine production wells located on private and BLM lands in the Raft River KGRA. The geothermal fluid will be flashed from 280/sup 0/F in three stages to supply process steam at 250/sup 0/F, 225/sup 0/F, and 205/sup 0/F for various process needs. Steam condensate plus liquid remaining after the third flash will be returned to receiving strata through six injection wells.

Stenzel, R.A.; Yu, J.; Lindemuth, T.E.; Soo-Hoo, R.; May, S.C.; Yim, Y.J.; Houle, E.H.

1980-08-01T23:59:59.000Z

168

Biological production of ethanol from coal. [Quarterly report], September 22, 1991--December 21, 1991  

DOE Green Energy (OSTI)

Research is continuing in attempting to increase both the ethanol concentration and product ratio (acetate to ethanol) from the C. ljungdahlii fermentation. Both batch and continuous reactors are being used for this purpose. The purpose of this report is four-fold. First, the data presented in PETC Report No. 2-4-91 (June--September, 1991) are analyzed and interpreted using normalized specific growth and production rates. This technique eliminates experimental variation due to differences in inoculum history. Secondly, the effects of the sulfur gases H{sub 2}S and COS on the performance of C. ljungdahlii are presented and discussed. Although these are preliminary results, they illustrate the tolerance of the bacterium to low levels of sulfur gases. Thirdly, the results of continuous stirred tank reactor studies are presented, where cell and product concentrations are shown as a function of agitation rate and gas flow rate. Finally, additional data are presented showing the performance of C. ljungdahlii in a CSTR with cell recycle.

Not Available

1992-05-01T23:59:59.000Z

169

Texas AgriLife Research Procedure 31.04.01.A1.01 Holidays Page 1 of 1 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 31.04.01.A1.01 Holidays Page 1 of 1 Texas AgriLife Research, work on holidays and religious holidays. Texas AgriLife Research (AgriLife Research) employees located on the Texas A&M University campus in Bryan/ College Station follow the holiday schedule of Texas A

170

Texas AgriLife Research Procedure 33.99.99.A1.02 Official Personnel File Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 33.99.99.A1.02 Official Personnel File Page 1 of 2 Texas Agri, 2007 September 1, 2008 PROCEDURE STATEMENT Each Texas AgriLife Research employee will have an official in their personnel file. TRANSFERRING FILES When an employee transfers employment within Texas AgriLife Research

171

Texas AgriLife Extension Service Rule 34.05.99.X1 Smoking in Texas AgriLife Extension Service Facilities and Vehicles Page 1 of 2  

E-Print Network (OSTI)

Texas AgriLife Extension Service Rule 34.05.99.X1 Smoking in Texas AgriLife Extension Service Facilities and Vehicles Page 1 of 2 Texas AgriLife Extension Service Rules 34.05.99.X1 SMOKING IN TEXAS Supplements System Policy 34.05 PURPOSE To provide guidelines concerning smoking in Texas AgriLife Extension

172

Feasibility of high protein flour and ethanol production in northern Idaho  

SciTech Connect

The results of a study on the technical and economic feasibility of constructing and operating a medium-scale (3,000,000 gal/year) ethanol plant in northern Idaho are presented. The boilers will be fueled with a wood waste fuel (WOODEX) and sawdust. Distiller's dried grains will be processed and produce high-protein flour which will be sold as a health food product for human consumption. The feedstock will be locally grown wheat and barley. Carbon dioxide by-product will be collected and sold to a chemical plant. A third by-product, fusel oil, will be produced and sold for use as a solvent. Processes and equipment were evaluated and recommendations are included. 5 figs. (DMC)

Snipes, D.; Korus, R.

1981-04-30T23:59:59.000Z

173

Sunnyside Ethanol | Open Energy Information  

Open Energy Info (EERE)

Sunnyside Ethanol Jump to: navigation, search Name Sunnyside Ethanol Place Pittsburgh, Pennsylvania Zip PA 15237 Product Pennsylvania based company created for the specific purpose...

174

Northstar Ethanol | Open Energy Information  

Open Energy Info (EERE)

Northstar Ethanol Jump to: navigation, search Name Northstar Ethanol Place Lake Crystal, Minnesota Zip 56055 Product Corn-base bioethanol producer in Minnesotta References...

175

Ethanol India | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Ethanol India Place Kolhapur, Maharashtra, India Sector Biofuels Product Maharashtra-based biofuels consultancy firm. References Ethanol India1...

176

Sources of Corn for Ethanol Production in the United States: A Review and Decomposition Analysis of the Empirical Data  

Science Conference Proceedings (OSTI)

The use of corn for ethanol production in the United States quintupled between 2001 and 2009, generating concerns that this could lead to the conversion of forests and grasslands around the globe, known as indirect land-use change (iLUC). Estimates of iLUC and related food versus fuel concerns rest on the assumption that the corn used for ethanol production in the United States would come primarily from displacing corn exports and land previously used for other crops. A number of modeling efforts based on these assumptions have projected significant iLUC from the increases in the use of corn for ethanol production. The current study tests the veracity of these assumptions through a systematic decomposition analysis of the empirical data from 2001 to 2009. The logarithmic mean divisia index decomposition method (Type I) was used to estimate contributions of different factors to meeting the corn demand for ethanol production. Results show that about 79% of the change in corn used for ethanol production can be attributed to changes in the distribution of domestic corn consumption among different uses. Increases in the domestic consumption share of corn supply contributed only about 5%. The remaining contributions were 19% from added corn production, and 2% from stock changes. Yield change accounted for about two-thirds of the contributions from production changes. Thus, the results of this study provide little support for large land-use changes or diversion of corn exports because of ethanol production in the United States during the past decade.

Oladosu, Gbadebo A [ORNL; Kline, Keith L [ORNL; Uria Martinez, Rocio [ORNL; Eaton, Laurence M [ORNL

2011-01-01T23:59:59.000Z

177

Texas AgriLife Research Procedure 07.03.01.A1.01 Political Campaign Events on AgriLife Research Property Page 1 of 1  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 07.03.01.A1.01 Political Campaign Events on AgriLife Research Property Page 1 of 1 Texas AgriLife Research Procedures 07.03.01.A1.01 POLITICAL CAMPAIGN EVENTS ON TEXAS STATEMENT In accordance with System Policies 07.03.01, Texas AgriLife Research (AgriLife Research

178

Production of ethanol from starch by co-immobilized Zymomonas mobilis -- Glucoamylase in a fluidized-bed reactor  

DOE Green Energy (OSTI)

The production of ethanol from starch was studied in a fluidized-bed reactor (FBR) using co-immobilized Zymomonas mobilis and glucoamylase. The FBR was a glass column of 2.54 cm in diameter and 120 cm in length. The Z. mobilis and glucoamylase were co-immobilized within small uniform beads (1.2 to 2.5 mm diameter) of {kappa}-carrageenan. The substrate for ethanol production was a soluble starch. Light steep water was used as the complex nutrient source. The experiments were performed at 35 C and pH range 4.0 to 5.5. The substrate concentrations ranged from 40 to 185 g/L and the feed rates from 10 to 37 mL/min. Under relaxed sterility conditions, the FBR was successfully operated for a period of 22 days, during which no contamination or structural failure of the biocatalyst beads was observed. Maximum volumetric productivity of 38 g ethanol/L-h, which was 76% of the theoretical value, was obtained. Typical ethanol volumetric productivity was in the range of 15 to 20 g/L-h. The average yield was 0.51 g ethanol/g substrate consumed, which was 90% of the theoretical yield. Very low levels of glucose were observed in the reactor, indicating that starch hydrolysis was the rate-limiting step.

Sun, M.Y.; Davison, B.H.; Bienkowski, P.R. [Oak Ridge National Lab., TN (United States). Bioprocessing Research and Development Center]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemical Engineering; Nghiem, N.P.; Webb, O. [Oak Ridge National Lab., TN (United States). Bioprocessing Research and Development Center

1997-08-01T23:59:59.000Z

179

Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw  

NLE Websites -- All DOE Office Websites (Extended Search)

Cultivar Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw J. Lindedam a, *, S.B. Andersen b , J. DeMartini c , S. Bruun b , H. Jørgensen a , C. Felby a , J. Magid b , B. Yang d , C.E. Wyman c a Forestry and Wood Products, Forest & Landscape, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark b Plant and Soil Science Laboratory, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark c Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507, USA d Center for Bioproducts and Bioenergy, Washington State University, 2710 University Drive, Richland, WA 99354, USA a r t i c l e i n f o Article history:

180

IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE  

DOE Green Energy (OSTI)

The Audubon Sugar Institute (ASI) of Louisiana State Universitys Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate/fermentation process yielded improvements beyond what was expected solely from the addition of sugar. In order to expand the economic potential for building a biorefinery, the conversion of enzyme hydrolysates of AFEX-treated bagasse to succinic acid was also investigated. This program established a solid basis for pre-treatment of bagasse in a manner that is feasible for producing ethanol at raw sugar mills.

Dr. Donal F. Day

2009-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Value Added Products from Hemicellulose Utilization in Dry Mill Ethanol Plants  

Science Conference Proceedings (OSTI)

The Iowa Corn Promotion Board is the principal contracting entity for this grant funded by the US Department of Agriculture and managed by the US Department of Energy. The Iowa Corn Promotion Board subcontracted with New Jersey Institute of Technology, KiwiChem, Pacific Northwest National Lab and Idaho National Lab to conduct research for this project. KiwiChem conducted the economic engineering assessment of a dry-mill ethanol plant. New Jersey Institute of Technology conducted work on incorporating the organic acids into polymers. Pacific Northwest National Lab conducted work in hydrolysis of hemicellulose, fermentation and chemical catalysis of sugars to value-added chemicals. Idaho National Lab engineered an organism to ferment a specific organic acid. Dyadic, an enzme company, was a collaborator which provided in-kind support for the project. The Iowa Corn Promotion Board collaborated with the Ohio Corn Marketing Board and the Minnesota Corn Merchandising Council in providing cost share for the project. The purpose of this diverse collaboration was to integrate the hydrolysis, the conversion and the polymer applications into one project and increase the likelihood of success. This project had two primary goals: (1) to hydrolyze the hemicellulose fraction of the distillers grain (DG) coproduct coming from the dry-mill ethanol plants and (2) convert the sugars derived from the hemicellulose into value-added co-products via fermentation and chemical catalysis.

Rodney Williamson, ICPB; John Magnuson, PNNL; David Reed, INL; Marco Baez, Dyadic; Marion Bradford, ICPB

2007-03-30T23:59:59.000Z

182

Utilization of agricultural wastes for production of ethanol. Progress report, October 1979-May 1980  

DOE Green Energy (OSTI)

The project proposes to develop methods to utilize agricultural wastes, especially cottonseed hulls and peanut shells to produce ethanol. Initial steps will involve development of methods to break down cellulose to a usable form of substrates for chemical or biological digestion. The process of ethanol production will consist of (a) preparatory step to separate fibrous (cellulose) and non-fibrous (non-cellulosic compounds). The non-cellulosic residues which may include grains, fats or other substrates for alcoholic fermentation. The fibrous residues will be first pre-treated to digest cellulose with acid, alkali, and sulfur dioxide gas or other solvents. (b) The altered cellulose will be digested by suitable micro-organisms and cellulose enzymes before alcoholic fermentation. The digester and fermentative unit will be specially designed to develop a prototype for pilot plant for a continuous process. The first phase of the project will be devoted toward screening of a suitable method for cellulose modification, separation of fibrous and non-fibrous residues, the micro-organism and enzyme preparations. Work is in progress on: the effects of various microorganisms on the degree of saccharification; the effects of higher concentrations of acids, alkali, and EDTA on efficiency of microbial degradation; and the effects of chemicals on enzymatic digestion.

Singh, B.

1980-05-01T23:59:59.000Z

183

Sulfuric Acid Pretreatment and Enzymatic Hydrolysis of Photoperiod Sensitvie Sorghum for Ethanol Production  

Science Conference Proceedings (OSTI)

Photoperiod sensitive (PS) sorghum, with high soluble sugar content, high mass yield and high drought tolerance in dryland environments, has great potential for bioethanol production. The effect of diluted sulfuric acid pretreatment on enzymatic hydrolysis was investigated. Hydrolysis efficiency increased from 78.9 to 94.4% as the acid concentration increased from 0.5 to 1.5%. However, the highest total glucose yield (80.3%) occurred at the 1.0% acid condition because of the significant cellulose degradation at the 1.5% concentration. Synchrotron wide-angle X-ray diffraction was used to study changes of the degree of crystallinity. With comparison of cellulosic crystallinity and adjusted cellulosic crystallinity, the crystalline cellulose decreased after low acidic concentration (0.5%) applied, but did not change significantly, as the acid concentration increased. Scanning electron microscopy was also employed to understand how the morphological structure of PS sorghum changed after pretreatment. Under current processing conditions, the total ethanol yield is 74.5% (about 0.2 g ethanol from 1 g PS sorghum). A detail mass balance was also provided.

F Xu; Y Shi; X Wu

2011-12-31T23:59:59.000Z

184

OPTIMIZATION OF SUGAR CONSUMPTION IN THE FERMENTATION OF TEMULOSE FOR ETHANOL PRODUCTION  

E-Print Network (OSTI)

Temulose is a wastewater stream created in the production of medium-density fiberboard. It has a high sugar content, and therefore cannot be released into standard wastewater systems. Current methods for disposal of the wastewater stream involve concentrating it in an energy-intensive process and selling it as a cattle feed supplement, but with energy prices rising there is an incentive to find higher-value uses. The purpose of this study is to examine the feasibility of using Temulose as a substrate for industrial ethanol production, using sugar consumption rates to determine the success of a fermentation. Three organisms were studied: Zymomonas mobilis, NRRL B-806; Candida shehatae, NRRL Y-12858; and Saccharomyces cerevisiae. Shake-flask fermentations for Z. mobilis and C. shehatae were performed in triplicate for unamended, pH adjusted, and yeast extract amended Temulose at a sugar concentration of 20%. Fermentations with unamended Temulose showed little or no sugar consumption whatsoever, although the high sugar concentration of the Temulose may have affected the performance of the organisms. Fermentations with pH adjustment from 4.5 to 5.5 showed higher sugar consumption rates than yeast extract amended fermentations (1.16 mg/ml compared to 0.390 mg/ml for the first two days of fermentation). Additionally, Z. mobilis was shown to have higher rates of sugar consumption for both amended fermentations (1.02 mg/ml compared to 0.75 mg/ml for the first day). Fermentations using S. cerevisiae were performed with varying loading rates for yeast (0.5%, 1.0%, and 1.5%, w/v). Sugar consumption could not be determined, but ethanol concentrations up to 4% were observed after the first day of fermentation.

Michalka, Jacquelyn

2007-07-14T23:59:59.000Z

185

ETHANOL PRODUCTION FROM DIFFERENT CARBON SOURCES USING ANAEROBICALLY DIGESTED AND WETOXIDISED MANURE AS NUTRIENT AND WATER SUPPLY  

E-Print Network (OSTI)

ETHANOL PRODUCTION FROM DIFFERENT CARBON SOURCES USING ANAEROBICALLY DIGESTED AND WETOXIDISED. The nutrients in anaerobically digested manure are sufficient for yeast fermentation, which means that the cost at 121o C was chosen as the most suitable method for pretreating anaerobically digested manure. Moreover

186

Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report, January 1, 1994--March 31, 1994  

DOE Green Energy (OSTI)

This report presents results from the solvent selection, fermentation, and product recovery studies performed thus far in the development of a bench scale unit for the production of ethanol from coal-derived synthesis gas. Several additional solvents have been compared for their ability to extract ethanol from aqueous solutions of ethanol in water and fermentation permeate. The solvent 2,6-dimethyl-4-heptanol still appears to be the solvent of choice. Liquid-liquid equilibrium data have been collected for ethanol and 2,6-dimethyl-4-heptanol.

Not Available

1994-06-01T23:59:59.000Z

187

Biological production of ethanol from coal. [Quarterly technical report], September 22, 1991--December 21, 1991  

DOE Green Energy (OSTI)

Research is continuing in attempting to increase both the ethanol concentration and product ratio from the C. ljungdahlii fermentation. Both batch and continuous reactors are being used for this purpose. The purpose of this report is four-fold. First, the data presented in PETC Report No. 2-4-91 (June--September 1991) are analyzed and interpreted using normalized specific growth and production rates. This technique eliminates experimental variation due to the differences in inoculum history. Secondly, the effects of the sulfur gases H{sub 2}S and COS on the performance of C. ljungdahlii are presented and discussed. Although these are preliminary results, they illustrate the tolerance of the bacterium to low levels of sulfur gases. Thirdly, the results of continuous stirred tank reactor studies are presented, where cell and product concentrations are shown as a function of agitation rate and gas flow rate. Finally, additional data are presented showing the performance of C. ljungdahlii in a CSTR with cell recycle.

Not Available

1991-12-31T23:59:59.000Z

188

Enriching and characterizing an aerotolerant mixed microbial community capable of cellulose hydrolysis and ethanol production.  

E-Print Network (OSTI)

??Cellulosic ethanol produced via consolidated bioprocessing may one day be a viable alternative to fossil fuels However, efforts must focus on streamlining and simplifying its (more)

Ronan, Patrick

2011-01-01T23:59:59.000Z

189

The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation  

E-Print Network (OSTI)

of the lowest cost feedstock sources for cellulosic ethanolfeedstock costs along with achieving high yields of ethanol can result in significant improvements in the economics of cellulosic

Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

2009-01-01T23:59:59.000Z

190

Biochemical Production of Ethanol from Corn Stover: 2008 State of Technology Model  

DOE Green Energy (OSTI)

An update to the FY 2007 assessment of the state of technical research progress toward biochemical process goals, quantified in terms of Minimum Ethanol Selling Price.

Humbird, D.; Aden, A.

2009-08-01T23:59:59.000Z

191

Release of ethanol to the atmosphere during use of consumer cleaning products  

SciTech Connect

Liquid laundry and hand dish washing detergents contain volatile organic compounds, including ethanol, that may be liberated during use and contribute to photochemical air pollution. In this study, the release of ethanol to the atmosphere during simulated household use of liquid detergents was measured. Three replicate experiments, plus a blank, were conducted in a 20-m{sup 3} environmental chamber for each of four conditions: typical dish washing (DT), high-release dish washing (DH), typical laundry (LT), and high-release laundry (LH). Average amounts of ethanol transferred to the atmosphere per use (and the fraction of ethanol used so liberated) were 32 mg (0.038) for DT, 100 mg (0.049) for DH, 18 mg (0.002) for LT, and 110 mg (0.011) for LH. Thus, a large fraction of the ethanol added to wash solutions with liquid detergents is discharged to the sewer rather than transferred to the atmosphere during use.

Wooley, J.; Nazaroff, W.W. (Univ. of California, Berkeley (USA)); Hodgson, A.T. (Lawrence Berkeley Lab., Berkeley, CA (USA))

1990-08-01T23:59:59.000Z

192

Design and construction of a 7,500 liter immobilized cell reactor-separator for ethanol production from whey  

DOE Green Energy (OSTI)

A 7,500 liter reactor/separator has been constructed for the production of ethanol from concentrated whey permeate. This unit is sited in Hopkinton IA, across the street from a whey generating cheese plant A two phase construction project consisting of (1) building and testing a reactor/separator with a solvent absorber in a single unified housing, and (2) building and testing an extractive distillation/product stripper for the recovery of anhydrous ethanol is under way. The design capacity of this unit is 250,000 gal/yr of anhydrous product. Design and construction details of the reactor/absorber separator are given, and design parameters for the extractive distillation system are described.

Dale, M.C.

1992-12-31T23:59:59.000Z

193

Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996  

DOE Green Energy (OSTI)

Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

1996-11-01T23:59:59.000Z

194

Tampa Bay Area Ethanol Consortium | Open Energy Information  

Open Energy Info (EERE)

Tampa Bay Area Ethanol Consortium Jump to: navigation, search Name Tampa Bay Area Ethanol Consortium Place Tampa, Florida Sector Biomass Product Consortium researching ethanol from...

195

Energy Basics: Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Ethanol Photo of several beakers of gold and...

196

Pacific Ethanol, Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

enzyme complexes to convert a potentially wide range of lignocellulosic feedstocks to ethanol and other vendible products. CEO or Equivalent: Dr. Pearse Lyons, Alltech Inc Founder...

197

Texas AgriLife Research Procedure 24.01.01.A1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 24.01.01.A1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas Revised: November 13, 2010 Next Scheduled Review: November 13, 2012 PROCEDURE STATEMENT The Texas A vehicle operators in the event of a vehicle accident involving a Texas AgriLife Research (Agri

198

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network (OSTI)

Biofuel alternatives to ethanol: pumping the microbialtechnologies that enable biofuel production. Decades of workstrategy for producing biofuel. Although ethanol currently

Fortman, J.L.

2011-01-01T23:59:59.000Z

199

Intermediate-scale, semicontinuous solid-phase fermentation process for production of fuel ethanol from sweet sorghum. [Saccharomyces cerevisiae  

Science Conference Proceedings (OSTI)

A novel, semicontinuous solid-phase fermentation system was used to produce fuel ethanol from sweet sorghum. The process was at an intermediate scale. In the process, dried and shredded sweet sorghum was rehydrated to 70% moisture, acidified to pH 2.0 to 3.0, and either pasteurized (12 h at 70 to 80/sup 0/C) or not pasteurized before spray inoculation with a broth culture of Saccharomyces cerevisiae. Fermented pulp exited the semicontinuous fermentor after a retention time of 72 h and contained approximately 6% (vol/vol) ethanol. Ethanol yields from dry sweet sorghum were 176 to 179 liters/10/sup 3/kg (85% of theoretical). Production costs for a greatly scaled-up (x1400) conceptual version of this system were projected by calculation to average $0.47/liter for 95% ethanol. The calculated energy balance (energy output/energy input ratio) was estimated to be 1.05 when pasteurization was included and 1.31 when pasteurization was omitted. In calculating the energy balances, the output energy of the protein feed byproduct and the input energy for growing the sweet sorghum were not considered. A design for the scaled-up plant (farm scale) is provided.

Gibbons, W.R.; Westby, C.A.; Dobbs, T.L.

1986-01-01T23:59:59.000Z

200

Fermentation method producing ethanol  

DOE Patents (OSTI)

Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

Wang, Daniel I. C. (Belmont, MA); Dalal, Rajen (Chicago, IL)

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: Ethanol Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find More places to share Alternative Fuels Data Center: Ethanol Related Links on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

202

Pilot-scale submersed cultivation of R. microsporus var. oligosporus in thin stillage, a dry-grind corn-to-ethanol co-product.  

E-Print Network (OSTI)

??An innovative process to add value to a corn-to-ethanol co-product, Thin stillage, was studied for pilot-scale viability. A 1500L bioreactor was designed, operated, and optimized (more)

Erickson, Daniel Thomas

2012-01-01T23:59:59.000Z

203

Algodyne Ethanol Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Algodyne Ethanol Energy Inc Jump to: navigation, search Name Algodyne Ethanol Energy Inc Place Las Vegas, Nevada Zip 89145 Sector Biofuels Product Holds proprietary...

204

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Vehicle Coalition Jump to: navigation, search Name US Ethanol Vehicle Coalition Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is the...

205

Platte Valley Fuel Ethanol | Open Energy Information  

Open Energy Info (EERE)

search Name Platte Valley Fuel Ethanol Place Central City, Nebraska Product Bioethanol producer using corn as feedstock References Platte Valley Fuel Ethanol1 LinkedIn...

206

1 DISTILLERS BY-PRODUCTS AND CORN STOVER AS FUELS FOR ETHANOL PLANTS  

E-Print Network (OSTI)

Abstract. Dry-grind ethanol plants have the potential to reduce their operating costs and improve their net energy balances by using biomass as the source of process heat and electricity. We utilized ASPEN PLUS software to model various technology bundles of equipment, fuels and operating activities that are capable of supplying energy and satisfying emissions requirements for dry-grind ethanol plants of 50 and 100 million gallons per year capacity using corn stover, distillers dried grains and solubles (DDGS), or a mixture of corn stover and syrup (the solubles portion of DDGS). In addition to their own requirements, plants producing 50 and 100 million gallons of ethanol are capable of supplying 5-7 or 10-14 MegaWatts of electricity to the grid, respectively. Economic analysis showed favorable rates of return for biomass alternatives compared to conventional plants using natural gas and purchased electricity over a range of conditions. The mixture of corn stover and syrup provided the highest rates of return in general. Factors favoring biomass included a higher premium for low carbon footprint ethanol, higher natural gas prices, lower DDGS prices, lower ethanol

Douglas G. Tiffany; R. Vance Morey; Matt De Kam; Douglas G. Tiffany; R. Vance Morey; Matt De Kam

2008-01-01T23:59:59.000Z

207

Land Use Changes and Consequent CO2 Emissions due to US Corn Ethanol Production: A Comprehensive Analysis* By  

E-Print Network (OSTI)

are deeply indebted to Dr. Michael Wang for his many contributions to this research. Throughout the process, he has consistently posed excellent questions that have stimulated more thinking and modifications on our part. Also, for this final paper, he provided an excellent set of insightful suggestions and comments that have improved the paper significantly. Of course, the authors are solely responsible for the content of and any errors in the report. **The original April report was revised because in the review process errors were found in the magnitudes of the EU and Brazil ethanol shocks in moving from the 2001 data base to the updated 2006 data base. The impacts of the errors were small. However, we revised the report to reflect the corrected shocks. The model versions posted on the web include the corrected values and are consistent with this report. Executive Summary The basic objective of this research was to estimate land use changes associated with US corn ethanol production up to the 15 billion gallon Renewable Fuel Standard level implied by the Energy Independence and Security Act of 2007. We also used the estimated land use changes to calculate Greenhouse Gas Emissions associated with the corn ethanol production. The main model that was used for the analysis is a special version of the Global Trade

Wallace E. Tyner; Farzad Taheripour; Qianlai Zhuang; Dileep Birur; Uris Baldos

2010-01-01T23:59:59.000Z

208

Guiding optimal biofuels : a comparative analysis of the biochemical production of ethanol and fatty acid ethyl esters from switchgrass.  

SciTech Connect

In the current study, processes to produce either ethanol or a representative fatty acid ethyl ester (FAEE) via the fermentation of sugars liberated from lignocellulosic materials pretreated in acid or alkaline environments are analyzed in terms of economic and environmental metrics. Simplified process models are introduced and employed to estimate process performance, and Monte Carlo analyses were carried out to identify key sources of uncertainty and variability. We find that the near-term performance of processes to produce FAEE is significantly worse than that of ethanol production processes for all metrics considered, primarily due to poor fermentation yields and higher electricity demands for aerobic fermentation. In the longer term, the reduced cost and energy requirements of FAEE separation processes will be at least partially offset by inherent limitations in the relevant metabolic pathways that constrain the maximum yield potential of FAEE from biomass-derived sugars.

Paap, Scott M.; West, Todd H.; Manley, Dawn Kataoka; Dibble, Dean C.; Simmons, Blake Alexander; Steen, Eric J. [Joint BioEnergy Institute, Emeryville, CA; Beller, Harry R. [Lawrence Berkeley National Laboratory, Berkeley, CA; Keasling, Jay D. [Lawrence Berkeley National Laboratory, Berkeley, CA; Chang, Shiyan [Tsinghua University, Beijing, PR China

2013-01-01T23:59:59.000Z

209

Mesoporous Silica-Supported Metal Oxide-Promoted Rh Nanocatalyst for Selective Production of Ethanol from Syngas  

DOE Green Energy (OSTI)

The objective is to develop a process that will convert synthesis gas from coal into ethanol and then transform the ethanol into hydrogen. Principal investigators from Iowa State University include Dr. George Kraus, Dr. Victor Lin, Marek Pruski, and Dr. Robert Brown. Task 1 involves catalyst development and catalyst scale up. Mesoporous manganese silicate mixed oxide materials will be synthesized, characterized and evaluated. The first-and secondgeneration catalysts have been prepared and scaled up for use in Task 2. The construction of a high-pressure reactor system for producing synthetic liquid fuel from simulated synthesis gas stream has been completed as the first step in Task 2. Using the first- and second generation catalysts, the reactor has demonstrated the production of synthetic liquid fuel from a simulated synthesis gas stream.

George Kraus

2010-09-30T23:59:59.000Z

210

Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline  

DOE Green Energy (OSTI)

The Energy Policy Act of 1992 (the Act) outlined a national energy strategy that called for reducing the nation's dependency on petroleum imports. The Act directed the Secretary of Energy to establish a program to promote and expand the use of renewable fuels. The Office of Transportation Technologies (OTT) within the U.S. Department of Energy (DOE) has evaluated a wide range of potential fuels and has concluded that cellulosic ethanol is one of the most promising near-term prospects. Ethanol is widely recognized as a clean fuel that helps reduce emissions of toxic air pollutants. Furthermore, cellulosic ethanol produces less greenhouse gas emissions than gasoline or any of the other alternative transportation fuels being considered by DOE.

Hadder, G.R.

2000-08-01T23:59:59.000Z

211

Energy conservation in ethanol production from renewable resources and non-petroleum energy sources  

DOE Green Energy (OSTI)

The dry milling process for the conversion of grain to fuel ethanol is reviewed for the application of energy conservation technology, which will reduce the energy consumption to 70,000 Btu per gallon, a reduction of 42% from a distilled spirits process. Specific energy conservation technology applications are outlined and guidelines for the owner/engineer for fuel ethanol plants to consider in the selection on the basis of energy conservation economics of processing steps and equipment are provided. The process was divided into 5 sections and the energy consumed in each step was determined based on 3 sets of conditions; a conventional distilled spirits process; a modern process incorporating commercially proven energy conservation; and a second generation process incorporating advanced conservation technologies which have not yet been proven. Steps discussed are mash preparation and cooking, fermentation, distillation, and distillers dried grains processing. The economics of cogeneration of electricity on fuel ethanol plants is also studied. (MCW)

Not Available

1981-03-01T23:59:59.000Z

212

Tharaldson Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tharaldson Ethanol LLC Jump to: navigation, search Name Tharaldson Ethanol LLC Place Casselton, North Dakota Zip 58012 Product Owner of a USD 200m 120m-gallon ethanol plant in...

213

Nipa (Nypa fruticans) sap as a potential feedstock for ethanol production Pramila Tamunaidu1  

E-Print Network (OSTI)

in surface area. ? 2011 Elsevier Ltd. All rights reserved. 1. Introduction Bioethanol derived from bio and could become a source of bioethanol that will unlikely adversely influence food prices (Cassman steps: pretreatment of biomass, hydrolysis of biomass, fermentation of released sugars, and ethanol

Takada, Shoji

214

Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium  

SciTech Connect

Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

Caimi, Perry G; Hitz, William D; Viitanen, Paul V; Stieglitz, Barry

2013-10-29T23:59:59.000Z

215

Xylose utilizing zymomonas mobilis with improved ethanol production in biomass hydrolysate medium  

DOE Patents (OSTI)

Xylose-utilizing, ethanol producing strains of Zymomonas mobilis with improved performance in medium comprising biomass hydrolysate were isolated using an adaptation process. Independently isolated strains were found to have independent mutations in the same coding region. Mutation in this coding may be engineered to confer the improved phenotype.

Caimi, Perry G; Hitz, William D; Stieglitz, Barry; Viitanen, Paul V

2013-07-02T23:59:59.000Z

216

Modeling scaleup effects on a small pilot-scale fluidized-bed reactor for fuel ethanol production  

DOE Green Energy (OSTI)

Domestic ethanol use and production are presently undergoing significant increases along with planning and construction of new production facilities. Significant efforts are ongoing to reduce ethanol production costs by investigating new inexpensive feedstocks (woody biomass) and by reducing capital and energy costs through process improvements. A key element in the development of advanced bioreactor systems capable of very high conversion rates is the retention of high biocatalyst concentrations within the bioreactor and a reaction environment that ensures intimate contact between substrate and biocatalyst. One very effective method is to use an immobilized biocatalyst that can be placed into a reaction environment that provides effective mass transport, such as a fluidized bed. Mathematical descriptions are needed based on fundamental principles and accepted correlations that describe important physical phenomena. We describe refinements and semi-quantitatively extend the predictive model of Petersen and Davison to a multiphase fluidized-bed reactor (FBR) that was scaled-up for ethanol production. Axial concentration profiles were evaluated by solving coupled differential equations for glucose and carbon dioxide. The pilot-scale FBR (2 to 5 m tall, 10.2-cm ID, and 23,000 L month{sup -1} capacity) was scaled up from bench-scale reactors (91 to 224 cm long, 2.54 to 3.81 cm ID, and 400 to 2,300 L month{sup -1} capacity). Significant improvements in volumetric productivites (50 to 200 g EtOH h{sup -1} L{sup -1} compared with 40 to 110 for bench-scale experiments and 2 to 10 for reported industrial benchmarks) and good operability were demonstrated.

Webb, O.F.; Davison, B.H.; Scott, T.C.

1995-09-01T23:59:59.000Z

217

Texas AgriLife Research and Extension Center 17360 Coit Road, Dallas, TX 75252  

E-Print Network (OSTI)

Texas AgriLife Research and Extension Center 17360 Coit Road, Dallas, TX 75252 Fall Integrated Pest Management Seminar Melody Lee Texas Department of Agriculture -- Dallas Dr. Dotty Woodson Texas AgriLife Extension Service--Dallas Dr. Young-Ki Jo Texas AgriLife Extension Service -- College Station Dr. James Mc

Wilkins, Neal

218

PROCESS DEVELOPMENT STUDIES ON THE BIOCONVERSION OF CELLULOSE AND PRODUCTION OF ETHANOL  

E-Print Network (OSTI)

is fermentation plant production cost. Fermentative ethanolhere, greatly reduce production costs. Energy requirementscapital equipment and production costs for fermentative

Wilke, Charles R.

2011-01-01T23:59:59.000Z

219

Small scale ethanol production demonstration: comparison of packed versus plate rectifying column  

DOE Green Energy (OSTI)

The Johnson Environmental and Energy Center with assistance from the Madison County Farm Bureau Association received a grant in 1980 from the US Department of Energy to design, fabricate, and evaluate a small scale continuous ethanol plant. In 1981, the Center received a second DOE grant to compare the economics of replacing the plate rectifying column in the initial unit with a packed rectifying column. The results of the study indicate that the distillation unit with the packed rectifying column is capable of producing 14 gallons per hour of 170 proof ethanol. The energy ratio for distillation was a positive 2:1. Cost of the packed column was considerably less than the plate column. 1 reference, 19 figures, 9 tables.

Adcock, II, L E; Eley, M H; Schroer, B J

1982-07-01T23:59:59.000Z

220

Southridge Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ethanol Ethanol Jump to: navigation, search Name Southridge Ethanol Place Dallas, Texas Zip 75219 Sector Renewable Energy Product Southridge Ethanol is a renewable energy company interested in becoming one of the biggest producers of ethanol in the Southeast. References Southridge Ethanol[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Southridge Ethanol is a company located in Dallas, Texas . References ↑ "Southridge Ethanol" Retrieved from "http://en.openei.org/w/index.php?title=Southridge_Ethanol&oldid=351577" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. The Effect of Ethanol Production on the U.S. National Corn Price  

E-Print Network (OSTI)

A system of equations representing corn supply, feed demand, export demand, food, alcohol and industrial (FAI) demand, and corn price is estimated by three-stage least squares. A price dependent reduced form equation is then formed to investigate the effect of ethanol production on the national average corn price. The elasticity of corn price with respect to ethanol production is then obtained. Results suggest that ethanol production has a positive impact on the national corn price and that the demand from FAI has a greater impact on the corn price than other demand categories. Thus, significant growth in ethanol production is important in explaining corn price determination.

All Fortenbery; Hwanil Park; T. Randall Fortenbery

2008-01-01T23:59:59.000Z

222

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report  

DOE Green Energy (OSTI)

This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

NONE

1995-08-01T23:59:59.000Z

223

Ethanol Production from Rice-Straw Hydrolysate Using Zymomonas Mobilis in a Continuous Fluidized-Bed Reactor (FBR)  

DOE Green Energy (OSTI)

Rice-straw hydrolysate obtained by the Arkenol's concentrated acid hydrolysis process was fermented to ethanol using a recombinant Zymomonas mobilis strain capable of utilizing both glucose and xylose in a continuous fluidized-bed reactor (FBR). The parameters studied included biocatalyst stability with and without antibiotic, feed composition, and retention time. Xylose utilization in the presence of tetracycline remained stable for at least 17 days. This was a significant improvement over the old strain, Z. mobilis CP4 (pZB5), which started to lose xylose utilization capability after seven days. In the absence of tetracycline, the xylose utilization rate started to decrease almost immediately. With tetracycline in the feed for the first six days, stability of xylose utilization was maintained for four days after the antibiotic was removed from the feed. The xylose utilization rate started to decrease on day 11. In the presence of tetracycline using the Arkenol's hydrolysate diluted to 48 g/L glucose and 13 g/L xylose at a retention time of 4.5 h, 95% xylose conversion and complete glucose conversion occurred. The ethanol concentration was 29 g/L, which gave a yield of 0.48 g/g sugar consumed or 94% of the theoretical yield. Using the Arkenol's hydrolysate diluted to 83 g/L glucose and 28 g/L xylose, 92% xylose conversion and complete glucose conversion were obtained. The ethanol concentration was 48 g/L, which gave a yield of 0.45 g/ g sugar consumed or 88% of the theoretical yield. Maximum productivity of 25.5 g/L-h was obtained at a retention time of 1.9 h. In this case, 84% xylose conversion was obtained.

deJesus, D.; Nghiem, N.P.

2001-01-01T23:59:59.000Z

224

Direct use geothermal energy utilization for ethanol production and commercial mushroom growing at Brady's Hot Springs, Nevada. Volume 1. Technical feasibility  

DOE Green Energy (OSTI)

The report is concerned with the technical and economic viability of constructing and operating two geothermally cascaded facilities, a bio-mass fuel ethanol production facility and a mushroom growing facility, where Geothermal Food Processors presently operates the world's largest direct-use geothermal vegetable dehydration facility. A review and analysis of the data generated from the various project tasks indicates that existing, state-of-the-art, ethanol production and mushroom growing technologies can be successfully adapted to include the use of geothermal energy. Additionally, a carefully performed assessment of the geothermal reservoir indicates that this resource is capable of supporting the yearly production of 10 million gallons of fuel ethanol and 1.5 million pounds of mushrooms, in addition to the demands of the dehydration plant. Further, data indicates that the two facilities can be logistically supported from existing agricultural and commerce sources located within economical distances from the geothermal source.

Not Available

1981-09-01T23:59:59.000Z

225

Alternative Fuels Data Center: Ethanol Feedstocks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Feedstocks to Feedstocks to someone by E-mail Share Alternative Fuels Data Center: Ethanol Feedstocks on Facebook Tweet about Alternative Fuels Data Center: Ethanol Feedstocks on Twitter Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Google Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Delicious Rank Alternative Fuels Data Center: Ethanol Feedstocks on Digg Find More places to share Alternative Fuels Data Center: Ethanol Feedstocks on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Feedstocks Map of the United States BioFuels Atlas Use this interactive map to compare biomass feedstocks and biofuels by

226

Greater Ohio Ethanol LLC GO Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ohio Ethanol LLC GO Ethanol Ohio Ethanol LLC GO Ethanol Jump to: navigation, search Name Greater Ohio Ethanol, LLC (GO Ethanol) Place Lima, Ohio Zip OH 45804 Product GO Ethanol is a pure play ethanol producer located in Ohio. Coordinates -12.0436°, -77.021217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-12.0436,"lon":-77.021217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

227

Texas A&M AgriLife Administrative Services Purchasing  

E-Print Network (OSTI)

Texas A&M AgriLife Administrative Services ­ Purchasing (08/10) ALTERNATIVE DISPUTE RESOLUTION The dispute resolution process provided for in Chapter 2260 of the Texas Government Code shall be used, subchapter B, of the Texas Government Code. To initiate the process, Vendor shall submit written notice

228

Texas AgriLIFE Research Wheat Cultivar Development  

E-Print Network (OSTI)

Texas AgriLIFE Research Wheat Cultivar Development Jackie Rudd, Amir Ibrahim, Ravindra Devkota Through breeding efforts and better management practices, grain yield of wheat in Texas has increased from an average of 20 bushels per acre during the 1960's to 30 bushels per acre during the 1990's (Texas

229

Selective Production of H2 from Ethanol at Low Temperatures over Rh/ZrO2-CeO2 Catalysts  

Science Conference Proceedings (OSTI)

A series of Rh catalysts on various supports have been applied to H2 production from the bio-ethanol steam reforming reaction. Support plays a very important role on product selectivity at low temperatures (below 450C). Acidic or basic supports favor ethanol dehydration, while ethanol dehydrogenation is favored over neutral supports at low temperatures. Among the catalysts evaluated in this study, the Rh/Ce-ZrO2 catalyst exhibited the highest H2 yield at 450 C, which is possibly due to the high oxygen storage capacity of Ce-ZrO2 resulting in efficient transfer of mobile oxygen species from the H2O molecule to the reaction intermediate.

Roh, Hyun-Seog; Wang, Yong; King, David L.

2008-07-01T23:59:59.000Z

230

Genome-Scale Analysis of Saccharomyces cerevisiae Metabolism and Ethanol Production  

E-Print Network (OSTI)

investigation advances bioethanol production from woods Posted: Mar 25th, 2010 Images from the nanotechnology

Mountziaris, T. J.

231

Texas AgriLife Research Procedure 21.01.08.A1.02 Vehicle Inscriptions Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 21.01.08.A1.02 Vehicle Inscriptions Page 1 of 2 Texas Agri Next Scheduled Review: November 13, 2012 PROCEDURE STATEMENT Chapter 721 of the Texas Transportation Code requires state-owned vehicles to be inscribed with the word "Texas" followed by the name

232

Texas AgriLife Extension Service Procedure 21.01.08.X1.02 Vehicle Inscriptions Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 21.01.08.X1.02 Vehicle Inscriptions Page 1 of 2 Texas of the Texas Transportation Code requires state-owned vehicles to be inscribed with the word "Texas" followed for obtaining and installing Texas AgriLife Extension Service (Extension) decals on vehicles. PROCEDURES 1

233

Pacific Ethanol, Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mascoma Mascoma Corporate HQ: Cambridge, Massachusetts Proposed Facility Location: Vonore, Tennessee Description: The partnership aims to establish an approximately 85 tonnes per day cellulosic ethanol facility in the Niles Ferry Industrial Park, in Monroe County, Tennessee. The facility will produce 2 million gallons of cellulosic ethanol annually and generate process heat through the combustion of byproduct lignin. CEO or Equivalent: Bruce A. Jamerson, CEO Participants: University of Tennessee, Genera Energy LLC Production: * Capacity of 2 million gallons per year of cellulosic ethanol Technology and Feedstocks: * Mascoma proprietary biochemical conversion process * Switchgrass, hardwood chips State of Readiness: * Estimated to be operational in 2009

234

FERMENTATION OF PENTOSE SUGARS TO ETHANOL AND OTHER NEUTRAL PRODUCTS BY MICROORGANISMS  

E-Print Network (OSTI)

Other products include carbon dioxide and organic acids.acid to hydrogen and carbon dioxide. In its absence formiclactic and succinic acids, carbon dioxide and hydrogen. Both

Rosenberg, S.L.

2013-01-01T23:59:59.000Z

235

A laboratory and pilot plant scaled continuous stirred reactor separator for the production of ethanol from sugars, corn grits/starch or biomass streams  

DOE Green Energy (OSTI)

An improved bio-reactor has been developed to allow the high speed, continues, low energy conversion of various substrates to ethanol. The Continuous Stirred Reactor Separator (CSRS) incorporates gas stripping of the ethanol using a recalculating gas stream between cascading stirred reactors in series. We have operated a 4 liter lab scale unit, and built and operated a 24,000 liter pilot scale version of the bioreactor. High rates of fermentation are maintained in the reactor stages using a highly flocculent yeast strain. Ethanol is recovered from the stripping gas using a hydrophobic solvent absorber (isothermal), after which the gas is returned to the bioreactor. Ethanol can then be removed from the solvent to recover a highly concentrated ethanol product. We have applied the lab scale CSRS to sugars (glucose/sucrose), molasses, and raw starch with simultaneous saccharification and fermentation of the starch granules (SSF). The pilot scale CSRS has been operated as a cascade reactor using dextrins as a feed. Operating data from both the lab and pilot scale CSRS are presented. Details of how the system might be applied to cellulosics, with some preliminary data are also given.

Dale, M.C.; Lei, Shuiwang; Zhou, Chongde

1995-10-01T23:59:59.000Z

236

Definition: Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ethanol Ethanol A colorless, flammable liquid produced by fermentation of sugars. While it is also the alcohol found in alcoholic beverages, it can be denatured for fuel use. Fuel ethanol is used principally for blending in low concentrations with motor gasoline as an oxygenate or octane enhancer. In high concentrations, it is used to fuel alternative-fuel vehicles specially designed for its use.[1][2][3] View on Wikipedia Wikipedia Definition Ethanol fuel is ethanol (ethyl alcohol), the same type of alcohol found in alcoholic beverages. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. World ethanol production for transport fuel tripled between 2000 and 2007 from 17 billion to more than 52 billion liters. From 2007 to 2008, the share of ethanol in global gasoline type

237

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network (OSTI)

2007) Cellulosic ethanol: biofuel researchers prepare toBiofuel alternatives to ethanol: pumping the microbial welltechnologies that enable biofuel production. Decades of work

Fortman, J. L.

2010-01-01T23:59:59.000Z

238

AE Biofuels Inc formerly American Ethanol Inc | Open Energy Informatio...  

Open Energy Info (EERE)

AE Biofuels Inc formerly American Ethanol Inc Jump to: navigation, search Name AE Biofuels Inc. (formerly American Ethanol Inc.) Place Cupertino, California Zip CA 95014 Product...

239

NIST Finds That Ethanol-Loving Bacteria Accelerate Cracking ...  

Science Conference Proceedings (OSTI)

... US production of ethanol for fuel has been rising quickly, topping 13 ... and reliably transport ethanol fuel in repurposed oil and gas pipelines.". ...

2012-10-15T23:59:59.000Z

240

Screening Study for Utilizing Feedstocks Grown on CRP Lands in a Biomass to Ethanol Production Facility: Final Subcontract Report; July 1998  

DOE Green Energy (OSTI)

Feasibility study for a cellulosic ethanol plant using grasses grown on Conservation Reserve Program lands in three counties of South Dakota, with several subcomponent appendices. In 1994, there were over 1.8 million acres of CRP lands in South Dakota. This represented approximately 5 percent of the total U.S. cropland enrolled in the CRP. Nearly 200,000 acres of CRP lands were concentrated in three northeastern South Dakota counties: Brown, Marshall and Day. Most of the acreage was planted in Brohm Grass and Western Switchgrass. Technology under development at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), and at other institutions, is directed towards the economical production of fuel-grade ethanol from these grasses. The objective of this study is to identify and evaluate a site in northeastern South Dakota which would have the greatest potential for long-term operation of a financially attractive biomass-to-ethanol production facility. The effort shall focus on ethanol marketing issues which would provide for long-term viability of the facility, feedstock production and delivery systems (and possible alternatives), and preliminary engineering considerations for the facility, as well as developing financial pro-formas for a proposed biomass-to-ethanol production facility in northeastern South Dakota. This Final Report summarizes what was learned in the tasks of this project, pulling out the most important aspects of each of the tasks done as part of this study. For greater detail on each area it is advised that the reader refer to the entire reports which are included as appendixes.

American Coalition for Ethanol; Wu, L.

2004-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Screening Study for Utilizing Feedstocks Grown on CRP Lands in a Biomass to Ethanol Production Facility: Final Subcontract Report; July 1998  

SciTech Connect

Feasibility study for a cellulosic ethanol plant using grasses grown on Conservation Reserve Program lands in three counties of South Dakota, with several subcomponent appendices. In 1994, there were over 1.8 million acres of CRP lands in South Dakota. This represented approximately 5 percent of the total U.S. cropland enrolled in the CRP. Nearly 200,000 acres of CRP lands were concentrated in three northeastern South Dakota counties: Brown, Marshall and Day. Most of the acreage was planted in Brohm Grass and Western Switchgrass. Technology under development at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), and at other institutions, is directed towards the economical production of fuel-grade ethanol from these grasses. The objective of this study is to identify and evaluate a site in northeastern South Dakota which would have the greatest potential for long-term operation of a financially attractive biomass-to-ethanol production facility. The effort shall focus on ethanol marketing issues which would provide for long-term viability of the facility, feedstock production and delivery systems (and possible alternatives), and preliminary engineering considerations for the facility, as well as developing financial pro-formas for a proposed biomass-to-ethanol production facility in northeastern South Dakota. This Final Report summarizes what was learned in the tasks of this project, pulling out the most important aspects of each of the tasks done as part of this study. For greater detail on each area it is advised that the reader refer to the entire reports which are included as appendixes.

American Coalition for Ethanol; Wu, L.

2004-02-01T23:59:59.000Z

242

Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Topical report 5, Process analysis  

DOE Green Energy (OSTI)

The economics of converting coal to ethanol by a biological process is quite attractive. When processing 1500 tons of coal per day, the plant generates 85 million gallons of ethanol per year. The return on investment for the process is 110 percent and the payout is 0.9 years.

NONE

1995-11-01T23:59:59.000Z

243

Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculate: Power Law Cost Scaling Actual Single Unit Capital Cost Estimate 500 unityear production costs with progress ratios Estimate Cost Using Power Law Cost Scaling 7 The H 2...

244

Uncertainty in techno-economic estimates of cellulosic ethanol production due to experimental measurement uncertainty  

E-Print Network (OSTI)

Abstract Background Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge at the industrial scale. A critical tool in biofuels process development is the techno-economic ...

Vicari, Kristin Jenise

245

Texas AgriLife Extension Service Procedure 07.03.01.X1.01 Political Campaign Events on AgriLife Extension Service Property Page 1 of 1  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 07.03.01.X1.01 Political Campaign Events on AgriLife Extension Service Property Page 1 of 1 Texas AgriLife Extension Service Procedures 07.03.01.X1.01 POLITICAL CAMPAIGN EVENTS ON TEXAS AGRILIFE EXTENSION SERVICE PROPERTY Approved: December 15, 2010 Next Scheduled

246

Texas AgriLife Extension Service Procedure 21.01.08.X1.03 Vehicle Use Reports: Automobiles/Trucks Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 21.01.08.X1.03 Vehicle Use Reports: Automobiles/Trucks Page 1 of 2 Texas AgriLife Extension Service Procedures 21.01.08.X1.03 VEHICLE USE REPORTS: AUTOMOBILES STATEMENT To comply with the provisions of the applicable civil statutes of the State of Texas, Texas Agri

247

Texas AgriLife Research Procedure 21.01.08.A1.03 Vehicle Use Reports: Automobiles/Trucks Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 21.01.08.A1.03 Vehicle Use Reports: Automobiles/Trucks Page 1 of 2 Texas AgriLife Research Procedures 21.01.08.A1.03 VEHICLE USE REPORTS: AUTOMOBILES/TRUCKS Approved To comply with the provisions of the applicable civil statutes of the State of Texas, Texas Agri

248

Texas AgriLife Research Procedure 25.07.01.A1.01 Delegation of Authority and Contract Administration Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 25.07.01.A1.01 Delegation of Authority and Contract Administration Page 1 of 2 Texas AgriLife Research Procedures 25.07.01.A1.01 DELEGATION OF AUTHORITY AND CONTRACT establishes the delegation of authority and contract administration procedures for Texas AgriLife Research

249

Ethanol Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

250

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

251

Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes  

DOE Patents (OSTI)

A novel operon and plasmids comprising genes which code for the alcohol dehydrogenase and pyruvate decarboxylase activities of Zymomonas mobilis are described. Also disclosed are methods for increasing the growth of microorganisms or eukaryotic cells and methods for reducing the accumulation of undesirable metabolic products in the growth medium of microorganisms or cells.

Ingram, Lonnie O. (Gainesville, FL); Conway, Tyrrell (Lincoln, NE); Alterthum, Flavio (Gainesville, FL)

1991-01-01T23:59:59.000Z

252

The effect of CO regulations on the cost of corn ethanol production  

E-Print Network (OSTI)

e MJ-1 by co-firing 20% biomass in its boiler system, incurring only a small change in production (e.g. raw starch hydrolysis and corn oil extraction, plus either CHP or biomass co-firing), and even (e.g. raw starch hydrolysis and corn oil extraction, plus either CHP or biomass co-firing), and even

Kammen, Daniel M.

253

Brazil Ethanol Inc | Open Energy Information  

Open Energy Info (EERE)

Brazil Ethanol Inc. Place New York, New York Zip 10021 Product A New York City-based firm that had raised USD 10.4m as of 1 May 2007 and appears to be planning to build ethanol...

254

Badger State Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Name Badger State Ethanol LLC Place Monroe, Wisconsin Zip 53566 Product Dry-mill bioethanol producer References Badger State Ethanol LLC1 LinkedIn Connections CrunchBase...

255

Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine: Experimental and Numerical Results  

E-Print Network (OSTI)

The energy balance of corn ethanol revisited, Transaction ofnet energy balanceof corn ethanol, USDA Economic Researchall stages of ethanol production from corn, as a percent of

Mack, John Hunter; Flowers, Daniel L; Aceves, Salvador M; Dibble, Robert W

2007-01-01T23:59:59.000Z

256

Enhanced Ethanol Production from De-Ashed Paper Sludge by Simultaneous Saccharification and Fermentation and Simultaneous Saccharification and Co-Fermentation  

Science Conference Proceedings (OSTI)

A previous study demonstrated that paper sludges with high ash contents can be converted to ethanol by simultaneous saccharification and fermentation (SSF) or simultaneous saccharification and co-fermentation (SSCF). High ash content in the sludge, however, limited solid loading in the bioreactor, causing low product concentration. To overcome this problem, sludges were de-ashed before SSF and SSCF. Low ash content in sludges also increased the ethanol yield to the extent that the enzyme dosage required to achieve 70% yield in the fermentation process was reduced by 30%. High solid loading in SSF and SSCF decreased the ethanol yield. High agitation and de-ashing of the sludges were able to restore the part of the yield loss caused by high solid loading. Substitution of the laboratory fermentation medium (peptone and yeast extract) with corn steep liquor did not bring about any adverse effects in the fermentation. Fed-batch operation of the SSCF and SSF using low-ash content sludges was effective in raising the ethanol concentration, achieving 47.8 g/L and 60.0 g/L, respectively.

Kang, L.; Wang, W.; Pallapolu, V. R.; Lee, Y. Y.

2011-11-01T23:59:59.000Z

257

Pacific Ethanol, Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RSE Pulp & Chemical, LLC RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) Corporate HQ: Old Town, Maine Proposed Facility Location: Old Town, Maine Description: Develop, design, and install a biorefinery facility in an existing pulp mill to demonstrate the production of cellulosic ethanol from lignocellulosic (wood) extract. CEO or Equivalent: Edward Paslawski, Chairman and CEO of Red Shield Environmental, LLC Participants: University of Maine, American Process Inc. Production: * Capacity of 2.2 million gallons per year of cellulosic ethanol Technology and Feedstocks: * University of Maine proprietary process for pre-extracting hemicelluloses during the pulping process * 80 dry tons/day hemicellulose extract from woody biomass

258

Pacific Ethanol, Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Verenium Biofuels Corporation Verenium Biofuels Corporation Corporate HQ: Cambridge, Massachusetts Proposed Facility Location: Jennings, Louisiana Description: Operation and maintenance of a demonstration-scale facility in Jennings, Louisiana with some capital additions. CEO or Equivalent: Carlos A. Riva, President, Chief Executive Officer and Director Participants: Only Verenium Biofuels Corporation Production: * Capacity of 1.5 million gallons per year of cellulosic ethanol biofuel Technology and Feedstocks: * Pretreatment, enzymatic hydrolysis of lignocellulosics and fermentation of sugars into ethanol * sugarcane bagasse, dedicated energy crops, agricultural waste, and wood product residues State of Readiness: * The demonstration facility has been completed and is in the

259

Effect of milk composition upon the partition coefficients of diacetyl, acetaldehyde, and ethanol in acidified milk products  

E-Print Network (OSTI)

Acidified milk samples were prepared with fat concentrations from 0 to 20% and solids-not-fat concentrations from 6 to 12%. The partition coefficients of acetaldehyde, ethanol, and diacetyl were determined in acidified samples at pH 4.4 and 4.6, and at 30 and 500C using gas chromatographic headspace analysis (IGCHS). Concentration, SNF x concentration and the SNF x fat x concentration interaction affected the partition coefficients of acetaldehyde at both 30 and 50'C. At 50'C, the milk fat x concentration interaction significantly affected the partition coefficient. The partition coefficient of acetaldehyde increased with increasing concentrations of milk fat. Partition coefficients decreased as concentration of acetaldehyde increased. The partition coefficients for ethanol at 300C were affected only by concentration of ethanol. At 500C, concentration of ethanol, pH, milk fat, milk fat x concentration interaction, and SNF x milk fat x pH interaction affected the partition coefficients of ethanol. The partition coefficients for ethanol increased with increasing concentration of ethanol at both temperatures. At 500C, partition coefficients increased as concentration of milk fat increased at 12 % SNF and pH did not have an effect on partition coefficients. Concentration of diacetyl, pH, and milk fat x concentration interaction affected the partition coefficients of diacetyl at both temperatures. At 300C, milk fat affected the partition coefficients of diacetyl and at 500C, pH x concentration of diacetyl interaction affected the partition coefficients of diacetyl. Partition coefficients increased with increasing concentration of diacetyl at both temperatures. At 300C, as concentration of milk fat increased so did the partition coefficients. The highest partition coefficients were observed for acetaldehyde compared to diacetyl and ethanol at both temperatures and at the lowest concentration.

Wilke, Anthony Gerald

1994-01-01T23:59:59.000Z

260

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Vehicle Technologies Office: Fact #447: December 11, 2006 World Ethanol  

NLE Websites -- All DOE Office Websites (Extended Search)

7: December 11, 7: December 11, 2006 World Ethanol Production to someone by E-mail Share Vehicle Technologies Office: Fact #447: December 11, 2006 World Ethanol Production on Facebook Tweet about Vehicle Technologies Office: Fact #447: December 11, 2006 World Ethanol Production on Twitter Bookmark Vehicle Technologies Office: Fact #447: December 11, 2006 World Ethanol Production on Google Bookmark Vehicle Technologies Office: Fact #447: December 11, 2006 World Ethanol Production on Delicious Rank Vehicle Technologies Office: Fact #447: December 11, 2006 World Ethanol Production on Digg Find More places to share Vehicle Technologies Office: Fact #447: December 11, 2006 World Ethanol Production on AddThis.com... Fact #447: December 11, 2006 World Ethanol Production Twelve billion gallons of ethanol were produced worldwide in 2005. The U.S.

262

Energy Basics: Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of several beakers of gold and orange liquid ethanol. Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol...

263

Protein Molecular Structures and Protein Fraction Profiles of New Co-Products of BioEthanol Production: A Novel Approach  

SciTech Connect

The objectives of this study were to determine the protein molecular structures of the new coproducts from bioethanol production, quantify protein structure amide I to II and {alpha}-helix to {beta}-sheet spectral peak intensity ratio, and illustrate multivariate molecular spectral analyses as a novel research tool for rapid characterization of protein molecular structures in bioethonal bioproducts. The study demonstrated that the grains had a significantly higher ratio of {alpha}-helix to {beta}-sheet in the protein structure than their coproducts produced from bioethanol processing (1.38 vs 1.03, P < 0.05). There were significant differences between wheat and corn (1.47 vs 1.29, P < 0.05) but no difference between wheat dried distiller grains with solubles (DDGS) and corn DDGS (1.04 vs 1.03, P > 0.05). The grains had a significantly higher ratio of protein amide I to II in the protein structure than their coproducts produced from bioethanol processing (4.58 vs 2.84, P < 0.05). There were no significant differences between wheat and corn (4.61 vs 4.56, P > 0.05), but there were significant differences between wheat DDGS and corn DDGS (3.08 vs 2.21, P < 0.05). This preliminary study indicated that bioethanol processing changes protein molecular structures, compared with original grains. Further study is needed with a large set of the new bioethanol coproducts to quantify protein molecular structures ({alpha}-helix to {beta}-sheet ratio; amide I to II ratio) of the bioethanol coproducts in relation to nutrient supply and availability in animals.

Yu, P.; Niu, Z; Damiran, D

2010-01-01T23:59:59.000Z

264

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

265

Blue Flint Ethanol | Open Energy Information  

Open Energy Info (EERE)

Flint Ethanol Flint Ethanol Jump to: navigation, search Name Blue Flint Ethanol Place Underwood, North Dakota Zip ND 58576 Product Joint Venture bentween Great River Energy and Headwaters Incorporated, was established to build and operate a 50 million gallon per year dry mill ethanol plant in Underwood, North Dakota. References Blue Flint Ethanol[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Blue Flint Ethanol is a company located in Underwood, North Dakota . References ↑ "Blue Flint Ethanol" Retrieved from "http://en.openei.org/w/index.php?title=Blue_Flint_Ethanol&oldid=342914" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

266

Highwater Ethanol | Open Energy Information  

Open Energy Info (EERE)

Highwater Ethanol Highwater Ethanol Jump to: navigation, search Name Highwater Ethanol Place Lamberton, Minnesota Zip MN 56152 Product Highwater Ethanol LLC is the SPV behind the 195mLpa ethanol plant being constructed in Lamberton, Minnesota, US. Coordinates 44.233433°, -95.262294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.233433,"lon":-95.262294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

AG-421 (04/16/13) Texas A&M AgriLife  

E-Print Network (OSTI)

Form, HR-12 (ORP-eligible position only) Prior ORP Participation Acknowledgement Form, HR-11 (if previously enrolled in ORP, or eligible for ORP and did not select Activate Email account via the Agri

268

Tall Corn Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Tall Corn Ethanol LLC Tall Corn Ethanol LLC Jump to: navigation, search Name Tall Corn Ethanol LLC Place Coon Rapids, Iowa Zip 50058 Product Farmer owned bioethanol production company which owns a 40m gallon (151.4m litre) bioethanol plant in Coon Rapids, Iowa. References Tall Corn Ethanol LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Tall Corn Ethanol LLC is a company located in Coon Rapids, Iowa . References ↑ "Tall Corn Ethanol LLC" Retrieved from "http://en.openei.org/w/index.php?title=Tall_Corn_Ethanol_LLC&oldid=352015" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

269

Research Advances Cellulosic Ethanol, NREL Leads the Way (Brochure)  

DOE Green Energy (OSTI)

This brochure highlights NREL's recent advances in cellulosic ethanol production. Research at NREL addresses both biochemical and thermochemical processes.

Not Available

2007-03-01T23:59:59.000Z

270

Clean Cities: Ethanol Basics, Fact Sheet, October 2008  

DOE Green Energy (OSTI)

Document answers frequently asked questions about ethanol as a transportation fuel, including those on production, environmental effects, and vehicles.

Not Available

2008-10-01T23:59:59.000Z

271

The Role of Cellulosic Ethanol in Transportation  

Science Conference Proceedings (OSTI)

Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

Robert M. Neilson, Jr.

2007-10-01T23:59:59.000Z

272

Ethanol Plant Production of Fuel Ethanol  

Gasoline and Diesel Fuel Update (EIA)

Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 080913 081613...

273

Xylose fermentation to ethanol  

SciTech Connect

The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

McMillan, J.D.

1993-01-01T23:59:59.000Z

274

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report  

DOE Green Energy (OSTI)

The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

NONE

1995-08-01T23:59:59.000Z

275

Pacific Ethanol, Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc More Documents & Publications Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc...

276

Texas AgriLife Research Procedure 21.01.08.A1.04 Vehicle Compulsory Inspection Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 21.01.08.A1.04 Vehicle Compulsory Inspection Page 1 of 2 Texas Revised: November 13, 2010 Next Scheduled Review: November 13, 2012 PROCEDURE STATEMENT The Texas for the inspection of vehicles to comply with the Texas Transportation Code. PROCEDURES 1.0 Inspection Requirements 1

277

Texas AgriLife Research Procedure 24.01.01.A1.08 Hazard Communication Programs Page 1 of 2 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

Texas AgriLife Research Procedure 24.01.01.A1.08 Hazard Communication Programs Page 1 of 2 Texas PROCEDURE STATEMENT A Hazard Communication (HazCom) Program shall be implemented to comply with the Texas Health and Safety Code - Chapter 502, "The Texas Hazard Communication Act", and Chapter 506, "The Public

278

Texas AgriLife Extension Service Procedure 24.01.01.X1.11 Hazardous Chemical Waste Disposal Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 24.01.01.X1.11 Hazardous Chemical Waste Disposal Page 1 of 2 Texas AgriLife Extension Service Procedures 24.01.01.X1.11 HAZARDOUS CHEMICAL WASTE DISPOSAL, and federal regulations, and is enforced by the Texas Commission on Environmental Quality (TCEQ

279

Texas AgriLife Extension Service Procedure 24.01.01.X1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 24.01.01.X1.02 Motor Vehicle Accident Reports Page 1 of 2 Texas AgriLife Extension Service Procedures 24.01.01.X1.02 MOTOR VEHICLE ACCIDENT REPORTS Approved The Texas A&M University System covers system vehicles under a system-wide self insurance plan. Employees

280

Texas AgriLife Extension Service Procedure 24.01.01.X1.08 Hazard Communication Programs Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 24.01.01.X1.08 Hazard Communication Programs Page 1 of 2 Texas AgriLife Extension Service Procedures 24.01.01.X1.08 HAZARD COMMUNICATION PROGRAM Approved with the Texas Health and Safety Code - Chapter 502, "The Texas Hazard Communication Act", and Chapter 506, "The

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Texas AgriLife Extension Service Procedure 21.01.08.X1.04 Vehicle Compulsory Inspection Page 1 of 2 Texas AgriLife Extension Service Procedures  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 21.01.08.X1.04 Vehicle Compulsory Inspection Page 1 of 2 Texas AgriLife Extension Service Procedures 21.01.08.X1.04 VEHICLE COMPULSORY INSPECTION Approved: July The Texas Transportation Code, Title 7, Subtitle C, Chapter 548 administered by the Department of Public

282

Texas AgriLife Research Procedure 21.01.08.A1.05 Farm Equipment Operation and Maintenance Page 1 of 1 Texas AgriLife Research Procedures  

E-Print Network (OSTI)

for all equipment serviced in the Laserfiche Document Management System in section 5.6.1 by the equipmentTexas AgriLife Research Procedure 21.01.08.A1.05 Farm Equipment Operation and Maintenance Page 1 of 1 Texas AgriLife Research Procedures 21.01.08.A1.05 FARM EQUIPMENT OPERATION AND MAINTENANCE

283

Mixed waste paper to ethanol fuel  

DOE Green Energy (OSTI)

The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

Not Available

1991-01-01T23:59:59.000Z

284

Ethanol and Classic Cars  

NLE Websites -- All DOE Office Websites (Extended Search)

have ethanol in them; the typical one is E10 which is 10% ethanol. But there's also E85 which is 85% ethanol. The basic rule is E10 is ok for everything, but E85 can only be...

285

Texas AgriLife Extension Service Procedure 25.07.01.X1.01 Delegation of Authority and Contract Administration Page 1 of 2  

E-Print Network (OSTI)

Texas AgriLife Extension Service Procedure 25.07.01.X1.01 Delegation of Authority and Contract Administration Page 1 of 2 Texas AgriLife Extension Service Procedures 25.07.01.X1.01 DELEGATION OF AUTHORITY administration procedures for the Texas AgriLife Extension Service (Extension) in accordance with System Policy

286

Diversified Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ethanol Ethanol Jump to: navigation, search Name Diversified Ethanol Place Northbrook, Illinois Zip 60062 Product A division of OTCBB-traded ONYI that is building an ethanol plant in Iowa. Coordinates 42.12972°, -87.831564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.12972,"lon":-87.831564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Bushmills Ethanol | Open Energy Information  

Open Energy Info (EERE)

Bushmills Ethanol Bushmills Ethanol Jump to: navigation, search Name Bushmills Ethanol Place Atwater, Minnesota Zip 56209 Product A group of local agricultural producers and investors working to build a 40m gallon per year ethanol facility in Minnesota. Coordinates 41.032997°, -81.168008° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.032997,"lon":-81.168008,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Ace Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ethanol Ethanol Jump to: navigation, search Name Ace Ethanol Place Stanley, Wisconsin Zip 54768 Product Producer of corn-based ethanol in Wisconsin. Coordinates 44.958844°, -90.937009° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.958844,"lon":-90.937009,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Biodiesel Ethanol and Biodiesel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Biodiesel Tax Exemption Motor fuels sold to an ethanol or biodiesel production facility and motor

290

Food for fuel: The price of ethanol  

E-Print Network (OSTI)

Conversion of corn to ethanol in the US since 2005 has been a major cause of global food price increases during that time and has been shown to be ineffective in achieving US energy independence and reducing environmental impact. We make three key statements to enhance understanding and communication about ethanol production's impact on the food and fuel markets: (1) The amount of corn used to produce the ethanol in a gallon of regular gas would feed a person for a day, (2) The production of ethanol is so energy intensive that it uses only 20% less fossil fuel than gasoline, and (3) The cost of gas made with ethanol is actually higher per mile because ethanol reduces gasoline's energy per gallon.

Albino, Dominic K; Bar-Yam, Yaneer

2012-01-01T23:59:59.000Z

291

Texas A&M AgriLife Research Procedures 24.01.01.A0.09 Outdoor Burning  

E-Print Network (OSTI)

Texas A&M AgriLife Research Procedures 24.01.01.A0.09 Outdoor Burning Approved: October 5, 2000: August 27, 2014 Texas A&M AgriLife Research Procedure 24.01.01.A0.09 Outdoor Burning Page 1 of 2 PROCEDURE STATEMENT The Texas Commission on Environmental Quality (TCEQ) regulates outdoor burning (30 TAC

292

Process of concentrating ethanol from dilute aqueous solutions thereof  

DOE Patents (OSTI)

Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%. 5 figs.

Oulman, C.S.; Chriswell, C.D.

1981-07-07T23:59:59.000Z

293

Process of concentrating ethanol from dilute aqueous solutions thereof  

DOE Patents (OSTI)

Relatively dilute aqueous solutions of ethanol are concentrated by passage through a bed of a crystalline silica polymorph, such as silicalite, to adsorb the ethanol with residual dilute feed in contact with the bed, which is displaced by passing concentrated aqueous ethanol through the bed without displacing the adsorbed ethanol. A product concentrate is then obtained by removing the adsorbed ethanol from the bed together with at least a portion of the concentrated aqueous ethanol used as the displacer liquid. This process permits ethanol to be concentrated from dilute fermentation beers, which may contain from 6 to 10% ethanol, to obtain a concentrate product at very low energy cost having an ethanol concentration in excess of 95%, such as a concentration of from 98 to 99.5%.

Oulman, Charles S. (Ames, IA); Chriswell, Colin D. (Slater, IA)

1981-07-07T23:59:59.000Z

294

Baicheng Tingfeng Ethanol Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Province, China Zip 137000 Product The company is a ethanol manufacturer, engaging in biofuel production and project development. Coordinates 45.234879, 123.065598 Loading...

295

PRELIMINARY SURVEY OF U.S. STEEL CORPORATION--AGRI-CHEMICAL  

Office of Legacy Management (LM)

PRELIMINARY SURVEY OF PRELIMINARY SURVEY OF U.S. STEEL CORPORATION--AGRI-CHEMICAL (former Armour Fertilizer Works) Bartow, Florida Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program ..- _ "." --~ ____- - .___ _ --.. U.S. STEEL CORPORATION--AGRI-CHEMICAL (former Armour Fertilizer Works) Bartow, Florida At the request of the Department of Energy (DOE, then ERDA), a preliminary survey was performed at the U.S. Steel Corporation--Agri- Chemical Plant near Bartow, Florida (see Fig. l), on April 4, 1977, to assess the radiological status of those facilities utilized under Atomic

296

Process for producing ethanol from syngas  

DOE Patents (OSTI)

The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

2013-05-14T23:59:59.000Z

297

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-12-31T23:59:59.000Z

298

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

299

Pacific Ethanol | Open Energy Information  

Open Energy Info (EERE)

Pacific Ethanol Pacific Ethanol Address 400 Capitol Mall, Suite 2060 Place Sacramento, California Zip 95814 Sector Biofuels Product Ethanol production Website http://www.pacificethanol.net/ Coordinates 38.578811°, -121.502314° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.578811,"lon":-121.502314,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

EFFECTS OF CHANGES IN U.S. ETHANOL PRODUCTION FROM CORN GRAIN, CORN STOVER, AND SWITCHGRASS ON WORLD AGRICULTURAL MARKETS AND TRADE.  

E-Print Network (OSTI)

??The renewable energy industry continues to expand at a rapid pace. New advances in cellulosic ethanol technologies have the potential to reduce our dependency on (more)

Campiche, Jody L.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

National Ethanol Vehicle Coalition NEVC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Vehicle Coalition NEVC Ethanol Vehicle Coalition NEVC Jump to: navigation, search Name National Ethanol Vehicle Coalition (NEVC) Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is a non-profit membership organisation serving as a primary advocacy group promoting the use of 85% ethanol in the US as a form of alternative transportation fuel. References National Ethanol Vehicle Coalition (NEVC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Ethanol Vehicle Coalition (NEVC) is a company located in Jefferson City, Missouri . References ↑ "National Ethanol Vehicle Coalition (NEVC)" Retrieved from "http://en.openei.org/w/index.php?title=National_Ethanol_Vehicle_Coalition_NEVC&oldid=349065

302

High Ethanol Fuel Endurance: A Study of the Effects of Running Gasoline with 15% Ethanol Concentration in Current Production Outboard Four-Stroke Engines and Conventional Two-Stroke Outboard Marine Engines  

DOE Green Energy (OSTI)

Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deterioration that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.

Hilbert, D.

2011-10-01T23:59:59.000Z

303

Measuring and moderating the water resource impact of biofuel production and trade  

E-Print Network (OSTI)

that the U.S. corn ethanol production targeted by production capacity, corn ethanol plants use enough 2006). An average corn ethanol plant consumes about

Fingerman, Kevin Robert

2012-01-01T23:59:59.000Z

304

Ethanol-blended Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

305

Texas A&M AgriLife The Texas A&M University System  

E-Print Network (OSTI)

Texas A&M AgriLife The Texas A&M University System Distinguished Texan in Agriculture Award. , Former Texas Governor 1995 Mr. L. Don Anderson, Distinguished Cotton Leader 1996 Senator William "Bill" Sims, Former Executive Director, Texas Sheep and Goat Raisers Association 1997 Mrs. Mary Nan West

306

Texas A&M University System Chancellor's Diversity Council Representatives from Texas AgriLife  

E-Print Network (OSTI)

Texas A&M University System Chancellor's Diversity Council Representatives from Texas AgriLife Facilitator Joni E. Baker, Ph.D. Director of Equal Opportunity and Diversity The Texas A&M University System 200 Technology Way, Suite 1281 College Station, Texas 77845-3424 979-458-6203 979-458-6206 (fax

307

Energy Star Appliances 1 Texas A&M AgriLife Extension Service ENERGY STAR Appliances  

E-Print Network (OSTI)

Energy Star® Appliances 1 Texas A&M AgriLife Extension Service ENERGY STAR® Appliances ENERGY STAR®-labeled appliances save you money by using less electricity and water than other appliances. Better appliance energy efficiency comes from quality materials and technologically advanced materials. Although energy efficient

308

Environmental analysis of biomass-ethanol facilities  

DOE Green Energy (OSTI)

This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

Corbus, D.; Putsche, V.

1995-12-01T23:59:59.000Z

309

Ethanol | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the...

310

Bench-scale demonstration of biological production of ethanol from coal synthesis gas. Quarterly report: July 1, 1993--September 30, 1993  

SciTech Connect

The purpose of this report is to present results from culture isolation and selection studies, bench-scale fermentation experiments, and ethanol recovery experiments. Several promising isolates have been obtained in addition to Clostridium ljungdahlii, strain PETC, and are being used in batch and continuous culture comparison studies. C. ljungdahlii is being utilized in two-stage bench-scale reactor studies, aimed at producing ethanol in high concentrations from a stable culture system. Finally, solvent comparison studies have been performed for the economical recovery of ethanol from the fermentation broth.

Not Available

1993-12-31T23:59:59.000Z

311

Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.09 Outdoor Burning  

E-Print Network (OSTI)

Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.09 Outdoor Burning Approved: October 5 Review: August 27, 2014 Texas A&M AgriLife Extension Service Procedure 24.01.01.X0.09 Outdoor Burning burning (30 TAC 111.201-221).Those units located on the Texas A&M University campus will follow the Open

312

Utica Energy LLC formerly Algoma Ethanol | Open Energy Information  

Open Energy Info (EERE)

Utica Energy LLC formerly Algoma Ethanol Utica Energy LLC formerly Algoma Ethanol Jump to: navigation, search Name Utica Energy LLC (formerly Algoma Ethanol) Place Oshkosh, Wisconsin Product Utica Energy, founded by 5 investing farmers built an ethanol plant west of Oshkosh, Wisconsin. References Utica Energy LLC (formerly Algoma Ethanol)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utica Energy LLC (formerly Algoma Ethanol) is a company located in Oshkosh, Wisconsin . References ↑ "Utica Energy LLC (formerly Algoma Ethanol)" Retrieved from "http://en.openei.org/w/index.php?title=Utica_Energy_LLC_formerly_Algoma_Ethanol&oldid=352687" Categories: Clean Energy Organizations Companies

313

Nedak Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Nedak Ethanol LLC Nedak Ethanol LLC Jump to: navigation, search Name Nedak Ethanol LLC Place Atkinson, Nebraska Zip 68713 Product NEDAK Ethanol, LLC is a Nebraska limited liability company, which was formed on December 15, 2003 for the purpose of constructing and operating an ethanol plant near Atkinson, Nebraska. Coordinates 34.52909°, -78.168819° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.52909,"lon":-78.168819,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

315

Biofuel alternatives to ethanol: pumping the microbial well  

E-Print Network (OSTI)

ethanol and plant-based biodiesel ( Box 1). Although bio-acid pathway Currently, biodiesel production uses plant oilsbeen developed for use as biodiesel. However, if biodiesel

Fortman, J.L.

2011-01-01T23:59:59.000Z

316

ethanol - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Drought has significant effect on corn crop condition, projected ethanol production. August 28, 2012 Worst drought in decades could affect U.S. energy markets .

317

Impact of ethanol expansion on the cattle feeding industry.  

E-Print Network (OSTI)

??The U.S. has a history of producing surplus corn, but the current and projected growth in ethanol production combined with strong feed and export demand (more)

Daley, Erin

2007-01-01T23:59:59.000Z

318

The economics of corn cob cellulosic ethanol for northwest Iowa.  

E-Print Network (OSTI)

??To meet the demand of the 2007 Energy Bill will require a new approach to ethanol production in the United States. The question persists: how (more)

Schany, William J.

2012-01-01T23:59:59.000Z

319

High Activity of Ce1-xNixO2-y for H2 Production through Ethanol Steam Reforming: Tuning Catalytic Performance through Metal-Oxide Interactions  

SciTech Connect

The importance of the oxide: Ce{sub 0.8}Ni{sub 0.2}O{sub 2-y} is an excellent catalyst for ethanol steam reforming. Metal-oxide interactions perturb the electronic properties of the small particles of metallic nickel present in the catalyst under the reaction conditions and thus suppress any methanation activity. The nickel embedded in ceria induces the formation of O vacancies, which facilitate cleavage of the OH bonds in ethanol and water.

G Zhou; L Barrio; S Agnoli; S Senanayake; J Evans; A Kubacka; M Estrella; J Hanson; A Martinez-Arias; et al.

2011-12-31T23:59:59.000Z

320

Design and demonstration of an immobilized-cell fluidized-bed reactor for the efficient production of ethanol  

DOE Green Energy (OSTI)

Initial studies have been carried out using a 4 inch ID fluidized bed reactor (FBR). This medium scale FBR was designed for scale-up. Present performance was compared with results from experiments using smaller FBRs. On-line and off-line measurement systems are also described. Zymomonas mobilis was immobilized in {kappa}-carrageenan at cell loadings of 15--50 g (dry weight) L{sup {minus}1}. The system is designed for determining optimal operation with high conversion and productivity for a variety of conditions including feedstocks, temperature, flow rate, and column sizes (from 2 to 5 meters tall). The demonstration used non-sterile feedstocks containing either industrial (light steep water) or synthetic nutrients and dextrose.

Webb, O.F.; Scott, T.C.; Davison, B.H.; Scott, C.D.

1994-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ethanol Extraction Technologies Inc EETI | Open Energy Information  

Open Energy Info (EERE)

Extraction Technologies Inc EETI Extraction Technologies Inc EETI Jump to: navigation, search Name Ethanol Extraction Technologies Inc (EETI) Place New York, New York Zip 10036-2601 Product New York-based bio-technology and ethanol production company with a patent for the exclusive use of the proprietary process of continuously removing and isolating ethanol during its fermentation process. References Ethanol Extraction Technologies Inc (EETI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ethanol Extraction Technologies Inc (EETI) is a company located in New York, New York . References ↑ "Ethanol Extraction Technologies Inc (EETI)" Retrieved from "http://en.openei.org/w/index.php?title=Ethanol_Extraction_Technologies_Inc_EETI&oldid=345167

322

Alternative Fuels Data Center: Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Prices Find ethanol fuel prices and trends. Ethanol is a renewable fuel made from corn and other plant materials. The use of ethanol is widespread-almost all gasoline in the U.S. contains

323

Market penetration of biodiesel and ethanol  

E-Print Network (OSTI)

This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production, but only expand the ethanol industry at low gasoline prices. All of these factors increase agricultural welfare with most expanding producer surplus and mixed effects on consumers.

Szulczyk, Kenneth Ray

2003-05-01T23:59:59.000Z

324

In Sweden, as in many other coun-tries Ethanol is the most wide-  

E-Print Network (OSTI)

combined heat, power and wood biofuel pellets plant in the North of Sweden. The production of ethanol WOOD ENERGY N°7 37 ssfilter Drier Production of pellets Biogas Ethanol District PLANT To develop the technology for ethanol production from wood residues, some regional companies, five

325

Definition: Cellulosic ethanol | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Cellulosic ethanol An advanced type of biofuel that is produced by breaking down and using the cellulose compound found in trees and grasses.[1] View on Wikipedia Wikipedia Definition Cellulosic ethanol is a biofuel produced from wood, grasses, or the inedible parts of plants. It is a type of biofuel produced from lignocellulose, a structural material that comprises much of the mass of plants. Lignocellulose is composed mainly of cellulose, hemicellulose and lignin. Corn stover, Panicum virgatum (switchgrass), Miscanthus grass species, wood chips and the byproducts of lawn and tree maintenance are some of the more popular cellulosic materials for ethanol production. Production of ethanol from lignocellulose has the advantage of abundant and

326

OpenEI - ethanol  

Open Energy Info (EERE)

biodiesel CNG compressed natural gas E85 Electricity ethanol hydrogen liquefied natural gas LNG liquefied petroleum gas LPG propane station locations Tue, 14 Dec 2010...

327

Ethanol | Open Energy Information  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ethanol Jump to: navigation, search TODO: Add description and move this content to a more...

328

State-Level Workshops on Ethanol for Transportation: Final Report  

DOE Green Energy (OSTI)

Final report on subcontract for holding four state-level workshops (Hawaii, Kentucky, Nevada, California) to facilitate development of ethanol production facilities in those states. In 2002/2003, under contract to the National Renewable Energy Laboratory, BBI International conducted state-level workshops ethanol in Hawaii, Nevada, Kentucky and California. These four workshops followed over 30 other workshops previous held under the Ethanol Workshop Series program sponsored by the U.S. Department of Energy. Two other workshops were conducted by BBI International during 2003, Oklahoma and Kansas, under contract to the Western Regional Biomass Energy Program. The Ethanol Workshop Series (EWS) was intended to provide a forum for interest groups to gather and discuss what needs to be accomplished to facilitate ethanol production in-state using local biomass resources. In addition, the EWS was to provide a promotional and educational forum for policy makers, community leaders, media and potential stakeholders. It was recognized that to eventually achieve biomass-ethanol production, it was necessary to support grain-ethanol production as a bridge. The long-term goal of the Workshops was to facilitate the development of biomass ethanol plants at a state-level. The near-term goal was to provide correct and positive information for education, promotion, production and use of fuel ethanol. The EWS drew from 65 to over 200 attendees and were deemed by the local organizers to have served the objectives set out by the U.S. Department of Energy.

Graf, A.

2004-01-01T23:59:59.000Z

329

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant ...  

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant Use in N0x Catalytic Reduction Note: The technology described above is an early stage opportunity.

330

Didion Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Didion Ethanol LLC Didion Ethanol LLC Jump to: navigation, search Name Didion Ethanol LLC Place Cambria, Wisconsin Zip 53923 Product Also Didion Milling LLC, Grand River Distribution LLC. Developing a 50m gallon ethanol facility in Cambria, Wisconsin. Coordinates 43.543205°, -89.108619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.543205,"lon":-89.108619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Western Ethanol Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Company LLC Ethanol Company LLC Jump to: navigation, search Name Western Ethanol Company LLC Place Placentia, California Zip 92871 Product California-based fuel ethanol distribution and marketing company. Coordinates 33.871124°, -117.861401° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.871124,"lon":-117.861401,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Heartland Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Ethanol LLC Ethanol LLC Jump to: navigation, search Name Heartland Ethanol LLC Place Knoxville, Tennessee Zip 37929 Product Knoxville, TN based ethanol developer. Coordinates 35.960495°, -83.920914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.960495,"lon":-83.920914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Michigan Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Ethanol LLC Ethanol LLC Jump to: navigation, search Name Michigan Ethanol LLC Place Caro, Michigan Zip 48723-8804 Product Ethanol productor in Caro, Michigan. Coordinates 43.488705°, -83.396764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.488705,"lon":-83.396764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Great Valley Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Valley Ethanol LLC Valley Ethanol LLC Jump to: navigation, search Name Great Valley Ethanol LLC Place Bakersfield, California Product Developing a 63m gallon ethanol plant in Hanford, CA Coordinates 44.78267°, -72.801369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.78267,"lon":-72.801369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Kansas Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Kansas Ethanol LLC Kansas Ethanol LLC Jump to: navigation, search Name Kansas Ethanol LLC Place Lyons, Kansas Zip 67554 Product Constructing a 55m gallon ethanol plant in Rice County, Kansas Coordinates 43.72394°, -96.871179° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.72394,"lon":-96.871179,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

BlueFire Ethanol | Open Energy Information  

Open Energy Info (EERE)

BlueFire Ethanol BlueFire Ethanol Jump to: navigation, search Name BlueFire Ethanol Place Irvine, California Zip 92618 Sector Hydro Product US biofuel producer that utilises a patented concentrated acid hydrolysis technology to process various cellulosic waste materials into ethanol. Coordinates 41.837752°, -79.268594° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.837752,"lon":-79.268594,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

337

Show Me Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Show Me Ethanol LLC Show Me Ethanol LLC Jump to: navigation, search Name Show Me Ethanol, LLC Place Carrollton, Missouri Zip 64633 Product Developing an ethanol project in Carrollton, Missouri. Coordinates 36.935443°, -76.531593° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.935443,"lon":-76.531593,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Farmers Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Ethanol LLC Ethanol LLC Jump to: navigation, search Name Farmers' Ethanol LLC Place Adamsville, Ohio Zip OH 43802 Product An association of farmers registered on July 12,2002 with a goal of producing ethanol in the Ohio Appalachian Mountains. Coordinates 35.235864°, -88.390158° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.235864,"lon":-88.390158,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

High Speed/ Low Effluent Process for Ethanol  

Science Conference Proceedings (OSTI)

n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol beers in 6 to 12 hours using either a consecutive batch or continuous cascade implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The consecutive batch technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

M. Clark Dale

2006-10-30T23:59:59.000Z

340

Pacific Ethanol, Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Ethanol, Inc Pacific Ethanol, Inc RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC)...

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vehicle Technologies Office: Fact #681: June 27, 2011 U.S. Ethanol  

NLE Websites -- All DOE Office Websites (Extended Search)

1: June 27, 2011 1: June 27, 2011 U.S. Ethanol Production, 2001-2010 to someone by E-mail Share Vehicle Technologies Office: Fact #681: June 27, 2011 U.S. Ethanol Production, 2001-2010 on Facebook Tweet about Vehicle Technologies Office: Fact #681: June 27, 2011 U.S. Ethanol Production, 2001-2010 on Twitter Bookmark Vehicle Technologies Office: Fact #681: June 27, 2011 U.S. Ethanol Production, 2001-2010 on Google Bookmark Vehicle Technologies Office: Fact #681: June 27, 2011 U.S. Ethanol Production, 2001-2010 on Delicious Rank Vehicle Technologies Office: Fact #681: June 27, 2011 U.S. Ethanol Production, 2001-2010 on Digg Find More places to share Vehicle Technologies Office: Fact #681: June 27, 2011 U.S. Ethanol Production, 2001-2010 on AddThis.com... Fact #681: June 27, 2011

342

Genetically Engineered Ethanol Producing Microorganisms ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Genetically Engineered Ethanol Producing Microorganisms. Battelle ...

343

Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O).

C. Saricks; D. Santini; M. Wang

1999-02-08T23:59:59.000Z

344

MotorWeek Video Transcript: Ethanol Preferred by Indy Racing  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol Preferred by Indy Racing Ethanol Preferred by Indy Racing John Davis: In an age where drivers switch sponsor allegiances as quickly as they change hats, Team Ethanol Indy Car driver Paul Dana was a rarity: A driver who not only believed in his sponsor's product, he took a personal interest in promoting it. Tragically, a collision during practice killed Paul just hours before the season's first green flag. Although his life was cut short before he ever won a race in the IRL, he leaves behind a champion's legacy no less powerful. We know ethanol is a clean-burning, renewable and American-made alternative to imported petroleum as a fuel for our street cars, but ethanol is also well-suited as a performance fuel. Tim Tom Slunecka: "The ethanol industry has been trying to communicate

345

ethanol | OpenEI  

Open Energy Info (EERE)

ethanol ethanol Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

346

Greenhouse gases in the corn-to-fuel ethanol pathway.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

Wang, M. Q.

1998-06-18T23:59:59.000Z

347

THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)  

E-Print Network (OSTI)

used on farms, such as gasoline, diesel, LP gas (LPG), natural gas, and electricity, for the production of corn ethanol utilizing the latest survey of U.S. corn producers and the 2001 U.S. survey of ethanol in manufacturing and marketing nitrogen fertilizer, (3) improving the quality of estimates for energy used

Patzek, Tadeusz W.

348

Biofuel derived from Microalgae Corn-based Ethanol  

E-Print Network (OSTI)

Biofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each source of biofuel · Potential for environmental impacts · Comparative results · Conclusions #12;Definitions Biofuel: clean fuel made from animal and plant fats and tissues (Hollebone, 2008) Ethanol

Blouin-Demers, Gabriel

349

Emissions from ethanol- and LPG-fueled vehicles  

SciTech Connect

This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

Pitstick, M.E.

1995-06-01T23:59:59.000Z

350

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station |  

Open Energy Info (EERE)

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report Ethanol buses were demonstrated within BioEthanol for Sustainable Transport (BEST). This report describes the problems at the sites and how they were solved. The aim of the report is to guide other local transport authorities on how to deal with the questions raised when a bus demonstration begins. How to Use This Tool This tool is most helpful when using these strategies:

351

Come and Walk Across Texas! with us. The Texas AgriLife Extension Service and the Texas Education Agency are  

E-Print Network (OSTI)

Come and Walk Across Texas! with us. The Texas AgriLife Extension Service and the Texas Education Agency are partnering to Walk Across Texas! Walk Across Texas! is a great way to promote physical for people who work at all levels of Texas' school systems. Senate Bill 891 requires all public school

Wilkins, Neal

352

Assessment of classification and indexing of an agricultural journal based on metadata in AGRIS and CAB Abstracts databases  

Science Conference Proceedings (OSTI)

Agricultural thesauri and classification schemes are being increasingly upgraded as ontologies, prompting end-user awareness of the concept of structured taxonomies and metadata. Related agricultural databases, such as Agris and CAB Abstracts, exhibit ... Keywords: agricultural classification, agricultural journals, agricultural thesauri, agriculture, databases, descriptors, information retrieval, journal classification, journal indexing, metadata, ontology, scientific papers, semantics, subject categories, subject headings, terminology

Tomaz Bartol

2009-05-01T23:59:59.000Z

353

Ethanol Myths and Facts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Myths and Facts Ethanol Myths and Facts Ethanol Myths and Facts More Documents & Publications Biofuels & Greenhouse Gas Emissions: Myths versus Facts Biofuels & Greenhouse...

354

Chief Ethanol Fuels | Open Energy Information  

Open Energy Info (EERE)

Chief Ethanol Fuels Jump to: navigation, search Name Chief Ethanol Fuels Place Hastings, NE Website http:www.chiefethanolfuels.c References Chief Ethanol Fuels1 Information...

355

Pacific Ethanol, Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc More Documents & Publications RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) EA-1888: Final...

356

Pacific Ethanol, Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc More Documents & Publications RSE Pulp & Chemical, LLC (Subsidiary of Red Shield Environmental, LLC) Pacific...

357

Levelland Hockley County Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Levelland Hockley County Ethanol LLC Levelland Hockley County Ethanol LLC Jump to: navigation, search Name Levelland/Hockley County Ethanol LLC Place Levelland, Texas Zip 79336 Product Levelland/Hockley County Ethanol, LLC was formed to construct, own, and operate a 40m gallon per year ethanol production plant. Coordinates 33.58733°, -102.378549° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.58733,"lon":-102.378549,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Investigation of the Photocatalytic Degradation of Ethanol and Acetone  

E-Print Network (OSTI)

In-situ transmission Fourier-transform infrared spectroscopy has been used to study the photocatalytic oxidation of acetone, ethanol and the interaction between acetone and ethanol. Compared with the degradation of acetone alone, it cannot be described by Langmuir-Hinshelwood equation in presence of ethanol. The presence of ethanol reduces the initial degradation rate of acetone and the inhibition increases with increasing of ethanol in the system. Acetone also inhibits the degradation of ethanol but it still can be described by the L-H equation. Acetaldehyde in the system comes from the degradation of ethanol, the behavior of production and consumption of which is affected by the amount of ethanol and acetone in the mixture. Temperature significantly affects the degradation of organic compounds in the mixture. Increasing the temperature accelerates the degradation of ethanol and acetone as well as the degradation of acetaldehyde, an intermediate produced in the system. The flux of the reaction system has little effect on the photocatalytic process of organic matter.

Liu, Y.; Ding, B.; Dong, S.

2006-01-01T23:59:59.000Z

359

Iowa Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Ethanol LLC Ethanol LLC Jump to: navigation, search Name Iowa Ethanol LLC Place Hanlontown, Iowa Zip 50451 Product Corn-base bioethanol producer in Iowa Coordinates 43.28456°, -93.378954° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.28456,"lon":-93.378954,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Frontier Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Frontier Ethanol LLC Frontier Ethanol LLC Jump to: navigation, search Name Frontier Ethanol LLC Place Gowrie, Iowa Product Owner and operator of a bioethanol plant near Gowrie, Iowa. Coordinates 42.28227°, -94.290334° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.28227,"lon":-94.290334,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Kaapa Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Kaapa Ethanol LLC Kaapa Ethanol LLC Jump to: navigation, search Name Kaapa Ethanol LLC Place Minden, Nebraska Zip 68959 Product Bioethanol producer using corn as feedstock Coordinates 37.97574°, -81.119434° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.97574,"lon":-81.119434,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Prairie Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Ethanol LLC Ethanol LLC Jump to: navigation, search Name Prairie Ethanol LLC Place Loomis, South Dakota Product Farmer owned bioethanol project development and managment team. Coordinates 48.82192°, -119.636004° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.82192,"lon":-119.636004,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

High Speed/ Low Effluent Process for Ethanol  

DOE Green Energy (OSTI)

Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

M. Clark Dale

2006-10-30T23:59:59.000Z

364

Prairie Creek Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Creek Ethanol LLC Creek Ethanol LLC Jump to: navigation, search Name Prairie Creek Ethanol LLC Place Goldfield, Iowa Zip 50542 Product Prairie Creek Ethanol, LLC had planned to build a 55m gallon (208m litre) per year ethanol plant in Wesley, Iowa, but, as of 23 May 2008, the board of directors voted to recommend to the members of the company to dissolve the company as soon as possible. Coordinates 37.707559°, -117.233459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.707559,"lon":-117.233459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Touts Importance of Cellulosic Ethanol at Georgia Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October 6, 2007 - 4:21pm Addthis SOPERTON, GA - U.S. Secretary of Energy Samuel W. Bodman today attended a groundbreaking ceremony for Range Fuels' biorefinery - one of the nation's first commercial-scale cellulosic ethanol biorefineries - and made the following statement. "Together, the Department of Energy and private sector pioneers, such as Range Fuels, are blending science and technology to advance the President's goal of reducing our dependence on foreign oil," U.S. Secretary of Energy Samuel W. Bodman said. "The production of cost-competitive cellulosic ethanol is a significant part of America's energy future. This new

366

DuPont Danisco Cellulosic Ethanol | Open Energy Information  

Open Energy Info (EERE)

Danisco Cellulosic Ethanol Danisco Cellulosic Ethanol Jump to: navigation, search Name DuPont Danisco Cellulosic Ethanol Place Itasca, Illinois Zip 60143 Product DuPont Danisco Cellulosic Ethanol is a joint venture to develop technologies for cellulosic ethanol. Coordinates 32.1666°, -97.154369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1666,"lon":-97.154369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Improving the bioconversion yield of carbohydrates and ethanol from lignocellulosic biomass.  

E-Print Network (OSTI)

??Improving the efficiency of lignocellulosic ethanol production is of the utmost importance if cellulosic bioethanol is to be competitive with fossil fuels and first generation (more)

Ewanick, Shannon

2012-01-01T23:59:59.000Z

368

Ethanol oxidation on metal oxide-supported platinum catalysts  

SciTech Connect

Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on Ethanol is a renewable fuel that can be used as an additive to gasoline (or its substitute) with the advantage of octane enhancement and reduced carbon monoxide exhaust emissions. However, on the standard three-way catalysts, the conversion of unburned ethanol is low because both ethanol and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of stoves that burn ethanol molecules and their partially oxidized derivatives to the final products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.and some of its partially oxidized derivatives are highly resistant to oxidation. A combination of first-principles density-functional theory (DFT) based calculations and in-situ diffuse reflectance infrared spectroscopy (DRIFTS) analysis was applied to uncover some of the fundamental phenomena associated with ethanol oxidation on Pt containing catalysts. In particular, the objective was to analyze the role of the oxide (i.e., ?-Al2O3 or SiO2) substrate on the ethanol oxidation activity. The results showed that Pt nanoparticles trap and accumulate oxygen at their surface and perimeter sites and play the role of stoves that burn ethanol molecules and their partially oxidized derivatives to the final products. The ?-Al2O3 surfaces provided higher mobility of the fragments of ethanol molecules than the SiO2 surface and hence increased the supply rate of these objects to the Pt particles. This will in turn produce a higher conversion rate of unburned ethanol.

L. M. Petkovic 090468; Sergey N. Rashkeev; D. M. Ginosar

2009-09-01T23:59:59.000Z

369

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

370

Continuous conversion of sweet sorghum juice to ethanol using immobilized yeast cells  

Science Conference Proceedings (OSTI)

While extensive work has been reported on sugarcane and sugarcane molasses for ethanol production, relatively few reports are available on ethanol production from sweet sorghum juice. With the advent of immobilized cell technology, an attempt has been made to utilize this technology for the production of ethanol from sweet sorghum juice. The species was Sorghum bicolar (Moench). The maximum productivity obtained at 30/sup 0/C with Saccharomyces uvarum cells immobilized in gelatin was 168 g/L h at an ethanol concentration of 2.4 g (w/v) using sweet sorghum juice having 11.5% fermentable sugars. The calculated value for full conversion was 86 g/L at an ethanol concentration of 5.5 g (w/v). The low concentration of total sugars in the juice, however, would make ethanol recovery expensive unless a uniformly high concentration of 16% or more of total sugars can be obtained.

Mohite, U.; SivaRaman, H.

1984-01-01T23:59:59.000Z

371

RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL  

E-Print Network (OSTI)

3) enzyme recovery and production cost and (4) potentialsugars. of ethanol production costs is shown in Table 16.Of the $1.79/gal production cost 75.7% is related to the

Wilke, C.R.

2011-01-01T23:59:59.000Z

372

Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism  

DOE Patents (OSTI)

A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

Gaddy, James L. (Fayetteville, AR); Clausen, Edgar C. (Fayetteville, AR)

1992-01-01T23:59:59.000Z

373

Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism  

DOE Patents (OSTI)

A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

Gaddy, J.L.; Clausen, E.C.

1992-12-22T23:59:59.000Z

374

Midwest Ethanol Producers Inc MEPI | Open Energy Information  

Open Energy Info (EERE)

Ethanol Producers Inc MEPI Ethanol Producers Inc MEPI Jump to: navigation, search Name Midwest Ethanol Producers Inc (MEPI) Place O'Neill, Nebraska Zip 68763 Product Focused on ethanol production. Coordinates 34.82186°, -97.513329° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.82186,"lon":-97.513329,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Xylose fermentation to ethanol. A review  

SciTech Connect

The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

McMillan, J.D.

1993-01-01T23:59:59.000Z

376

Fermentation of soybean hulls to ethanol while retaining protein value  

Science Conference Proceedings (OSTI)

Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharification and fermentation (SSF) process, and no pretreatment of the hulls was found to be needed to realize high ethanol yields with S. cerevisiae D5A. The impact of cellulase, -glucosidase and pectinase dosages were determined at a 15% biomass loading, and ethanol concentrations of 25-30 g/L were routinely obtained, while under these conditions corn stover, wheat straw, and switchgrass produced 3-4 times lower ethanol yields. Removal of carbohydrates also concentrated the hull protein to over 25% w/w from the original roughly 10%. Analysis of the soybean hulls before and after fermentation showed similar amino acid profiles including an increase in the essential amino acids lysine and threonine in the residues. Thus, eliminating pretreatment should assure that the protein in the hulls is preserved, and conversion of the carbohydrates to ethanol with high yields produces a more concentrated and valuable co-product in addition to ethanol. The resulting upgraded feed product from soybean hulls would likely to be acceptable to monogastric as well as bovine livestock.

Mielenz, Jonathan R [ORNL; Wyman, Professor Charles E [University of California, Riverside; John, Bardsley [Dartmouth College

2009-01-01T23:59:59.000Z

377

Alternative Fuels Data Center: Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

378

Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.  

Science Conference Proceedings (OSTI)

Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

Wang, M.; Wu, M.; Huo, H.; Energy Systems

2007-04-01T23:59:59.000Z

379

Recombinant yeast with improved ethanol tolerance and related methods of use  

Science Conference Proceedings (OSTI)

The present invention provides isolated Elo1 and Mig3 nucleic acid sequences capable of conferring increased ethanol tolerance on recombinant yeast and methods of using same in biofuel production, particularly ethanol production. Methods of bioengineering yeast using the Elo1 and, or, Mig3 nucleic acid sequences are also provided.

Gasch, Audrey P. (Madison, WI); Lewis, Jeffrey A. (Madison, WI)

2012-05-15T23:59:59.000Z

380

Agricultural sector impacts of making ethanol from grain  

DOE Green Energy (OSTI)

This report presents the results of a model of the effects on the agricultural sector of producing ethanol from corn in the United States between 1979 and 1983. The model is aggregated at the national level, and results are given for all of the major food and feed crops, ethanol joint products, farm income, government payment, and agricultural exports. A stochastic simulation was performed to ascertain the impacts of yield and demand variations on aggregate performance figures. Results indicate minimal impacts on the agricultural sector for production levels of less than 1 billion gallons of ethanol per year. For higher production levels, corn prices will rise sharply, the agricultural sector will be more vulnerable to variations in yields and demands, and joint-product values will fall. Possibilities for ameliorating such effects are discussed, and such concepts as net energy and the biomass refinery are explored.

Hertzmark, D.; Ray, D.; Parvin, G.

1980-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington  

DOE Green Energy (OSTI)

The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

Not Available

1991-01-01T23:59:59.000Z

382

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement All gasoline containing 1% or more ethanol by volume offered for sale must be conspicuously identified as "with ethanol" or "containing ethanol."

383

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

384

Corn Based Ethanol in Perspective: An Overview of the Possibilities,  

NLE Websites -- All DOE Office Websites (Extended Search)

Corn Based Ethanol in Perspective: An Overview of the Possibilities, Corn Based Ethanol in Perspective: An Overview of the Possibilities, Limitations and Consequences Speaker(s): Michael Carnall Date: August 30, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The use of corn based ethanol as a supplement or replacement of motor fuel gasoline has many champions as well as detractors. In this presentation I attempt to separate hype from facts and wishful thinking from realistic forecasts. The production of corn based ethanol has physical limits based on land required to grow its primary input. It also has economic limits based on the cost of inputs relative to the cost of the fuel it replaces and the value of the environmental and other benefits its use may provide. By exploring these limits and the likely consequences of

385

Florida Project Produces Nation's First Cellulosic Ethanol at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Project Produces Nation's First Cellulosic Ethanol at Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio and New Planet Energy, the project uses a unique hybrid of gasification and fermentation technology - originally developed with Energy Department support starting in the 1990's - to convert wood scraps, grass clippings and other waste materials into transportation fuels as well as energy for heat and power.

386

Florida Project Produces Nation's First Cellulosic Ethanol at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Florida Project Produces Nation's First Cellulosic Ethanol at Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale Florida Project Produces Nation's First Cellulosic Ethanol at Commercial-Scale July 31, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today recognized the nation's first commercial-scale cellulosic ethanol production at INEOS Bio's Indian River BioEnergy Center in Vero Beach, Florida. Developed through a joint venture between INEOS Bio and New Planet Energy, the project uses a unique hybrid of gasification and fermentation technology - originally developed with Energy Department support starting in the 1990's - to convert wood scraps, grass clippings and other waste materials into transportation fuels as well as energy for heat and power.

387

Ethanol Capital Funding | Open Energy Information  

Open Energy Info (EERE)

Capital Funding Capital Funding Jump to: navigation, search Name Ethanol Capital Funding Place Atlanta, Georgia Zip 30328 Product Provides funding for ethanol and biodiesel plants. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Atlantic Ethanol Capital | Open Energy Information  

Open Energy Info (EERE)

Atlantic Ethanol Capital Atlantic Ethanol Capital Place Washington, Washington, DC Product Biofuel Investor in Caribbean and Central American region. Coordinates 38.89037°, -77.031959° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.89037,"lon":-77.031959,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Gulf Ethanol Corp | Open Energy Information  

Open Energy Info (EERE)

Corp Corp Jump to: navigation, search Name Gulf Ethanol Corp Place Houston, Texas Zip 77055 Sector Biomass Product Focused on developing biomass preprocessing technology to efficiently produce cellulosic feedstocks for ethanol producers. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Cellulosic ethanol | Open Energy Information  

Open Energy Info (EERE)

Cellulosic ethanol Cellulosic ethanol Jump to: navigation, search Cellethanol.jpg Cellulosic ethanol is identical to first generation bio ethanol except that it can be derived from agricultural residues, other lignocellulosic raw materials or energy crops. These lignocellulosic raw materials are more widely available than the standard material used for ethanol. They are also considered to be more sustainable, however they need to be broken down (hydrolysed) into simple sugars prior to distillation, a much more complex process than the first generation bioethanol. It first must go through pretreatment,hydrolysis then a conversion. Research since the 1970s and large investments are being made in the US and Europe to speed up development of this route to bioethanol. Biomass refineries like Inbicon in Denmark are producing

391

Vehicle Technologies Office: Intermediate Ethanol Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

392

Ethanol Capital Management | Open Energy Information  

Open Energy Info (EERE)

Up Search Page Edit with form History Facebook icon Twitter icon Ethanol Capital Management Jump to: navigation, search Name Ethanol Capital Management Place Tucson, Arizona...

393

Cardinal Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

Cardinal Ethanol is in the process of building an ethanol plant in East Central Indiana, near Union City. Coordinates 39.184005, -78.164049 Loading map......

394

Ethanol Myths and Facts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Myths and Facts Ethanol Myths and Facts More Documents & Publications Biofuels & Greenhouse Gas Emissions: Myths versus Facts Biofuels & Greenhouse Gas Emissions: Myths...

395

Applying SE Methods Achieves Project Success to Evaluate Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock for Ethanol Production  

SciTech Connect

Applying basic systems engineering (SE) tools to the mission analysis phases of a 2.5-million dollar biomass pre-processing project for the U.S. Department of Energy directly assisted the project principal investigator understand the complexity and identify the gaps of a moving-target project and capture the undefined technical/functional requirements and deliverables from the project team and industrial partners. A creative application of various SE tools by non-aerospace systems engineers developed an innovative big picture product that combined aspects of mission analysis with a project functional flow block diagram, providing immediate understanding of the depth and breath of the biomass preprocessing effort for all team members, customers, and industrial partners. The big picture diagram became the blue print to write the project test plan, and provided direction to bring the project back on track and achieve project success.

Larry R. Zirker; Christopher T. Wright, PhD; R. Douglas Hamelin

2008-06-01T23:59:59.000Z

396

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network (OSTI)

costs and benefits of biodiesel and ethanol biofuels.switchgrass, and wood; Biodiesel production using soybean

Goyal, Garima

2011-01-01T23:59:59.000Z

397

Consolidated Bio-Processing of Cellulosic Biomass for Efficient Biofuel Production Using Yeast Consortium  

E-Print Network (OSTI)

biofuels technology. Traditionally, for ethanol production corn starch and sugarcane were used as raw materials (

Goyal, Garima

2011-01-01T23:59:59.000Z

398

Technology assessment of biomass ethanol : a multi-objective, life cycle approach under uncertainty  

E-Print Network (OSTI)

A methodology is presented for assessing the current and future utilization of agricultural crops as feedstocks for the production of transportation fuels, specifically, the use of corn grain and stover for ethanol production. ...

Johnson, Jeremy C. (Jeremy Clayton)

2006-01-01T23:59:59.000Z

399

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Vehicle Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle Emissions on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline for use as a vehicle fuel, ethanol can offer some emissions benefits over gasoline, depending on vehicle type, engine

400

Alternative Fuels Data Center: Ethanol Infrastructure Funding  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Funding to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Funding on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Funding on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Funding on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Funding The Ethanol Infrastructure Incentive Program provides funding to offset the cost of installing ethanol blender pumps at retail fueling stations

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

90% of new cars have engines specially designed to run on hydrous ethanol. This avoids the expense of remov-  

E-Print Network (OSTI)

production processes. Most bioethanol is produced from sugar cane (Brazil), molasses and corn (USA production Plants for conversion of bioethanol to other industrial chemical raw materials or end use products sugars. All the ethanol used for fuel and alcoholic drinks, and most industrial ethanol, is made

402

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Any motor vehicle fuel sold at retail containing more than 1% ethanol or methanol must be labeled according to Connecticut Department of Consumer

403

Alternative Fuels Data Center: Ethanol Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Tax Exemption Ethanol Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Tax Exemption Sales and use taxes apply to 80% of the proceeds from the sale of fuels containing 10% ethanol (E10) made between July 1, 2003, and December 31, 2018. If at any time these taxes are imposed at a rate of 1.25%, the tax on

404

Alternative Fuels Data Center: Ethanol License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol License to Ethanol License to someone by E-mail Share Alternative Fuels Data Center: Ethanol License on Facebook Tweet about Alternative Fuels Data Center: Ethanol License on Twitter Bookmark Alternative Fuels Data Center: Ethanol License on Google Bookmark Alternative Fuels Data Center: Ethanol License on Delicious Rank Alternative Fuels Data Center: Ethanol License on Digg Find More places to share Alternative Fuels Data Center: Ethanol License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol License Anyone who imports, exports, or supplies ethanol in the state of Wyoming must obtain an annual license from the Wyoming Department of Transportation. The fee for each license is $25. (Reference Wyoming

405

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Motor fuel containing more than 1% ethanol or methanol may not be sold or offered for sale from a motor fuel dispenser unless the individual selling

406

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Colorado Corn Blender Pump Pilot Program provides funding assistance for each qualified station dispensing mid-level ethanol blends. Projects

407

ORNL/TM-2000/165 Ethanol Demand in United States  

E-Print Network (OSTI)

ORNL/TM-2000/165 Ethanol Demand in United States Regional Production of Oxygenate-limited Gasoline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5. THE DEMAND FOR ETHANOL USED IN U.S. REGIONAL OXYGENATE- LIMITED GASOLINE PRODUCTON IN YEAR 2006+III, SUMMER WITH 3 PERCENT MAXIMUM MTBE . . . . . . . . . 54 5.4 PADD I+III, WINTER WITH 3 PERCENT MAXIMUM

408

17th European Biomass Conference and Exhibition 2009, Hamburg, Germany Lignocellulosic Ethanol: The Path to Market  

E-Print Network (OSTI)

17th European Biomass Conference and Exhibition 2009, Hamburg, Germany Lignocellulosic Ethanol of transport fuels from biomass is essential if the EU aspiration to substitute 10% of transport fuels investment in R&D in the US, Europe and Asia. The production of ethanol from lignocellulosic biomass

409

Stillage recycling: effect on ethanol yield, energy consumption, and stillage quality  

SciTech Connect

Grain sorghum thin stillage was recycled as cooking water in ethanol production experiments using bench- and pilot-scale systems. When stillage replaced 50 to 75% of the cooking water, large increases occurred in solids content, COD, and EC of resulting stillage. Ethanol yield, energy and water use were not affected.

Sweeten, J.M.; Coble, C.G.

1983-12-01T23:59:59.000Z

410

Texas AgriLife Extension Service Procedure 21.01.08.X1.05 Farm Equipment Operation and Maintenance Page 1 of 1  

E-Print Network (OSTI)

records for all equipment serviced in the Laserfiche Document Management System in section 5Texas AgriLife Extension Service Procedure 21.01.08.X1.05 Farm Equipment Operation and Maintenance AND MAINTENANCE Approved: July 21, 2001 Revised: December 14, 2010 Next Scheduled review: December 14, 2012

411

Systems biology analysis of Zymomonas mobilis ZM4 ethanol stress responses  

SciTech Connect

Zymomonas mobilis ZM4 is a capable ethanogenic bacterium with high ethanol productivity and high level of ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of ethanol stress response have not been elucidated fully. In this study, ethanol stress responses were investigated using systems biology tools. Medium supplementation with an initial 47.3 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. Metabolomic profiling showed that ethanol-treated ZM4 cells accumulated greater amounts of glycerol during the entire fermentation process, which may indicate an important role for this metabolite. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 56% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. There were fewer genes significantly differentially expressed in the exponential phase compared to that of stationary phase and early stationary phase. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Correlations among the transcriptomics, proteomics and metabolism were examined and among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. This systems biology study elucidates key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress.

Yang, Shihui [ORNL; Pan, Chongle [ORNL; Tschaplinski, Timothy J [ORNL; Hurst, Gregory {Greg} B [ORNL; Engle, Nancy L [ORNL; Zhou, Wen [University of Georgia, Athens, GA; Dam, Phuongan [ORNL; Xu, Ying [University of Georgia, Athens, GA; Dice, Lezlee T [ORNL; Davison, Brian H [ORNL; Brown, Steven D [ORNL

2013-01-01T23:59:59.000Z

412

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

Agri-Energy Funding Solutions + , Energy Company + , Biomass + , Wind energy + , AGRI-ENERGY FUNDING SOLUTIONS is a market consultant for BioDiesel + , Ethanol as well as...

413

Ethanol Production Incentive (Minnesota) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

414

Ethanol Production Incentive (Mississippi) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

415

Ethanol Production Incentive (Wisconsin) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

416

Ethanol Production Incentive (Missouri) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

417

Ethanol Production Incentive (Nebraska) | Open Energy Information  

Open Energy Info (EERE)

Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View source History View...

418

Fuel Ethanol Oxygenate Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

419

Weekly Ethanol Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

2010-2013: East Coast (PADD 1) W: W: W: W: W: W: 2010-2013: Midwest (PADD 2) 785: 784: 774: 818: 808: 811: 2010-2013: Gulf Coast (PADD 3) W: W: W: W: W: W: 2010-2013 ...

420

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

422

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Kentucky Corn Growers' Association (KyCGA) offers grants of $5,000 per pump to retailers installing new E85 dispensers in Kentucky. For more

423

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

424

Biofuel alternatives to ethanol: pumping the microbial well  

SciTech Connect

Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

2009-08-19T23:59:59.000Z

425

Biofuel alternatives to ethanol: pumping the microbial well  

SciTech Connect

Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

2009-12-02T23:59:59.000Z

426

Design and operation of a small-scale ethanol still  

DOE Green Energy (OSTI)

A description is presented of a small-scale alcohol still utilizing beer derived from both corn and potato mash. Use was made of the ethanol in alcohol vehicles imported from Brazil. By-products (stillage) were successfully used as cattle feed. (DMC)

Floyd, J.E.

1980-01-01T23:59:59.000Z

427

Also in this issue Does Local Production  

E-Print Network (OSTI)

policies encourage investments. Keywords: biofuel industry, investment, dynamic game, structural model JEL production boom, the number of new fuel ethanol plants around the world has been increasing rapidly. Even when excluding the country with the largest fuel ethanol production in 2009, the U.S., the fuel ethanol

Lin, C.-Y. Cynthia

428

Effect of Ethanol on Hypothalamic Opioid Peptides, Enkephalin, and Dynorphin: Relationship With Circulating Triglycerides  

E-Print Network (OSTI)

Background: Recent evidence has demonstrated that ethanol intake can stimulate the expression and production of the feeding-stimulatory peptide, galanin (GAL), in the hypothalamic paraventricular nucleus (PVN), and that PVN injection of this peptide, in turn, can increase the consumption of ethanol. To test the hypothesis that other feeding-related systems are involved in ethanol intake, this study examined the effect of ethanol on the hypothalamic opioid peptides, enkephalin (ENK), and dynorphin (DYN). Method: Adult, male SpragueDawley rats were trained to voluntarily drink increasing concentrations of ethanol, up to 9 % v/v, on a 12-hour access schedule or were given a single injection of ethanol (10 % v/v) versus saline vehicle. The effect of ethanol on GAL, ENK, and DYN mRNA was measured using real-time quantitative polymerase chain reaction and radiolabeled in situ hybridization, while radioimmunoassay was used to measure peptide levels. In addition to blood alcohol, circulating levels of triglycerides (TG), leptin, and insulin were also measured. Results: The data demonstrated that: (1) rats voluntarily drinking 9 % v/v ethanol (approximately 2.0 g/kg/d) show a significant increase in GAL, ENK, and DYN mRNA in the PVN compared with water-drinking rats; (2) voluntary consumption of ethanol also increases peptide levels of ENK and

Guo-qing Chang; Olga Karatayev; Rashedul Ahsan; Nicole M. Avena; Caroline Lee; J. Lewis; Bartley G. Hoebel; Sarah F. Leibowitz

2007-01-01T23:59:59.000Z

429

Vehicle Technologies Office: Fact #264: April 21, 2003 Production of  

NLE Websites -- All DOE Office Websites (Extended Search)

4: April 21, 4: April 21, 2003 Production of Ethanol and MTBE to someone by E-mail Share Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Facebook Tweet about Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Twitter Bookmark Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Google Bookmark Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Delicious Rank Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on Digg Find More places to share Vehicle Technologies Office: Fact #264: April 21, 2003 Production of Ethanol and MTBE on AddThis.com... Fact #264: April 21, 2003 Production of Ethanol and MTBE

430

Qteros formerly SunEthanol | Open Energy Information  

Open Energy Info (EERE)

Qteros formerly SunEthanol Qteros formerly SunEthanol Jump to: navigation, search Name Qteros (formerly SunEthanol) Place Amherst, Massachusetts Zip 1002 Product Massachusetts based next generation biofuel technology developer. Coordinates 44.450509°, -89.281675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.450509,"lon":-89.281675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Pacific Ethanol Inc formerly Accessity Corporation | Open Energy  

Open Energy Info (EERE)

Ethanol Inc formerly Accessity Corporation Ethanol Inc formerly Accessity Corporation Jump to: navigation, search Name Pacific Ethanol Inc (formerly Accessity Corporation) Place Fresno, California Zip 93711 Product String representation "Accessity has a ... r and marketer." is too long. Coordinates 29.53815°, -95.448909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.53815,"lon":-95.448909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Fermentation of soybean hulls to ethanol while preserving protein value  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermentation Fermentation of soybean hulls to ethanol while preserving protein value Jonathan R. Mielenz a,b, * , John S. Bardsley a,c , Charles E. Wyman a,d a Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States b BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States c Mascoma Corporation, Lebanon, NH 03766, United States d Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92507, United States a r t i c l e i n f o Article history: Received 12 August 2008 Received in revised form 11 February 2009 Accepted 11 February 2009 Available online 27 March 2009 Keywords: Ethanol SSF Biomass Agricultural residue Animal feed a b s t r a c t Soybean hulls were evaluated as a resource for production of ethanol by the simultaneous saccharifica- tion and fermentation (SSF) process, and no pretreatment

433

Enabling High Efficiency Ethanol Engines  

Science Conference Proceedings (OSTI)

Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

Szybist, J.; Confer, K. (Delphi Automotive Systems)

2011-03-01T23:59:59.000Z

434

Effects of corn stover as carbon supplement on an integrated anaerobic digestion and ethanol fermentation process  

Science Conference Proceedings (OSTI)

An integrated anaerobic digestion (AD) and ethanol fermentation process on a mixed feedstock of dairy manure and corn stover was performed to investigate the influence of corn stover on biogas production

2013-01-01T23:59:59.000Z

435

Ethanol Facts : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol Facts Ethanol Facts In 2005, the U.S. produced about 4 billion gallons of ethanol from corn grain, equaling approximately 2% of the 140 billion gallons of gasoline consumed. Ethanol is widely used as a fuel additive. The oxygen contained in ethanol improves gasoline combustibility. The Energy Policy Act of 2005 has established a renewable fuels standard which requires using 7.5 billion gallons of ethanol by 2012. E85 (85% ethanol and 15% gasoline blend) can be used as a substitute for gasoline in vehicles that have been modified to use E85. Energy content of E85 is 70% that of gasoline, so about 1.4 gallons of E85 are needed to displace one gallon of gasoline. Starch in corn grain is readily degraded into glucose sugar molecules that are fermented to ethanol. The complex structural

436

Autothermal Partial Oxidation of Ethanol and Alcohols  

Autothermal Reforming of Ethanol and Alcohols into Syngas Ethanol and alcohols can be converted into syngas using a robust autothermal reforming process. Syngas is a mixture of carbon monoxide and hydrogen that can be used to synthesize other ...

437

Northern Lights Ethanol LLC | Open Energy Information  

Open Energy Info (EERE)

You can help OpenEI by expanding it. Northern Lights Ethanol LLC is a company located in Big Stone City, South Dakota . References "Northern Lights Ethanol LLC" Retrieved from...

438

Importance of systems biology in engineering microbes for biofuel production  

E-Print Network (OSTI)

TS, Steen E, Keasling JD: Biofuel Alternatives to ethanol:in engineering microbes for biofuel production Aindrila

Mukhopadhyay, Aindrila

2011-01-01T23:59:59.000Z

439

NRRI Scientist Victor Krause provides product testing for Minnesota's secondary  

E-Print Network (OSTI)

combined heat, power and wood biofuel pellets plant in the North of Sweden. The production of ethanol WOOD ENERGY N°7 37 ssfilter Drier Production of pellets Biogas Ethanol District PLANT To develop the technology for ethanol production from wood residues, some regional companies, five

Netoff, Theoden

440

Pacific Ethanol, Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flambeau River Biofuels LLC Flambeau River Biofuels LLC Corporate HQ: Park Falls, Wisconsin Proposed Facility Location: Park Falls, Wisconsin Description: Construct a demonstration biomass-to-liquids (BTL) biorefinery CEO or Equivalent: Bob Byrne, President and Chief Operating Officer Participants: ANL Consultants, Auburn University, Brigham Young University, Citigroup Global Markets, CleanTech Partners, Emerging Fuels Technology, Flambeau River Papers, Johnson Timber, National Renewable Energy Lab, Michigan Technological University, NC State University, Oak Ridge National Laboratory, ThermoChem Recovery International, University of Wisconsin, USDA Forest Products Laboratory Production: * Capacity of 6 million gallons per year of Fisher-Tropsch (F-T) liquids in the form of renewable sulfur-free diesel fuels and waxes

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Mutant alcohol dehydrogenase leads to improved ethanol tolerance in Clostridium thermocellum  

Science Conference Proceedings (OSTI)

Clostridium thermocellum is a thermophilic, obligately anaerobic, Gram-positive bacterium that is a candidate microorganism for converting cellulosic biomass into ethanol through consolidated bioprocessing. Ethanol intolerance is an important metric in terms of process economics, and tolerance has often been described as a complex and likely multigenic trait for which complex gene interactions come into play. Here, we resequence the genome of an ethanol-tolerant mutant, show that the tolerant phenotype is primarily due to a mutated bifunctional acetaldehyde-CoA/alcohol dehydrogenase gene (adhE), hypothesize based on structural analysis that cofactor specificity may be affected, and confirm this hypothesis using enzyme assays. Biochemical assays confirm a complete loss of NADH-dependent activity with concomitant acquisition of NADPH-dependent activity, which likely affects electron flow in the mutant. The simplicity of the genetic basis for the ethanol-tolerant phenotype observed here informs rational engineering of mutant microbial strains for cellulosic ethanol production.

Brown, Steven D [ORNL; Guss, Adam M [ORNL; Karpinets, Tatiana V [ORNL; Parks, Jerry M [ORNL; Smolin, Nikolai [ORNL; Yang, Shihui [ORNL; Land, Miriam L [ORNL; Klingeman, Dawn Marie [ORNL; Bhandiwad, Ashwini [Thayer School of Engineering at Dartmouth; Rodriguez, Jr., Miguel [ORNL; Raman, Babu [Dow Chemical Company, The; Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Mielenz, Jonathan R [ORNL; Smith, Jeremy C [ORNL; Keller, Martin [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

2011-01-01T23:59:59.000Z

442

Fuel ethanol produced from U.S. Midwest corn : help or hindrance to the vision of Kyoto?  

SciTech Connect

In this study, we examined the role of corn-feedstock ethanol in reducing greenhouse gas (GHG) emissions, given present and near-future technology and practice for corn farming and ethanol production. We analyzed the full-fuel-cycle GHG effects of corn-based ethanol using updated information on corn operations in the upper Midwest and existing ethanol production technologies. Information was obtained from representatives of the U.S. Department of Agriculture, faculty of midwestern universities with expertise in corn production and animal feed, and acknowledged authorities in the field of ethanol plant engineering, design, and operations. Cases examined included use of E85 (85% ethanol and 15% gasoline by volume) and E10 (10% ethanol and 90% gasoline). Among key findings is that Midwest-produced ethanol outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG emissions (on a mass emission per travel mile basis). The superiority of the energy and GHG results is well outside the range of model noise. An important facet of this work has been conducting sensitivity analyses. These analyses let us rank the factors in the corn-to-ethanol cycle that are most important for limiting GHG generation. These rankings could help ensure that efforts to reduce that generation are targeted more effectively.

Wang, M.; Saricks, C.; Wu, M.; Energy Systems

1999-07-01T23:59:59.000Z

443

Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.  

Science Conference Proceedings (OSTI)

Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

2011-05-01T23:59:59.000Z

444

US Agri-Environmental Programs and their Potential Implications for Agricultural Trade  

E-Print Network (OSTI)

Conservation Security Program (CSP) Land Preservation EQIP and predecessors, CSP, and WHIP) Land Retirement (CRPincrease production. Slide 21 CSP: small production impacts

Cooper, Joseph

2005-01-01T23:59:59.000Z

445

List of Ethanol Incentives | Open Energy Information  

Open Energy Info (EERE)

Ethanol Incentives Ethanol Incentives Jump to: navigation, search The following contains the list of 67 Ethanol Incentives. CSV (rows 1 - 67) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alcohol Fuel Credit (Federal) Corporate Tax Credit United States Commercial Industrial Ethanol

446

Detecting Molecular Features of Spectra Mainly Associated with Structural and Non-Structural Carbohydrates in Co-Products from BioEthanol Production Using DRIFT with Uni- and Multivariate Molecular Spectral Analyses  

E-Print Network (OSTI)

Abstract: The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 14851188 cm ?1), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm ?1 with region and baseline: ca. 12921198 cm ?1), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187950 cm-1), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm ?1 with region and baseline: ca. 952910 cm ?1), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm ?1 with region and baseline: ca. 880827 cm-1), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm ?1 with baseline: ca. 14851188 cm ?1), H_1370 (structural carbohydrate, peak height at ca. 1370 cm ?1 with a baseline: ca. 14851188 cm ?1). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05)

Peiqiang Yu; Daalkhaijav Damiran; Arash Azarfar; Zhiyuan Niu

2011-01-01T23:59:59.000Z

447

Nebraska's 3rd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

Nebraska. Registered Energy Companies in Nebraska's 3rd congressional district Chief Ethanol Fuels Chief Ethanol Fuels Inc Husker Ag LLC Kaapa Ethanol LLC Mid America Agri...

448

A First-Law Thermodynamic Analysis of the Corn-Ethanol Cycle  

Science Conference Proceedings (OSTI)

This paper analyzes energy efficiency of the industrial corn-ethanol cycle. In particular, it critically evaluates earlier publications by DOE, USDA, and UC Berkeley Energy Resources Group. It is demonstrated that most of the current First Law net-energy models of the industrial corn-ethanol cycle are based on nonphysical assumptions and should be viewed with caution. In particular, these models do not (i) define the system boundaries, (ii) conserve mass, and (iii) conserve energy. The energy cost of producing and refining carbon fuels in real time, for example, corn and ethanol, is high relative to that of fossil fuels deposited and concentrated over geological time. Proper mass and energy balances of corn fields and ethanol refineries that account for the photosynthetic energy, part of the environment restoration work, and the coproduct energy have been formulated. These balances show that energetically production of ethanol from corn is 2-4 times less favorable than production of gasoline from petroleum. From thermodynamics it also follows that ecological damage wrought by industrial biofuel production must be severe. With the DDGS coproduct energy credit, 3.9 gallons of ethanol displace on average the energy in 1 gallon of gasoline. Without the DDGS energy credit, this average number is 6.2 gallons of ethanol. Equivalent CO{sub 2} emissions from corn ethanol are some 50% higher than those from gasoline, and become 100% higher if methane emissions from cows fed with DDGS are accounted for. From the mass balance of soil it follows that ethanol coproducts should be returned to the fields.

Patzek, Tad W. [University of California, Department of Civil and Environmental Engineering (United States)], E-mail: patzek@patzek.berkeley.edu

2006-12-15T23:59:59.000Z

449

Ethanol annual report FY 1990  

DOE Green Energy (OSTI)

This report summarizes the research progress and accomplishments of the US Department of Energy (DOE) Ethanol from Biomass Program, field managed by the Solar Energy Research Institute, during FY 1990. The report includes an overview of the entire program and summaries of individual research projects. These projects are grouped into the following subject areas: technoeconomic analysis; pretreatment; cellulose conversion; xylose fermentation; and lignin conversion. Individual papers have been indexed separately for inclusion on the data base.

Texeira, R.H.; Goodman, B.J. (eds.)

1991-01-01T23:59:59.000Z

450

Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China  

E-Print Network (OSTI)

Refining sweet sorghum to ethanol and sugar: economic trade-offs in the context of North China E 2004 Available online 26 November 2004 Abstract Reducing the use of non-renewable fossil energy scenarios in the context of North China. In general terms, the production of ethanol from the hemicel

California at Riverside, University of

451

Environmental Life Cycle Implications of Using Bagasse-Derived Ethanol as a Gasoline Oxygenate in Mumbai (Bombay)  

DOE Green Energy (OSTI)

Bagasse is the fibrous residue generated during sugar production and can be a desirable feedstock for fuel ethanol production. About 15%--25% of the bagasse is left after satisfying the mills' energy requirements, and this excess bagasse can be used in a bioconversion process to make ethanol. It is estimated that a 23 million L/yr ({approximately}6 million gal/yr) ethanol facility is feasible by combining excess bagasse from three larger sugar mills in Maharashtra state. The plant could supply about half of the ethanol demand in Mumbai, assuming that all gasoline is sold as an E10 fuel, a blend of 90% gasoline and 10% ethanol by volume. The life cycle assessment (LCA) performed in this study demonstrated the potentially significant benefits of diverting excess bagasse in Maharashtra to ethanol production, as opposed to disposing it by burning. In particular, lower net values for the ethanol production scenario were observed for the following: fossil energy consumption, and emissions of carbon monoxide , hydrocarbons (except methane), SOx, NOx, particulates, carbon dioxide, and methane. The lower greenhouse potential of the ethanol scenario is also important in the context of Clean Development Mechanism and Joint Implementation because India is a developing country.

Kadam, K.

2000-12-07T23:59:59.000Z

452

Bioconversion of plant biomass to ethanol. Final report, 15 December 1976-31 December 1978  

DOE Green Energy (OSTI)

Two approaches to ethanol production via thermophilic mixed culture fermentation of pretreated wood were investigated. The initial studies of wood biodelignification by Chrysosporium pruinosum and subsequent mixed culture fermentation to ethanol using a cellulolytic strain of sporocytophaga and a strain of Bacillus stearothermophilus proved to be premature for a development effort. Studies of the fermentation of SO/sub 2//steam-treated poplar by a mixed culture of C. thermocellum and C. thermosaccharolyticum were, however, technically and economically promising. Wood pretreatment to enhance microbial utilization, the microbiology and biochemistry of pure and mixed culture fermentation of cellulose by C. thermocellum and C. thermocellum and C. thermosaccharolyticum, and techniques for improving ethanol tolerance and yield were investigated. Considerable progress in overcoming the technical barriers to efficient ethanol production from wood have been demonstrated; however, additional studies and development work are required before technical feasibility can be established.

Brooks, R.E.; Su, T.M.; Brennan, M.J. Jr.; Frick, J.; Lynch, M.

1979-07-01T23:59:59.000Z

453

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents (OSTI)

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

454

Bioconversion of plant biomass to ethanol. Annual report and revised research plan, January 1977--January 1978  

DOE Green Energy (OSTI)

The objective of this research is to demonstrate on a laboratory scale the technical feasibility of the direct microbial conversion of pretreated wood to ethanol. During the first year of this contract, we investigated the feasibility of biologically delignifying wood with C. pruinosum and directly fermenting the pretreated wood to ethanol with a mixed culture. Bench-top fermentations of a thermophilic bacillus growing on glucose and of a mixed culture of thermophilic sporocytophaga (US) and a thermophilic bacillus growing on microcrystalline and amorphous cellulose were evaluated for growth and ethanol production. In the mixed culture fermentation of amorphous and microcrystalline cellulose, the specific rate of substrate depletion was calculated to be 0.087 hr/sup -1/ and 0.0346 hr/sup -1/, respectively. However, defining the growth requirements of C. pruinosum and sporocytophaga (US) proved more difficult than originally anticipated. In order to achieve the program objectives within the contract period, a revised research plan was developed based upon chemical pretreatment and the direct fermentation of pretreated hardwood to ethanol. In place of the biological delignification pretreatment step, we have substituted a chemically supplemented steam pretreatment step to partially delignify wood and to enhance its accessibility to microbial utilization. Clostridium thermocellum, which ferments cellulose directly to ethanol and acetic acid, has replaced the mixed culture fermentation stage for ethanol production. Research on the production of ethanol from xylose by the thermophilic bacillus ZB-B2 is retained as one means of utilizing the hemicellulose fraction of hardwood. Work on the genetic improvement of the ethanol yields of both cultures by suppressing acetic acid production is also retained. The rationale, experimental approach, and economic considerations of this revised research plan are also presented.

Brooks, R.E.; Bellamy, W.D.; Su, T.M.

1978-03-23T23:59:59.000Z

455

Kinder Morgan Central Florida Pipeline Ethanol Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

KINDER MORGAN CENTRAL FLORIDA PIPELINE ETHANOL PROJECT  In December 2008, Kinder Morgan began transporting commercial batches of denatured ethanol along with gasoline shipments in its 16-inch Central Florida Pipeline (CFPL) from Tampa to Orlando, making CFPL the first transmarket gasoline pipeline in the United States to do so. The 16-inch pipeline previously only transported regular and premium gasoline.  Kinder Morgan invested approximately $10 million to modify the line for ethanol shipments which involved chemically cleaning the pipeline, replacing pipeline equipment that was incompatible with ethanol and expanding storage capacity at its Orlando terminal to handle ethanol shipments.  Kinder Morgan is responding to customer interest in ethanol blending. Our Florida

456

Alternative Fuels Data Center: Ethanol Benefits and Considerations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits and Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Ethanol Benefits and Considerations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Benefits and Considerations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Benefits and Considerations Ethanol is a renewable, domestically produced transportation fuel. Whether

457

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

458

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

459

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

460

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

Note: This page contains sample records for the topic "agri ethanol products" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.