Powered by Deep Web Technologies
Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Coal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:Climatic SolarInformationCoal

2

American Clean Coal Fuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandriaAlstomAmedee GeothermalCoal Fuels

3

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

4

Illinois Municipal Elec Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany:Information IDS ClimateIceland-NRELBoise,IgiugigAgency

5

U.S. Energy Information Administration | Quarterly Coal Report...  

Gasoline and Diesel Fuel Update (EIA)

and Institutional Users by Census Division and State (dollars per short ton) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Year to Date...

6

Quarterly Coal Report - Energy Information Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNewsCenter forQuality Assurance Is A KeyCoal

7

Southern thailand coal fired project: Feasibility study. Export trade information  

SciTech Connect (OSTI)

This study, conducted by Black & Veatch International, was funded by the U.S. Trade and Development Agency. The report addresses various technical, environmental, and economic aspects of developing four 1,000 MW units of coal fired electric generating facilities at a site near Prachuap Khiri Khan. The study includes a cost estimate for the units and the fuel delivery port as well as the major conceptual design decisions made for the project. This volume of the report is the Feasibility Study and is divided into the following sections: (1) Introduction/Summary; (2) Generation Planning Study; (3) Site Selection Study; (4) Project Description; (5) Fuel Resource Assessment; (6) Water Resource Assessment; (7) Technical Information to Support the Environmental Impact Assessment; (8) Plant Conceptual Design; (9) Transmission Interconnection; (10) Project Capital Cost Estimate; (11) Project Schedule; (12) Project Implementation Plan; (13) Project Risk Analysis.

NONE

1995-09-01T23:59:59.000Z

8

Legal Resources Information System for Information Agencies of Specialized Libraries  

E-Print Network [OSTI]

In recent years, the rapid development of information technology and communication has a strong impact to industry information - the library. The mission of the industry when in fact the great social place to see the library as knowledge management. Vietnam is in the process of building the rule of law socialist orientation and improves the legal system. So in the current development process, the law library plays an important role in the retention, dissemination and provision of legal information service of legislative, executive and judiciary, particularly especially research, teaching and learning of law school. But the response of the legal information library information agencies remains limited compared to the increasing demand of users.

Nguyen, Phuc V

2011-01-01T23:59:59.000Z

9

Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River  

E-Print Network [OSTI]

Coal River Mountain Action Several people asked for more information about the 23 June civil disobedience near Coal River Mountain. We need Dickens to describe the local situation, but you can glean the practice of mountaintop removal. Vernon Haltom vernoncrmw@gmail.com, head of Coal River Mountain Watch

Hansen, James E.

10

Government and Voluntary Agencies (Disaster Contact Information)  

E-Print Network [OSTI]

& Abuse Hotline 800-323-8603 Florida Child Care (Resource and referral) 888-352-4453 Agency for Workforce-646-0444 Florida Agricultural and Consumer Price Gouging Hotline 800-435-7352 Florida Abuse Hotline 800-962-2873 or 1-800-96ABUSE Small Business Administration Helpline (SBA loans for applicants) 800-359-2227 Social

Jawitz, James W.

11

Energy Information Agency's 2003 Commercial Building Energy Consumption Survey Tables  

Broader source: Energy.gov [DOE]

Energy use intensities in commercial buildings vary widely and depend on activity and climate, as shown in this data table, which was derived from the Energy Information Agency's 2003 Commercial Building Energy Consumption Survey.

12

International Energy Agency (IEA) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climate compatible developmentClimate Governance JumpAgency

13

Michigan Public Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to: navigation,MetalysisMiMichigan Public Power Agency

14

Colorado/Transmission/Agencies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS) | OpenEnergyGovernor sAgencies <

15

Minnesota Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area Energy Efficiency,Grid RenewableMini-GridAgency Place:

16

Property:FundingAgencies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProcedures Jump to:FirstWellTemp JumpFundingAgencies Jump to:

17

Property:FundingAgency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProcedures Jump to:FirstWellTemp JumpFundingAgencies Jump

18

European Space Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,Law and PolicyEssexEuropeanSpace Agency Jump

19

Agency of Renewable Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt Energies JumpAgPro Jump to:InversionesAgency

20

Annual Coal Distribution Report - Energy Information Administration  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan Feb MarAlternative0ofcurrent

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

FMI NewCoal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA -Single-Well and Cross-WellNewCoal

22

Annual Coal Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by region,Purchases211AlabamaAnnual Coal

23

Information resources in state regulatory agencies-a California perspective  

SciTech Connect (OSTI)

Various state regulatory agencies have expressed a need for networking with information gatherers/researchers to produce a concise compilation of primary information so that the basis for regulatory standards can be scientifically referenced. California has instituted several programs to retrieve primary information, generate primary information through research, and generate unique regulatory standards by integrating the primary literature and the products of research. This paper describes these programs.

DiZio, S.M. [California Environmental Protection Agency, Sacramento (United States)

1990-12-31T23:59:59.000Z

24

Property:Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open Energy Information onASHRAEAdditionalRef

25

Federal Register Notice: Proposed Agency Information Collection  

Broader source: Energy.gov [DOE]

Federal Register Notice on the DOE’s invitation for public comment on its request to the Office of Management and Budget (OMB) to extend for three years the Information Collection Request Title: OE Recovery Act Financial Assistance Grants, OMB Control No. 1910–5149 that DOE is developing for submission to OMB pursuant to the Paperwork Reduction Act of 1995. Comments due on or before November 7, 2011.

26

Federal Register Notice: Proposed Agency Information Collection  

Broader source: Energy.gov [DOE]

Federal Register Notice on the DOE’s invitation for public comment on its intent to request the Office of Management and Budget (OMB) to extend for four years the Information Collection Request Title: OE Recovery Act Financial Assistance Grants, OMB Control No. 1910–5149 that DOE is developing for submission to OMB pursuant to the Paperwork Reduction Act of 1995. Comments due on or before October 11, 2011.

27

Agency, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area274907°,Agassiz

28

Utah Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401Upson County,MonkeymosaicCommerce JumpTank Logo:

29

Minnesota Pollution Control Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: Energy Resources JumpMicrelBirds JumpMilnerMinn-Dakota

30

Agency, Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information Lightning Dock Area274907°,Agassizis a village in

31

International Energy Agency (IEA) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Of The Data, RegionalInternational Clean

32

International Energy Agency Feed | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Of The Data, RegionalInternational

33

Coal Power Plant Database | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPower Address:Climatic SolarInformation

34

Coal - U.S. Energy Information Administration (EIA)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearchCASLNanoporous Materials | Center forClimate ChangeCoal

35

International Renewable Energy Agency (IRENA) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting aLianheStudiesInformationAgency

36

Presentations from the 1992 Coal Mining Impoundment Informational Meeting  

SciTech Connect (OSTI)

On May 20 and 21, 1992, the MSHA Coal Mining Impoundment Informational Meeting was held at the National Mine Health and Safety Academy in Beckley, West Virginia. Fifteen presentations were given on key issues involved in the design and construction of dams associated with coal mining. The attendees were told that to improve the consistency among the plan reviewers, engineers from the Denver and Pittsburgh Technical Support Centers meet twice annually to discuss specific technical issues. It was soon discovered that the topics being discussed needed to be shared with anyone involved with coal waste dam design, construction, or inspection. The only way to accomplish that goal was through the issuance of Procedure Instruction Letters. The Letters present a consensus of engineering philosophy that could change over time. They do not present policy or carry the force of law. Currently, thirteen position papers have been disseminated and more will follow as the need arises. The individual paper were not even entered into the database.

Not Available

1993-12-31T23:59:59.000Z

37

Coal conversion and biomass conversion: Volume 1: Final report on USAID (Agency for International Development)/GOI (Government of India) Alternate Energy Resources and Development Program  

SciTech Connect (OSTI)

The United States Agency for International Development (AID), in joint collaboration with the Government of India (GOI), supported a research and development program in Alternate Energy Resources during the period March 1983 to June 1987. The primary emphasis of this program was to develop new and advanced coal and biomass conversion technologies for the efficient utilization of coal and biomass feedstocks in India. This final ''summary'' report is divided into two volumes. This Report, Volume I, covers the program overview and coal projects and Volume II summarizes the accomplishments of the biomass projects. The six projects selected in the area of coal were: Evaluation of the Freeboard Performance in a Fluidized-Bed Combustor; Scale-up of AFBC boilers; Rheology, Stability and Combustion of Coal-Water Slurries; Beneficiation of Fine Coal in Dense Medium Cyclones; Hot Gas Cleanup and Separation; and Cold Gas Cleanup and Separation.

Kulkarni, A.; Saluja, J.

1987-06-30T23:59:59.000Z

38

Coal - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Scheduled 2015 capacity additions mostly wind and natural gas; retirements mostly coal natural gaselectricityrenewablenucleargeneration capacitywindsolarretirementscapacity...

39

Central Information and Business Agency CIBA | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Information on PV2009 | Open Energy Information Puband Business

40

Property:EnvReviewAgency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyoCoolingTowerWaterUseSummerConsumedEnergyAccessYearInitiatedEnvReviewAgency Jump to:

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Quarterly coal report, October--December 1996  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for October through December 1996 and aggregated quarterly historical data for 1990 through the third quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 72 tabs.

NONE

1997-05-01T23:59:59.000Z

42

Energy Information Administration quarterly coal report, October--December 1992  

SciTech Connect (OSTI)

The United States produced just over 1 billion short tons of coal in 1992, 0.4 percent more than in 1991. Most of the 4-million-short-ton increase in coal production occurred west of the Mississippi River, where a record level of 408 million short tons of coal was produced. The amount of coal received by domestic consumers in 1992 totaled 887 million short tons. This was 7 million short tons more than in 1991, primarily due to increased coal demand from electric utilities. The average price of delivered coal to each sector declined by about 2 percent. Coal consumption in 1992 was 893 million short tons, only 1 percent higher than in 1991, due primarily to a 1-percent increase in consumption at electric utility plants. Consumer coal stocks at the end of 1992 were 163 million short tons, a decrease of 3 percent from the level at the end of 1991, and the lowest year-end level since 1989. US coal exports fell 6 percent from the 1991 level to 103 million short tons in 1992. Less coal was exported to markets in Europe, Asia, and South America, but coal exports to Canada increased 4 million short tons.

Not Available

1993-05-21T23:59:59.000Z

43

Coal industry annual 1994  

SciTech Connect (OSTI)

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

44

Feasibility study for underground coal gasification at the Krabi coal mine site, Thailand: Volume 1. Progress report, December 1--31, 1995; Export trade information  

SciTech Connect (OSTI)

The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.

Young, B.C.; Schmit, C.R.

1996-01-01T23:59:59.000Z

45

International Energy Agency: Focus on Asia Pacific FOCUS ON CLEAN COAL  

E-Print Network [OSTI]

The views expressed in this Working Paper are those of the authors and do not necessarily represent the views or policy of the International Energy Agency or of its individual member countries. As this paper is a Work in Progress, designed to elicit comments and further debate, comments are welcome, directed to the author

unknown authors

2006-01-01T23:59:59.000Z

46

Quarterly coal report, July--September 1998  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1998 and aggregated quarterly historical data for 1992 through the second quarter of 1998. 58 tabs.

NONE

1999-02-01T23:59:59.000Z

47

Quarterly coal report  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1995 and aggregated quarterly historical data for 1987 through the third quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

Young, P.

1996-05-01T23:59:59.000Z

48

Coal distribution, January--June 1991  

SciTech Connect (OSTI)

The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. The data in this report are collected and published by the Energy Information Administration (EIA) to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275, Sections 5 and 13, as amended). This issue presents information for January through June 1991. Coal distribution data are shown (in Tables 1--34) by coal-producing Sate of origin, consumer use, method of transportation, and State of destination. All data in this report were collected by the EIA on Form EIA-6, Coal Distribution Report.'' A copy of the form and the instructions for filing appear in Appendix B. All data in this report for 1991 are preliminary. Data for previous years are final. 6 figs., 34 tabs.

Not Available

1991-10-21T23:59:59.000Z

49

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumber ofCoal MiningCoal

50

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumber ofCoal MiningCoalU.S.

51

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumber ofCoalUnderground Coal

52

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumberAverage SalesCoalCoal

53

Project Information Form Project Title White Paper on Climate Adaptation for State DOTs and Local Agencies  

E-Print Network [OSTI]

each agency or organization) DOT $30,000 Total Project Cost $30,000 Agency ID or Contract Number DTRT13Project Information Form Project Title White Paper on Climate Adaptation for State DOTs and Local-G-UTC29 Start and End Dates January 2014 to December 2014 Brief Description of Research Project

California at Davis, University of

54

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

55

Coal industry annual 1996  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

56

A centurial history of technological change and learning curves or pulverized coal-fired utility boilers  

E-Print Network [OSTI]

International Energy Agency’s Clean Coal Centre CoalPower5Press; 2002. [25] IEA Clean Coal Centre. CoalPower5 (CD-from fossil fuels. In: IEA clean coal conference, Sardinia,

Yeh, Sonia; Rubin, Edward S.

2007-01-01T23:59:59.000Z

57

Hidden-Information Agency Bernard Caillaud Benjamin E. Hermalin  

E-Print Network [OSTI]

course of action. In each of these situations, having private information gives the player possessing, he has private information about some state of nature private information relevant to the relationship. As is typical in information economics, we refer to the player with the private information

Sadoulet, Elisabeth

58

Coal combustion science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

1990-11-01T23:59:59.000Z

59

Agency Information Collection Extension Notice of Public Comment: Federal  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142LoraAgency Financial

60

Idaho/Transmission/Agency Links | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia:ISI Solar JumpObtainTransmission/Agency Links <

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Quarterly Coal Report, July--September 1994  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1994 and aggregated quarterly historical data for 1986 through the second quarter of 1994. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the United States, historical information has been integrated in this report. Additional historical data can also be found in the following EIA publications : Annual Energy Review 1993 (DOE/EIA-0384(93)), Monthly Energy Review (DOE/EIA-0035), and Coal Data: A Reference (DOE/EIA-0064(90)). The historical data in this report are collected by the EIA in three quarterly coal surveys (coal consumption at manufacturing plants, coal distribution, and coal consumption at coke plants), one annual coal production survey, and two monthly surveys of electric utilities. All data shown for 1993 and previous years are final. Data for 1994 are preliminary.

Not Available

1995-02-01T23:59:59.000Z

62

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |New York/New JerseyNumber921Coal

63

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumber of EmployeesCoal

64

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumber ofCoal Mining

65

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumber ofCoal

66

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumber ofCoalUnderground

67

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumberAverage SalesCoal

68

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumberAverageCoal Production

69

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumberAverageCoal

70

Colorado/Transmission/Agency Links | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy,(EC-LEDS) | OpenEnergyGovernor sAgencies

71

M S R Public Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy Co Ltd JumpLightSourceR Public Power Agency Jump

72

New York Mun Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) | OpenInc JumpNew York Mun Power Agency

73

Property:ExplorationPermitAgency-Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation,ExplorationPermitAgency-Drilling Property Type Page

74

Property:ExplorationPermitAgency-PreDrilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation,ExplorationPermitAgency-Drilling Property Type

75

Property:GRR/ContactAgency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProcedures JumpGreenButtonID JumpContactAgency Jump to:

76

Four Dam Pool Power Agency FDPPA | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFluxInputDam Pool Power Agency FDPPA Jump

77

Quarterly coal report, October--December 1997  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities. This report presents detailed quarterly data for october through December 1997 and aggregated quarterly historical data for 1991 through the third quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data, as specified in Section 202 of the energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

NONE

1998-05-01T23:59:59.000Z

78

Agency Information Collection Extension Notice of Public Comment...  

Broader source: Energy.gov (indexed) [DOE]

of Management and Budget (OMB), Department of Energy Form OE-417, ''Emergency Electric Incident and Disturbance Report.'' Comments regarding this proposed information collection...

79

How information resources are used by federal agencies in risk assessment application: Rapporteur summary  

SciTech Connect (OSTI)

The application of information available for risk assessment from the federal perspective is described. Different federal agencies conduct varying degrees of hazard evaluation, and some also generate empirical data. The role of the Agency for Toxic Substances and Disease Registry in hazard assessments of potential public health impacts of Superfund sites includes identification of the 275 most significant substances. ATSDR is responsible for preparing toxicological profiles. ATSDR also identifies data gaps and needs critical to adequately assessing human health impacts.

Fenner-Crisp, P. [Environmental Protection Agency, Washington, DC (United States)

1990-12-31T23:59:59.000Z

80

Property:AirQualityPermitAgency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open Energy Information

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

82

Inland Empire Utility Agency (IEUA) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie,Infield CapitalEnergy Information

83

Inland Empire Utilities Agency IEUA | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergy Information Injectivity Test

84

Title 40 CFR 1507 Agency Compliance | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl.,Information EPA

85

How information resources are used by state agencies in risk assessment applications - Illinois  

SciTech Connect (OSTI)

The Environmental Protection Agency of the State of Illinois (Illinois EPA) has programs in water, air, and land pollution and water supplies paralleling those of the US Environmental Protection Agency (EPA). The organization is part of a tripartite arrangement in which the Pollution Control Board is the judicial arm, the Department of Energy and Natural Resources is the research arm, and the Illinois EPA is the enforcement arm. Other state agencies are also concerned with various aspects of the environment and may do risk assessments for chemicals. Although there are various risk assessment activities, both formal and informal, in our agency and in others, this paper will discuss only recent initiatives in water quality criteria.

Olson, C.S.

1990-12-31T23:59:59.000Z

86

United States Environmental Protection Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq.NorthUniopolis,ParcelDefense

87

Arizona/Transmission/Agency Links | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata,KoblitzEnergyArizona Game and Fish

88

Arunachal Pradesh Energy Development Agency APEDA | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergyElectric Coop CorpInformation Arthur County,Aruba:

89

United States Environmental Protection Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator Jump to:UnionmetInformation

90

California/Transmission/Agency Links | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3:Information US Recovery Act< California‎ |

91

International Atomic Energy Agency Feed | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Of The Data, Regional PatternsOf

92

Quarterly coal report July--September 1996, February 1997  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1996 and aggregated quarterly historical data for 1990 through the second quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data. 8 figs., 72 tabs.

NONE

1997-02-01T23:59:59.000Z

93

MHK Projects/Coal Creek Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies Jump to:BW2 Tidal <CETO

94

Coal City, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill,Deep2856185°

95

Southern thailand coal fired project: Conceptual design. Volume 3. Export trade information  

SciTech Connect (OSTI)

This study, conducted by Black & Veatch International, was funded by the U.S. Trade and Development Agency. The report addresses various technical, environmental, and economic aspects of developing four 1,000 MW units of coal fired electric generating facilities at a site near Prachuap Khiri Khan. The study includes a cost estimate for the units and the fuel delivery port as well as the major conceptual design decisions made for the project. The study is accompanied by four Conceptual Design manuals. The manual was prepared to communicate project design parameters and requirements to participants of the project, and to control uniformity of design concepts throughout the project. This is Volume 3 of the Conceptual Design manual which is divided into 12 sections pertaining to System Design Specifications.

NONE

1995-09-01T23:59:59.000Z

96

Southern thailand coal fired project: Conceptual design. Volume 2. Export trade information  

SciTech Connect (OSTI)

This study, conducted by Black & Veatch International, was funded by the U.S. Trade and Development Agency. The report addresses various technical, environmental, and economic aspects of developing four 1,000 MW units of coal fired electric generating facilities at a site near Prachuap Khiri Khan. The study includes a cost estimate for the units and the fuel delivery port as well as the major conceptual design decisions made for the project. The study is accompanied by four Conceptual Design manuals. The manual was prepared to communicate project design parameters and requirements to participants of the project, and to control uniformity of design concepts throughout the project. This is Volume 2 of the Conceptual Design and is divided into the following sections: (1) General Studies; (2) System Analyses.

NONE

1995-09-01T23:59:59.000Z

97

Southern thailand coal fired project: Conceptual design. Volume 4. Export trade information  

SciTech Connect (OSTI)

This study, conducted by Black & Veatch International, was funded by the U.S. Trade and Development Agency. The report addresses various technical, environmental, and economic aspects of developing four 1,000 MW units of coal fired electric generating facilities at a site near Prachuap Khiri Khan. The study includes a cost estimate for the units and the fuel delivery port as well as the major conceptual design decisions made for the project. The study is accompanied by four Conceptual Design manuals. The manual was prepared to commumnicate project design parameters and requirements to participants of the project, and to control uniformity of design concepts throughout the project. This is Volume 4 of the Conceptual Design manual and is divided into 12 sections pertaining to System Design Specifications.

NONE

1995-09-01T23:59:59.000Z

98

Coal data: A reference  

SciTech Connect (OSTI)

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

99

Quarterly coal report, October--December 1994  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for October through December 1994 and aggregated quarterly historical data for 1986 through the third quarter of 1994. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

NONE

1995-05-23T23:59:59.000Z

100

Quarterly coal report, January--March 1994  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1994 and aggregated quarterly historical data for 1986 through the fourth quarter of 1993. Appendix A displays, from 1986 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

Not Available

1994-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Quarterly coal report, January--March 1995  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1995 and aggregated quarterly historical data for 1987 through the fourth quarter of 1994. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

NONE

1995-08-24T23:59:59.000Z

102

Quarterly coal report, January--March 1997  

SciTech Connect (OSTI)

This Quarterly Coal Report (QCR) provides comprehensive information about U.S. coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience,including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for January through March 1997 and aggregated quarterly historical data for 1991 through the fourth quarter of 1996. Appendix A displays, from 1988 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

NONE

1997-08-01T23:59:59.000Z

103

Integration of site-specific health information: Agency for Toxic Substances and Disease Registry health assessments  

SciTech Connect (OSTI)

The Agency for Toxic Substances and Disease Registry is required to conduct a health assessment of any site that is listed on or proposed for the US Environmental Protection Agency's National Priorities List. Sixteen US Department of Energy (DOE) sites currently fall into this category. Health assessments contain a qualitative description of impacts to public health and the environment from hazardous waste sites, as well as recommendations for actions to mitigate or eliminate risk. Because these recommendations may have major impacts on compliance activities at DOE facilities, the health assessments are an important source of information for the monitoring activities of DOE's Office of Environmental Compliance (OEC). This report provides an overview of the activities involved in preparing the health assessment, its role in environmental management, and its key elements.

Lesperance, A.M.; Siegel, M.R.

1990-12-01T23:59:59.000Z

104

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

Council (NCC), 2006, “Coal: America’s Energy Future”, VolumeAssessments to Inform Energy Policy, “Coal: Research andOF RAIL TRANSPORTATION OF COAL The Federal Energy Regulatory

McCollum, David L

2007-01-01T23:59:59.000Z

105

Title 40 CFR 1501 NEPA and Agency Planning | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl.,Information EPA AdministeredNEPA and Agency

106

Table 9. Major U.S. Coal Mines, 2013 U.S. Energy Information Administration | Annual Coal Report 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shaleMajor U.S. Coal

107

Coal Combustion Science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

1991-08-01T23:59:59.000Z

108

How information resources are used by federal agencies in risk assessment applications  

SciTech Connect (OSTI)

This paper discusses the structure and responsibilities of the US Army Toxic and Hazardous Materials Agency.

Legg, W.E. [Army Environmental Hygiene Agency, Aberdeen Proving Ground, MD (United States)

1990-12-31T23:59:59.000Z

109

Coal combustion science. Quarterly progress report, April 1993--June 1993  

SciTech Connect (OSTI)

This document is a quarterly status report of the Coal Combustion Science Project that is being conducted at the Combustion Research Facility, Sandia National Laboratories. The information reported is for Apr-Jun 1993. The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the PETC Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. The objective of the kinetics and mechanisms of pulverized coal char combustion task is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: kinetics of heterogeneous fuel particle populations; char combustion kinetics at high carbon conversion; the role of particle structure and the char formation process in combustion and; unification of the Sandia char combustion data base. This data base on the high temperature reactivities of chars from strategic US coals will permit identification of important fuel-specific trends and development of predictive capabilities for advanced coal combustion systems. The objective of the fate of inorganic material during coal combustion task is the establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of inorganic material during coal combustion as a function of coal type, particle size and temperature, the initial forms and distribution of inorganic species in the unreacted coal, and the local gas temperature and composition. In addition, optical diagnostic capabilities are being developed for in situ, real-time detection of inorganic vapor species and surface species during ash deposition. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Hardesty, D.R. [ed.

1994-05-01T23:59:59.000Z

110

Southern thailand coal fired project: Conceptual design. Volume 1. Export trade information  

SciTech Connect (OSTI)

The report addresses various technical, environmental, and economic aspects of developing four 1,000 MW units of coal fired electric generating facilities at a site near Prachuap Khiri Khan. The study includes a cost estimate for the units and the fuel delivery port as well as the major conceptual design decisions made for the project. The study is accompanied by four Conceptual Design manuals. The manual was prepared to communicate project design parameters and requirements to participants of the project, and to control uniformity of design concepts throughout the project. This is Volume 1 of the Conceptual Design and is divided into the following sections: (1) Project Descirption; (2) Site Investigations; (3) Permits and Licenses; (4) Site Planning and Information; (5) Meteorology; (6) Generation Plant Planning; (7) Generatioin Plant Information; (8) Economic Criteria; (9) System Design; (10) Structural Engineering Design Criteria; (11) Mechanical Engineering Design Criteria; (12) Electrical Engineering Design Criteria; (13) Control Engineering Design Criteria; (14) Chemical Engineering Design Criteria; (15) Equipment Nomenclature and Numbering.

NONE

1995-09-01T23:59:59.000Z

111

State coal profiles, January 1994  

SciTech Connect (OSTI)

The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

Not Available

1994-02-02T23:59:59.000Z

112

Quarterly coal report July--September 1995, February 1996  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience, including Congress, Federal and State agencies, the coal industry, and the general public. Coke production, consumption, distribution, imports, and exports data are also provided. The data presented in the QCR are collected and published by the Energy Information Administration (EIA) to fulfill data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. This report presents detailed quarterly data for July through September 1995 and aggregated quarterly historical data for 1987 through the second quarter of 1995. Appendix A displays, from 1987 on, detailed quarterly historical coal imports data, as specified in Section 202 of the Energy Policy and Conservation Amendments Act of 1985 (Public Law 99-58). Appendix B gives selected quarterly tables converted to metric tons.

NONE

1996-02-16T23:59:59.000Z

113

Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production and Regional Economic Growth  

E-Print Network [OSTI]

Arrowhead Center: Coal Production and Regional Economic Growth Report Title: Coal Production@nmsu.edu #12;Arrowhead Center: Coal Production and Regional Economic Growth i Disclaimer This report States Government or any agency thereof. #12;Arrowhead Center: Coal Production and Regional Economic

Johnson, Eric E.

114

An assessment of the quality of selected EIA data series: Coal data, 1983--1988  

SciTech Connect (OSTI)

The purpose of this report is to present information on the quality of some of the Energy Information Administration`s (EIA) coal data. This report contains discussions of data on production, direct labor hours, recoverable reserves, and prices from 1983 through 1988. Chapter 2 of this report presents a summary of the EIA coal data collection and identifies other sources providing similar data. Chapters 3 and 4 focus on data on coal production and direct labor hours, respectively. Detailed comparisons with data from the Mine Safety and Health Administration (MSHA) and State mining agencies are presented. Chapter 5 examines recoverable reserves. Included are internal comparisons as well as comparisons with other published reserve-related data, namely those of BXG, Inc. Chapter 6 describes how EIA obtains estimates of coal prices and discusses the variability in the prices caused by factors such as mine type, coal rank, and region. 5 figs., 5 tabs.

Not Available

1991-11-25T23:59:59.000Z

115

Carbon Dioxide Emission Factors for Coal  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has developed factors for estimating the amount of carbon dioxide emitted, accounting for differences among coals, to reflect the changing "mix" of coal in U.S. coal consumption.

1994-01-01T23:59:59.000Z

116

U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks at Other IndustrialCoal

117

Sulfur and ash in Paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short toms of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plans region. This is more than 30% of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more F or Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5% sulfur, 1.2 lb SO{sub 2} per million btu, and 6% ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short toms of >26% of the total US coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R.

1998-07-01T23:59:59.000Z

118

Sulfur and ash in paleocene Wyodak-Anderson coal in the Powder River Basin, Wyoming and Montana: A fuel source beyond 2000  

SciTech Connect (OSTI)

When coal-fired power plants are required by the Environmental Protection Agency (EPA) to meet more stringent sulfur emission standards (0.6 pound per million Btu) after the year 2000, most of the clean and compliant coals will come from the Powder River Basin in Wyoming and Montana. In 1996 more than 300 million short tons of these clean and compliant coals were produced from the Paleocene Fort Union Formation in the northern Rocky Mountains and Great Plains region. This is more than 30 percent of the total US coal production of 1.03 billion short tons in 1996. Future demand for clean and compliant coals can probably be met through production of more Fort Union coals in the region. It is projected by the Energy Information Agency (1996) that most of the low-sulfur and low-ash coals in the northern Rocky Mountains and Great Plains region will be produced from the Wyodak-Anderson coal bed/zone of the Paleocene Fort Union Formation in the Powder River Basin. To date, coal produced from the Wyodak-Anderson coal bed/zone, containing 0.5 percent sulfur, 1.2 lb SO{sub 2} per million btu, and 6 percent ash (mean values on an as-received basis) meet current EPA regulatory compliance. This coal bed/zone alone produced 262 million short tons or >26 percent of the total U.S. coal production in 1996. Based on the current consumption rates of coal and a forecast by the EIA (1996), the Wyodak-Anderson coals are projected to produce an additional 153 million short tons a year by the year 2016. At this rate of production, high quality Wyodak-Anderson coals may be adequate to fill our future energy needs.

Ellis, M.S.; Stricker, G.D.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-04-01T23:59:59.000Z

119

Coal Combustion Science. Quarterly progress report, October--December 1994  

SciTech Connect (OSTI)

The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: Task 1--Kinetics and mechanisms of pulverized coal char combustion; and Task 2--deposit growth and property development in coal-fired furnaces. The objective of task 1 is to characterize the combustion behavior of selected US coals under conditions relevant to industrial pulverized coal-fired furnaces. Work is being done in four areas: (a) kinetics of heterogeneous fuel particle populations; (b) char combustion kinetics at high carbon conversion; (c) the role of particle structure and the char formation process in combustion and; (d) unification of the Sandia char combustion data base. The objectives of Task 2 are to provide a self-consistent database of simultaneously measured, time-resolved, ash deposit properties in well-controlled and well-defined environments and to provide analytical expressions that relate deposit composition and structure to deposit properties of immediate relevance to PETC`s Combustion 2000 program. The task include the development and use of diagnostics to monitor, in situ and in real time, deposit properties, including information on both the structure and composition of the deposits.

Hardesty, D.R. [ed.; Baxter, L.L.; Davis, K.A.; Hurt, R.H.; Yang, N.Y.C.

1996-02-01T23:59:59.000Z

120

Underground coal gasification data base. [Information on 14 US DOE sponsored tests; also available on computer tapes  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory has developed a data base containing results from fourteen DOE-sponsored underground coal gasification (UCG) field tests. These tests include three performed by LLNL near Gillette, Wyoming at the Hoe Creek site, eight performed by LETC at a site near Hanna, Wyoming, two by GULF near Rawlings, Wyoming, and one performed by METC near Princetown, West Virginia. All tests were done in flat lying coal seams except the Rawlings tests, which utilized a steeply dipping seam. The report presents process parameters and the results of material and energy balances for each test in a variety of forms. The raw process data used to construct the data base is first discussed along with material and energy balance conventions. Following this, each test is described with the process geometry and a brief operating chronology given. Differential and integral summary information in tabular and graphic form is provided for each test. Computer tapes of the entire data base may be requested from the authors through the Lawrence Livermore National Laboratory.

Cena, R.J.; Thorsness, C.B.; Ott, L.L.

1982-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks at Other Industrial Plants

122

U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8,Coal Stocks at Other Industrial

123

Feasibility study for the Ao Phai coal fired power plant. Export trade information  

SciTech Connect (OSTI)

The report presents the results of a study by Burns and Roe commissioned by the Electricity Generating Authority of Thailand to unify data obtained in a previous series of studies which investigated the location and design of a new fossil fired power station. The Ao Phai location was selected as the preferred sight. To unify existing data, the study was performed with the following objectives: To upgrade and update previous site investigations at Ao Phai; To carry out additional investigations required to complete the preparation of a feasibility study; and To prepare an integrated and bankable feasibility report of the Ao Phai Coal Fired Power Plant.

Mahr, D.; Shamamian, V.; Zisman, E.D.; Richards, R.T.

1988-12-01T23:59:59.000Z

124

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect (OSTI)

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

125

Coal Mine Safety Act (Virginia)  

Broader source: Energy.gov [DOE]

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

126

Table 23. Coal Receipts at Coke Plants by Census Division  

U.S. Energy Information Administration (EIA) Indexed Site

Division (thousand short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2014 Table 23. Coal Receipts at Coke Plants by Census Division...

127

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

128

Task 1.13 - Data Collection and Database Development for Clean Coal Technology By-Product Characteristics and Management Practices  

SciTech Connect (OSTI)

U.S. Department of Energy Federal Energy Technology Center-Morgantown (DOE FETC) efforts in the areas of fossil fuels and clean coal technology (CCT) have included involvement with both conventional and advanced process coal conversion by-products. In 1993, DOE submitted a Report to Congress on "Barriers to the Increased Utilization of Coal Combustion Desulfurization Byproducts by Governmental and Commercial Sectors" that provided an outline of activities to remove the barriers identified in the report. DOE charged itself with participation in this process, and the work proposed in this document facilitates DOE's response to its own recommendations for action. The work reflects DOE's commitment to the coal combustion by-product (CCB) industry, to the advancement of clean coal technology, and to cooperation with other government agencies. Information from DOE projects and commercial endeavors in fluidized-bed combustion (FBC) and coal gasification is the focus of this task. The primary goal is to provide an easily accessible compilation of characterization information on the by-products from these processes to government agencies and industry to facilitate sound regulatory and management decisions. Additional written documentation will facilitate the preparation of an updated final version of background information collected for DOE in preparation of the Report to Congress on barriers to CCB utilization.

Debra F. Pflughoeft-Hassett

1998-02-01T23:59:59.000Z

129

Coal mine directory: United States and Canada  

SciTech Connect (OSTI)

The directory gives a state-by-state listing of all US and Canadian coal producers. It contains contact information as well as the type of mine, production statistics, coal composition, transportation methods etc. A statistical section provides general information about the US coal industry, preparation plants, and longwall mining operations.

NONE

2004-07-01T23:59:59.000Z

130

ARS 49-202 Designation of State Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind EnergyPublic Utilities and202

131

Title 40 CFR 1505 NEPA and Agency Decisionmaking | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl.,Information EPA AdministeredNEPACommenting

132

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

133

National Coal Quality Inventory (NACQI)  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

Robert Finkelman

2005-09-30T23:59:59.000Z

134

Coal - U.S. Energy Information Administration (EIA) - U.S. Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliff joinsClimate,Information

135

Transporting export coal from Appalachia  

SciTech Connect (OSTI)

This publication is part of a series titled Market Guide for Steam Coal Exports from Appalachia. It focuses on the transportation link in the steam-coal supply chain, enabling producers to further assess their transportation options and their ability to compete in the export-coal marketplace. Transportation alternatives and handling procedures are discussed, and information is provided on the costs associated with each element in the transportation network.

Not Available

1982-11-01T23:59:59.000Z

136

ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS  

SciTech Connect (OSTI)

ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

2002-12-30T23:59:59.000Z

137

Coal Combustion Products Extension Program  

SciTech Connect (OSTI)

This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to 40% by 2010, the CCP Extension Program be expanded at OSU, with support from state and federal agencies, utilities, trade groups, and the university, to focus on the following four specific areas of promise: (a) Expanding use in proven areas (such as use of fly ash in concrete); (b) Removing or reducing regulatory and perceptual barriers to use (by working in collaboration with regulatory agencies); (c) Developing new or under-used large-volume market applications (such as structural fills); and (d) Placing greater emphasis on FGD byproducts utilization.

Tarunjit S. Butalia; William E. Wolfe

2006-01-11T23:59:59.000Z

138

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

139

[Agency Name  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

They receive content guidelines and training on using Plain Language and following web best practices for making content accessible. In addition, agency- wide training...

140

The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program  

SciTech Connect (OSTI)

The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States); Hemenway, A. [USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States)

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Clean Air Act Amendments of 1990: Hazardous Air Pollutant Requirements and the DOE Clean Coal Technology Program  

SciTech Connect (OSTI)

The purpose of the US Department of Energy -- Office of Fossil Energy (DOE FE) Clean Coal Technology Program (CCTP) is to provide the US energy marketplace with advanced, efficient, and environmentally sound coal-based technologies. The design, construction, and operation of Clean Coal Technology Demonstration Projects (CCTDP) will generate data needed to make informed, confident decisions on the commercial readiness of these technologies. These data also will provide information needed to ensure a proactive response by DOE and its industrial partners to the establishment of new regulations or a reactive response to existing regulations promulgated by the US Environmental Protection Agency (EPA). The objectives of this paper are to: (1) Present a preliminary examination of the potential implications of the Clean Air Act Amendments (CAAA) -- Title 3 Hazardous Air Pollutant requirements to the commercialization of CCTDP; and (2) help define options available to DOE and its industrial partners to respond to this newly enacted Legislation.

Moskowitz, P.D.; DePhillips, M.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States)); Hemenway, A. (USDOE Assistant Secretary for Fossil Energy, Washington, DC (United States))

1991-01-01T23:59:59.000Z

142

A minority research and education information service: Design, develop, pilot test, and implement on-line access for historically black colleges and universities and government agencies  

SciTech Connect (OSTI)

This Annual Status Report describes the design, development and implementation of the Minority On-Line Information Service (MOLIS) project by Federal Information Exchange, Inc. for the period of April 1, 1991 to March 31, 1992. Summary information detailing developments prior to this reporting period will also be included to establish a comprehensive perspective of the project. The goal of the MOLIS project, was to develop, design, pilot test on-line access to current information on minority colleges and universities and federal minority opportunities. Federal Information Exchange, Inc. (FIE), a diversified information services company recognized by researchers and educators as a leader in the field of information delivery services, was awarded a 5 year small business research grant to develop and implement MOLIS. Since April 29, 1991, the inauguration of its on-line service, MOLIS has provided current information on 138 Black and Hispanic colleges and universities -- including faculty and student profiles, financial data, research centers and equipment information, pre-college and education programs, emerging capabilities, enrollment data, administrative personnel data, and current events -- as well as minority opportunities from 8 participating federal agencies.

Rodman, J.A.

1992-01-01T23:59:59.000Z

143

A minority research and education information service: Design, develop, pilot test, and implement on-line access for historically black colleges and universities and government agencies. Annual status report, September 28, 1992--September 27, 1993  

SciTech Connect (OSTI)

The goal of the MOLIS project was to develop, design, and pilot test on-line access to current information on minority colleges and universities as well as federal minority opportunities. Federal Information Exchange, Inc. (FIE), a diversified information services company recognized by researchers and educators as a leader in the field of information delivery services, was awarded a 5 year small business research grant to develop and implement MOLIS. Since going on-line on April 29, 1991, MOLIS has provided current information on 138 Black and Hispanic colleges and universities -- including faculty and student profiles, financial data, research centers and equipment information, precollege and education programs, emerging capabilities, enrollment data, administrative personnel data, and current events -- as well as minority opportunities from participating federal agencies. Six federal agencies are currently participating in MOLIS, including: Agency for International Development; Department of Commerce; Department of Energy; Department of Housing and Urban Development; National Aeronautics and Space Administration; and National Science Foundation.

Rodman, J.A.

1993-08-01T23:59:59.000Z

144

Health effects of coal technologies: research needs  

SciTech Connect (OSTI)

In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

Not Available

1980-09-01T23:59:59.000Z

145

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect (OSTI)

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

146

Quarterly coal report, April--June 1997  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks to a wide audience. Coke production, consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for April through June 1997 and aggregated quarterly historical data for 1991 through the first quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. Appendix B gives selected quarterly tables converted to metric tons. To provide a complete picture of coal supply and demand in the US, historical information has been integrated in this report. 8 figs., 73 tabs.

NONE

1997-11-01T23:59:59.000Z

147

Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems. Volume 5, Appendix D: Cost support information: Final report  

SciTech Connect (OSTI)

The cost estimate provided for the DOE sponsored study of Air Blown Coal Gasification was developed from vendor quotes obtained directly for the equipment needed in the 50 MW, 100 MW, and 200 MW sized plants and from quotes from other jobs that have been referenced to apply to the particular cycle. Quotes were generally obtained for the 100 MW cycle and a scale up/down factor was used to generate the cost estimates for the 200 MW and 50 MW cycles, respectively. Information from GTPro (property of Thermoflow, Inc.) was used to estimate the cost of the 200 MW and 50 MW gas turbine, HRSG, and steam turbines. To available the use of GTPro`s estimated values for this equipment, a comparison was made between the quotes obtained for the 100 MW cycle (ABB GT 11N combustion turbine and a HSRG) against the estimated values by GTPro.

Sadowski, R.S.; Brown, M.J.; Harriz, J.T.; Ostrowski, E.

1991-01-01T23:59:59.000Z

148

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

149

Coals and coal requirements for the COREX process  

SciTech Connect (OSTI)

The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

Heckmann, H. [Deutsche Voest-Alpine Industrieanlagenbau GmbH, Duesseldorf (Germany)

1996-12-31T23:59:59.000Z

150

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1  

E-Print Network [OSTI]

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

Standiford, Richard B.

151

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

152

Coal quality and estimated coal resources in the proposed Colville Mining District, central North Slope, Alaska  

SciTech Connect (OSTI)

The proposed Colville Mining District (CMD) encompasses 27,340 mi{sup 2} (70,800 km{sup 2}) in the central part of the North Slope. Known coal deposits within the proposed district range from Mississippian to Tertiary in age. Available information indicates that neither Mississippian and Tertiary coals in the CMD constitute a significant resource because they are excessively deep, thin, or high in ash content; however, considerable amount of low-sulfur Cretaceous coal is present. The paper briefly describes the geology and quality of these coal reserves. Difficult conditions will restrict mining of these coals in the near future.

Stricker, G.D. [Geological Survey, Denver, CO (United States); Clough, J.G. [Alaska Department of Natural Resources, Fairbanks, AK (United States). Division of Geological and Geophysical Surveys

1994-12-31T23:59:59.000Z

153

Quarterly coal report, July--September 1997  

SciTech Connect (OSTI)

The Quarterly Coal Report (QCR) provides comprehensive information about US coal production, distribution, exports, imports, receipts, prices, consumption, and stocks. Coke production consumption, distribution, imports, and exports data are also provided. This report presents detailed quarterly data for July through September 1997 and aggregated quarterly historical data for 1991 through the second quarter of 1997. Appendix A displays, from 1991 on, detailed quarterly historical coal imports data. 72 tabs.

NONE

1998-02-01T23:59:59.000Z

154

Coal as an option for power generation in US territories of the Pacific  

SciTech Connect (OSTI)

A survey of general considerations relating to the use of coal in US territories and trust territories of the Pacific suggests that coal is a viable option for power generation. Future coal supplies, principally from Australia and the west coast of America, promise to be more than adequate, but large bulk carriers will probably not be able to land coal directly because of inadequate port facilities. Hence, smaller than Panamax-class vessels (60,000 dwt) or some arrangement utilizing self-loading barges or lighters would have to be used. Except for Guam, with peak power requirements on the order of 175 MW/sub e/, most territories have current, albeit inadequate, installations of 1 to 25 MW/sub e/ Turnkey, conventional-coal-fired, electrical-power generating systems are available in that size range. US environmental laws are now applicable to Guam and American Samoa; the trust territories are exempt. However, the small power requirements of many small islands will qualify for exemption from the New Source Performance Standards called for in the Clean Air Act. The principal problems with coal use in the territories, apart from the shallow draft of most harbors, are the limited amount of land available and the high capital costs associated with conversion. Ocean dumping of ash and sludge can be permitted under existing Environmental Protection Agency regulations, and barge-mounted power installations are not out of the question. The feasibility of converting from oil-fired to coal-fired electrical-power generating systems must be determined with site-specific information.

Borg, I. Y.

1981-11-30T23:59:59.000Z

155

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

156

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

157

Environmental data energy technology characterizations: coal  

SciTech Connect (OSTI)

This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

Not Available

1980-04-01T23:59:59.000Z

158

Coal liquefaction and hydrogenation  

DOE Patents [OSTI]

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

159

Curriculum Support Maps for the Study of Indiana Coal  

E-Print Network [OSTI]

Curriculum Support Maps for the Study of Indiana Coal By Walt Gray Targeted Age: High SchoolMap to create geographic information systems (GIS) maps to demonstrate the distribution of coal mines within comprehension of the data presented to them. It is expected that students have studied the process of coal

Polly, David

160

Coal production expansion: a selected bibliography  

SciTech Connect (OSTI)

The expeditious and economic transport of coal from producing regions to consuming regions is essential to any policy designed to increase the use of coal as an energy source. Obtaining an optimal coal transportation system, including terminal facilities, is significant in providing US coal to its users in the United States and abroad. Rail, barge, truck, slurry pipeline, and ship are the modes used to move coal from the producer to the user. Transportation costs represent a large percentage of the delivered price. This bibliography includes 138 selected citations on coal export, transport, and production. The references are to reports from the Department of Energy and its contractors, reports from other government or private organizations, and journal articles, books, conference papers, and monographs from US originators. These citations and hundreds of additional citations on this subject are available for on-line searching and retrieval from the Technical Information Center's Energy Data Base using the DOE/RECON interactive system. Approximately 50,000 citations on coal and coal products are a part of this data base. Current additions to data base on this subject are announced monthly in Fossil Energy Update. DOE-sponsored work is also announced in Energy Research Abstracts. The citations in this publication are arranged in broad subject categories as shown in the table of contents. Five indexes are provided: Corporate, Author, Subject, Contract Number, and Report Number. Included as an appendix are some tables and figures from Energy Information Administration reports covering coal production and disposition.

Grissom, M.C. (ed.)

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geology in coal resource utilization  

SciTech Connect (OSTI)

The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base.

Peters, D.C. (ed.)

1991-01-01T23:59:59.000Z

162

Coal Mining (Iowa)  

Broader source: Energy.gov [DOE]

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

163

FOOD STANDARDS AGENCY SCOTTISH ENVIRONMENT PROTECTION AGENCY  

E-Print Network [OSTI]

.................................................................................... 21 1.2.4. Food irradiation ....1 FOOD STANDARDS AGENCY SCOTTISH ENVIRONMENT PROTECTION AGENCY Radioactivity in Food, Fisheries and Aquaculture Science on behalf of the Food Standards Agency and the Scottish Environment

164

NIH POLICY MANUAL 1165 Agency Agreements  

E-Print Network [OSTI]

NIH POLICY MANUAL 1165 Agency Agreements Issuing Office: OFM 496-8934 Release Date: 4/3/01 1 responsibilities in Section F2. 2. Filing Instructions: Remove: NIH Manual Chapter 1165, Agency Agreements, dated 3/19/00. Insert: NIH Manual Chapter 1165, Agency Agreements, dated 4/3/01 PLEASE NOTE: For information on: o

Bandettini, Peter A.

165

Coal Bed Methane Primer  

SciTech Connect (OSTI)

During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of stakeholders to present a consistent and complete synopsis of the key issues involved with CBM. In light of the numerous CBM NEPA documents under development this Primer could be used to support various public scoping meetings and required public hearings throughout the Western States in the coming years.

Dan Arthur; Bruce Langhus; Jon Seekins

2005-05-25T23:59:59.000Z

166

Quarterly coal report, April 1996--June 1996  

SciTech Connect (OSTI)

This report provides information about U.S. coal production, distribution; exports, imports, prices, consumption, and stocks. Data on coke production is also provided. This report presents data for April 1996 thru June 1996.

NONE

1996-11-01T23:59:59.000Z

167

Size distribution of fine Particles in Stack emissions of a 600-MWe coal-fired Power Plant  

E-Print Network [OSTI]

Size distribution of fine Particles in Stack emissions of a 600-MWe coal-fired Power Plant I coal-fired power plant. Aknowledgements: French environment agency ADEME (Contract number 04-74-C0018 that was carried out in March 2006 at a 600-MWe coal-fired power plant. 51 ineris-00973267,version1-4Apr2014 Author

Paris-Sud XI, Université de

168

Coal systems analysis  

SciTech Connect (OSTI)

This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

Warwick, P.D. (ed.)

2005-07-01T23:59:59.000Z

169

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

170

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

Wrathall, J.

2013-01-01T23:59:59.000Z

171

Carbon Dioxide Sequestration in Geologic Coal Formations  

SciTech Connect (OSTI)

BP Corporation North America, Inc. (BP) currently operates a nitrogen enhanced recovery project for coal bed methane at the Tiffany Field in the San Juan Basin, Colorado. The project is the largest and most significant of its kind wherein gas is injected into a coal seam to recover methane by competitive adsorption and stripping. The Idaho National Engineering and Environmental Laboratory (INEEL) and BP both recognize that this process also holds significant promise for the sequestration of carbon dioxide, a greenhouse gas, while economically enhancing the recovery of methane from coal. BP proposes to conduct a CO2 injection pilot at the tiffany Field to assess CO2 sequestration potential in coal. For its part the INEEL will analyze information from this pilot with the intent to define the Co2 sequestration capacity of coal and its ultimate role in ameliorating the adverse effects of global warming on the nation and the world.

None

2001-09-30T23:59:59.000Z

172

Surface modified coals for enhanced catalyst dispersion and liquefaction  

SciTech Connect (OSTI)

The aim of the study is to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on to the coal. During this reporting period, zeta potential measurements were conducted to assess the surface charge on the raw, pretreated and catalyzed coal samples. The surface area, transmission spectroscopy and luminescence intensity of the raw coal and pretreated coal samples were also determined to assess the quality of the coal surface. Across a broad range of pH values, the raw coal had an overall negative charge. Coal treated with anionic surfactant SDS maintained an overall net negative surface negative charge. The interaction between the coal and cationic surfactant DDAB caused the opposite effect resulting in a more positive coal surface charge. Although one would have expected little or no effect of the neutral surfactant Triton X-100, there appears to be some difference in the results of the raw coal and the coal treated with Triton X-100. The authors believe that the Triton not only binds to the nonpolar sites but also has a strong affinity for the polar sites through electrostatic bonding and interaction between the hydrophobic tails. The addition of molybdenum to coal pretreated with DDAB caused a reduction in the positive charge of the coal surface probably due to possible ionic interaction between the coal surface, the surfactant and the catalyst. The adsorption isotherm of the coal was characteristic of isotherms for porous samples and the surface area of the coal increased from 30 m{sup 2}/g to 77 m{sup 2}/g when washed with deionized water. This suggests coal washing may be one method of increasing the surface area for surfactant adsorption. Although the transmission measurements provided valuable information about the coal it resulted in little information on the amount of adsorbed Triton. However, the maximum solid-liquid ratio for optimum surfactant loading of Triton X-100 was determined via the UV-Vis spectrophotometer. The luminescence intensity measurements showed that the coal and surfactants luminescence weakly. No statistically significant influence was observed from the actions of the surfactants or surfactant-molybdenum catalyst. Qualitative inspection however, showed that SDS might effectively coat coal surfaces and influence catalyst dispersion. Also, catalysts appeared to be better distributed among coal particles and in finer clusters when DDAB and Triton surfactants were used.

Dr. Yaw D. Yeboah

1998-10-29T23:59:59.000Z

173

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Coal Cleaning Costs Process Clean Coal Produced, * T/D (DryMM$ Net Operating Cost, $/T (Clean Coal Basis) Net OperatingCost, $/T (Clean Coal Bases) Case NA Hazen KVB Battelle

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

174

Coal Severance Tax (North Dakota)  

Broader source: Energy.gov [DOE]

The Coal Severance Tax is imposed on all coal severed for sale or industrial purposes, except coal used for heating buildings in the state, coal used by the state or any political subdivision of...

175

Upgraded Coal Interest Group  

SciTech Connect (OSTI)

The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

Evan Hughes

2009-01-08T23:59:59.000Z

176

Environmental and economic challenges to coal`s future in China  

SciTech Connect (OSTI)

Coal accounts for approximately 75% of China`s total primary energy consumption, and is by far the largest contributor to air pollution. The highest growth sector for coal consumption is the power sector, accounting for about 36 percent of total coal consumption in 1993. Over the 1994--2010 period most new, large power plants are expected to be coal-fired. Therefore, the availability and price of coal, as well as environmental constraints will be critical to foreign investors evaluating coal and power projects in China. The purpose of this paper is to provide useful technical, economic and environmental information and analysis on coal and the power sectors of China. The target audiences are potential investors and government energy and environmental policy people. This paper suggests a number of important energy and environmental policy issues that need to be addressed in a timely fashion in order to promote adequate levels of investment in coal and power developments in China. Although this paper highlights problems faced by foreign investors in coal and power, it is important to balance these problems against the large investment opportunities developing in these sectors.

Johnson, C.J.; Li, B.

1994-11-01T23:59:59.000Z

177

Utilization ROLE OF COAL COMBUSTION  

E-Print Network [OSTI]

, materials left after combustion of coal in conventional and/ or advanced clean-coal technology combustors and advanced clean-coal technology combustors. This paper describes various coal combustion products produced (FGD) products from pulverized coal and advanced clean-coal technology combustors. Over 70% of the CCPs

Wisconsin-Milwaukee, University of

178

Research needs and data acquisition to apply US technology to foreign coals: Quarterly report, October-December 1986. [Foreign  

SciTech Connect (OSTI)

The National Coal Technology Data Center (NCTDC) at the Pittsburgh Energy Technology Center is currently addressing the recognized need for technical and scientific information on international coal characteristics and coal conversion technologies adopted in foreign countries. At NCTDC, the present database on domestic coals and coal conversion technologies is being supplemented with data on international coals through the development of a comprehensive international database on foreign coals and coal conversion technologies. DOE plans to utilize this information to develop strategic planning and policy options and assist the private sector in determining the utility of its products and services in the international market place. It is hoped, that through the better understanding of their foreign coal resources, advanced US coal preparation, conversion and utilization technologies can be applied to these coals, promoting not only US technology transfer but also addressing the immediate energy needs of the developing countries.

Not Available

1986-01-01T23:59:59.000Z

179

Microbial solubilization of coal  

DOE Patents [OSTI]

This invention deals with the solubilization of coal using species of Streptomyces. Also disclosed is an extracellular component from a species of Streptomyces, said component being able to solubilize coal.

Strandberg, Gerald W. (Farragut, TN); Lewis, Susan N. (Knoxville, TN)

1990-01-01T23:59:59.000Z

180

Coal gasification apparatus  

DOE Patents [OSTI]

Coal hydrogenation vessel has hydrogen heating passages extending vertically through its wall and opening into its interior.

Nagy, Charles K. (Monaca, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Autothermal coal gasification  

SciTech Connect (OSTI)

Test data from the Ruhrchemie/Ruhrkohle Texaco coal gasification demonstration plant at Oberhausen are reported. (5 refs.)

Konkol. W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

1982-03-01T23:59:59.000Z

182

Microsoft Word - Coal Production Estimates Evaluation.docx  

Gasoline and Diesel Fuel Update (EIA)

DC 20585 U.S. Energy Information Administration | Performance Evaluation of the Weekly Coal Production Report for 2011 i This report was prepared by the U.S. Energy Information...

183

Microsoft Word - 2012_EIA_Coal_Production_Estimates_Comparison...  

U.S. Energy Information Administration (EIA) Indexed Site

DC 20585 U.S. Energy Information Administration | Performance Evaluation of the Weekly Coal Production Report for 2012 i This report was prepared by the U.S. Energy Information...

184

PNNL Coal Gasifier Transportation Logistics  

SciTech Connect (OSTI)

This report provides Pacific Northwest National laboratory (PNNL) craftspeople with the necessary information and suggested configurations to transport PNNL’s coal gasifier from its current location at the InEnTec facility in Richland, Washington, to PNNL’s Laboratory Support Warehouse (LSW) for short-term storage. A method of securing the gasifier equipment is provided that complies with the tie-down requirements of the Federal Motor Carrier Safety Administration’s Cargo Securement Rules.

Reid, Douglas J.; Guzman, Anthony D.

2011-04-13T23:59:59.000Z

185

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Coal Prices..AEO 2007 forecast for coal prices for PRB coal. Transmissionregimes. Sensitivity to Coal Prices Figure 9 is similar to

Phadke, Amol

2008-01-01T23:59:59.000Z

186

Coal recovery process  

DOE Patents [OSTI]

A method for the beneficiation of coal by selective agglomeration and the beneficiated coal product thereof is disclosed wherein coal, comprising impurities, is comminuted to a particle size sufficient to allow impurities contained therein to disperse in water, an aqueous slurry is formed with the comminuted coal particles, treated with a compound, such as a polysaccharide and/or disaccharide, to increase the relative hydrophilicity of hydrophilic components, and thereafter the slurry is treated with sufficient liquid agglomerant to form a coagulum comprising reduced impurity coal.

Good, Robert J. (Grand Island, NY); Badgujar, Mohan (Williamsville, NY)

1992-01-01T23:59:59.000Z

187

Availability of Draft Data Summaries and Draft Priorities for Chemicals With Respect to Their Potential to Cause Cancer: Request for Relevant Information The California Environmental Protection Agency’s Office of Environmental Health Hazard  

E-Print Network [OSTI]

Assessment (OEHHA), as lead agency for the implementation of the Safe Drinking Water and Toxic Enforcement Act of 1986 (Proposition 65), has developed a procedure for prioritizing chemicals for consideration under Proposition 65 by the “State’s qualified experts”. Two committees of the Science Advisory Board (SAB), known as the Carcinogen Identification Committee, and the Developmental and Reproductive Toxicant (DART) Identification Committee, serve as the State’s qualified experts for rendering an opinion as to whether a chemical is known to the State to cause cancer, birth defects or other reproductive harm. The procedure used by OEHHA to identify, prioritize and select candidate chemicals for evaluation by the SAB Committees is described in, “Procedure for Prioritizing Candidate Chemicals for Consideration Under Proposition 65 by the State’s Qualified Experts, ” May 1997 and is available on the Internet at

unknown authors

1999-01-01T23:59:59.000Z

188

JV Task 120 - Coal Ash Resources Research Consortium Research  

SciTech Connect (OSTI)

The Coal Ash Resources Research Consortium{reg_sign} (CARRC{reg_sign}, pronounced 'cars') is the core coal combustion product (CCP) research group at the Energy & Environmental Research Center (EERC). CARRC focuses on performing fundamental and applied scientific and engineering research emphasizing the environmentally safe, economical use of CCPs. CARRC member organizations, which include utilities and marketers, are key to developing industry-driven research in the area of CCP utilization and ensuring its successful application. The U.S. Department of Energy is a partner in CARRC through the EERC Jointly Sponsored Research Program, which provides matching funds for industrial member contributions and facilitates an increased level of effort in CARRC. CARRC tasks were designed to provide information on CCP performance, including environmental performance, engineering performance, favorable economics, and improved life cycle of products and projects. CARRC technical research tasks are developed based on member input and prioritization. CARRC special projects are developed with members and nonmembers to provide similar information and to support activities, including the assembly and interpretation of data, support for standards development and technology transfer, and facilitating product development and testing. CARRC activities from 2007 to 2009 included a range of research tasks, with primary work performed in laboratory tasks developed to answer specific questions or evaluate important fundamental properties of CCPs. The tasks were included in four categories: (1) Environmental Evaluations of CCPs; (2) Evaluation of Impacts on CCPs from Emission Controls; (3) Construction and Product-Related Activities; and (4) Technology Transfer and Maintenance Tasks. All tasks are designed to work toward achieving the CARRC overall goal and supporting objectives. The various tasks are coordinated in order to provide broad and useful technical data for CARRC members. Special projects provide an opportunity for non-CARRC members to sponsor specific research or technology transfer consistent with CARRC goals. This report covers CARRC activities from January 2007 through March 2009. These activities have been reported in CARRC Annual Reports and in member meetings over the past 2 years. CARRC continues to work with industry and various government agencies with its research, development, demonstration, and promotional activities nearing completion at the time of submission of this report. CARRC expects to continue its service to the coal ash industry in 2009 and beyond to work toward the common goal of advancing coal ash utilization by solving CCP-related technical issues and promoting the environmentally safe, technically sound, and economically viable management of these complex and changing materials.

Debra Pflughoeft-Hassett; Loreal Heebink; David Hassett; Bruce Dockter; Kurt Eylands; Tera Buckley; Erick Zacher

2009-03-28T23:59:59.000Z

189

Bio-coal briquette  

SciTech Connect (OSTI)

Some of the developing nations aim to earn foreign currency by exporting oil and/or gas and to increase the domestic consumption of coal to ensure a secure energy supply. Therefore, it is very important to promote effective coal utilization in these nations. Currently, these countries experience problems associated with coal use for household cooking and household industries. For household cooking, coal creates too much smoke and smells unpleasant. In addition, illegally obtained firewood is almost free in local agricultural regions. Coal is also used in household industries; however, simple stoker boilers are inefficient, since unburned coal particles tend to drop through screens during the combustion process. The bio-coal briquette, on the other hand, is an effective and efficient fuel, since it utilizes coal, which is to be used extensively in households and in small and medium-scale industry sectors in some coal-producing countries, as a primary fuel and bamboos (agricultural waste) as a secondary fuel. In addition, the use of bio-coal briquettes will greatly help reduce unburned coal content.

Honda, Hiroshi

1993-12-31T23:59:59.000Z

190

Coal: the new black  

SciTech Connect (OSTI)

Long eclipsed by oil and natural gas as a raw material for high-volume chemicals, coal is making a comeback, with oil priced at more than $100 per barrel. It is relatively cheap feedstock for chemicals such as methanol and China is building plants to convert coal to polyolefins on a large scale and interest is spreading worldwide. Over the years several companies in the US and China have made fertilizers via the gasification of coal. Eastman in Tennessee gasifies coal to make methanol which is then converted to acetic acid, acetic anhydride and acetate fiber. The future vision is to convert methanol to olefins. UOP and Lurgi are the major vendors of this technology. These companies are the respective chemical engineering arms of Honeywell and Air Liquide. The article reports developments in China, USA and India on coal-to-chemicals via coal gasification or coal liquefaction. 2 figs., 2 photo.

Tullo, A.H.; Tremblay, J.-F.

2008-03-15T23:59:59.000Z

191

Chemical comminution of coal  

SciTech Connect (OSTI)

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

192

FEMP Best Practices and Lessons Learned for Federal Agency ESPC...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to serve as the conduit of information between the ESCO and agency. 4. ESCO SELECTION Best practices for ESCO selection are the following. 4.1 FEMP recommends that agencies use...

193

Coal assessment and coal quality characterization of the Colorado Plateau area  

SciTech Connect (OSTI)

The goal of the Colorado Plateau Coal Assessment project is to provide an overview of the geologic setting, distribution, resources, and quality of Cretaceous coal in the Colorado Plateau and southernmost Green River Basin. Resources will be estimated by applying restrictions such as coal thickness and depth and will be categorized by land ownership. In some areas these studies will also delineate areas where coal mining may be restricted because of land use, industrial, social, or environmental factors. Emphasis will be placed on areas where the coal is owned or managed by the Federal Government. This assessment, which is part of the US Geological Survey`s National Coal Assessment Program, is different from previous coal assessments in that the major emphasis will be placed on coals that can provide energy for the next few decades. The data is also being collected and stored in digital format that can be updated when new pertinent information becomes available. This study is being completed in cooperation with the US Bureau of Land Management, the US Forest Service, Arizona Geological Survey, Colorado Geological Survey, New Mexico Bureau of Mines and Mineral Resources, and the Utah Geological Survey.

Affolter, R.H.; Brownfield, M.E.; Biewick, L.H.; Kirschbaum, M.A. [Geological Survey, Denver, CO (United States)

1998-12-31T23:59:59.000Z

194

THE SCALE-UP OF LARGE PRESSURIZED FLUIDIZED BEDS FOR ADVANCED COAL-FIRED POWER PROCESSES  

SciTech Connect (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor an agency thereof, nor any of the their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, A combined-cycle High Performance Power System (HIPPS) capable of overall cycle efficiencies approaching 50% has been proposed and designed by Foster Wheeler Development Corporation (FWDC). A pyrolyzer in the first stage of the HIPPS process converts a coal feedstock into fuel gas and char at an elevated pressure of 1.4 Map. (206 psia) and elevated temperature of 930 C (1700 F). The generated char serves as the feedstock for a Pulverized Coal (PC) boiler operating at atmospheric pressure, and the fuel gas is directly fired in a gas turbine. The hydrodynamic behavior of the pyrolyzer strongly influences the quality of both the fuel gas and the generated char, the energy split between the gas turbine and the steam turbine, and hence the overall efficiency of the system. By utilizing a simplified set of scaling parameters (Glicksman et al.,1993), a 4/7th labscale cold model of the pyrolyzer operating at ambient temperature and pressure was constructed and tested. The scaling parameters matched include solid to gas density ratio, Froude number, length to diameter ratio; dimensionless superficial gas velocity and solid recycle rate, particle sphericity and particle size distribution (PSD).

Leon R. Glicksman; Michael Louge; Hesham F. Younis; Richard Tan; Mathew Hyre; Mark Torpey

2003-11-24T23:59:59.000Z

195

NETL: Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O N ACareers

196

Impacts of TMDLs on coal-fired power plants.  

SciTech Connect (OSTI)

The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power plants. If a state establishes a new or revised TMDL for one of these pollutants in a water body where a power plant is located, the next renewal of the power plant's National Pollution Discharge Elimination System (NPDES) permit is likely to include more restrictive limits. Power generators may need to modify existing operational and wastewater treatment technologies or employ new ones as TMDLs are revised or new ones are established. The extent to which coal-fired power plants may be impacted by revised and new TMDL development has not been well established. NETL asked Argonne to evaluate how current and potential future TMDLs might influence coal-fired power plant operations and discharges. This information can be used to inform future technology research funded by NETL. The scope of investigation was limited to several eastern U.S. river basins rather than providing a detailed national perspective.

Veil, J. A.; Environmental Science Division

2010-04-30T23:59:59.000Z

197

Fixed-bed gasification research using US coals. Volume 9. Gasification of Elkhorn bituminous coal  

SciTech Connect (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the ninth volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Elkhorn bituminous coal. The period of gasificastion test was September 13 to October 12, 1983. 9 refs., 24 figs., 35 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01T23:59:59.000Z

198

Fixed-bed gasification research using US coals. Volume 7. Gasification of Piney Tipple bituminous coal  

SciTech Connect (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report is the seventh volume in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This specific report describes the gasification of Piney Tipple bituminous coal. The period of the gasification test was July 18-24, 1983. 6 refs., 20 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-05-01T23:59:59.000Z

199

Fixed-bed gasification research using US coals. Volume 2. Gasification of Jetson bituminous coal  

SciTech Connect (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and governmental agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) Group. This report describes the gasification testing of Jetson bituminous coal. This Western Kentucky coal was gasified during an initial 8-day and subsequent 5-day period. Material flows and compositions are reported along with material and energy balances. Operational experience is also described. 4 refs., 24 figs., 17 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-03-31T23:59:59.000Z

200

A minority research and education information service: Design, develop, pilot test, and implement on-line access for historically black colleges and universities and government agencies. Annual status report, April 1, 1991--March 31, 1992  

SciTech Connect (OSTI)

This Annual Status Report describes the design, development and implementation of the Minority On-Line Information Service (MOLIS) project by Federal Information Exchange, Inc. for the period of April 1, 1991 to March 31, 1992. Summary information detailing developments prior to this reporting period will also be included to establish a comprehensive perspective of the project. The goal of the MOLIS project, was to develop, design, pilot test on-line access to current information on minority colleges and universities and federal minority opportunities. Federal Information Exchange, Inc. (FIE), a diversified information services company recognized by researchers and educators as a leader in the field of information delivery services, was awarded a 5 year small business research grant to develop and implement MOLIS. Since April 29, 1991, the inauguration of its on-line service, MOLIS has provided current information on 138 Black and Hispanic colleges and universities -- including faculty and student profiles, financial data, research centers and equipment information, pre-college and education programs, emerging capabilities, enrollment data, administrative personnel data, and current events -- as well as minority opportunities from 8 participating federal agencies.

Rodman, J.A.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

OF RAIL TRANSPORTATION OF COAL The Federal Energy RegulatoryPlants Due to Coal Shortages”, Federal Energy RegulatoryCouncil (NCC), 2006, “Coal: America’s Energy Future”, Volume

McCollum, David L

2007-01-01T23:59:59.000Z

202

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

of total electricity generation is because coal plants haveplants come to play an important role in the electricity generationplants will be built in the years around 2020, thereby increasing coal’s share of electricity generation

McCollum, David L

2007-01-01T23:59:59.000Z

203

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

a particular type of coal, each of which is inherentlyThere are four classes of coal: bituminous, sub-bituminous,minerals Metallic ores Coal Crude petroleum Gasoline Fuel

McCollum, David L

2007-01-01T23:59:59.000Z

204

Pulverized coal fuel injector  

DOE Patents [OSTI]

A pulverized coal fuel injector contains an acceleration section to improve the uniformity of a coal-air mixture to be burned. An integral splitter is provided which divides the coal-air mixture into a number separate streams or jets, and a center body directs the streams at a controlled angle into the primary zone of a burner. The injector provides for flame shaping and the control of NO/NO.sub.2 formation.

Rini, Michael J. (Hebron, CT); Towle, David P. (Windsor, CT)

1992-01-01T23:59:59.000Z

205

Enhanced Combustion Low NOx Pulverized Coal Burner  

SciTech Connect (OSTI)

For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for economic evaluation and commercial application. During the project performance period, Alstom performed computational fluid dynamics (CFD) modeling and large pilot scale combustion testing in its Industrial Scale Burner Facility (ISBF) at its U.S. Power Plant Laboratories facility in Windsor, Connecticut in support of these objectives. The NOx reduction approach was to optimize near-field combustion to ensure that minimum NOx emissions are achieved with minimal impact on unburned carbon in ash, slagging and fouling, corrosion, and flame stability/turn-down. Several iterations of CFD and combustion testing on a Midwest coal led to an optimized design, which was extensively combustion tested on a range of coals. The data from these tests were then used to validate system costs and benefits versus SCR. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive subbituminous coal to a moderately reactive Western bituminous coal to a much less reactive Midwest bituminous coal. Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis. Bench-scale characterization of the three test coals showed that both NOx emissions and combustion performance are a strong function of coal properties. The more reactive coals evolved more of their fuel bound nitrogen in the substoichiometric main burner zone than less reactive coal, resulting in the potential for lower NOx emissions. From a combustion point of view, the more reactive coals also showed lower carbon in ash and CO values than the less reactive coal at any given main burner zone stoichiometry. According to bench-scale results, the subbituminous coal was found to be the most amenable to both low NOx, and acceptably low combustibles in the flue gas, in an air staged low NOx system. The Midwest bituminous coal, by contrast, was predicted to be the most challenging of the three coals, with the Western bituminous coal predicted to beh

David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

2007-06-30T23:59:59.000Z

206

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

coal (PC) or integrated gasification combined cycle ( IGCC)coal (PC) or integrated gasification combined cycle (IGCC)will be integrated gasification combined cycle (IGCC) (Same

McCollum, David L

2007-01-01T23:59:59.000Z

207

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Credit Extra Fuel Oil Coal to gasifier Na cost· Na processoiL Replace res. with coal as gasifier feed. 543 ton/day @$

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

208

Coal Mining Tax Credit (Arkansas)  

Broader source: Energy.gov [DOE]

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

209

Illinois Coal Revival Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Revival Program is a grants program providing partial funding to assist with the development of new, coal-fueled electric generation capacity and coal gasification or IGCC units...

210

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

Corporation, 5-25~79. on Coal Liquefaction at ChevronHamersma, et a L, "Meyers Process for Coal Desulfurization,"in Wheelock, Coal Desulfurization, ACS Symp. Ser 64 (1977(.

Wrathall, J.

2013-01-01T23:59:59.000Z

211

US coal market softens  

SciTech Connect (OSTI)

The operators table some near term expansion plans, meanwhile long-term fundamentals look strong. This is one of the findings of the Coal Age Forecast 2007 survey of readers predictions on production and consumption of coal and attitudes in the coal industry. 50% of respondents expected product levels in 2007 to be higher than in 2006 and 50% described the attitude in the coal industry to be more optimistic in 2007 than in 2006. Most expenditure is anticipated on going on new equipment but levels of expenditure will be less than in 2006. 7 figs.

Fiscor, S.

2007-01-15T23:59:59.000Z

212

Coal Gasification Systems Solicitations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Coal Conversion to High Hydrogen Syngas; FE0023577 Alstom's Limestone Chemical Looping Gasification Process for High Hydrogen Syngas Generation; FE0023497 OTM-Enhanced...

213

Coal extraction process  

SciTech Connect (OSTI)

Sub-divided coal is extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula:

Hammack, R. W.; Sears, J. T.; Stiller, A. H.

1981-06-09T23:59:59.000Z

214

Clean Coal Projects (Virginia)  

Broader source: Energy.gov [DOE]

This legislation directs the Virginia Air Pollution Control Board to facilitate the construction and implementation of clean coal projects by expediting the permitting process for such projects.

215

Coal Mining Regulations (Kentucky)  

Broader source: Energy.gov [DOE]

Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

216

Coal Development (Nebraska)  

Broader source: Energy.gov [DOE]

This section provides for the development of newly-discovered coal veins in the state, and county aid for such development.

217

Clean coal technology applications  

SciTech Connect (OSTI)

{open_quotes}Coal is a stratified rock formed of the more or less altered remains of plants (together with associated mineral matter) which flourished in past ages{hor_ellipsis} The problem of the origin and maturing of coal is complicated by the fact that every coal contains, in addition to carbon, hydrogen and oxygen, variable proportions of nitrogen and sulfur which are combined in unknown ways in the organic molecules...{close_quotes}. The challenge with coal has always been the management of its mineral matter, sulfur and nitrogen contents during use. The carbon content of fuels, including coal, is a more recent concern. With clean coal technologies, there are opportunities for ensuring the sustained use of coal for a very long time. The clean coal technologies of today are already capable of reducing, if not eliminating, harmful emissions. The technologies of the future will allow coal to be burned with greatly reduced emissions, thus eliminating the necessity to treat them after they occur.

Bharucha, N.

1993-12-31T23:59:59.000Z

218

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1991-01-01T23:59:59.000Z

219

Cooperative research program in coal liquefaction  

SciTech Connect (OSTI)

Research continues on coal liquefaction in the following areas: (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

Huffman, G.P. (ed.)

1992-01-01T23:59:59.000Z

220

Clean coal technologies market potential  

SciTech Connect (OSTI)

Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

Drazga, B. (ed.)

2007-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Illinois Coal Development Program (Illinois)  

Broader source: Energy.gov [DOE]

The Illinois Coal Development Program seeks to advance promising clean coal technologies beyond research and towards commercialization. The program provides a 50/50 match with private industry...

222

Federal Agency NEPA Procedures  

Broader source: Energy.gov [DOE]

Each Federal agency is required to develop NEPA procedures that supplement the CEQ Regulations. Developed in consultation with CEQ, Federal agency NEPA procedures must meet the standards in the CEQ...

223

Accommodation Letting agencies  

E-Print Network [OSTI]

's responsibility to understand each accommodation agency's terms and conditions of business. Some agencies throughout the term of the tenancy. Agencies may only charge you when they find you a suitable property you 35% of the first month's rent. Please ensure that you check on any charges before entering

Bristol, University of

224

Evaluating the feasibility of underground coal gasification in Thailand  

SciTech Connect (OSTI)

Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south of Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.

Young, B.C.; Harju, J.A.; Schmit, C.R.; Solc, J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuehnel, R.A. [International Inst. for Aerospace Survey and Earth Sciences, Delft (Netherlands)

1996-12-31T23:59:59.000Z

225

Method for coal liquefaction  

DOE Patents [OSTI]

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400.degree. C. at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1.

Wiser, Wendell H. (Kaysville, UT); Oblad, Alex G. (Salt Lake City, UT); Shabtai, Joseph S. (Salt Lake City, UT)

1994-01-01T23:59:59.000Z

226

Clean Coal Diesel Demonstration Project  

E-Print Network [OSTI]

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The view and opinions of authors expressed therein do not necessarily state or reflect those of the United States

A Doe Assessment

2007-01-01T23:59:59.000Z

227

Coal in China  

SciTech Connect (OSTI)

The article gives an overview of the production and use of coal in China, for power generation and in other sectors. Coal use for power generation was 850 million tonnes in 2003 and 800 million tonnes in the non-power sector. The majority of power will continue to be produced from coal, with a trend towards new larger pulverised coal fired units and introduction of circulating fluidised bed combustors. Stricter regulations are forcing introduction of improved pollution control technologies. It seems likely that China will need international finance to supplement private and state investment to carry out a programme to develop and apply clean coal technologies. The author concludes that there is evidence of a market economy being established but there is a need to resolve inconsistencies with the planned aspects of the economy and that additional policies are needed in certain sectors to achieve sustainable development. 1 ref., 2 figs., 2 tabs.

Minchener, A.J. [IEA Clean Coal Centre, London (United Kingdom)

2005-07-01T23:59:59.000Z

228

Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report  

SciTech Connect (OSTI)

This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

None

1981-01-01T23:59:59.000Z

229

Steam Coal Import Costs - EIA  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10:InformationSteam Coal Import

230

Coal market momentum converts skeptics  

SciTech Connect (OSTI)

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

231

Conditioner for flotation of coal  

SciTech Connect (OSTI)

A method for recovering coal is described which comprises the steps of floating coal in an aqueous frothing medium containing an amount of a condensation product of an alkanolamine and naphthenic acid sufficient to increase the recovery of coal as compared to the recovery of coal in an identical process using none of the condensation product.

Nimerick, K.H.

1988-03-22T23:59:59.000Z

232

A study of toxic emissions from a coal-fired gasification plant. Final report  

SciTech Connect (OSTI)

Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

NONE

1995-12-01T23:59:59.000Z

233

Annotated bibliography of coal in the Caribbean region. [Lignite  

SciTech Connect (OSTI)

The purpose of preparing this annotated bibliography was to compile information on coal localities for the Caribbean region used for preparation of a coal map of the region. Also, it serves as a brief reference list of publications for future coal studies in the Caribbean region. It is in no way an exhaustive study or complete listing of coal literature for the Caribbean. All the material was gathered from published literature with the exception of information from Cuba which was supplied from a study by Gordon Wood of the US Geological Survey, Branch of Coal Resources. Following the classification system of the US Geological Survey (Wood and others, 1983), the term coal resources has been used in this report for reference to general estimates of coal quantities even though authors of the material being annotated may have used the term coal reserves in a similar denotation. The literature ranges from 1857 to 1981. The countries listed include Colombia, Mexico, Venezuela, Cuba, the Dominican Republic, Haiti, Jamaica, Puerto Rico, and the countries of Central America.

Orndorff, R.C.

1985-01-01T23:59:59.000Z

234

PressurePressure Indiana Coal Characteristics  

E-Print Network [OSTI]

TimeTime PressurePressure · Indiana Coal Characteristics · Indiana Coals for Coke · Coal Indiana Total Consumption Electricity 59,664 Coke 4,716 Industrial 3,493 Major Coal- red power plantsTransportation in Indiana · Coal Slurry Ponds Evaluation · Site Selection for Coal Gasification · Coal-To-Liquids Study, CTL

Fernández-Juricic, Esteban

235

APEC experts` group on clean coal technology  

SciTech Connect (OSTI)

The proceedings of the Asia-Pacific Economic Cooperation (APEC) Expert`s Group on Clean Coal Technology`s Technical Seminar held in Jakarta, Indonesia, from October 10-13, 1994 are presented. A total of 28 papers were presented at the seminar. These papers addressed issues of relevance to APEC member economies associated with the application of clean coal technologies (CCTs) and created a forum where information and ideas about CCTs and their application in the Asia-Pacific Region could be exchanged. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1994-12-31T23:59:59.000Z

236

Coal liquefaction process  

DOE Patents [OSTI]

A process for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range.

Wright, Charles H. (Overland Park, KS)

1986-01-01T23:59:59.000Z

237

Coal liquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal wherein raw feed coal is dissolved in recycle solvent with a slurry containing recycle coal minerals in the presence of added hydrogen at elevated temperature and pressure. The highest boiling distillable dissolved liquid fraction is obtained from a vacuum distillation zone and is entirely recycled to extinction. Lower boiling distillable dissolved liquid is removed in vapor phase from the dissolver zone and passed without purification and essentially without reduction in pressure to a catalytic hydrogenation zone where it is converted to an essentially colorless liquid product boiling in the transportation fuel range. 1 fig.

Wright, C.H.

1986-02-11T23:59:59.000Z

238

Evolving performance characteristics of clean coal technologies  

SciTech Connect (OSTI)

The United States Department of Energy (US DOE) Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a government and industry cofunded technology development effort to demonstrate a new generation of innovative coal utilization processes in a series of {open_quotes}semicommercial{close_quotes} facilities. These demonstrations are on a scale large enough to generate all the data, from design, construction, and operation, that are necessary for the private sector to judge commercial potential and make informed, confident decisions on commercial readiness. The projects in the program are demonstrating technologies that will encompass advanced electric power generation systems, high-performance pollution control devices, coal processing for clean fuels and industrial applications. The innovative CCTs being demonstrated offer tremendous potential as solutions to many complex problems in a rapidly changing arena dominated by energy, economic, and environmental issues. These issues include the following: air quality; global climate change; energy security; international competitiveness; acid rain; power production; and technology awareness. These technologies are expected to be of particular importance to the utility industry. Power production in the United States, particularly in the form of electricity, is expected to increase rapidly during the next 20 years. The growth in electricity consumption between 1990 and 2000 translates into the need for at least an additional 200,000 MWe of capacity by 2010. The ability to continue to use coal to produce electricity and as a source of industrial heat and power is critical. In the United States approximately 86 percent of coal is critical. The CCT Program is developing through demonstration new power and steam production systems using coal-based technologies that will permit coal to be a clean, efficient, reliable source of affordable energy.

Miller, C.L.

1993-12-31T23:59:59.000Z

239

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

generation systems. Coal energy density could be increasedfuel reserves were coal by energy content; 19% were oil, andConsumption, 2007 coal/primary energy consumption Source: BP

Aden, Nathaniel

2010-01-01T23:59:59.000Z

240

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

19 3.4. Coking coal for iron & steels FOB export value for coking coal was relatively stables FOB export value for coking coal significantly increased

Aden, Nathaniel

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

12 2.6. International coal prices and18 International coal prices and trade In parallel with the2001, domestic Chinese coal prices moved from stable levels

Aden, Nathaniel

2010-01-01T23:59:59.000Z

242

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

farms with advanced coal generation facilities and operatingfarms with advanced coal generation facilities and operatingin the stand-alone coal generation option (IGCC+CCS plant)

Phadke, Amol

2008-01-01T23:59:59.000Z

243

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

services. Power generation Coal increasingly dominates28 Thermal coal electricity generation efficiency alsostudy examines four coal-thermal generation technology types

Aden, Nathaniel

2010-01-01T23:59:59.000Z

244

Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Coal Power Initiative Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy processes that sharply reduce air emissions and other...

245

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

246

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of deploying advanced coal power in the Chinese context,”12 2.6. International coal prices and12 III. Chinese Coal

Aden, Nathaniel

2010-01-01T23:59:59.000Z

247

State Agency Loan Program  

Broader source: Energy.gov [DOE]

The State Agency Loan Program (SALP) was established in 1991 using funds from the Energy Overcharge Restitution Fund. Through this revolving loan program, the Maryland Energy Administration (MEA)...

248

Clean coal: Global opportunities for small businesses  

SciTech Connect (OSTI)

The parallel growth in coal demand and environmental concern has spurred interest in technologies that burn coal with greater efficiency and with lower emissions. Clean Coal Technologies (CCTs) will ensure that continued use of the world`s most abundant energy resource is compatible with a cleaner, healthier environment. Increasing interest in CCTs opens the door for American small businesses to provide services and equipment for the clean and efficient use of coal. Key players in most coal-related projects are typically large equipment manufacturers, power project developers, utilities, governments, and multinational corporations. At the same time, the complexity and scale of many of these projects creates niche markets for small American businesses with high-value products and services. From information technology, control systems, and specialized components to management practices, financial services, and personnel training methods, small US companies boast some of the highest value products and services in the world. As a result, American companies are in a prime position to take advantage of global niche markets for CCTs. This guide is designed to provide US small businesses with an overview of potential international market opportunities related to CCTs and to provide initial guidance on how to cost-effectively enter that growing global market.

NONE

1998-01-01T23:59:59.000Z

249

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H.; Smit, Francis J.; Swanson, Wilbur W.

1993-04-06T23:59:59.000Z

250

Coal markets squeeze producers  

SciTech Connect (OSTI)

Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

Ryan, M.

2005-12-01T23:59:59.000Z

251

Clean Coal Research  

Broader source: Energy.gov [DOE]

DOE's clean coal R&D is focused on developing and demonstrating advanced power generation and carbon capture, utilization and storage technologies for existing facilities and new fossil-fueled...

252

Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

253

Coal Market Module  

Gasoline and Diesel Fuel Update (EIA)

these provisions are assumed to result in 1 gigawatt of advanced coal-fired capacity with carbon capture and sequestration by 2017. Subtitle B which extends the phaseout of...

254

Coal Market Module This  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

together, are assumed to result in about 1 gigawatt of advanced coal-fired capacity with carbon capture and sequestration by 2017. EIEA was passed in October 2008 as part of the...

255

Aqueous coal slurry  

DOE Patents [OSTI]

An aqueous slurry containing coal and dextrin as a dispersant. The slurry, in addition to containing dextrin, may contain a conventional dispersant or, alternatively, a pH controlling reagent.

Berggren, Mark H. (Golden, CO); Smit, Francis J. (Arvada, CO); Swanson, Wilbur W. (Golden, CO)

1993-01-01T23:59:59.000Z

256

Liquid Tin Anode Direct Coal Fuel Cell Final Program Report  

SciTech Connect (OSTI)

This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

Tao, Thomas

2012-01-26T23:59:59.000Z

257

Studies of coupled chemical and catalytic coal conversion methods  

SciTech Connect (OSTI)

The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal`s structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

1991-12-01T23:59:59.000Z

258

Coal liquefaction process  

DOE Patents [OSTI]

This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.

Skinner, Ronald W. (Allentown, PA); Tao, John C. (Perkiomenville, PA); Znaimer, Samuel (Vancouver, CA)

1985-01-01T23:59:59.000Z

259

Coal Liquefaction desulfurization process  

DOE Patents [OSTI]

In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

Givens, Edwin N. (Bethlehem, PA)

1983-01-01T23:59:59.000Z

260

Method for coal liquefaction  

DOE Patents [OSTI]

A process is disclosed for coal liquefaction in which minute particles of coal in intimate contact with a hydrogenation catalyst and hydrogen arc reacted for a very short time at a temperature in excess of 400 C at a pressure of at least 1500 psi to yield over 50% liquids with a liquid to gaseous hydrocarbon ratio in excess of 8:1. 1 figures.

Wiser, W.H.; Oblad, A.G.; Shabtai, J.S.

1994-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of a Coal Quality Expert  

SciTech Connect (OSTI)

ABB Power Plant Laboratories Combustion Engineering, Inc., (ABB CE) and CQ Inc. completed a broad, comprehensive program to demonstrate the economic and environmental benefits of using higher quality U.S. coals for electrical power generation and developed state-of-the-art user-friendly software--Coal Quality Expert (CQE)-to reliably predict/estimate these benefits in a consistent manner. The program was an essential extension and integration of R and D projects performed in the past under U.S. DOE and EPRI sponsorship and it expanded the available database of coal quality and power plant performance information. This software will permit utilities to purchase the lowest cost clean coals tailored to their specific requirements. Based on common interest and mutual benefit, the subject program was cosponsored by the U.S. DOE, EPRI, and eight U.S. coal-burning utilities. In addition to cosponsoring this program, EPN contributed its background research, data, and computer models, and managed some other supporting contracts under the terms of a project agreement established between CQ Inc. and EPRI. The essential work of the proposed project was performed under separate contracts to CQ Inc. by Electric Power Technologies (El?'T), Black and Veatch (B and V), ABB Combustion Engineering, Babcock and Wilcox (B and W), and Decision Focus, Inc. Although a significant quantity of the coals tied in the United States are now cleaned to some degree before firing, for many of these coals the residual sulfur content requires users to install expensive sulfur removal systems and the residual ash causes boilers to operate inefficiently and to require frequent maintenance. Disposal of the large quantities of slag and ash at utility plant sites can also be problematic and expensive. Improved and advanced coal cleaning processes can reduce the sulfur content of many coals to levels conforming to environmental standards without requiring post-combustion desulfurization systems. Also, some coals may be beneficiated or blended to a quality level where significantly less costly desulfurization systems are needed. Coal cleaning processes may also be used to remove the precursors of other troublesome emissions that can be identified now or in the future. An added benefit of coal cleaning and blending is the reduction in concentrations of mineral impurities in the fuel leading to improved performance and operation of the'' boiler in which it is fired. The ash removed during the pre-combustion cleaning process can be more easily and safely disposed of at the mine than at the utility plant after combustion. EPRI's Coal Quality Impact Model (CQIM) has shown that improved fuel quality can result in savings in unit capital and operating costs. This project produced new and improved software to select coal types and specifications resulting in the best quality and lowest cost fuel to meet specific environmental requirements.

None

1998-06-20T23:59:59.000Z

262

Research and development of models and instruments to define, measure, and improve shared information processing with government oversight agencies. An analysis of the literature, August 1990--January 1992  

SciTech Connect (OSTI)

This document identifies elements of sharing, plus key variables of each and their interrelationships. The document`s model of sharing is intended to help management systems` users understand what sharing is and how to integrate it with information processing.

Not Available

1992-12-31T23:59:59.000Z

263

Coal anion structure and chemistry of coal alkylation. Final report, March 1, 1979-February 29, 1980  

SciTech Connect (OSTI)

In accord with Task 1, some ether cleavage reactions were carried out in two different media - potassium/naphthalene/tetrahydrofuran and potassium/ ammonia - so that the merits and demerits of the two methods could be compared. Preliminary results suggest that both systems yield the same products, and that the ammonia medium is more convenient to work with, because of the absence of by-products such as reduced naphthalenes and tetralin. Dialkyl ethers were found to be least reactive compounds while the benzyl and phenyl ethers were found to be most reactive, as would be expected. The reductive alkylation of coal was carried out in ammonia at 25/sup 0/C. The tetrahydrofuran solubility of the reaction product was surprisingly low. We have obtained additional /sup 13/C)/sup 1/H) nmr data for tetrahydrofuran-soluble butylated coal and some model compounds; obtained additional Styragel(R) chromatography data of tetrahydrofuran-soluble coal labelled with 98%-enriched butyl-1,1-d/sub 2/ iodide; and obtained /sup 2/D nmr spectra of all the deuterium-labelled, tetrahydrofuran-soluble coal products. In accord with Task 4, we have undertaken a review of the information now available concerning the nature of Illinois No. 6 coal. Also, the effects of organic additives on the exchange reactions between tetralin-d/sub 12/ and diphenyl-methane and on the thermal cleavage reactions of several model compounds in tetralin were investigated to probe the relationship between structure and reactivity. The exchange reaction can be accelerated by coal, asphaltene-preasphaltene fractions derived from coal, compounds with labile bonds, or compounds which can be reduced readily. The pyridine-insoluble coal product, acids, and bases are inactive toward the exchange reaction.

Stock, L.M.

1980-01-01T23:59:59.000Z

264

Coal science for the clean use of coal  

SciTech Connect (OSTI)

Coal will need to be retained as a major source of energy in the next century. It will need to be used more effectively and more cleanly. In order to achieve this, it is necessary to introduce new technology supported by a local community of science and technology. Only in this way can the full benefits of international advances in coal utilization be fully achieved. It is important that full advantage be taken of the advances that have been achieved in laboratory techniques and in the better understanding of fundamental coal science. This paper reviews available technologies in power generation, industrial process heat, coal combustion, coal gasification, and coal analytical procedures.

Harrison, J.S. [Univ. of Leeds (United Kingdom)

1994-12-31T23:59:59.000Z

265

Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies  

SciTech Connect (OSTI)

The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of the case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.

Ackerman, E.; Hart, D.; Lethi, M.; Park, W.; Rifkin, S.

1980-02-01T23:59:59.000Z

266

Aspects of coal pyrogenation with high heating rates  

SciTech Connect (OSTI)

The present paper describes the conversion of different rank coals into coke of required quality, influenced by heating rate variation. The study has been made for romanian coals and the imported coals too. Theoretical aspects of the coking process kinetics with special practical applications are shown. In Romania, classical coke making technology involves some theoretical and practical problems because of the local coal supply, weak in coking coals. Petrographical methods, as a complementary source of information for coking mechanisms understanding were used, for blends with high content of weakly coking coals. The results reveal the importance of rank and petrographical composition determinations for complex blends making. The paper continues previous studies of coke making kinetics, influenced by heating rate variation. On the basis of the relationship between coal charge composition and coke structure, including its use in the blast furnace, the influence of an increase in heating rate on the structure of the coke produced from different rank and petrographical composition coals, was studied. The heating rates ranged between 3 and 40 C/min. The structural changes produced during pyrogenation were more evident for the heating rates: 3, 6, 10 and 40 C/min. Table 2 reveals the optical aspects of coke matrix and inertinitic inclusions evolution, that is, the differences in structure arrangement by changing the plastic phase characteristics due to the increase in the heating rate.

Panaitescu, C.; Barca, F. [Politehnica Univ., Bucharest (Romania); Predeanu, G.; Albastroiu, P. [Metallurgical Research Inst., Bucharest (Romania)

1994-12-31T23:59:59.000Z

267

Predictors of plasticity in bituminous coals. Final technical report  

SciTech Connect (OSTI)

A group of 40 hvb coals, mostly from western Kentucky fields, has been examined with regard to ASTM Gieseler plastometric properties. Twenty-nine of these coals have also been studied over a range of temperatures by isothermal Gieseler plastometry. Raw Gieseler data provide melting and coking slopes and readily calculable fluidity spans. Maximum fluidity by slope intersection is a more consistent measure than observed maximum fluidity. Isothermal slopes and maximum fluidities follow Arrhenius temperature dependencies, with activation energies related systematically to fluid properties. These freshly sampled coals are also characterized by chemical, physical and petrographic criteria, by quantitative solvent extractions, by pyrolysis gas chromatography, by Fourier Transform infrared analysis of coals and extraction residues, by the HPLC analysis of coal extracts, and by optical microscopy of coals and Gieseler semi-coke residues. Multiple linear regression analysis yields three-term expressions which estimate maximum fluidities (both ASTM and isothermal) with R values of .90 to .92. Slopes and critical temperatures are similarly predictable. Plastometer experiments with selected coals under superatmospheric pressures show both melting slopes and maximum fluidities to be sharply increased, the latter by one to three orders of magnitude. Some suggestions are offered to accommodate this new information into the general body of knowledge concerning the phenomenon of plasticity in mid-ranked coals. 81 references, 28 figures, 40 tables.

Lloyd, W. G.; Reasoner, J. W.; Hower, J. C.; Yates, L. P.; Clark, C. P.; Davis, E.; Fitzpatrick, A.; Irefin, A.; Jiminez, A.; Jones, T. M.

1984-02-01T23:59:59.000Z

268

Use of the GranuFlow Process in Coal Preparation Plants to Improve Energy Recovery and Reduce Coal Processing Wastes  

SciTech Connect (OSTI)

With the increasing use of screen-bowl centrifuges in today's fine coal cleaning circuits, a significant amount of low-ash, high-Btu coal can be lost during the dewatering step due to the difficulty in capturing coal of this size consist (< 100 mesh or 0.15mm). The GranuFlow{trademark} technology, developed and patented by an in-house research group at DOE-NETL, involves the addition of an emulsified mixture of high-molecular-weight hydrocarbons to a slurry of finesized coal before cleaning and/or mechanical dewatering. The binder selectively agglomerates the coal, but not the clays or other mineral matter. In practice, the binder is applied so as to contact the finest possible size fraction first (for example, froth flotation product) as agglomeration of this fraction produces the best result for a given concentration of binder. Increasing the size consist of the fine-sized coal stream reduces the loss of coal solids to the waste effluent streams from the screen bowl centrifuge circuit. In addition, the agglomerated coal dewaters better and is less dusty. The binder can also serve as a flotation conditioner and may provide freeze protection. The overall objective of the project is to generate all necessary information and data required to commercialize the GranuFlow{trademark} Technology. The technology was evaluated under full-scale operating conditions at three commercial coal preparation plants to determine operating performance and economics. The handling, storage, and combustion properties of the coal produced by this process were compared to untreated coal during a power plant combustion test.

Glenn A. Shirey; David J. Akers

2005-12-31T23:59:59.000Z

269

Healy Clean Coal Project: A DOE Assessment  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporation, provider of environmental and permitting support. Foster Wheeler Energy Corporation supplied the boiler. GVEA provided oversight of the design and provided operators during demonstration testing. The project was sited adjacent to GVEA's Healy Unit No. 1 in Healy, Alaska. The objective of this CCT project was to demonstrate the ability of the TRW Clean Coal Combustion System to operate on a blend of run-of-mine (ROM) coal and waste coal, while meeting strict environmental requirements. DOE provided $117,327,000 of the total project cost of $282,300,000, or 41.6 percent. Construction for the demonstration project was started in May 1995, and completed in November 1997. Operations were initiated in January 1998, and completed in December 1999. The evaluation contained herein is based primarily on information from the AIDEA's Final Report (Alaska Industrial Development and Export Authority, 2001), as well as other references cited.

National Energy Technology Laboratory

2003-09-01T23:59:59.000Z

270

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/2 Syngas (H2 + CO + CO2) Coal Gasifier coal Fuel Production/this operational mode, the gasifiers and other parts of the

Phadke, Amol

2008-01-01T23:59:59.000Z

271

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

application of new clean coal technologies with near zeroapplication of new clean coal technologies with near zero

Phadke, Amol

2008-01-01T23:59:59.000Z

272

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

of coal sulfur K-T gasification process SRC I process U. S.flow sheet of a K-T coal gasification complex for producingProduction via K-T Gasification" © CEP Aug. 78. Feed

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

273

Method of extracting coal from a coal refuse pile  

DOE Patents [OSTI]

A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

Yavorsky, Paul M. (Monongahela, PA)

1991-01-01T23:59:59.000Z

274

Composition and properties of coals from the Yurty coal occurrence  

SciTech Connect (OSTI)

Coals from the Yurty coal occurrence were studied. It was found that the samples were brown non-coking coals with low sulfur contents (to 1%) and high yields of volatile substances. The high heat value of coals was 20.6-27.7 MJ/kg. The humic acid content varied from 5.45 to 77.62%. The mineral matter mainly consisted of kaolinite, a-quartz, and microcline. The concentration of toxic elements did not reach hazardous values.

N.G. Vyazova; L.N. Belonogova; V.P. Latyshev; E.A. Pisar'kova [Irkutsk State University, Irkutsk (Russia). Research Institute of Oil and Coal Chemistry and Synthesis

2008-10-15T23:59:59.000Z

275

Coal combustion system  

DOE Patents [OSTI]

In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

Wilkes, Colin (Lebanon, IN); Mongia, Hukam C. (Carmel, IN); Tramm, Peter C. (Indianapolis, IN)

1988-01-01T23:59:59.000Z

276

Agencies and Organizations Agency / Organization Website  

E-Print Network [OSTI]

Institutes of Health (NIH) http://nih.gov/ National Science Foundation (NSF) http://www.nsf.gov/ National://www.neh.gov/ Defense Advanced Research Projects Agency (DARPA) http://www.darpa.mil/ OppNet http://oppnet.nih.gov/index.asp NIH TOC http://grants.nih.gov/grants/guide/WeeklyIndex.cfm?WeekE nding=11-04-2011 USA.gov http

Carriquiry, Alicia

277

The Caterpillar Coal Gasification Facility  

E-Print Network [OSTI]

This paper is a review of one of America's premier coal gasification installations. The caterpillar coal gasification facility located in York, Pennsylvania is an award winning facility. The plant was recognized as the 'pace setter plant of the year...

Welsh, J.; Coffeen, W. G., III

1983-01-01T23:59:59.000Z

278

Hydrogen from Coal Edward Schmetz  

E-Print Network [OSTI]

Turbines Carbon Capture & Sequestration Carbon Capture & Sequestration The Hydrogen from Coal Program Cells, Turbines, and Carbon Capture & Sequestration #12;Production Goal for Hydrogen from Coal Central Separation System PSA Membrane Membrane Carbon Sequestration Yes (87%) Yes (100%) Yes (100%) Hydrogen

279

The world price of coal  

E-Print Network [OSTI]

A significant increase in the seaborne trade for coal over the past twenty years has unified formerly separate coal markets into a world market in which prices move in tandem. Due to its large domestic market, the United ...

Ellerman, A. Denny

1994-01-01T23:59:59.000Z

280

Low-rank coal research  

SciTech Connect (OSTI)

This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

Weber, G. F.; Laudal, D. L.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Surface Coal Mining Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under...

282

Montana Coal Mining Code (Montana)  

Broader source: Energy.gov [DOE]

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

283

2009 Coal Age Buyers Guide  

SciTech Connect (OSTI)

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2009-07-15T23:59:59.000Z

284

agency agence spatiale: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AGENCY Physics Websites Summary: AUSTRALIAN UNIVERSITIES QUALITY AGENCY Report of an Audit of Charles Darwin University October 2005 12;AUQA Audit Report Number 34 ISBN 1...

285

The Asia-Pacific coal technology conference  

SciTech Connect (OSTI)

The Asia-Pacific coal technology conference was held in Honolulu, Hawaii, November 14--16, 1989. Topics discussed included the following: Expanded Horizons for US Coal Technology and Coal Trade; Future Coal-Fired Generation and Capacity Requirements of the Philippines; Taiwan Presentation; Korean Presentation; Hong Kong Future Coal Requirements; Indonesian Presentation; Electric Power System in Thailand; Coal in Malaysia -- A Position Paper; The US and Asia: Pacific Partners in Coal and Coal Technology; US Coal Production and Export; US Clean Coal Technologies; Developments in Coal Transport and Utilization; Alternative/Innovative Transport; Electricity Generation in Asia and the Pacific: Power Sector Demand for Coal, Oil and Natural Gas; Role of Clean Coal Technology in the Energy Future of the World; Global Climate Change: A Fossil Energy Perspective; Speaker: The Role of Coal in Meeting Hawaii's Power Needs; and Workshops on Critical Issues Associated with Coal Usage. Individual topics are processed separately for the data bases.

Not Available

1990-02-01T23:59:59.000Z

286

Fixed-bed gasification research using US coals. Volume 17. Gasification and liquids recovery of four US coals  

SciTech Connect (OSTI)

A single-staged, fixed-bed Wellman-Galusha gasifier coupled with a hot, raw gas combustion system and scrubber has been used to gasify numerous coals from throughout the United States. The gasification test program is organized as a cooperative effort by private industrial participants and government agencies. The consortium of participants is organized under the Mining and Industrial Fuel Gas (MIFGa) group. This report is the seventeenth in a series of reports describing the atmospheric pressure, fixed-bed gasification of US coals. This report describes the gasification and pyrolysis liquids recovery test for four different coals: Illinois No. 6, SUFCO, Indianhead lignite, and Hiawatha. This test series spanned from July 15, 1985, through July 28, 1985. 4 refs., 16 figs., 19 tabs.

Thimsen, D.; Maurer, R.E.; Pooler, A.R.; Pui, D.; Liu, B.; Kittelson, D.

1985-12-01T23:59:59.000Z

287

Field study of disposed solid wastes from advanced coal processes  

SciTech Connect (OSTI)

Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

Not Available

1992-01-01T23:59:59.000Z

288

Sustainable development with clean coal  

SciTech Connect (OSTI)

This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

NONE

1997-08-01T23:59:59.000Z

289

Ashing properties of coal blends  

SciTech Connect (OSTI)

The fusion properties of sulfur materials present in coals were investigated. The treatment of the samples of eleven different coals is described. Thermal treatment of low temperature ashing (LTA) concentrates of eight of the coals was performed, and raw and wash ashing curves were examined to determine what quantitative correlations, if any, exist between ashing parameters and rank of coal. The actual form of the function which describes the ashing curve is derived.

Biggs, D.L.

1982-03-01T23:59:59.000Z

290

Significance of the modes of occurrence of arsenic in coal  

SciTech Connect (OSTI)

Although modes of occurrence can be determined with a variety of techniques, electron microscopy allows documentation and quantification of trace elements in mineral phases. In these studies, the authors have used scanning electron and electron-beam microscopy to analyze pyrite grains in coal samples that contain high arsenic and to determine its mode of occurrence. Information obtained from these studies may prove valuable in predicting and modeling the fate of arsenic in coal utilization.

Ruppert, L.F. [Geological Survey, Reston, VA (United States); Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States)

1995-12-31T23:59:59.000Z

291

Pyrolysis of coal  

DOE Patents [OSTI]

A method for mild gasification of crushed coal in a single vertical elongated reaction vessel providing a fluidized bed reaction zone, a freeboard reaction zone, and an entrained reaction zone within the single vessel. Feed coal and gas may be fed separately to each of these reaction zones to provide different reaction temperatures and conditions in each reaction zone. The reactor and process of this invention provides for the complete utilization of a coal supply for gasification including utilization of caking and non-caking or agglomerating feeds in the same reactor. The products may be adjusted to provide significantly greater product economic value, especially with respect to desired production of char having high surface area.

Babu, Suresh P. (Willow Springs, IL); Bair, Wilford G. (Morton Grove, IL)

1992-01-01T23:59:59.000Z

292

Healy Clean Coal Project  

SciTech Connect (OSTI)

The Healy Clean Coal Project, selected by the U.S. Department of Energy under Round 111 of the Clean Coal Technology Program, has been constructed and is currently in the Phase 111 Demonstration Testing. The project is owned and financed by the Alaska Industrial Development and Export Authority (AIDEA), and is cofunded by the U.S. Department of Energy. Construction was 100% completed in mid-November of 1997, with coal firing trials starting in early 1998. Demonstration testing and reporting of the results will take place in 1998, followed by commercial operation of the facility. The emission levels of nitrogen oxides (NOx), sulfur dioxide (S02), and particulate from this 50-megawatt plant are expected to be significantly lower than current standards.

None

1997-12-31T23:59:59.000Z

293

CONSORTIUM FOR CLEAN COAL UTILIZATION  

E-Print Network [OSTI]

CONSORTIUM FOR CLEAN COAL UTILIZATION Call for Proposals Date of Issue: July 29, 2013 The Consortium for Clean Coal Utilization (CCCU) at Washington University in St. Louis was established in January of Clean Coal Utilization. The format may be a conference or workshop, or a seminar given by a leading

Subramanian, Venkat

294

Development of a Low NOx Burner System for Coal Fired Power Plants Using Coal and Biomass Blends  

E-Print Network [OSTI]

.................................................................................... 36 Figure 19 Result of Combustion Performance Tests after Retrofits of Thermal Power Plant IN in Finland Consisting of Four 265 MW Pulverized Coal-Fired Boilers... on to include the International Energy Agency Bioenergy Task 32 group?s draft position paper that indicates cofiring represents among the lowest risk, least expensive, most efficient, and shortest term options for renewable-based electrical power generation...

Gomez, Patsky O.

2010-01-16T23:59:59.000Z

295

PNNL Coal Gasification Research  

SciTech Connect (OSTI)

This report explains the goals of PNNL in relation to coal gasification research. The long-term intent of this effort is to produce a syngas product for use by internal Pacific Northwest National Laboratory (PNNL) researchers in materials, catalysts, and instrumentation development. Future work on the project will focus on improving the reliability and performance of the gasifier, with a goal of continuous operation for 4 hours using coal feedstock. In addition, system modifications to increase operational flexibility and reliability or accommodate other fuel sources that can be used for syngas production could be useful.

Reid, Douglas J.; Cabe, James E.; Bearden, Mark D.

2010-07-28T23:59:59.000Z

296

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

297

Fluorine in coal and coal by-products  

SciTech Connect (OSTI)

Fluorine occurs in awe amounts in most coals. It is typically associated with minerals of the apatite group, principally fluorapatite and clays, and with fluorite, tourmaline, topaz, amphiboles and micas. The average fluorine content of US coal is, according to the tabulation of Swanson, 74 {mu}g/g. In the United States, the lowest average fluorine concentration of 30 {mu}g/g is found in coals from Eastern Kentucky and the highest average value of 160 {mu}g/g is found in coals from Wyoming and New Mexico. The concentration range of fluorine in European coals is similar to that found in the US while the average fluorine content of Australian coals ranges from 15 to 500 {mu}g/g. We have determined the fluorine content in coal and fly ash standards by proton-induced gamma ray emission analysis (PIGE).

Robertson, J.D.; Wong, A.S.; Hower, J.C. [Univ. of Kentucky, Lexington, KY (United States)

1994-12-31T23:59:59.000Z

298

apec coal flow: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

299

alkaline coal ash: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from pulverized coal pulverized-coal-fired furnaces, cyclone furnaces, or advanced clean-coal technology furnaces. The ash collected from pulverized-coal-fired furnaces is fly...

300

Clean coal technology: Export finance programs  

SciTech Connect (OSTI)

Participation by US firms in the development of Clean Coal. Technology (CCT) projects in foreign countries will help the United States achieve multiple national objectives simultaneously--addressing critical goals related to energy, environmental technology, industrial competitiveness and international trade. US participation in these projects will result in an improved global environment, an improvement in the balance of payments and an increase in US jobs. Meanwhile, host countries will benefit from the development of economically- and environmentally-sound power facilities. The Clean Air Act Amendments of 1990 (Public Law 101-549, Section 409) as supplemented by a requirement in the Energy Policy Act of 1992 (Public Law 102-486, Section 1331(f)) requires that the Secretary of Energy, acting through the Trade Promotion Coordinating Committee Subgroup on Clean Coal Technologies, submit a report to Congress with information on the status of recommendations made in the US Department of Energy, Clean Coal Technology Export Programs, Report to the United States Congress, February 1992. Specific emphasis is placed on the adequacy of financial assistance for export of CCTS. This report fulfills the requirements of the Act. In addition, although this report focuses on CCT power projects, the issues it raises about the financing of these projects are also relevant to other CCT projects such as industrial applications or coal preparation, as well as to a much broader range of energy and environmental technology projects worldwide.

Not Available

1993-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Regional Effort to Deploy Clean Coal Technologies  

SciTech Connect (OSTI)

The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

2009-01-31T23:59:59.000Z

302

Design and Realization of a Multi-modal/Multi-Agency Transit Management  

E-Print Network [OSTI]

1 Design and Realization of a Multi-modal/Multi-Agency Transit Management and Information System D four transit agencies. The result is a set of web applications suitable for both transit management of traveler information and transit management systems that span four agencies in Washington State, USA

303

The Coal Logistics System: Documentation and user's guide  

SciTech Connect (OSTI)

The Coal Logistics System (CLS) has the capability to track coal from a US mine or mining area to a foreign consumer's receiving dock. The system contains substantial quantities of information about the types of coal available in different US coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in the five importing nations now included. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations from Trieste to Vado Ligure in Italy, and from Muroran in northern Japan, to Sri Racha, near Bangkok, along the Asian Pacific Rim. The CLS can also be used to examine coal quality within or between any of 18 US coalfields, including three in Alaska, or compare alternative routes and associated service prices between coal producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The CLS interacts with users through a series of menus that provide the user with simple choices. 30 figs.

Not Available

1988-10-01T23:59:59.000Z

304

Capture and Use of Coal Mine Ventilation Air Methane  

SciTech Connect (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

305

Catalytic coal liquefaction process  

DOE Patents [OSTI]

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

Garg, D.; Sunder, S.

1986-12-02T23:59:59.000Z

306

Biochemical transformation of coals  

DOE Patents [OSTI]

A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

Lin, M.S.; Premuzic, E.T.

1999-03-23T23:59:59.000Z

307

Catalytic coal liquefaction process  

DOE Patents [OSTI]

An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

Garg, Diwakar (Macungie, PA); Sunder, Swaminathan (Allentown, PA)

1986-01-01T23:59:59.000Z

308

Catalytic coal hydroliquefaction process  

DOE Patents [OSTI]

A process is described for the liquefaction of coal in a hydrogen donor solvent in the presence of hydrogen and a co-catalyst combination of iron and a Group VI or Group VIII non-ferrous metal or compounds of the catalysts.

Garg, Diwakar (Macungie, PA)

1984-01-01T23:59:59.000Z

309

Coal-oil slurry preparation  

DOE Patents [OSTI]

A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.

Tao, John C. (Perkiomenville, PA)

1983-01-01T23:59:59.000Z

310

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?˘ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?˘ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?˘ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?˘ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

311

Eight Advanced Coal Projects Chosen for Further Development by DOE's University Coal Research Program  

Broader source: Energy.gov [DOE]

DOE has selected eight new projects to further advanced coal research under the University Coal Research Program. The selected projects will improve coal conversion and use and will help propel technologies for future advanced coal power systems.

312

Studies of coupled chemical and catalytic coal conversion methods  

SciTech Connect (OSTI)

The objective of this research was to convert coal into a soluble substance under mild conditions. The strategy involved two steps, first to breakdown the macromolecular network of coal, and second to add hydrogen catalytically. We investigated different basic reagents that could, in priciple, break down coal's structure and alkylation strategies that might enhance its solubility. We examined O- and C-alkylation, the importance of the strength of the base, the character of the added alkyl groups and other reaction parameters. This work provided new information concerning the way in which hydrogen bonding, polarization interactions between aromatic structures and covalent bonding could be disrupted and solubility enhanced. The objective of our research was to explore new organochromium chemistry that might be feasible for the hydrogenation of coal under mild conditions.

Stock, L.M.; Chatterjee, K.; Cheng, C.; Ettinger, M.; Flores, F.; Jiralerspong, S.; Miyake, M.; Muntean, J.

1991-12-01T23:59:59.000Z

313

Moist caustic leaching of coal  

DOE Patents [OSTI]

A process for reducing the sulfur and ash content of coal. Particulate coal is introduced into a closed heated reaction chamber having an inert atmosphere to which is added 50 mole percent NaOH and 50 mole percent KOH moist caustic having a water content in the range of from about 15% by weight to about 35% by weight and in a caustic to coal weight ratio of about 5 to 1. The coal and moist caustic are kept at a temperature of about 300.degree. C. Then, water is added to the coal and caustic mixture to form an aqueous slurry, which is washed with water to remove caustic from the coal and to produce an aqueous caustic solution. Water is evaporated from the aqueous caustic solution until the water is in the range of from about 15% by weight to about 35% by weight and is reintroduced to the closed reaction chamber. Sufficient acid is added to the washed coal slurry to neutralize any remaining caustic present on the coal, which is thereafter dried to produce desulfurized coal having not less than about 90% by weight of the sulfur present in the coal feed removed and having an ash content of less than about 2% by weight.

Nowak, Michael A. (Elizabeth, PA)

1994-01-01T23:59:59.000Z

314

Inland-transport modes for coal and coal-derived energy: an evaluation method for comparing environmental impacts  

SciTech Connect (OSTI)

This report presents a method for evaluating relative environmental impacts of coal transportation modes (e.g., unit trains, trucks). Impacts of each mode are evaluated (rated) for a number of categories of environmental effects (e.g., air pollution, water pollution). The overall environmental impact of each mode is determined for the coal origin (mine-mouth area), the coal or coal-energy product destination (demand point), and the line-haul route. These origin, destination, and en route impact rankings are then combined into a systemwide ranking. Thus the method accounts for the many combinations of transport modes, routes, and energy products that can satisfy a user's energy demand from a particular coal source. Impact ratings and system rankings are not highly detailed (narrowly defined). Instead, environmental impacts are given low, medium, and high ratings that are developed using environmental effects data compiled in a recent Argonne National Laboratory report entitled Data for Intermodal Comparison of Environmental Impacts of Inland Transportation Alternatives for Coal Energy (ANL/EES-TM-206). The ratings and rankings developed for this report are generic. Using the method presented, policy makers can apply these generic data and the analytical framework given to particular cases by adding their own site specific data and making some informed judgements. Separate tables of generic ratings and rankings are developed for transportation systems serving coal power plants, coal liquefaction plants, and coal gasification plants. The final chapter presents an hypothetical example of a site-specific application and adjustment of generic evaluations. 44 references, 2 figures, 14 tables.

Bertram, K.M.

1983-06-01T23:59:59.000Z

315

Western Coal/Great Lakes Alternative export-coal conference  

SciTech Connect (OSTI)

This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

Not Available

1981-01-01T23:59:59.000Z

316

High-sulfur coals in the eastern Kentucky coal field  

SciTech Connect (OSTI)

The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

317

Climate VISION: Events - Advanced Clean Coal Workshop  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing,-- Energy, science, and technology for theAdvanced Clean Coal

318

Quarterly review of methane from coal-seams technology. Volume 7, Number 3, July-September 1989  

SciTech Connect (OSTI)

The report contains: sources of coal well information; Powder River Basin, Wyoming; greater Green River coal region, Wyoming and Colorado; Piceance Basin, Colorado; San Juan Basin, Colorado and New Mexico; Raton Basin, Colorado and New Mexico; Black Warrior Basin, Alabama; the United States coalbed methane resource; western cretaceous coal seams project; multiple coal seams project; spalling and the development of a hydraulic fracturing strategy for coal; geologic evaluation of critical production parameters for coalbed methane resources; coalbed methane opportunities in Alberta; the coalbed methane forum; eastern coalbed methane forum.

Not Available

1990-01-01T23:59:59.000Z

320

Autothermal coal gasification  

SciTech Connect (OSTI)

This paper presents test results of a pilot plant study of coal gasification system based on the process developed by Texaco. This process has been improved by the project partners Ruhrchenie A.G. and Ruhrkohle A.C. in West Germany and tested in a demonstration plant that operated for more than 10,000 hours, converting over 50,000 tons of coal into gas. The aim was to develop a process that would be sufficiently flexible when used at the commercial level to incorporate all of the advantages inherent in the diverse processes of the 'first generation' - fixed bed, fluidized bed and entrained bed processes - but would be free of the disadvantages of these processes. Extensive test results are tabulated and evaluated. Forecast for future development is included. 5 refs.

Konkol, W.; Ruprecht, P.; Cornils, B.; Duerrfeld, R.; Langhoff, J.

1982-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Coal combustion waste management at landfills and surface impoundments 1994-2004.  

SciTech Connect (OSTI)

On May 22, 2000, as required by Congress in its 1980 Amendments to the Resource Conservation and Recovery Act (RCRA), the U.S. Environmental Protection Agency (EPA) issued a Regulatory Determination on Wastes from the Combustion of Fossil Fuels. On the basis of information contained in its 1999 Report to Congress: Wastes from the Combustion of Fossil Fuels, the EPA concluded that coal combustion wastes (CCWs), also known as coal combustion by-products (CCBs), did not warrant regulation under Subtitle C of RCRA, and it retained the existing hazardous waste exemption for these materials under RCRA Section 3001(b)(3)(C). However, the EPA also determined that national regulations under Subtitle D of RCRA were warranted for CCWs that are disposed of in landfills or surface impoundments. The EPA made this determination in part on the basis of its findings that 'present disposal practices are such that, in 1995, these wastes were being managed in 40 percent to 70 percent of landfills and surface impoundments without reasonable controls in place, particularly in the area of groundwater monitoring; and while there have been substantive improvements in state regulatory programs, we have also identified gaps in State oversight' (EPA 2000). The 1999 Report to Congress (RTC), however, may not have reflected the changes in CCW disposal practices that occurred since the cutoff date (1995) of its database and subsequent developments. The U.S. Department of Energy (DOE) and the EPA discussed this issue and decided to conduct a joint DOE/EPA study to collect new information on the recent CCW management practices by the power industry. It was agreed that such information would provide a perspective on the chronological adoption of control measures in CCW units based on State regulations. A team of experts from the EPA, industry, and DOE (with support from Argonne National Laboratory) was established to develop a mutually acceptable approach for collecting and analyzing data on CCW disposal practices and State regulatory requirements at landfills and surface impoundments that were permitted, built, or laterally expanded between January 1, 1994, and December 31, 2004. The scope of the study excluded waste units that manage CCWs in active or abandoned coal mines. The EPA identified the following three areas of interest: (1) Recent and current CCW industry surface disposal management practices, (2) State regulatory requirements for CCW management, and (3) Implementation of State requirements (i.e., the extent to which States grant or deny operator requests to waive or vary regulatory requirements and the rationales for doing so). DOE and the EPA obtained data on recent and current disposal practices from a questionnaire that the Utility Solid Waste Activities Group (USWAG) distributed to its members that own or operate coal-fired power plants. USWAG, formed in 1978, is responsible for addressing solid and hazardous waste issues on behalf of the utility industry. It is an informal consortium of approximately 80 utility operating companies, the Edison Electric Institute (EEI), the National Rural Electric Cooperative Association (NRECA), the American Public Power Association (APPA), and the American Gas Association (AGA). EEI is the principal national association of investor-owned electric power and light companies. NRECA is the national association of rural electric cooperatives. APPA is the national association of publicly owned electric utilities. AGA is the national association of natural gas utilities. Together, USWAG member companies and trade associations represent more than 85% of the total electric generating capacity of the United States and service more than 95% of the nation's consumers of electricity. To verify the survey findings, the EPA also asked State regulators from nine selected States that are leading consumers of coal for electricity generation for information on disposal units that may not have been covered in the USWAG survey. The selected States were Georgia, Illinois, Indiana, Michigan, Missouri, North Carolina, North Da

Elcock, D.; Ranek, N. L.; Environmental Science Division

2006-09-08T23:59:59.000Z

322

Environmental control implications of coal use  

SciTech Connect (OSTI)

The Environmental Control Technology for Coal Utilization program at Argonne National Laboratory (ANL) is assisting DOE by providing information required in the planning and guidance of R and D programs for coal utilization technologies and the associated environmental controls. Both available and developing technologies for the entire energy system from the mine mouth through ultimate waste disposal are analyzed. The tools of technology assessment and systems analysis are used to provide balanced evaluations of the engineering, environmental, and economic aspects of the technologies, as well as identification of synergistic effects and secondary or indirect impacts. This paper deals with three topics: First, the assessments performed to date that indicate the nature of our current work are briefly reviewed. Next, the computerized models and data bases utilized in our assessments are described. Lastly, some of the results from a major ongoing study of environmental controls for industrial boilers are presented and their implications discussed.

Wilzbach, K.E.; Livengood, C.D.; Farber, P.S.

1980-01-01T23:59:59.000Z

323

Cluster Overview of Archaeal Life (COAL) from the DOE Joint Genome Institute  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

COAL is an acronym for Cluster Overview of Archaeal Life. The purpose of COAL is to visualize protein orthology and to relate orthology with additional information derived from their genomes. This information includes phylogeny, ecotype, metabolism, thermal preference and aerobicity. The protein orthology networks are also subclustered, when possible, using a bipartioning approach based on spectral clustering. COAL clusters are of three types; root, stem and leaf. Enter a cluster number into the Cluster box on the Main COAL page at http://coal.jgi-psf.org/coal/ and click Update. The cluster appears as a network of nodes (proteins) connected by edges representing the orthology. Various information about the cluster will be loaded below the applet, along with information of the individual proteins. Proteins can be highlighted according to the phylogenetic placement of their genomes. Currently, there are four categories of metadata in COAL, oxygen usage (e.g. aerobe, anaerobe), Metabolism (e.g. Chemoorganoheterotroph, Chemolithoautotroph), thermal preference (e.g. hyperthermophile, mesophile) and ecotype (e.g. marine, aquatic).[Taken with liberal editing from the COAL Help page.

324

Zero emission coal  

SciTech Connect (OSTI)

We discuss a novel, emission-free process for producing hydrogen or electricity from coal. Even though we focus on coal, the basic design is compatible with any carbonaceous fuel. The process uses cyclical carbonation of calcium oxide to promote the production of hydrogen from carbon and water. The carbonation of the calcium oxide removes carbon dioxide from the reaction products and provides the additional energy necessary to complete hydrogen production without additional combustion of carbon. The calcination of the resulting calcium carbonate is accomplished using the high temperature waste heat from solid oxide fuel cells (SOFC), which generate electricity from hydrogen fuel. Converting waste heat back to useful chemical energy allows the process to achieve very high conversion efficiency from fuel energy to electrical energy. As the process is essentially closed-loop, the process is able to achieve zero emissions if the concentrated exhaust stream of CO{sub 2} is sequestered. Carbon dioxide disposal is accomplished by the production of magnesium carbonate from ultramafic rock. The end products of the sequestration process are stable naturally occurring minerals. Sufficient rich ultramafic deposits exist to easily handle all the world's coal.

Ziock, H.; Lackner, K.

2000-08-01T23:59:59.000Z

325

Liquid chromatographic analysis of coal surface properties  

SciTech Connect (OSTI)

The main objectives of this proposed research are to refine further the inverse liquid chromatography technique for the study of surface properties of raw coals, treated coals and coal minerals in water, to evaluate relatively surface properties of raw coals, treated coals and coal minerals by inverse liquid chromatography, and to evaluate floatability of various treated coals in conjunction with surface properties of coals. Alcohols such as methanol, ethanol, isopropanol, isobutanol, tert-butanol, heptanol, 1-hexadecanol, 2-methyl-pentanol, 4-methyl-2-penthanol (methylisobutyl carbinol), n-octanol, s-octanol, and cyclohexanol as probe compounds are utilized to evaluate hydrophilicity of coals and coal minerals. N-alkanes such as hexane, heptane and octane, and stearic acid are employed as probe compounds to evaluate hydrophobicity of coals and coal minerals. Aromatic compounds such as benzene and toluene as probe compounds are used to examine aromaticity of coal surface. Aromatic acids such as o-cresol, m-cresol, p-cresol, phenol and B-naphthol are used to detect aromatic acidic sites of coal surface. Hydrophilicity, hydrophobicity and aromaticity of surfaces for either raw coals or treated coals in water are relatively determined by evaluating both equilibrium physical/chemical adsorption and dynamic adsorption of probe compounds on various raw coals and treated coals to compare affinities of coals for water.

Kwon, K.C.

1991-01-01T23:59:59.000Z

326

Quality characterization of western Cretaceous coal from the Colorado Plateau as part of the U.S. Geological Survey's National Coal Resource Assessment Program  

SciTech Connect (OSTI)

The goal of the Colorado Plateau Coal Assessment program is to provide an overview of the geologic setting, distribution, resources, and quality of Cretaceous coal in the Colorado Plateau. This assessment, which is part of the US Geological Survey's National Coal Resource Assessment Program, is different from previous coal assessments in that the major emphasis is placed on coals that are most likely to provide energy over the next few decades. The data is also being collected and stored in digital format that can be updated as new information becomes available. Environmental factors may eventually control how coal will be mined, and determine to what extent measures will be implemented to reduce trace element emissions. In the future, increased emphasis will also be placed on coal combustion products and the challenges of waste product disposal or utilization. Therefore, coal quality characterization is an important aspect of the coal assessment program in that it provides important data that will influence future utilization of this resource. The Colorado Plateau study is being completed in cooperation with the US Bureau of Land Management, US Forest Service, Arizona Geological Survey, Colorado Geological Survey, New Mexico Bureau of Mines and Mineral Resources, and the Utah Geological Survey. Restrictions on coal thickness and overburden will be applied to the resource calculations and the resources will be categorized by land ownership. In some areas these studies will also delineate areas where coal mining may be restricted because of land use, industrial, social, or environmental factors. Emphasis is being placed on areas where the coal is controlled by the Federal Government.

Affolter, R.H.; Brownfield, M.E.

1999-07-01T23:59:59.000Z

327

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect (OSTI)

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

328

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

of natural gas, along with the coal reserve base of 326s Fossil Fuel Reserve Base, 2007 Oil Natural Gas Coal 233ensured reserves”) of coal, oil and natural gas published in

Aden, Nathaniel

2010-01-01T23:59:59.000Z

329

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

330

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

coal electricity generation efficiency also varies by plantplants. The unit water requirement of coal-fired electricity generationelectricity generation is comparatively low in China due to the prevalence of small, outdated coal-fired power plants.

Aden, Nathaniel

2010-01-01T23:59:59.000Z

331

Commercialization of Coal-to-Liquids Technology  

SciTech Connect (OSTI)

The report provides an overview of the current status of coal-to-liquids (CTL) commercialization efforts, including an analysis of efforts to develop and implement large-scale, commercial coal-to-liquids projects to create transportation fuels. Topics covered include: an overview of the history of coal usage and the current market for coal; a detailed description of what coal-to-liquids technology is; the history of coal-to-liquids development and commercial application; an analysis of the key business factors that are driving the increased interest in coal-to-liquids; an analysis of the issues and challenges that are hindering the commercialization of coal-to-liquids technology; a review of available coal-to-liquids technology; a discussion of the economic drivers of coal-to-liquids project success; profiles of key coal-to-liquids developers; and profiles of key coal-to-liquids projects under development.

NONE

2007-08-15T23:59:59.000Z

332

Commercializing the H-Coal Process  

E-Print Network [OSTI]

, Hydrocarbon Research, Inc. (HRI) has observed a decided swing in interest in commercial coal liquefaction. Project owners can select one of two paths for commercial coal liquefaction using H-Coal technology. The quantum strategy involves the construction of a...

DeVaux, G. R.; Dutkiewicz, B.

1982-01-01T23:59:59.000Z

333

Coal Bed Methane Protection Act (Montana)  

Broader source: Energy.gov [DOE]

The Coal Bed Methane Protection Act establishes a long-term coal bed methane protection account and a coal bed methane protection program for the purpose of compensating private landowners and...

334

Process for electrochemically gasifying coal  

DOE Patents [OSTI]

A process is claimed for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution. 7 figs.

Botts, T.E.; Powell, J.R.

1985-10-25T23:59:59.000Z

335

MS_Coal_Studyguide.indd  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

what about costs? Th e mining, transportation, electricity generation, and pollution-control costs associated with using coal are increasing, but both natural gas and oil are...

336

The Wyodak-Anderson coal assessment, Powder River Basin, Wyoming and Montana -- An ArcView project  

SciTech Connect (OSTI)

In 1997, more than 305 million short tons of clean and compliant coal were produced from the Wyodak-Anderson and associated coal beds and zones of the Paleocene Fort Union Formation in the Powder River Basin, Wyoming and Montana. To date, all coal produced from the Wyodak-Anderson, which averages 0.47 percent sulfur and 6.44 percent ash, has met regulatory compliance standards. Twenty-eight percent of the total US coal production in 1997 was from the Wyodak-Anderson coal. Based on the current consumption rates and forecast by the Energy Information Administration (1996), the Wyodak-Anderson coal is projected to produce 413 million short tons by the year 2016. In addition, this coal deposit as well as other Fort Union coals have recently been targeted for exploration and development of methane gas. New US Geological Survey (USGS) digital products could provide valuable assistance in future mining and gas development in the Powder River Basin. An interactive format, with querying tools, using ArcView software will display the digital products of the resource assessment of Wyodak-Anderson coal, a part of the USGS National Coal Resource Assessment of the Powder River Basin. This ArcView project includes coverages of the data point distribution; land use; surface and subsurface ownerships; coal geology, stratigraphy, quality and geochemistry; and preliminary coal resource calculations. These coverages are displayed as map views, cross sections, tables, and charts.

Flores, R.M.; Gunther, G.; Ochs, A.; Ellis, M.E.; Stricker, G.D.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-12-31T23:59:59.000Z

337

Placer County Water Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color Kinetics JumpPipestone, Minnesota:Jump

338

Property:LeadAgency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilipspresentsGeothermalArea

339

Texas Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, Inc Place:Innovation & SolutionsKentucky)Municipal Power

340

Assam Energy Development Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine: Energy Resources JumpAspen Aerogels Jump to: navigation,Solar JumpAssam

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

International Energy Agency (IEA) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen EnergyBoard"Starting aLianheStudies

342

Intermountain Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climate compatible development JumpOhioIntercounty Electric

343

Kansas Municipal Energy Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach, Florida: Energy Resources JumpKAgency Jump

344

MSR Public Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyM CommunicationsGDC Power LP JumpMSR

345

Northern Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBusPFAN) |Agny Jump to: navigation,Municipal Power

346

California Natural Resources Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis a city inCCSE Jump to:Control | OpenNatural Resources

347

Mid Wales Energy Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to:Michigan: EnergyChina FinalMicrostaq

348

Minnesota Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine: EnergyMinnErgy LLC Jump to:

349

Indiana Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429 ThrottledEnergy

350

Wyoming Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal AreaarticleWoodWildlife Fund

351

Yuba County Water Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectric Coop Inc Place: SouthCounty

352

Agency, Montana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil JumpAerowatt Energies JumpAgPro Jump

353

Florida Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix Solar Jump to:Consortium Jump to:Municipal Power

354

European Environment Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart Grid Project) JumpEnergy Institute Jump

355

Federal Emergency Management Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (Smart GridHome Kyoung'sTechnologies JumpEmergency

356

California Environmental Protection Agency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais3: Crystalline RockCaldera2California Endangered

357

Form:GovernmentAgency | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlintFluxInput your dataset

358

Category:Government Agencies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalyst Renewables Jump to:En Español

359

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network [OSTI]

Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

Phadke, Amol

2008-01-01T23:59:59.000Z

360

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

s 2006 total primary energy consumption, compared to 24Coal Dependence of Primary Energy Consumption, 2007coal/primary energy consumption Source: BP Statistical

Aden, Nathaniel

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Arkansas Surface Coal Mining Reclamation Act (Arkansas)  

Broader source: Energy.gov [DOE]

The Arkansas Surface Coal Mining Reclamation Act authorizes the state to develop, adopt, issue and amend rules and regulations pertaining to surface coal mining and reclamation operations. These...

362

Utility Generation and Clean Coal Technology (Indiana)  

Broader source: Energy.gov [DOE]

This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

363

The recovery of purified coal from solution.  

E-Print Network [OSTI]

??A new process is being developed to produce graphite from prime coking coal. Coal is dissolved in dimethylformamide (DMF), on addition of sodium hydroxide. The… (more)

Botha, Mary Alliles

2008-01-01T23:59:59.000Z

364

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

365

FEDERAL INFORMATION PROCESSING STANDARD  

E-Print Network [OSTI]

March 2004 FEDERAL INFORMATION PROCESSING STANDARD (FIPS) 199, STANDARDS FOR SECURITY Information Technology Laboratory National Institute of Standards and Technology A new Federal Information Processing Standard (FIPS), recently approved by the Secretary of Commerce, will help federal agencies

366

International Energy Agency  

Broader source: Energy.gov [DOE]

DOE's market transformation efforts have reached to European and other countries who are part of the international distributed and decentralized energy community. Through its partnership with DOE, the combined heat and power (CHP) program of the International Energy Agency (IEA) conducts research and analysis of CHP markets and deployment efforts around the world and has used lessons learned from U.S. research, development, and deployment efforts to recommend market transformation activities and policies that will lead to new CHP installations worldwide.

367

International Energy Agency  

SciTech Connect (OSTI)

The growing need for international cooperation in energy led to the establishment of the International Energy Agency (IEA) in 1974 as a forum for the 21 participating countries to coordinate their energy planning. The IEA provides a framework within the cooperating efforts of its participating countries which reinforce one another and improve the overall energy situation. This brief report reviews the objectives of the IEA and the activities of the Advisory Council.

Taylor, N.R.

1983-01-01T23:59:59.000Z

368

Agency Financial Report  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3-- ------------------------------ChapterJuly 20142LoraAgency Financial Report

369

Trends in Building Energy Usage in Texas State Agencies  

E-Print Network [OSTI]

to inform them of his utility cost containment program and to request that an energy manager be appointed for each agency to correspond with the governor's off ice on energy matters. A meeting was called in Austin to inform the agency directors... case of comparing apples and oranges, but a number of pears and grapefruit were thrown in for good measure. The agencies were subdivided into six categories. Health CentersIHospita 1s 1 ) produce their own thermal energy 2) purchase a1 1...

Murphy, W. E.; Turner, W. D.; O'Neal, D. L.; Seshan, S.

1985-01-01T23:59:59.000Z

370

Elements of environmental concern in the 1990 Clean Air Act Amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region  

SciTech Connect (OSTI)

The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e., Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous US, they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R.

1998-07-01T23:59:59.000Z

371

Elements of environmental concern in the 1990 Clean Air Act amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region  

SciTech Connect (OSTI)

The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e. Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous U.S., they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-04-01T23:59:59.000Z

372

Coal: Energy for the future  

SciTech Connect (OSTI)

This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

NONE

1995-05-01T23:59:59.000Z

373

Consensus Coal Production Forecast for  

E-Print Network [OSTI]

in the consensus forecast produced in 2006, primarily from the decreased demand as a result of the current nationalConsensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks

Mohaghegh, Shahab

374

Commercialization of clean coal technologies  

SciTech Connect (OSTI)

The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

1994-12-31T23:59:59.000Z

375

EIA -Quarterly Coal Distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennesseeWashington- Coal

376

Coal | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliffPublication Revision PolicyCoal

377

Coal combustion products (CCPs  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuelsDepartmentPolicyClean, EEREClosureHighforCoal

378

Annual Coal Distribution Tables  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved Reserves (Billion CubicCubic Feet)Year Jan FebForeign Distribution of U.S. Coal

379

Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural Gas AEO2015EnergyAnnual Coal

380

Annual Coal Distribution Report  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYear Jan Feb MarAlternative0of

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22, 20131Detailed0

382

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,

383

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S. Energy

384

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S. Energy0

385

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S. Energy01

386

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.

387

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.

388

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.1

389

By Coal Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.12

390

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1 U.S.120

391

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.1

392

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10 U.S.

393

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10 U.S.0

394

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10 U.S.01

395

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.10

396

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.101 U.S.

397

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.101 U.S.1

398

By Coal Origin State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYearReserves (Billion5:July 22,0 U.S.101

399

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 2009

400

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 20093Q 2009

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 20093Q

402

Coal Distribution Database, 2008  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Q 20093Q4Q

403

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30 2013 Macroeconomicper8,170Thousand2.442 3.028 3.803 3.971Feet)06Coal

404

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet) OmanThousand36,610.05 KeroseneCoal Glossary

405

Rail Coal Transportation Rates  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousand Cubic Feet) OmanThousand36,610.05 KeroseneCoal

406

Coal Supply Region  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87 1967-2010 ImportsCubic Feet) Oil3Qc. Real12

407

EIA - Coal Distribution  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S. uraniumFormsAnnual

408

By Coal Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 566 8021 1 2 22008662 564CubicAnnual Coal

409

Strategic Center for Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'!Stores Catalogof SVO ResearchCoal

410

Mercury control for coal-fired power plants  

SciTech Connect (OSTI)

On 15 March 2005 the US Environmental Protection Agency issued its Clean Air Mercury Rule (CAMP) to regulate mercury emissions from coal-fired power plants. EPRI is working with the US Department of Energy and the power industry to develop mercury control technologies needed to meet the final 2018 emission limits. Some improvements can be made by modifying existing SO{sub 2} or NOx control devices. Precombustion cleaning reduces mercury content of eastern coals by about one third. Adding a little halogen is another technology being researched - this promotes oxidation improving short-term mercury capture. EPRI is developing the TOXECON{trademark} technology to address a major problem of using sorbents to control mercury emissions: contamination of fly ash. 5 figs.

Haase, P.

2005-06-30T23:59:59.000Z

411

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

Costs References . . Coal-Electric Generation Technologyon coal preparation, coal-electric generation and emissionson coal preparation, coal-electric generation and emissions

Ferrell, G.C.

2010-01-01T23:59:59.000Z

412

Coal News and Markets - Energy Information Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof aChristinaCliffPublication Revision Policy IFCoal

413

Quarterly Coal Distribution Report - Energy Information Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 2011 Publicationsand

414

NYMEX Coal Futures - Energy Information Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff NUG 2012 2014NWChemNX »

415

Coal with CCS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934° Loading map...Fork, West Virginia:with

416

Coaling, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934° Loading map...Fork, West

417

Annual Coal Distribution Report - Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural Gas AEO2015Energy

418

E-Print Network 3.0 - agency international database Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences ; Biology and Medicine 2 Florida Agency for Workforce Innovation Internship Project Report Summary: in September and ended in December of 2002,...

419

Coal pile leachate treatment  

SciTech Connect (OSTI)

The steam plant located at the Oak Ridge National Laboratory was converted from oil- to coal-fired boilers. In the process, a diked, 1.6-ha coal storage yard was constructed. The purpose of this report is to describe the treatment system designed to neutralize the estimated 18,000 m/sup 3/ of acidic runoff that will be produced each year. A literature review and laboratory treatability study were conducted which identified two treatment systems that will be employed to neutralize the acidic runoff. The first, a manually operated system, will be constructed at a cost of $200,000 and will operate for an interim period of four years. This system will provide for leachate neutralization until a more automated system can be brought on-line. The second, a fully automated system, is described and will be constructed at an estimated cost of $650,000. This automated runoff treatment system will ensure that drainage from the storage yard meets current National Pollutant Discharge Elimination System Standards for pH and total suspended solids, as well as future standards, which are likely to include several metals along with selected trace elements.

Davis, E C; Kimmitt, R R

1982-09-01T23:59:59.000Z

420

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes  

SciTech Connect (OSTI)

The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

Doyle, F.M.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Flow characteristics in underground coal gasification  

SciTech Connect (OSTI)

During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

1982-01-01T23:59:59.000Z

422

Table 13. Coal Production, Projected vs. Actual  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome to the1,033 15:b. CoalTotal:

423

Coal upgrading program for Usti nad Labem, Czech Republic: Task 8.3. Topical report, October 1994--August 1995  

SciTech Connect (OSTI)

Coal has been a major energy source in the Czech Republic given its large coal reserves, especially brown coal and lignite (almost 4000 million metric tons) and smaller reserves of hard, mainly bituminous, coal (over 800 million tons). Political changes since 1989 have led to the reassessment of the role of coal in the future economy as increasing environmental regulations affect the use of the high-sulfur and high-ash brown coal and lignite as well as the high-ash hard coal. Already, the production of brown coal has declined from 87 million metric tons per year in 1989 to 67 million metric tons in 1993 and is projected to decrease further to 50 million metric tons per year of brown coal by the year 2000. As a means of effectively utilizing its indigenous coal resources, the Czech Republic is upgrading various technologies, and these are available at different stages of development, demonstration, and commercialization. The purpose of this review is to provide a database of information on applicable technologies that reduce the impact of gaseous (SO{sub 2}, NO{sub x}, volatile organic compounds) and particulate emissions from the combustion of coal in district and residential heating systems.

Young, B.C.; Musich, M.A.

1995-10-01T23:59:59.000Z

424

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

425

Low temperature aqueous desulfurization of coal  

DOE Patents [OSTI]

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, William A. (Hampton Bays, NY); Healy, Francis E. (Massapequa, NY); Sapienza, Richard S. (Shoreham, NY)

1985-01-01T23:59:59.000Z

426

2011 International Pittsburgh Coal Conference Pittsburgh, PA  

E-Print Network [OSTI]

Sequestration in Unmineable Coal with Enhanced Coal Bed Methane Recovery: The Marshall County Project James E conducted in Marshall County, West Virginia, USA, to evaluate enhanced coal bed methane recovery enhanced coal bed methane (CBM) pilot test in Marshall County, West Virginia. This pilot test was developed

Mohaghegh, Shahab

427

Biogeochemistry of Microbial Coal-Bed Methane  

E-Print Network [OSTI]

Biogeochemistry of Microbial Coal-Bed Methane Dariusz Strapo´c,1, Maria Mastalerz,2 Katherine, biodegradation Abstract Microbial methane accumulations have been discovered in multiple coal- bearing basins low-maturity coals with predominantly microbial methane gas or uplifted coals containing older

Macalady, Jenn

428

Formation and retention of methane in coal  

SciTech Connect (OSTI)

The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

Hucka, V.J.; Bodily, D.M.; Huang, H.

1992-05-15T23:59:59.000Z

429

Low temperature aqueous desulfurization of coal  

DOE Patents [OSTI]

This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

1985-04-18T23:59:59.000Z

430

Carbon Dioxide Capture from Coal-Fired  

E-Print Network [OSTI]

. LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologiesCarbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005 environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

431

Commercialization of coal to liquids technology  

SciTech Connect (OSTI)

After an overview of the coal market, technologies for producing liquids from coal are outlined. Commercialisation of coal-to-liquid fuels, the economics of coal-to-liquids development and the role of the government are discussed. Profiles of 8 key players and the profiles of 14 projects are finally given. 17 figs., 8 tabs.

NONE

2007-07-01T23:59:59.000Z

432

Clean coal technologies: A business report  

SciTech Connect (OSTI)

The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base.

Not Available

1993-01-01T23:59:59.000Z

433

Coal quality activities at the new US Geological Survey  

SciTech Connect (OSTI)

The recently issued Strategic Plan for the U.S. Geological Survey (USGS) calls for many changes including increased emphasis on the quality of natural resources, applied research, technology transfer, and issue-driven studies. To achieve these objectives the USGS will have to rely on partnerships with other Federal agencies, academia, State and local governments, nongovernmental organizations, and private industry. The coal quality activities at the USGS are briefly described and examples of the practical, team-oriented research being pursued are given.

Finkelman, R.B. [Geological Survey, Reston, VA (United States)

1996-12-31T23:59:59.000Z

434

Coal: the cornerstone of America's energy future  

SciTech Connect (OSTI)

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

435

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01T23:59:59.000Z

436

Feasibility study for underground coal gasification at the Krabi Coal Mine site, Thailand. Final report  

SciTech Connect (OSTI)

This study, conducted by Energy and Environmental Research Center, was funded by the U.S Trade and Development Agency. The report summarizes the accomplishments of field, analytical data evaluation and modeling activities focused on assessment of underground coal gasification (UCG) feasibility at Krabi over a two year period. The overall objective of the project was to determine the technical issues, environmental impact, and economic of developing and commercializing UCG at the site in Krabi. The report contains an Executive Summary followed by these chapters: (1) Project Overview; (2) Project Site Characterization; (3) Inorganic and Thermal Materials Characterization; (4) Technical and Economic Feasibility of UCG At the Krabi Site; (5) Conclusions and Recommendations; (6) Acknowledgments; (7) References.

Boysen, J.; Sole, J.; Schmit, C.R.; Harju, J.A.; Young, B.C.

1997-01-01T23:59:59.000Z

437

TOXIC SUBSTANCES FROM COAL COMBUSTION--A COMPREHENSIVE ASSESSMENT, PHASE II: ELEMENT MODES OF OCCURRENCE FOR THE OHIO 5/6/7, WYODAK AND NORTH DAKOTA COAL SAMPLES  

SciTech Connect (OSTI)

This study reports on the second phase (Phase II) of USGS research activities in support of DOE contract DE-AC22-95PC95101 ''Toxic Substances From Coal Combustion--A Comprehensive Assessment'', funded under DOE Interagency Agreement DE-AI22-95PC95145. The purpose of the study was to provide a quantitative and semi-quantitative characterization of the modes of occurrence of trace elements in coal samples investigated under Phase II, including (1) Ohio 5/6/7, an Ohio bituminous coal sample blended from the No.5, No.6, and No.7 beds; (2) North Dakota, a lignite sample from the Falkirk Mine, Underwood, ND, and (3) Wyodak, a sub-bituminous coal sample from the Cordero Mine, Gillette, WY. Samples from these coal beds were selected for their range in rank and commercial applicability. Results of this research provide basic information on the distribution of elements in Phase II coal samples, information needed for development of a commercial predictive model for trace-element behavior during coal combustion.

Allan Kolker; Stanley J. Mroczkowski; Curtis A. Palmer; Kristen O. Dennen; Robert B. Finkelman; John H. Bullock Jr.

2002-05-30T23:59:59.000Z

438

Coal cutting research slashes dust  

SciTech Connect (OSTI)

US Bureau of Mines' research projects aimed at the reduction of coal dust during coal cutting operations are described. These include an investigation of the effects of conical bit wear on respirable dust generation, energy and cutting forces; the determination of the best conical bit mount condition to increase life by enhancing bit rotation; a comparison between chisel- and conical-type cutters. In order to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

439

Coal Mining on Pitching Seams  

E-Print Network [OSTI]

. 1915* App r ov e d: Department of Mining Engineering* COAL MUTING ON PITCHING SEAMS A THESIS SUBMITTED TO THE FACULTY OP THE SCHOOL OP ENGINEERING OF THE UNIVERSITY OP KANSAS for THE DEGREE OF ENGINEER OF MINES BY GEORGE MACMILLAN BROWN 1915... PREFACE In the following dissertation on the subject of "Coal Mining in Pitching Beams" the writer desires to describe more particularly those methods of mining peculiar to coal mines in Oklahoma, with which he has been more or less familiar during...

Brown, George MacMillan

1915-01-01T23:59:59.000Z

440

Coal competition: prospects for the 1980s  

SciTech Connect (OSTI)

This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

Not Available

1981-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Coal conversion siting on coal mined lands: water quality issues  

SciTech Connect (OSTI)

The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

Triegel, E.K.

1980-01-01T23:59:59.000Z

442

Clean coal technology. Coal utilisation by-products  

SciTech Connect (OSTI)

The need to remove the bulk of ash contained in flue gas from coal-fired power plants coupled with increasingly strict environmental regulations in the USA result in increased generation of solid materials referred to as coal utilisation by-products, or CUBs. More than 40% of CUBs were sold or reused in the USA in 2004 compared to less than 25% in 1996. A goal of 50% utilization has been established for 2010. The American Coal Ash Association (ACCA) together with the US Department of Energy's Power Plant Improvement Initiative (PPPI) and Clean Coal Power Initiative (CCPI) sponsor a number of projects that promote CUB utilization. Several are mentioned in this report. Report sections are: Executive summary; Introduction; Where do CUBs come from?; Market analysis; DOE-sponsored CUB demonstrations; Examples of best-practice utilization of CUB materials; Factors limiting the use of CUBs; and Conclusions. 14 refs., 1 fig., 5 tabs., 14 photos.

NONE

2006-08-15T23:59:59.000Z

443

Clean coal technology demonstration program: Program update 1996-97  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

NONE

1997-10-01T23:59:59.000Z

444

Coal gasification vessel  

DOE Patents [OSTI]

A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

Loo, Billy W. (Oakland, CA)

1982-01-01T23:59:59.000Z

445

King Coal vs. Reclamation: federal regulation of mountaintop removal mining in Appalachia  

SciTech Connect (OSTI)

This research focuses on the regulatory politics of mountaintop removal mining for coal within the Appalachian states of West Virginia and Kentucky. Based on Administrative Presidency concepts suggesting that chief executives seek more control and influence over agency program decisions, this article analyzes President George W. Bush's efforts to promote the development of coal resources within these states despite statutory constraints posed by federal environmental laws. The analysis demonstrates that President Bush effectively achieved his energy production goals by combining the use of discretionary authority with staff controls, executive orders, and regulatory initiatives to lessen industry compliance costs with environmental regulatory requirements.

Davis, C.E.; Duffy, R.J. [Colorado State University, Fort Collins, CO (United States). Dept. of Political Science

2009-10-15T23:59:59.000Z

446

COMBUSTION OF COAL IN AN OPPOSED FLOW DIFFUSION BURNER  

E-Print Network [OSTI]

TABLE 1. Pittsburgh seam coal properties, Grosshandler (content of the Pittsburgh seam coal. As the ash layer beginsfrom Pittsburgh seam pulverized coal, screened through a 35

Chin, W.K.

2010-01-01T23:59:59.000Z

447

Recovery Act: Clean Coal Power Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act: Clean Coal Power Initiative Recovery Act: Clean Coal Power Initiative A report detailling the Clean Coal Power initiative funded under the American Recovery and...

448

MULTIPHASE REACTOR MODELING FOR ZINC CHLORIDE CATALYZED COAL LIQUEFACTION  

E-Print Network [OSTI]

ix Introduction. A. Coal Liquefaction Overview B.L ZnCl 2-catalyzed Coal Liquefaction . . . . . . . . . • ,Results. . . • . ZnC1 2/MeOH Coal liquefaction Process

Joyce, Peter James

2011-01-01T23:59:59.000Z

449

Southern Coal finds value in the met market  

SciTech Connect (OSTI)

The Justice family launches a new coal company (Southern Coal Corp.) to serve metallurgical and steam coal markets. 1 tab., 3 photos.

Fiscor, S.

2009-11-15T23:59:59.000Z

450

Utilization of coal-associated minerals. Final report  

SciTech Connect (OSTI)

Under contract number DE-AS21-77ET10533 with the US-DOE several methods of utilizing coal associated by-products were examined for potential commercial use. Such use could transform a costly waste disposal situation into new materials for further use and could provide incentive for the adoption of new coal utilization processes. Several utilization processes appear to have merit and are recommended for further study. Each process is discussed separately in the text of this report. Common coal cleaning processes were also examined to determine the effect of such processes on the composition of by-products. Data obtained in this portion of the research effort are reported in the Appendix. Information of this type is required before utilization processes can be considered. A knowledge of the mineral composition of these materials is also required before even simple disposal methods can be considered.

Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

1980-01-01T23:59:59.000Z

451

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics  

SciTech Connect (OSTI)

During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

Doyle, F.M.

1992-01-01T23:59:59.000Z

452

The commercial feasibility of underground coal gasification in southern Thailand  

SciTech Connect (OSTI)

Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A project to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.

Solc, J.; Young, B.C.; Harju, J.A.; Schmit, C.R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuhnel, R.A. [IIASES, Delft (Netherlands)

1996-12-31T23:59:59.000Z

453

An Overview of Coal based  

E-Print Network [OSTI]

An Overview of Coal based Integrated Gasification Combined Cycle (IGCC) Technology September 2005. LFEE 2005-002 WP #12;#12;Table of Contents 1 Integrated Gasification Combined Cycle (IGCC.......................................................................... 17 2.1 Gasification

454

Process for low mercury coal  

DOE Patents [OSTI]

A process for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal.

Merriam, Norman W. (Laramie, WY); Grimes, R. William (Laramie, WY); Tweed, Robert E. (Laramie, WY)

1995-01-01T23:59:59.000Z

455

Process for low mercury coal  

DOE Patents [OSTI]

A process is described for producing low mercury coal during precombustion procedures by releasing mercury through discriminating mild heating that minimizes other burdensome constituents. Said mercury is recovered from the overhead gases by selective removal. 4 figures.

Merriam, N.W.; Grimes, R.W.; Tweed, R.E.

1995-04-04T23:59:59.000Z

456

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

457

Surface Coal Mining Law (Missouri)  

Broader source: Energy.gov [DOE]

This law aims to provide for the regulation of coal mining in order to minimize or prevent its adverse effects, protect the environment to the extent possible, protect landowner rights, and...

458

Coal Mining Reclamation (North Dakota)  

Broader source: Energy.gov [DOE]

The Reclamation Division of the Public Service Commission is tasked with administering the regulation of surface coal mining and reclamation. Specific regulations can be found in article 69-05.2 of...

459

Coal beneficiation by gas agglomeration  

DOE Patents [OSTI]

Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

Wheelock, Thomas D.; Meiyu, Shen

2003-10-14T23:59:59.000Z

460

New developments in coal briquetting technology  

SciTech Connect (OSTI)

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Express quality analysis of coal concentrates by diffuse reflection IR spectroscopy  

SciTech Connect (OSTI)

Ongoing quality monitoring of coal concentrates is important today on account of instability in the raw materials for coking at OAO Magnitogorskii Metallurgicheskii Kombinat (MMK) and the variable composition of the coal batch for enrichment plants. Currently, numerous standardized methods permit the determination of the classificational and quality characteristics of coal and batch. These methods are slow, laborious, and relatively ineffective in industrial conditions. In May 2005, an automated Spektrotest express-analysis system developed by ECCI was installed in the coke laboratory at ZAO RMK in order to determine the quality of the coal concentrate and batch. The basic equipment is an IR spectrometer with a unit for Fourier transformation and a special optical module yielding the reflect on spectra of the pulverized coal. A control station based on a high-speed computer runs an algorithm for information analysis and storage and for printing out the test protocol. The Spektrotest system includes complex algorithms and software specially developed at ECCI.

V.N. Egorov; I.I. Mel'nikov; N.A. Tarasov; V.I. Butakova; Y.M. Posokhov [ZAO RMK (Russian Federation)

2007-07-01T23:59:59.000Z

462

Streamline coal slurry letdown valve  

DOE Patents [OSTI]

A streamlined coal slurry letdown valve is featured which has a two-piece throat comprised of a seat and seat retainer. The two-piece design allows for easy assembly and disassembly of the valve. A novel cage holds the two-piece throat together during the high pressure letdown. The coal slurry letdown valve has long operating life as a result of its streamlined and erosion-resistance surfaces. 5 figs.

Platt, R.J.; Shadbolt, E.A.

1983-11-08T23:59:59.000Z

463

APEC experts` group on clean coal technology  

SciTech Connect (OSTI)

These proceedings are the result of a Technical Seminar of the APEC Experts Group on Clean Coal Technology, held in Thailand, September 6-10, 1993. The National Energy Policy Council of Thailand requested the seminar in response to growing public, government and private sector environmental concerns related to increased use of lignite for electricity generation in Thailand. The core of the seminar was a two-day series of 25 technical papers contained in these proceedings. The goals were: (1) to inform government officials and electric utility managers on the range of CCTs, their commercial status, environmental performance, and suitability for various types of coal, including lignite; and (2) to hold a public seminar to inform the public about the same issues set in the context of energy policy concerns that were articulated by the National Energy Policy Council. Sixty people participated in the technical seminar held in Chiang Mai, and approximately 170 people attended the public seminar in Bangkok, Thailand. All papers have been abstracted and indexed separately for inclusion in the Energy Science and Technology Database.

NONE

1993-12-31T23:59:59.000Z

464

Report to the United States Congress clean coal technology export markets and financing mechanisms  

SciTech Connect (OSTI)

This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

Not Available

1994-05-01T23:59:59.000Z

465

Oxy-coal Combustion Studies  

SciTech Connect (OSTI)

The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol. To these ends, the project has focused on the following: â?˘ The development of reliable Large Eddy Simulations (LES) of oxy-coal flames using the Direct Quadrature Method of Moments (DQMOM) (Subtask 3.1). The simulations were validated for both non-reacting particle-laden jets and oxy-coal flames. â?˘ The modifications of an existing oxy-coal combustor to allow operation with high levels of input oxygen to enable in-situ laser diagnostic measurements as well as the development of strategies for directed oxygen injection (Subtask 3.2). Flame stability was quantified for various burner configurations. One configuration that was explored was to inject all the oxygen as a pure gas within an annular oxygen lance, with burner aerodynamics controlling the subsequent mixing. â?˘ The development of Particle Image Velocimetry (PIV) for identification of velocity fields in turbulent oxy-coal flames in order to provide high-fidelity data for the validation of oxy-coal simulation models (Subtask 3.3). Initial efforts utilized a laboratory diffusion flame, first using gas-fuel and later a pulverized-coal flame to ensure the methodology was properly implemented and that all necessary data and image-processing techniques were fully developed. Success at this stage of development led to application of the diagnostics in a large-scale oxy-fuel combustor (OFC). â?˘ The impact of oxy-coal-fired vs. air-fired environments on SO{sub x} (SO{sub 2}, SO{sub 3}) emissions during coal combustion in a pilot-scale circulating fluidized-bed (CFB) (Subtask 3.4). Profiles of species concentration and temperature were obtained for both conditions, and profiles of temperature over a wide range of O{sub 2} concentration were studied for oxy-firing conditions. The effect of limestone addition on SO{sub 2} and SO{sub 3} emissions were also examined for both air- and oxy- firing conditions. â?˘ The investigation of O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments on SO{sub 2 emissions during coal combustion in a bench-scale single-particle fluidized-bed reactor (Subtask 3.5). Moreover, the sulfation mechanisms of limestone in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} environments were studied, and a generalized gassolid and diffusion-reaction single-particle model was developed to study the effect of major operating variables. â?˘ The investigation of the effect of oxy-coal combustion on ash formation, particle size distributions (PSD), and size-segregated elemental composition in a drop-tube furnace and the 100 kW OFC (Subtask 3.6). In particular, the effect of coal type and flue gas recycle (FGR, OFC only) was investigated.

J. Wendt; E. Eddings; J. Lighty; T. Ring; P. Smith; J. Thornock; Y. Jia, W. Morris; J. Pedel; D. Rezeai; L. Wang; J. Zhang; K. Kelly

2012-01-01T23:59:59.000Z

466

Sensor for Individual Burner Control of Coal Firing Rate, Fuel-Air Ratio and Coal Fineness Correlation  

SciTech Connect (OSTI)

Accurate, cost-efficient monitoring instrumentation has long been considered essential to the operation of power plants. Nonetheless, for the monitoring of coal flow, such instrumentation has been sorely lacking and technically difficult to achieve. With more than half of the electrical power in the United States currently supplied by coal, energy generated by this resource is critical to the US economy. The demand for improvement in this area has only increased as a result of the following two situations: First, deregulation has produced a heightened demand for both reduced electrical cost and improved grid connectivity. Second, environmental concerns have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx emissions. A potential approach to addressing both these needs would be improvement in the area of combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and reduced NOx emissions. However, before feedback control can be implemented, the ability to monitor coal flow to the burners in real-time must be established. While there are several ''commercially available'' products for real-time coal flow measurement, power plant personnel are highly skeptical about the accuracy and longevity of these systems in their current state of development. In fact, following several demonstration projects of in-situ coal flow measurement systems in full scale utility boilers, it became obvious that there were still many unknown influences on these instruments during field applications. Due to the operational environment of the power plant, it has been difficult if not impossible to sort out what parameters could be influencing the various probe technologies. Additionally, it has been recognized for some time that little is known regarding the performance of coal flow splitters, even where rifflers are employed. Often the coal flow distribution from these splitters remains mal-distributed. There have been mixed results in the field using variable orifices in coal pipes. Development of other coal flow control devices has been limited. An underlying difficulty that, to date, has hindered the development of an accurate instrument for coal flow measurements is the fact that coal flow is characterized by irregular temporal and spatial variation. However, despite the inherent complexity of the dynamic system, the system is in fact deterministic. Therefore, in principle, the coal flow can be deduced from the dynamics it exhibits. Nonetheless, the interactions are highly nonlinear, rendering standard signal processing approaches, which rely on techniques such as frequency decomposition, to be of little value. Foster-Miller, Inc. has developed a methodology that relates the complex variation in such systems to the information of interest. This technology will be described in detail in Section 2. A second concern regarding the current measurement systems is installation, which can be labor-intensive and cost-prohibitive. A process that does not require the pulverizer to be taken off line would be highly desirable. Most microwave and electrostatic methods require drilling up to 20 holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the probes. At least one electrostatic method requires a special spool piece to be fitted into each existing coal pipe. Overall, these procedures are both difficult and very expensive. An alternative approach is pursued here, namely the development of an instrument that relies on an acoustic signal captured by way of a commercial accelerometer. The installation of this type of sensor is both simpler and less invasive than other techniques. An accelerometer installed in a pipe wall need not penetrate through the wall, which means that the system may be able to remain on line during the installation. Further, due to the fact that the Dynamical Instruments technology, unlike other systems, does not rely on uniformity of the air or coal profile, the installation location need not be on a long, straight run

R. Demler

2006-04-01T23:59:59.000Z

467

Coal-tire co-liquefaction  

SciTech Connect (OSTI)

Co-liquefaction of ground coal and tire rubber was studied at 400{degrees}C both with and without catalyst. Two different tire samples were used. In the non-catalytic runs, the conversion of coal increased with the addition of tire and the increase was dependent on tire/coal ratio and hydrogen pressure. Using a ferric sulfide-based catalyst, the coal conversion increased with an increase in the catalyst loading. However, the increase was more pronounced at loadings of around 0.5 wt%. The addition of tire to coal in the catalytic runs was not particularly beneficial, especially, when the tire/coal ratio was above 1.

Sharma, R.K.; Dadyburjor, D.B.; Zondlo, J.W.; Liu, Zhenyu; Stiller, A.H. [West Virginia Univ., Morgantown, WV (United States)

1995-12-31T23:59:59.000Z

468

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

2007-01-01T23:59:59.000Z

469

H-coal liquefaction: moving toward commercial reality  

SciTech Connect (OSTI)

The successful operation of the H-Coal pilot plant has allowed Ashland management to vigorously pursue the option to build a commercial plant. Ashland Synthetic Fuels has applied to the United States Synthetic Fuels Corporation for a loan guarantee to construct a commercial H-Coal liquefaction facility in Breckinridge County, Kentucky. Ashland would like to develop this project with four other partners. In November 1981, Bechtel Inc., joined Ashland in the development of the Breckinridge Project. Under this recent agreement, the two companies will cooperate to prepare a detailed project cost estimate, an environmental impact statement, secure the necessary permits, and form a joint venture group to facilitate the involvement of other companies to develop this facility. The future of the Breckinridge project depends completely on the United States Synthetic Fuels Corporation. If this government agency declines to supply the loan guarantees for this project there is little chance the facility will be built. Capital requirements have been estimated at $5,200,000,000. The proposed Breckinridge liquefaction facility would process 18,500 tons of high-sulphur bituminous coal per day and produce 50,000 barrels per day of liquid product.

Schneiderman, S.J.

1982-01-01T23:59:59.000Z

470

Beluga Coal Gasification - ISER  

SciTech Connect (OSTI)

ISER was requested to conduct an economic analysis of a possible 'Cook Inlet Syngas Pipeline'. The economic analysis was incorporated as section 7.4 of the larger report titled: 'Beluga Coal Gasification Feasibility Study, DOE/NETL-2006/1248, Phase 2 Final Report, October 2006, for Subtask 41817.333.01.01'. The pipeline would carry CO{sub 2} and N{sub 2}-H{sub 2} from a synthetic gas plant on the western side of Cook Inlet to Agrium's facility. The economic analysis determined that the net present value of the total capital and operating lifecycle costs for the pipeline ranges from $318 to $588 million. The greatest contributor to this spread is the cost of electricity, which ranges from $0.05 to $0.10/kWh in this analysis. The financial analysis shows that the delivery cost of gas may range from $0.33 to $0.55/Mcf in the first year depending primarily on the price for electricity.

Steve Colt

2008-12-31T23:59:59.000Z

471

Coal combustion by wet oxidation  

SciTech Connect (OSTI)

The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

1980-11-15T23:59:59.000Z

472

Chemical composition and some trace element contents in coals and coal ash from Tamnava-Zapadno Polje Coal Field, Serbia  

SciTech Connect (OSTI)

The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn in the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.

Vukasinovic-Pesic, V.; Rajakovic, L.J. [University of Montenegro, Podgorica (Montenegro)

2009-07-01T23:59:59.000Z

473

Transformations of inorganic coal constituents in combustion systems  

SciTech Connect (OSTI)

The technical objectives of this project are: (a) To (1) define the partitioning of inorganic constituents associated with raw coal particles among products (including vapors, aerosols, and residual char/ash particles) formed under conditions representative of pulverized coal flames as a function of the specific (intrinsic and extrinsic) characteristics of the raw coal and the environment in which the transformations occur; and (2) to characterize the resultant spectrum of products in detail; (b) To elucidate and quantify the fundamental processes (involving basic principles of physics, chemistry, thermodynamics) by which transformations of the inorganic constituents occur; and (c) To develop, based on the information required in a. and b. above, a tractable process model capable of predicting the significant features of the transformation process, most importantly, the distribution and nature of products. This report represents work accomplished in the tenth quarter of performance on the contract. The authors specifically highlight work accomplished: at the California Institute of Technology (CalTech) on developing and constructing a thermophoretic sampling probe, for submicron fume particle sampling; at MIT on (1) completion of the baseline ash particle size distribution measurements for seven program coals (five US and two Australian), and (2) analysis of the fragmentation model results in terms of a closed-form solution for a simplified case; at the University of Arizona, on obtaining detailed ash particle and submicron fume chemistry for four program coals; and at PSI Technology Company (PSIT) on concluding data analysis and describing mineral interaction trends observed during combustion of two program coals. Individual progress reports have been indexed separately for inclusion on the data base.

Boni, A.A.; Helble, J.J.; Srinivasachar, S. (PSI Technology Co., Andover, MA (USA)); Flagan, R.C. (California Inst. of Tech., Pasadena, CA (USA)); Huffman, G.P.; Huggins, F.E. (Kentucky Univ., Lexington, KY (USA)); Peterson, T.W.; Wendt, J.O.L. (Arizona Univ., Tucson, AZ (USA)); Sarofim, A.F. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1989-05-01T23:59:59.000Z

474

Repowering with clean coal technologies  

SciTech Connect (OSTI)

Repowering with clean coal technology can offer significant advantages, including lower heat rates and production costs, environmental compliance, incremental capacity increases, and life extension of existing facilities. Significant savings of capital costs can result by refurbishing and reusing existing sites and infrastructure relative to a greenfield siting approach. This paper summarizes some key results of a study performed by Parsons Power Group, Inc., under a contract with DOE/METC, which investigates many of the promising advanced power generation technologies in a repowering application. The purpose of this study was to evaluate the technical and economic results of applying each of a menu of Clean Coal Technologies in a repowering of a hypothetical representative fossil fueled power station. Pittsburgh No. 8 coal is used as the fuel for most of the cases evaluated herein, as well as serving as the fuel for the original unrepowered station. The steam turbine-generator, condenser, and circulating water system are refurbished and reused in this study, as is most of the existing site infrastructure such as transmission lines, railroad, coal yard and coal handling equipment, etc. The technologies evaluated in this study consisted of an atmospheric fluidized bed combustor, several varieties of pressurized fluid bed combustors, several types of gasifiers, a refueling with a process derived fuel, and, for reference, a natural gas fired combustion turbine-combined cycle.

Freier, M.D. [USDOE Morgantown Energy Technology Center, WV (United States); Buchanan, T.L.; DeLallo, M.L.; Goldstein, H.N. [Parsons Power Group, Inc., Reading, PA (United States)

1996-02-01T23:59:59.000Z

475

Clean Coal Program Research Activities  

SciTech Connect (OSTI)

Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

2009-03-31T23:59:59.000Z

476

EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH  

E-Print Network [OSTI]

Triaxial TestsTests Direct Shear TestsDirect Shear Tests Clean and Coal Dust Fouled Ballast BehaviorClean1 EFFECT OF COAL DUST ONEFFECT OF COAL DUST ON RAILROAD BALLAST STRENGTHRAILROAD BALLAST STRENGTH for Laboratory StudyFouling Mechanism / Need for Laboratory Study Mechanical Properties of Coal Dust

Barkan, Christopher P.L.

477

SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES  

E-Print Network [OSTI]

Chapter PH SHERIDAN COALFIELD, POWDER RIVER BASIN: GEOLOGY, COAL QUALITY, AND COAL RESOURCES By M assessment of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U Resource assessment of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great

478

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

479

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents [OSTI]

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

480

Respiratory disease in Utah coal miners  

SciTech Connect (OSTI)

Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "agency coal information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Respiratory disease in Utah coal miners  

SciTech Connect (OSTI)

Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

1981-04-01T23:59:59.000Z

482

Clean Coal Incentive Tax Credit (Kentucky)  

Broader source: Energy.gov [DOE]

Clean Coal Incentive Tax Credit provides for a property tax credit for new clean coal facilities constructed at a cost exceeding $150 million and used for the purposes of generating electricity....

483

Integrated Coal Gasification Power Plant Credit (Kansas)  

Broader source: Energy.gov [DOE]

Integrated Coal Gasification Power Plant Credit states that an income taxpayer that makes a qualified investment in a new integrated coal gasification power plant or in the expansion of an existing...

484

Ohio Coal Research and Development Program (Ohio)  

Broader source: Energy.gov [DOE]

The Ohio Coal Development Office invests in the development and implementation of technologies that can use Ohio's vast reserves of coal in an economical, environmentally sound manner. Projects are...

485

February 21 -22, 2014 Coast Coal Harbour  

E-Print Network [OSTI]

February 21 - 22, 2014 Coast Coal Harbour 1180 W Hastings St Vancouver, BC Healthy Mothers contact by phone: +1 604-822- 7708 or by e-mail: melissa.ipce@ubc.ca. Location The Coast Coal Harbour

Handy, Todd C.

486

Artificial neural network modeling of the spontaneous combustion occurring in the industrial-scale coal stockpiles with 10-18 mm coal grain sizes  

SciTech Connect (OSTI)

Companies consuming large amounts of coal should work with coal stocks in order to not face problems due to production delays. The industrial-scale stockpiles formed for the aforementioned reasons cause environmental problems and economic losses for the companies. This study was performed in a coal stock area of a large company in Konya, which uses large amounts of coal in its manufacturing units. The coal stockpile with 5 m width, 10 m length, 3 m height, and having 120 tons of weight was formed in the coal stock area of the company. The inner temperature data of the stockpile was recorded by 17 temperature sensors placed inside the stockpile at certain points. In order to achieve this goal, the electrical signal conversion of temperatures sensed by 17 temperature sensors placed in certain points inside the coal stockpile, the transfer of these electrical signals into computer media by using analog-digital conversion unit after applying necessary filtration and upgrading processes, and the record of these information into a database in particular time intervals are provided. Additionally, the data relating to the air temperature, air humidity, atmospheric pressure, wind velocity, and wind direction that are the parameters affecting the coal stockpile were also recorded. Afterwards, these measurement values were used for training and testing of an artificial neural network model. Comparison of the experimental and artificial neural network results, accuracy rates of training and testing were found to be 99.5% and 99.17%, respectively. It is shown that possible coal stockpile behavior with this artificial neural network model is powerfully estimated.

Ozdeniz, A.H.; Yilmaz, N. [Selcuk University, Konya (Turkey). Dept. of Mining Engineering

2009-07-01T23:59:59.000Z

487

PROSPECTS FOR CLEAN COAL TECHNOLOGIES.... 1  

E-Print Network [OSTI]

coal technologies (CCTs) to meet increasingly demanding environmental requirements while simultaneously remaining competitive in both international and domestic markets. Conference speakers assessed environmental, economic, and technical issues and identified approaches that will help enable CCTs to be deployed in an era of competing, interrelated demands for energy, economic growth, and environmental protection. Recognition was given to the dynamic changes that will result from increasing competition in electricity and fuel markets and industry restructuring, both domestically and internationally. Energy use, critical to economic growth, is growing quickly in many regions of the world. Much of this increased demand can be met by coal with technologies that achieve environmental goals while keeping the cost per unit of energy competitive. Private sector experience and results from the CCT Demonstration Program are providing information on economic, environmental, and market issues that will enable conclusions to be drawn about the competitiveness of the CCTs domestically and internationally., The industry/government partnership, cemented over the past 11 years, is

Vicente Solano Arrieia

488

Estimating coal production peak and trends of coal imports in China  

SciTech Connect (OSTI)

More than 20 countries in the world have already reached a maximum capacity in their coal production (peak coal production) such as Japan, the United Kingdom and Germany. China, home to the third largest coal reserves in the world, is the world's largest coal producer and consumer, making it part of the Big Six. At present, however, China's coal production has not yet reached its peak. In this article, logistic curves and Gaussian curves are used to predict China's coal peak and the results show that it will be between the late 2020s and the early 2030s. Based on the predictions of coal production and consumption, China's net coal import could be estimated for coming years. This article also analyzes the impact of China's net coal import on the international coal market, especially the Asian market, and on China's economic development and energy security. 16 refs., 5 figs., 6 tabs.

Bo-qiang Lin; Jiang-hua Liu [Xiamen University, Xiamen (China). China Center for Energy Economics Research (CCEER)

2010-01-15T23:59:59.000Z

489

Cokemaking from coals of Kuzbas and Donbas  

SciTech Connect (OSTI)

The paper discusses features of Donetsk and Kuznetsk coals, the export capability of Ukraine coking industry, the selection of coal blends involving coals from different basins, and practical recommendations and techno-economic considerations. It is concluded that by raising the share of low-sulfur Kuznetsk coal in the blend to 50%, coke produced will meet all the requirements of European and American consumers.

Umansky, R.Z. [Resourcecomplect, Donetsk (Ukraine); Kovalev, E.T.; Drozdnik, I.D. [UKHIN, Kharkov (Ukraine)

1997-12-31T23:59:59.000Z

490

National Coal celebrates its fifth anniversary  

SciTech Connect (OSTI)

The growth and activities of the National Coal Corp since its formation in 2003 are described. 5 photos.

Fiscor, S.

2008-06-15T23:59:59.000Z

491

Integrated coal preparation and CWF processing plant: Conceptual design and costing  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m[mu] for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. (Science Applications International Corp., McLean, VA (United States)); Korkmaz, M. (Roberts and Schaefer Co., Salt Lake City, UT (United States))

1992-12-01T23:59:59.000Z

492

Integrated coal preparation and CWF processing plant: Conceptual design and costing. Final technical report  

SciTech Connect (OSTI)

At the request of the US Department of Energy (DOE), Pittsburgh Energy Technology Center, a study was conducted to provide DOE with a reliable, documented estimate of the cost of producing coal-water fuel (CWF). The approach to the project was to specify a plant capacity and location, identify and analyze a suitable coal, and develop a conceptual design for an integrated coal preparation and CWF processing plant. Using this information, a definitive costing study was then conducted, on the basis of which an economic and sensitivity analysis was performed utilizing a financial evaluation model to determine a price for CWF in 1992. The design output of the integrated plant is 200 tons of coal (dry basis) per hour. Operating at a capacity factor of 83 percent, the baseline design yields approximately 1.5 million tons per year of coal on a dry basis. This is approximately equivalent to the fuel required to continuously generate 500 MW of electric power. The CWF produced by the plant is intended as a replacement for heavy oil or gas in electric utility and large industrial boilers. The particle size distribution, particularly the top size, and the ash content of the coal in the CWF are specified at significantly lower levels than is commonly found in typical pulverized coal grinds. The particle top size is 125 microns (vs typically 300m{mu} for pulverized coal) and the coal ash content is 3.8 percent. The lower top size is intended to promote complete carbon burnout at less derating in boilers that are not designed for coal firing. The reduced mineral matter content will produce ash of very fine particle size during combustion, which leads to less impaction and reduced fouling of tubes in convective passages.

McHale, E.T.; Paul, A.D.; Bartis, J.T. [Science Applications International Corp., McLean, VA (United States); Korkmaz, M. [Roberts and Schaefer Co., Salt Lake City, UT (United States)

1992-12-01T23:59:59.000Z

493

Coal cutting research slashes dust  

SciTech Connect (OSTI)

The Coal-Cutting Technology Group at the Bureau of Mine's Twin Cities Research Center is investigating ways to reduce primary dust generated by coal cutting. The progression of research within the program is from fundamental laboratory research, to fundamental field research, to field concept verification. Then the Bureau recommends warranted changes and/or prototype development to industry. Currently the Cutting Technology Group has several projects in each phase of research. The Bureau's current fundamental studies of bit characteristics are directed to determining the effects of conical bit wear on primary respirable dust generation, energy, and cutting forces; establishing best conical bit mount condition to increase life by enhancing bit rotation; and comparing chisel-type cutters to conical-type cutters. Additionally, to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

494

Coal cutting research slashes dust  

SciTech Connect (OSTI)

The Coal-Cutting Technology Group at the Bureau of Mines Twin Cities (MN) Research Center is investigating ways to reduce primary dust generated by coal cutting. The progression of research within the program is from fundamental laboratory research, to fundamental field research, to field concept verification. Then the Bureau recommends warranted changes and/or prototype development to industry. Currently the group has several projects in each phase of research. The Bureau's current fundamental studies of bit characteristics are directed toward determining the effects of conical bit wear on primary respirable dust generation, energy, and cutting forces; establishing best conical bit mount condition to increase life by enhancing bit rotation; and comparing chisel-type cutters to conical-type cutters. Additionally, to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

495

4th Annual Clean Coal  

E-Print Network [OSTI]

Proceedings he emphasis of the Fourth Clean Coal Technology Conference wm the marketability of clean coal projects both domestically and abroad. The success rate of clean coal projects in the U.S. for coalfired electricity generation is a beacon to foreign governments that are working toward effectively using advanced NO, and SO2 technology to substantially reduce flue-gas emissions for a cleaner environment. There is a continuing dialogue between U.S. Government, North American private industry, and the electricity producing governmental ministries and the private sector abroad. The international community was well represented at this conference. The Administration is determined to move promising, near-term technologies from the public to the private sector a ~ well a8 into the international marketplace.

Ferriter John P

496

TOXIC SUBSTANCES FROM COAL COMBUSTION  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

1998-12-08T23:59:59.000Z

497

Outlook and Challenges for Chinese Coal  

SciTech Connect (OSTI)

China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If