National Library of Energy BETA

Sample records for age-related macular degeneration

  1. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect (OSTI)

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  2. Age-related degradation of Westinghouse 480-volt circuit breakers

    SciTech Connect (OSTI)

    Subudhi, M.; Shier, W.; MacDougall, E. )

    1990-07-01

    An aging assessment of Westinghouse DS-series low-voltage air circuit breakers was performed as part of the Nuclear Plant Aging Research (NPAR) program. The objectives of this study are to characterize age-related degradation within the breaker assembly and to identify maintenance practices to mitigate their effect. Since this study has been promulgated by the failures of the reactor trip breakers at the McGuire Nuclear Station in July 1987, results relating to the welds in the breaker pole lever welds are also discussed. The design and operation of DS-206 and DS-416 breakers were reviewed. Failure data from various national data bases were analyzed to identify the predominant failure modes, causes, and mechanisms. Additional operating experiences from one nuclear station and two industrial breaker-service companies were obtained to develop aging trends of various subcomponents. The responses of the utilities to the NRC Bulletin 88-01, which discusses the center pole lever welds, were analyzed to assess the final resolution of failures of welds in the reactor trips. Maintenance recommendations, made by the manufacturer to mitigate age-related degradation were reviewed, and recommendations for improving the monitoring of age-related degradation are discussed. As described in Volume 2 of this NUREG, the results from a test program to assess degradation in breaker parts through mechanical cycling are also included. The testing has characterized the cracking of center-pole lever welds, identified monitoring techniques to determine aging in breakers, and provided information to augment existing maintenance programs. Recommendations to improve breaker reliability using effective maintenance, testing, and inspection programs are suggested. 13 refs., 21 figs., 8 tabs.

  3. Aging assessment of reactor instrumentation and protection system components. Aging-related operating experiences

    SciTech Connect (OSTI)

    Gehl, A.C.; Hagen, E.W.

    1992-07-01

    A study of the aging-related operating experiences throughout a five-year period (1984--1988) of six generic instrumentation modules (indicators, sensors, controllers, transmitters, annunciators, and recorders) was performed as a part of the Nuclear Plant Aging Research Program. The effects of aging from operational and environmental stressors were characterized from results depicted in Licensee Event Reports (LERs). The data are graphically displayed as frequency of events per plant year for operating plant ages from 1 to 28 years to determine aging-related failure trend patterns. Three main conclusions were drawn from this study: (1) Instrumentation and control (I&C) modules make a modest contribution to safety-significant events: 17% of LERs issued during 1984--1988 dealt with malfunctions of the six I&C modules studied, and 28% of the LERs dealing with these I&C module malfunctions were aging related (other studies show a range 25--50%); (2) Of the six modules studied, indicators, sensors, and controllers account for the bulk (83%) of aging-related failures; and (3) Infant mortality appears to be the dominant aging-related failure mode for most I&C module categories (with the exception of annunciators and recorders, which appear to fail randomly).

  4. Use Of Green Porphyrinsto Treat Neovasculature In The Eyes

    DOE Patents [OSTI]

    Levy, Julia (Vancouver, CA); Miller, Joan W. (Boston, MA); Gradoudas, Evangelos S. (Boston, MA); Hasan, Tayyaba (Arlington, MA); Schmidt-Erfurth, Ursula (Luebeck, DE)

    1998-08-25

    Photodynamic therapy of conditions of the eye characterized by unwanted neovasculature, such as age-related macular degeneration, is effective using green porphyrins as photoactive agents, preferably as liposomal compositions.

  5. Degenerate doping of metallic anodes

    DOE Patents [OSTI]

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  6. Low-Dose, Ionizing Radiation and Age-Related Changes in Skeletal Microarchitecture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Alwood, Joshua S.; Kumar, Akhilesh; Tran, Luan H.; Wang, Angela; Limoli, Charles L.; Globus, Ruth K.

    2012-01-01

    Osteoporosis can profoundly affect the aged as a consequence of progressive bone loss; high-dose ionizing radiation can cause similar changes, although less is known about lower doses (≤100 cGy). We hypothesized that exposure to relatively low doses of gamma radiation accelerates structural changes characteristic of skeletal aging. Mice (C57BL/6J-10 wk old, male) were irradiated (total body; 0-sham, 1, 10 or 100 cGy 137 Cs) and tissues harvested on the day of irradiation, 1 or 4 months later. Microcomputed tomography was used to quantify microarchitecture of high turnover, cancellous bone. Irradiation at 100 cGy caused transient microarchitectural changes over one month that were only evidentmore » at longer times in controls (4 months). Ex vivo bone cell differentiation from the marrow was unaffected by gamma radiation. In conclusion, acute ionizing gamma irradiation at 100 cGy (but not at 1 cGy or 10 cGy) exacerbated microarchitectural changes normally found during progressive, postpubertal aging prior to the onset of age-related osteoporosis.« less

  7. A Monte Carlo algorithm for degenerate plasmas

    SciTech Connect (OSTI)

    Turrell, A.E. Sherlock, M.; Rose, S.J.

    2013-09-15

    A procedure for performing Monte Carlo calculations of plasmas with an arbitrary level of degeneracy is outlined. It has possible applications in inertial confinement fusion and astrophysics. Degenerate particles are initialised according to the FermiDirac distribution function, and scattering is via a Pauli blocked binary collision approximation. The algorithm is tested against degenerate electronion equilibration, and the degenerate resistivity transport coefficient from unmagnetised first order transport theory. The code is applied to the cold fuel shell and alpha particle equilibration problem of inertial confinement fusion.

  8. Age-related changes in the plasticity and toughness of human cortical bone at multiple length-scales

    SciTech Connect (OSTI)

    Zimmermann, Elizabeth A.; Schaible, Eric; Bale, Hrishikesh; Barth, Holly D.; Tang, Simon Y.; Reichert, Peter; Busse, Bjoern; Alliston, Tamara; Ager III, Joel W.; Ritchie, Robert O.

    2011-08-10

    The structure of human cortical bone evolves over multiple length-scales from its basic constituents of collagen and hydroxyapatite at the nanoscale to osteonal structures at nearmillimeter dimensions, which all provide the basis for its mechanical properties. To resist fracture, bones toughness is derived intrinsically through plasticity (e.g., fibrillar sliding) at structural-scales typically below a micron and extrinsically (i.e., during crack growth) through mechanisms (e.g., crack deflection/bridging) generated at larger structural-scales. Biological factors such as aging lead to a markedly increased fracture risk, which is often associated with an age-related loss in bone mass (bone quantity). However, we find that age-related structural changes can significantly degrade the fracture resistance (bone quality) over multiple lengthscales. Using in situ small-/wide-angle x-ray scattering/diffraction to characterize sub-micron structural changes and synchrotron x-ray computed tomography and in situ fracture-toughness measurements in the scanning electron microscope to characterize effects at micron-scales, we show how these age-related structural changes at differing size-scales degrade both the intrinsic and extrinsic toughness of bone. Specifically, we attribute the loss in toughness to increased non-enzymatic collagen cross-linking which suppresses plasticity at nanoscale dimensions and to an increased osteonal density which limits the potency of crack-bridging mechanisms at micron-scales. The link between these processes is that the increased stiffness of the cross-linked collagen requires energy to be absorbed by plastic deformation at higher structural levels, which occurs by the process of microcracking.

  9. Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites

    SciTech Connect (OSTI)

    Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret [Department of Medical Physics, Medical School, University of Ioannina, Ioannina 45110 (Greece)

    2010-10-15

    The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study. This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.

  10. Crystallization and collapse in relativistically degenerate matter

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2013-04-15

    In this paper, it is shown that a mass density limit exists beyond which the relativistically degenerate matter would crystallize. The mass density limit, found here, is quite analogous to the mass limit predicted by Chandrasekhar for a type of compact stars called white dwarfs (M{sub Ch} Asymptotically-Equal-To 1.43 Solar Mass). In this study, the old problem of white dwarf core collapse, which has been previously investigated by Chandrasekhar using hydrostatic stability criteria, is revisited in the framework of the quantum hydrodynamics model by inspection of the charge screening at atomic scales in the relativistic degeneracy plasma regime taking into account the relativistic Fermi-Dirac statistics and electron interaction features such as the quantum statistical pressure, Coulomb attraction, electron exchange-correlation, and quantum recoil effects. It is revealed that the existence of ion correlation and crystallization of matter in the relativistically degenerate plasma puts a critical mass density limit on white dwarf core region. It is shown that a white dwarf star with a core mass density beyond this critical limit can undergo the spontaneous core collapse (SCC). The SCC phenomenon, which is dominantly caused by the electron quantum recoil effect (interference and localization of the electron wave function), leads to a new exotic state of matter. In such exotic state, the relativistic electron degeneracy can lead the white dwarf crystallized core to undergo the nuclear fusion and an ultimate supernova by means of the volume reduction (due to the enhanced compressibility) and huge energy release (due to the increase in cohesive energy), under the stars huge inward gravitational pressure. Moreover, it is found that the SCC phenomenon is significantly affected by the core composition (it is more probable for heavier plasmas). The critical mass density found here is consistent with the values calculated for core density of typical white dwarf stars.

  11. Distinct optical properties of relativistically degenerate matter

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2014-06-15

    In this paper, we use the collisional quantum magnetohydrodynamic (CQMHD) model to derive the transverse dielectric function of a relativistically degenerate electron fluid and investigate various optical parameters, such as the complex refractive index, the reflection and absorption coefficients, the skin-depth and optical conductivity. In this model we take into accounts effects of many parameters such as the atomic-number of the constituent ions, the electron exchange, electron diffraction effect and the electron-ion collisions. Study of the optical parameters in the solid-density, the warm-dense-matter, the big-planetary core, and the compact star number-density regimes reveals that there are distinct differences between optical characteristics of the latter and the former cases due to the fundamental effects of the relativistic degeneracy and other quantum mechanisms. It is found that in the relativistic degeneracy plasma regime, such as found in white-dwarfs and neutron star crusts, matter possess a much sharper and well-defined step-like reflection edge beyond the x-ray electromagnetic spectrum, including some part of gamma-ray frequencies. It is also remarked that the magnetic field intensity only significantly affects the plasma reflectivity in the lower number-density regime, rather than the high density limit. Current investigation confirms the profound effect of relativistic degeneracy on optical characteristics of matter and can provide an important plasma diagnostic tool for studying the physical processes within the wide scope of quantum plasma regimes be it the solid-density, inertial-confined, or astrophysical compact stars.

  12. The multilevel pairing Hamiltonian versus the degenerate case

    SciTech Connect (OSTI)

    Barbaro, M.B. Cenni, R.; Chiacchiera, S.; Molinari, A.; Palumbo, F.

    2007-11-15

    We study the pairing Hamiltonian in a set of non-degenerate levels. First, we review in the path integral framework the spontaneous breaking of the U(1) symmetry occurring in such a system for the degenerate situation. Then the behaviors with the coupling constant of the ground state energy in the multilevel and in the degenerate case are compared. Next we discuss, in the multilevel case, an exact strong coupling expansion for the ground state energy which introduces the moments of the single particle level distribution. The domain of validity of the expansion, which is known in the macroscopic limit, is explored for finite systems and its implications for the energy of the latter is discussed. Finally the seniority and Gaudin excitations of the pairing Hamiltonian are addressed and shown to display the same gap in leading order.

  13. Electrostatic rogue-waves in relativistically degenerate plasmas

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2014-10-15

    In this paper, we investigate the modulational instability and the possibility of electrostatic rogue-wave propagations in a completely degenerate plasma with arbitrary degree of degeneracy, i.e., relativistically degenerate plasma, ranging from solid density to the astrophysical compact stars. The hydrodynamic approach along with the perturbation method is used to reduce the governing equations to the nonlinear Schrdinger equation from which the modulational instability, the growth rate of envelope excitations and the occurrence of rogue as well as super-rogue waves in the plasma, is evaluated. It is observed that the modulational instability in a fully degenerate plasma can be quite sensitive to the plasma number-density and the wavenumber of envelop excitations. It is further revealed that the relativistically degeneracy plasmas (R{sub 0}?>?1) are almost always modulationally unstable. It is found, however, that the highly energetic sharply localized electrostatic rogue as well as super-rogue waves can exist in the astrophysical compact objects like white dwarfs and neutron star crusts. The later may provide a link to understand many physical processes in such stars and it may lead us to the origin of the random-localized intense short gamma-ray bursts, which appear from nowhere and disappear without a trace quite similar to oceanic rogue structures.

  14. Exact nonlinear excitations in double-degenerate plasmas

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2012-06-15

    In this work, we use the conventional hydrodynamics formalism and incorporate the Chew-Goldberger-Low double-adiabatic theory to evaluate the nonlinear electrostatic ion excitations in double-degenerate (electron spin-orbit degenerate) magnetized quantum plasmas. Based on the Sagdeev pseudopotential method, an exact general pseudopotential is calculated which leads to the allowed Mach-number range criteria for such localized density structures in an anisotropic magnetized plasma. We employ the criteria on the Mach-number range for diverse magnetized quantum plasma with different equations of state. It is remarked that various plasma fractional parameters such as the system dimensionality, ion-temperature, relativistic-degeneracy, Zeeman-energy, and plasma composition are involved in the stability of an obliquely propagating nonlinear ion-acoustic wave in a double-degenerate quantum plasma. Current study is most appropriate for nonlinear wave analysis in dense astrophysical magnetized plasma environments such as white-dwarfs and neutron-star crusts where the strong magnetic fields can be present.

  15. PCR Amplicon Prediction from Multiplex Degenerate Primer and Probe Sets

    Energy Science and Technology Software Center (OSTI)

    2013-08-08

    Assessing primer specificity and predicting both desired and off-target amplification products is an essential step for robust PCR assay design. Code is described to predict potential polymerase chain reaction (PCR) amplicons in a large sequence database such as NCBI nt from either singleplex or a large multiplexed set of primers, allowing degenerate primer and probe bases, with target mismatch annotates amplicons with gene information automatically downloaded from NCBI, and optionally it can predict whether theremore » are also TaqMan/Luminex probe matches within predicted amplicons.« less

  16. Dwarf spheroidal galaxies as degenerate gas of free fermions

    SciTech Connect (OSTI)

    Domcke, Valerie; Urbano, Alfredo E-mail: alfredo.urbano@sissa.it

    2015-01-01

    In this paper we analyze a simple scenario in which Dark Matter (DM) consists of free fermions with mass m{sub f}. We assume that on galactic scales these fermions are capable of forming a degenerate Fermi gas, in which stability against gravitational collapse is ensured by the Pauli exclusion principle. The mass density of the resulting con figuration is governed by a non-relativistic Lane-Emden equation, thus leading to a universal cored profile that depends only on one free parameter in addition to m{sub f}. After reviewing the basic formalism, we test this scenario against experimental data describing the velocity dispersion of the eight classical dwarf spheroidal galaxies of the Milky Way. We find that, despite its extreme simplicity, the model exhibits a good fit to the data and realistic predictions for the size of DM halos providing that m{sub f}?200 eV. Furthermore, we show that in this setup larger galaxies correspond to the non-degenerate limit of the gas. We propose a concrete realization of this model in which DM is produced non-thermally via inflaton decay. We show that imposing the correct relic abundance and the bound on the free-streaming length constrains the inflation model in terms of inflaton mass, its branching ratio into DM and the reheating temperature.

  17. Heavy-fermion instability in double-degenerate plasmas

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2012-07-15

    In this work, we study the propagations of normal frequency modes for quantum hydrodynamic waves in the linear limit and introduce a new kind of instability in a double-degenerate plasma. Three different regimes, namely, low, intermediate, and high magnetic field strengths are considered which span the applicability of the work to a wide variety of environments. Distinct behavior is observed for different regimes, for instance, in the laboratory-scale field regime no frequency-mode instability occurs unlike those of intermediate and high magnetic-field strength regimes. It is also found that the instability of this kind is due to the heavy-fermions which appear below a critical effective-mass parameter ({mu}{sub cr}={radical}(3)) and that the responses of the two (lower and upper frequency) modes to fractional effective-mass change in different effective-mass parameter ranges (below and above the critical value) are quite opposite to each other. It is shown that the heavy-fermion instability due to extremely high magnetic field such as that encountered for a neutron-star crust can lead to confinement of stable propagations in both lower and upper frequency modes to the magnetic poles. Current study can have important implications for linear wave dynamics in both laboratory and astrophysical environments possessing high magnetic fields.

  18. Ion acoustic solitons in dense magnetized plasmas with nonrelativistic and ultrarelativistic degenerate electrons and positrons

    SciTech Connect (OSTI)

    Sadiq, Safeer; Mahmood, S.; Haque, Q.; Ali, Munazza Zulfiqar

    2014-09-20

    The propagation of electrostatic waves in a dense magnetized electron-positron-ion (EPI) plasma with nonrelativistic and ultrarelativistic degenerate electrons and positrons is investigated. The linear dispersion relation is obtained for slow and fast electrostatic waves in the EPI plasma. The limiting cases for ion acoustic wave (slow) and ion cyclotron wave (fast) are also discussed. Using the reductive perturbation method, two-dimensional propagation of ion acoustic solitons is found for both the nonrelativistic and ultrarelativistic degenerate electrons and positrons. The effects of positron concentration, magnetic field, and mass of ions on ion acoustic solitons are shown in numerical plots. The proper form of Fermi temperature for nonrelativistic and ultrarelativistic degenerate electrons and positrons is employed, which has not been used in earlier published work. The present investigation is useful for the understanding of linear and nonlinear electrostatic wave propagation in the dense magnetized EPI plasma of compact stars. For illustration purposes, we have applied our results to a pulsar magnetosphere.

  19. TWINS: THE TWO SHORTEST PERIOD NON-INTERACTING DOUBLE DEGENERATE WHITE

    Office of Scientific and Technical Information (OSTI)

    DWARF STARS (Journal Article) | SciTech Connect TWINS: THE TWO SHORTEST PERIOD NON-INTERACTING DOUBLE DEGENERATE WHITE DWARF STARS Citation Details In-Document Search Title: TWINS: THE TWO SHORTEST PERIOD NON-INTERACTING DOUBLE DEGENERATE WHITE DWARF STARS We report on the detection of the two shortest period non-interacting white dwarf binary systems. These systems, SDSS J143633.29+501026.8 and SDSS J105353.89+520031.0, were identified by searching for radial velocity variations in the

  20. On the Stochastic Maximum Principle in Optimal Control of Degenerate Diffusions with Lipschitz Coefficients

    SciTech Connect (OSTI)

    Bahlali, Khaled Djehiche, Boualem Mezerdi, Brahim

    2007-12-15

    We establish a stochastic maximum principle in optimal control of a general class of degenerate diffusion processes with global Lipschitz coefficients, generalizing the existing results on stochastic control of diffusion processes. We use distributional derivatives of the coefficients and the Bouleau Hirsh flow property, in order to define the adjoint process on an extension of the initial probability space.

  1. A nonlinear model for magnetoacoustic waves in dense dissipative plasmas with degenerate electrons

    SciTech Connect (OSTI)

    Masood, W.; Jahangir, R.; Siddiq, M.; Eliasson, B.

    2014-10-15

    The properties of nonlinear fast magnetoacoustic waves in dense dissipative plasmas with degenerate electrons are studied theoretically in the framework of the Zabolotskaya-Khokhlov (ZK) equation for small but finite amplitude excitations. Shock-like solutions of the ZK equation are obtained and are applied to parameters relevant to white dwarf stars.

  2. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    SciTech Connect (OSTI)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-12-15

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He{sup +}, He{sup ++}) and hydrogen (H{sup +}) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas.

  3. Accelerator-based neutron source using a cold deuterium target with degenerate electrons

    SciTech Connect (OSTI)

    Phillips, R. E.; Ordonez, C. A. [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)] [Department of Physics, University of North Texas, Denton, Texas 76203 (United States)

    2013-07-15

    A neutron generator is considered in which a beam of tritons is incident on a hypothetical cold deuterium target with degenerate electrons. The energy efficiency of neutron generation is found to increase substantially with electron density. Recent reports of potential targets are discussed.

  4. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOE Patents [OSTI]

    Sappey, Andrew D. (Golden, CO)

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  5. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    SciTech Connect (OSTI)

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur-

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  6. Solitons and shocks in dense astrophysical magnetoplasmas with relativistic degenerate electrons and positrons

    SciTech Connect (OSTI)

    Ali, S.; Ata-ur-Rahman; Institute of Physics and Electronics, University of Peshawar, Peshawar 25000

    2014-04-15

    The linear and nonlinear properties of the ion-acoustic (IA) waves are investigated in a relativistically degenerate magnetoplasma, whose constituents are the electrons, positrons, and ions. The electrons and positrons are assumed to obey the Fermi-Dirac statistics, whereas the cold ions are taken to be inertial and magnetized. In linear analysis, various limiting cases are discussed both analytically and numerically. However, for nonlinear studies, the well-known reductive perturbation technique is employed to derive the Zakharov-Kuznetsov and Zakharov-Kuznetsov Burgers equations in the presence of relativistically degenerate electrons and positrons. Furthermore, with the use of hyperbolic tangent method, the equations are simplified to admit the soliton and shock wave solutions. Numerically, it is shown that the amplitude, width, and phase speed associated with the localized IA solitons and shocks are significantly influenced by the various intrinsic plasma parameters relevant to our model. The present analysis can be useful for understanding the collective processes in dense astrophysical environments like neutron stars, where the electrons and positrons are expected to be relativistic and degenerate.

  7. Non-degenerate two-photon absorption in silicon waveguides. Analytical and experimental study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Yanbing; Husko, Chad; Lefrancois, Simon; Rey, Isabella H.; Krauss, Thomas F.; Schröder, Jochen; Eggleton, Benjamin J.

    2015-06-22

    We theoretically and experimentally investigate the nonlinear evolution of two optical pulses in a silicon waveguide. We provide an analytic solution for the weak probe wave undergoing non-degenerate two-photon absorption (TPA) from the strong pump. At larger pump intensities, we employ a numerical solution to study the interplay between TPA and photo-generated free carriers. We develop a simple and powerful approach to extract and separate out the distinct loss contributions of TPA and free-carrier absorption from readily available experimental data. Our analysis accounts accurately for experimental results in silicon photonic crystal waveguides.

  8. Multiplex Degenerate Primer Design for Targeted Whole Genome Amplification of Many Viral Genomes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gardner, Shea N.; Jaing, Crystal J.; Elsheikh, Maher M.; Peña, José; Hysom, David A.; Borucki, Monica K.

    2014-01-01

    Background . Targeted enrichment improves coverage of highly mutable viruses at low concentration in complex samples. Degenerate primers that anneal to conserved regions can facilitate amplification of divergent, low concentration variants, even when the strain present is unknown. Results . A tool for designing multiplex sets of degenerate sequencing primers to tile overlapping amplicons across multiple whole genomes is described. The new script, run_tiled_primers, is part of the PriMux software. Primers were designed for each segment of South American hemorrhagic fever viruses, tick-borne encephalitis, Henipaviruses, Arenaviruses, Filoviruses, Crimean-Congo hemorrhagic fever virus, Rift Valley fever virus, and Japanese encephalitis virus.more » Each group is highly diverse with as little as 5% genome consensus. Primer sets were computationally checked for nontarget cross reactions against the NCBI nucleotide sequence database. Primers for murine hepatitis virus were demonstrated in the lab to specifically amplify selected genes from a laboratory cultured strain that had undergone extensive passage in vitro and in vivo. Conclusions . This software should help researchers design multiplex sets of primers for targeted whole genome enrichment prior to sequencing to obtain better coverage of low titer, divergent viruses. Applications include viral discovery from a complex background and improved sensitivity and coverage of rapidly evolving strains or variants in a gene family.« less

  9. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alzheimer's disease, macular degeneration of the retina in diabetes, and mitochondrial diseases in children. In addition, specific processes like protein glycation can also be...

  10. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    view of how promising drugs act within specific cells. Some of these projects will target Alzheimer's disease, macular degeneration of the retina in diabetes, and mitochondrial...

  11. Tracking Living Cells as They Differentiate in Real Time

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these projects will target Alzheimer's disease, macular degeneration of the retina in diabetes, and mitochondrial diseases in children. In addition, specific processes like protein...

  12. June

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from severe macular degeneration. - 62713 Donivan Porterfield Porterfield named ASTM Fellow The award recognizes Porterfield for his extensive knowledge and commitment to...

  13. Degenerate ground states and nonunique potentials: Breakdown and restoration of density functionals

    SciTech Connect (OSTI)

    Capelle, K.; Ullrich, C. A.; Vignale, G.

    2007-07-15

    The Hohenberg-Kohn (HK) theorem is one of the most fundamental theorems of quantum mechanics, and constitutes the basis for the very successful density-functional approach to inhomogeneous interacting many-particle systems. Here we show that in formulations of density-functional theory (DFT) that employ more than one density variable, applied to systems with a degenerate ground state, there is a subtle loophole in the HK theorem, as all mappings between densities, wave functions, and potentials can break down. Two weaker theorems which we prove here, the joint-degeneracy theorem and the internal-energy theorem, restore the internal, total, and exchange-correlation energy functionals to the extent needed in applications of DFT to atoms, molecules, and solids. The joint-degeneracy theorem constrains the nature of possible degeneracies in general many-body systems.

  14. Symmetries of the triple degenerate DNLS equations for weakly nonlinear dispersive MHD waves

    SciTech Connect (OSTI)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1996-07-20

    A formulation of Hamiltonian and Lagrangian variational principles, Lie point symmetries and conservation laws for the triple degenerate DNLS equations describing the propagation of weakly nonlinear dispersive MHD waves along the ambient magnetic field, in {beta}{approx}1 plasmas is given. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic point, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a{sub g}{sup 2}=V{sub A}{sup 2} where a{sub g} is the gas sound speed and V{sub A} is the Alfven speed. A discussion is given of the travelling wave similarity solutions of the equations, which include solitary wave and periodic traveling waves. Strongly compressible solutions indicate the necessity for the insertion of shocks in the flow, whereas weakly compressible, near Alfvenic solutions resemble similar, shock free travelling wave solutions of the DNLS equation.

  15. Doping against the native propensity of MoS₂: Degenerate hole doping by cation substitution

    SciTech Connect (OSTI)

    Suh, Joonki; Park, Tae-Eon; Lin, Der-Yuh; Fu, Deyi; Park, Joonsuk; Jung, Hee Joon; Chen, Yabin; Ko, Changhyun; Jang, Chaun; Sun, Yinghui; Sinclair, Robert; Chang, Joonyeon; Tongay, Sefaattin; Wu, Junqiao

    2014-12-10

    Layered transition metal dichalcogenides (TMDs) draw much attention as the key semiconducting material for two-dimensional electrical, optoelectronic, and spintronic devices. For most of these applications, both n- and p-type materials are needed to form junctions and support bipolar carrier conduction. However, typically only one type of doping is stable for a particular TMD. For example, molybdenum disulfide (MoS₂) is natively an n-type presumably due to omnipresent electron-donating sulfur vacancies, and stable/controllable p-type doping has not been achieved. The lack of p-type doping hampers the development of charge-splitting p–n junctions of MoS₂, as well as limits carrier conduction to spin-degenerate conduction bands instead of the more interesting, spin-polarized valence bands. Traditionally, extrinsic p-type doping in TMDs has been approached with surface adsorption or intercalation of electron-accepting molecules. However, practically stable doping requires substitution of host atoms with dopants where the doping is secured by covalent bonding. In this work, we demonstrate stable p-type conduction in MoS₂ by substitutional niobium (Nb) doping, leading to a degenerate hole density of ~3 × 10¹⁹ cm⁻³. Structural and X-ray techniques reveal that the Nb atoms are indeed substitutionally incorporated into MoS₂ by replacing the Mo cations in the host lattice. van der Waals p–n homojunctions based on vertically stacked MoS₂ layers are fabricated, which enable gate-tunable current rectification. A wide range of microelectronic, optoelectronic, and spintronic devices can be envisioned from the demonstrated substitutional bipolar doping of MoS₂. From the miscibility of dopants with the host, it is also expected that the synthesis technique demonstrated here can be generally extended to other TMDs for doping against their native unipolar propensity.

  16. Dynamical theory of strongly coupled two-dimensional Coulomb fluids in the weakly degenerate quantum domain

    SciTech Connect (OSTI)

    Das, Mukunda P.; Golden, Kenneth I.; Green, Frederick

    2001-10-01

    We study the problem of dynamical response and plasma mode dispersion in strongly coupled two-dimensional Coulomb fluids (2DCFs) in the weakly degenerate quantum domain. Adapting the nonlinear response function approach of Golden and Kalman [Phys. Rev. A 19, 2112 (1979)] to the 2DCF, we construct a self-consistent approximation scheme for the calculation of the density response functions and plasma mode dispersion at long wavelengths. The basic ingredients in the construction are (i) the first kinetic equation in the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy, (ii) the velocity-average-approximation (VAA) hypothesis, (iii) the quadratic fluctuation-dissipation theorem, and (iv) the dynamical superposition approximation (DSA) closure hypothesis. The reliability of the VAA-DSA theory can be assessed by observing that the principal coupling correction to the 2D temperature-dependent Lindhard function is identified as being precisely the part of the third-frequency-moment sum-rule coefficient proportional to the potential energy.

  17. Reaction-in-flight neutrons as a test of stopping power in degenerate plasmas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hayes, A. C.; Jungman, Gerard; Schulz, A. E.; Boswell, M.; Fowler, M. M.; Grim, G.; Klein, A.; Rundberg, R. S.; Wilhelmy, J. B.; Wilson, D.; et al

    2015-08-06

    We present the first measurements of reaction-in-flight (RIF) neutrons in an inertial confinement fusion system. The experiments were carried out at the National Ignition Facility, using both Low Foot and High Foot drives and cryogenic plastic capsules. In both cases, the high-energy RIF (En > 15 MeV) component of the neutron spectrum was found to be about 10–4 of the total. The majority of the RIF neutrons were produced in the dense cold fuel surrounding the burning hotspot of the capsule, and the data are consistent with a compressed cold fuel that is moderately to strongly coupled (Γ~ 0.6) andmore » electron degenerate (θFermi/θe~ 4). The production of RIF neutrons is controlled by the stopping power in the plasma. Thus, the current RIF measurements provide a unique test of stopping power models in an experimentally unexplored plasma regime. In conclusion, we find that the measured RIF data strongly constrain stopping models in warm dense plasma conditions, and some models are ruled out by our analysis of these experiments.« less

  18. Acceleration and dynamics of an electron in the degenerate and magnetized plasma elliptical waveguide

    SciTech Connect (OSTI)

    Abdoli-Arani, A.; Jazi, B. [Department of Photonics, Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Shokri, B. [Physics Department and Laser-Plasma Research Institute, G. C. Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2013-02-15

    The dynamics and energy gain of an electron in the field of a transverse magnetic wave propagating inside an elliptical degenerate plasma waveguide is analytically investigated by finding the field components of the TM{sub mr} mode in this waveguide. Besides, by solving the relativistic momentum and energy equations the deflection angle and the acceleration gradient of the electron in the waveguide are obtained. Furthermore, the field components of the hybrid mode and the transferred power in the presence of the magnetic field in this waveguide are found. Also by applying the boundary conditions at the plasma-conductor interface, we calculate the dispersion relation. It is shown that the cutoff frequency of this mode is dependent on the plasma density but independent of the magnetic field. Then, a single-electron model for numerical calculations of the electron deflection angle and acceleration gradient inside the magnetized plasma-filled elliptical waveguide is generally presented to be used as a cascading process for the acceleration purposes.

  19. Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases

    SciTech Connect (OSTI)

    Lee, Jeffrey G.; Hill, W. T.

    2014-10-15

    We present two spatial-shaping approaches phase and amplitude for creating two-dimensional optical dipole potentials for ultracold neutral atoms. When combined with an attractive or repulsive Gaussian sheet formed by an astigmatically focused beam, atoms are trapped in three dimensions resulting in planar confinement with an arbitrary network of potentials a free-space atom chip. The first approach utilizes an adaptation of the generalized phase-contrast technique to convert a phase structure embedded in a beam after traversing a phase mask, to an identical intensity profile in the image plane. Phase masks, and a requisite phase-contrast filter, can be chemically etched into optical material (e.g., fused silica) or implemented with spatial light modulators; etching provides the highest quality while spatial light modulators enable prototyping and realtime structure modification. This approach was demonstrated on an ensemble of thermal atoms. Amplitude shaping is possible when the potential structure is made as an opaque mask in the path of a dipole trap beam, followed by imaging the shadow onto the plane of the atoms. While much more lossy, this very simple and inexpensive approach can produce dipole potentials suitable for containing degenerate gases. High-quality amplitude masks can be produced with standard photolithography techniques. Amplitude shaping was demonstrated on a Bose-Einstein condensate.

  20. EVOLUTION OF POST-IMPACT REMNANT HELIUM STARS IN TYPE Ia SUPERNOVA REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO

    SciTech Connect (OSTI)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu

    2013-08-10

    The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx} 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.

  1. Analysis of the generation of amplitude-squeezed light with Gaussian-beam degenerate optical parametric amplifiers

    SciTech Connect (OSTI)

    Koprulu, Kahraman G.; Aytur, Orhan

    2001-06-01

    We investigate the generation of amplitude-squeezed states with degenerate optical parametric amplifiers that are pumped by focused Gaussian beams. We present a model that facilitates the calculation of the squeezing level for an experimentally realistic configuration in which there is a Gaussian input signal beam that has the same confocal parameter and waist location as the Gaussian pump beam, with no restriction on the interaction length-to-confocal parameter ratio. We show that the 3-dB squeezing limit that was thought to be imposed by the Gaussian pump profile can be exceeded in the (previously uninvestigated) tight-focusing regime. We find the maximum possible amplitude squeezing in this regime to be 4.65 dB. However, it is possible to increase the squeezing level further by spatially filtering the tails of the output signal beam, resulting in squeezing levels in excess of 10 dB. {copyright} 2001 Optical Society of America

  2. Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campione, Salvatore; Wendt, Joel R.; Keeler, Gordon Arthur; Luk, Ting S.

    2016-01-14

    Epsilon-near-zero (ENZ) modes provide a new path for tailoring light–matter interactions at the nanoscale. In this paper, we analyze a strongly coupled system at near-infrared frequencies comprising plasmonic metamaterial resonators and ENZ modes supported by degenerately doped semiconductor nanolayers. In strongly coupled systems that combine optical cavities and intersubband transitions, the polariton splitting (i.e., the ratio of Rabi frequency to bare cavity frequency) scales with the square root of the wavelength, thus favoring the long-wavelength regime. In contrast, we observe that the polariton splitting in ENZ/metamaterial resonator systems increases linearly with the thickness of the nanolayer supporting the ENZ modes.more » In this work, we employ an indium-tin-oxide nanolayer and observe a large experimental polariton splitting of approximately 30% in the near-infrared. As a result, this approach opens up many promising applications, including nonlinear optical components and tunable optical filters based on controlling the polariton splitting by adjusting the frequency of the ENZ mode.« less

  3. High field magnetotransport and point contact Andreev reflection measurements on CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}BrDegenerate magnetic semiconductor single crystals

    SciTech Connect (OSTI)

    Borisov, K. Coey, J. M. D.; Stamenov, P.; Alaria, J.

    2014-05-07

    Single crystals of the metallically degenerate fully magnetic semiconductors CuCr{sub 2}Se{sub 4} and CuCr{sub 2}Se{sub 3}Br have been prepared by the Chemical Vapour Transport method, using either Se or Br as transport agents. The high-quality, millimetre-sized, octahedrally faceted, needle- and platelet-shaped crystals are characterised by means of high field magnetotransport (?{sub 0}H? 14?T) and Point Contact Andreev Reflection. The relatively high spin polarisation observed |P|>0.56, together with the relatively low minority carrier effective mass of 0.25 m{sub e}, and long scattering time 10{sup ?13}?s, could poise these materials for integration in low- and close-to-room temperature minority injection bipolar heterojunction transistor demonstrations.

  4. Review of Recent Aging-Related Degradation Occurrences of Structures and Passive Components in U.S. Nuclear Power Plants

    SciTech Connect (OSTI)

    Nie,J.; Braverman, J.; Hofmayer, C.; Choun, Y.-S.; Kim, M.K.; Choi, I.-K.

    2009-04-02

    The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic capability evaluation technology for degraded structures and passive components (SPCs) under a multi-year research agreement. To better understand the status and characteristics of degradation of SPCs in nuclear power plants (NPPs), the first step in this multi-year research effort was to identify and evaluate degradation occurrences of SPCs in U.S. NPPs. This was performed by reviewing recent publicly available information sources to identify and evaluate the characteristics of degradation occurrences and then comparing the information to the observations in the past. Ten categories of SPCs that are applicable to Korean NPPs were identified, comprising of anchorage, concrete, containment, exchanger, filter, piping system, reactor pressure vessel, structural steel, tank, and vessel. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends.

  5. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    SciTech Connect (OSTI)

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R.; Weinberger, Paul M.; Dynan, William S.

    2014-11-06

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference ?-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of ?-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.

  6. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R.; Weinberger, Paul M.; Dynan, William S.

    2014-11-06

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZEmore » particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.« less

  7. The signature of single-degenerate accretion-induced collapse

    SciTech Connect (OSTI)

    Piro, Anthony L.

    2014-10-10

    The accretion-induced collapse (AIC) of a white dwarf to a neutron star has long been suggested as a natural theoretical outcome in stellar evolution, but there has never been a direct detection of such an event. This is not surprising since the small amount of radioactive nickel synthesized (?10{sup 3} M {sub ?}) implies a relatively dim optical transient. Here we argue that a particularly strong signature of an AIC would occur for an oxygen-neon-magnesium (ONeMg) white dwarf accreting from a star that is experiencing Roche-lobe overflow as it becomes a red giant. In such cases, the ?10{sup 50} erg explosion from the AIC collides with and shock-heats the surface of the extended companion, creating an X-ray flash lasting ?1 hr followed by an optical signature that peaks at an absolute magnitude of ? 16 to 18 and lasts for a few days to a week. These events would be especially striking in old stellar environments where hydrogen-rich supernova-like transients would not normally be expected. Although the rate of such events is not currently known, we describe observing strategies that could be utilized with high cadence surveys that should either detect these events or place strong constraints on their rates.

  8. TWINS: THE TWO SHORTEST PERIOD NON-INTERACTING DOUBLE DEGENERATE...

    Office of Scientific and Technical Information (OSTI)

    Authors: Mullally, F. ; Badenes, Carles ; Lupton, Robert 1 ; Thompson, Susan E., E-mail: fergal@astro.princeton.ed 2 + Show Author Affiliations Department of Astrophysical ...

  9. Research Recruiting Endogenous Tissue Stem Cells to Repair Injury and Degeneration

    SciTech Connect (OSTI)

    Peterson, Daniel A.

    2014-10-22

    This report lists bibliographic information about meeting papers and journal articles resulting from this work, and basic information on new grant applications that this work was used to support.

  10. Data embedding employing degenerate clusters of data having differences less than noise value

    DOE Patents [OSTI]

    Sanford, II, Maxwell T.; Handel, Theodore G.

    1998-01-01

    A method of embedding auxiliary information into a set of host data, such as a photograph, television signal, facsimile transmission, or identification card. All such host data contain intrinsic noise, allowing pixels in the host data which are nearly identical and which have values differing by less than the noise value to be manipulated and replaced with auxiliary data. As the embedding method does not change the elemental values of the host data, the auxiliary data do not noticeably affect the appearance or interpretation of the host data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user.

  11. Data embedding employing degenerate clusters of data having differences less than noise value

    DOE Patents [OSTI]

    Sanford, M.T. II; Handel, T.G.

    1998-10-06

    A method of embedding auxiliary information into a set of host data, such as a photograph, television signal, facsimile transmission, or identification card. All such host data contain intrinsic noise, allowing pixels in the host data which are nearly identical and which have values differing by less than the noise value to be manipulated and replaced with auxiliary data. As the embedding method does not change the elemental values of the host data, the auxiliary data do not noticeably affect the appearance or interpretation of the host data. By a substantially reverse process, the embedded auxiliary data can be retrieved easily by an authorized user. 35 figs.

  12. Characteristics of degenerately doped silicon for spectral control in thermophotovoltaic systems

    SciTech Connect (OSTI)

    Ehsani, H.; Bhat, I.; Borrego, J.; Gutmann, R.; Brown, E.; Dzeindziel, R.; Freeman, M.; Choudhury, N.

    1995-07-01

    Heavily doped Si was investigated for use as spectral control filter in thermal photovoltaic (TPV) system. These filters should reflect radiation at 4 {micro}m and above and transmit radiation at 2 {micro}m and below. Two approaches have been used for introducing impurities into Si to achieve high doping concentration. One was the diffusion technique, using spin-on dopants. The plasma wavelength ({lambda}{sub p}) of these filters could be adjusted by controlling the diffusion conditions. The minimum plasma wavelength achieved was 4.8 {micro}m. In addition, a significant amount of absorption was observed for the wavelength 2 {micro}m and below. The second approach was doping by ion implantation followed by thermal annealing with a capped layer of doped glass. Implantation with high dosage of B and As followed by high temperature annealing (> 1,000 C) resulted in a plasma wavelength that could be controlled between 3.5 and 6 {micro}m. The high temperature annealing (> 1,000 C) that was necessary to activate the dopant atoms and to heal the implantation damage, also caused significant absorption at 2 {micro}m. For phosphorus implanted Si, a moderate temperature (800--900 C) was sufficient to activate most of the phosphorus and to heal the implantation damage. The position of the plasma turn-on wavelength for an implantation dose of 2 {times} 10{sup 16} cm{sup {minus}2} of P was at 2.9 {micro}m. The absorption at 2 {micro}m was less than 20% and the reflection at 5 {micro}m was about 70%.

  13. Temperature dependence of the spin relaxation in highly degenerate ZnO thin films

    SciTech Connect (OSTI)

    Prestgard, M. C.; Siegel, G.; Tiwari, A.; Roundy, R.; Raikh, M.

    2015-02-28

    Zinc oxide is considered a potential candidate for fabricating next-generation transparent spintronic devices. However, before this can be achieved, a thorough scientific understanding of the various spin transport and relaxation processes undergone in this material is essential. In the present paper, we are reporting our investigations into these processes via temperature dependent Hanle experiments. ZnO thin films were deposited on c-axis sapphire substrates using a pulsed laser deposition technique. Careful structural, optical, and electrical characterizations of the films were performed. Temperature dependent non-local Hanle measurements were carried out using an all-electrical scheme for spin injection and detection over the temperature range of 20–300 K. From the Hanle data, spin relaxation time in the films was determined at different temperatures. A detailed analysis of the data showed that the temperature dependence of spin relaxation time follows the linear-in-momentum Dyakonov-Perel mechanism.

  14. A boundary-value problem in weighted Hlder spaces for elliptic equations which degenerate at the boundary of the domain

    SciTech Connect (OSTI)

    Bazalii, B V; Degtyarev, S P

    2013-07-31

    An elliptic boundary-value problem for second-order equations with nonnegative characteristic form is investigated in the situation when there is a weak degeneracy on the boundary of the domain. A priori estimates are obtained for solutions and the problem is proved to be solvable in some weighted Hlder spaces. Bibliography: 18 titles.

  15. Optical and structural characterization of nitrogen-rich InN: Transition from nearly intrinsic to strongly n-type degenerate with temperature

    SciTech Connect (OSTI)

    Hong Tran, Nhung; Huy Le, Binh; Fan, Shizhao; Zhao, Songrui; Mi, Zetian; Schmidt, Benjamin A.; Savard, Michel; Gervais, Guillaume; Butcher, Kenneth Scott A.

    2013-12-23

    We report on a detailed study of the structural and optical properties of nonstoichiometric nitrogen-rich InN grown on sapphire substrates, by migration enhanced afterglow deposition. The samples were polycrystalline, with the presence of InN dots. Unusually strong photoluminescence emission was measured at cryogenic temperatures, with the peak energy at ?0.68?eV. Detailed analysis further shows that the sample has very low residual electron density in the range of ?10{sup 16}?cm{sup ?3} at temperatures below 20?K.

  16. Group Vision Care Plan Vision Care for Life EVIDENCE OF COVERAGE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the structures in the front of the eye Diabetic Macular Edema Swelling of the retina in diabetes mellitus due to leaking of fluid from blood vessels within the macula 11 PLAN...

  17. Asymptotic regimes for the electrical and thermal conductivities in dense plasmas

    SciTech Connect (OSTI)

    Faussurier, G. Blancard, C.

    2015-04-15

    We study the asymptotic regimes for the electrical and thermal conductivities in dense plasmas obtained by combining the Chester–Thellung–Kubo–Greenwood approach and the Kramers approximation [Faussurier et al., Phys. Plasmas 21, 092706 (2014)]. Non-degenerate and degenerate situations are considered. The Wiedemann–Franz law is obtained in the degenerate case.

  18. Wavelength-doubling optical parametric oscillator

    DOE Patents [OSTI]

    Armstrong, Darrell J. (Albuquerque, NM); Smith, Arlee V. (Albuquerque, NM)

    2007-07-24

    A wavelength-doubling optical parametric oscillator (OPO) comprising a type II nonlinear optical medium for generating a pair of degenerate waves at twice a pump wavelength and a plurality of mirrors for rotating the polarization of one wave by 90 degrees to produce a wavelength-doubled beam with an increased output energy by coupling both of the degenerate waves out of the OPO cavity through the same output coupler following polarization rotation of one of the degenerate waves.

  19. A deformation of quantum affine algebra in squashedWess-Zumino...

    Office of Scientific and Technical Information (OSTI)

    by computing the rs-matrices that satisfy the extended classical Yang-Baxter equation. Finally, two degenerate limits are discussed. Authors: Kawaguchi, Io ; Yoshida,...

  20. Spin Superstructure and Noncoplanar Ordering in Metallic Pyrochlore...

    Office of Scientific and Technical Information (OSTI)

    Title: Spin Superstructure and Noncoplanar Ordering in Metallic Pyrochlore Magnets with Degenerate Orbitals Authors: Chern, Gia-Wei ; Batista, Cristian D. Publication Date: ...

  1. Topological degeneracy of non-Abelian states for dummies (Journal...

    Office of Scientific and Technical Information (OSTI)

    Title: Topological degeneracy of non-Abelian states for dummies We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits ...

  2. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Improved discovery of a nearly degenerate model: Minimal universal extra dimension model using MT2 at the LHC Murayama, Hitoshi ; Nojiri, Mihoko M. ; Tobioka, Kohsaku Full Text ...

  3. Stabilization of weak ferromagnetism by strong magnetic response...

    Office of Scientific and Technical Information (OSTI)

    Multiferroic BiFeO3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. Thus, the degenerate nature of the easy ...

  4. Enhanced human performance of utility maintenance programs

    SciTech Connect (OSTI)

    Fresco, A.; Haber, S.; O`Brien, J.

    1993-08-01

    Assuring the safe operation of a nuclear power plant depends, to a large extent, on how effectively one understands and manages the aging-related degradation that occurs in structures, systems, and components (SSCs). Aging-related degradation is typically managed through a nuclear plant`s maintenance program. A review of 44 Maintenance Team Inspection (MTI) Reports indicated that while some plant organizations appeared to assume a proactive mode in preventing aging-related failures of their SSCs important to safety, others seemed to be taking a passive or reactive mode. Across all plants, what is clearly needed, is a strong recognition of the importance of aging-related degradation and the use of existing organizational assets to effectively detect and mitigate those effects. Many of those assets can be enhanced by the consideration of organizational and management factors necessary for the implementation of an effective aging management program. This report provides a discussion of this program.

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    by the conformal blocks of the minimal model WAsub k-1(k+1,k+2) of the WAsub k-1 algebra. By studying the degenerate representations of this conformal field theories, we...

  6. On the damping of right hand circularly polarized waves in spin quantum plasmas

    SciTech Connect (OSTI)

    Iqbal, Z.; Hussain, A.; Murtaza, G.; Ali, M.

    2014-12-15

    General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ?}v?(?+?{sub ce}),(?+?{sub cg}) and (ii) k{sub ?}v?(?+?{sub ce}),(?+?{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effects can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.

  7. Polaron Behavior in CMR Manganites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    determining and engineering the properties of these materials, is still lacking. The Mn 3d levels are split into two subsets: t2g (threefold degenerate) and eg (twofold...

  8. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    ... invited EIA senior 11 management. 12 MS. KIRKENDALL: There ... issue in the Energy 3 Journal or something about a ... or degenerate. 9 The organization of this talk, 10 we'll ...

  9. Sphericity determination using resonant ultrasound spectroscopy

    DOE Patents [OSTI]

    Dixon, Raymond D. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM); Visscher, William M. (Los Alamos, NM)

    1994-01-01

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a "best" spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere.

  10. Sphericity determination using resonant ultrasound spectroscopy

    DOE Patents [OSTI]

    Dixon, R.D.; Migliori, A.; Visscher, W.M.

    1994-10-18

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.

  11. Two-dimensional cylindrical ion-acoustic solitary and rogue waves in ultrarelativistic plasmas

    SciTech Connect (OSTI)

    Ata-ur-Rahman; National Centre for Physics at QAU Campus, Shahdrah Valley Road, Islamabad 44000 ; Ali, S.; Moslem, W. M.; Mushtaq, A.; Department of Physics, Abdul Wali Khan University, Mardan 23200

    2013-07-15

    The propagation of ion-acoustic (IA) solitary and rogue waves is investigated in a two-dimensional ultrarelativistic degenerate warm dense plasma. By using the reductive perturbation technique, the cylindrical KadomtsevPetviashvili (KP) equation is derived, which can be further transformed into a Kortewegde Vries (KdV) equation. The latter admits a solitary wave solution. However, when the frequency of the carrier wave is much smaller than the ion plasma frequency, the KdV equation can be transferred to a nonlinear Schrdinger equation to study the nonlinear evolution of modulationally unstable modified IA wavepackets. The propagation characteristics of the IA solitary and rogue waves are strongly influenced by the variation of different plasma parameters in an ultrarelativistic degenerate dense plasma. The present results might be helpful to understand the nonlinear electrostatic excitations in astrophysical degenerate dense plasmas.

  12. Modulation of drift-wave envelopes in a nonuniform quantum magnetoplasma

    SciTech Connect (OSTI)

    Misra, A. P. E-mail: apmisra@gmail.com

    2014-04-15

    We study the amplitude modulation of low-frequency, long-wavelength electrostatic drift-wave envelopes in a nonuniform quantum magnetoplasma consisting of cold ions and degenerate electrons. The effects of tunneling associated with the quantum Bohm potential and the Fermi pressure for nonrelativistic degenerate electrons, as well as the equilibrium density and magnetic field inhomogeneities are taken into account. Starting from a set of quantum magnetohydrodynamic equations, we derive a nonlinear Schrdinger equation (NLSE) that governs the dynamics of the modulated quantum drift-wave packets. The NLSE is used to study the modulational instability (MI) of a Stoke's wave train to a small plane wave perturbation. It is shown that the quantum tunneling effect as well as the scale length of inhomogeneity plays crucial roles for the MI of the drift-wave packets. Thus, the latter can propagate in the form of bright and dark envelope solitons or as drift-wave rogons in degenerate dense magnetoplasmas.

  13. Study of stopping power for a proton moving in a plasma with arbitrary degeneracy

    SciTech Connect (OSTI)

    Zhang, Ya; Song, Yuan-Hong; Wang, You-Nian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-10-15

    Excitation of bulk solid electrons with arbitrary degeneracy, by external charged particles, is investigated by a two-dimensional nonlinear quantum hydrodynamic (QHD) model. The nonlinear stopping power and wake potential are calculated by solving the nonlinear QHD equations with the flux corrected transport numerical method. Two cases of fully degenerated and partially degenerated electrons are compared and discussed in the same self-consistent QHD model. Our results are consistent with the well known dielectric calculation of the stopping power at higher velocity, but include the nonlinear terms of the interactions and give larger stopping power at smaller velocity.

  14. Quantum effects in electron beam pumped GaAs

    SciTech Connect (OSTI)

    Yahia, M. E.; National Institute of Laser Enhanced Sciences , Cairo University ; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  15. Method for resonant measurement

    DOE Patents [OSTI]

    Rhodes, George W. (5201 Rio Grande Blvd., N.W., Albuquerque, NM 87107); Migliori, Albert (Rte. 4, Box 258 Tano Rd., Sante Fe, NM 87501); Dixon, Raymond D. (396 Connie Ave., White Rock, NM 87544)

    1996-01-01

    A method of measurement of objects to determine object flaws, Poisson's ratio (.sigma.) and shear modulus (.mu.) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson's ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson's ratio using other modes dependent on both the shear modulus and Poisson's ratio.

  16. Method for resonant measurement

    DOE Patents [OSTI]

    Rhodes, G.W.; Migliori, A.; Dixon, R.D.

    1996-03-05

    A method of measurement of objects to determine object flaws, Poisson`s ratio ({sigma}) and shear modulus ({mu}) is shown and described. First, the frequency for expected degenerate responses is determined for one or more input frequencies and then splitting of degenerate resonant modes are observed to identify the presence of flaws in the object. Poisson`s ratio and the shear modulus can be determined by identification of resonances dependent only on the shear modulus, and then using that shear modulus to find Poisson`s ratio using other modes dependent on both the shear modulus and Poisson`s ratio. 1 fig.

  17. GRIZZLY

    Energy Science and Technology Software Center (OSTI)

    2012-12-17

    Grizzly is a simulation tool for assessing the effects of age-related degradation on systems, structures, and components of nuclear power plants. Grizzly is built on the MOOSE framework, and uses a Jacobian-free Newton Krylov method to obtain solutions to tightly coupled thermo-mechanical simulations. Grizzly runs on a wide range of hardware, from a single processor to massively parallel machines.

  18. LWR Sustainability: Assessment of Aging of Nuclear Power Plant Safety Related Concrete Strutures

    SciTech Connect (OSTI)

    Graves III, Herman; Naus, Dan J

    2013-01-01

    Current regulatory testing and inspection requirements are reviewed and a summary of degradation experience is presented. Techniques commonly used to inspect NPP concrete structures to assess and quantify age-related degradation are summarized. An approach for conduct of condition assessments of structures in NPPs is presented. Criteria, based primarily on visual indications, are provided for use in classification and assessment of concrete degradation. Materials and techniques for repair of degraded structures are generally discussed.

  19. Nondestructive ultrasonic testing of materials

    DOE Patents [OSTI]

    Hildebrand, Bernard P. (Richland, WA)

    1994-01-01

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges.

  20. Nondestructive ultrasonic testing of materials

    DOE Patents [OSTI]

    Hildebrand, B.P.

    1994-08-02

    Reflection wave forms obtained from aged and unaged material samples can be compared in order to indicate trends toward age-related flaws. Statistical comparison of a large number of data points from such wave forms can indicate changes in the microstructure of the material due to aging. The process is useful for predicting when flaws may occur in structural elements of high risk structures such as nuclear power plants, airplanes, and bridges. 4 figs.

  1. Self-similar expansion of a warm dense plasma

    SciTech Connect (OSTI)

    Djebli, Mourad; Moslem, Waleed M.

    2013-07-15

    The properties of an expanding plasma composed of degenerate electron fluid and non-degenerate ions are studied. For our purposes, we use fluid equations for ions together with the electron momentum equation that include quantum forces (e.g., the quantum statistical pressure, forces due to the electron-exchange and electron correlations effects) and the quasi-neutrality condition. The governing equation is written in a tractable form by using a self-similar transformation. Numerical results for typical beryllium plasma parameters revealed that, during the expansion, the ion acoustic speed decreases for both isothermal and adiabatic ion pressure. When compared with classical hydrodynamic plasma expansion model, the electrons and ions are found to initially escape faster in vacuum creating thus an intense electric field that accelerates most of the particles into the vacuum ahead of the plasma expansion. The relevancy of the present model to beryllium plasma produced by a femto-second laser is highlighted.

  2. Metal Alloy Compositions And Process Background Of The Invention

    DOE Patents [OSTI]

    Flemings, Merton C.; Martinez-Ayers, Raul A.; de Figueredo, Anacleto M.; Yurko, James A.

    2003-11-11

    A skinless metal alloy composition free of entrapped gas and comprising primary solid discrete degenerate dendrites homogeneously dispersed within a secondary phase is formed by a process wherein the metal alloy is heated in a vessel to render it a liquid. The liquid is then rapidly cooled while vigorously agitating it under conditions to avoid entrapment of gas while forming solid nuclei homogeneously distributed in the liquid. Agitation then is ceased when the liquid contains a small fraction solid or the liquid-solid alloy is removed from the source of agitation while cooling is continued to form the primary solid discrete degenerate dendrites in liquid secondary phase. The solid-liquid mixture then can be formed such as by casting.

  3. Effect of electron flow on the ordinary-extraordinary mode conversion

    SciTech Connect (OSTI)

    Jia Guozhang; Gao Zhe

    2011-10-15

    Ordinary-extraordinary mode conversion in the electron cyclotron frequency range is revisited in the presence of a flowing electron component. The analytical expressions of optimal parallel refraction index and conversion efficiency are obtained from a one-dimensional cold plasma model. The presence of flowing electrons leads to an outward shift of the conversion layer and therefore increases the optimal value of parallel refraction index. If this effect is not considered, the efficiency of mode conversion degenerates. In typical tokamak plasmas, this degeneration is about a few percentages, which may induce the reflection of several tens of kilowatts of power from the cutoff layer when injecting megawatts of ECRF power into fusion plasma.

  4. Photo-transport properties of Pb{sub 2}CrO{sub 5} single crystals

    SciTech Connect (OSTI)

    Mondal, P. S.; Okazaki, R. Taniguchi, H.; Terasaki, I.

    2014-11-21

    We report photo-thermoelectric transport phenomena in Pb{sub 2}CrO{sub 5} single crystals. Without illumination, this material exhibits an insulating behavior characterized by an activation-type temperature variation of the electrical conductivity. The Seebeck coefficient contrastingly shows a crossover from high-temperature insulating to low-temperature metallic behavior, which is attributed to degenerate carriers in a donor level. We have found that under illumination, both the conductivity and the Seebeck coefficient increase in magnitude with increasing photon flux density in the degenerate-conduction regime. This result is difficult to understand within a simple photo-doping effect, which usually leads to a decrease in the Seebeck coefficient under illumination. The observed phenomenon is discussed in terms of a two-carrier contribution to the transport properties.

  5. The density gradient effect on quantum Weibel instability

    SciTech Connect (OSTI)

    Mahdavi, M. Khodadadi Azadboni, F.

    2015-03-15

    The Weibel instability plays an important role in stopping the hot electrons and energy deposition mechanism in the fast ignition of inertial fusion process. In this paper, the effects of the density gradient and degeneracy on Weibel instability growth rate are investigated. Calculations show that decreasing the density degenerate in the plasma corona, near the relativistic electron beam emitting region by 8.5% leads to a 92% reduction in the degeneracy parameter and about 90% reduction in Weibel instability growth rate. Also, decreasing the degenerate density near the fuel core by 8.5% leads to 1% reduction in the degeneracy parameter and about 8.5% reduction in Weibel instability growth rate. The Weibel instability growth rate shrinks to zero and the deposition condition of relativistic electron beam energy can be shifted to the fuel core for a suitable ignition by increasing the degeneracy parameter in the first layer of plasma corona.

  6. Confrontation between stellar pulsation and evolution; Proceedings of the Conference (ASP Series, Vol. 11), Bologna, Italy, May 28-31, 1990

    SciTech Connect (OSTI)

    Cacciari, C.; Clementini, G.

    1990-01-01

    Attention is given to the folowing topics: population I and II variable stars; LP variables, the sun, and mass determination; and predegenerate and degenerate variables. Particular papers are presented on alternative evolutionary approaches to the absolute magnitude of the RR Lyrae variables; the evolution of the Cepheid stars; nonradial pulsations in rapidly rotating Delta Scuti stars; dynamical models of dust shells around Mira variables; and pulsations of central stars of planetary nebulae.

  7. Beam driven upper-hybrid-wave instability in quantized semiconductor plasmas

    SciTech Connect (OSTI)

    Jamil, M.; Rasheed, A.; Rozina, Ch.; Moslem, W. M.; Centre for Theoretical Physics, The British University in Egypt , El-Shorouk City, Cairo ; Salimullah, M.

    2014-02-15

    The excitation of Upper-Hybrid waves (UHWs) induced by electron beam in semiconductor plasma is examined using quantum hydrodynamic model. Various quantum effects are taken into account including recoil effect, Fermi degenerate pressure, and exchange-correlation potential. The bandwidth of the UHWs spectrum shows that the system supports purely growing unstable mode. The latter has been studied for diversified parameters of nano-sized GaAs semiconductor.

  8. ALSNews Vol. 345

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Print A Spintronic Semiconductor with Selectable Charge Carriers 278 thumb Researchers found a semiconductor with two properties crucial for spintronics: a large Rashba effect (splitting of degenerate spin states) and ambipolarity (conduction via electrons and holes). Furthermore, it is possible to control whether the charge carriers are electrons or holes by engineering the surface layer. Read more... Contact: Luca Moreschini From Protein Structure to Function: Ring Cycle for Dilating and

  9. Feeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feeding the Pipeline: The SNfactory Supernova Search Richard Scalzo NERSC User Group Meeting October 4, 2005 Outline Background ● Interest in supernova science ● Observational challenges in finding supernovae The SNfactory search pipeline ● Description of hardware ● Past searches and challenges in development ● Present and future Why supernovae are interesting Two types of SNe: "type Ia" and "core-collapse". SNe Ia ● Model: Thermonuclear explosion of degenerate

  10. Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle

    SciTech Connect (OSTI)

    Barletti, Luigi

    2014-08-15

    The maximum entropy principle is applied to the formal derivation of isothermal, Euler-like equations for semiclassical fermions (electrons and holes) in graphene. After proving general mathematical properties of the equations so obtained, their asymptotic form corresponding to significant physical regimes is investigated. In particular, the diffusive regime, the Maxwell-Boltzmann regime (high temperature), the collimation regime and the degenerate gas limit (vanishing temperature) are considered.

  11. Size Dependence of Two-Photon Absorption in Semiconductor Quantum Dots

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Size Dependence of Two-Photon Absorption in Semiconductor Quantum Dots Citation Details In-Document Search Title: Size Dependence of Two-Photon Absorption in Semiconductor Quantum Dots Quantum confinement plays an important role in the optical properties of semiconductor quantum dots (QDs). In this work, we combine experiment and modeling to systematically investigate the size dependence of the degenerate two-photon absorption (TPA) of below-band-gap

  12. Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide

    Office of Scientific and Technical Information (OSTI)

    Flakes (Journal Article) | SciTech Connect Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes Citation Details In-Document Search Title: Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes We performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These

  13. Search for surviving companions in type Ia supernova remnants

    SciTech Connect (OSTI)

    Pan, Kuo-Chuan [Physik Department, Universitt Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Ricker, Paul M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Taam, Ronald E., E-mail: kuo-chuan.pan@unibas.ch, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu, E-mail: taam@asiaa.sinica.edu.tw [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

    2014-09-01

    The nature of the progenitor systems of type Ia supernovae (SNe Ia) is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions (SCs). Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- (MS-) and helium-rich SCs, the color and magnitude of MS- and helium-rich SCs are predicted as functions of time. The SC candidates in Galactic type Ia supernova remnants (Ia SNR) and nearby extragalactic Ia SNRs are discussed. We find that the maximum detectable distance of MS SCs (helium-rich SCs) is 0.6-4 Mpc (0.4-16 Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for SCs. However, only five Ia SNRs have been searched for SCs, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of SNe Ia, we encourage the search for SCs in other nearby Ia SNRs.

  14. Comparative dermotoxicity of shale oils

    SciTech Connect (OSTI)

    Holland, L.M.; Wilson, J.S.; Foreman, M.E.

    1980-01-01

    When shale oils are applied at higher dose levels the standard observation of tumor production and latency are often obscured by a severe inflammatory response leading to epidermal degeneration. The two experiments reported here are still in progress, however the interim results are useful in assessing both the phlogistic and tumorigenic properties of three shale oils. Three shale oils were tested in these experiments. The first crude oil (OCSO No. 6) was produced in a modified in situ report at Occidental Oil Company's Logan Wash site near Debeque, Colorado. The second crude oil (PCSO II) was produced in the above ground Paraho vertical-kiln retort located at Anvil Points near Rifle, Colorado and the third oil was the hydrotreated daughter product of the Paraho crude (PCSO-UP). Experiment I was designed to determine the highest dose level at which tumor latency could be measured without interference from epidermal degeneration. Experiment II was designed to determine the effect of application frequency on both tumor response and inflammatory phenomena. Complete epidermal degeneration was used as the only measure of severe inflammation. Relative tumorigenicity was based on the number of tumor bearing mice without regard to multiple tumors on individual animals. In both experiments, tumor occurrence was confirmed one week after initial appearance. The sex-related difference in inflammatory response is striking and certanly has significance for experimental design. An increased phlogistic sensitivity expressed in male mice could affect the meaning of an experiment where only one sex was used.

  15. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    SciTech Connect (OSTI)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 481 h (retinal thickness) pixels.

  16. Aging management guideline for commercial nuclear power plants - heat exchangers

    SciTech Connect (OSTI)

    Booker, S.; Lehnert, D.; Daavettila, N.; Palop, E.

    1994-06-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in commercial nuclear power plant heat exchangers important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  17. Health monitoring method for composite materials

    DOE Patents [OSTI]

    Watkins, Jr., Kenneth S.; Morris, Shelby J.

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  18. Safety research programs sponsored by Office of Nuclear Regulatory Research. Quarterly progress report, October 1-December 31, 1983. Volume 3, No. 4

    SciTech Connect (OSTI)

    Weiss, A J

    1984-05-01

    The projects reported are the following: High Temperature Reactor Research, SSC Development, Validation and Application, CRBR Balance of Plant Modeling, Thermal-Hydraulic Reactor Safety Experiments, Development of Plant Analyzer, Code Assessment and Application (Transient and LOCA Analyses), Thermal Reactor Code Development (RAMONA-3B), Calculational Quality Assurance in Support of PTS; Stress Corrosion Cracking of PWR Steam Generator Tubing, Bolting Failure Analysis, Probability Based Load Combinations for Design of Category I Structures, Mechanical Piping Benchmark Problems, Identification of Age-Related Failure Modes; Analysis of Human Error Data for Nuclear Power Plant Safety-Related Events, Human Factors in Nuclear Power Plant Safeguards, Emergency Action Levels, and Protective Action Decision Making.

  19. Microsoft Word - 2016 Call for Abstracts.docx

    Office of Environmental Management (EM)

    CALL F OR A BSTRACTS For t he 2016 N ational E nvironmental J ustice C onference a nd T raining Program The 2 016 N ational E nvironmental J ustice C onference a nd T raining P rogram planners a re i nviting i ndividuals t o s ubmit a bstracts, n ot t o e xceed t wo p ages, related t o e nvironmental j ustice. E ach a bstract s hould i nclude t he s ubmitter's name, a ffiliation, f ull c ontact i nformation, a nd t he a mount o f t ime b eing requested. The 2016 Conference will be held jointly

  20. Age-dependent inhibition of pentobarbital sleeping time by ozone in mice and rats

    SciTech Connect (OSTI)

    Canada, A.T.; Calabrese, E.J.; Leonard, D.

    1986-09-01

    The effect of age on the metabolism of pentobarbital in mice and rats was investigated following exposure to 0.3 ppm of ozone for 3.75 hr. Young animals were 2.5 months of age and the mature were 18 months. The pentobarbital sleeping time was significantly prolonged following the ozone exposure in both the mice and rats when compared with an air control. No ozone effect on sleeping time was found in the young animals. The results indicate that there may be an age-related sensitivity to the occurrence of ozone-related inhibition of pentobarbital metabolism.

  1. THE ROLE OF THE MAGNETOROTATIONAL INSTABILITY IN MASSIVE STARS

    SciTech Connect (OSTI)

    Wheeler, J. Craig; Kagan, Daniel; Chatzopoulos, Emmanouil

    2015-01-20

    The magnetorotational instability (MRI) is key to physics in accretion disks and is widely considered to play some role in massive star core collapse. Models of rotating massive stars naturally develop very strong shear at composition boundaries, a necessary condition for MRI instability, and the MRI is subject to triply diffusive destabilizing effects in radiative regions. We have used the MESA stellar evolution code to compute magnetic effects due to the Spruit-Tayler (ST) mechanism and the MRI, separately and together, in a sample of massive star models. We find that the MRI can be active in the later stages of massive star evolution, leading to mixing effects that are not captured in models that neglect the MRI. The MRI and related magnetorotational effects can move models of given zero-age main sequence mass across ''boundaries'' from degenerate CO cores to degenerate O/Ne/Mg cores and from degenerate O/Ne/Mg cores to iron cores, thus affecting the final evolution and the physics of core collapse. The MRI acting alone can slow the rotation of the inner core in general agreement with the observed ''initial'' rotation rates of pulsars. The MRI analysis suggests that localized fields ?10{sup 12} G may exist at the boundary of the iron core. With both the ST and MRI mechanisms active in the 20 M {sub ?} model, we find that the helium shell mixes entirely out into the envelope. Enhanced mixing could yield a population of yellow or even blue supergiant supernova progenitors that would not be standard SN IIP.

  2. Ultrafast Optical Microscopy of Single Monolayer Molybdenum Disulfide Flakes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seo, Minah; Yamaguchi, Hisato; Mohite, Aditya D.; Boubanga-Tombet, Stephane; Blancon, Jean-Christophe; Najmaei, Sina; Ajayan, Pulickel M.; Lou, Jun; Taylor, Antoinette J.; Prasankumar, Rohit P.

    2016-02-15

    We performed ultrafast optical microscopy on single flakes of atomically thin CVD-grown molybdenum disulfide, using non-degenerate femtosecond pump-probe spectroscopy to excite and probe carriers above and below the indirect and direct band gaps. These measurements reveal the influence of layer thickness on carrier dynamics when probing near the band gap. Furthermore, fluence-dependent measurements indicate that carrier relaxation is primarily influenced by surface-related defect and trap states after above-bandgap photoexcitation. Furthermore, the ability to probe femtosecond carrier dynamics in individual flakes can thus give much insight into light-matter interactions in these two-dimensional nanosystems.

  3. Thermal Variation of Ce Valence in Mixed ValenceKondo Lattice Systems CeT2(Si1-xGex)2 with T= Mn and Ni

    SciTech Connect (OSTI)

    Liang,G.; Croft, M.

    2008-01-01

    The results on the thermal variation of Ce L3-valence in CeT2(Si1-xGex)2 series with 0{le}x{le}1 and T=Mn and Ni are reported. It is observed that for both series, the Ce valence increases with decreasing temperature and has little thermal variation for samples in the nearly trivalent regime. The magnitude of this thermal variation in the T=Mn series is much greater than in the T=Ni series. The results are explained by the degenerate Anderson model and correlated with the specific heat data.

  4. Optical absorption in B{sub 13} cluster: A time-dependent density functional approach

    SciTech Connect (OSTI)

    Shinde, Ravindra; Tayade, Meenakshi

    2013-02-05

    The linear optical absorption spectra of three isomers of planar boron cluster B{sub 13} are calculated using time-dependent spin-polarized density functional approach. The geometries of these cluster are optimized at the B3LYP/6-311+G* level of theory. Even though the isomers are almost degenerate, the calculated spectra are quite different, indicating a strong structure-property relationship. Therefore, these computed spectra can be used in the photo-absorption experiments to distinguish between different isomers of a cluster.

  5. An atomic magnetometer with autonomous frequency stabilization and large dynamic range

    SciTech Connect (OSTI)

    Pradhan, S. E-mail: pradhans75@gmail.com; Poornima,; Dasgupta, K.; Mishra, S.; Behera, R.

    2015-06-15

    The operation of a highly sensitive atomic magnetometer using elliptically polarized resonant light is demonstrated. It is based on measurement of zero magnetic field resonance in degenerate two level systems using polarimetric detection. The transmitted light through the polarimeter is used for laser frequency stabilization, whereas reflected light is used for magnetic field measurement. Thus, the experimental geometry allows autonomous frequency stabilization of the laser frequency leading to compact operation of the overall device and has a preliminary sensitivity of <10 pT/Hz{sup 1/2} @ 1 Hz. Additionally, the dynamic range of the device is improved by feedback controlling the bias magnetic field without compromising on its sensitivity.

  6. Jeans stability in collisional quantum dusty magnetoplasmas

    SciTech Connect (OSTI)

    Jamil, M.; Asif, M.; Mir, Zahid; Salimullah, M.

    2014-09-15

    Jeans instability is examined in detail in uniform dusty magnetoplasmas taking care of collisional and non-zero finite thermal effects in addition to the quantum characteristics arising through the Bohm potential and the Fermi degenerate pressure using the quantum hydrodynamic model of plasmas. It is found that the presence of the dust-lower-hybrid wave, collisional effects of plasma species, thermal effects of electrons, and the quantum mechanical effects of electrons have significance over the Jeans instability. Here, we have pointed out a new class of dissipative instability in quantum plasma regime.

  7. Flavor diagonal and off-diagonal susceptibilities in a quasiparticle model of the quark-gluon plasma

    SciTech Connect (OSTI)

    Bluhm, M.; Kaempfer, B.

    2008-06-01

    The Taylor coefficients of flavor diagonal and off-diagonal susceptibilities as well as baryon number, isovector, and electric charge susceptibilities are considered within a phenomenological quasiparticle model of the quark-gluon plasma and successfully compared with available lattice QCD data up to fourth-order for two degenerate quark flavors. These susceptibility coefficients represent sensible probes of baryon-density effects in the equation of state. The baryon charge is carried, in our model, by quark-quasiparticle excitations for hard momenta.

  8. Reconfigurable site-selective manipulation of atomic quantum systems in two-dimensional arrays of dipole traps

    SciTech Connect (OSTI)

    Kruse, J.; Gierl, C.; Schlosser, M.; Birkl, G.

    2010-06-15

    We trap atoms in versatile two-dimensional (2D) arrays of optical potentials, prepare flexible 2D spin configurations, perform site-selective coherent manipulation, and demonstrate the implementation of simultaneous measurements of different system properties, such as dephasing and decoherence. This approach for the flexible manipulation of atomic quantum systems is based on the combination of 2D arrays of microlenses and 2D arrays of liquid crystal light modulators. This offers extended types of control for the investigation of quantum degenerate gases, quantum information processing, and quantum simulations.

  9. A self-injected, diode-pumped, solid-state ring laser for laser cooling of Li atoms

    SciTech Connect (OSTI)

    Miake, Yudai; Mukaiyama, Takashi; OHara, Kenneth M.; Gensemer, Stephen

    2015-04-15

    We have constructed a solid-state light source for experiments with laser cooled lithium atoms based on a Nd:Y V O{sub 4} ring laser with second-harmonic generation. Unidirectional lasing, an improved mode selection, and a high output power of the ring laser were achieved by weak coupling to an external cavity which contained the lossy elements required for single frequency operation. Continuous frequency tuning is accomplished by controlling two piezoelectric transducers (PZTs) in the internal and the external cavities simultaneously. The light source has been utilized to trap and cool fermionic lithium atoms into the quantum degenerate regime.

  10. Liposome-encapsulated actinomycin for cancer chemotherapy

    DOE Patents [OSTI]

    Rahman, Yueh-Erh; Cerny, Elizabeth A.

    1976-01-01

    An improved method is provided for chemotherapy of malignant tumors by injection of antitumor drugs. The antitumor drug is encapsulated within liposomes and the liposomes containing the encapsulated drug are injected into the body. The encapsulated drug penetrates into the tumor cells where the drug is slowly released and induces degeneration and death of the tumor cells, while any toxicity to the host body is reduced. Liposome encapsulation of actinomycin D has been found to be particularly effective in treating cancerous abdominal tumors, while drastically reducing the toxicity of actinomycin D to the host.

  11. Successive phase transitions and kink solutions in Φ⁸, Φ¹⁰, and

    Office of Scientific and Technical Information (OSTI)

    Φ¹² field theories (Journal Article) | SciTech Connect Successive phase transitions and kink solutions in Φ⁸, Φ¹⁰, and Φ¹² field theories Citation Details In-Document Search Title: Successive phase transitions and kink solutions in Φ⁸, Φ¹⁰, and Φ¹² field theories We obtain exact solutions for kinks in Φ⁸, Φ¹⁰, and Φ¹² field theories with degenerate minima, which can describe a second-order phase transition followed by a first-order one, a succession of two

  12. Pressurized-water reactor internals aging degradation study. Phase 1

    SciTech Connect (OSTI)

    Luk, K.H.

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pins and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.

  13. Recommendations for the treatment of aging in standard technical specifications

    SciTech Connect (OSTI)

    Orton, R.D.; Allen, R.P.

    1995-09-01

    As part of the US Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program, Pacific Northwest Laboratory (PNL) evaluated the standard technical specifications for nuclear power plants to determine whether the current surveillance requirements (SRs) were effective in detecting age-related degradation. Nuclear Plant Aging Research findings for selected systems and components were reviewed to identify the stressors and operative aging mechanisms and to evaluate the methods available to detect, differentiate, and trend the resulting aging degradation. Current surveillance and testing requirements for these systems and components were reviewed for their effectiveness in detecting degraded conditions and for potential contributions to premature degradation. When the current surveillance and testing requirements appeared ineffective in detecting aging degradation or potentially could contribute to premature degradation, a possible deficiency in the SRs was identified that could result in undetected degradation. Based on this evaluation, PNL developed recommendations for inspection, surveillance, trending, and condition monitoring methods to be incorporated in the SRs to better detect age- related degradation of these selected systems and components.

  14. Outrunning major weight gain: a prospective study of 8,340consistent runners during 7 years of follow-up

    SciTech Connect (OSTI)

    Williams, Paul T.

    2006-01-06

    Background: Body weight increases with aging. Short-term,longitudinal exercise training studies suggest that increasing exerciseproduces acute weight loss, but it is not clear if the maintenance oflong-term, vigorous exercise attenuates age-related weight gain inproportion to the exercise dose. Methods: Prospective study of 6,119 maleand 2,221 female runners whose running distance changed less than 5 km/wkbetween their baseline and follow-up survey 7 years later. Results: Onaverage, men who ran modest (0-24 km/wk), intermediate (24-48 km/wk) orprolonged distances (>_48 km/wk) all gained weight throughage 64,however, those who ran ?48 km/wk had one-half the average annual weightgain of those who ran<24 km/wk. Age-related weight gain, and itsreduction by running, were both greater in younger than older men. Incontrast, men s gain in waist circumference with age, and its reductionby running, were the same in older and younger men. Women increased theirbody weight and waist and hip circumferences over time, regardless ofage, which was also reduced in proportion to running distance. In bothsexes, running did not attenuate weight gain uniformly, but ratherdisproportionately prevented more extreme increases. Conclusion: Men andwomen who remain vigorously active gain less weight as they age and thereduction is in proportion to the exercise dose.

  15. Correlation between the electronic structures and diffusion paths of interstitial defects in semiconductors: The case in CdTe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; Wei, Su-Huai

    2014-10-30

    Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under Td symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect statemore » is the degenerated p-like state under Td symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.« less

  16. Theoretical studies of high-order harmonic generation: Effects of symmetry, degeneracy, and orientation

    SciTech Connect (OSTI)

    Madsen, C. B.; Madsen, L. B.

    2007-10-15

    Using a quantum-mechanical three-step model, we present numerical calculations of the high-order harmonic generation from four polyatomic molecules. Ethylene (C{sub 2}H{sub 4}) serves as an example where orbital symmetry directly affects the harmonic yield. We treat the case of methane (CH{sub 4}) to address the high-order harmonic generation resulting from a molecule with degenerate orbitals. To this end we illustrate how the single-orbital contributions show up in the total high-order harmonic signal. This example illustrates the importance of adding coherently the amplitude contributions from the individual degenerate orbitals. Finally, we study the high-order harmonic generation from propane (C{sub 3}H{sub 8}) and butane (C{sub 4}H{sub 10}). These two molecules, being extended and far from spherical in structure, produce harmonics with nontrivial orientational dependencies. In particular, propane can be oriented so that very high-frequency harmonics are favored, and thus the molecule contains prospects for the generation of uv attosecond pulses.

  17. Correlation between the electronic structures and diffusion paths of interstitial defects in semiconductors: The case in CdTe

    SciTech Connect (OSTI)

    Ma, Jie; Yang, Jihui; Da Silva, J. L.F.; Wei, Su-Huai

    2014-10-30

    Using first-principles calculations, we study the diffusions of interstitial defects Cd, Cu, Te, and Cl in CdTe. We find that the diffusion behavior is strongly correlated with the electronic structure of the interstitial diffuser. For Cd and Cu, because the defect state is the non-degenerated slike state under Td symmetry, the diffusions are almost along the [111] directions between the tetrahedral sites, although the diffusion of Cu shows some deviation due to the s - d coupling. The diffusions of the neutral and charged Cd and Cu follow similar paths. However, for Te and Cl atoms, because the defect state is the degenerated p-like state under Td symmetry, large distortions occur. Therefore, the diffusion paths are very different from those of Cd and Cu interstitials, and depend strongly on the charge states of the interstitial atoms. For Te, we find that the distortion is mostly stabilized by the crystal-field splitting, but for Cl, the exchange splitting plays a more important role.

  18. Plasma Physics Approximations in Ares

    SciTech Connect (OSTI)

    Managan, R. A.

    2015-01-08

    Lee & More derived analytic forms for the transport properties of a plasma. Many hydro-codes use their formulae for electrical and thermal conductivity. The coefficients are complex functions of Fermi-Dirac integrals, Fn( μ/θ ), the chemical potential, μ or ζ = ln(1+e μ/θ ), and the temperature, θ = kT. Since these formulae are expensive to compute, rational function approximations were fit to them. Approximations are also used to find the chemical potential, either μ or ζ . The fits use ζ as the independent variable instead of μ/θ . New fits are provided for Aα (ζ ),Aβ (ζ ), ζ, f(ζ ) = (1 + e-μ/θ)F1/2(μ/θ), F1/2'/F1/2, Fcα, and Fcβ. In each case the relative error of the fit is minimized since the functions can vary by many orders of magnitude. The new fits are designed to exactly preserve the limiting values in the non-degenerate and highly degenerate limits or as ζ→ 0 or ∞. The original fits due to Lee & More and George Zimmerman are presented for comparison.

  19. A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamaguchi, Hiroya; Badenes, Carles; Foster, Adam R.; Bravo, Eduardo; Williams, Brian J.; Maeda, Keiichi; Nobukawa, Masayoshi; Eriksen, Kristoffer A.; Brickhouse, Nancy S.; Petre, Robert; et al

    2015-03-12

    Despite decades of intense efforts, many fundamental aspects of Type Ia supernovae (SNe Ia) remain elusive. One of the major open questions is whether the mass of an exploding white dwarf (WD) is close to the Chandrasekhar limit. Here, we report the detection of strong K-shell emission from stable Fe-peak elements in the Suzaku X-ray spectrum of the Type Ia supernova remnant (SNR) 3C 397. The high Ni/Fe and Mn/Fe mass ratios (0.11–0.24 and 0.018–0.033, respectively) in the hot plasma component that dominates the K-shell emission lines indicate a degree of neutronization in the supernova ejecta that can only bemore » achieved by electron capture in the dense cores of exploding WDs with a near-Chandrasekhar mass. This suggests a single-degenerate origin for 3C 397, since Chandrasekhar mass progenitors are expected naturally if the WD accretes mass slowly from a companion. Altogether with other results supporting the double-degenerate scenario, our work adds to the mounting evidence that both progenitor channels make a significant contribution to the SN Ia rate in star-forming galaxies.« less

  20. The classification of magnetohydrodynamic regimes of thermonuclear combustion

    SciTech Connect (OSTI)

    Remming, Ian S. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Khokhlov, Alexei M. [Department of Astronomy and Astrophysics, the Enrico Fermi Institute, and the Computational Institute, The University of Chicago, Chicago, IL 60637 (United States)

    2014-10-10

    Physical properties of magnetohydrodynamic (MHD) reaction fronts are studied as functions of the thermodynamic conditions, and the strength and orientation of the magnetic field in the unburned matter through which the fronts propagate. We determine the conditions for the existence of the various types of MHD reaction fronts and the character of the changes in physical quantities across these reaction fronts. The analysis is carried out in general for a perfect gas equation of state and a constant energy release, and then extended to thermonuclear reaction fronts in degenerate carbon-oxygen mixtures and degenerate helium in conditions typical of Type Ia supernova explosions. We find that as unburned matter enters perpendicular to a reaction front, the release of energy through burning generates shear velocity in the reacting gas that, depending on the type of reaction front, strengthens or weakens the magnetic field. In addition, we find that the steady-state propagation of a reaction front is impossible for certain ranges of magnetic field direction. Our results provide insight into the phenomena of MHD thermonuclear combustion that is relevant to the interpretation of future simulations of SN Ia explosions that have magnetic fields systematically incorporated.

  1. PT-symmetric sinusoidal optical lattices at the symmetry-breaking threshold

    SciTech Connect (OSTI)

    Graefe, Eva-Maria [Mathematics Department, Imperial College, London SW7 2BZ (United Kingdom); Jones, H. F. [Physics Department, Imperial College, London SW7 2BZ (United Kingdom)

    2011-07-15

    The PT-symmetric potential V{sub 0}[cos(2{pi}x/a)+i{lambda}sin(2{pi}x/a)] has a completely real spectrum for {lambda}{<=}1 and begins to develop complex eigenvalues for {lambda}>1. At the symmetry-breaking threshold {lambda}=1 some of the eigenvectors become degenerate, giving rise to a Jordan-block structure for each degenerate eigenvector. In general this is expected to result in a secular growth in the amplitude of the wave. However, it has been shown in a recent paper by Longhi, by numerical simulation and by the use of perturbation theory, that for a broad initial wave packet this growth is suppressed, and instead a saturation leading to a constant maximum amplitude is observed. We revisit this problem by explicitly constructing the Bloch wave functions and the associated Jordan functions and using the method of stationary states to find the dependence on the longitudinal distance z for a variety of different initial wave packets. This allows us to show in detail how the saturation of the linear growth arises from the close connection between the contributions of the Jordan functions and those of the neighboring Bloch waves.

  2. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    SciTech Connect (OSTI)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  3. Successive phase transitions and kink solutions in Φ⁸, Φ¹⁰, and Φ¹² field theories

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khare, Avinash; Christov, Ivan C.; Saxena, Avadh

    2014-08-27

    We obtain exact solutions for kinks in Φ⁸, Φ¹⁰, and Φ¹² field theories with degenerate minima, which can describe a second-order phase transition followed by a first-order one, a succession of two first-order phase transitions and a second-order phase transition followed by two first-order phase transitions, respectively. Such phase transitions are known to occur in ferroelastic and ferroelectric crystals and in meson physics. In particular, we find that the higher-order field theories have kink solutions with algebraically-decaying tails and also asymmetric cases with mixed exponential-algebraic tail decay, unlike the lower-order Φ⁴ and Φ⁶ theories. Additionally, we construct distinct kinks withmore » equal energies in all three field theories considered, and we show the co-existence of up to three distinct kinks (for a Φ¹² potential with six degenerate minima). We also summarize phonon dispersion relations for these systems, showing that the higher-order field theories have specific cases in which only nonlinear phonons are allowed. For the Φ¹⁰ field theory, which is a quasi-exactly solvable (QES) model akin to Φ⁶, we are also able to obtain three analytical solutions for the classical free energy as well as the probability distribution function in the thermodynamic limit.« less

  4. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOE Patents [OSTI]

    Weier, H.U.G.; Gray, J.W.

    1995-06-27

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.

  5. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOE Patents [OSTI]

    Weier, Heinz-Ulrich G. (Tracy, CA); Gray, Joe W. (San Francisco, CA)

    1995-01-01

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.

  6. Structural Basis of Preexisting Immunity to the 2009 H1N1 Pandemic Influenza Virus

    SciTech Connect (OSTI)

    Xu, Rui; Ekiert, Damian C.; Krause, Jens C.; Hai, Rong; Crowe, Jr., James E.; Wilson, Ian A.

    2010-05-25

    The 2009 H1N1 swine flu is the first influenza pandemic in decades. The crystal structure of the hemagglutinin from the A/California/04/2009 H1N1 virus shows that its antigenic structure, particularly within the Sa antigenic site, is extremely similar to those of human H1N1 viruses circulating early in the 20th century. The cocrystal structure of the 1918 hemagglutinin with 2D1, an antibody from a survivor of the 1918 Spanish flu that neutralizes both 1918 and 2009 H1N1 viruses, reveals an epitope that is conserved in both pandemic viruses. Thus, antigenic similarity between the 2009 and 1918-like viruses provides an explanation for the age-related immunity to the current influenza pandemic.

  7. Aging Management Guideline for commercial nuclear power plants: Battery chargers, inverters and uninterruptible power supplies. Final report

    SciTech Connect (OSTI)

    Berg, R.; Stroinski, M.; Giachetti, R.

    1994-02-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant battery chargers, inverters and uninterruptible power supplies important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already, experienced) and aging management program activities to the more generic results and recommendations presented herein.

  8. KINEMATICS OF CLASSICAL CEPHEIDS IN THE NUCLEAR STELLAR DISK

    SciTech Connect (OSTI)

    Matsunaga, Noriyuki; Fukue, Kei; Yamamoto, Ryo; Kobayashi, Naoto; Hamano, Satoshi; Inno, Laura; Genovali, Katia; Bono, Giuseppe; Baba, Junichi; Fujii, Michiko S.; Aoki, Wako; Tsujimoto, Takuji; Kondo, Sohei; Ikeda, Yuji; Nishiyama, Shogo; Nagata, Tetsuya

    2015-01-20

    Classical Cepheids are useful tracers of the Galactic young stellar population because their distances and ages can be determined from their period-luminosity and period-age relations. In addition, the radial velocities and chemical abundance of the Cepheids can be derived from spectroscopic observations, providing further insights into the structure and evolution of the Galaxy. Here, we report the radial velocities of classical Cepheids near the Galactic center, three of which were reported in 2011 and a fourth being reported for the first time. The velocities of these Cepheids suggest that the stars orbit within the nuclear stellar disk, a group of stars and interstellar matter occupying a region of ?200pc around the center, although the three-dimensional velocities cannot be determined until the proper motions are known. According to our simulation, these four Cepheids formed within the nuclear stellar disk like younger stars and stellar clusters therein.

  9. Aging management guideline for commercial nuclear power plants-pumps

    SciTech Connect (OSTI)

    Booker, S.; Katz, D.; Daavettila, N.; Lehnert, D.

    1994-03-01

    This Aging Management Guideline (AMG) describes recommended methods for effective detection and mitigation of age-related degradation mechanisms in BWR and PWR commercial nuclear power plant pumps important to license renewal. The intent of this AMG is to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner that allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  10. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  11. A Procedure for Determination of Degradation Acceptance Criteria for Structures and Passive Components in Nuclear Power Plants

    SciTech Connect (OSTI)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y-S.; Hahm, D.; Choi, I-K.

    2012-01-30

    The Korea Atomic Energy Research Institute (KAERI) has been collaborating with Brookhaven National Laboratory since 2007 to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). This collaboration program aims at providing technical support to a five-year KAERI research project, which includes three specific areas that are essential to seismic probabilistic risk assessment: (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. The understanding and assessment of age-related degradations of structures, systems, and components and their impact on plant safety is the major goal of this KAERI-BNL collaboration. Four annual reports have been published before this report as a result of the collaboration research.

  12. Aging of nuclear station diesel generators: Evaluation of operating and expert experience: Phase 1, Study

    SciTech Connect (OSTI)

    Hoopingarner, K.R.; Vause, J.W.; Dingee, D.A.; Nesbitt, J.F.

    1987-08-01

    Pacific Northwest Laboratory evaluated operational and expert experience pertaining to the aging degradation of diesel generators in nuclear service. The research, sponsored by the US Nuclear Regulatory Commission (NRC), identified and characterized the contribution of aging to emergency diesel generator failures. This report, Volume I, reviews diesel-generator experience to identify the systems and components most subject to aging degradation and isolates the major causes of failure that may affect future operational readiness. Evaluations show that as plants age, the percent of aging-related failures increases and failure modes change. A compilation is presented of recommended corrective actions for the failures identified. This study also includes a review of current, relevant industry programs, research, and standards. Volume II reports the results of an industry-wide workshop held on May 28 and 29, 1986 to discuss the technical issues associated with aging of nuclear service emergency diesel generators.

  13. 10 CFR 830 Major Modification Determination for Emergency Firewater Injection System Replacement

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-05-01

    The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent sub-projects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the fifty year old antiquated marine diesels with commercial power that is backed with safety-related emergency diesel generators (EDGs), switchgear, and uninterruptible power supply. The second project will replace the four, obsolete, original primary coolant pumps and motors. The third project, the subject of this major modification determination, will replace the current emergency firewater injection system (EFIS). The replacement water injection system will function as the primary emergency water injection system with the EFIS being retained as a defense-in-depth backup. Completion of this and the two other age-related projects (replacement of the ATR diesel bus (E-3) and switchgear and replacement of the existent aged primary coolant pumps and motors) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  14. Evidence for charge Kondo effect in superconducting Tl-doped PbTe

    SciTech Connect (OSTI)

    Fisher, I

    2010-01-11

    We report results of low-temperature thermodynamic and transport measurements of Pb{sub 1-x}Tl{sub x}Te single crystals for Tl concentrations up to the solubility limit of approximately x = 1.5%. For all doped samples, we observe a low-temperature resistivity upturn that scales in magnitude with the Tl concentration. The temperature and field dependence of this upturn are consistent with a charge Kondo effect involving degenerate Tl valence states differing by two electrons, with a characteristic Kondo temperature T{sub K} {approx} 6 K. The observation of such an effect supports an electronic pairing mechanism for superconductivity in this material and may account for the anomalously high T{sub c} values.

  15. A braided monoidal category for free super-bosons

    SciTech Connect (OSTI)

    Runkel, Ingo

    2014-04-15

    The chiral conformal field theory of free super-bosons is generated by weight one currents whose mode algebra is the affinisation of an abelian Lie super-algebra h with non-degenerate super-symmetric pairing. The mode algebras of a single free boson and of a single pair of symplectic fermions arise for even|odd dimension 1|0 and 0|2 of h, respectively. In this paper, the representations of the untwisted mode algebra of free super-bosons are equipped with a tensor product, a braiding, and an associator. In the symplectic fermion case, i.e., if h is purely odd, the braided monoidal structure is extended to representations of the Z/2Z-twisted mode algebra. The tensor product is obtained by computing spaces of vertex operators. The braiding and associator are determined by explicit calculations from three- and four-point conformal blocks.

  16. Electrical resistivity as quantum chaos

    SciTech Connect (OSTI)

    Laughlin, R.B.

    1987-08-01

    The physics of quantum transport is re-examined as a problem in quantum chaos. It is proposed that the ''random potential'' in which electrons in dirty metals move is not random at all, but rather any potential inducing the electron motion to be chaotic. The Liapunov characteristic exponent of classical electron motion in this potential is identified with the collision rate l/tau appearing in Ohm's law. A field theory for chaotic systems, analogous to that used to describe dirty metals, is developed and used to investigate the quantum Sinai billiard problem. It is shown that a noninteracting degenerate electron gas moving in this potential exhibits Drude conductivity in the limit h-bar ..-->.. 0. 15 refs., 4 figs.

  17. Spatial correlation of photon pairs produced in spontaneous parametric down-conversion

    SciTech Connect (OSTI)

    Procopio, L. M. [Departamento de Fisica, Cinvestav, A.P. 14-740, Mexico D.F. 07000 (Mexico); Rosas-Ortiz, O. [Departamento de Fisica, Cinvestav, A.P. 14-740, Mexico D.F. 07000 (Mexico); Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, Mexico D.F. 01000 (Mexico); Velazquez, V. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, A.P. 20-364, Mexico D.F. 04510 (Mexico)

    2010-10-11

    We report the observation of spatial biphoton correlation in spontaneous parametric down conversion. The optical bench includes a type-I BBO crystal of effective length 2 mm, pumped by a 100 mW violet laser diode centered at 405.38 nm. Photon pairs are created with degenerate wavelength {approx_equal}810.76 nm. Once the horizontal counting rates have been measured, a simple geometrical recipe is shown to be useful in calculating bounds for the width of vertical counting rates. The spatial correlation between idler and signal photons is illustrated with a coincidence distribution of the coordinate pair (x{sub s},x{sub i}), with x{sub i,s} the idler (signal) detector position in horizontal scan.

  18. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Ourmore » findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.« less

  19. Evaluation of Novel Design Strategies for Developing Zinc Finger Nucleases Tools for Treating Human Diseases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bach, Christian; Sherman, William; Pallis, Jani; Patra, Prabir; Bajwa, Hassan

    2014-01-01

    Zinc finger nucleases (ZFNs) are associated with cell death and apoptosis by binding at countless undesired locations. This cytotoxicity is associated with the binding ability of engineered zinc finger domains to bind dissimilar DNA sequences with high affinity. In general, binding preferences of transcription factors are associated with significant degenerated diversity and complexity which convolutes the design and engineering of precise DNA binding domains. Evolutionary success of natural zinc finger proteins, however, evinces that nature created specific evolutionary traits and strategies, such as modularity and rank-specific recognition to cope with binding complexity that are critical for creating clinical viable toolsmore » to precisely modify the human genome. Our findings indicate preservation of general modularity and significant alteration of the rank-specific binding preferences of the three-finger binding domain of transcription factor SP1 when exchanging amino acids in the 2nd finger.« less

  20. Multiplex coherent raman spectroscopy detector and method

    DOE Patents [OSTI]

    Chen, Peter; Joyner, Candace C.; Patrick, Sheena T.; Guyer, Dean R.

    2004-06-08

    A multiplex coherent Raman spectrometer (10) and spectroscopy method rapidly detects and identifies individual components of a chemical mixture separated by a separation technique, such as gas chromatography. The spectrometer (10) and method accurately identify a variety of compounds because they produce the entire gas phase vibrational Raman spectrum of the unknown gas. This is accomplished by tilting a Raman cell (20) to produce a high-intensity, backward-stimulated, coherent Raman beam of 683 nm, which drives a degenerate optical parametric oscillator (28) to produce a broadband beam of 1100-1700 nm covering a range of more than 3000 wavenumber. This broadband beam is combined with a narrowband beam of 532 nm having a bandwidth of 0.003 wavenumbers and focused into a heated windowless cell (38) that receives gases separated by a gas chromatograph (40). The Raman radiation scattered from these gases is filtered and sent to a monochromator (50) with multichannel detection.

  1. New ways to leptogenesis with gauged B-L symmetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Babu, K.S.; Meng, Yanzhi; Tavartkiladze, Zurab

    2009-10-01

    We show that in supersymmetric models with gauged B-L symmetry, there is a new source for cosmological lepton asymmetry. The Higgs bosons responsible for B-L gauge symmetry breaking decay dominantly into right-handed sneutrinos N~ and N~* producing an asymmetry in N~ over N~*. This can be fully converted into ordinary lepton asymmetry in the decays of N~. In simple models with gauged B-L symmetry we show that resonant/soft leptogenesis is naturally realized. Supersymmetry guarantees quasi-degenerate scalar states, while soft breaking of SUSY provides the needed CP violation. Acceptable values of baryon asymmetry are obtained without causing serious problems with gravitinomore »abundance.« less

  2. Stable highly conductive ZnO via reduction of Zn vacancies

    SciTech Connect (OSTI)

    Look, David C.; Droubay, Timothy C.; Chambers, Scott A.

    2012-09-04

    Growth of Ga-doped ZnO by pulsed laser deposition at 200 ?C in an ambient of Ar and H2 produces a resistivity ? of ~ 1.5 x 10-4 ?-cm, stable to 500 ?C. Annealing on Zn foil reduces ? to ~ 1.2 x 10-4 ?-cm, one of the lowest values ever reported. The key is reducing the Zn-vacancy acceptor concentration NA to 5 x 1019, only 3% of the Ga-donor concentration ND of 1.6 x 1021 cm-3, with ND and NA determined from a degenerate mobility theory. The plasmonic wavelength is 1060 nm, further bridging the gap between metals and semiconductors.

  3. Violation of unitarity by Hawking radiation does not violate energy-momentum conservation

    SciTech Connect (OSTI)

    Nikolić, Hrvoje

    2015-04-02

    An argument by Banks, Susskind and Peskin (BSP), according to which violation of unitarity would violate either locality or energy-momentum conservation, is widely believed to be a strong argument against non-unitarity of Hawking radiation. We find that the whole BSP argument rests on the crucial assumption that the Hamiltonian is not highly degenerate, and point out that this assumption is not satisfied for systems with many degrees of freedom. Using Lindblad equation, we show that high degeneracy of the Hamiltonian allows local non-unitary evolution without violating energy-momentum conservation. Moreover, since energy-momentum is the source of gravity, we argue that energy-momentum is necessarily conserved for a large class of non-unitary systems with gravity. Finally, we explicitly calculate the Lindblad operators for non-unitary Hawking radiation and show that they conserve energy-momentum.

  4. Hexadecapolar Colloids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Becausemore » of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.« less

  5. Memory-bit selection and recording by rotating fields in vortex-core cross-point architecture

    SciTech Connect (OSTI)

    Yu, Y. -S.; Jung, H.; Lee, K. -S.; Fischer, P.; Kim, S. -K.

    2010-10-21

    In one of our earlier studies [Appl. Phys. Lett. 92, 022509 (2008)], we proposed a concept of robust information storage, recording and readout, which can be implementaed in nonvolatile magnetic random-access memories and is based on the energetically degenerated twofold ground states of vortex-core magnetizations. In the present study, we experimentally demonstrate reliable memory-bit selection and information recording in vortex-core cross-point architecture, specifically using a two-by-two vortex-state disk array. In order to efficiently switch a vortex core positioned at the intersection of crossed electrodes, two orthogonal addressing electrodes are selected, and then two Gaussian pulse currents of optimal pulse width and time delay are applied. Such tailored pulse-type rotating magnetic fields which occurs only at the selected intersection is prerequisite for a reliable memory-bit selection and low-power-consumption recording of information in the existing cross-point architecture.

  6. Metal liner-driven quasi-isentropic compression of deuterium

    SciTech Connect (OSTI)

    Weinwurm, Marcus; Bland, Simon N.; Chittenden, Jeremy P.

    2013-09-15

    Properties of degenerate hydrogen and deuterium (D) at pressures of the order of terapascals are of key interest to Planetary Science and Inertial Confinement Fusion. In order to recreate these conditions in the laboratory, we present a scheme, where a metal liner drives a cylindrically convergent quasi-isentropic compression in a D fill. We first determined an external pressure history for driving a self-similar implosion of a D shell from a fictitious flow simulation [D. S. Clark and M. Tabak, Nucl. Fusion 47, 1147 (2007)]. Then, it is shown that this D implosion can be recreated inside a beryllium liner by shaping the current pulse. For a peak current of 10.8 MA cold and nearly isochoric D is assembled at around 12 500 kg/m{sup 3}. Finally, our two-dimensional Gorgon simulations show the robustness of the implosion method to the magneto-Rayleigh-Taylor instability when using a sufficiently thick liner.

  7. A comparison of parametric decay of oblique Langmuir wave in high and low density magneto-plasmas

    SciTech Connect (OSTI)

    Shahid, M.; Hussain, A.; Department of Physics, Government College University, Lahore-54000 ; Murtaza, G.

    2013-09-15

    The parametric decay instability of an obliquely propagating Langmuir wave into the low-frequency electromagnetic shear Alfven wave and the Left-Handed Circularly Polarized wave has been investigated in an electron-ion plasma, immersed in a uniform external magnetic field. Quantum magneto-hydrodynamic model has been used to find the linear and non-linear response of a high density quantum magneto-plasma. Going to the classical limit (??0) retrieves the results for low density classical plasma. Nonlinear dispersion relations and growth rates are derived with analytically and numerically. It is observed that growth rate in the high density degenerate magneto-plasma increases exponentially, while in the low density classical case it increases logarithmically.

  8. Air stable n-doping of WSe{sub 2} by silicon nitride thin films with tunable fixed charge density

    SciTech Connect (OSTI)

    Chen, Kevin; Kiriya, Daisuke; Hettick, Mark; Tosun, Mahmut; Ha, Tae-Jun; Madhvapathy, Surabhi Rao; Desai, Sujay; Sachid, Angada; Javey, Ali

    2014-09-01

    Stable n-doping of WSe{sub 2} using thin films of SiN{sub x} deposited on the surface via plasma-enhanced chemical vapor deposition is presented. Positive fixed charge centers inside SiN{sub x} act to dope WSe{sub 2} thin flakes n-type via field-induced effect. The electron concentration in WSe{sub 2} can be well controlled up to the degenerate limit by simply adjusting the stoichiometry of the SiN{sub x} through deposition process parameters. For the high doping limit, the Schottky barrier width at the metal/WSe{sub 2} junction is significantly thinned, allowing for efficient electron injection via tunneling. Using this doping scheme, we demonstrate air-stable WSe{sub 2} n-MOSFETs with a mobility of ?70 cm{sup 2}/V?s.

  9. Quantum Monte Carlo by message passing

    SciTech Connect (OSTI)

    Bonca, J.; Gubernatis, J.E.

    1993-01-01

    We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green's function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.

  10. Quantum Monte Carlo by message passing

    SciTech Connect (OSTI)

    Bonca, J.; Gubernatis, J.E.

    1993-05-01

    We summarize results of quantum Monte Carlo simulations of the degenerate single-impurity Anderson model using the impurity algorithm of Hirsch and Fye. Using methods of Bayesian statistical inference, coupled with the principle of maximum entropy, we extracted the single-particle spectral density from the imaginary-time Green`s function. The variations of resulting spectral densities with model parameters agree qualitatively with the spectral densities predicted by NCA calculations. All the simulations were performed on a cluster of 16 IBM R6000/560 workstations under the control of the message-passing software PVM. We described the trivial parallelization of our quantum Monte Carlo code both for the cluster and the CM-5 computer. Other issues for effective parallelization of the impurity algorithm are also discussed.

  11. Rayleigh approximation to ground state of the Bose and Coulomb glasses

    SciTech Connect (OSTI)

    Ryan, S. D.; Mityushev, V.; Vinokur, V. M.; Berlyand, L.

    2015-01-16

    Glasses are rigid systems in which competing interactions prevent simultaneous minimization of local energies. This leads to frustration and highly degenerate ground states the nature and properties of which are still far from being thoroughly understood. We report an analytical approach based on the method of functional equations that allows us to construct the Rayleigh approximation to the ground state of a two-dimensional (2D) random Coulomb system with logarithmic interactions. We realize a model for 2D Coulomb glass as a cylindrical type II superconductor containing randomly located columnar defects (CD) which trap superconducting vortices induced by applied magnetic field. Our findings break ground for analytical studies of glassy systems, marking an important step towards understanding their properties.

  12. Spin current formation at the graphene/Pt interface for magnetization manipulation in magnetic nanodots

    SciTech Connect (OSTI)

    Shikin, A. M.; Rybkina, A. A.; Rybkin, A. G.; Klimovskikh, I. I.; Skirdkov, P. N.; Zvezdin, K. A.; Zvezdin, A. K.

    2014-07-28

    Spin electronic structure of the Graphene/Pt interface has been investigated. A large induced spin-orbit splitting (∼80 meV) of graphene π states with formation of non-degenerated Dirac-cone spin states at the K{sup ¯}-point of the Brillouin zone crossed with spin-polarized Pt 5d states at Fermi level was found. We show that this spin structure can be used as a spin current source in spintronic devices. By theoretical estimations and micromagnetic modeling based on the experimentally observed spin-orbit splitting, we demonstarte that the induced intrinsic magnetic field in such structure might be effectively used for induced remagnetization of the (Ni-Fe)-nanodots arranged atop the interface.

  13. Measurement of charged-particle stopping in warm-dense plasma

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zylstra, A.  B.; Frenje, J.  A.; Grabowski, P. E.; Li, C.  K.; Collins, G.  W.; Fitzsimmons, P.; Glenzer, S.; Graziani, F.; Hansen, S.  B.; Hu, S. X.; et al

    2015-05-27

    We measured the stopping of energetic protons in an isochorically-heated solid-density Be plasma with an electron temperature of ~32 eV, corresponding to moderately-coupled [(e²/a/(kBTe + EF ) ~ 0.3] and moderately-degenerate [kBTe/EF ~2] 'warm dense matter' (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad-hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories inmore » WDM plasma.« less

  14. Shortcuts to adiabaticity from linear response theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts tomore » adiabaticity for specific and very short driving times.« less

  15. Invariant relationships deriving from classical scaling transformations

    SciTech Connect (OSTI)

    Bludman, Sidney; Kennedy, Dallas C.

    2011-04-15

    Because scaling symmetries of the Euler-Lagrange equations are generally not variational symmetries of the action, they do not lead to conservation laws. Instead, an extension of Noether's theorem reduces the equations of motion to evolutionary laws that prove useful, even if the transformations are not symmetries of the equations of motion. In the case of scaling, symmetry leads to a scaling evolutionary law, a first-order equation in terms of scale invariants, linearly relating kinematic and dynamic degrees of freedom. This scaling evolutionary law appears in dynamical and in static systems. Applied to dynamical central-force systems, the scaling evolutionary equation leads to generalized virial laws, which linearly connect the kinetic and potential energies. Applied to barotropic hydrostatic spheres, the scaling evolutionary equation linearly connects the gravitational and internal energy densities. This implies well-known properties of polytropes, describing degenerate stars and chemically homogeneous nondegenerate stellar cores.

  16. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect (OSTI)

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  17. Sneaky light stop

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eifert, Till; Nachman, Benjamin

    2015-02-20

    A light supersymmetric top quark partner (stop) with a mass nearly degenerate with that of the standard model (SM) top quark can evade direct searches. The precise measurement of SM top properties such as the cross-section has been suggested to give a handle for this stealth stop scenario. We present an estimate of the potential impact a light stop may have on top quark mass measurements. The results indicate that certain light stop models may induce a bias of up to a few GeV, and that this effect can hide the shift in, and hence sensitivity from, cross-section measurements. Duemoreto the different initial states, the size of the bias is slightly different between the LHC and the Tevatron. The studies make some simplifying assumptions for the top quark measurement technique, and are based on truth-level samples.less

  18. L L

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    L L i i f f e e S S c c i i e e n n c c e e s s D D i i v v i i s s i i o o n n S S e e m m i i n n a a r r S S e e r r i i e e s s Monday, May 1, 2006 10:00 am 4500-N, Weinberg Auditorium "Single-Molecule Biophysics" Stuart Lindsay Arizona State University Tempe, Arizona CNMS D D I I S S C C O O V V E E R R Y Y SEMINAR SERIES Center for Nanophase Materials Sciences (CNMS) Abstract Structural heterogeneity, i.e., the existence of multiple nearly-degenerate conformational substrates of

  19. A stochastic model of cell survival for high-Z nanoparticle radiotherapy

    SciTech Connect (OSTI)

    Zygmanski, Piotr; Tsiamas, Panagiotis; Ngwa, Wil; Berbeco, Ross; Makrigiorgos, Mike; Hoegele, Wolfgang; Cifter, Fulya; Sajo, Erno

    2013-02-15

    Purpose: The authors present a stochastic framework for the assessment of cell survival in gold nanoparticle radiotherapy. Methods: The authors derive the equations for the effective macroscopic dose enhancement for a population of cells with nonideal distribution of gold nanoparticles (GNP), allowing different number of GNP per cell and different distances with respect to the cellular target. They use the mixed Poisson distribution formalism to model the impact of the aforementioned physical factors on the effective dose enhancement. Results: The authors show relatively large differences in the estimation of cell survival arising from using approximated formulae. They predict degeneration of the cell killing capacity due to different number of GNP per cell and different distances with respect to the cellular target. Conclusions: The presented stochastic framework can be used in interpretation of experimental cell survival or tumor control probability studies.

  20. Ab-initio modeling of electromechanical coupling at Si surfaces

    SciTech Connect (OSTI)

    Hoppe, Sandra; Mller, Stefan; Michl, Anja; Weissmller, Jrg

    2014-08-21

    The electromechanical coupling at the silicon (100) and (111) surfaces was studied via density functional theory by calculating the response of the ionization potential and the electron affinity to different types of strain. We find a branched strain response of those two quantities with different coupling coefficients for negative and positive strain values. This can be attributed to the reduced crystal symmetry due to anisotropic strain, which partially lifts the degeneracy of the valence and conduction bands. Only the Si(111) electron affinity exhibits a monotonously linear strain response, as the conduction band valleys remain degenerate under strain. The strain response of the surface dipole is linear and seems to be dominated by volume changes. Our results may help to understand the mechanisms behind electromechanical coupling at an atomic level in greater detail and for different electronic and atomic structures.

  1. Exploration of tetrahedral structures in silicate cathodes using a motif-network scheme

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhao, Xin; Wu, Shunqing; Lv, Xiaobao; Nguyen, Manh Cuong; Wang, Cai -Zhuang; Lin, Zijing; Zhu, Zi -Zhong; Ho, Kai -Ming

    2015-10-26

    Using a motif-network search scheme, we studied the tetrahedral structures of the dilithium/disodium transition metal orthosilicates A2MSiO4 with A = Li or Na and M = Mn, Fe or Co. In addition to finding all previously reported structures, we discovered many other different tetrahedral-network-based crystal structures which are highly degenerate in energy. In addition, these structures can be classified into structures with 1D, 2D and 3D M-Si-O frameworks. A clear trend of the structural preference in different systems was revealed and possible indicators that affect the structure stabilities were introduced. For the case of Na systems which have been muchmore » less investigated in the literature relative to the Li systems, we predicted their ground state structures and found evidence for the existence of new structural motifs.« less

  2. Inelastic X-ray Scattering from Shocked Liquid Deuterium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Regan, S. P.; Falk, K.; Gregori, G.; Radha, P. B.; Hu, S. X.; Boehly, T. R.; Crowley, B.; Glenzer, S. H.; Landen, O.; Gericke, D. O.; et al

    2012-12-28

    The Fermi-degenerate plasma conditions created in liquid deuterium by a laser-ablation—driven shock wave were probed with noncollective, spectrally resolved, inelastic x-ray Thomson scattering employing Cl Lyα line emission at 2.96 keV. Thus, these first x-ray Thomson scattering measurements of the microscopic properties of shocked deuterium show an inferred spatially averaged electron temperature of 8±5 eV, an electron density of 2.2(±0.5)×1023 cm-3, and an ionization of 0.8 (-0.25, +0.15). Our two-dimensional hydrodynamic simulations using equation-of-state models suited for the extreme parameters occurring in inertial confinement fusion research and planetary interiors are consistent with the experimental results.

  3. Neutralino annihilation to qqg

    SciTech Connect (OSTI)

    Barger, Vernon; Shaughnessy, Gabe; Keung, W.-Y.; Logan, Heather E.

    2006-10-01

    We compute the cross section for {chi}{chi}{yields}qqg at order {alpha}{sub s}{sup 2}/M{sub q-}t{sub ilde}{sup 6} arising from interference between the tree-level and loop-induced processes. This interference term is the same order in {alpha}{sub s} as {chi}{chi}{yields}gg; for mass degenerate squarks M{sub q-tildeR}=M{sub q-}t{sub ildeL}=M{sub q-tilde} we find v{sub rel}{sigma}{sub int}=[-2m{sub {chi}}{sup 2}/3M{sub q-tilde}{sup 2}]v{sub rel}{sigma}({chi}{chi}= {yields}gg)

  4. Transgenic rats overexpressing the human MrgX3 gene show cataracts and an abnormal skin phenotype

    SciTech Connect (OSTI)

    Kaisho, Yoshihiko . E-mail: Kaisho_Yoshihiko@takeda.co.jp; Watanabe, Takuya; Nakata, Mitsugu; Yano, Takashi; Yasuhara, Yoshitaka; Shimakawa, Kozo; Mori, Ikuo; Sakura, Yasufumi; Terao, Yasuko; Matsui, Hideki; Taketomi, Shigehisa

    2005-05-13

    The human MrgX3 gene, belonging to the mrgs/SNSRs (mass related genes/sensory neuron specific receptors) family, was overexpressed in transgenic rats using the actin promoter. Two animal lines showed cataracts with liquification/degeneration and swelling of the lens fiber cells. The transient epidermal desquamation was observed in line with higher gene expression. Histopathology of the transgenic rats showed acanthosis and focal parakeratosis. In the epidermis, there was an increase in cellular keratin 14, keratin 10, and loricrin, as well as PGP 9.5 in innervating nerve fibers. These phenotypes accompanied an increase in the number of proliferating cells. These results suggest that overexpression of the human MrgX3 gene causes a disturbance of the normal cell-differentiation process.

  5. Shortcuts to adiabaticity from linear response theory

    SciTech Connect (OSTI)

    Acconcia, Thiago V.; Bonança, Marcus V. S.; Deffner, Sebastian

    2015-10-23

    A shortcut to adiabaticity is a finite-time process that produces the same final state as would result from infinitely slow driving. We show that such shortcuts can be found for weak perturbations from linear response theory. Moreover, with the help of phenomenological response functions, a simple expression for the excess work is found—quantifying the nonequilibrium excitations. For two specific examples, i.e., the quantum parametric oscillator and the spin 1/2 in a time-dependent magnetic field, we show that finite-time zeros of the excess work indicate the existence of shortcuts. We finally propose a degenerate family of protocols, which facilitates shortcuts to adiabaticity for specific and very short driving times.

  6. Topological degeneracy of non-Abelian states for dummies

    SciTech Connect (OSTI)

    Oshikawa, Masaki . E-mail: oshikawa@issp.u-tokyo.ac.jp; Kim, Yong Baek; Shtengel, Kirill; Nayak, Chetan; Tewari, Sumanta

    2007-06-15

    We present a physical construction of degenerate groundstates of the Moore-Read Pfaffian states, which exhibits non-Abelian statistics, on general Riemann surface with genus g. The construction is given by a generalization of the recent argument [M.O., T. Senthil, Phys. Rev. Lett. 96 (2006) 060601] which relates fractionalization and topological order. The nontrivial groundstate degeneracy obtained by Read and Green [Phys. Rev. B 61 (2000) 10267] based on differential geometry is reproduced exactly. Some restrictions on the statistics, due to the fractional charge of the quasiparticle are also discussed. Furthermore, the groundstate degeneracy of the p + ip superconductor in two dimensions, which is closely related to the Pfaffian states, is discussed with a similar construction.

  7. Eigenmode characteristics of the double tearing mode in the presence of shear flows

    SciTech Connect (OSTI)

    Mao Aohua [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Li Jiquan; Kishimoto, Y. [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Liu Jinyuan [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2013-02-15

    The double tearing mode (DTM) is characterized by two eigen states with antisymmetric or symmetric magnetic island structure, referred to as the even or odd DTM. In this work, we systematically revisit the DTM instabilities in the presence of an antisymmetric shear flow with a focus on eigenmode characteristics as well as the stabilization or destabilization mechanism in a wide parameter region. Both initial value simulation and eigenvalue analysis are performed based on reduced resistive MHD model in slab geometry. A degenerated eigen state is found at a critical flow amplitude v{sub c}. The even (or odd) DTM is stabilized (or destabilized) by weak shear flow below v{sub c} through the distortion of magnetic islands mainly due to the global effect of shear flow rather than the local flow shear. The distortion can be quantified by the phase angles of the perturbed flux, showing a perfect correspondence to the growth rates. As the shear flow increases above v{sub c}, the degenerated eigen state bifurcates into two eigen modes with the same growth rate but opposite propagating direction, resulting in an oscillatory growth of fluctuation energy. It is identified that two eigen modes show the single tearing mode structure due to the Alfven resonance (AR) occurring on one current sheet. Most importantly, the AR can destabilize the DTMs through enhancing the plasma flow exerting on the remaining island. Meanwhile, the local flow shear plays a remarkable stabilizing role in this region. In addition, the eigenmode characteristic of the electromagnetic Kelvin-Helmholtz instability is also discussed.

  8. Multistep cascade annihilations of dark matter and the Galactic Center excess

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elor, Gilly; Rodd, Nicholas L.; Slatyer, Tracy R.

    2015-05-26

    If dark matter is embedded in a non-trivial dark sector, it may annihilate and decay to lighter dark-sector states which subsequently decay to the Standard Model. Such scenarios - with annihilation followed by cascading dark-sector decays - can explain the apparent excess GeV gamma-rays identified in the central Milky Way, while evading bounds from dark matter direct detection experiments. Each 'step' in the cascade will modify the observable signatures of dark matter annihilation and decay, shifting the resulting photons and other final state particles to lower energies and broadening their spectra. We explore, in a model-independent way, the effect ofmore » multi-step dark-sector cascades on the preferred regions of parameter space to explain the GeV excess. We find that the broadening effects of multi-step cascades can admit final states dominated by particles that would usually produce too sharply peaked photon spectra; in general, if the cascades are hierarchical (each particle decays to substantially lighter particles), the preferred mass range for the dark matter is in all cases 20-150 GeV. Decay chains that have nearly-degenerate steps, where the products are close to half the mass of the progenitor, can admit much higher DM masses. We map out the region of mass/cross-section parameter space where cascades (degenerate, hierarchical or a combination) can fit the signal, for a range of final states. In the current paper, we study multi-step cascades in the context of explaining the GeV excess, but many aspects of our results are general and can be extended to other applications.« less

  9. 10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement

    SciTech Connect (OSTI)

    Noel Duckwtiz

    2011-05-01

    Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: • Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. • Provide backup power to the critical ATR loads in the event of a loss of commercial power. • Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: 1. Evaluation Criteria #2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. 2. Evaluation Criteria #3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary object to maintain or reduce CDF and does not negatively affect the efficacy of the currently approved strategy. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps, based on the pre-conceptual design, will require the addition of two quick start diesel generators, their associated power coordination/distribution controls, and a UPS to the list of safety-related SSCs. Similarly to item 1 above, the addition of these active SSCs to the list of safety-related SSCs and replacement of the E-3 bus requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., seismic qualification, isolation of redundant trains from common fault failures) to ensure no adverse impacts to the safety-related functions.

  10. The effects of changing exercise levels on weight and age-relatedweight gain

    SciTech Connect (OSTI)

    Williams, Paul T.; Wood, Peter D.

    2004-06-01

    To determine prospectively whether physical activity canprevent age-related weight gain and whether changing levels of activityaffect body weight. DESIGN/SUBJECTS: The study consisted of 8,080 maleand 4,871 female runners who completed two questionnaires an average(+/-standard deviation (s.d.)) of 3.20+/-2.30 and 2.59+/-2.17 yearsapart, respectively, as part of the National Runners' Health Study.RESULTS: Changes in running distance were inversely related to changes inmen's and women's body mass indices (BMIs) (slope+/-standard error(s.e.): -0.015+/-0.001 and -0.009+/-0.001 kg/m(2) per Deltakm/week,respectively), waist circumferences (-0.030+/-0.002 and -0.022+/-0.005 cmper Deltakm/week, respectively) and percent changes in body weight(-0.062+/-0.003 and -0.041+/-0.003 percent per Deltakm/week,respectively, all P<0.0001). The regression slopes were significantlysteeper (more negative) in men than women for DeltaBMI and Deltapercentbody weight (P<0.0001). A longer history of running diminishedthe impact of changing running distance on men's weights. When adjustedfor Deltakm/week, years of aging in men and years of aging in women wereassociated with increases of 0.066+/-0.005 and 0.056+/-0.006 kg/m(2) inBMI, respectively, increases of 0.294+/-0.019 and 0.279+/-0.028 percentin Delta percentbody weight, respectively, and increases of 0.203+/-0.016and 0.271+/-0.033 cm in waist circumference, respectively (allP<0.0001). These regression slopes suggest that vigorous exercise mayneed to increase 4.4 km/week annually in men and 6.2 km/week annually inwomen to compensate for the expected gain in weight associated with aging(2.7 and 3.9 km/week annually when correct for the attenuation due tomeasurement error). CONCLUSIONS: Age-related weight gain occurs evenamong the most active individuals when exercise is constant.Theoretically, vigorous exercise must increase significantly with age tocompensate for the expected gain in weight associated withaging.

  11. Cadmium-induced oxidative stress and histological damage in the myocardium. Effects of a soy-based diet

    SciTech Connect (OSTI)

    Ferramola, Mariana L.; Prez Daz, Matas F.F.; Honor, Stella M.; Snchez, Sara S.; Antn, Rosa I.; Anzulovich, Ana C.; Gimnez, Mara S.

    2012-12-15

    Cd exposure has been associated to an augmented risk for cardiovascular disease. We investigated the effects of 15 and 100 ppm of Cd on redox status as well as histological changes in the rat heart and the putative protective effect of a soy-based diet. Male Wistar rats were separated into 6 groups and treated during 60 days as follows: groups (1), (2) and (3) were fed a casein-based diet; groups (4), (5) and (6), a soy-based diet; (1) and (4) were given tap water; (2) and (5) tap water containing 15 ppm of Cd{sup 2+}; and (3) and (6) tap water containing 100 ppm of Cd{sup 2+}. Serum lipid peroxides increased and PON-1 activity decreased in group (3). Lipoperoxidation also increased in the heart of all intoxicated groups; however protein oxidation only augmented in (3) and reduced glutathione levels diminished in (2) and (3). Catalase activity increased in groups (3) and (6) while superoxide dismutase activity increased only in (6). Glutathione peroxidase activity decreased in groups (3) and (6). Nrf2 expression was higher in groups (3) and (6), and MTI expression augmented in (3). Histological examination of the heart tissue showed the development of hypertrophic and fusion of cardiomyocytes along with foci of myocardial fiber necrosis. The transmission electron microscopy analysis showed profound ultra-structural damages. No protection against tissue degeneration was observed in animals fed the soy-based diet. Our findings indicate that even though the intake of a soy-based diet is capable of ameliorating Cd induced oxidative stress, it failed in preventing cardiac damage. -- Highlights: ? Cd intoxication produces extracellular and ultrastructural damage in the myocardium. ? The intake of a soy-based diet ameliorated Cd-induced oxidative stress. ? Cd-induced myocardial damage wasn't prevented by the intake of a soy-based diet. ? Cd-induced myocardial degeneration may not be caused by oxidative stress generation. ? Histology evaluation is needed to establish the extent of Cd-induced cardiac damage.

  12. Coupled electron-nuclear dynamics: Charge migration and charge transfer initiated near a conical intersection

    SciTech Connect (OSTI)

    Mendive-Tapia, David; Vacher, Morgane; Bearpark, Michael J.; Robb, Michael A.

    2013-07-28

    Coupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions. Charge migration without coupled nuclear motion could be observed if the Ehrenfest simulation, using the sudden approximation, was started near a conical intersection where the states were both strongly coupled and quasi-degenerate. Further, the main features associated with charge migration were still recognizable when the nuclear motion was allowed to couple. In the benzene radical cation, starting from the reference neutral geometry with the sudden approximation, one could observe sub-femtosecond charge migration with a small amplitude, which results from weak interaction with higher electronic states. However, we were able to engineer large amplitude charge migration, with a period between 10 and 100 fs, corresponding to oscillation of the electronic structure between the quinoid and anti-quinoid cationic electronic configurations, by distorting the geometry along the derivative coupling vector from the D{sub 6h} Jahn-Teller crossing to lower symmetry where the states are not degenerate. When the nuclear motion becomes coupled, the period changes only slightly. In PEA, in an Ehrenfest trajectory starting from the D{sub 2} eigenstate and reference geometry, a partial charge transfer occurs after about 12 fs near the first crossing between D{sub 1}, D{sub 2} (N{sup +}-Phenyl, N-Phenyl{sup +}). If the Ehrenfest propagation is started near this point, using the sudden approximation without coupled nuclear motion, one observes an oscillation of the spin density charge migration between the N atom and the phenyl ring with a period of 4 fs. When the nuclear motion becomes coupled, this oscillation persists in a damped form, followed by an effective charge transfer after 30 fs.

  13. Constraints on the progenitor system and the environs of SN 2014J from deep radio observations

    SciTech Connect (OSTI)

    Prez-Torres, M. A.; Alberdi, A. [Instituto de Astrofsica de Andaluca, Glorieta de las Astronoma, s/n, E-18008 Granada (Spain); Lundqvist, P.; Bjrnsson, C. I.; Fransson, C. [Department of Astronomy, AlbaNova University Center, Stockholm University, SE-10691 Stockholm (Sweden); Beswick, R. J.; Muxlow, T. W. B.; Argo, M. K. [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Paragi, Z. [Joint Institute for VLBI in Europe, Postbus 2, 7990 AA Dwingeloo (Netherlands); Ryder, S. [Australian Astronomical Observatory, P.O. Box 915, North Ryde, NSW 1670 (Australia); Marcaide, J. M.; Ros, E.; Guirado, J. C. [Departamento de Astronoma i Astrofsica, Universidad de Valencia, E-46100 Burjassot, Valencia (Spain); Mart-Vidal, I. [Onsala Space Observatory, Chalmers University of Technology, SE-43992 Onsala (Sweden)

    2014-09-01

    We report deep EVN and eMERLIN observations of the Type Ia SN 2014J in the nearby galaxy M82. Our observations represent, together with JVLA observations of SNe 2011fe and 2014J, the most sensitive radio studies of Type Ia SNe ever. By combining data and a proper modeling of the radio emission, we constrain the mass-loss rate from the progenitor system of SN 2014J to M-dot ?7.010{sup ?10} M{sub ?} yr{sup ?1} (for a wind speed of 100 km s{sup 1}). If the medium around the supernova is uniform, then n {sub ISM} ? 1.3 cm{sup 3}, which is the most stringent limit for the (uniform) density around a Type Ia SN. Our deep upper limits favor a double-degenerate (DD) scenarioinvolving two WD starsfor the progenitor system of SN 2014J, as such systems have less circumstellar gas than our upper limits. By contrast, most single-degenerate (SD) scenarios, i.e., the wide family of progenitor systems where a red giant, main-sequence, or sub-giant star donates mass to an exploding WD, are ruled out by our observations. (While completing our work, we noticed that a paper by Margutti et al. was submitted to The Astrophysical Journal. From a non-detection of X-ray emission from SN 2014J, the authors obtain limits of M-dot ?1.210{sup ?9} M {sub ?} yr{sup 1} (for a wind speed of 100 km s{sup 1}) and n {sub ISM} ? 3.5 cm{sup 3}, for the ??r {sup 2} wind and constant density cases, respectively. As these limits are less constraining than ours, the findings by Margutti et al. do not alter our conclusions. The X-ray results are, however, important to rule out free-free and synchrotron self-absorption as a reason for the radio non-detections.) Our estimates on the limits on the gas density surrounding SN2011fe, using the flux density limits from Chomiuk et al., agree well with their results. Although we discuss the possibilities of an SD scenario passing observational tests, as well as uncertainties in the modeling of the radio emission, the evidence from SNe 2011fe and 2014J points in the direction of a DD scenario for both.

  14. The accretion of solar material onto white dwarfs: No mixing with core material implies that the mass of the white dwarf is increasing

    SciTech Connect (OSTI)

    Starrfield, Sumner

    2014-04-15

    Cataclysmic Variables (CVs) are close binary star systems with one component a white dwarf (WD) and the other a larger cooler star that fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and some unknown fraction of this material is accreted by the WD. One consequence of the WDs accreting material, is the possibility that they are growing in mass and will eventually reach the Chandrasekhar Limit. This evolution could result in a Supernova Ia (SN Ia) explosion and is designated the Single Degenerate Progenitor (SD) scenario. This paper is concerned with the SD scenario for SN Ia progenitors. One problem with the single degenerate scenario is that it is generally assumed that the accreting material mixes with WD core material at some time during the accretion phase of evolution and, since the typical WD has a carbon-oxygen CO core, the mixing results in large amounts of carbon and oxygen being brought up into the accreted layers. The presence of enriched carbon causes enhanced nuclear fusion and a Classical Nova explosion. Both observations and theoretical studies of these explosions imply that more mass is ejected than is accreted. Thus, the WD in a Classical Nova system is losing mass and cannot be a SN Ia progenitor. However, the composition in the nuclear burning region is important and, in new calculations reported here, the consequences to the WD of no mixing of accreted material with core material have been investigated so that the material involved in the explosion has only a Solar composition. WDs with a large range in initial masses and mass accretion rates have been evolved. I find that once sufficient material has been accreted, nuclear burning occurs in all evolutionary sequences and continues until a thermonuclear runaway (TNR) occurs and the WD either ejects a small amount of material or its radius grows to about 10{sup 12} cm and the evolution is ended. In all cases where mass ejection occurs, the mass of the ejecta is far less than the mass of the accreted material. Therefore, all the WDs are growing in mass. It is also found that the accretion time to explosion can be sufficiently short for a 1.0M{sub ?} WD that recurrent novae can occur on a low mass WD. This mass is lower than typically assumed for the WDs in recurrent nova systems. Finally, the predicted surface temperatures when the WD is near the peak of the explosion imply that only the most massive WDs will be significant X-ray emitters at this time.

  15. Thermal performance sensitivity studies in support of material modeling for extended storage of used nuclear fuel

    SciTech Connect (OSTI)

    Cuta, Judith M.; Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.

    2013-08-15

    The work reported here is an investigation of the sensitivity of component temperatures of a storage system, including fuel cladding temperatures, in response to age-related changes that could degrade the design-basis thermal behavior of the system. Three specific areas of interest were identified for this study. degradation of the canister backfill gas from pure helium to a mixture of air and helium, resulting from postulated leakage due to stress corrosion cracking (SCC) of canister welds changes in surface emissivity of system components, resulting from corrosion or other aging mechanisms, which could cause potentially significant changes in temperatures and temperature distributions, due to the effect on thermal radiation exchange between components changes in fuel and basket temperatures due to changes in fuel assembly position within the basket cells in the canister The purpose of these sensitivity studies is to provide a realistic example of how changes in the physical properties or configuration of the storage system components can affect temperatures and temperature distributions. The magnitudes of these sensitivities can provide guidance for identifying appropriate modeling assumptions for thermal evaluations extending long term storage out beyond 50, 100, 200, and 300 years.

  16. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    SciTech Connect (OSTI)

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  17. Managing aging in nuclear power plants: Insights from NRC maintenance team inspection reports

    SciTech Connect (OSTI)

    Fresco, A.; Subudhi, M.; Gunther, W.; Grove, E.; Taylor, J.

    1993-12-01

    A plant`s maintenance program is the principal vehicle through which age-related degradation is managed. From 1988 to 1991, the NRC evaluated the maintenance program of every nuclear power plant in the United States. Forty-four out of a total of 67 of the reports issued on these in-depth team inspections were reviewed for insights into the strengths and weaknesses of the programs as related to the need to understand and manage the effects of aging on nuclear plant systems, structures, and components. Relevant information was extracted from these inspection reports and sorted into several categories, including Specific Aging Insights, Preventive Maintenance, Predictive Maintenance and Condition Monitoring, Post Maintenance Testing, Failure Trending, Root Cause Analysis and Usage of Probabilistic Risk Assessment in the Maintenance Process. Specific examples of inspection and monitoring techniques successfully used by utilities to detect degradation due to aging have been identified. The information also was sorted according to systems and components, including: Auxiliary Feedwater, Main Feedwater, High Pressure Injection for both BWRs and PWRs, Service Water, Instrument Air, and Emergency Diesel Generator Air Start Systems, and Emergency Diesel Generators Air Start Systems, emergency diesel generators, electrical components such as switchgear, breakers, relays, and motor control centers, motor operated valves and check valves. This information was compared to insights gained from the Nuclear Plant Aging Research (NPAR) Program. Attributes of plant maintenance programs where the NRC inspectors felt that improvement was needed to properly address the aging issue also are discussed.

  18. Nuclear power plant Generic Aging Lessons Learned (GALL). Main report and appendix A

    SciTech Connect (OSTI)

    Kaza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U.

    1996-12-01

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This document is Volume 1, consisting of the executive summary, summary and observations, and an appendix listing the GALL literature review tables.

  19. Nuclear power plant Generic Aging Lessons Learned (GALL). Appendix B

    SciTech Connect (OSTI)

    Kasza, K.E.; Diercks, D.R.; Holland, J.W.; Choi, S.U.

    1996-12-01

    The purpose of this generic aging lessons learned (GALL) review is to provide a systematic review of plant aging information in order to assess materials and component aging issues related to continued operation and license renewal of operating reactors. Literature on mechanical, structural, and thermal-hydraulic components and systems reviewed consisted of 97 Nuclear Plant Aging Research (NPAR) reports, 23 NRC Generic Letters, 154 Information Notices, 29 Licensee Event Reports (LERs), 4 Bulletins, and 9 Nuclear Management and Resources Council Industry Reports (NUMARC IRs) and literature on electrical components and systems reviewed consisted of 66 NPAR reports, 8 NRC Generic Letters, 111 Information Notices, 53 LERs, 1 Bulletin, and 1 NUMARC IR. More than 550 documents were reviewed. The results of these reviews were systematized using a standardized GALL tabular format and standardized definitions of aging-related degradation mechanisms and effects. The tables are included in volume s 1 and 2 of this report. A computerized data base has also been developed for all review tables and can be used to expedite the search for desired information on structures, components, and relevant aging effects. A survey of the GALL tables reveals that all ongoing significant component aging issues are currently being addressed by the regulatory process. However, the aging of what are termed passive components has been highlighted for continued scrutiny. This report consists of Volume 2, which consists of the GALL literature review tables for the NUMARC Industry Reports reviewed for the report.

  20. DOE-sponsored aging management guideline for electrical cable and terminators

    SciTech Connect (OSTI)

    Gazdzinski, R.F.

    1996-03-01

    The DOE-sponsored Aging Management Guideline (AMG) for Electrical Cable and Terminations provides an analysis of the potential age-related degradation mechanisms and effects for low-voltage and medium-voltage extruded cables and associated terminations used in commercial nuclear power plants. The AMG examined historical industry failure data and correlated this with postulated aging mechanisms and effects. Existing and developmental testing and condition monitoring techniques were evaluated, as well as current industry practices, in order to assess whether all significant aging mechanisms/effects are being effectively managed. Results of the study indicate that some aging mechanisms and effects are not directly addressed by current industry maintenance and surveillance practices; however, empirical evidence indicates that low- and medium-voltage cable and terminations are in general very reliable. A limited number of nondestructive (or essentially nondestructive) techniques currently available are potentially useful for evaluating low-voltage cable condition; however, such techniques do not currently exist for monitoring medium-voltage cable. Troubleshooting or diagnostic techniques are available to identify certain types of degradation.

  1. Performance of bolted closure joint elastomers under cask aging conditions

    SciTech Connect (OSTI)

    Verst, C.; Sindelar, R.; Skidmore, E.; Daugherty, W.

    2015-07-23

    The bolted closure joint of a bare spent fuel cask is susceptible to age-related degradation and potential loss of confinement function under long-term storage conditions. Elastomeric seals, a component of the joint typically used to facilitate leak testing of the primary seal that includes the metallic seal and bolting, is susceptible to degradation over time by several mechanisms, principally via thermo-oxidation, stress-relaxation, and radiolytic degradation under time and temperature condition. Irradiation and thermal exposure testing and evaluation of an ethylene-propylene diene monomer (EPDM) elastomeric seal material similar to that used in the CASTOR® V/21 cask for a matrix of temperature and radiation exposure conditions relevant to the cask extended storage conditions, and development of semiempirical predictive models for loss of sealing force is in progress. A special insert was developed to allow Compressive Stress Relaxation (CSR) measurements before and after the irradiation and/or thermal exposure without unloading the elastomer. A condition of the loss of sealing force for the onset of leakage was suggested. The experimentation and modeling being performed could enable acquisition of extensive coupled aging data as well as an estimation of the timeframe when loss of sealing function under aging (temperature/radiation) conditions may occur.

  2. Bone growth and turnover in progesterone receptor knockout mice.

    SciTech Connect (OSTI)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O'Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  3. Three-Dimensional Mapping of Ozone-Induced Injury in the Nasal Airways of Monkeys Using Magnetic Resonance Imaging and Morphometric Techniques

    SciTech Connect (OSTI)

    Carey, Stephen A.; Minard, Kevin R.; Trease, Lynn L.; Wagner, James G.; Garcia, Guilherme M.; Ballinger, Carol A.; Kimbell, Julia; Plopper, Charles G.; Corley, Rick A.; Postlewait, Ed; Harkema, Jack R.

    2007-03-01

    ABSTRACT Age-related changes in gross and microscopic structure of the nasal cavity can alter local tissue susceptibility as well as the dose of inhaled toxicant delivered to susceptible sites. This article describes a novel method for the use of magnetic resonance imaging, 3-dimensional airway modeling, and morphometric techniques to characterize the distribution and magnitude of ozone-induced nasal injury in infant monkeys. Using this method, we are able to generate age-specific, 3-dimensional, epithelial maps of the nasal airways of infant Rhesus macaques. The principal nasal lesions observed in this primate model of ozone-induced nasal toxicology were neutrophilic rhinitis, along with necrosis and exfoliation of the epithelium lining the anterior maxilloturbinate. These lesions, induced by acute or cyclic (episodic) exposures, were examined by light microscopy, quantified by morphometric techniques, and mapped on 3-dimensional models of the nasal airways. Here, we describe the histopathologic, imaging, and computational biology methods developed to efficiently characterize, localize, quantify, and map these nasal lesions. By combining these techniques, the location and severity of the nasal epithelial injury were correlated with epithelial type, nasal airway geometry, and local biochemical and molecular changes on an individual animal basis. These correlations are critical for accurate predictive modeling of exposure-dose-response relationships in the nasal airways, and subsequent extrapolation of nasal findings in animals to humans for developing risk assessment.

  4. Effects of thyroid hormone on. beta. -adrenergic responsiveness of aging cardiovascular systems

    SciTech Connect (OSTI)

    Tsujimoto, G.; Hashimoto, K.; Hoffman, B.B.

    1987-03-01

    The authors have compared the effects of ..beta..-adrenergic stimulation on the heart and peripheral vasculature of young (2-mo-old) and older (12-mo-old) rats both in the presence and absence of triiodothyronine (T/sub 3/)-induced hyperthyroidism. The hemodynamic consequences of T/sub 3/ treatment were less prominent in the aged hyperthyroid rats compared with young hyperthyroid rats (both in intact and pithed rats). There was a decrease in sensitivity of chronotropic responsiveness to isoproterenol in older pithed rats, which was apparently reversed by T/sub 3/ treatment. The number and affinity of myocardial ..beta..-adrenergic receptor sites measured by (/sup 125/I)cyanopindolol were not significantly different in young and older control rats; also, ..beta..-receptor density increased to a similar extent in both young and older T/sub 3/-treated rats. The ability of isoproterenol to relax mesenteric arterial rings, markedly blunted in older rats, was partially restored by T/sub 3/ treatment without their being any change in isoproterenol-mediated relaxation in the arterial preparation from young rats. The number and affinity of the ..beta..-adrenergic receptors measured in the mesenteric arteries was unaffected by either aging or T/sub 3/ treatment. The data suggest that effects of thyroid hormone and age-related alterations of cardiovascular responsiveness to ..beta..-adrenergic stimulation are interrelated in a complex fashion with a net result that the hyperkinetic cardiovascular manifestations in hyperthyroidism are attenuated in the older animals.

  5. Technical Basis Document: A Statistical Basis for Interpreting Urinary Excretion of Plutonium Based on Accelerator Mass Spectrometry (AMS) for Selected Atoll Populations in the Marshall Islands

    SciTech Connect (OSTI)

    Bogen, K; Hamilton, T F; Brown, T A; Martinelli, R E; Marchetti, A A; Kehl, S R; Langston, R G

    2007-05-01

    We have developed refined statistical and modeling techniques to assess low-level uptake and urinary excretion of plutonium from different population group in the northern Marshall Islands. Urinary excretion rates of plutonium from the resident population on Enewetak Atoll and from resettlement workers living on Rongelap Atoll range from <1 to 8 {micro}Bq per day and are well below action levels established under the latest Department regulation 10 CFR 835 in the United States for in vitro bioassay monitoring of {sup 239}Pu. However, our statistical analyses show that urinary excretion of plutonium-239 ({sup 239}Pu) from both cohort groups is significantly positively associated with volunteer age, especially for the resident population living on Enewetak Atoll. Urinary excretion of {sup 239}Pu from the Enewetak cohort was also found to be positively associated with estimates of cumulative exposure to worldwide fallout. Consequently, the age-related trends in urinary excretion of plutonium from Marshallese populations can be described by either a long-term component from residual systemic burdens acquired from previous exposures to worldwide fallout or a prompt (and eventual long-term) component acquired from low-level systemic intakes of plutonium associated with resettlement of the northern Marshall Islands, or some combination of both.

  6. Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the filamentous Fungus Neurospora tetrasperma

    SciTech Connect (OSTI)

    Ellison, Christoper; Stajich, Jason; Jacobson, David; Nativ, Donald; Lapidus, Alla; Foster, Brian; Aerts, Andrea; Riley, Robert; Lindquist, Erika; Grigoriev, Igor; Taylor, John

    2011-05-16

    A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (5 MYA), combined with a long history of genetic and cytological research, make this fungus an ideal model for studying the evolutionary consequences of suppressed recombination. Here we compare genome sequences from two N. tetrasperma strains of opposite mating type to determine whether structural rearrangements are associated with the nonrecombining region and to examine the effect of suppressed recombination for the evolution of the genes within it. We find a series of three inversions encompassing the majority of the region of suppressed recombination and provide evidence for two different types of rearrangement mechanisms: the recently proposed mechanism of inversion via staggered single-strand breaks as well as ectopic recombination between transposable elements. In addition, we show that the N. tetrasperma mat a mating-type region appears to be accumulating deleterious substitutions at a faster rate than the other mating type (mat A) and thus may be in the early stages of degeneration.

  7. Zonal flow dynamics in the double tearing mode with antisymmetric shear flows

    SciTech Connect (OSTI)

    Mao, Aohua [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China) [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan)] [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Liu, Jinyuan, E-mail: jyliu@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)] [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Kishimoto, Yasuaki [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan) [Graduate School of Energy Science, Kyoto University, Uji, Kyoto 6110011 (Japan); Institude of Advanced Energy, Kyoto University, Uji, Kyoto 6110011 (Japan)

    2014-05-15

    The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, v{sub c}, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above v{sub c} but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

  8. Interactions of multiquark states in the chromodielectric model

    SciTech Connect (OSTI)

    Martens, Gunnar; Greiner, Carsten; Leupold, Stefan; Mosel, Ulrich

    2006-05-01

    We investigate 4-quark (qqqq) systems as well as multiquark states with a large number of quarks and antiquarks using the chromodielectric model. In the former type of systems the flux distribution and the corresponding energy of such systems for planar and nonplanar geometries are studied. From the comparison to the case of two independent qq-strings we deduce the interaction potential between two strings. We find an attraction between strings and a characteristic string flip if there are two degenerate string combinations between the four particles. The interaction shows no strong Van-der-Waals forces and the long range behavior of the potential is well described by a Yukawa potential, which might be confirmed in future lattice calculations. The multiquark states develop an inhomogeneous porous structure even for particle densities large compared to nuclear matter constituent quark densities. We present first results of the dependence of the system on the particle density pointing towards a percolation type of transition from a hadronic matter phase to a quark matter phase. The critical energy density is found at {epsilon}{sub c}=1.2 GeV/fm{sup 3}.

  9. Tailoring dielectric resonator geometries for directional scattering and Huygens metasurfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campione, Salvatore; Basilio, Lorena I.; Warne, Larry K.; Sinclair, Michael B.

    2015-01-28

    In this paper we describe a methodology for tailoring the design of metamaterial dielectric resonators, which represent a promising path toward low-loss metamaterials at optical frequencies. We first describe a procedure to decompose the far field scattered by subwavelength resonators in terms of multipolar field components, providing explicit expressions for the multipolar far fields. We apply this formulation to confirm that an isolated high-permittivity dielectric cube resonator possesses frequency separated electric and magnetic dipole resonances, as well as a magnetic quadrupole resonance in close proximity to the electric dipole resonance. We then introduce multiple dielectric gaps to the resonator geometrymorein a manner suggested by perturbation theory, and demonstrate the ability to overlap the electric and magnetic dipole resonances, thereby enabling directional scattering by satisfying the first Kerker condition. We further demonstrate the ability to push the quadrupole resonance away from the degenerate dipole resonances to achieve local behavior. These properties are confirmed through the multipolar expansion and show that the use of geometries suggested by perturbation theory is a viable route to achieve purely dipole resonances for metamaterial applications such as wave-front manipulation with Huygens metasurfaces. Our results are fully scalable across any frequency bands where high-permittivity dielectric materials are available, including microwave, THz, and infrared frequencies.less

  10. Imaging Hindered Rotations of Alkoxy Species on TiO2(110)

    SciTech Connect (OSTI)

    Zhang, Zhenrong; Rousseau, Roger J.; Gong, Jinlong; Kay, Bruce D.; Dohnalek, Zdenek

    2009-12-16

    We present the first study of the rotational dynamics of organic species on any oxide surface. Specifically, variable-temperature scanning tunneling microscopy (STM) and dispersion-corrected density functional theory are used to study the alkyl chain conformational disorder and dynamics of 1-, 2-, 3- and 4-octoxy on rutile TiO2(110). Initially, the geminate pairs of the octoxy and bridging hydroxyl species are created via octanol dissociation on bridging-oxygen (Ob) vacancy defects. The STM images provide time averaged snapshots of octoxy species rotating among multiple energetically nearly-degenerate configurations accessible at a given temperature. In the calculations we find that the underlying corrugated potential energy surface is a result of the interplay between attractive Van der Waals dispersion forces leading to weak attractive C...Ti and repulsive C...Ob interactions which lead to large barriers of 50-70kJmol-1 for the rotation of the octoxy alkyl chains across the Ob rows. In the presence of the germinal hydroxyl groups we find that the relative populations of the various conformations as well as the rotational barriers are perturbed by the presence of geminate hydroxyl due to additional C...hydroxyl repulsions.

  11. Frequency-comb referenced spectroscopy of v₄₋ and v₅₋excited hot bands in the 1.5 and μm spectrum of C₂H₂

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Twagirayezu, Sylvestre; Cich, Matthew J.; Sears, Trevor J.; McRaven, Christopher P.; Hall, Gregory E.

    2015-07-14

    Doppler-free transition frequencies for v₄₋ and v₅₋excited hot bands have been measured in the v₁ + v₃ band region of the spectrum of acetylene using saturation dip spectroscopy with an extended cavity diode laser referenced to a frequency comb. The frequency accuracy of the measured transitions, as judged from line shape model fits and comparison to known frequencies in the v₁ + v₃ band itself, is between 3 and 22 kHz. This is some three orders of magnitude improvement on the accuracy and precision of previous line position estimates that were derived from the analysis of high-resolution Fourier transform infraredmore » absorption spectra. Comparison to transition frequencies computed from constants derived from published Fourier transform infrared spectra shows that some upper rotational energy levels suffer specific perturbations causing energy level shifts of up to several hundred MHz. These perturbations are due to energy levels of the same rotational quantum number derived from nearby vibrational levels that become degenerate at specific energies. Future identification of the perturbing levels will provide accurate relative energies of excited vibrational levels of acetylene in the 7100–7600 cm⁻¹ energy region.« less

  12. Controlling orbital-selective Kondo effects in a single molecule through coordination chemistry

    SciTech Connect (OSTI)

    Tsukahara, Noriyuki; Kawai, Maki; Takagi, Noriaki; Minamitani, Emi; Kim, Yousoo

    2014-08-07

    Iron(II) phthalocyanine (FePc) molecule causes novel Kondo effects derived from the unique electronic structure of multi-spins and multi-orbitals when attached to Au(111). Two unpaired electrons in the d{sub z}{sup 2} and the degenerate d? orbitals are screened stepwise, resulting in spin and spin+orbital Kondo effects, respectively. We investigated the impact on the Kondo effects of the coordination of CO and NO molecules to the Fe{sup 2+} ion as chemical stimuli by using scanning tunneling microscopy (STM) and density functional theory calculations. The impacts of the two diatomic molecules are different from each other as a result of the different electronic configurations. The coordination of CO converts the spin state from triplet to singlet, and then the Kondo effects completely disappear. In contrast, an unpaired electron survives in the molecular orbital composed of Fe d{sub z}{sup 2} and NO 5? and 2?* orbitals for the coordination of NO, causing a sharp Kondo resonance. The isotropic magnetic response of the peak indicates the origin is the spin Kondo effect. The diatomic molecules attached to the Fe{sup 2+} ion were easily detached by applying a pulsed voltage at the STM junction. These results demonstrate that the single molecule chemistry enables us to switch and control the spin and the many-body quantum states reversibly.

  13. Effects of phase and coupling between the vibrational modes on selective excitation in coherent anti-Stokes Raman scattering microscopy

    SciTech Connect (OSTI)

    Patel, Vishesha; Malinovsky, Vladimir S.; Malinovskaya, Svetlana

    2010-06-15

    Coherent anti-Stokes Raman scattering (CARS) microscopy has been a major tool of investigation of biological structures as it contains the vibrational signature of molecules. A quantum control method based on chirped pulse adiabatic passage was recently proposed for selective excitation of a predetermined vibrational mode in CARS microscopy [Malinovskaya and Malinovsky, Opt. Lett. 32, 707 (2007)]. The method utilizes the chirp sign variation at the peak pulse amplitude and gives a robust adiabatic excitation of the desired vibrational mode. Using this method, we investigate the impact of coupling between vibrational modes in molecules on controllability of excitation of the CARS signal. We analyze two models of two coupled two-level systems (TLSs) having slightly different transitional frequencies. The first model, featuring degenerate ground states of the TLSs, gives robust adiabatic excitation and maximum coherence in the resonant TLS for positive value of the chirp. In the second model, implying nondegenerate ground states in the TLSs, a population distribution is observed in both TLSs, resulting in a lack of selectivity of excitation and low coherence. It is shown that the relative phase and coupling between the TLSs play an important role in optimizing coherence in the desired vibrational mode and suppressing unwanted transitions in CARS microscopy.

  14. Nonlinear space charge dynamics in mixed ionic-electronic conductors: Resistive switching and ferroelectric-like hysteresis of electromechanical response

    SciTech Connect (OSTI)

    Morozovska, Anna N.; Morozovsky, Nicholas V.; Eliseev, Eugene A.; Varenyk, Olexandr V.; Kim, Yunseok; Strelcov, Evgheni; Tselev, Alexander; Kalinin, Sergei V.

    2014-08-14

    We performed self-consistent modelling of nonlinear electrotransport and electromechanical response of thin films of mixed ionic-electronic conductors (MIEC) allowing for steric effects of mobile charged defects (ions, protons, or vacancies), electron degeneration, and Vegard stresses. We establish correlations between the features of the nonlinear space-charge dynamics, current-voltage, and bending-voltage curves for different types of the film electrodes. A pronounced ferroelectric-like hysteresis of the bending-voltage loops and current maxima on the double hysteresis current-voltage loops appear for the electron-transport electrodes. The double hysteresis loop with pronounced humps indicates a memristor-type resistive switching. The switching occurs due to the strong nonlinear coupling between the electronic and ionic subsystems. A sharp meta-stable maximum of the electron density appears near one open electrode and moves to another one during the periodic change of applied voltage. Our results can explain the nonlinear nature and correlation of electrical and mechanical memory effects in thin MIEC films. The analytical expression proving that the electrically induced bending of MIEC films can be detected by interferometric methods is derived.

  15. Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at √s = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aad, G.

    2015-01-14

    Searches for heavy long-lived charged particles are performed using a data sample of 19.1 fb-1 from proton-proton collisions at a centre-of-mass energy of \\( \\sqrt{s}=8 \\) TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for tan β between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production ismore » considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. As a result, R-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.« less

  16. Martensitic transformation and phase stability of In-doped Ni-Mn-Sn shape memory alloys from first-principles calculations

    SciTech Connect (OSTI)

    Xiao, H. B.; Yang, C. P. Wang, R. L.; Luo, X.; Marchenkov, V. V.

    2014-05-28

    The effect of the alloying element Indium (In) on the martensitic transition, magnetic properties, and phase stabilities of Ni{sub 8}Mn{sub 6}Sn{sub 2?x}In{sub x} shape memory alloys has been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The energy difference between the austenitic and martensitic phases was found to increase with increasing In content, which implies an enhancement of the martensitic phase transition temperature (T{sub M}). Moreover, the formation energy results indicate that In-doping increases the relative stability of Ni{sub 8}Mn{sub 6}Sn{sub 2?x}In{sub x} both in austenite and martensite. This results from a reduction in density of states near the Fermi level regions caused by Ni-3dIn-5p hybridization when Sn is replaced by In. The equilibrium equation of state results show that the alloys Ni{sub 8}Mn{sub 6}Sn{sub 2?x}In{sub x} exhibit an energetically degenerated effect for an In content of x?=??1.5. This implies the coexistence of antiparallel and parallel configurations in the austenite.

  17. Defective Pollen Wall is Required for Anther and Microspore Development in Rice and Encodes a Fatty Acyl Carrier Protein Reductase

    SciTech Connect (OSTI)

    Shi, J.; Shanklin, J.; Tan, H.; Yu, X.-H.; Liu, Y.; Liang, W.; Ranathunge, K.; Franke, R. B.; Schreiber, L.; Wang, Y.; Kai, G.; Ma, H.; Zhang, D.

    2011-06-01

    Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.

  18. A POSSIBLE EVOLUTIONARY SCENARIO OF HIGHLY MAGNETIZED SUPER-CHANDRASEKHAR WHITE DWARFS: PROGENITORS OF PECULIAR TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Das, Upasana; Mukhopadhyay, Banibrata; Rao, A. R. E-mail: bm@physics.iisc.ernet.in

    2013-04-10

    Several recently discovered peculiar Type Ia supernovae seem to demand an altogether new formation theory that might help explain the puzzling dissimilarities between them and the standard Type Ia supernovae. The most striking aspect of the observational analysis is the necessity of invoking super-Chandrasekhar white dwarfs having masses {approx}2.1-2.8 M{sub Sun }, M{sub Sun} being the mass of Sun, as their most probable progenitors. Strongly magnetized white dwarfs having super-Chandrasekhar masses have already been established as potential candidates for the progenitors of peculiar Type Ia supernovae. Owing to the Landau quantization of the underlying electron degenerate gas, theoretical results yielded the observationally inferred mass range. Here, we sketch a possible evolutionary scenario by which super-Chandrasekhar white dwarfs could be formed by accretion on to a commonly observed magnetized white dwarf, invoking the phenomenon of flux freezing. This opens multiple possible evolution scenarios ending in supernova explosions of super-Chandrasekhar white dwarfs having masses within the range stated above. We point out that our proposal has observational support, such as the recent discovery of a large number of magnetized white dwarfs by the Sloan Digital Sky Survey.

  19. Piezoresistive characterization of bottom-up, n-type silicon microwires undergoing bend deformation

    SciTech Connect (OSTI)

    McClarty, Megan M.; Oliver, Derek R. E-mail: Derek.Oliver@umanitoba.ca; Bruce, Jared P.; Freund, Michael S. E-mail: Derek.Oliver@umanitoba.ca

    2015-01-12

    The piezoresistance of silicon has been studied over the past few decades in order to characterize the material's unique electromechanical properties and investigate their wider applicability. While bulk and top-down (etched) micro- and nano-wires have been studied extensively, less work exists regarding bottom-up grown microwires. A facile method is presented for characterizing the piezoresistance of released, phosphorus-doped silicon microwires that have been grown, bottom-up, via a chemical vapour deposition, vapour-liquid-solid process. The method uses conductive tungsten probes to simultaneously make electrical measurements via direct ohmic contact and apply mechanical strain via bend deformation. These microwires display piezoresistive coefficients within an order of magnitude of those expected for bulk n-type silicon; however, they show an anomalous response at degenerate doping concentrations (?10{sup 20?}cm{sup ?3}) when compared to lower doping concentrations (?10{sup 17?}cm{sup ?3}), with a stronger piezoresistive coefficient exhibited for the more highly doped wires. This response is postulated to be due to the different growth mechanism of bottom-up microwires as compared to top-down.

  20. Excitation spectrum of a model antiferromagnetic spin-trimer.

    SciTech Connect (OSTI)

    Stone, Matthew B; Fernandez-Alonso, F.; Adroja, D. T.; Dalal, N. S.; Villagran, D.; Cotton, F. A.; Nagler, Stephen E

    2007-01-01

    We present an inelastic neutron scattering (INS) study of the excitation spectrum of a quantum S=1/2 equilateral Heisenberg trimer, Cu{sub 3}(O{sub 2}C{sub 16}H{sub 23}){sub 61.2}C{sub 6}H{sub 12}. The magnetic properties of the system can be described by an ensemble of independent equilateral triangles of S=1/2 Cu{sup 2+} ions. With antiferromagnetic Heisenberg coupling, the ground state of each trimer is a degenerate pair of S=1/2 doublets, with a quartet S=3/2 excited state. Previous bulk measurements led to an estimate for the excitation energy of 28 meV. Here, we report INS measurements that can provide a direct measurement of magnetic excitation energies. These measurements are challenging since inter- and intramolecular vibrational modes associated with the organic ligands are at frequencies similar to the magnetic excitations. Measurements on a nonmagnetic compound with the same ligands as well as the temperature dependence of the neutron scattering cross section are used to identify the vibrational modes. This leads to an identification of the magnetic excitation energy as being approximately 37 meV at T=10 K, with a gradual softening with increasing temperature.

  1. A simple growth method for Nb?O? films and their optical properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dash, J. K.; Kisslinger, K.; Chen, L.; Topka, Michael R.; Dinolfo, Peter H.; Zhang, L. H.; Lu, T. -M.; Wang, G. -C.

    2015-04-13

    A simple method for the synthesis of Nb?O? films of thicknesses ranging from tens to several hundreds of nanometers on amorphous silicon dioxide or quartz substrates is presented. Nb?O? films were formed by annealing the sputter deposited Nb films under an Ar flow and without oxygen plasma in a quartz tube within a furnace at 850 C. The structural, compositional, optical, and vibrational properties were characterized by grazing incidence X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet visible spectroscopy, and Raman scattering. Each of the Nb?O? films is polycrystalline with an orthorhombic crystal structure. We observed vibrational modes includingmorelongitudinal optical, transverse optical, and triply degenerate modes, and measured the indirect optical band gap to be ~3.65 eV. The transmittance spectrum of the ~20 nm thick Nb?O? film shows over 90% transmittance below the band gap energy in the visible wavelength range and decreases to less than 20% in the ultraviolet regime. The optical properties of the films in the UV-vis range show potential applications as UV detectors.less

  2. Meson properties at finite temperature in a three flavor nonlocal chiral quark model with Polyakov loop

    SciTech Connect (OSTI)

    Contrera, G. A.; Dumm, D. Gomez; Scoccola, Norberto N.

    2010-03-01

    We study the finite temperature behavior of light scalar and pseudoscalar meson properties in the context of a three-flavor nonlocal chiral quark model. The model includes mixing with active strangeness degrees of freedom, and takes care of the effect of gauge interactions by coupling the quarks with the Polyakov loop. We analyze the chiral restoration and deconfinement transitions, as well as the temperature dependence of meson masses, mixing angles and decay constants. The critical temperature is found to be T{sub c{approx_equal}}202 MeV, in better agreement with lattice results than the value recently obtained in the local SU(3) PNJL model. It is seen that above T{sub c} pseudoscalar meson masses get increased, becoming degenerate with the masses of their chiral partners. The temperatures at which this matching occurs depend on the strange quark composition of the corresponding mesons. The topological susceptibility shows a sharp decrease after the chiral transition, signalling the vanishing of the U(1){sub A} anomaly for large temperatures.

  3. Bond-bending isomerism of Au2I3-: Competition between covalent bonding and aurophilicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Wan -Lu; Liu, Hong -Tao; Jian, Tian; Lopez, Gary V.; Piazza, Zachary A.; Huang, Dao -Ling; Chen, Teng -Teng; Su, Jing; Yang, Ping; Chen, Xin; et al

    2015-10-13

    We report a joint photoelectron spectroscopy and theoretical investigation of the gaseous Au2I3– cluster, which is found to exhibit two types of isomers due to competition between Au–I covalent bonding and Au–Au aurophilic interactions. The covalent bonding favors a bent IAuIAuI– structure with an obtuse Au–I–Au angle (100.7°), while aurophilic interactions pull the two Au atoms much closer, leading to an acutely bent structure (72.0°) with an Au–Au distance of 3.08 Å. The two isomers are separated by a small barrier and are nearly degenerate with the obtuse isomer being slightly more stable. At low temperature, only the obtuse isomermore » is observed; distinct experimental evidence is observed for the co-existence of a combination of isomers with both acute and obtuse bending angles at room temperature. As a result, the two bond-bending isomers of Au2I3– reveal a unique example of one molecule being able to oscillate between different structures as a result of two competing chemical forces.« less

  4. Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-10-12

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content,more » we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.« less

  5. Assignment of the luminescing states of [Au{sup 1}Rh{sup 1}({sup t}BuNC){sub 2}({mu}-dppm){sub 2}][PF{sub 6}]{sub 2}

    SciTech Connect (OSTI)

    Striplin, D.R.; Crosby, G.A.

    1995-07-13

    Fluorescence, phosphorescence, and excitation spectra were measured on the title compound. These results were augmented with polarization ratios obtained at 77 K and detailed studies of the temperature dependence of the phosphorescence in the 77-4 K range. The phosphorescence decay rate at K was also recorded as a function of an applied magnetic field. All the results are consistent with a 4d{sub z}Rh{sup 1} {yields} 6p{sub 2}Au{sup 1} orbital promotion leading to emitting {sup 1}A, {sup 3}A{sub 1} terms in pseudo-C{sub 2v} symmetry. The {sup 3}A{sub 1} term is split by spin-orbit coupling into a forbidden A{sub 2} state lying lowest followed by a quasi-degenerate pair, [B{sub 1}(x), B{sub 2}(y)] lying approximately 16 cm{sup -1} higher that decays >500 times faster than the lowest one. 28 refs., 6 figs.

  6. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    SciTech Connect (OSTI)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  7. MR-guided Periarterial Ethanol Injection for Renal Sympathetic Denervation: A Feasibility Study in Pigs

    SciTech Connect (OSTI)

    Streitparth, F. Walter, A.; Stolzenburg, N.; Heckmann, L.; Breinl, J.; Rinnenthal, J. L.; Beck, A.; De Bucourt, M.; Schnorr, J.; Bernhardt, U.; Gebauer, B.; Hamm, B.; Guenther, R. W.

    2013-06-15

    Purpose. To evaluate the feasibility and efficacy of image-guided periarterial ethanol injection as an alternative to transluminal radiofrequency ablation. Methods. Unilateral renal periarterial ethanol injection was performed under general anesthesia in 6 pigs with the contralateral kidney serving as control. All interventions were performed in an open 1.0 T MRI system under real-time multiplanar guidance. The injected volume was 5 ml (95 % ethanol labelled marked MR contrast medium) in 2 pigs and 10 ml in 4 pigs. Four weeks after treatment, the pigs underwent MRI including MRA and were killed. Norepinephrine (NE) concentration in the renal parenchyma served as a surrogate parameter to analyze the efficacy of sympathetic denervation. In addition, the renal artery and sympathetic nerves were examined histologically to identify evidence of vascular and neural injury. Results. In pigs treated with 10 ml ethanol, treatment resulted in neural degeneration. We found a significant reduction of NE concentration in the kidney parenchyma of 53 % (p < 0.02) compared with the untreated contralateral kidney. In pigs treated with 5 ml ethanol, no significant changes in histology or NE were observed. There was no evidence of renal arterial stenosis in MRI, macroscopy or histology in any pig. Conclusion. MR-guided periarterial ethanol injection was feasible and efficient for renal sympathetic denervation in a swine model. This technique may be a promising alternative to the catheter-based approach in the treatment of resistant arterial hypertension.

  8. Phenomenology of Dirac Neutralino Dark Matter

    SciTech Connect (OSTI)

    Buckley, Matthew R.; Hooper, Dan; Kumar, Jason

    2013-09-01

    In supersymmetric models with an unbroken R-symmetry (rather than only R-parity), the neutralinos are Dirac fermions rather than Majorana. In this article, we discuss the phenomenology of neutralino dark matter in such models, including the calculation of the thermal relic abundance, and constraints and prospects for direct and indirect searches. Due to the large elastic scattering cross sections with nuclei predicted in R-symmetric models, we are forced to consider a neutralino that is predominantly bino, with very little higgsino mixing. We find a large region of parameter space in which bino-like Dirac neutralinos with masses between 10 and 380 GeV can annihilate through slepton exchange to provide a thermal relic abundance in agreement with the observed cosmological density, without relying on coannihilations or resonant annihilations. The signatures for the indirect detection of Dirac neutralinos are very different than predicted in the Majorana case, with annihilations proceeding dominately to $\\tau^+ \\tau^-$, $\\mu^+ \\mu^-$ and $e^+ e^-$ final states, without the standard chirality suppression. And unlike Majorana dark matter candidates, Dirac neutralinos experience spin-independent scattering with nuclei through vector couplings (via $Z$ and squark exchange), leading to potentially large rates at direct detection experiments. These and other characteristics make Dirac neutralinos potentially interesting within the context of recent direct and indirect detection anomalies. We also discuss the case in which the introduction of a small Majorana mass term breaks the $R$-symmetry, splitting the Dirac neutralino into a pair of nearly degenerate Majorana states.

  9. Hole-induced insulator-to-metal transition in La1-xSrxCrO3 epitaxial films

    SciTech Connect (OSTI)

    Zhang, Hongliang; Du, Yingge; Sushko, Petr; Bowden, Mark E.; Shutthanandan, V.; Sallis, Shawn; Piper, Louis F. J.; Chambers, Scott A.

    2015-04-01

    We have investigated the evolution of the structural and electronic properties of La1-xSrxCrO3 (0 ? x ? 1) epitaxial films deposited by molecular beam epitaxy (MBE) using x-ray diffraction, x-ray photoemission spectroscopy, x-ray absorption spectroscopy, electrical transport, and ab initio modeling. LaCrO3 is an antiferromagnetic Mott insulator whereas stoichiometric SrCrO3 is a metal. Substituting Sr2+ for La3+ in LaCrO3 effectively dopes holes into the top of valence band, leading to Cr4+ (3d2) local electron configurations. Core-level and valence-band features monotonically shift to lower binding energy with increasing x, indicating downward movement of the Fermi level toward the valence band maximum. An insulator-to-metal like transition is observed at x ? 0. 65 even as the material becomes a p-type semiconductor at lower doping level and eventually becomes degenerately doped. Valence band x-ray photoemission spectroscopy reveals diminution of electronic state density at the top of the valence band while O K-edge x-ray absorption spectroscopy shows the development of a new unoccupied state above the Fermi level as holes are doped into LaCrO3. These results indicate a pronounced redistribution of electronic state density of states upon hole doping, a result that is also obtained by density functional theory with a Hubbard U correction.

  10. Constraining absolute neutrino masses via detection of galactic supernova neutrinos at JUNO

    SciTech Connect (OSTI)

    Lu, Jia-Shu; Cao, Jun; Li, Yu-Feng; Zhou, Shun

    2015-05-26

    A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν}<(0.83±0.24) eV at the 95% confidence level for a typical galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν}<(0.94±0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.

  11. Rigorous theory of molecular orientational nonlinear optics

    SciTech Connect (OSTI)

    Kwak, Chong Hoon Kim, Gun Yeup

    2015-01-15

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecular hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.

  12. Inertial fusion program, January 1-June 30, 1979

    SciTech Connect (OSTI)

    Skoberne, F.

    1981-06-01

    Progress in the development of high-energy short-pulse carbon dioxide laser systems for fusion research is reported. Improvements are outlined for the Los Alamos National Laboratory's Gemini System, which permitted over 500 shots in support of 10 different target experiments; the transformation of our eight-beam system, Helios, from a developmental to an operational facility that is capable of irradiating targets on a routine basis is described; and progress made toward completion of Antares, our 100- to 200-TW target irradiation system, is detailed. Investigations of phenomena such as phase conjugation by degenerate four-wave mixing and its applicability to laser fusion systems, and frequency multiplexing as a means toward multipulse energy extraction are summarized. Also discussed are experiments with targets designed for adiabatic compression. Progress is reported in the development of accurate diagnostics, especially for the detection of expanding ions, of neutron yield, and of x-ray emission. Significant advances in our theoretical efforts are summarized, such as the adaptation of our target design codes for use with the CRAY-1 computer, and new results leading to a better understanding of implosion phenomena are reported. The results of various fusion reactor studies are summarized, including the development of an ICF reactor blanket that offers a promising alternative to the usual lithium blanket, and the formulation of a capital-cost data base for laser fusion reactors to permit meaningful comparisons with other technologies.

  13. Search for supersymmetry in the vector-boson fusion topology in proton-proton collisions at ?(s) = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-09-27

    Our first search for supersymmetry in the vector-boson fusion topology is presented.The search targets final states with at least two leptons, large missing transverse momentum, and two jets with a large separation in rapidity. The data sample corresponds to an integrated luminosity of 19.7 fb-1 of proton-proton collisions at ?s = 8 TeV collected with the CMS detector at the CERN LHC. The observed dijet invariant mass spectrum is found to be consistent with the expected standard model prediction. Upper limits are set on the cross sections for chargino and neutralino production with two associated jets, assuming the supersymmetric partner of the ? lepton to be the lightest slepton and the lightest slepton to be lighter than the charginos. For a compressed-mass-spectrum scenario in which the mass difference between the lightest supersymmetric particle X~01 and the next lightest, mass-degenerate, gaugino particles X~02 and X~1 is 50 GeV, a mass lower limit of 170 GeV is set for these latter two particles.

  14. Physical interpretation of Jeans instability in quantum plasmas

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2014-08-15

    In this paper, we use the quantum hydrodynamics and its hydrostatic limit to investigate the newly posed problem of Jeans instability in quantum plasmas from a different point of view in connection with the well-known Chandrasekhar mass-limit on highly collapsed degenerate stellar configurations. It is shown that the hydrodynamic stability of a spherically symmetric uniform quantum plasma with a given fixed mass is achieved by increase in its mass-density or decrease in the radius under the action of gravity. It is also remarked that for masses beyond the limiting Jeans-mass, the plasma becomes completely unstable and the gravitational collapse would proceed forever. This limiting mass is found to depend strongly on the composition of the quantum plasma and the atomic-number of the constituent ions, where it is observed that heavier elements rather destabilize the quantum plasma hydrodynamically. It is also shown that the Chandrasekhar mass-limit for white dwarf stars can be directly obtained from the hydrostatic limit of our model.

  15. Black hole magnetospheres

    SciTech Connect (OSTI)

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  16. Revealing asymmetries in the HD 181327 debris disk: A recent massive collision or interstellar medium warping

    SciTech Connect (OSTI)

    Stark, Christopher C.; Kuchner, Marc J.; Schneider, Glenn; Weinberger, Alycia J.; Debes, John H.; Grady, Carol A.; Jang-Condell, Hannah

    2014-07-01

    New multi-roll coronagraphic images of the HD 181327 debris disk obtained using the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope reveal the debris ring in its entirety at high signal-to-noise ratio and unprecedented spatial resolution. We present and apply a new multi-roll image processing routine to identify and further remove quasi-static point-spread function-subtraction residuals and quantify systematic uncertainties. We also use a new iterative image deprojection technique to constrain the true disk geometry and aggressively remove any surface brightness asymmetries that can be explained without invoking dust density enhancements/deficits. The measured empirical scattering phase function for the disk is more forward scattering than previously thought and is not well-fit by a Henyey-Greenstein function. The empirical scattering phase function varies with stellocentric distance, consistent with the expected radiation pressured-induced size segregation exterior to the belt. Within the belt, the empirical scattering phase function contradicts unperturbed debris ring models, suggesting the presence of an unseen planet. The radial profile of the flux density is degenerate with a radially varying scattering phase function; therefore estimates of the ring's true width and edge slope may be highly uncertain. We detect large scale asymmetries in the disk, consistent with either the recent catastrophic disruption of a body with mass >1% the mass of Pluto, or disk warping due to strong interactions with the interstellar medium.

  17. No X-rays from the very nearby type Ia SN 2014J: Constraints on its environment

    SciTech Connect (OSTI)

    Margutti, R.; Parrent, J.; Kamble, A.; Soderberg, A. M.; Milisavljevic, D.; Drout, M. R.; Kirshner, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States); Foley, R. J. [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801 (United States)

    2014-07-20

    Deep X-ray observations of the post-explosion environment around the very nearby Type Ia SN 2014J (d{sub L} = 3.5 Mpc) reveal no X-ray emission down to a luminosity L{sub x} < 7 10{sup 36} erg s{sup 1} (0.3-10 keV) at ?t ? 20 days after the explosion. We interpret this limit in the context of inverse Compton emission from upscattered optical photons by the supernova shock and constrain the pre-explosion mass-loss rate of the stellar progenitor system to be M-dot <10{sup ?9} M{sub ?} yr{sup ?1} (for wind velocity v{sub w} = 100 km s{sup 1}). Alternatively, the SN shock might be expanding into a uniform medium with density n{sub CSM} < 3 cm{sup 3}. These results rule out single-degenerate (SD) systems with steady mass loss until the terminal explosion and constrain the fraction of transferred material lost at the outer Lagrangian point to be ?1%. The allowed progenitors are (1) white dwarf-white dwarf progenitors, (2) SD systems with unstable hydrogen burning experiencing recurrent nova eruptions with recurrence time t < 300 yr, and (3) stars where the mass loss ceases before the explosion.

  18. Direct link between neutrinoless double beta decay and leptogenesis in a seesaw model with S{sub 4} symmetry

    SciTech Connect (OSTI)

    Ahn, Y. H. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Kang, Sin Kyu [School of Liberal Arts, Seoul National Univ. of Technology, Seoul 139-743 (Korea, Republic of); Kim, C. S. [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); Nguyen, T. Phong [Department of Physics and IPAP, Yonsei University, Seoul 120-749 (Korea, Republic of); Department of Physics, Cantho University, Cantho (Viet Nam)

    2010-11-01

    We study how leptogenesis can be implemented in a seesaw model with S{sub 4} flavor symmetry, which leads to the neutrino tribimaximal mixing matrix and degenerate right-handed (RH) neutrino spectrum. Introducing a tiny soft S{sub 4} symmetry breaking term in the RH neutrino mass matrix, we show that the flavored resonant leptogenesis can be successfully realized, which can lower the seesaw scale much so, as to make it possible to probe in colliders. Even though such a tiny soft breaking term is essential for leptogenesis, it does not significantly affect the low-energy observables. We also investigate how the effective light neutrino mass || associated with neutrinoless double beta decay can be predicted along with the neutrino mass hierarchies by imposing experimental data of low-energy observables. We find a direct link between leptogenesis and neutrinoless double beta decay characterized by || through a high energy CP phase {phi}, which is correlated with low-energy Majorana CP phases. It is shown that our predictions of || for some fixed parameters of high energy physics can be constrained by the current observation of baryon asymmetry.

  19. Delayed energy injection model for gamma-ray burst afterglows

    SciTech Connect (OSTI)

    Geng, J. J.; Huang, Y. F.; Yu, Y. B. [Department of Astronomy, Nanjing University, Nanjing 210093 (China); Wu, X. F., E-mail: hyf@nju.edu.cn, E-mail: xfwu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2013-12-10

    The shallow decay phase and flares in the afterglows of gamma-ray bursts (GRBs) are widely believed to be associated with the later activation of the central engine. Some models of energy injection involve a continuous energy flow since the GRB trigger time, such as the magnetic dipole radiation from a magnetar. However, in the scenario involving a black hole accretion system, the energy flow from the fall-back accretion may be delayed for a fall-back time ?t {sub fb}. Thus, we propose a delayed energy injection model. The delayed energy would cause a notable rise to the Lorentz factor of the external shock, which will 'generate' a bump in the multiple band afterglows. If the delayed time is very short, our model degenerates to the previous models. Our model can explain the significant re-brightening in the optical and infrared light curves of GRB 081029 and GRB 100621A. A considerable fall-back mass is needed to provide the later energy; this indicates that GRBs accompanied with fall-back material may be associated with a low energy supernova so that the fraction of the envelope can survive during eruption. The fall-back time can give meaningful information on the properties of GRB progenitor stars.

  20. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; et al

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observationsmore » and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.« less

  1. Solitary Waves of a $$\\mathcal {P}$$ $$\\mathcal {T}$$-Symmetric Nonlinear Dirac Equation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cuevas-Maraver, Jesus; Kevrekidis, Panayotis G.; Saxena, Avadh; Cooper, Fred; Khare, Avinash; Comech, Andrew; Bender, Carl M.

    2015-10-06

    In our study we consider we consider a prototypical example of a mathcalP mathcalT-symmetric Dirac model. We discuss the underlying linear limit of the model and identify the threshold of the mathcalP mathcalT -phase transition in an analytical form. We then focus on the examination of the nonlinear model. We consider the continuation in the mathcalP mathcalT -symmetric model of the solutions of the corresponding Hamiltonian model and find that the solutions can be continued robustly as stable ones all the way up to the mathcalP mathcalT-transition threshold. In the latter, they degenerate into linear waves. We also examine themore » dynamics of the model. Given the stability of the waveforms in the mathcalP mathcalT-exact phase, we consider them as initial conditions for parameters outside of that phase. We also find that both oscillatory dynamics and exponential growth may arise, depending on the size of the corresponding “quench”. The former can be characterized by an interesting form of bifrequency solutions that have been predicted on the basis of the SU symmetry. Finally, we explore some special, analytically tractable, but not mathcalP mathcalT-symmetric solutions in the massless limit of t- e model.« less

  2. A simple growth method for Nb2O5 films and their optical properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dash, J. K.; Chen, L.; Topka, Michael R.; Dinolfo, Peter H.; Zhang, L. H.; Kisslinger, K.; Lu, T. -M.; Wang, G. -C.

    2015-04-13

    A simple method for the synthesis of Nb₂O₅ films of thicknesses ranging from tens to several hundreds of nanometers on amorphous silicon dioxide or quartz substrates is presented. Nb₂O₅ films were formed by annealing the sputter deposited Nb films under an Ar flow and without oxygen plasma in a quartz tube within a furnace at 850 °C. The structural, compositional, optical, and vibrational properties were characterized by grazing incidence X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet visible spectroscopy, and Raman scattering. Each of the Nb₂O₅ films is polycrystalline with an orthorhombic crystal structure. We observed vibrational modes includingmore » longitudinal optical, transverse optical, and triply degenerate modes, and measured the indirect optical band gap to be ~3.65 eV. The transmittance spectrum of the ~20 nm thick Nb₂O₅ film shows over 90% transmittance below the band gap energy in the visible wavelength range and decreases to less than 20% in the ultraviolet regime. As a result, the optical properties of the films in the UV-vis range show potential applications as UV detectors.« less

  3. Deterministic Arbitrary Switching of Polarization in a Ferroelectric Thin Film

    SciTech Connect (OSTI)

    Vasudevan, Rama K [ORNL; Matsumoto, Yuji [Tohoku University, Sendai, Japan; Cheng, Xuan [University of New South Wales, Sydney, Australia; Imai, Akira [Tokyo Institute of Technology; Maruyama, Shingo [Tohoku University, Sendai, Japan; Xin, Huolin L. [Brookhaven National Laboratory (BNL); Okatan, Mahmut B [ORNL; Jesse, Stephen [ORNL; Kalinin, Sergei V [ORNL; Nagarajan, Valanoor [University of New South Wales

    2014-01-01

    Ferroelectrics have been used as memory storage devices, with an upper bound on the total possible memory levels generally dictated by the number of degenerate states allowed by the symmetry of the ferroelectric phase. Here, we introduce a new concept for storage wherein the polarization can be rotated arbitrarily, effectively decoupling it from the crystallographic symmetry of the ferroelectric phase on the mesoscale. By using a Bi5Ti3FeO15-CoFe2O4 film and via Band-Excitation Piezoresponse Force Microscopy, we show the ability to arbitrarily rotate polarization, create a spectrum of switched states, and suggest the reason for the polarization rotation is an abundance of sub-50nm nanodomains. Transmission electron microscopy-based strain mapping confirms significant local strain undulations imparted on the matrix by the CoFe2O4 inclusions, which causes significant local disorder. These experiments point to controlled tuning of polarization rotation in a standard ferroelectric, and hence the potential to greatly extend the attainable densities for ferroelectric memories.

  4. Preliminayr Study on Diffraction Enhanced Radiographic Imaging for a Canine Model of Cartilage Damage

    SciTech Connect (OSTI)

    Muehleman,C.; Li, J.; Zhong, Z.

    2006-01-01

    Objective: To demonstrate the ability of a novel radiographic technique, Diffraction Enhanced Radiographic Imaging (DEI), to render high contrast images of canine knee joints for identification of cartilage lesions in situ. Methods: DEI was carried out at the X-15A beamline at Brookhaven National Laboratory on intact canine knee joints with varying levels of cartilage damage. Two independent observers graded the DE images for lesions and these grades were correlated to the gross morphological grade. Results: The correlation of gross visual grades with DEI grades for the 18 canine knee joints as determined by observer 1 (r2=0.8856, P=0.001) and observer 2 (r2=0.8818, P=0.001) was high. The overall weighted ? value for inter-observer agreement was 0.93, thus considered high agreement. Conclusion: The present study is the first study for the efficacy of DEI for cartilage lesions in an animal joint, from very early signs through erosion down to subchondral bone, representing the spectrum of cartilage changes occurring in human osteoarthritis (OA). Here we show that DEI allows the visualization of cartilage lesions in intact canine knee joints with good accuracy. Hence, DEI may be applicable for following joint degeneration in animal models of OA.

  5. A reconnaissance of the possible donor stars to the Kepler supernova

    SciTech Connect (OSTI)

    Kerzendorf, Wolfgang E.; Childress, Michael; Schmidt, Brian P.; Scharwchter, Julia; Do, Tuan

    2014-02-10

    The identity of Type Ia supernova progenitors remains a mystery, with various lines of evidence pointing toward either accretion from a nondegenerate companion or the rapid merger of two degenerate stars leading to the thermonuclear destruction of a white dwarf. In this paper, we spectroscopically scrutinize 24 of the brightest stars residing in the central 38'' 38'' of the SN 1604 (Kepler) supernova remnant to search for a possible surviving companion star. We can rule out, with high certainty, a red giant companion stara progenitor indicated by some models of the supernova remnant. Furthermore, we find no star that exhibits properties uniquely consistent with those expected of a donor star down to L > 10 L {sub ?}. While the distribution of star properties toward the remnant are consistent with unrelated stars, we identify the most promising candidates for further astrometric and spectroscopic follow up. Such a program would either discover the donor star or place strong limits on progenitor systems to luminosities with L << L {sub ?}.

  6. THE HYBRID CONe WD + He STAR SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Wang, B.; Meng, X.; Liu, D.-D.; Han, Z.; Liu, Z.-W.

    2014-10-20

    Hybrid CONe white dwarfs (WDs) have been suggested to be possible progenitors of type Ia supernovae (SNe Ia). In this Letter, we systematically studied the hybrid CONe WD + He star scenario for the progenitors of SNe Ia, in which a hybrid CONe WD increases its mass to the Chandrasekhar mass limit by accreting He-rich material from a non-degenerate He star. We obtained the SN Ia birthrates and delay times for this scenario using to a series of detailed binary population synthesis simulations. The SN Ia birthrates for this scenario are ?0.033-0.539 10{sup 3} yr{sup 1}, which roughly accounts for 1%-18% of all SNe Ia. The estimated delay times are ?28Myr-178Myr, which makes these the youngest SNe Ia predicted by any progenitor model so far. We suggest that SNe Ia from this scenario may provide an alternative explanation for type Iax SNe. We also presented some properties of the donors at the point when the WDs reach the Chandrasekhar mass. These properties may be a good starting point for investigating the surviving companions of SNe Ia and for constraining the progenitor scenario studied in this work.

  7. A review of direct numerical simulations of astrophysical detonations and their implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; Bronson Messer, O. E.

    2013-04-11

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x107 g∙cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x107 g∙cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less

  8. Formation of nanotwin networks during high-temperature crystallization of amorphous germanium

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sandoval, Luis; Reina, Celia; Marian, Jaime

    2015-11-26

    Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the <111> crystallographic orientation, we find a degenerate atomic rearrangement process, withmore » two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of <111> semiconductor crystals, where growth is restrained to one dimension. Lastly, we calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation.« less

  9. On the dynamics of non-relativistic flavor-mixed particles

    SciTech Connect (OSTI)

    Medvedev, Mikhail V.

    2014-06-01

    Evolution of a system of interacting non-relativistic quantum flavor-mixed particles is considered both theoretically and numerically. It was shown that collisions of mixed particles not only scatter them elastically, but can also change their mass eigenstates thus affecting particles' flavor composition and kinetic energy. The mass eigenstate conversions and elastic scattering are related but different processes, hence the conversion S-matrix elements can be arbitrarily large even when the elastic scattering S-matrix elements vanish. The conversions are efficient when the mass eigenstates are well-separated in space but suppressed if their wave-packets overlap; the suppression is most severe for mass-degenerate eigenstates in flat space-time. The mass eigenstate conversions can lead to an interesting process, called ''quantum evaporation'', in which mixed particles, initially confined deep inside a gravitational potential well and scattering only off each other, can escape from it without extra energy supply leaving nothing behind inside the potential at t ? ?. Implications for the cosmic neutrino background and the two-component dark matter model are discussed and a prediction for the direct detection dark matter experiments is made.

  10. Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential

    SciTech Connect (OSTI)

    Kim, Inkoo; Lee, Yoon Sup

    2014-10-28

    We report the formulation and implementation of KRCASPT2, a two-component multi-configurational second-order perturbation theory based on Kramers restricted complete active space self-consistent field (KRCASSCF) reference function, in the framework of the spin-orbit relativistic effective core potential. The zeroth-order Hamiltonian is defined as the sum of nondiagonal one-electron operators with generalized two-component Fock matrix elements as scalar factors. The Kramers symmetry within the zeroth-order Hamiltonian is maintained via the use of a state-averaged density, allowing a consistent treatment of degenerate states. The explicit expressions are derived for the matrix elements of the zeroth-order Hamiltonian as well as for the perturbation vector. The use of a fully variational reference function and nondiagonal operators in relativistic multi-configurational perturbation theory is reported for the first time. A series of initial calculations are performed on the ionization potential and excitation energies of the atoms of the 6p-block; the results display a significant improvement over those from KRCASSCF, showing a closer agreement with experimental results. Accurate atomic properties of the superheavy elements of the 7p-block are also presented, and the electronic structures of the low-lying excited states are compared with those of their lighter homologues.

  11. Continuum model for chiral induced spin selectivity in helical molecules

    SciTech Connect (OSTI)

    Medina, Ernesto; Gonzlez-Arraga, Luis A.; Finkelstein-Shapiro, Daniel; Mujica, Vladimiro; Berche, Bertrand

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective ?{sub z} ? ?{sub z} coupling via interbase p{sub x,y} ? p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  12. /sup 14/N quadrupole double resonance in some substituted hydroxamic acids

    SciTech Connect (OSTI)

    Ruiquin, W.; Xiaolan, Y.; Zhenye, F.; Haq, M.M.I.; Khurshid, M.M.P.; Rayner, T.J.; Smith, J.A.S.; Palmer, M.H.

    1989-01-04

    /sup 14/N quadrupole coupline constants and asymmetry parameters have been measured in a number of hydroxamic acids by the double-resonance field-cycling techniques based on either irradiation in zero magnetic field or cross relaxation. The compounds all display high asymmetry parameters. Those in which this quantity is greater than 0.9 show remarkable line shapes for the two lower /sup 14/N frequencies (/gamma//sub y/, /gamma//sub z/) in their irradiation spectra. They are explained in terms of a thermal-mixing mechanism, which generates polarization of the /sup 1/H dipolar levels when these nearly degenerate frequencies are strongly irradiated in zero field, and then subsequently modified by level crossing when the sample is returned to high field to measure the remaining /sup 1/H signal. Ab initio SCF-MO calculations of the /sup 14/N quadrupole tensor in a group of molecules at the orientation found in crystals of acetohydroxamic acid hemihydrate and oxalodihydroxamic acid are in reasonable agreement with experiment and predict that in all the hydroxamic acids studied in the maximum principal component is negative and closely parallel to the direction of the 2p/sub pi/ orbital. 53 references, 6 figures, 6 tables.

  13. A simple growth method for Nb2O5 films and their optical properties

    SciTech Connect (OSTI)

    Dash, J. K.; Chen, L.; Topka, Michael R.; Dinolfo, Peter H.; Zhang, L. H.; Kisslinger, K.; Lu, T. -M.; Wang, G. -C.

    2015-04-13

    A simple method for the synthesis of Nb?O? films of thicknesses ranging from tens to several hundreds of nanometers on amorphous silicon dioxide or quartz substrates is presented. Nb?O? films were formed by annealing the sputter deposited Nb films under an Ar flow and without oxygen plasma in a quartz tube within a furnace at 850 C. The structural, compositional, optical, and vibrational properties were characterized by grazing incidence X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet visible spectroscopy, and Raman scattering. Each of the Nb?O? films is polycrystalline with an orthorhombic crystal structure. We observed vibrational modes including longitudinal optical, transverse optical, and triply degenerate modes, and measured the indirect optical band gap to be ~3.65 eV. The transmittance spectrum of the ~20 nm thick Nb?O? film shows over 90% transmittance below the band gap energy in the visible wavelength range and decreases to less than 20% in the ultraviolet regime. As a result, the optical properties of the films in the UV-vis range show potential applications as UV detectors.

  14. Mimetic finite difference method for the stokes problem on polygonal meshes

    SciTech Connect (OSTI)

    Lipnikov, K; Beirao Da Veiga, L; Gyrya, V; Manzini, G

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  15. Searches for heavy long-lived charged particles with the ATLAS detector in proton-proton collisions at ?s = 8 TeV

    SciTech Connect (OSTI)

    Aad, G.

    2015-01-14

    Searches for heavy long-lived charged particles are performed using a data sample of 19.1 fb-1 from proton-proton collisions at a centre-of-mass energy of \\( \\sqrt{s}=8 \\) TeV collected by the ATLAS detector at the Large Hadron Collider. No excess is observed above the estimated background and limits are placed on the mass of long-lived particles in various supersymmetric models. Long-lived tau sleptons in models with gauge-mediated symmetry breaking are excluded up to masses between 440 and 385 GeV for tan ? between 10 and 50, with a 290 GeV limit in the case where only direct tau slepton production is considered. In the context of simplified LeptoSUSY models, where sleptons are stable and have a mass of 300 GeV, squark and gluino masses are excluded up to a mass of 1500 and 1360 GeV, respectively. Directly produced charginos, in simplified models where they are nearly degenerate to the lightest neutralino, are excluded up to a mass of 620 GeV. As a result, R-hadrons, composites containing a gluino, bottom squark or top squark, are excluded up to a mass of 1270, 845 and 900 GeV, respectively, using the full detector; and up to a mass of 1260, 835 and 870 GeV using an approach disregarding information from the muon spectrometer.

  16. Amplitude modulation of quantum-ion-acoustic wavepackets in electron-positron-ion plasmas: Modulational instability, envelope modes, extreme waves

    SciTech Connect (OSTI)

    Rahman, Ata-ur-; Kerr, Michael Mc Kourakis, Ioannis; El-Taibany, Wael F.; Qamar, A.

    2015-02-15

    A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma. Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and classical. A multiscale perturbation method is used to derive a nonlinear Schrdinger equation for the envelope amplitude, based on which the occurrence of modulational instability is investigated in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron concentration, and the ionic temperature) are shown to affect the conditions for modulational instability significantly, in fact modifying the associated threshold as well as the instability growth rate. In particular, the relativistic degeneracy parameter leads to an enhancement of the modulational instability mechanism. Furthermore, the effect of different relevant plasma parameters on the characteristics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astrophysical regimes.

  17. Orbital ferromagnetism and the Chandrasekhar mass-limit

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2012-05-15

    In this paper, we use quantum magnetohydrodynamic as well as magnetohydrostatic (MHS) models for a zero-temperature Fermi-Dirac plasma to show the fundamental role of Landau orbital ferromagnetism (LOFER) on the magnetohydrostatic stability of compact stars. It is revealed that the generalized flux-conserved equation of state of form B={beta}{rho}{sup 2s/3} only with conditions 0{<=}s{<=}1 and 0{<=}{beta}<{radical}(2{pi}) can lead to a stable compact stellar configuration. The distinct critical value {beta}{sub cr}={radical}(2{pi}) is shown to affect the magnetohydrostatic stability of the LOFER (s = 1) state and the magnetic field strength limit on the compact stellar configuration. Furthermore, the value of the parameter {beta} is remarked to fundamentally alter the Chandrasekhar mass-radius relation and the known mass-limit on white dwarfs when the star is in LOFER state. Current findings can help to understand the role of flux-frozen ferromagnetism and its fundamental role on hydrostatic stability of relativistically degenerate super-dense plasmas such as white dwarfs.

  18. Global fits of the dark matter-nucleon effective interactions

    SciTech Connect (OSTI)

    Catena, Riccardo; Gondolo, Paolo E-mail: paolo.gondolo@utah.edu

    2014-09-01

    The effective theory of isoscalar dark matter-nucleon interactions mediated by heavy spin-one or spin-zero particles depends on 10 coupling constants besides the dark matter particle mass. Here we compare this 11-dimensional effective theory to current observations in a comprehensive statistical analysis of several direct detection experiments, including the recent LUX, SuperCDMS and CDMSlite results. From a multidimensional scan with about 3 million likelihood evaluations, we extract the marginalized posterior probability density functions (a Bayesian approach) and the profile likelihoods (a frequentist approach), as well as the associated credible regions and confidence levels, for each coupling constant vs dark matter mass and for each pair of coupling constants. We compare the Bayesian and frequentist approach in the light of the currently limited amount of data. We find that current direct detection data contain sufficient information to simultaneously constrain not only the familiar spin-independent and spin-dependent interactions, but also the remaining velocity and momentum dependent couplings predicted by the dark matter-nucleon effective theory. For current experiments associated with a null result, we find strong correlations between some pairs of coupling constants. For experiments that claim a signal (i.e., CoGeNT and DAMA), we find that pairs of coupling constants produce degenerate results.

  19. Touching the void: A striking drop in stellar halo density beyond 50 kpc

    SciTech Connect (OSTI)

    Deason, A. J.; Rockosi, C. M.; Belokurov, V.; Koposov, S. E.

    2014-05-20

    We use A-type stars selected from Sloan Digital Sky Survey data release 9 photometry to measure the outer slope of the Milky Way stellar halo density profile beyond 50 kpc. A likelihood-based analysis is employed that models the ugr photometry distribution of blue horizontal branch and blue straggler stars. In the magnitude range 18.5 < g < 20.5, these stellar populations span a heliocentric distance range of: 10 ? D {sub BS}/kpc ? 75, 40 ? D {sub BHB}/kpc ? 100. Contributions from contaminants, such as QSOs, and the effect of photometric uncertainties, are also included in our modeling procedure. We find evidence for a very steep outer halo profile, with power-law index ? ? 6 beyond Galactocentric radii r = 50 kpc, and even steeper slopes favored (? ? 6-10) at larger radii. This result holds true when stars belonging to known overdensities, such as the Sagittarius stream, are included or excluded. We show that, by comparison to numerical simulations, stellar halos with shallower slopes at large distances tend to have more recent accretion activity. Thus, it is likely that the Milky Way has undergone a relatively quiet accretion history over the past several gigayears. Our measurement of the outer stellar halo profile may have important implications for dynamical mass models of the Milky Way, where the tracer density profile is strongly degenerate with total mass estimates.

  20. Communication: A density functional investigation of structure-property evolution in the tetrakis hexahedral C{sub 4}Al{sub 14} nanocluster

    SciTech Connect (OSTI)

    Irving, Benjamin J. E-mail: irvinben@fel.cvut.cz; Naumkin, Fedor Y.

    2014-10-07

    Nanoclusters are prime objects of study in modern nanotechnology and offer a variety of applications promoted by their properties tunable by size, shape, and composition. DFT calculations are employed to analyze structure, stability, and selected electronic properties of a core-shell C{sub 4}Al{sub 14} species. With insertion of the carbon core, the original low-symmetry aluminum cluster is predicted to undergo a considerable reshaping and acquire a striking D{sub 4h} tetrakis-hexahedral geometry, with proportions controlled by a near-degenerate spin state or charge. The system also becomes more stable to dissociation. Surprisingly, other properties such as ionisation energy and electron affinity do not change significantly, although still exhibit some interesting features including opposite variations for vertical and adiabatic values. The stability and property evolutions are analyzed in terms of contributions from reshaping of the shell and its further interaction with the core. The system thus has potential applications as a symmetric building unit and a molecular device for nano-electronics/spintronics.

  1. Band gap estimation from temperature dependent Seebeck measurementDeviations from the 2e|S|{sub max}T{sub max} relation

    SciTech Connect (OSTI)

    Gibbs, Zachary M.; Kim, Hyun-Sik; Wang, Heng; Snyder, G. Jeffrey

    2015-01-12

    In characterizing thermoelectric materials, electrical and thermal transport measurements are often used to estimate electronic band structure properties such as the effective mass and band gap. The Goldsmid-Sharp band gap, E{sub g}?=?2e|S|{sub max}T{sub max}, is a tool widely employed to estimate the band gap from temperature dependent Seebeck coefficient measurements. However, significant deviations of more than a factor of two are now known to occur. We find that this is when either the majority-to-minority weighted mobility ratio (A) becomes very different from 1.0 or as the band gap (E{sub g}) becomes significantly smaller than 10 k{sub B}T. For narrow gaps (E{sub g}???6 k{sub B}T), the Maxwell-Boltzmann statistics applied by Goldsmid-Sharp break down and Fermi-Dirac statistics are required. We generate a chart that can be used to quickly estimate the expected correction to the Goldsmid-Sharp band gap depending on A and S{sub max}; however, additional errors can occur for S?degenerate behavior.

  2. Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR

    SciTech Connect (OSTI)

    D`Souza, T.M.; Boominathan, K.; Reddy, C.A.

    1996-10-01

    Degenerate primers corresponding to the consensus sequences of the copper-binding regions in the N-terminal domains of known basidiomycete laccases were used to isolate laccase gene-specific sequences from strains representing nine genera of wood rot fungi. All except three gave the expected PCR product of about 200 bp. Computer searches of the databases identified the sequences of each of the PCR product of about 200 bp. Computer searches of the databases identified the sequence of each of the PCR products analyzed as a laccase gene sequence, suggesting the specificity of the primers. PCR products of the white rot fungi Ganoderma lucidum, Phlebia brevispora, and Trametes versicolor showed 65 to 74% nucleotide sequence similarity to each other; the similarity in deduced amino acid sequences was 83 to 91%. The PCR products of Lentinula edodes and Lentinus tigrinus, on the other hand, showed relatively low nucleotide and amino acid similarities (58 to 64 and 62 to 81%, respectively); however, these similarities were still much higher than when compared with the corresponding regions in the laccases of the ascomycete fungi Aspergillus nidulans and Neurospora crassa. A few of the white rot fungi, as well as Gloeophyllum trabeum, a brown rot fungus, gave a 144-bp PCR fragment which had a nucleotide sequence similarity of 60 to 71%. Demonstration of laccase activity in G. trabeum and several other brown rot fungi was of particular interest because these organisms were not previously shown to produce laccases. 36 refs., 6 figs., 2 tabs.

  3. Space-charge waves in magnetized and collisional quantum plasma columns confined in carbon nanotubes

    SciTech Connect (OSTI)

    Bagheri, Mehran; Abdikian, Alireza

    2014-04-15

    We study the dispersion relation of electrostatic waves propagating in a column of quantum magnetized collisional plasma embraced completely by a metallic single-walled carbon nanotubes. The analysis is based on the quantum linearized hydrodynamic formalism of collective excitations within the quasi-static approximation. It is shown when the electronic de Broglie's wavelength of the plasma is comparable in the order of magnitude to the radius of the nanotube, the quantum effects are quite meaningful and our model anticipates one acoustical and two optical space-charge waves which are positioned into three propagating bands. With increasing the nanotube radius, the features of the acoustical branch remain unchanged, yet two distinct optical branches are degenerated and the classical behavior is recovered. This study might provide a platform to create new finite transverse cross section quantum magnetized plasmas and to devise nanometer dusty plasmas based on the metallic carbon nanotubes in the absence of either a drift or a thermal electronic velocity and their existence could be experimentally examined.

  4. Interaction of cesium adatoms with free-standing graphene and graphene-veiled SiO2 surfaces

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Weck, Philippe F.; Kim, Eunja; Biedermann, Grant W.

    2015-04-21

    The interaction of Cs adatoms with mono- or bi-layered graphene (MLG and BLG), either free-standing or on a SiO2 substrate, was investigated using density functional theory. The most stable adsorption sites for Cs are found to be hollow sites on both graphene sheets and graphene-veiled SiO2(0001). In addition, larger dipole moments are created when a MLG-veiled SiO2(0001) substrate is used for adsorption of Cs atoms compared to the adsorption on free-standing MLG, due to charge transfer occurring between the MLG and the SiO2 substrate. For the adsorption of Cs on BLG-veiled SiO2(0001) substrate, these differences are smoothed out and themore » binding energies corresponding to different sites are nearly degenerate; smaller dipole moments created by the Cs adatoms on BLG compared to MLG are also predicted.« less

  5. Interaction of cesium adatoms with free-standing graphene and graphene-veiled SiO2 surfaces

    SciTech Connect (OSTI)

    Weck, Philippe F.; Kim, Eunja; Biedermann, Grant W.

    2015-04-21

    The interaction of Cs adatoms with mono- or bi-layered graphene (MLG and BLG), either free-standing or on a SiO2 substrate, was investigated using density functional theory. The most stable adsorption sites for Cs are found to be hollow sites on both graphene sheets and graphene-veiled SiO2(0001). In addition, larger dipole moments are created when a MLG-veiled SiO2(0001) substrate is used for adsorption of Cs atoms compared to the adsorption on free-standing MLG, due to charge transfer occurring between the MLG and the SiO2 substrate. For the adsorption of Cs on BLG-veiled SiO2(0001) substrate, these differences are smoothed out and the binding energies corresponding to different sites are nearly degenerate; smaller dipole moments created by the Cs adatoms on BLG compared to MLG are also predicted.

  6. Increasing spin-flips and decreasing cost: Perturbative corrections for external singles to the complete active space spin flip model for low-lying excited states and strong correlation

    SciTech Connect (OSTI)

    Mayhall, Nicholas J.; Head-Gordon, Martin

    2014-07-28

    An approximation to the spin-flip extended configuration interaction singles method is developed using a second-order perturbation theory approach. In addition to providing significant efficiency advantages, the new framework is general for an arbitrary number of spin-flips, with the current implementation being applicable for up to around 4 spin-flips. Two new methods are introduced: one which is developed using non-degenerate perturbation theory, spin-flip complete active-space (SF-CAS(S)), and a second quasidegenerate perturbation theory method, SF-CAS(S){sub 1}. These two approaches take the SF-CAS wavefunction as the reference, and then perturbatively includes the effect of single excitations. For the quasidegenerate perturbation theory method, SF-CAS(S){sub 1}, the subscripted 1 in the acronym indicates that a truncated denominator expansion is used to obtain an energy-independent down-folded Hamiltonian. We also show how this can alternatively be formulated in terms of an extended Lagrangian, by introducing an orthonormality constraint on the first-order wavefunction. Several numerical examples are provided, which demonstrate the ability of SF-CAS(S) and SF-CAS(S){sub 1} to describe bond dissociations, singlet-triplet gaps of organic molecules, and exchange coupling parameters for binuclear transition metal complexes.

  7. Unquenched determination of the kaon parameter B{sub K} from improved staggered fermions

    SciTech Connect (OSTI)

    Gamiz, Elvira; Collins, Sara; Davies, Christine T.H.; Lepage, G. Peter; Shigemitsu, Junko; Wingate, Matthew

    2006-06-01

    The use of improved staggered actions (HYP, Asqtad) has been proved to reduce the scaling corrections that affected previous calculations of B{sub K} with unimproved (standard) staggered fermions in the quenched approximation. This improved behavior allows us to perform a reliable calculation of B{sub K} including quark vacuum polarization effects, using the MILC configurations with n{sub f}=2+1 flavors of sea fermions. We perform such a calculation for a single lattice spacing, a=0.125 fm, and with kaons made up of degenerate quarks with m{sub s}/2. The valence strange quark mass m{sub s} is fixed to its physical value and we use two different values of the light sea quark masses. After a chiral extrapolation of the results to the physical value of the sea quark masses, we find B-circumflex{sub K}=0.83{+-}0.18, where the error is dominated by the uncertainty in the lattice to continuum matching at O({alpha}{sub s}{sup 2}). The matching will need to be improved to get the precision needed to make full use of the experimental data on {epsilon}{sub K} to constrain the unitarity triangle.

  8. Search for supersymmetry in the vector-boson fusion topology in proton-proton collisions at √(s) = 8 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-09-27

    Our first search for supersymmetry in the vector-boson fusion topology is presented.The search targets final states with at least two leptons, large missing transverse momentum, and two jets with a large separation in rapidity. The data sample corresponds to an integrated luminosity of 19.7 fb-1 of proton-proton collisions at √s = 8 TeV collected with the CMS detector at the CERN LHC. The observed dijet invariant mass spectrum is found to be consistent with the expected standard model prediction. Upper limits are set on the cross sections for chargino and neutralino production with two associated jets, assuming the supersymmetric partnermore » of the τ lepton to be the lightest slepton and the lightest slepton to be lighter than the charginos. For a compressed-mass-spectrum scenario in which the mass difference between the lightest supersymmetric particle X~01 and the next lightest, mass-degenerate, gaugino particles X~02 and X~±1 is 50 GeV, a mass lower limit of 170 GeV is set for these latter two particles.« less

  9. Discrete accidental symmetry for a particle in a constant magnetic field on a torus

    SciTech Connect (OSTI)

    Al-Hashimi, M.H. Wiese, U.-J.

    2009-02-15

    A classical particle in a constant magnetic field undergoes cyclotron motion on a circular orbit. At the quantum level, the fact that all classical orbits are closed gives rise to degeneracies in the spectrum. It is well-known that the spectrum of a charged particle in a constant magnetic field consists of infinitely degenerate Landau levels. Just as for the 1/r and r{sup 2} potentials, one thus expects some hidden accidental symmetry, in this case with infinite-dimensional representations. Indeed, the position of the center of the cyclotron circle plays the role of a Runge-Lenz vector. After identifying the corresponding accidental symmetry algebra, we re-analyze the system in a finite periodic volume. Interestingly, similar to the quantum mechanical breaking of CP invariance due to the {theta}-vacuum angle in non-Abelian gauge theories, quantum effects due to two self-adjoint extension parameters {theta}{sub x} and {theta}{sub y} explicitly break the continuous translation invariance of the classical theory. This reduces the symmetry to a discrete magnetic translation group and leads to finite degeneracy. Similar to a particle moving on a cone, a particle in a constant magnetic field shows a very peculiar realization of accidental symmetry in quantum mechanics.

  10. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    SciTech Connect (OSTI)

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; Kanatzidis, M. G.; He, J.

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observations and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Nas diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.

  11. Elementary framework for cold field emission from quantum-confined, non-planar emitters

    SciTech Connect (OSTI)

    Patterson, A. A. Akinwande, A. I.

    2015-05-07

    For suitably small field emitters, the effects of quantum confinement at the emitter tip may have a significant impact on the emitter performance and total emitted current density (ECD). Since the geometry of a quantum system uniquely determines the magnitude and distribution of its energy levels, a framework for deriving ECD equations from cold field electron emitters of arbitrary geometry and dimensionality is developed. In the interest of obtaining semi-analytical ECD equations, the framework is recast in terms of plane wave solutions to the Schrdinger equation via the use of the Jeffreys-Wentzel-Kramers-Brillouin approximation. To demonstrate the framework's consistency with our previous work and its capabilities in treating emitters with non-planar geometries, ECD equations were derived for the normally unconfined cylindrical nanowire (CNW) and normally confined (NC) CNW emitter geometries. As a function of the emitter radius, the NC CNW emitter ECD profile displayed a strong dependence on the Fermi energy and had an average ECD that exceeded the Fowler-Nordheim equation for typical values of the Fermi energy due to closely spaced, singly degenerate energy levels (excluding electron spin), comparatively large electron supply values, and the lack of a transverse, zero-point energy. Such characteristics suggest that emitters with non-planar geometries may be ideal for emission from both an electron supply and electrostatics perspective.

  12. Search for a massive resonance decaying into a Higgs boson and a W or Z boson in hadronic final states in proton-proton collisions at √s = 8 TeV

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-06-05

    A search for a massive resonance decaying into a standard-model-like Higgs boson (H) and a W or Z boson is reported. The analysis is performed on a data sample corresponding to an integrated luminosity of 19.7 fb–1, collected in proton-proton collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC. Signal events, in which the decay products of Higgs, W, or Z bosons at high Lorentz boost are contained within single reconstructed jets, are identified using jet substructure techniques, including the tagging of b hadrons. This is the first search for heavy resonances decaying in HW or HZ resulting in an all-jet final state, as well as the first application of jet substructure techniques to identify H → WW* → 4q decays at high Lorentz boost. Furthermore, no significant signal is observed and limits are set at 95% confidence level on the production cross section of W' and Z' in a model with mass-degenerate charged and neutral spin-1 resonances.

  13. The Eightfold Way: A Theory of Strong Interaction Symmetry

    DOE R&D Accomplishments [OSTI]

    Gell-Mann, M.

    1961-03-15

    A new model of the higher symmetry of elementary particles is introduced ln which the eight known baryons are treated as a supermultiplet, degenerate in the limit of unitary symmetry but split into isotopic spin multiplets by a symmetry-breaking term. The symmetry violation is ascribed phenomenologically to the mass differences. The baryons correspond to an eight-dimensional irreducible representation of the unitary group. The pion and K meson fit into a similar set of eight particles along with a predicted pseudoscalar meson X {sup o} having I = 0. A ninth vector meson coupled to the baryon current can be accommodated naturally in the scheme. It is predicted that the eight baryons should all have the same spin and parity and that pseudoscalar and vector mesons should form octets with possible additional singlets. The mathematics of the unitary group is described by considering three fictitious leptons, nu , e {sup -}, and mu {sup -}, which may throw light on the structure of weak interactions. (D. L.C.)

  14. Stabilization of weak ferromagnetism by strong magnetic response to epitaxial strain in multiferroic BiFeO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cooper, Valentino R.; Lee, Jun Hee; Krogel, Jaron T.; Okamoto, Satoshi; Dixit, Hemant M.

    2015-08-06

    Multiferroic BiFeO3 exhibits excellent magnetoelectric coupling critical for magnetic information processing with minimal power consumption. Thus, the degenerate nature of the easy spin axis in the (111) plane presents roadblocks for real world applications. Here, we explore the stabilization and switchability of the weak ferromagnetic moments under applied epitaxial strain using a combination of first-principles calculations and group-theoretic analyses. We demonstrate that the antiferromagnetic moment vector can be stabilized along unique crystallographic directions ([110] and [-110]) under compressive and tensile strains. A direct coupling between the anisotropic antiferrodistortive rotations and Dzyaloshinskii-Moria interactions drives the stabilization of weak ferromagnetism. Furthermore, energeticallymore » competing C- and G-type magnetic orderings are observed at high compressive strains, suggesting that it may be possible to switch the weak ferromagnetism on and off under application of strain. These findings emphasize the importance of strain and antiferrodistortive rotations as routes to enhancing induced weak ferromagnetism in multiferroic oxides.« less

  15. Frequency-comb referenced spectroscopy of v₄₋ and v₅₋excited hot bands in the 1.5 and μm spectrum of C₂H₂

    SciTech Connect (OSTI)

    Twagirayezu, Sylvestre; Cich, Matthew J.; Sears, Trevor J.; McRaven, Christopher P.; Hall, Gregory E.

    2015-07-14

    Doppler-free transition frequencies for v₄₋ and v₅₋excited hot bands have been measured in the v₁ + v₃ band region of the spectrum of acetylene using saturation dip spectroscopy with an extended cavity diode laser referenced to a frequency comb. The frequency accuracy of the measured transitions, as judged from line shape model fits and comparison to known frequencies in the v₁ + v₃ band itself, is between 3 and 22 kHz. This is some three orders of magnitude improvement on the accuracy and precision of previous line position estimates that were derived from the analysis of high-resolution Fourier transform infrared absorption spectra. Comparison to transition frequencies computed from constants derived from published Fourier transform infrared spectra shows that some upper rotational energy levels suffer specific perturbations causing energy level shifts of up to several hundred MHz. These perturbations are due to energy levels of the same rotational quantum number derived from nearby vibrational levels that become degenerate at specific energies. Future identification of the perturbing levels will provide accurate relative energies of excited vibrational levels of acetylene in the 7100–7600 cm⁻¹ energy region.

  16. Formation of nanotwin networks during high-temperature crystallization of amorphous germanium

    SciTech Connect (OSTI)

    Sandoval, Luis; Reina, Celia; Marian, Jaime

    2015-11-26

    Germanium is an extremely important material used for numerous functional applications in many fields of nanotechnology. In this paper, we study the crystallization of amorphous Ge using atomistic simulations of critical nano-metric nuclei at high temperatures. We find that crystallization occurs by the recurrent transfer of atoms via a diffusive process from the amorphous phase into suitably-oriented crystalline layers. We accompany our simulations with a comprehensive thermodynamic and kinetic analysis of the growth process, which explains the energy balance and the interfacial growth velocities governing grain growth. For the <111> crystallographic orientation, we find a degenerate atomic rearrangement process, with two zero-energy modes corresponding to a perfect crystalline structure and the formation of a Σ3 twin boundary. Continued growth in this direction results in the development a twin network, in contrast with all other growth orientations, where the crystal grows defect-free. This particular mechanism of crystallization from amorphous phases is also observed during solid-phase epitaxial growth of <111> semiconductor crystals, where growth is restrained to one dimension. Lastly, we calculate the equivalent X-ray diffraction pattern of the obtained nanotwin networks, providing grounds for experimental validation.

  17. A theorem for the existence of Majorana fermion modes in spin-orbit-coupled semiconductors

    SciTech Connect (OSTI)

    Tewari, Sumanta Sau, Jay D.; Das Sarma, S.

    2010-01-15

    We prove an index theorem for the existence of Majorana zero modes in a semiconducting thin film with a sizable spin-orbit coupling when it is adjacent to an s-wave superconductor. The theorem, which is analogous to the Jackiw-Rebbi index theorem for the zero modes in mass domain walls in one-dimensional Dirac theory, applies to vortices with odd flux-quantum in a semiconducting film in which s-wave superconductivity and a Zeeman splitting are induced by proximity effect. The momentum space construction of the zero-mode solution presented here is complementary to the approximate real space solution of the Bogoliubov-de Gennes equations at a vortex core (Sau et al., arXiv:0907.2239), proving the existence of non-degenerate zero-energy Majorana excitations and the resultant non-Abelian topological order in the semiconductor heterostructure. With increasing magnitude of the proximity-induced pairing potential, the non-Abelian superconducting state makes a topological quantum phase transition to an ordinary s-wave superconducting state which no topological order.

  18. Effects of fermions on the superfluid-insulator phase diagram of the Bose-Hubbard model

    SciTech Connect (OSTI)

    Tewari, Sumanta; Lutchyn, Roman M.; Das Sarma, S.

    2009-08-01

    Building on the work of Fisher et al. [Phys. Rev. B 40, 546 (1989)], we develop the perturbation theory for the Bose-Hubbard model and apply it to calculate the effects of a degenerate gas of spin-polarized fermions interacting by contact interactions with the constituent bosons. For the single-band Bose-Hubbard model, we find that the net effect of the screening of the boson on-site interaction by the fermions is to suppress the Mott-insulating lobes in the Bose-Hubbard phase diagram. For the more general multiband model, we find that, in addition to the fermion screening effects, the virtual excitations of the bosons to the higher Bloch bands, coupled with the contact interactions with the fermions, result in an effective increase (decrease) of the boson on-site repulsion (hopping parameter). If the higher-band renormalization of the boson parameters is dominant over the fermion screening of the interaction, the Mott-insulating lobes in the Bose-Hubbard phase diagram are enhanced for either sign of the Bose-Fermi interactions, consistent with the recent experiments.

  19. Realization of a SU(2)xSU(6) System of Fermions in a Cold Atomic Gas

    SciTech Connect (OSTI)

    Taie, Shintaro; Takasu, Yosuke; Sugawa, Seiji; Tsujimoto, Takuya; Murakami, Ryo [Department of Physics, Graduate School of Science, Kyoto University, 606-8502 (Japan); Yamazaki, Rekishu; Takahashi, Yoshiro [Department of Physics, Graduate School of Science, Kyoto University, 606-8502 (Japan); CREST, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan)

    2010-11-05

    We report the realization of a novel degenerate Fermi mixture with an SU(2)xSU(6) symmetry in a cold atomic gas. We successfully cool the mixture of the two fermionic isotopes of ytterbium {sup 171}Yb with the nuclear spin I=1/2 and {sup 173}Yb with I=5/2 below the Fermi temperature T{sub F} as 0.46T{sub F} for {sup 171}Yb and 0.54T{sub F} for {sup 173}Yb. The same scattering lengths for different spin components make this mixture featured with the novel SU(2)xSU(6) symmetry. The nuclear spin components are separately imaged by exploiting an optical Stern-Gerlach effect. In addition, the mixture is loaded into a 3D optical lattice to implement the SU(2)xSU(6) Hubbard model. This mixture will open the door to the study of novel quantum phases such as a spinor Bardeen-Cooper-Schrieffer-like fermionic superfluid.

  20. Spin transition in a four-coordinate iron oxide

    SciTech Connect (OSTI)

    Kawakami, T. [Nihon University, Tokyo; Sutou, S. [Nihon University, Tokyo; Hirama, H. [Nihon University, Tokyo; Sekiya, Y. [Nihon University, Tokyo; Makino, T. [Nihon University, Tokyo; Tsujimoto, Y. [Kyoto University, Japan; Kitada, A. [Kyoto University, Japan; Tassel, C. [Kyoto University, Japan; Kageyama, H. [Kyoto University, Japan; Yoshimura, K. [Kyoto University, Japan; Chen, Xingqiu [ORNL; Fu, Chong Long [ORNL; Okada, T. [University of Tokyo, Tokyo, Japan; Yagi, T. [University of Tokyo, Tokyo, Japan; Hayashi, N. [Kyoto University, Japan; Nasu, S. [Osaka University; Podloucky, R. [Institut fur Physikalische Chemie der RWTH; Takano, M. [Kyoto University, Japan

    2009-01-01

    The spin transition, or spin crossover, is a manifestation of electronic instability induced by external constraints such as pressure1. Among known examples that exhibit spin transition, 3d ions with d6 electron configurations represent the vast majority, but the spin transition observed thus far has been almost exclusively limited to that between high-spin (S = 2) and low-spin (S = 0) states2-9. Here we report a novel high-spin to intermediate-spin (S = 1) state transition at 33 GPa induced by pressurization of an antiferromagnetic insulator SrFeO2 with a square planar coordination10. The change in spin multiplicity brings to ferromagnetism as well as metallicity, yet keeping the ordering temperature far above ambient. First-principles calculations attribute the origin of the transition to the strong inlayer hybridization between Fe dx 2 -y 2 O p , leading to a pressure-induced electronic instability toward the depopulation of Fe dx 2 -y 2 O p antibonding states. Furthermore, the ferromagnetic S = 1 state is half-metallic due to the inception of half-occupied spin-down (dxz, dyz) degenerate states upon spin transition. These results highlight the square-planar coordinated iron oxides as a new class of magnetic and electric materials and provide new avenues toward realizing multi-functional sensors and data-storage devices.

  1. 10 CFR 830 Major Modification Determination for Replacement of ATR Primary Coolant Pumps and Motors

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-05-01

    The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the 50-year-old obsolescent marine diesels with commercial power that is backed with safety related emergency diesel generators, switchgear, and uninterruptible power supply (UPS). The second project, the subject of this major modification determination, will replace the four, obsolete, original primary coolant pumps (PCPs) and motors. Completion of this and the two other age-related projects (replacement of the ATR diesel bus [E-3] and switchgear and replacement of the existent emergency firewater injection system) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification: 1. Evaluation Criteria #3 (Change of existing process). The proposed strategy for equipping the replacement PCPs with VFDs and having the PCPs also function as ECPs will require significant safety basis changes requiring DOE approval. 2. Evaluation Criteria #4 (Use of new technology). The use of VFD and VFD “pump catcher” technology for the PCPs is not currently in use and has not been previously formally reviewed/approved by DOE for ATR. It is noted that VFD technology has several decades of commercial use and experience. However, the ATR probabilistic risk assessment will have to be updated, reflecting the changes for supplying ECP flows including VFD reliability, to confirm that the proposed activity maintains or reduces the CDF for the ATR. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). It is expected that the proposed activity will result in a revised list of safety-related SSCs. Specifically, as currently proposed, the existing ECPs will be deleted from the list. The PCPs and their associated components, picking up the ECP function, will be classified as safety-related active Seismic Category I.

  2. Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats

    SciTech Connect (OSTI)

    Bass, V.; Gordon, C.J.; Jarema, K.A.; MacPhail, R.C.; Cascio, W.E.; Phillips, P.M.; Ledbetter, A.D.; Schladweiler, M.C.; Andrews, D.; Miller, D.; Doerfler, D.L.; Kodavanti, U.P.

    2013-12-15

    Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkers were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased ?{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: Air pollutants have been associated with increased diabetes in humans. Acute ozone exposure produces profound metabolic alterations in rats. Age influences metabolic risk factors in aging BN rats. Acute metabolic effects are reversible and repeated exposure reduces these effects. Ozone metabolic effects are only slightly exacerbated in geriatric rats.

  3. A Human Life-Stage Physiologically Based Pharmacokinetic and Pharmacodynamic Model for Chlorpyrifos: Development and Validation

    SciTech Connect (OSTI)

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles; Bartels, M. J.; Poet, Torka S.

    2014-08-01

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Blood flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ? 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.

  4. Implementation of Remaining Useful Lifetime Transformer Models in the Fleet-Wide Prognostic and Health Management Suite

    SciTech Connect (OSTI)

    Agarwal, Vivek; Lybeck, Nancy J.; Pham, Binh; Rusaw, Richard; Bickford, Randall

    2015-02-01

    Research and development efforts are required to address aging and reliability concerns of the existing fleet of nuclear power plants. As most plants continue to operate beyond the license life (i.e., towards 60 or 80 years), plant components are more likely to incur age-related degradation mechanisms. To assess and manage the health of aging plant assets across the nuclear industry, the Electric Power Research Institute has developed a web-based Fleet-Wide Prognostic and Health Management (FW-PHM) Suite for diagnosis and prognosis. FW-PHM is a set of web-based diagnostic and prognostic tools and databases, comprised of the Diagnostic Advisor, the Asset Fault Signature Database, the Remaining Useful Life Advisor, and the Remaining Useful Life Database, that serves as an integrated health monitoring architecture. The main focus of this paper is the implementation of prognostic models for generator step-up transformers in the FW-PHM Suite. One prognostic model discussed is based on the functional relationship between degree of polymerization, (the most commonly used metrics to assess the health of the winding insulation in a transformer) and furfural concentration in the insulating oil. The other model is based on thermal-induced degradation of the transformer insulation. By utilizing transformer loading information, established thermal models are used to estimate the hot spot temperature inside the transformer winding. Both models are implemented in the Remaining Useful Life Database of the FW-PHM Suite. The Remaining Useful Life Advisor utilizes the implemented prognostic models to estimate the remaining useful life of the paper winding insulation in the transformer based on actual oil testing and operational data.

  5. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    SciTech Connect (OSTI)

    Yeh, Lee-Chuan C.; Ford, Jeffery J.; Lee, John C.; Adamo, Martin L.

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  6. Aging assessment of essential HVAC chillers used in nuclear power plants

    SciTech Connect (OSTI)

    Blahnik, D.E.; Camp, T.W.

    1996-09-01

    The Pacific Northwest Laboratory conducted a comprehensive aging assessment of chillers used in the essential safety air-conditioning systems in nuclear power plants (NPPs). The chillers used, and air-conditioning systems served, vary in design from plant to plant. The review of operating experience indicated that chillers experience aging degradation and failures. The primary aging factors of concern for chillers include vibration, excessive temperatures and pressures, thermal cycling, chemical attack, and poor quality cooling water. The evaluation of Licensee Event Reports (LERs) indicated that about 38% of the failures were primarily related to aging, 55% were partially aging related, and 7% of the failures were unassignable. About 25% of the failures were primarily caused by human, design, procedure, and other errors. The large number of errors is probably directly related to the complexity of chillers and their interfacing systems. Nearly all of the LERs were the result of entering plant Technical Specification Limiting Condition for Operation (LCO) that initiated remedial actions like plant shutdown procedures. The trend for chiller-related LERs has stabilized at about 0.13 LERs per plant year since 1988. Carefully following the vendor procedures and monitoring the equipment can help to minimize and/or eliminate most of the premature failures. Recording equipment performance can be useful for trending analysis. Periodic operation for a few hours on a weekly or monthly basis is useful to remove moisture and non-condensable gases that gradually build up inside the chiller. Chiller pressurization kits are available that will help minimize the amount of moisture and air ingress to low-pressure chillers during standby periods. The assessment of service life condition monitoring of chillers indicated there are many simple to sophisticated methods available that can help in chiller surveillance and monitoring.

  7. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rice, Kevin M.; Manne, Nandini D. P. K.; Gadde, Murali K.; Paturi, Satyanarayana; Arvapalli, Ravikumar; Blough, Eric

    2015-03-28

    Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNiamore » (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. As a result, These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.« less

  8. Cellular response to low dose radiation: Role of phosphatidylinositol-3 kinase like kinases

    SciTech Connect (OSTI)

    Balajee, A.S.; Meador, J.A.; Su, Y.

    2011-03-24

    It is increasingly realized that human exposure either to an acute low dose or multiple chronic low doses of low LET radiation has the potential to cause different types of cancer. Therefore, the central theme of research for DOE and NASA is focused on understanding the molecular mechanisms and pathways responsible for the cellular response to low dose radiation which would not only improve the accuracy of estimating health risks but also help in the development of predictive assays for low dose radiation risks associated with tissue degeneration and cancer. The working hypothesis for this proposal is that the cellular mechanisms in terms of DNA damage signaling, repair and cell cycle checkpoint regulation are different for low and high doses of low LET radiation and that the mode of action of phosphatidylinositol-3 kinase like kinases (PIKK: ATM, ATR and DNA-PK) determines the dose dependent cellular responses. The hypothesis will be tested at two levels: (I) Evaluation of the role of ATM, ATR and DNA-PK in cellular response to low and high doses of low LET radiation in simple in vitro human cell systems and (II) Determination of radiation responses in complex cell microenvironments such as human EpiDerm tissue constructs. Cellular responses to low and high doses of low LET radiation will be assessed from the view points of DNA damage signaling, DNA double strand break repair and cell cycle checkpoint regulation by analyzing the activities (i.e. post-translational modifications and kinetics of protein-protein interactions) of the key target proteins for PI-3 kinase like kinases both at the intra-cellular and molecular levels. The proteins chosen for this proposal are placed under three categories: (I) sensors/initiators include ATM ser1981, ATR, 53BP1, gamma-H2AX, MDC1, MRE11, Rad50 and Nbs1; (II) signal transducers include Chk1, Chk2, FANCD2 and SMC1; and (III) effectors include p53, CDC25A and CDC25C. The primary goal of this proposal is to elucidate the differences in cellular defense mechanisms between low and high doses of low LET radiation and to define the radiation doses where the cellular DNA damage signaling and repair mechanisms tend to shift. This information is critically important to address and advance some of the low dose research program objectives of DOE. The results of this proposed study will lead to a better understanding of the mechanisms for the cellular responses to low and high doses of low LET radiation. Further, systematic analysis of the role of PIKK signaling pathways as a function of radiation dose in tissue microenvironment will provide useful mechanistic information for improving the accuracy of radiation risk assessment for low doses. Knowledge of radiation responses in tissue microenvironment is important for the accurate prediction of ionizing radiation risks associated with cancer and tissue degeneration in humans.

  9. VORO++

    Energy Science and Technology Software Center (OSTI)

    2009-02-03

    Voro++ is a software library for the Computation of 3D Voronoi cells. It is primarily designed for applications in physics and materials science, where Voronoi cells can be a useful tool in the analysis of densely-packed particle systems. For a set of points in a space, the Voronoi cell of each particle is defined as the region which is closer to that particle than any other. Originally defined by Georgy Voronci [1], it has becomemorea powerful tool in many scientific fields, whenever region of space must be divided between constituent points or particles [2]. Over the past twenty years, the algorithms for computing Voronoi cells have been well-studied, and several high-quality software packages are available. However, some (such as Triangle [3] are designed for the 2D case. Others, such as QHull [4], make use of algorithms for computing complete tessellations. This can offer limited flexibility, such as for handling complex boundary conditions, where direct cell-by-cell manipulation is beneficial. Voro++ is a library of C++ classes for direct computation of 3D Voronoi cells. The author believes this the first general purpose library that takes full advantage of the C++ class structure, making it simple to use, modify, and incorporate into other programs. The author has received considerable interest from other academic institutions about making use of the code. Features include: -- Rapid computation times, two to three times faster than Qhull in some typical cases -- Support for floating point inaccuracies and degenerate cases -- Support for curved and planar walls; periodic and non-periodic boundary conditions -- Support for radical Voronoi tessellations and neighbor list computations --Straightforward generalization to a parallel/ multicore architectureless

  10. Primordial non-Gaussianity in the bispectra of large-scale structure

    SciTech Connect (OSTI)

    Tasinato, Gianmassimo; Tellarini, Matteo; Ross, Ashley J.; Wands, David E-mail: matteo.tellarini@port.ac.uk E-mail: david.wands@port.ac.uk

    2014-03-01

    The statistics of large-scale structure in the Universe can be used to probe non-Gaussianity of the primordial density field, complementary to existing constraints from the cosmic microwave background. In particular, the scale dependence of halo bias, which affects the halo distribution at large scales, represents a promising tool for analyzing primordial non-Gaussianity of local form. Future observations, for example, may be able to constrain the trispectrum parameter g{sub NL} that is difficult to study and constrain using the CMB alone. We investigate how galaxy and matter bispectra can distinguish between the two non-Gaussian parameters f{sub NL} and g{sub NL}, whose effects give nearly degenerate contributions to the power spectra. We use a generalization of the univariate bias approach, making the hypothesis that the number density of halos forming at a given position is a function of the local matter density contrast and of its local higher-order statistics. Using this approach, we calculate the halo-matter bispectra and analyze their properties. We determine a connection between the sign of the halo bispectrum on large scales and the parameter g{sub NL}. We also construct a combination of halo and matter bispectra that is sensitive to f{sub NL}, with little contamination from g{sub NL}. We study both the case of single and multiple sources to the primordial gravitational potential, discussing how to extend the concept of stochastic halo bias to the case of bispectra. We use a specific halo mass-function to calculate numerically the bispectra in appropriate squeezed limits, confirming our theoretical findings.

  11. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    SciTech Connect (OSTI)

    Keresztes, Zoltn; Gergely, Lszl . E-mail: gergely@physx.u-szeged.hu

    2014-11-01

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (?{sub b}h{sup 2}=0.022161, where the Hubble constant is fixed as h=0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1? confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for ?{sub CDM}=0.22. The fit is as good as for the ?CDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.

  12. The fate of long-lived superparticles with hadronic decays after LHC Run 1

    SciTech Connect (OSTI)

    Liu, Zhen; Tweedie, Brock

    2015-06-08

    Supersymmetry searches at the LHC are both highly varied and highly constraining, but the vast majority are focused on cases where the final-stage visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches for collider-stable and displaced new particles facilitates recastings into powerful long-lived superparticle searches, even for models for which those searches are highly non-optimized. In this paper, we assess the status of such models in the context of baryonic R-parity violation, gauge mediation, and mini-split SUSY. We explore a number of common simplified spectra where hadronic decays can be important, employing recasts of LHC searches that utilize different detector systems and final-state objects. The LSP/NLSP possibilities considered here include generic colored superparticles such as the gluino and light-flavor squarks, as well as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness. We find that complementary coverage over large swaths of mass and lifetime is achievable by superimposing limits, particularly from CMSs tracker-based displaced dijet search and heavy stable charged particle searches. Adding in prompt searches, we find many cases where a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.

  13. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    SciTech Connect (OSTI)

    Zhang, Pengpeng; Shan, Tizhong; Liang, Xinrong; Deng, Changyan; Kuang, Shihuan

    2014-09-12

    Highlights: mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. The mTOR-mKO mice had dilated myocardium and increased cell death. mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

  14. A SUPER-EDDINGTON WIND SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect (OSTI)

    Ma, Xin; Chen, Xuefei; Chen, Hai-liang; Han, Zhanwen; Denissenkov, Pavel A. E-mail: cxf@ynao.ac.cn

    2013-12-01

    The accretion of hydrogen-rich material on to carbon-oxygen white dwarfs (CO WDs) is crucial for understanding Type Ia supernova (SN Ia) from the single-degenerate model, but this process has not been well understood due to the numerical difficulties in treating H and He flashes during the accretion. For CO WD masses from 0.5 to 1.378 M {sub ?} and accretion rates in the range from 10{sup 8} to 10{sup 5} M {sub ?} yr{sup 1}, we simulated the accretion of solar-composition material on to CO WDs using the state-of-the-art stellar evolution code of MESA. For comparison with steady-state models, we first ignored the contribution from nuclear burning to the luminosity when determining the Eddington accretion rate, and found that the properties of H burning in our accreting CO WD models are similar to those from the steady-state models, except that the critical accretion rates at which the WDs turn into red giants or H-shell flashes occur on their surfaces are slightly higher than those from the steady-state models. However, the super-Eddington wind is triggered at much lower accretion rates than previously thought, when the contribution of nuclear burning to the total luminosity is included. This super-Eddington wind naturally prevents the CO WDs with high accretion rates from becoming red giants, thus presenting an alternative to the optically thick wind proposed by Hachisu etal. Furthermore, the super-Eddington wind works in low-metallicity environments, which may explain SNe Ia observed at high redshifts.

  15. The fate of long-lived superparticles with hadronic decays after LHC Run 1

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zhen; Tweedie, Brock

    2015-06-08

    Supersymmetry searches at the LHC are both highly varied and highly constraining, but the vast majority are focused on cases where the final-stage visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches for collider-stable and displaced new particles facilitates recastings into powerful long-lived superparticle searches, even for models for which those searches are highly non-optimized. In this paper, we assess the status of such models in the context of baryonic R-parity violation, gauge mediation,more »and mini-split SUSY. We then explore a number of common simplified spectra where hadronic decays can be important, employing recasts of LHC searches that utilize different detector systems and final-state objects. The LSP/NLSP possibilities considered here include generic colored superparticles such as the gluino and light-flavor squarks, as well as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness. We find that complementary coverage over large swaths of mass and lifetime is achievable by superimposing limits, particularly from CMS’s tracker-based displaced dijet search and heavy stable charged particle searches. By adding in prompt searches, we find many cases where a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.« less

  16. Sense and sensitivity of double beta decay experiments

    SciTech Connect (OSTI)

    Gmez-Cadenas, J.J.; Martn-Albo, J.; Sorel, M.; Ferrario, P.; Monrabal, F.; Muoz, J. [Instituto de Fsica Corpuscular (IFIC), CSIC and Universidad de Valencia, Calle Catedrtico Jos Beltrn 2, 46071 Valencia (Spain); Novella, P. [Centro de Investigaciones Energticas, Medioambientales y Tecnolgicas (CIEMAT), Avda. Complutense 22, 28040 Madrid (Spain); Poves, A., E-mail: gomez@mail.cern.ch, E-mail: justo.martin-albo@ific.uv.es, E-mail: sorel@ific.uv.es, E-mail: paola.ferrario@ific.uv.es, E-mail: francesc.monrabal@ific.uv.es, E-mail: jmunoz@ific.uv.es, E-mail: pau.novella@ciemat.es, E-mail: alfredo.poves@uam.es [Dpto. de de Fsica Terica and IFT-UAM/CSIC, Universidad Autnoma de Madrid, Calle Nicols Cabrera 13-15, 28049 Madrid (Spain)

    2011-06-01

    The search for neutrinoless double beta decay is a very active field in which the number of proposals for next-generation experiments has proliferated. In this paper we attempt to address both the sense and the sensitivity of such proposals. Sensitivity comes first, by means of proposing a simple and unambiguous statistical recipe to derive the sensitivity to a putative Majorana neutrino mass, m{sub ??}. In order to make sense of how the different experimental approaches compare, we apply this recipe to a selection of proposals, comparing the resulting sensitivities. We also propose a ''physics-motivated range'' (PMR) of the nuclear matrix elements as a unifying criterium between the different nuclear models. The expected performance of the proposals is parametrized in terms of only four numbers: energy resolution, background rate (per unit time, isotope mass and energy), detection efficiency, and ?? isotope mass. For each proposal, both a reference and an optimistic scenario for the experimental performance are studied. In the reference scenario we find that all the proposals will be able to partially explore the degenerate spectrum, without fully covering it, although four of them (KamLAND-Zen, CUORE, NEXT and EXO) will approach the 50 meV boundary. In the optimistic scenario, we find that CUORE and the xenon-based proposals (KamLAND-Zen, EXO and NEXT) will explore a significant fraction of the inverse hierarchy, with NEXT covering it almost fully. For the long term future, we argue that {sup 136}Xe-based experiments may provide the best case for a 1-ton scale experiment, given the potentially very low backgrounds achievable and the expected scalability to large isotope masses.

  17. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect (OSTI)

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  18. CALIBRATION OF THE MIXING-LENGTH THEORY FOR CONVECTIVE WHITE DWARF ENVELOPES

    SciTech Connect (OSTI)

    Tremblay, P.-E.; Ludwig, H.-G.; Freytag, B.; Fontaine, G.; Brassard, P.; Steffen, M.

    2015-02-01

    A calibration of the mixing-length parameter in the local mixing-length theory (MLT) is presented for the lower part of the convection zone in pure-hydrogen-atmosphere white dwarfs. The parameterization is performed from a comparison of three-dimensional (3D) CO5BOLD simulations with a grid of one-dimensional (1D) envelopes with a varying mixing-length parameter. In many instances, the 3D simulations are restricted to the upper part of the convection zone. The hydrodynamical calculations suggest, in those cases, that the entropy of the upflows does not change significantly from the bottom of the convection zone to regions immediately below the photosphere. We rely on this asymptotic entropy value, characteristic of the deep and adiabatically stratified layers, to calibrate 1D envelopes. The calibration encompasses the convective hydrogen-line (DA) white dwarfs in the effective temperature range 6000 ≤ T {sub eff} (K) ≤15, 000 and the surface gravity range 7.0 ≤ log g ≤ 9.0. It is established that the local MLT is unable to reproduce simultaneously the thermodynamical, flux, and dynamical properties of the 3D simulations. We therefore propose three different parameterizations for these quantities. The resulting calibration can be applied to structure and envelope calculations, in particular for pulsation, chemical diffusion, and convective mixing studies. On the other hand, convection has no effect on the white dwarf cooling rates until there is a convective coupling with the degenerate core below T {sub eff} ∼ 5000 K. In this regime, the 1D structures are insensitive to the MLT parameterization and converge to the mean 3D results, hence they remain fully appropriate for age determinations.

  19. THE WIRED SURVEY. II. INFRARED EXCESSES IN THE SDSS DR7 WHITE DWARF CATALOG

    SciTech Connect (OSTI)

    Debes, John H.; Leisawitz, David T.; Hoard, D. W.; Wachter, Stefanie; Cohen, Martin

    2011-12-01

    With the launch of the Wide-field Infrared Survey Explorer (WISE), a new era of detecting planetary debris and brown dwarfs (BDs) around white dwarfs (WDs) has begun with the WISE InfraRed Excesses around Degenerates (WIRED) Survey. The WIRED Survey is sensitive to substellar objects and dusty debris around WDs out to distances exceeding 100 pc, well beyond the completeness level of local WDs. In this paper, we present a cross-correlation of the preliminary Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) WD catalog between the WISE, Two-Micron All Sky Survey (2MASS), UKIRT Infrared Deep Sky Survey (UKIDSS), and SDSS DR7 photometric catalogs. From {approx}18,000 input targets, there are WISE detections comprising 344 'naked' WDs (detection of the WD photosphere only), 1020 candidate WD+M dwarf binaries, 42 candidate WD+BD systems, 52 candidate WD+dust disk systems, and 69 targets with indeterminate infrared excess. We classified all of the detected targets through spectral energy distribution model fitting of the merged optical, near-IR, and WISE photometry. Some of these detections could be the result of contaminating sources within the large ( Almost-Equal-To 6'') WISE point-spread function; we make a preliminary estimate for the rates of contamination for our WD+BD and WD+disk candidates and provide notes for each target of interest. Each candidate presented here should be confirmed with higher angular resolution infrared imaging or infrared spectroscopy. We also present an overview of the observational characteristics of the detected WDs in the WISE photometric bands, including the relative frequencies of candidate WD+M, WD+BD, and WD+disk systems.

  20. Supersymmetric Dark Matter after LHC Run 1

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; et al

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ~1, stop t~1 or chargino χ~±1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-pointmore » region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and χ~±1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is χ~±1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.« less

  1. The Gemini NICI planet-finding campaign: the orbit of the young exoplanet ? Pictoris b

    SciTech Connect (OSTI)

    Nielsen, Eric L.; Liu, Michael C.; Chun, Mark; Ftaclas, Christ; Wahhaj, Zahed; Biller, Beth A.; Hayward, Thomas L.; Kuchner, Marc J.; Rodigas, Timothy J.; Toomey, Douglas W.

    2014-10-20

    We present new astrometry for the young (12-21 Myr) exoplanet ? Pictoris b taken with the Gemini/NICI and Magellan/MagAO instruments between 2009 and 2012. The high dynamic range of our observations allows us to measure the relative position of ? Pic b with respect to its primary star with greater accuracy than previous observations. Based on a Markov Chain Monte Carlo analysis, we find the planet has an orbital semi-major axis of 9.1{sub ?0.5}{sup +5.3} AU and orbital eccentricity <0.15 at 68% confidence (with 95% confidence intervals of 8.2-48 AU and 0.00-0.82 for semi-major axis and eccentricity, respectively, due to a long narrow degenerate tail between the two). We find that the planet has reached its maximum projected elongation, enabling higher precision determination of the orbital parameters than previously possible, and that the planet's projected separation is currently decreasing. With unsaturated data of the entire ? Pic system (primary star, planet, and disk) obtained thanks to NICI's semi-transparent focal plane mask, we are able to tightly constrain the relative orientation of the circumstellar components. We find the orbital plane of the planet lies between the inner and outer disks: the position angle (P.A.) of nodes for the planet's orbit (211.8 0.3) is 7.4? greater than the P.A. of the spine of the outer disk and 3.2? less than the warped inner disk P.A., indicating the disk is not collisionally relaxed. Finally, for the first time we are able to dynamically constrain the mass of the primary star ? Pic to 1.76{sub ?0.17}{sup +0.18} M {sub ?}.

  2. The fate of long-lived superparticles with hadronic decays after LHC Run 1

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zhen; Tweedie, Brock

    2015-06-08

    Supersymmetry searches at the LHC are both highly varied and highly constraining, but the vast majority are focused on cases where the final-stage visible decays are prompt. Scenarios featuring superparticles with detector-scale lifetimes have therefore remained a tantalizing possibility for sub-TeV SUSY, since explicit limits are relatively sparse. Nonetheless, the extremely low backgrounds of the few existing searches for collider-stable and displaced new particles facilitates recastings into powerful long-lived superparticle searches, even for models for which those searches are highly non-optimized. In this paper, we assess the status of such models in the context of baryonic R-parity violation, gauge mediation,moreand mini-split SUSY. We explore a number of common simplified spectra where hadronic decays can be important, employing recasts of LHC searches that utilize different detector systems and final-state objects. The LSP/NLSP possibilities considered here include generic colored superparticles such as the gluino and light-flavor squarks, as well as the lighter stop and the quasi-degenerate Higgsino multiplet motivated by naturalness. We find that complementary coverage over large swaths of mass and lifetime is achievable by superimposing limits, particularly from CMSs tracker-based displaced dijet search and heavy stable charged particle searches. Adding in prompt searches, we find many cases where a range of sparticle masses is now excluded from zero lifetime to infinite lifetime with no gaps. In other cases, the displaced searches furnish the only extant limits at any lifetime.less

  3. Disease Mutations in Rab7 Result in Unregulated Nucleotide Exchange and Inappropriate Activation

    SciTech Connect (OSTI)

    B McCray; E Skordalakes; J Taylor

    2011-12-31

    Rab GTPases are molecular switches that orchestrate vesicular trafficking, maturation and fusion by cycling between an active, GTP-bound form, and an inactive, GDP-bound form. The activity cycle is coupled to GTP hydrolysis and is tightly controlled by regulatory proteins. Missense mutations of the GTPase Rab7 cause a dominantly inherited axonal degeneration known as Charcot-Marie-Tooth type 2B through an unknown mechanism. We present the 2.8 A crystal structure of GTP-bound L129F mutant Rab7 which reveals normal conformations of the effector binding regions and catalytic site, but an alteration to the nucleotide binding pocket that is predicted to alter GTP binding. Through extensive biochemical analysis, we demonstrate that disease-associated mutations in Rab7 do not lead to an intrinsic GTPase defect, but permit unregulated nucleotide exchange leading to both excessive activation and hydrolysis-independent inactivation. Consistent with augmented activity, mutant Rab7 shows significantly enhanced interaction with a subset of effector proteins. In addition, dynamic imaging demonstrates that mutant Rab7 is abnormally retained on target membranes. However, we show that the increased activation of mutant Rab7 is counterbalanced by unregulated, GTP hydrolysis-independent membrane cycling. Notably, disease mutations are able to rescue the membrane cycling of a GTPase-deficient mutant. Thus, we demonstrate that disease mutations uncouple Rab7 from the spatial and temporal control normally imposed by regulatory proteins and cause disease not by a gain of novel toxic function, but by misregulation of native Rab7 activity.

  4. Supersymmetric Dark Matter after LHC Run 1

    SciTech Connect (OSTI)

    Bagnaschi, E. A.; Buchmueller, O.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M. J.; Ellis, J. R.; Flacher, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Santos, D. Martinez; Olive, K. A.; Sakurai, K.; de Vries, K. J.; Weiglein, G.

    2015-10-23

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, ?~01, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau ?~1, stop t~1 or chargino ?~1, resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the ?~1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for /ET events and long-lived charged particles, whereas theirH / A funnel, focus-point and ?~1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. Furthermore, we find that the dominant DM mechanism in our pMSSM10 analysis is ?~1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  5. The potential reproductive, neurobehavioral and systemic effects of soluble sodium tungstate exposure in Sprague-Dawley rats

    SciTech Connect (OSTI)

    McInturf, S.M. [Naval Medical Research Unit at Dayton (NAMRU), Wright Patterson Air Force Base, OH (United States); Bekkedal, M.Y.V. [Two Steps Forward, LLC, Sun Prairie, WI (United States); Wilfong, E. [U.S. Naval Academy, 572M Holloway Road, Annapolis, MD (United States); Arfsten, D. [Navy Drug Screening Laboratory P.O. Box 113, Naval Air Station Jacksonville, FL (United States); Chapman, G. [Naval Medical Research Unit at Dayton (NAMRU), Wright Patterson Air Force Base, OH (United States); Gunasekar, P.G., E-mail: palur.gunasekar@wpafb.af.mil [Naval Medical Research Unit at Dayton (NAMRU), Wright Patterson Air Force Base, OH (United States)

    2011-07-15

    The debate on tungsten (W) is fostered by its continuous usage in military munitions. Reports demonstrate W solubilizes in soil and can migrate into drinking water supplies and, therefore, is a potential health risk to humans. This study evaluated the reproductive, systemic and neurobehavioral effects of sodium tungstate (NaW) in rats following 70 days of daily pre-and postnatal exposure via oral gavage to 5, 62.5 and 125 mg/kg/day of NaW through mating, gestation and weaning (PND 0-20). Daily administration of NaW produced no overt evidence of toxicity and had no apparent effect on mating success or offspring physical development. Distress vocalizations were elevated in F{sub 1} offspring from the high dose group, whereas righting reflex showed unexpected sex differences where males demonstrated faster righting than females; however, the effects were not dose-dependent. Locomotor activity was affected in both low and high-dose groups of F{sub 1} females. Low-dose group showed increased distance traveled, more time in ambulatory movements and less time in stereotypic behavior than controls or high dose animals. The high-dose group had more time in stereotypical movements than controls, and less time resting than controls and the lowest exposure group. Maternal retrieval was not affected by NaW exposure. Tungsten analysis showed a systemic distribution of NaW in both parents and offspring, with preferential uptake within the immune organs, including the femur, spleen and thymus. Histopathological evidence suggested no severe chronic injury or loss of function in these organs. However, the heart showed histological lesions, histiocytic inflammation from minimal to mild with cardiomyocyte degeneration and necrosis in several P{sub 0} animals of 125 mg NaW dose group. The result of this study suggests that pre and postnatal exposure to NaW may produce subtle neurobehavioral effects in offspring related to motor activity and emotionality.

  6. Characterization of a genuin iron(V) - nitrido species by nuclear resonant vibrational spectroscopy coupled to density functional calculations.

    SciTech Connect (OSTI)

    Petrenko, T.; George, S. D.; Aliaga-Alcalde, N.; Bill, E.; Mienert, B.; Xiao, Y.; Guo, Y.; Sturhahn, W.; Cramer, S.P.; Wieghardt, K.; Neese, F.; X-Ray Science Division; Institut of Physikalische und Theoretische Chemie; SSRL; Standford Univ.; Max-Planck Institut fur Bioanogranische Chemie; Univ. of California at Davis; LBNL

    2007-01-01

    The characterization of high-valent iron species is of interest due to their relevance to biological reaction mechanisms. Recently, we have synthesized and characterized an [Fe(V)-nitrido-cyclam-acetato]{sup +} complex, which has been characterized by M{umlt o}ssbauer, magnetic susceptibility data, and XAS spectroscopies combined with DFT calculations . The results of this study indicated that the [Fe(V)-nitrido-cyclam-acetato]+ complex is an unusual d{sup 3} system with a nearly orbitally degenerate S = 1/2 ground state. Although the calculations predicted fairly different Fe-N stretching frequencies for the S = 1/2 and the competing S = 3/2 ground states, a direct experimental determination of this important fingerprint quantity was missing. Here we apply synchrotron-based nuclear resonance vibrational scattering (NRVS) to characterize the Fe-N stretching frequency of an Fe(V)-nitrido complex and its Fe(III)-azide precursor. The NRVS data show a new isolated band at 864 cm{sup -1} in the Fe(V)-nitrido complex that is absent in the precursor. The NRVS spectra are fit and simulated using a DFT approach, and the new feature is unambiguously assigned to a Fe(V)-N stretch. The calculated Fe-N stretching frequency is too high by {approx}75 cm{sup -1}. Anharmonic contributions to the Fe-N stretching frequency have been evaluated and have been found to be small (-5.5 cm{sup -1}). The NRVS data provided a unique opportunity to obtain this vibrational information, which had eluded characterization by more traditional vibrational spectroscopies.

  7. Characterization of a Genuine Lron(V)-Nitrido Species By Nuclear Resonant Vibrational Spectroscopy Coupled to Density Functional Calculations

    SciTech Connect (OSTI)

    Petrenko, T.; George, S.D.; Aliaga-Alcalde, N.; Bill, E.; Mienert, B.; Xiao, Y.; Guo, Y.; Sturhahn, W.; Cramer, S.P.; Wieghardt, K.; Neese, F.; /Bonn U., LTC /SLAC, SSRL /Max Planck Inst., Mulheim /UC, Davis /Argonne /LBL, Berkeley

    2007-10-19

    The characterization of high-valent iron species is of interest due to their relevance to biological reaction mechanisms. Recently, we have synthesized and characterized an [Fe(V)-nitrido-cyclam-acetato]+ complex, which has been characterized by M{umlt o}ssbauer, magnetic susceptibility data, and XAS spectroscopies combined with DFT calculations. The results of this study indicated that the [Fe(V)-nitrido-cyclam-acetato]+ complex is an unusual d3 system with a nearly orbitally degenerate S = 1/2 ground state. Although the calculations predicted fairly different Fe-N stretching frequencies for the S = 1/2 and the competing S = 3/2 ground states, a direct experimental determination of this important fingerprint quantity was missing. Here we apply synchrotron-based nuclear resonance vibrational scattering (NRVS) to characterize the Fe-N stretching frequency of an Fe(V)-nitrido complex and its Fe(III)-azide precursor. The NRVS data show a new isolated band at 864 cm-1 in the Fe(V)-nitrido complex that is absent in the precursor. The NRVS spectra are fit and simulated using a DFT approach, and the new feature is unambiguously assigned to a Fe(V)-N stretch. The calculated Fe-N stretching frequency is too high by {approx}75 cm-1. Anharmonic contributions to the Fe-N stretching frequency have been evaluated and have been found to be small (-5.5 cm-1). The NRVS data provided a unique opportunity to obtain this vibrational information, which had eluded characterization by more traditional vibrational spectroscopies.

  8. Boosted di-boson from a mixed heavy stop

    SciTech Connect (OSTI)

    Ghosh, Diptimoy

    2013-12-01

    The lighter mass eigenstate ($\\widetilde{t}_1$) of the two top squarks, the scalar superpartners of the top quark, is extremely difficult to discover if it is almost degenerate with the lightest neutralino ($\\widetilde{\\chi}_1^0$), the lightest and stable supersymmetric particle in the R-parity conserving supersymmetry. The current experimental bound on $\\widetilde{t}_1$ mass in this scenario stands only around 200 GeV. For such a light $\\widetilde{t}_1$, the heavier top squark ($\\widetilde{t}_2$) can also be around the TeV scale. Moreover, the high value of the higgs ($h$) mass prefers the left and right handed top squarks to be highly mixed allowing the possibility of a considerable branching ratio for $\\widetilde{t}_2 \\to \\widetilde{t}_1 h$ and $\\widetilde{t}_2 \\to \\widetilde{t}_1 Z$. In this paper, we explore the above possibility together with the pair production of $\\widetilde{t}_2$ $\\widetilde{t}_2^*$ giving rise to the spectacular di-boson + missing transverse energy final state. For an approximately 1 TeV $\\widetilde{t}_2$ and a few hundred GeV $\\widetilde{t}_1$ the final state particles can be moderately boosted which encourages us to propose a novel search strategy employing the jet substructure technique to tag the boosted $h$ and $Z$. The reconstruction of the $h$ and $Z$ momenta also allows us to construct the stransverse mass $M_{T2}$ providing an additional efficient handle to fight the backgrounds. We show that a 4--5$\\sigma$ signal can be observed at the 14 TeV LHC for $\\sim$ 1 TeV $\\widetilde{t}_2$ with 100 fb$^{-1}$ integrated luminosity.

  9. VORO++

    Energy Science and Technology Software Center (OSTI)

    2009-02-03

    Voro++ is a software library for the Computation of 3D Voronoi cells. It is primarily designed for applications in physics and materials science, where Voronoi cells can be a useful tool in the analysis of densely-packed particle systems. For a set of points in a space, the Voronoi cell of each particle is defined as the region which is closer to that particle than any other. Originally defined by Georgy Voronci [1], it has becomemore » a powerful tool in many scientific fields, whenever region of space must be divided between constituent points or particles [2]. Over the past twenty years, the algorithms for computing Voronoi cells have been well-studied, and several high-quality software packages are available. However, some (such as Triangle [3] are designed for the 2D case. Others, such as QHull [4], make use of algorithms for computing complete tessellations. This can offer limited flexibility, such as for handling complex boundary conditions, where direct cell-by-cell manipulation is beneficial. Voro++ is a library of C++ classes for direct computation of 3D Voronoi cells. The author believes this the first general purpose library that takes full advantage of the C++ class structure, making it simple to use, modify, and incorporate into other programs. The author has received considerable interest from other academic institutions about making use of the code. Features include: -- Rapid computation times, two to three times faster than Qhull in some typical cases -- Support for floating point inaccuracies and degenerate cases -- Support for curved and planar walls; periodic and non-periodic boundary conditions -- Support for radical Voronoi tessellations and neighbor list computations --Straightforward generalization to a parallel/ multicore architecture« less

  10. The white dwarfs within 25 pc of the Sun: Kinematics and spectroscopic subtypes

    SciTech Connect (OSTI)

    Sion, Edward M.; McCook, George P.; Wasatonic, Richard; Myszka, Janine; Holberg, J. B.; Oswalt, Terry D. E-mail: george.mccook@villanova.edu E-mail: janine.myszka@villanova.edu E-mail: toswalt@fit.edu

    2014-06-01

    We present the fractional distribution of spectroscopic subtypes, range and distribution of surface temperatures, and kinematical properties of the white dwarfs (WDs) within 25 pc of the Sun. There is no convincing evidence of halo WDs in the total 25 pc sample of 224 WDs. There is also little to suggest the presence of genuine thick disk subcomponent members within 25 pc. It appears that the entire 25 pc sample likely belongs to the thin disk. We also find no significant kinematic differences with respect to spectroscopic subtypes. The total DA to non-DA ratio of the 25 pc sample is 1.8, a manifestation of deepening envelope convection, which transforms DA stars with sufficiently thin H surface layers into non-DAs. We compare this ratio with the results of other studies. We find that at least 11% of the WDs within 25 pc of the Sun (the DAZ and DZ stars) have photospheric metals that likely originate from accretion of circumstellar material (debris disks) around them. If this interpretation is correct, then it suggests the possibility that a similar percentage have planets, asteroid-like bodies, or debris disks orbiting them. Our volume-limited sample reveals a pileup of DC WDs at the well-known cutoff in DQ WDs at T {sub eff} ? 6000 K. Mindful of small number statistics, we speculate on its possible evolutionary significance. We find that the incidence of magnetic WDs in the 25 pc sample is at least 8% in our volume-limited sample, dominated by cool WDs. We derive approximate formation rates of DB and DQ degenerates and present a preliminary test of the evolutionary scenario that all cooling DB stars become DQ WDs via helium convective dredge-up with the diffusion tail of carbon extending upward from their cores.

  11. Tuning the band structure, magnetic and transport properties of the zigzag graphene nanoribbons/hexagonal boron nitride heterostructures by transverse electric field

    SciTech Connect (OSTI)

    Ilyasov, V. V. E-mail: chuongnguyen11@gmail.com; Meshi, B. C.; Nguyen, V. C. E-mail: chuongnguyen11@gmail.com; Ershov, I. V.; Nguyen, D. C.

    2014-07-07

    The paper presents the results of ab initio study of the opportunities for tuning the band structure, magnetic and transport properties of zigzag graphene nanoribbon (8-ZGNR) on hexagonal boron nitride (h-BN(0001)) semiconductor heterostructure by transverse electric field (E{sub ext}). This study was performed within the framework of the density functional theory (DFT) using Grimme's (DFT-D2) scheme. We established the critical values of E{sub ext} for the 8-ZGNR/h-BN(0001) heterostructure, thereby providing for semiconductor-halfmetal transition in one of electron spin configurations. This study also showed that the degeneration in energy of the localized edge states is removed when E{sub ext} is applied. In ZGNR/h-BN (0001) heterostructure, value of the splitting energy was higher than one in ZGNRs without substrate. We determined the effect of low E{sub ext} applied to the 8-ZGNR/h-BN (0001) semiconductor heterostructure on the preserved local magnetic moment (LMM) (0.3μ{sub B}) of edge carbon atoms. The transport properties of the 8-ZGNR/h-BN(0001) semiconductor heterostructure can be controlled using E{sub ext}. In particular, at a critical value of the positive potential, the electron mobility can increase to 7× 10{sup 5} cm{sup 2}/V s or remain at zero in the spin-up and spin-down electron subsystems, respectively. We established that magnetic moments (MMs), band gaps, and carrier mobility can be altered using E{sub ext}. These abilities enable the use of 8-ZGNR/h-BN(0001) semiconductor heterostructure in spintronics.

  12. Zero kinetic energy photoelectron spectroscopy of triphenylene

    SciTech Connect (OSTI)

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-28

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S{sub 1} of the neutral molecule is of A{sub 1}? symmetry and is therefore electric dipole forbidden in the D{sub 3h} group. Consequently, there are no observable Franck-Condon allowed totally symmetric a{sub 1}? vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E? third electronically excited state S{sub 3}. The assignment of all vibrational bands as e? symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C{sub 2v} and resulting in two nearly degenerate electronic states of A{sub 2} and B{sub 1} symmetry. Here we follow a crude treatment by assuming that all e? vibrational modes resolve into b{sub 2} and a{sub 1} modes in the C{sub 2v} molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63?365 7 cm{sup ?1}. The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  13. Mitochondrial remodeling following fission inhibition by 15d-PGJ2 involves molecular changes in mitochondrial fusion protein OPA1

    SciTech Connect (OSTI)

    Kar, Rekha; Department of Biochemistry, UT Health Science Center at San Antonio, San Antonio, TX 78229 ; Mishra, Nandita; Singha, Prajjal K.; Venkatachalam, Manjeri A.; Department of Biochemistry, UT Health Science Center at San Antonio, San Antonio, TX 78229 ; Saikumar, Pothana

    2010-09-03

    Research highlights: {yields} Chemical inhibition of fission protein Drp1 leads to mitochondrial fusion. {yields} Increased fusion stimulates molecular changes in mitochondrial fusion protein OPA1. {yields} Proteolysis of larger isoforms, new synthesis and ubiquitination of OPA1 occur. {yields} Loss of mitochondrial tubular rigidity and disorganization of cristae. {yields} Generation of large swollen dysfunctional mitochondria. -- Abstract: We showed earlier that 15 deoxy {Delta}{sup 12,14} prostaglandin J2 (15d-PGJ2) inactivates Drp1 and induces mitochondrial fusion . However, prolonged incubation of cells with 15d-PGJ2 resulted in remodeling of fused mitochondria into large swollen mitochondria with irregular cristae structure. While initial fusion of mitochondria by 15d-PGJ2 required the presence of both outer (Mfn1 and Mfn2) and inner (OPA1) mitochondrial membrane fusion proteins, later mitochondrial changes involved increased degradation of the fusion protein OPA1 and ubiquitination of newly synthesized OPA1 along with decreased expression of Mfn1 and Mfn2, which likely contributed to the loss of tubular rigidity, disorganization of cristae, and formation of large swollen degenerated dysfunctional mitochondria. Similar to inhibition of Drp1 by 15d-PGJ2, decreased expression of fission protein Drp1 by siRNA also resulted in the loss of fusion proteins. Prevention of 15d-PGJ2 induced mitochondrial elongation by thiol antioxidants prevented not only loss of OPA1 isoforms but also its ubiquitination. These findings provide novel insights into unforeseen complexity of molecular events that modulate mitochondrial plasticity.

  14. Inhibition of mitochondrial division through covalent modification of Drp1 protein by 15 deoxy-{Delta}{sup 12,14}-prostaglandin J2

    SciTech Connect (OSTI)

    Mishra, Nandita; Kar, Rekha; Singha, Prajjal K.; Venkatachalam, Manjeri A.; Department of Biochemistry, UT Health Science Center at San Antonio, San Antonio, TX 78229 ; McEwen, Donald G.; Saikumar, Pothana

    2010-04-23

    Arachidonic acid derived endogenous electrophile 15d-PGJ2 has gained much attention in recent years due to its potent anti-proliferative and anti-inflammatory actions mediated through thiol modification of cysteine residues in its target proteins. Here, we show that 15d-PGJ2 at 1 {mu}M concentration converts normal mitochondria into large elongated and interconnected mitochondria through direct binding to mitochondrial fission protein Drp1 and partial inhibition of its GTPase activity. Mitochondrial elongation induced by 15d-PGJ2 is accompanied by increased assembly of Drp1 into large oligomeric complexes through plausible intermolecular interactions. The role of decreased GTPase activity of Drp1 in the formation of large oligomeric complexes is evident when Drp1 is incubated with a non-cleavable GTP analog, GTP{gamma}S or by a mutation that inactivated GTPase activity of Drp1 (K38A). The mutation of cysteine residue (Cys644) in the GTPase effector domain, a reported target for modification by reactive electrophiles, to alanine mimicked K38A mutation induced Drp1 oligomerization and mitochondrial elongation, suggesting the importance of cysteine in GED to regulate the GTPase activity and mitochondrial morphology. Interestingly, treatment of K38A and C644A mutants with 15d-PGJ2 resulted in super oligomerization of both mutant Drp1s indicating that 15d-PGJ2 may further stabilize Drp1 oligomers formed by loss of GTPase activity through covalent modification of middle domain cysteine residues. The present study documents for the first time the regulation of a mitochondrial fission activity by a prostaglandin, which will provide clues for understanding the pathological and physiological consequences of accumulation of reactive electrophiles during oxidative stress, inflammation and degeneration.

  15. New Technologies for Repairing Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westman, Matthew P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-11

    The goal of this project is to demonstrate a proof-of-concept for a technique to repair aging cables that have been subjected to degradation associated with long-term thermal and radiation exposure in nuclear power plants. The physical degradation of the aging cables manifests itself primarily as cracking and increased brittleness of the polymeric electrical insulation. Therefore, the proposed cable-repair concept comprises development of techniques to impart a softening agent within the deteriorated polymer insulation jacket so as to regain the ability of the insulation to stretch without failing and possibly to heal existing cracks in the insulation. Our approach is to use commercially available ethylene-propylene rubber (EPR) as the relevant test material, demonstrate the adsorption of chemical treatments in the EPR and quantify changes in resulting physical and mechanical properties. EPR cable samples have been thermally treated in air to produce specimens corresponding to the full range of cable age-performance points from new (>350% elongation at break) to end-of-life (<50% elongation at break). The current focus is on two chemical treatments selected as candidates for restoring age-related cable elasticity loss: a rubber plasticizer and a reactive silane molecule. EPR specimens of 200, 150, 100, and 50% elongation at break have been soaked in the candidate chemical treatments and the kinetics of chemical uptake, measured by change in mass of the samples, has been determined. Mechanical properties as a function of aging and chemical treatment have been measured including ultimate tensile strength, tensile modulus at 50% strain, elongation at break, and storage modulus. Dimensional changes with treatment and changes in glass transition temperature were also investigated. These ongoing experiments are expected to provide insight into the physical-chemical nature of the effect of thermal degradation on EPR rejuvenation limits and to advance novel methods for restoring the ability of degraded EPR to be compliant and resist fracture. The results of this research reveal that absorption of chemical treatments can lower the glass transition temperature and modulus of EPR. Chemical treatments pursued thus far have proven ineffective at restoring EPR strength and elongation at break. Future work will combine the plasticizer modalities found to successfully increase the volume of the EPR, reduce EPR glass transition temperature and reduce EPR modulus with promising chemistries that will repair the damage of the polymer, potentially using the plasticizer as a host for the new chemistry.

  16. Cross-sectional relationships of exercise and age to adiposity in60,617 male runners

    SciTech Connect (OSTI)

    Williams, Paul T.; Pate, Russell R.

    2004-06-01

    The objective of this report is to assess in men whether exercise affects the estimated age-related increase in adiposity, and contrariwise, whether age affects the estimated exercise-related decrease in adiposity. Cross-sectional analyses of 64,911 male runners who provided data on their body mass index (97.6 percent), waist (91.1 percent), hip (47.1 percent), and chest circumferences (77.9 percent). Between 18 to 55 years old, the decline in BMI with weekly distance run (slope+-SE) was significantly greater in men 25-55 years old (slope+-:-0.036+-0.001 kg/m2 per km/wk) than in younger men (-0.020+-0.002 kg/m 2 per km/wk). Declines in waist circumference with running distance were also significantly greater in older than younger men (P<10-9 for trend),i.e., the slopes decreased progressively from -0.035+-0.004 cm per km/wk in 18-25 year old men to -0.097+-0.003 cm per km/wk in 50-55 year old men. Increases in BMI with age were greater for men who ran under 16km/wk than for longer distance runners. Waist circumference increased with age at all running levels, but the increase appeared to diminish by running further (0.259+-0.015 cm per year if running<8 km/wk and 0.154+-0.003 cm per year for>16 km/wk). In men over 50 years old, BMI declined -0.038+-0.001 kg/m2 per km/wk run when adjusted for age and declined -0.054+-0.003 kg/m2 (increased 0.021+-0.007 cm) per year of age when adjusted for running distance. Their waist circumference declined-0.096+-0.002 cm per km/wk run when adjusted for age and increased 0.021+-0.007 cm per year of age when adjusted for running distance. These cross-sectional data suggest that age and vigorous exercise interact with each other in affecting mens adiposity, and support the proposition that vigorous physical activity must increase with age to prevent middle-age weight gain. We estimate that a man who ran 16 km/wk at age 25 would need to increase their weekly running distance by 65.7 km/wk by age 50 in order to maintain his same waist circumference.

  17. Interactive effects of age and exercise on adiposity measures of41,582 physically active women

    SciTech Connect (OSTI)

    Williams, Paul T.; Satariano William A.

    2004-06-01

    The objective of this report is to assess in women whether exercise affects the estimated age-related increase in adiposity, and contrariwise, whether age affects the estimated exercise-related decrease in adiposity. Cross-sectional analyses of 64,911 female runners who provided data on their body mass index (97.6 percent), waist (91.1percent), and chest circumferences (77.9 percent). Age affected the relationships between vigorous exercise and adiposity. The decline in BMI per km/wk run was linear in 18-25 year olds (-0.023+-0.002 kg/m2 perkm run) and became increasingly nonlinear (convex or upwardly concave) with age. The waist, hip and chest circumferences declined significantly with running distance across all age groups, but the declines were 52-58 percent greater in older than younger women (P<10-5). The relationships between body circumferences and running distance became increasingly convexity (upward concavity) in older women. Conversely, vigorous exercise diminished the apparent increase in adiposity with age. The rise in average BMI with age was greatest in women who ran less than 8 km/week (0.065+-0.005 kg/m2 per y), intermediate of women who ran 8-16km/wk (0.025+-0.004kg/m2 per y) or 16-32 km/wk (0.022+-0.003 kg/m2 pery), and least in those who averaged over 32 km/wk (0.017+-0.001 kg/m2 pery). Before age 45, waist circumference rose 0.055+-0.026 cm in for those who ran 0-8 km/wk, showed no significant change for those who ran 8-40km./wk, and declined -0.057+-0.012 and -0.069+-0.014 cm per year in those who ran 40 -56 and over 56 km/wk. The rise in hip and chest circumferences with age were significantly greater in women who ran under eight km/wk than longer distance runners for hip (0.231+-0.018 vs0.136+-0.004 cm/year) and chest circumferences (0.137+-0.013 vs0.053+-0.003 cm/year). These cross-sectional associations suggest that in women, age and vigorous exercise interact with each other in affecting adiposity. The extent that these cross-sectional associations are causally related to vigorous exercise or are the consequence of self-selection remains to be determined.

  18. Spatially indirect excitons in coupled quantum wells

    SciTech Connect (OSTI)

    Lai, Chih-Wei Eddy

    2004-03-01

    Microscopic quantum phenomena such as interference or phase coherence between different quantum states are rarely manifest in macroscopic systems due to a lack of significant correlation between different states. An exciton system is one candidate for observation of possible quantum collective effects. In the dilute limit, excitons in semiconductors behave as bosons and are expected to undergo Bose-Einstein condensation (BEC) at a temperature several orders of magnitude higher than for atomic BEC because of their light mass. Furthermore, well-developed modern semiconductor technologies offer flexible manipulations of an exciton system. Realization of BEC in solid-state systems can thus provide new opportunities for macroscopic quantum coherence research. In semiconductor coupled quantum wells (CQW) under across-well static electric field, excitons exist as separately confined electron-hole pairs. These spatially indirect excitons exhibit a radiative recombination time much longer than their thermal relaxation time a unique feature in direct band gap semiconductor based structures. Their mutual repulsive dipole interaction further stabilizes the exciton system at low temperature and screens in-plane disorder more effectively. All these features make indirect excitons in CQW a promising system to search for quantum collective effects. Properties of indirect excitons in CQW have been analyzed and investigated extensively. The experimental results based on time-integrated or time-resolved spatially-resolved photoluminescence (PL) spectroscopy and imaging are reported in two categories. (i) Generic indirect exciton systems: general properties of indirect excitons such as the dependence of exciton energy and lifetime on electric fields and densities were examined. (ii) Quasi-two-dimensional confined exciton systems: highly statistically degenerate exciton systems containing more than tens of thousands of excitons within areas as small as (10 micrometer){sup 2} were observed. The spatial and energy distributions of optically active excitons were used as thermodynamic quantities to construct a phase diagram of the exciton system, demonstrating the existence of distinct phases. Optical and electrical properties of the CQW sample were examined thoroughly to provide deeper understanding of the formation mechanisms of these cold exciton systems. These insights offer new strategies for producing cold exciton systems, which may lead to opportunities for the realization of BEC in solid-state systems.

  19. Transport properties of Ce{sub 2}Ni{sub 2}Sn and Ce{sub 2}Pd{sub 2.05}Sn{sub 0.95} Kondo lattice systems

    SciTech Connect (OSTI)

    Pinto, R.P.; Amado, M.M.; Braga, M.E.; de Azevedo, M.M.; Sousa, J.B.; Chevalier, B.; Etourneau, J.

    1997-04-01

    We report experimental data on thermoelectric power S, electrical resistivity {rho}, and the magnetoresistivity of the antiferromagnet Kondo stannides Ce{sub 2}Ni{sub 2}Sn (T{sub N}=4.7 K) and Ce{sub 2}Pd{sub 2.05}Sn{sub 0.95} (T{sub N}=4.7 K). The essential features of the S(T) curves resemble those of heavy fermion systems such as CeCu{sub 2}Si{sub 2}: a broad and positive maximum at intermediate temperatures, followed by a sharper negative minimum at lower temperatures. S values are is considerably smaller in Ce{sub 2}Pd{sub 2.05}Sn{sub 0.95} than in Ce{sub 2}Ni{sub 2}Sn. The positive peak originates from the incoherent Kondo scattering by the excited crystal field levels of the Ce ion ground state. The negative peak might be related to the shape of the density of states associated with the Abrikosov{endash}Suhl resonance. The change of sign in S(T) between its minimum and maximum at T{sup {asterisk}} can be assigned to the fact that the Fermi level sinks below the upper band at T{gt}T{sup {asterisk}}. This behavior and the maximum observed in the {rho}(T) curve at this temperature can be discussed in terms of the electron polaron model, although one must also take into account the crystal field effect. The role played by the crystal field effect, which is more important in Ce{sub 2}Pd{sub 2.05}Sn{sub 0.95}, is analyzed for this compound, providing the magnitude of the crystal field splitting. Magnetoresistivity was also measured in both compounds. The results are consistent with the important role of the Kondo effect at low temperatures and suggest the splitting of the double degenerate bands at T{gt}T{sup {asterisk}}. {copyright} {ital 1997 American Institute of Physics.}

  20. Head-on collisions of binary white dwarf-neutron stars: Simulations in full general relativity

    SciTech Connect (OSTI)

    Paschalidis, Vasileios; Etienne, Zachariah; Liu, Yuk Tung; Shapiro, Stuart L.

    2011-03-15

    We simulate head-on collisions from rest at large separation of binary white dwarf-neutron stars (WDNSs) in full general relativity. Our study serves as a prelude to our analysis of the circular binary WDNS problem. We focus on compact binaries whose total mass exceeds the maximum mass that a cold-degenerate star can support, and our goal is to determine the fate of such systems. A fully general relativistic hydrodynamic computation of a realistic WDNS head-on collision is prohibitive due to the large range of dynamical time scales and length scales involved. For this reason, we construct an equation of state (EOS) which captures the main physical features of neutron stars (NSs) while, at the same time, scales down the size of white dwarfs (WDs). We call these scaled-down WD models 'pseudo-WDs (pWDs)'. Using pWDs, we can study these systems via a sequence of simulations where the size of the pWD gradually increases toward the realistic case. We perform two sets of simulations; One set studies the effects of the NS mass on the final outcome, when the pWD is kept fixed. The other set studies the effect of the pWD compaction on the final outcome, when the pWD mass and the NS are kept fixed. All simulations show that after the collision, 14%-18% of the initial total rest mass escapes to infinity. All remnant masses still exceed the maximum rest mass that our cold EOS can support (1.92M{sub {center_dot}}), but no case leads to prompt collapse to a black hole. This outcome arises because the final configurations are hot. All cases settle into spherical, quasiequilibrium configurations consisting of a cold NS core surrounded by a hot mantle, resembling Thorne-Zytkow objects. Extrapolating our results to realistic WD compactions, we predict that the likely outcome of a head-on collision of a realistic, massive WDNS system will be the formation of a quasiequilibrium Thorne-Zytkow-like object.

  1. SU-E-I-34: Intermittent Low- and High-Dose Ethanol Exposure Alters Neurochemical Responses in Adult Rat Brain: An Ex Vivo 1H NMR Spectroscopy at 11.7 T

    SciTech Connect (OSTI)

    Lee, Do-Wan; Kim, Sang-Young; Song, Kyu-Ho; Choe, Bo-Young

    2014-06-01

    Purpose: The first goal of this study was to determine the influence of the dose-dependent effects of intermittent ethanol intoxication on cerebral neurochemical responses among sham controls and low- and high-dose-ethanol-exposed rats with ex vivo high-resolution spectra. The second goal of this study was to determine the correlations between the metabolite-metabolite levels (pairs-of-metabolite levels) from all of the individual data from the frontal cortex of the intermittent ethanol-intoxicated rats. Methods: Eight-week-old male Wistar rats were divided into 3 groups. Twenty rats in the LDE (n = 10) and the HDE (n = 10) groups received ethanol doses of 1.5 g/kg and 2.5 g/kg, respectively, through oral gavage every 8-h for 4 days. At the end of the 4-day intermittent ethanol exposure, one-dimensional ex vivo 500-MHz proton nuclear magnetic resonance spectra were acquired from 30 samples of the frontal cortex region (from the 3 groups). Results: Normalized total-N-acetylaspartate (tNAA: NAA + NAAG [N-acetylaspartyl-glutamate]), gamma-aminobutyric acid (GABA), and glutathione (GSH) levels were significantly lower in the frontal cortex of the HDE-exposed rats than that of the LDE-exposed rats. Moreover, compared to the CNTL group, the LDE rats exhibited significantly higher normalized GABA levels. The 6 pairs of normalized metabolite levels were positively (+) or negatively (?) correlated in the rat frontal cortex as follows: tNAA and GABA (+), tNAA and Aspartate (Asp) (?), myo-Inositol (mIns) and Asp (?), mIns and Alanine (+), mIns and Taurine (+), and mIns and tNAA (?). Conclusion: Our results suggested that repeated intermittent ethanol intoxication might result in neuronal degeneration and dysfunction, changes in the rate of GABA synthesis, and oxidative stress in the rat frontal cortex. Our ex vivo 1H high-resolution-magic angle spinning nuclear magnetic resonance spectroscopy results suggested some novel metabolic markers for the dose-dependent influence of repeated intermittent ethanol intoxication in the frontal cortex.

  2. Method of orbit sums in the theory of modular vector invariants

    SciTech Connect (OSTI)

    Stepanov, S A

    2006-12-31

    Let F be a field, V a finite-dimensional F-vector space, G{<=}GL{sub F}(V) a finite group, and V{sup m}=V+...+V the m-fold direct sum with the diagonal action of G. The group G acts naturally on the symmetric graded algebra A{sub m}=F[V{sup m}] as a group of non-degenerate linear transformations of the variables. Let A{sub m}{sup G} be the subalgebra of invariants of the polynomial algebra A{sub m} with respect to G. A classical result of Noether [1] says that if charF=0, then A{sub m}{sup G} is generated as an F-algebra by homogeneous polynomials of degree at most |G|, no matter how large m can be. On the other hand, it was proved by Richman [2], [3] that this result does not hold when the characteristic of F is positive and divides the order |G| of G. Let p, p>2, be a prime number, F=F{sub p} a finite field of p elements, V a linear F{sub p}-vector space of dimension n, and H{<=}GL{sub F{sub p}}(V) a cyclic group of order p generated by a matrix {gamma} of a certain special form. In this paper we describe explicitly (Theorem 1) one complete set of generators of A{sub m}{sup H}. After that, for an arbitrary complete set of generators of this algebra we find a lower bound for the highest degree of the generating elements of this algebra. This is a significant extension of the corresponding result of Campbell and Hughes [4] for the particular case of n=2. As a consequence we show (Theorem 3) that if m>n and G{>=}H is an arbitrary finite group, then each complete set of generators of A{sub m}{sup G} contains an element of degree at least 2(m-n+2r)(p-1)/r, where r=r(H) is a positive integer dependent on the structure of the generating matrix {gamma} of the group H. This result refines considerably the earlier lower bound obtained by Richman [3].

  3. Lung autophagic response following exposure of mice to whole body irradiation, with and without amifostine

    SciTech Connect (OSTI)

    Zois, Christos E.; Giatromanolaki, Alexandra; Kainulainen, Heikki; Botaitis, Sotirios; Torvinen, Sira; Simopoulos, Constantinos; Kortsaris, Alexandros; Sivridis, Efthimios; Koukourakis, Michael I.

    2011-01-07

    Research highlights: {yields} We investigated the effect 6 Gy of WBI on the autophagic machinery of normal mouse lung. {yields} Irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. {yields} The membrane bound LC3A-II protein levels increased in the cytosolic fraction (not in the pellet), contrasting the patterns noted after starvation-induced autophagy. {yields} Administration of amifostine, reversed all the LC3A and p62 findings, suggesting protection of the normal autophagic function. -- Abstract: Purpose: The effect of ionizing irradiation on the autophagic response of normal tissues is largely unexplored. Abnormal autophagic function may interfere the protein quality control leading to cell degeneration and dysfunction. This study investigates its effect on the autophagic machinery of normal mouse lung. Methods and materials: Mice were exposed to 6 Gy of whole body {gamma}-radiation and sacrificed at various time points. The expression of MAP1LC3A/LC3A/Atg8, beclin-1, p62/sequestosome-1 and of the Bnip3 proteins was analyzed. Results: Following irradiation, the LC3A-I and LC3A-II protein levels increased significantly at 72 h and 7 days. Strikingly, LC3A-II protein was increased (5.6-fold at 7 days; p < 0.001) only in the cytosolic fraction, but remained unchanged in the membrane fraction. The p62 protein, was significantly increased in both supernatant and pellet fraction (p < 0.001), suggesting an autophagosome turnover deregulation. These findings contrast the patterns of starvation-induced autophagy up-regulation. Beclin-1 levels remained unchanged. The Bnip3 protein was significantly increased at 8 h, but it sharply decreased at 72 h (p < 0.05). Administration of amifostine (200 mg/kg), 30 min before irradiation, reversed all the LC3A and p62 findings on blots, suggesting restoration of the normal autophagic function. The LC3A and Beclin1 mRNA levels significantly declined following irradiation (p < 0.01), whereas Bnip3 levels increased. Conclusions: It is suggested that irradiation induces dysfunction of the autophagic machinery in normal lung, characterized by decreased transcription of the LC3A/Beclin-1 mRNA and accumulation of the LC3A, and p62 proteins. Whether this is due to defective maturation or to aberrant degradation of the autophagosomes requires further investigation.

  4. Magnetic Transitions in Iron Porphyrin Halides by Inelastic Neutron Scattering and Ab-initio Studies of Zero-Field Splittings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stavretis, Shelby E.; Atanasov, Mihail; Podlesnyak, Andrey A.; Hunter, Seth C.; Neese, Frank; Xue, Zi-Ling

    2015-10-02

    Zero-field splitting (ZFS) parameters of nondeuterated metalloporphyrins [Fe(TPP)X] (X = F, Br, I; H2TPP = tetraphenylporphyrin) are determined by inelastic neutron scattering (INS). The ZFS values are D = 4.49(9) cm–1 for tetragonal polycrystalline [Fe(TPP)F], and D = 8.8(2) cm–1, E = 0.1(2) cm–1 and D = 13.4(6) cm–1, E = 0.3(6) cm–1 for monoclinic polycrystalline [Fe(TPP)Br] and [Fe(TPP)I], respectively. Along with our recent report of the ZFS value of D = 6.33(8) cm–1 for tetragonal polycrystalline [Fe(TPP)Cl], these data provide a rare, complete determination of ZFS parameters in a metalloporphyrin halide series. The electronic structure of [Fe(TPP)X] (X =more » F, Cl, Br, I) has been studied by multireference ab initio methods: the complete active space self-consistent field (CASSCF) and the N-electron valence perturbation theory (NEVPT2) with the aim of exploring the origin of the large and positive zero-field splitting D of the 6A1 ground state. D was calculated from wave functions of the electronic multiplets spanned by the d5 configuration of Fe(III) along with spin–orbit coupling accounted for by quasi degenerate perturbation theory. Results reproduce trends of D from inelastic neutron scattering data increasing in the order from F, Cl, Br, to I. A mapping of energy eigenvalues and eigenfunctions of the S = 3/2 excited states on ligand field theory was used to characterize the σ- and π-antibonding effects decreasing from F to I. This is in agreement with similar results deduced from ab initio calculations on CrX63- complexes and also with the spectrochemical series showing a decrease of the ligand field in the same directions. A correlation is found between the increase of D and decrease of the π- and σ-antibonding energies eλX (λ = σ, π) in the series from X = F to I. Analysis of this correlation using second-order perturbation theory expressions in terms of angular overlap parameters rationalizes the experimentally deduced trend. Furthermore, D parameters from CASSCF and NEVPT2 results have been calibrated against those from the INS data, yielding a predictive power of these approaches. Methods to improve the quantitative agreement between ab initio calculated and experimental D and spectroscopic transitions for high-spin Fe(III) complexes are proposed.« less

  5. Search for gluino and squark production in multi-jets plus missing transverse energy final states at the Tevatron using the CDF detector

    SciTech Connect (OSTI)

    Portell i Bueso, Xavier; /Barcelona, IFAE

    2007-01-01

    In this thesis, the results of the search for squarks and gluinos in multiple jets plus missing transverse energy final states have been presented. No evidence of these new particles have been found in 371 pb{sup -1} of CDF Run II data. New limits have been set which exclude gluino masses below 220 GeV and, in the region where M{sub {tilde g}} {approx} M{sub {tilde q}}, masses below 380 GeV/c{sup 2} are excluded. These limits are valid in a mSUGRA scenario with tan {beta} = 5, A = 0 and {mu} < 0 assuming the lightest four squark flavours degenerate in mass. To obtain these results a careful study of the beam conditions and their contribution to events with E{sub T} final states has been performed. Special attention has been taken in studying the different SM backgrounds and their normalizations at NLO. Dedicated cuts have been introduced to remove the background processes and main discriminating variables have been optimized for different signal regions. The different systematic uncertainties have also been considered. This is the first time that this search is performed at CDF Run II and the results presented here show significant improvements with respect to the constraints from previous experiments. Thus, this analysis has established the procedure to continue searching for squarks and gluinos with the new data samples that CDF is collecting from Tevatron. Some improvements may also be implemented by considering other hadron final states with different jet multiplicities. This could help extending the sensitivity of the analysis to regions where gluino and squark masses are not similar. At the forthcoming LHC, the search for squarks and gluinos in this inclusive channel constitutes one of the first analyses to be performed. The E{sub T} and multiple jets final states are present in multiple decay modes of many models beyond the SM. The experience from Tevatron in working on an hadron collider environment will be useful for these kind of studies aiming to discover the presence of supersymmetric processes.

  6. Identification of a genetic interaction between the tumor suppressor EAF2 and the retinoblastoma protein (Rb) signaling pathway in C. elegans and prostate cancer cells

    SciTech Connect (OSTI)

    Cai, Liquan; Wang, Dan; Fisher, Alfred L.; Wang, Zhou

    2014-05-02

    Highlights: RNAi screen identified genetic enhancers for the C. elegans homolog of EAF2. EAF2 and RBBP4 proteins physically bind to each other and alter transcription. Overexpression of EAF2 and RBBP4 induces the cell death in prostate cancer cells. - Abstract: The tumor suppressor EAF2 is regulated by androgen signaling and associated with prostate cancer. While EAF2 and its partner ELL have been shown to be members of protein complexes involved in RNA polymerase II transcriptional elongation, the biologic roles for EAF2 especially with regards to the development of cancer remains poorly understood. We have previously identified the eaf-1 gene in Caenorhabditiselegans as the ortholog of EAF2, and shown that eaf-1 interacts with the ELL ortholog ell-1 to control development and fertility in worms. To identify genetic pathways that interact with eaf-1, we screened RNAi libraries consisting of transcription factors, phosphatases, and chromatin-modifying factors to identify genes which enhance the effects of eaf-1(tm3976) on fertility. From this screen, we identified lin-53, hmg-1.2, pha-4, ruvb-2 and set-6 as hits. LIN-53 is the C. elegans ortholog of human retinoblastoma binding protein 4/7 (RBBP 4/7), which binds to the retinoblastoma protein and inhibits the Ras signaling pathway. We find that lin-53 showed a synthetic interaction with eaf-1(tm3976) where knockdown of lin-53 in an eaf-1(tm3976) mutant resulted in sterile worms. This phenotype may be due to cell death as the treated worms contain degenerated embryos with increased expression of the ced-1:GFP cell death marker. Further we find that the interaction between eaf-1 and lin-53/RBBP4/7 also exists in vertebrates, which is reflected by the formation of a protein complex between EAF2 and RBBP4/7. Finally, overexpression of either human EAF2 or RBBP4 in LNCaP cells induced the cell death while knockdown of EAF2 in LNCaP enhanced cell proliferation, indicating an important role of EAF2 in controlling the growth and survival of prostate cancer cells. Together these findings identify a novel physical and functional interaction between EAF2 and the Rb pathway.

  7. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Volkow, Nora D.; Wang, Gene-Jack; Smith, Lisa; Fowler, Joanna S.; Telang, Frank; Logan, Jean; Tomasi, Dardo

    2015-07-21

    Metamphetamine’s widepread abuse and concerns that it may increase Parkinson’s disease led us to assess if the reported loss of dopamine transporters (DAT) in methamphetamine abusers (MA) reflected damage to dopamine neurons. Using PET with [11C]cocaine to measure DAT, and with [11C]raclopride to measure dopamine release (assessed as changes in specific binding of [11C]raclopride between placebo and methylphenidate), which was used as marker of dopamine neuronal function, we show that MA (n=16), tested during early detoxification, had lower DAT (20-30%) but overall normal DA release in striatum (except for a small decrease in left putamen), when compared to controls (n=15).more » In controls, DAT were positively correlated with DA release (higher DAT associated with larger DA increases), consistent with DAT serving as markers of DA terminals. In contrast, MA showed a trend for a negative correlation (p=0.07) (higher DAT associated with lower DA increases), consistent with reduced DA re-uptake following DAT downregulation. MA who remained abstinent nine-months later (n=9) showed significant increases in DAT (20%) but methylphenidate-induced dopamine increases did not change. In contrast, in controls, DAT did not change when retested 9 months later but methylphenidate-induced dopamine increases in ventral striatum were reduced (p=0.05). Baseline D2/D3 receptors in caudate were lower in MA than in controls and did not change with detoxification, nor did they change in the controls upon retest. The loss of DAT in the MA, which was not associated with a concomitant reduction in dopamine release as would have been expected if DAT loss reflected DA terminal degneration; as well as the recovery of DAT after protracted detoxification, which was not associated with increased dopamine release as would have been expected if DAT increases reflected terminal regeneration, indicate that the loss of DAT in these MA does not reflect degeneration of dopamine terminals.« less

  8. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

    SciTech Connect (OSTI)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

    2010-06-30

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are determined to be risk significant to NPPs. Multiple models have been identified for concrete, carbon and low-alloy steel, and stainless steel. These models are documented in the Annual Report for the Year 2 Task, identified as BNL Report-82249-2009 and also designated as KAERI/TR-3757/2009. This report describes the research effort performed by BNL for the Year 3 scope of work. The objective is for BNL to develop the seismic fragility capacity for a condensate storage tank with various degradation scenarios. The conservative deterministic failure margin method has been utilized for the undegraded case and has been modified to accommodate the degraded cases. A total of five seismic fragility analysis cases have been described: (1) undegraded case, (2) degraded stainless tank shell, (3) degraded anchor bolts, (4) anchorage concrete cracking, and (5)a perfect combination of the three degradation scenarios. Insights from these fragility analyses are also presented.

  9. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES

    SciTech Connect (OSTI)

    Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret; Bot, Caroline; Bolatto, Alberto; Jameson, Katherine; Hughes, Annie; Hony, Sacha; Wong, Tony; Babler, Brian; Bernard, Jean-Philippe; Clayton, Geoffrey C.; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Lebouteiller, Vianney; Lee, Min-Young; Israel, Frank; Li, Aigen; and others

    2014-12-20

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21cm, CO, and H? observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380{sub ?130}{sup +250} 3 in the LMC, and 1200{sub ?420}{sup +1600} 120 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 M {sub ?}pc{sup 2} in the LMC and 0.03 M {sub ?}pc{sup 2} in the SMC, corresponding to A {sub V} ? 0.4 and 0.2, respectively. We investigate the range of CO-to-H{sub 2} conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on X {sub CO} to be 6 10{sup 20}cm{sup 2}K{sup 1}km{sup 1} s in the LMC (Z= 0.5 Z {sub ?}) at 15pc resolution, and 4 10{sup 21}cm{sup 2}K{sup 1}km{sup 1} s in the SMC (Z= 0.2 Z {sub ?}) at 45pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ?2, even after accounting for the effects of CO-dark H{sub 2} in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H{sub 2}. Within the expected 5-20times Galactic X {sub CO} range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling and observations are required to break the degeneracy between dust grain coagulation, accretion, and CO-dark H{sub 2}. Our analysis demonstrates that obtaining robust ISM masses remains a non-trivial endeavor even in the local Universe using state-of-the-art maps of thermal dust emission.

  10. Durability of Low Platinum Fuel Cells Operating at High Power Density

    SciTech Connect (OSTI)

    Polevaya, Olga; Blanchet, Scott; Ahluwalia, Rajesh; Borup, Rod; Mukundan, Rangachary

    2014-03-19

    Understanding and improving the durability of cost-competitive fuel cell stacks is imperative to successful deployment of the technology. Stacks will need to operate well beyond todays state-of-the-art rated power density with very low platinum loading in order to achieve the cost targets set forth by DOE ($15/kW) and ultimately be competitive with incumbent technologies. An accelerated cost-reduction path presented by Nuvera focused on substantially increasing power density to address non-PGM material costs as well as platinum. The study developed a practical understanding of the degradation mechanisms impacting durability of fuel cells with low platinum loading (?0.2mg/cm2) operating at high power density (?1.0W/cm2) and worked out approaches for improving the durability of low-loaded, high-power stack designs. Of specific interest is the impact of combining low platinum loading with high power density operation, as this offers the best chance of achieving long-term cost targets. A design-of-experiments approach was utilized to reveal and quantify the sensitivity of durability-critical material properties to high current density at two levels of platinum loading (the more conventional 0.45 mgPt.cm1 and the much lower 0.2 mgPt.cm2) across several cell architectures. We studied the relevance of selected component accelerated stress tests (AST) to fuel cell operation in power producing mode. New stress tests (NST) were designed to investigate the sensitivity to the addition of electrical current on the ASTs, along with combined humidity and load cycles and, eventually, relate to the combined city/highway drive cycle. Changes in the cathode electrochemical surface area (ECSA) and average oxygen partial pressure on the catalyst layer with aging under AST and NST protocols were compared based on the number of completed cycles. Studies showed elevated sensitivity of Pt growth to the potential limits and the initial particle size distribution. The ECSA loss was correlated with the upper potential limit in the cycle tests, although the performance degradation was found to be a strong function of initial Pt loading. A large fraction of the voltage degradation was found due to increased mass transfer overpotentials, especially in the lower Pt loading cells. Increased mass transfer overpotentials were responsible for a large fraction of the voltage degradation at high current densities. Analysis of the impedance and polarization data indicated O2 diffusion in the aged electrode ionomer to be the main source of the increased mass transfer overpotentials. Results from the experimental parametric studies were used to inform and calibrate newly developed durability model, simulating lifetime performance of the fuel cell under variety of load-cycle protocols, electrode loadings and throughout wide range of operating conditions, including elevated-to-3.0A/cm2 current densities. Complete durability model included several sub-models: platinum dissolution-and-growth as well as reaction-diffusion model of cathode electrode, applied sequentially to study the lifetime predictions of ECSA and polarization performance in the ASTs and NSTs. These models establish relations between changes in overpotentials, ECSA and oxygen mass transport in fuel cell cathodes. The model was calibrated using single cells with land-channel and open flowfield architectures. The model was validated against Nuvera Orion (open flowfield) short stack data in the load cycle durability tests. The reaction-diffusion model was used to correlate the effective mass transfer coefficients for O2 diffusion in cathode ionomer and separately in gas pores with the operating conditions (pressure, temperature, gas velocity in flow field and current density), Pt loading, and ageing related growth in Pt particles and thinning of the electrode. Achievements of both modeling and experimental objectives were demonstrated in a full format, subscale stacks operating in a simulated but fully realistic ambient environment, using system-compatible operating protocols.

  11. Oxidative Stress and Skeletal Health with Low-Dose, Low-LET (Linear Energy Transfer) Ionizing Radiation

    SciTech Connect (OSTI)

    Globus, Ruth K.

    2014-11-03

    We performed in vivo and in vitro experiments to accomplish the following specific aims of this project: 1) determine if low dose, low LET radiation affects skeletal remodeling at structural, cellular and molecular levels and 2) determine if low dose, low LET radiation modulates skeletal health during aging via oxidative mechanisms. A third aim is supported by NASA supplement to this DOE grant focusing on the influence of high LET radiation on bone. A series of experiments were conducted at the NASA Space Radiation Laboratory at Brookhaven, NSRL-BNL, using iron (56Fe) or a sequential exposure to protons / iron / protons, and separate experiments at NASA Ames Research Center (ARC) using 137Cs. The following provides a summary of key findings. (1) Exposure of nine-week old female mice to priming doses of gamma radiation (10cGy x 5) did not significantly affect bone volume/total volume (BV/TV) or microarchitecture as analyzed by 3D microcomputed tomography. As expected, exposure to the challenge dose of 2 Gy gamma irradiation resulted in significant decreases in BV/TV. The priming dose combined with the 2Gy challenge dose had no further effect on BV/TV compared to challenge dose alone, with the sole exception of the Structural Model Index (SMI). SMI reflects the ratio of rods-to-plates in cancellous bone tissue, such that higher SMI values indicate a tendency toward a weaker structure compared to lower SMI values. Mice treated with both priming and challenge dose had 25% higher SMI values compared to sham-irradiated controls and 7% higher values compared to mice treated with the challenge dose alone. Thus, although this priming regimen had relatively modest effects on cancellous tissue, the difference in SMI suggests this fractionated priming doses have adverse, rather than beneficial, effects on bone structure. (2) In 10-week old male mice, a single exposure to 100cGy of 137Cs reduces trabecular bone number and connectivity density by 20% and 36% respectively one month after irradiation (IR). At four months post-IR, these animals were comparable to sham-treated controls with regards to the abovementioned structural parameters. Irradation at 1 or 10 cGy did not result in any significant changes in bone structural parameters. (3) Irradiation of 16-wk old male mice with high doses of 56Fe or proton (50 or 200cGy), but not at low doses (5 or 10cGy), showed a similar loss of cancellous BV/TV and trabecular number at five weeks post-IR. (4) Age-related bone loss overtook acute radiation-induced decrements in bone structure within four months post-IR with 100 cGy gamma and 12 months post-IR with 200 cGy iron. Transgenic mice globally overexpressing human catalase gene in mitochondria did not exhibit cancellous bone loss as assessed at four month post-IR with 10 cGy proton, 50 cGy iron, or in combination. (5) The cellular and molecular mechanisms responsible for loss of bone with radiation are mediated primarily through increased osteoclastogenesis. Our data provide evidence that there are increases in gene expression of TNF alpha and MCP1 in the bone marrow cells 24 hours post-IR and of osteoclastogenic differentiation factor RANKL by day 3. These cytokines in the marrow may stimulate mature osteoclasts or drive osteoclastogenesis from precursors. (6) Osteoblastogenesis from marrow progenitors evaluated ex vivo decreased following whole body 56Fe irradiation at a dose threshold between 20 and 50 cGy whereas osteoclastogenesis ex vivo increased with doses as low as 10cGy two days post-IR of mice. However, the latter finding was not observed in more than a single experiment. (7) Gamma irradiation of cells in vitro requires relatively high doses (200cGy) to disturb normal osteoblastogenesis and osteoclastogenesis as evidenced by decrements in mineralized nodule formation, osteoclast counts, and expression of osteoblast related genes such as runx2, col1a1. (8) We also investigated the effect of antioxidants on osteoblastogenesis following low dose in vitro gamma irradiation (15cGy) on day four bone marrow stromal cell cultures. Super