Powered by Deep Web Technologies
Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Annual fuel usage charts for oil-fired boilers. [Building space heating and hot water supplies  

SciTech Connect

On the basis of laboratory-determined boiler efficiency data, one may calculate the annual fuel usage (AFU) for any oil-fired boiler, serving a structure of a given design heat load, for any specified hourly weather pattern. Further, where data are available regarding the energy recapture rates of the strucutre due to direct gain solar energy (windows), lighting, cooking, electrical appliances, metabolic processes, etc., the annual fuel usage savings due to such (re) capture are straightforwardly determinable. Employing the Brookhaven National Laboratory annual fuel usage formulation, along with efficiency data determined in the BNL Boiler Laboratory, computer-drawn annual fuel usage charts can be generated for any selected boiler for a wide range of operating conditions. For two selected boilers operating in any one of the hour-by-hour weather patterns which characterize each of six cities over a wide range of firing rates, domestic hot water consumption rates, design heat loads, and energy (re) capture rates, annual fuel usages are determined and graphically presented. Figures 1 to 98, inclusive, relate to installations for which energy recapture rates are taken to be zero. Figures 97 to 130, inclusive, apply to a range of cases for which energy recapture rates are nonzero and determinable. In all cases, simple, direct and reliable annual fuel usage values can be determined by use of charts and methods such as those illustrated.

Berlad, A.L.; Yeh, Y.J.; Salzano, F.J.; Hoppe, R.J.; Batey, J.

1978-07-01T23:59:59.000Z

2

Fuel Cell Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Reports to someone by E-mail Share Fuel Cell Technologies Office: Annual Progress Reports on Facebook Tweet about Fuel Cell Technologies Office: Annual Progress Reports on...

3

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Annual Fee to someone by E-mail Annual Fee to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Annual Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Annual Fee Owners of compressed natural gas and propane powered vehicles are required

4

Heating Fuel Comparision Calculator - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

HEAT CONTENT PRICES INSTRUCTIONS CALCULATOR Fuel Heat Content Per Unit (Btu) Fuel Type Electricity Propane Kerosene Gallon Cord Ton AFUE Natural Gas COP Geothermal ...

5

Fuel Performance Annual Report for 1979  

Science Conference Proceedings (OSTI)

This annual report, the second in a series, provides a brief description of fuel performance in commercial nuclear power plants. Brief summaries are given of fuel surveillance programs, fuel performance problems, and fuel design changes. References to additional, more detailed, information and related NRC evaluation are provided.

Tokar, M.; Mailey, W. J.; Cunningham, M. E.

1981-01-01T23:59:59.000Z

6

Fuel Performance Annual Report for 1980  

SciTech Connect

This annual report, the third in a series, provides a brief description of fuel performance in conmercial nuclear power plants. Brief summaries of fuel surveillance programs and operating experience, fuel performance problems, and fuel design changes are provided. References to additional, more detailed, information and related NRC evaluation are included.

Bailey, W. J.; Rising, K. H.; Tokar, M.

1981-12-01T23:59:59.000Z

7

Fuel performance: Annual report for 1987  

SciTech Connect

This annual report, the tenth in a series, provides a brief description of fuel performance during 1987 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulator Commission evaluations are included. 384 refs., 13 figs., 33 tabs.

Bailey, W.J.; Wu, S.

1989-03-01T23:59:59.000Z

8

Fuel performance annual report for 1986  

Science Conference Proceedings (OSTI)

This annual report, the ninth in a series, provides a brief description of fuel performance during 1986 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related U.S. Nuclear Regulatory Commission evaluations are included. 550 refs., 12 figs., 31 tabs.

Bailey, W.J.; Wu, S.

1988-03-01T23:59:59.000Z

9

Fuel performance annual report for 1988  

SciTech Connect

This annual report, the eleventh in a series, provides a brief description of fuel performance during 1988 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included. 414 refs., 13 figs., 32 tabs.

Bailey, W.J. (Pacific Northwest Lab., Richland, WA (USA)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering and Systems Technology)

1990-03-01T23:59:59.000Z

10

Fuel performance annual report for 1989  

SciTech Connect

This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included.

Bailey, W.J.; Berting, F.M. (Pacific Northwest Lab., Richland, WA (United States)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology)

1992-06-01T23:59:59.000Z

11

Fuel performance annual report for 1985  

Science Conference Proceedings (OSTI)

This annual report, the eighth in a series, provides a brief description of fuel performance during 1985 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Wu, S.

1987-02-01T23:59:59.000Z

12

Fuel Cell Technologies Office: Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings to someone by E-mail Share Fuel Cell Technologies Office: Annual Merit Review Proceedings on Facebook Tweet about Fuel Cell Technologies Office: Annual Merit Review...

13

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Printable Version 2012 Annual Progress Report V. Fuel Cells This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on fuel...

14

2004 Office of Fossil Energy Fuel Cell Program Annual Report  

DOE Green Energy (OSTI)

Annual report of fuel cell projects sponsored by Department of Energy, National Energy Technology Laboratory.

NETL

2004-11-01T23:59:59.000Z

15

FE annual Report Bioprocessing of Fossil Fuels  

E-Print Network (OSTI)

FE annual Report July 2004 Bioprocessing of Fossil Fuels Abhijeet Borole, Life Sciences Division The overall objective of this research program is to develop novel technologies for processing fossil fuels energy-efficient. Processes based on oxidative as well as reductive reactions are being investigated

16

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Annual Progress Report XI. Systems Analysis This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on systems analysis. Systems...

17

DOE Hydrogen and Fuel Cells Program: 2010 Annual Merit Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Annual Merit Review Proceedings Printable Version 2010 Annual Merit Review Proceedings Principal investigators presented the status and results of their hydrogen and fuel cell...

18

2010 Annual Progress Report for Fuels Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

annual progress report 2010 Fuels Technologies i FY 2010 Progress Report Fuels Technologies Approved by Kevin Stork Team Leader, Fuels Technologies Vehicle Technologies Program FY 2010 Progress rePort For Fuels technologies Energy Efficiency and Renewable Energy Vehicle Technologies Program U.S. Department of Energy 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 February 2011 DOE-FT-2010AR ii Fuels Technologies FY 2010 Progress Report Acknowledgement We would like to express our sincere appreciation to Alliance Technical Services, Inc. and Oak Ridge National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the programs and all the

19

Fuel performance annual report for 1983. Volume 1  

Science Conference Proceedings (OSTI)

This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Dunenfeld, M.S.

1985-03-01T23:59:59.000Z

20

Fuel performance annual report for 1981. [PWR; BWR  

SciTech Connect

This annual report, the fourth in a series, provides a brief description of fuel performance during 1981 in commercial nuclear power plants. Brief summaries of fuel operating experience, fuel problems, fuel design changes and fuel surveillance programs, and high-burnup fuel experience are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Tokar, M.

1982-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel performance annual report for 1990. Volume 8  

SciTech Connect

This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate.

Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A. [Pacific Northwest Lab., Richland, WA (United States); Wu, S.L. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

1993-11-01T23:59:59.000Z

22

Fuel Cell Technologies Office: 2003 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings to someone by E-mail Proceedings to someone by E-mail Share Fuel Cell Technologies Office: 2003 Annual Merit Review Proceedings on Facebook Tweet about Fuel Cell Technologies Office: 2003 Annual Merit Review Proceedings on Twitter Bookmark Fuel Cell Technologies Office: 2003 Annual Merit Review Proceedings on Google Bookmark Fuel Cell Technologies Office: 2003 Annual Merit Review Proceedings on Delicious Rank Fuel Cell Technologies Office: 2003 Annual Merit Review Proceedings on Digg Find More places to share Fuel Cell Technologies Office: 2003 Annual Merit Review Proceedings on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

23

Fuel Cell Technologies Office: Annual Merit Review and Peer Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Merit Review and Peer Evaluation Reports to someone by E-mail Share Fuel Cell Technologies Office: Annual Merit Review and Peer Evaluation Reports on Facebook Tweet about...

24

2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program  

Fuel Cell Technologies Publication and Product Library (EERE)

The 2012 Annual Progress Report summarizes fiscal year 2012 activities and accomplishments by projects funded by the DOE Hydrogen and Fuel Cells Program.

25

DOE Hydrogen and Fuel Cells Program: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

and Fuel Cells Program and the offices of Energy Efficiency and Renewable Energy (EERE), Fossil Energy, Nuclear Energy, and Science. The 2012 Annual Progress Report was published...

26

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT ...  

U.S. Energy Information Administration (EIA)

An energy-consuming sector that consists of living quarters and ... buildings. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 3 Commercial Use ...

27

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT  

U.S. Energy Information Administration (EIA)

Version No.: 2013.01. FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT REFERENCE YEAR 2012 ; This report is ; ... 2012 . 10. Type of Report

28

Fuel Cell Technologies Office: Annual Merit Review and Peer Evaluation...  

NLE Websites -- All DOE Office Websites (Extended Search)

These reports summarize the comments of expert peer reviewers at the Annual Merit Review and Peer Evaluation, where each year projects funded by DOE's Hydrogen and Fuel Cells...

29

Fuel performance annual report for 1984. Volume 2  

Science Conference Proceedings (OSTI)

This annual report, the seventh in a series, provides a brief description of fuel performance during 1984 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included. 279 refs., 11 figs., 29 tabs.

Bailey, W.J.; Dunenfeld, M.S.

1986-03-01T23:59:59.000Z

30

DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting DOE Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting June 16, 2014...

31

Building and Fire Publications  

Science Conference Proceedings (OSTI)

... procedure for testing the Annual Fuel Utilization Efficiency (AFUE) of residential central furnaces and boilers references ASHRAE Standard 103 ...

32

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual Fuel Economy Guide Now Available 10 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

33

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

34

Fourth annual report to Congress, Federal Alternative Motor Fuels Programs  

DOE Green Energy (OSTI)

This annual report to Congress presents the current status of the alternative fuel vehicle programs being conducted across the country in accordance with the Alternative Motor Fuels Act of 1988. These programs, which represent the most comprehensive data collection effort ever undertaken on alternative fuels, are beginning their fifth year. This report summarizes tests and results from the fourth year.

NONE

1995-07-01T23:59:59.000Z

35

Hydrogen, Fuel Cells and Infrastructure Technologies Program, 2002 Annual Progress Report  

DOE Green Energy (OSTI)

The Department of Energy's Hydrogen, Fuel Cells and Infrastructure Technologies program's 2002 annual progress report.

Not Available

2002-11-01T23:59:59.000Z

36

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of...

37

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

11 Annual Progress Report 11 Annual Progress Report DOE Hydrogen and Fuel Cells Program I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 II.0 Hydrogen Production Sub-Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 II.A Distributed BDL Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 II.A.1 Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

38

Fuel performance annual report for 1991. Volume 9  

Science Conference Proceedings (OSTI)

This report is the fourteenth in a series that provides a compilation of information regarding commercial nuclear fuel performance. The series of annual reports were developed as a result of interest expressed by the public, advising bodies, and the US Nuclear Regulatory Commission (NRC) for public availability of information pertaining to commercial nuclear fuel performance. During 1991, the nuclear industry`s focus regarding fuel continued to be on extending burnup while maintaining fuel rod reliability. Utilities realize that high-burnup fuel reduces the amount of generated spent fuel, reduces fuel costs, reduces operational and maintenance costs, and improves plant capacity factors by extending operating cycles. Brief summaries of fuel operating experience, fuel design changes, fuel surveillance programs, high-burnup experience, problem areas, and items of general significance are provided.

Painter, C.L.; Alvis, J.M.; Beyer, C.E. [Pacific Northwest Lab., Richland, WA (United States); Marion, A.L. [Oregon State Univ., Corvallis, OR (United States). Dept. of Nuclear Engineering; Payne, G.A. [Northwest Coll. and Univ. Association for Science, Richland, WA (United States); Kendrick, E.D. [Nuclear Regulatory Commission, Washington, DC (United States)

1994-08-01T23:59:59.000Z

39

2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies Annual Review Meeting Transaction Fuel Cycle Technologies Annual Review Meeting Transaction Report 2012 Fuel Cycle Technologies Annual Review Meeting Transaction Report The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. In order to continue or expand the role for nuclear power in our long- term energy platform, the United States must: Continually improve the safety and security of nuclear energy and its associated technologies worldwide. Develop solutions for the transportation, storage, and long-term disposal of used nuclear fuel and associated wastes.

40

2011 Fuel Cycle Technologies Annual Review Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Fuel Cycle Technologies Annual Review Meeting 1 Fuel Cycle Technologies Annual Review Meeting 2011 Fuel Cycle Technologies Annual Review Meeting As the largest domestic source of low-carbon energy, nuclear power is making major contributions toward meeting our nation's current and future energy demands. The United States must continue to ensure improvements and access to this technology so we can meet our economic, environmental and energy security goals. We rely on nuclear energy because it provides a consistent, reliable and stable source of base load electricity with an excellent safety record in the United States. To support nuclear energy's continued and expanded role in our energy platform, therefore, the United States must continually improve its knowledge, technology, and policy in order to:

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

EIA - Assumptions to the Annual Energy Outlook 2009 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2009 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy.

42

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

85 85 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program 3M Company V.B.1 Effect of System Contaminants on PEMFC Performance and Durability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 640 V.C.1 Membranes and MEAs for Dry, Hot Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662 V.C.6 Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685 V.D.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699 V.D.3 Durable Catalysts for Fuel Cell Protection During Transient Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .714

43

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program Alabama II.K.14 University of Alabama, Tuscaloosa: Protein-Templated Synthesis and Assembly of Nanostructuctures for Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 V.F.1 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .814 V.F.1 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .814 Arizona II.C.1 Arizona State University: Zeolite Membrane Reactor for Water-Gas Shift Reaction for Hydrogen

44

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2008 Annual Progress Report V. Fuel Cells This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-Program Overview, Nancy Garland, U.S. Department of Energy (PDF 204 KB) A. Analysis/Characterization Fuel Cell Systems Analysis, Rajesh Ahluwalia, Argonne National Laboratory (PDF 375 KB) Mass Production Cost Estimation for Direct H2 PEM Fuel Cell System for Automotive Applications, Brian James, Directed Technologies, Inc. (PDF 1.0 MB) Cost Analyses of Fuel Cell Stack/Systems, Jayanti Sinha, TIAX LLC (PDF 437 KB) Microstructural Characterization Of PEM Fuel Cell MEAs, Karren More, Oak Ridge National Laboratory (PDF 414 KB)

45

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2009 Annual Progress Report V. Fuel Cells This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Program Element Introduction, Dimitrios Papageorgopoulos, U.S. Department of Energy (PDF 262 KB) A. Analysis/Characterization Fuel Cell Systems Analysis (PDF 560 KB), Rajesh Ahluwalia, Argonne National Laboratory Mass Production Cost Estimation for Direct H2 PEM Fuel Cell System for Automotive Applications (PDF 1.4 MB), Brian James, Directed Technologies, Inc. Cost Analyses of Fuel Cell Stack/Systems (PDF 724 KB), Jayanti Sinha , TIAX LLC Fuel Cell Testing at Argonne National Laboratory (PDF 458 KB), Ira

46

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Manufacturing R&D Manufacturing R&D Printable Version 2012 Annual Progress Report VI. Manufacturing R&D This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on manufacturing R&D. Manufacturing R&D Sub-Program Overview, Nancy Garland, U.S. Department of Energy Fuel Cell Membrane Electrode Assembly Manufacturing R&D, Michael Ulsh, National Renewable Energy Laboratory Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning, Colin Busby, W. L. Gore & Associates, Inc. Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture, Dan Walczyk, Rensselaer Polytechnic Institute Non-Contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks, Eric Stanfield,

47

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Annual Progress Report 1 Annual Progress Report DOE Hydrogen and Fuel Cells Program The Department of Energy Hydrogen and Fuel Cells Program (the Program) conducts comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. The Program is coordinated across the Department of Energy (DOE or the Department), including activities in the offices of Energy Efficiency and Renewable Energy (EERE), Science (SC), Nuclear Energy (NE), and Fossil Energy (FE), and it is aligned with DOE's strategic vision and goals-its efforts will help to secure U.S. leadership in clean energy technologies and advance U.S. economic competitiveness and scientific innovation. With emphasis on applications that will most effectively strengthen our nation's energy security

48

Liquid Fuels from Lignins: Annual Report  

DOE Green Energy (OSTI)

This task was initiated to assess the conversion of lignins into liquid fuels, primarily of lignins relevant to biomass-to-ethanol conversion processes. The task was composed of a literature review of this area and an experimental part to obtain pertinent data on the conversion of lignins germane to biomass-to-ethanol conversion processes.

Chum, H. L.; Johnson, D. K.

1986-01-01T23:59:59.000Z

49

Fuels for Advanced CIDI Engines and Fuel Cells: 2000 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS FUELS FOR ADVANCED CIDI ENGINES AND FUEL CELLS 2000 ANNUAL PROGRESS REPORT FUELS F O R ADVANCED CIDI ENGINES A N D FUEL CELLS A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., National Renewable Energy Laboratory, and QSS Group, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Transportation Technologies 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2000 Progress Report for Fuels for Advanced CIDI

50

Annual Report: Fuels (30 September 2012)  

SciTech Connect

The thermochemical conversion of fossil fuels through gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feeds (coal, biomass, natural gas, municipal waste, etc.) and to produce a variety of products (heat, specialty chemicals, power, etc.), as well as the inherent nature of the process to facilitate near zero emissions. Currently, the National Energy Technology Laboratory (NETL) Fuels Program has two pathways for syngas utilization: ? The production of transportation fuels, chemicals, or chemical intermediates. ? The hydrogen production as an intermediate for power production via advanced combustion turbines or fuel cells. Work under this activity focuses on the production, separation, and utilization of hydrogen from syngas using novel separation materials and processes. Advanced integrated gasification combined cycle (IGCC) schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research focuses on the development and assessment of membranes tailored for application in the severe environments associated with syngas conversion. The specific goals of this research include: ? Provide data needed to fully understand the impact of syngas environments and hydrogen removal on relevant hydrogen separation materials. ? Utilize the understanding of material stability to engineer a membrane tailored for operations in the severe environments associated with syngas conversion. ? Provide unbiased evaluation of hydrogen separation membranes being developed within the Fuels Program. Precious metals and alloys of historic interest (Pd, Cu, Ag, Au, Pt), as well as novel materials (carbides and phosphides) are candidates for evaluation of function as hydrogen separation membranes. The first step in the transport of hydrogen through dense metals is the adsorption and dissociation of hydrogen on the membrane surface. Observation shows that coal-based syngas contaminants can dramatically influence this process. Therefore, systems studies will determine the optimum location of a given membrane technology in the process, as well as the likely conditions that separation technologies will be exposed to at this location. Experiments are conducted to assess the effect of these conditions on the catalytic activity of the membrane surface in order to identify compositions which have promising combinations of acceptable flux and extended functionality in realistic environments. Efforts under this task were centered around the interpretation of test results and conclusions from previous work in preparation for various submissions to the scientific literature throughout fiscal year 2012 (FY12). The primary goal for efforts under these funds is to conduct limited amounts of experimental testing and/or computational work to complete the studies, followed by compilation and submission of technical manuscripts to peer-reviewed scientific journals. During the past year, work has continued on developing separation materials that are resistant to environments containing H{sub 2}S. Previous work on PdCu has indicated that over a range of PdCu compositions, PdCu is resistant to bulk corrosion by H{sub 2}S. In addition, at certain conditions, PdCu is also resistant to surface poisoning by H{sub 2}S. However, the temperature range at which PdCu is resistant to surface poisoning (> 600?C) is above those temperatures typically encountered in an IGCC flowsheet. Application of knowledge of the binary material will allow development of more complex alloys, as it is unlikely that a simple binary alloy will perform acceptably in all required dimensions, so efforts will focus on engineering ternary alloys that are more promising. Because ternary composition space is so large, high-throughput tools allow us to understand dissociation activity and response to H{sub 2}S across a complex composition space using composition spread alloy film (CSAF) tools. The high-throughput tools have been fully developed and have already provi

Link, Dirk [NETL] [NETL; Morreale, Bryan [NETL] [NETL

2012-09-30T23:59:59.000Z

51

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVI-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Sunita Satyapal, Director DOE Hydrogen and Fuel Cells Program Fuel Cell Technologies Program DOE Office of...

52

AEC FUELS AND MATERIALS DEVELOPMENT PROGRAM. Seventh Annual Report.  

SciTech Connect

This report is the seventh annual report of the unclassified portion of the Fuels and Materials Development Programs being conducted by the General Electric Company's Nuclear Materials and Propulsion Operation under Contract AT(40-1)-2847, issued by the Fuels and Materials Branch, Division of Reactor Development and Technology, of the Atomic Energy Commission. This report covers the period from January 31, 1967 to January 31, 1968, and thus also serves as the quarterly progress report for the final quarter of the year.

1968-01-01T23:59:59.000Z

53

2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

DOE Green Energy (OSTI)

The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

Chalk, S.

2000-12-11T23:59:59.000Z

54

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program A Aceves, Salvador . . . . . . . . . . . . . . . . . . . . . . . . III.14, VIII.13 Adams, Michael. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II.K.3 Adams, Thad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III.6 Adzic, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.D.6 Ahluwalia, Rajesh . . . . . . . . . . . . . . . . . . . . . . . .IV.E.2, V.A.3 Ahmed, Shabbir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI.12 Allen, Philip. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II.K.16 Allendorf, Mark. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.A.8 Anton, Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV.A.1, IV.D.1 Arif, Muhammad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.A.5

55

Fifth annual report to congress. Federal alternative motor fuels programs  

DOE Green Energy (OSTI)

This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

NONE

1996-09-01T23:59:59.000Z

56

Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

and Peer Evaluation Report to someone by E-mail and Peer Evaluation Report to someone by E-mail Share Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Facebook Tweet about Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Twitter Bookmark Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Google Bookmark Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Delicious Rank Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on Digg Find More places to share Fuel Cell Technologies Office: 2003 Annual Merit Review and Peer Evaluation Report on AddThis.com... Publications Program Publications Roadmaps Program Plans Reports to Congress Annual Progress Reports

57

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2006 Annual Progress Report V. Fuel Cells This section of the 2006 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-Program Overview, Valri Lightner, Fuel Cell Team Lead, DOE Hydrogen Program (PDF 169 KB) A. Membrane Electrode Assemblies (MEAs) Integrated Manufacturing for Advanced Membrane Electrode Assemblies, Emory DeCastro, PEMEAS U.S.A., E-TEK Division (PDF 251 KB) Advanced MEAs for Enhanced Operating Conditions, Mark Debe, 3M (PDF 892 KB) Electrocatalyst Supports and Electrode Structures, Mahlon Wilson, Los Alamos National Laboratory (PDF 1.46 MB) Back to Top B. Membranes and MEAs Poly(p-Phenylene Sulfonic Acid)s with Frozen-in Free Volume for Use

58

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2005 Annual Progress Report VII. Fuel Cells This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on fuel cells. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Fuel Cells Sub-program Overview, Valri Lightner, Department of Energy (PDF 198 KB) A. Membrane Electrode Assemblies (MEA) Integrated Manufacturing for Advanced Membrane Electrode Assemblies, Emory S. De Castro, De Nora N.A., E-TEK Division (PDF 292 KB) Advanced MEAs for Enhanced Operating Conditions, Mark K. Debe, 3M Company (PDF 459 KB) Development of High-temperature Membranes and Improved Cathode Catalysts, Lesia Protsailo, UTC Fuel Cells (PDF 642 KB) Electrocatalyst Supports and Electrode Structures, Eric Brosha, Los

59

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Printable Version 2004 Annual Progress Report IV. Fuel Cells Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Fuel Cells Sub-Program Review, Patrick Davis, DOE (PDF 265 KB) A. MEAs and Catalysts Integrated Manufacturing for Advanced Membrane Electrode Assemblies, Emory DeCastro, De Nora (PDF 486 KB) Development of High-Temperature Membranes and Improved Cathode Catalysts Jeremy Meyers, UTC (PDF 595 KB) Advanced MEAs for Enhanced Operating Conditions, Amenable to High Volume Manufacture, Mark Debe, 3M (PDF 372 KB) Back to Top B. Membranes and MEAs High Temperature Polymer Membranes for Fuel Cells, Tom Zawodzinski, Case West Res. University (PDF 356 KB) Electrodes for Hydrogen-Air PEM Fuel Cells, Francisco Uribe, LANL

60

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Education Printable Version 2004 Annual Progress Report VII. Education Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Education Sub-Program Review, Christy Cooper, DOE (PDF 283 KB) Determine Baseline Knowledge of Hydrogen and Fuel Cells, Tykey Truett , ORNL (PDF 262 KB) Fuel Cell Demonstration with On-site Generation of Hydrogen, Tim Turner, NC State University (PDF 212 KB) Washington State Fuel Cell Education and Demonstration Program, Mira Vowles, Central Washington Univ. (PDF 315 KB) Lansing Community College Alternative Energy Initiative, Ruth Borger, Lansing Community College (PDF 214 KB) Shared Technology Transfer Project, John Griffin, Nicholls State University (PDF 228 KB) Montana Hydrogen Futures Project, Paul Williamson, U. of Montana

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Printable Version 2005 Annual Progress Report IV. Production This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Overview, Peter Devlin, Department of Energy (PDF 158 KB) A. Distributed Reforming Autothermal Cyclic Reforming Based Hydrogen Generating and Dispensing System, Ravi Kumar, GE Global Research (PDF 215 KB) Development of a Turnkey Hydrogen Fueling Station, David E. Guro, Air Products and Chemicals, Inc. (PDF 209 KB) A Reversible Planar Solid Oxide Fuel-fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biogas, Greg Tao, Materials and Systems Research Inc. (PDF 336

62

Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumption to the Annual Energy Outlook Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).109 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

63

EIA - Assumptions to the Annual Energy Outlook 2008 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2008 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for projections of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind1. Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

64

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Printable Version 2004 Annual Progress Report The 2004 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D and analysis activities and accomplishments for FY 2004. Published in November 2004, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 203 KB) Table of Contents (PDF 432 KB) I. Introduction (PDF 350 KB) II. Hydrogen Production and Delivery Distributed Production Technologies Separations Biomass Gasification/Pyrolysis Photobiological Production Photoelectrochemical Production Electrolysis High-Temperature Thermochemical Processes Hydrogen Delivery Analysis III. Hydrogen Storage Compressed/Liquid H2 Tanks Chemical Hydrides Metal Hydrides

65

DOE and EPA Release 2012 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Release 2012 Annual Fuel Economy Guide EPA Release 2012 Annual Fuel Economy Guide DOE and EPA Release 2012 Annual Fuel Economy Guide November 16, 2011 - 2:37pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) are releasing the 2012 Fuel Economy Guide, providing consumers with information that can help them choose a more efficient new vehicle that saves them money and reduces greenhouse gas emissions. While fuel efficient vehicles come in a variety of fuel types, classes, and sizes, many new advanced technology vehicles debut on this year's annual list of top fuel economy performers. Fuel economy leaders within each vehicle category - from two-seaters to large SUVs - include widely available products such as conventional gasoline models and clean

66

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Printable Version 2011 Annual Progress Report The 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2011. Published in November 2011, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Front Cover and Title Page Table of Contents I. Introduction, Sunita Satyapal, U.S. Department of Energy II. Hydrogen Production Distributed Bio-Derived Liquid Production Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Photoelectrochemical Biological Production Analysis Production Basic Energy Sciences III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Chemical Hydrogen Storage Hydrogen Sorption

67

DOE Hydrogen and Fuel Cells Program: 2009 Annual Merit Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Merit Review & Peer Evaluation > Awards Printable Version 2009 Hydrogen Program Annual Merit Review Awards Each year, the Peer Review Panel at the Annual Merit Review and...

68

DOE Hydrogen and Fuel Cells Program: 2005 Annual Merit Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

Merit Review & Peer Evaluation > 2005 Annual Merit Review Awards Printable Version 2005 Annual Merit Review Awards Each year, the Peer Review Panel at the Annual Merit Review and...

69

DOE Hydrogen and Fuel Cells Program: 2006 Annual Merit Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

Merit Review & Peer Evaluation > 2006 Annual Merit Review Awards Printable Version 2006 Annual Merit Review Awards Each year, the Peer Review Panel at the Annual Merit Review and...

70

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report - Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

American Recovery and Reinvestment Act American Recovery and Reinvestment Act Printable Version 2010 Annual Progress Report XI. American Recovery and Reinvestment Act (ARRA) This section of the 2010 Progress Report for the DOE Hydrogen Program focuses on the fuel cell technologies America Recovery and Reinvestment Act (ARRA). Each technical report is available as an individual Adobe Acrobat PDF. American Recovery and Reinvestment Act Activitites, Sara Dillich, DOE Commercialization Effort for 1 W Consumer Electronics Power Pack, Charles Carlstrom, MTI Micro Fuel Cells, Inc. Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration, Steven Shaffer, Delphi Automotive Systems, LLC Highly Efficient, 5 kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications, John

71

Characterization of Fuel Cell Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Karren L. More Oak Ridge National Laboratory (ORNL) 1 Bethel Valley Rd. Oak Ridge, TN 37831-6064 Phone: (865) 574-7788 Email: morekl1@ornl.gov DOE Manager HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov Contributors: * David Cullen (ORNL) * Miaofang Chi (ORNL) * Kelly Perry (ORNL) Project Start Date: Fiscal Year (FY) Year 1999 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop and/or apply novel preparation, imaging, and * analytical methods to characterize fuel cell materials and architectures in the as-processed (fresh) state, during

72

FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2010 Annual Report FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program I. IntroductIon 2 Office of Fossil Energy Fuel Cell Program FY 2010 Annual Report 3 FY 2010 Annual Report Office of Fossil Energy Fuel Cell Program Competitive Innovation: Accelerating Technology Development The U.S. Department of Energy (DOE) Office of Fossil Energy, through the National Energy Technology Laboratory (NETL) and in collaboration with private industry, universities and national laboratories, has forged Government-industry partnerships under the Solid State Energy Conversion Alliance (SECA) to reduce the cost of solid oxide fuel cells (SOFCs). This fuel cell technology shall form the basis for integrated gasification fuel cell (IGFC) systems utilizing coal for clean and efficient

73

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Printable Version 2005 Annual Progress Report The 2005 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D and analysis activities and accomplishments for FY 2005. Published in November 2005, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 127 KB) Table of Contents (PDF 401 KB) I. Introduction, Steve Chalk, Department of Energy (PDF 911 KB) II. Basic Research, Harriet Kung, Department of Energy (PDF 1.46 MB) III. Systems Analysis IV. Production Distributed Reforming Hydrogen from Coal Separations Biomass Reforming Biological Production Photoelectrochemical Hydrogen from Nuclear Energy Electrolysis High-temperature Thermochemical

74

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Education Printable Version 2006 Annual Progress Report IX. Education This section of the 2006 Progress Report for the DOE Hydrogen Program focuses on education. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Education Sub-Program Overview, Christy Cooper, Education Team Lead, DOE Hydrogen Program (PDF 173 KB) Baseline Knowledge Assessment of Hydrogen and Fuel Cells, Tykey Truett, Oak Ridge National Laboratory (PDF 77 KB) Hydrogen/Alternative Energy Center, Ruth Borger, Lansing Community College (PDF 96 KB) Hydrogen Futures Park at University of Montana, Paul Williamson, University of Montana (PDF 158 KB) Hydrogen Technology and Energy Curriculum (HyTEC), Barbara Nagle, Univeristy of California, Berkeley (PDF 359 KB)

75

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Printable Version 2010 Annual Progress Report The 2010 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2010. Published in February 2011, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Front Cover Table of Contents I. Introduction, Sunita Satyapal, U.S. Department of Energy II. Hydrogen Production Distributed Bio-Derived Liquid Production Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Photoelectrochemical Biological Production Cross-Cutting/Production III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Center of Excellence Chemical Hydrogen Storage Center of Excellence Hydrogen Sorption Center of Excellence

76

2011 DOE Hydrogen and Fuel Cells Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2011 Annual Progress Report DOE Hydrogen and Fuel Cells Program α-AlH 3 Alpha polymorph of aluminum hydride ~ Approximately @ At °C Degrees Celsius °F Degrees Fahrenheit Δ Change, delta ΔG Gibbs free energy of reaction ΔH Enthalpy of reaction, Enthalpy of hydrogenation ΔH° f standard heat of formation ΔK Stress intensity factor ΔP Pressure drop, pressure change ≈ Equals approximately > Greater than ≥ Greater than or equal to < Less than ≤ Less than or equal to µCHX Microscale combustor/heat exchanger µc-Si Microcrystalline silicon µm Micrometer(s), micron(s) η Viscosity # Number Ω Ohm(s) Ω/cm 2 Ohm(s) per square centimeter Ω-cm 2 Ohm-square centimeter % Percent ® Registered trademark $ United States dollars 11 B-NMR Boron 11 Nuclear Magnetic Resonance

77

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Printable Version 2009 Annual Progress Report The 2009 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2009. Published in November 2009, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 1.2 MB) Table of Contents (PDF 318 KB) I. Introduction, Sunita Satyapal, U.S. Department of Energy (PDF 1.5 MB) II. Hydrogen Production Distributed Production from Bio-Derived Liquids Biomass Gasification Separations Hydrogen from Coal Electrolysis Hi-Temp Thermochemical Nuclear Hydrogen Initiative Photoelectrochemical Biological Cross-Cutting/Production III. Hydrogen Delivery IV. Hydrogen Storage Metal Hydride Center of Excellence

78

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Printable Version 2008 Annual Progress Report The 2008 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2008. Published in November 2008, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 1.2 MB) Table of Contents (PDF 180 KB) I. Introduction, JoAnn Milliken, U.S. Department of Energy (PDF 980 KB) II. Hydrogen Production Distributed Production from Bio-Derived Liquids Electrolysis Separations Biomass Gasification Photoelectrochemical Biological Production Hydrogen From Coal Nuclear Hydrogen Initiative Hi-Temp Thermochemical Cross-Cutting Basic Energy Sciences III. Hydrogen Delivery IV. Hydrogen Storage

79

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Printable Version 2007 Annual Progress Report The 2007 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2007. Published in November 2007, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 711 KB) Table of Contents (PDF 236 KB) I. Introduction, JoAnn Milliken, U.S. Department of Energy (PDF 821 KB) II. Hydrogen Production Distributed Production from Natural Gas Distributed Production from Bio-Derived Liquids Electrolysis Separations Central Biomass Gasification Solar Hi-Temp Thermochemical Water Splitting Photoelectrochemical Biological Production Hydrogen from Coal Nuclear Hydrogen Initiative

80

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Printable Version 2006 Annual Progress Report The 2006 Progress Report for the DOE Hydrogen Program summarizes the hydrogen and fuel cell R&D activities and accomplishments for FY 2006. Published in November 2006, the full document is very large; each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Front Cover (PDF 226 KB) Table of Contents (PDF 346 KB) I. Introduction, JoAnn Milliken, Acting Program Manager, DOE Hydrogen Program (PDF 369 KB) II. Production Distributed Reforming Hydrogen from Coal Separations Biomass Reforming Biological Production Photoelectrochemical Nuclear Energy Electrolysis High-Temperature Thermochemical III. Delivery Pipelines Liquefaction Analysis Storage Tanks Cross-Cutting IV. Storage Metal Hydrides

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual Fuel Economy Guide 1 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

82

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

83

DOE Hydrogen and Fuel Cells Program: 2012 Annual Merit Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities Related Links U.S. Department of Energy Search help Home > Library > Annual...

84

DOE Hydrogen and Fuel Cells Program: 2004 Annual Merit Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities Related Links U.S. Department of Energy Search help Home > Library > Annual...

85

DOE Hydrogen and Fuel Cells Program: Annual Merit Review and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities Related Links U.S. Department of Energy Search help Home > Library > Annual...

86

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA Release Annual Fuel Economy Guide with 2013 Models EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013 models include efficient and low-emission vehicles in a variety of classes and sizes, but notable this year is the growing availability of hybrids and the increasing number of electric vehicles. "This Administration has been working to foster a new generation of clean, fuel-efficient American vehicles, and part of that effort is

87

DOE Hydrogen and Fuel Cells Program: 2008 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 Annual Merit Review Proceedings 2008 Annual Merit Review Proceedings Printable Version 2008 Annual Merit Review Proceedings Graphic of the White House with text that refers to the DOE Hydrogen Program Annual Merit Review and Peer Evaluation, Washington, DC, June 9 - 13, 2008. Principal investigators presented the status and results of their hydrogen and fuel cell projects at the DOE Hydrogen Program's Annual Merit Review on June 9-13 in Arlington, Virginia. Links to their presentations and posters are provided below. Plenary Session Presentations Hydrogen Production and Delivery Presentations Production & Delivery Distributed BILI Production Electrolysis High-Temperature Thermochemical Hydrogen Delivery Nuclear Hydrogen Initiative Biomass Gasification Biological Photoelectrochemical Hydrogen From Coal

88

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I-1 II. Hydrogen Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-1 II.0 Hydrogen Production Sub-Program Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .II-3 II.A Distributed Biomass-Derived Liquids Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-11 II.A.1 Pacific Northwest National Laboratory: Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

89

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2014 models include efficient and low-emission vehicles in a variety of classes and sizes, ensuring a wide variety of choices available for consumers. "For American families, the financial and environmental bottom line are high priorities when shopping for a new vehicle," said Administrator Gina

90

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2014 models include efficient and low-emission vehicles in a variety of classes and sizes, ensuring a wide variety of choices available for consumers. "For American families, the financial and environmental bottom line are high priorities when shopping for a new vehicle," said Administrator Gina

91

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013 models include efficient and low-emission vehicles in a variety of classes and sizes, but notable this year is the growing availability of hybrids and the increasing number of electric vehicles. "This Administration has been working to foster a new generation of

92

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reinvestment Act (ARRA) This section of the 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on the fuel cell technologies America Recovery and Reinvestment...

93

DOE Hydrogen and Fuel Cells Program: 2008 Annual Merit Review Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Merit Review & Peer Evaluation > 2008 Annual Merit Review Awards Merit Review & Peer Evaluation > 2008 Annual Merit Review Awards Printable Version 2008 Annual Merit Review Awards Each year, the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting reviews the hydrogen and fuel cell projects funded by DOE's Hydrogen Program. After evaluating the merit of the 2008 hydrogen and fuel cell projects, the Peer Review Panel presented the following awards. DOE Hydrogen Program George Thomas, Sandia National Laboratory, retired This award recognizes George Thomas' past and continued technical excellence and outstanding dedication to the DOE Hydrogen Program in support of the President's Advanced Energy Initiative and the Hydrogen Fuel Initiative. Thomas' contributions to the Hydrogen Storage activity have

94

DOE Hydrogen and Fuel Cells Program: 2012 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Annual Merit Review Proceedings 2012 Annual Merit Review Proceedings Printable Version 2012 Annual Merit Review Proceedings Principal investigators presented the status and results of their hydrogen and fuel cell projects at the 2012 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on May 14-18 in Arlington, Virginia. Links to their presentations and posters are provided below. Presentations and posters are grouped by topic and subtopic where applicable and appear in the order in which they were presented within those categories. See the 2012 AMR schedule for a full listing of oral presentation and poster presentation dates and times. Plenary Session - Part I: Joint Plenary, Hydrogen and Fuel Cells

95

DOE Hydrogen and Fuel Cells Program: 2011 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Annual Merit Review Proceedings 2011 Annual Merit Review Proceedings Printable Version 2011 Annual Merit Review Proceedings Principal investigators presented the status and results of their hydrogen and fuel cell projects at the 2011 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on May 9-13 in Washington, D.C. Links to their presentations and posters are provided below. Presentations and posters are grouped by topic and subtopic where applicable and appear in the order in which they were presented within those categories. See the 2011 AMR schedule for a full listing of oral presentation and poster presentation dates and times. Joint Plenary Session Plenary Session Hydrogen and Fuel Cells Program

96

DOE Hydrogen and Fuel Cells Program: 2013 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Annual Merit Review Proceedings 2013 Annual Merit Review Proceedings Printable Version 2013 Annual Merit Review Proceedings Principal investigators presented the status and results of their hydrogen and fuel cell projects at the 2013 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on May 13-17 in Arlington, Virginia. Links to their presentations and posters are provided below. Presentations and posters are grouped by topic and subtopic where applicable and appear in the order in which they were presented within those categories. See the 2013 AMR schedule for a full listing of oral presentation and poster presentation dates and times. Plenary Session - Part I: Joint Plenary, Hydrogen and Fuel Cells

97

DOE Hydrogen and Fuel Cells Program: 2010 Annual Merit Review Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Merit Review & Peer Evaluation > Awards Annual Merit Review & Peer Evaluation > Awards Printable Version 2010 Annual Merit Review Awards Each year, the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting reviews the hydrogen and fuel cell projects funded by DOE's Hydrogen Program. After evaluating the merit of the 2010 hydrogen and fuel cell projects, the Peer Review Panel presented the following awards. DOE Hydrogen Program Team Awards (with special recognition for outstanding technical contributions): Production and Delivery Jamie Holladay, Pacific Northwest National Laboratory (PNNL) This award recognizes Jamie Holladay for his outstanding contributions to hydrogen production and delivery. He completed a two-year assignment in July, 2009, with the Department of Energy Fuel Cell Technologies (FCT)

98

Corrugated Membrane Fuel Cell Structures - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Stephen Grot Ion Power Incorporated 720 Governor Lea Rd New Castle, DE 19720-5501 Phone: (302) 832 9550 Email: s.grot@ion-power.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov Subcontractors: * Graftech International Holdings Inc., Parma, OH * General Motors Corporation, Flint, MI Contract Number: DE-EE0000462 Project Start Date: September 1, 2010 Project End Date: February 28, 2014 Fiscal Year (FY) 2012 Objectives

99

Supplies of Natural Gas Supplemental Fuels (Annual Supply & Dispositio...  

Annual Energy Outlook 2012 (EIA)

Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011...

100

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Annual Progress Report IV. Hydrogen Storage This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on hydrogen storage. Each technical report is available...

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fuel Cell Technologies Office: Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings The Annual Merit Review provides an opportunity for peer evaluation of the projects funded by the Department of Energy (DOE) Hydrogen Program. An opening plenary...

102

DOE Hydrogen and Fuel Cells Program: 2004 Annual Merit Review...  

NLE Websites -- All DOE Office Websites (Extended Search)

Proceedings The U.S. Department of Energy's Hydrogen Program held its 2004 Annual Merit Review May 24-27, 2004 in Philadelphia, Pennsylvania. Principal investigators presented the...

103

A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI  

Science Conference Proceedings (OSTI)

(OAK/B204) A proliferation resistant hexagonal tight lattice BWR fueled core for increased burnup and reduced fuel storage requirements. Annual progress report: August, 1999 to July, 2000 [DOE NERI

Hiroshi Takahashi; Upendra Rohatgi; T.J. Downar

2000-08-04T23:59:59.000Z

104

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 2011 2010 2009 2008 2007 2006 2005 2004 Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities Related Links U.S. Department of...

105

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 2011 2010 2009 2008 2007 2006 2005 2004 Annual Merit Review and Peer Evaluation Reports to Congress Policies and Acts Financial Opportunities Related Links U.S. Department of...

106

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVII-1 XVII-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Alabama V.F.5 CFD Research Corporation: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 V.F.5 ESI US R&D: Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-226 Arizona VI.3 Arizona State University: Adaptive Process Controls and Ultrasonics for High-Temperature PEM MEA Manufacture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI-17 Arkansas XII.4 FedEx Freight: Fuel Cell-Powered Lift Truck FedEx Freight Fleet Deployment .

107

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural GasBiogas, Greg Tao, Materials and Systems Research, Inc. (PDF 902 KB) Hydrogen Generation from...

108

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells: Market Assessment and Analysis of Impacts of Policies, David Greene, Oak Ridge National Laboratory Hydrogen Infrastructure Market Readiness Analysis, Marc...

109

Proceedings of the third annual fuel cells contractors review meeting  

DOE Green Energy (OSTI)

The overall objective of this program is to develop the essential technology for private sector characterization of the various fuel cell electrical generation systems. These systems promise high fuel to electricity efficiencies (40 to 60 percent), distinct possibilities for cogeneration applications, modularity of design, possibilities of urban siting, and environmentally benign emissions. The purpose of this meeting was to provide the research and development (R D) participants in the DOE/Fossil Energy-sponsored Fuel Cells Program with the opportunity to present key results of their research and to establish closer business contacts. Major emphasis was on phosphoric acid, molten carbonate, and solid oxide technology efforts. Research results of the coal gasification and gas stream cleanup R D activities pertinent to the Fuel Cells Program were also highlighted. Two hundred seventeen attendees from industry, utilities, academia, and Government participated in this 2-day meeting. Twenty-three papers were given in three formal sessions: molten carbonate fuel cells R D (9 papers), solid oxide fuel cells (8 papers), phosphoric acid fuel cells R D (6 papers). In addition to the papers and presentations, these proceedings also include comments on the Fuel Cells Program from the viewpoint of DOE/METC Fuel Cell Overview by Rita A. Bajura, DOE/METC Perspective by Manville J. Mayfield, Electric Power Research Institute by Daniel M. Rastler, Natural Gas by Hugh D. Guthrie, and Transportation Applications by Pandit G. Patil.

Huber, W.J. (ed.)

1991-06-01T23:59:59.000Z

110

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

New York State Hi-Way Initiative, Richard Bourgeois, GE Global Research (PDF 223 KB) Vermont Renewable Hydrogen Production and Transportation Fueling System (New Project), Chris...

111

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Handling Equipment Demonstration, Todd Ramsden, National Renewable Energy Laboratory Landfill Gas-to-Hydrogen, Shannon Baxter-Clemmons, South Carolina Hydrogen and Fuel Cell...

112

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Handling Equipment Demonstration, Todd Ramsden, National Renewable Energy Laboratory Landfill Gas-to-Hydrogen, Shannon Baxter-Clemmons, South Carolina Hydrogen and Fuel Cell...

113

DOE Hydrogen and Fuel Cells Program: 2009 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2009 Annual Merit Review Proceedings 2009 Annual Merit Review Proceedings Printable Version 2009 Annual Merit Review Proceedings Principal investigators presented the status and results of their hydrogen, fuel cell, and vehicle technologies projects at the 2009 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on May 18-22, 2009, in Arlington, Virginia. Links to their presentations and posters are provided below. Graphic of the Lincoln Memorial lit up at dusk with the text: Annual Merit Review and Peer Evaluation Meeting which was held in Arlington, Virginia, on May 18-22, 2009 From here, access presentations and posters from the AMR: Plenary Session Hydrogen Program Vehicle Technologies Program Hydrogen Program

114

DOE Hydrogen and Fuel Cells Program: 2007 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2007 Annual Merit Review Proceedings 2007 Annual Merit Review Proceedings Printable Version 2007 Annual Merit Review Proceedings Logo for the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation, May 15-18, Washington, D.C. Principal investigators presented the status and results of their hydrogen and fuel cell projects at the DOE Hydrogen Program's Annual Merit Review on May 15-18, 2007 in Washington, D.C. Links to their presentations and posters are provided below. Plenary Session Presentations Hydrogen Production and Delivery Presentations Distributed Production Biological Production Separations Electrolysis Photoelectrochemical Production Hi-Temp Thermochemical Hydrogen Delivery Hydrogen from Coal Nuclear Hydrogen Initiative Posters Central Biomass Biological Production Compressed/Liquid Tanks

115

Assumptions to the Annual Energy Outlook 2002 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).117 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

116

Assumptions to the Annual Energy Outlook 2001 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has five submodules representing various renewable energy sources, biomass, geothermal, landfill gas, solar, and wind; a sixth renewable, conventional hydroelectric power, is represented in the Electricity Market Module (EMM).112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration,

117

DOE Hydrogen and Fuel Cells Program: 2011 Annual Merit Review Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Merit Review & Peer Evaluation > Awards Merit Review & Peer Evaluation > Awards Printable Version 2011 Annual Merit Review Awards Each year, the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting reviews the hydrogen and fuel cell projects funded by DOE's Hydrogen and Fuel Cells Program. After evaluating the merit of the 2011 hydrogen and fuel cell projects, the Peer Review Panel presented the following awards. DOE Hydrogen and Fuel Cells Program Team Awards (with special recognition for outstanding technical contributions): Production Tom Jaramillo, Stanford University This award recognizes Tom Jaramillo for the invaluable contributions he has made to the program in the field of photoelectrochemical (PEC) hydrogen production. Dr. Jaramillo has been an instrumental driving force in EERE's

118

DOE Hydrogen and Fuel Cells Program: 2012 Annual Merit Review Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Merit Review & Peer Evaluation > Awards Merit Review & Peer Evaluation > Awards Printable Version 2012 Annual Merit Review Awards Each year, at the Annual Merit Review and Peer Evaluation Meeting, the Hydrogen and Fuel Cells Program presents "Program Awards" for contributions to the overall efforts of the Program, and "Sub-Program Awards" to recognize achievements in specific areas. This year, the Hydrogen and Fuel Cells Office and the Vehicle Technologies Office also presented a joint "Special Recognition Award." Special Recognition Award from the DOE Hydrogen and Fuel Cells Program and the Vehicle Technologies Office Judi Abraham, Conference Management Associates, Inc. As a special tribute, the DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office recognize Ms. Judi Abraham for her exceptional

119

Molten Carbonate Fuel Cell (MCFC) Product Development Test. Second annual report  

DOE Green Energy (OSTI)

This is the second annual report covering progress made under DOE cooperative agreement DE-FC21-92MC29237, Molten Carbonate Fuel Cell Product Development Test. The project is for the design, construction, and testing of a 2MW carbonate fuel cell power plant in the City of Santa Clara, California. The report is divided into sections which describe the progress in various program activities, and provides an overview of the program, including the project objectives, site location, and schedule.

Not Available

1994-12-15T23:59:59.000Z

120

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy (PDF 186 KB) Development of HyTrans Model and Integrated Scenario Analysis, David Greene, Oak Ridge National Laboratory (PDF 304 KB) Fuel-Cycle...

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Technology assessment of alternative transportation fuels. Annual report  

DOE Green Energy (OSTI)

A brief summary is presented of major accomplishments in a research program on the impact of synthetic fuels, electric vehicles, and railroad electification on energy consumption by the US transportation sector. (LCL)

Not Available

1978-01-13T23:59:59.000Z

122

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

129 KB) Novel, Low-cost Solid Membrane Water Electrolyzer (Phase II Project), John A. Kosek, Giner, Inc. (PDF 149 KB) Complex Coolant Fluid for PEM Fuel Cell Systems, Satish C....

123

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Concept Project, Raymond Hobbs, Arizona Public Service (PDF 281 KB) NextEnergy Center Microgrid and Hydrogen Fueling Facility, Dave McLean, NextEnergy Center (PDF 113 KB) Back to...

124

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report...  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems, Richard Rocheleau, University of Hawaii (PDF 785 KB) NextEnergy Center Microgrid and Hydrogen Fueling Facility, David McLean, NextEnergy Center (PDF 452 KB) Back to...

125

Stationery and Emerging Market Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kathya Mahadevan (Primary Contact), VinceContini, Matt Goshe, and Fritz Eubanks Battelle 505 King Avenue Columbus, OH 43201 Phone: (614) 424-3197 Email: mahadevank@battelle.org DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-EE0005250/001 Project Start Date: September 30, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives To assist the DOE in developing fuel cell systems for stationary and emerging markets by developing independent cost models and costs estimates for manufacture and

126

Federal Alternative Motor Fuels Programs Fifth Annual Report to Congress - 1996  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Abstract Abstract This annual report to Congress presents the current status of the U.S. Department of Energy's alterna- tive fuel vehicle demonstration and performance tracking programs being conducted across the country in accordance with the Energy Policy and Conservation Act (42 U.S.C. 6374, et seq.). These programs, which comprise the most compre- hensive data collection effort ever undertaken on alternative transporta- tion fuels and alternative fuel vehi- cles, are beginning their sixth year. This report summarizes tests and results from the fifth year. Even though present interest in electric vehicles is quite high, they are not currently included in these vehicle demonstration and performance tracking programs, and the annual report does not include information on them.

127

Technical Assistance to Developers - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program T. Rockward and R.L. Borup (Primary Contacts), F. Garzon, R. Mukundan, and D. Spernjak Los Alamos National Laboratory (LANL) P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 667-9587 and (505) 667-2823 Emails: trock@lanl.gov, borup@lanl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Project Start Date: October 2003 Project End Date: Project continuation and direction determined annually by DOE Objectives Support technically, as directed by DOE, fuel cell * component and system developers Assess fuel cell materials and components and give * feedback to developers Assist the DOE Durability Working Group with the * development of various new material durability testing

128

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

Education Education Printable Version 2008 Annual Progress Report IX. Education This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on education. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Education Sub-Program Overview, Christy Cooper, U.S. Department of Energy (PDF 181 KB) Hydrogen Knowledge and Opinions Assessment, Rick Schmoyer, Oak Ridge National Laboratory (PDF 257 KB) Hydrogen Safety: First Responder Education, Marylynn Placet, Pacific Northwest National Laboratory (PDF 270 KB) Hydrogen Education for Code Officials, Melanie Caton, National Renewable Energy Laboratory (PDF 261 KB) Increasing "H2IQ": A Public Information Program , Henry Gentenaar, The Media Network (PDF 70 KB)

129

Fuel cells for transportation program: FY1997 national laboratory annual report  

DOE Green Energy (OSTI)

The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

NONE

1997-12-31T23:59:59.000Z

130

Direct Methanol Fuel Cell Material Handling Equipment Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Todd Ramsden National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3704 Email: todd.ramsden@nrel.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Subcontractor: Oorja Protonics, Inc., Fremont, CA Project Start Date: June 1, 2010 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Operate and maintain fuel-cell-powered material * handling equipment (MHE) using direct methanol fuel cell (DMFC) technology. Compile operational data of DMFCs and validate their * performance under real-world operating conditions. Provide an independent technology assessment that * focuses on DMFC system performance, operation, and

131

Hydrogen Fuel Quality Research and Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Tommy Rockward (Primary Contact), C. Quesada, K. Rau, E. Brosha, F. Garzon, R. Mukundan, and C. Padró Los Alamos National Laboratory (LANL) P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 667-9587 Email: trock@lanl.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: September 30, 2015 Fiscal Year (FY) 2012 Objectives Determine the allowable levels of hydrogen fuel * contaminants in support of the development of science- based international standards for hydrogen fuel quality (International Organization for Standardization [ISO] TC197 WG-12). Validate the ASTM International test method for * determining low levels of non-hydrogen constituents.

132

Hydrogen by Wire - Home Fueling System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Luke T. Dalton Proton Energy Systems 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2128 Email: ldalton@protonenergy.com DOE Manager HQ: Eric L. Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-SC0001149 Project Start Date: August 15, 2010 Project End Date: August 14, 2012 Fiscal Year (FY) 2012 Objectives Develop enabling technologies for 350-bar hydrogen * home fueling Design key electrolysis cell stack and system components * Fabricate, inspect and assemble prototype components * Demonstrate prototype 350-bar hydrogen generation * Demonstrate prototype 350-bar home fueling technologies * Technical Barriers This project addresses the following technical barriers

133

Durable Catalysts for Fuel Cell Protection during Transient Conditions - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Radoslav T. Atanasoski (Primary Contact), George D. Vernstrom, Gregory M. Haugen, Jimmy Wong, Theresa M. Watschke, Ljiljana L. Atanasoska, Amy E. Hester Fuel Cell Components Program, 3M Company 3M Center, Building 201-2N-05 St. Paul, MN 55144-1000 Phone: (651) 733-9441 Email: rtatanasoski@mmm.com Timothy C. Crowtz, Jessie E. Harlow, Robbie J. Sanderson, David A. Stevens, Jeff R. Dahn Dalhousie University, Halifax, Nova Scotia, Canada David A. Cullen, Karren L. More, Shawn Reeves Oak Ridge National Laboratory, Oak Ridge, TN Deborah J. Myers, Xiaoping Wang, Ramachandran Subbaraman, Vojislav R. Stamenkovic, Nenad M. Markovic Argonne National Laboratory, LeMont, IL Sumit Kundu, Wendy Lee AFCC Automotive Fuel Cell Cooperation, Burnaby,

134

Assumptions to the Annual Energy Outlook 2000 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

135

Assumptions to the Annual Energy Outlook 1999 - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

renewable.gif (4875 bytes) renewable.gif (4875 bytes) The NEMS Renewable Fuels Module (RFM) consists of five distinct submodules that represent the major renewable energy technologies. Although it is described here, conventional hydroelectric is included in the Electricity Market Module (EMM) and is not part of the RFM. Similarly, ethanol modeling is included in the Petroleum Market Module (PMM). Some renewables, such as municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as wind and solar radiation, are energy sources that do not require the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was an original source of electricity generation, to newer power systems using wind, solar, and geothermal energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittence, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon low-cost energy storage.

136

Biological Systems for Hydrogen Photoproduction - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Maria L. Ghirardi (Primary Contact), Paul W. King, Kathleen Ratcliff and David Mulder National Renewable Energy Laboratory (NREL) 1617 Cole Blvd. Golden, CO 80401 Phone: (303) 384-6312 Email: maria.ghirardi@nrel.gov DOE Manager Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Subcontractors: * Dr. Sergey Kosourov, Institute of Basic Biological Problems, RAS, Pushchino, Russia * Dr. Eric Johnson, Johns Hopkins University, Baltimore, MD Project Start Date: October 1, 2000 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Primary Objectives

137

EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report, Fleet Compliance Results for MY 2009/FY 2010 (Brochure)  

SciTech Connect

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2009/fiscal year 2010.

Not Available

2010-12-01T23:59:59.000Z

138

2012 Annual Progress Report: DOE Hydrogen and Fuel Cells Program  

DOE Green Energy (OSTI)

In the past year, the DOE Hydrogen Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

Not Available

2012-12-01T23:59:59.000Z

139

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XVIII-1 XVIII-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program 3M Company II.D.5 Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II-46 V.D.1 Advanced Cathode Catalysts and Supports for PEM Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-84 V.D.3 Durable Catalysts for Fuel Cell Protection during Transient Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-100 V.D.5 Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-111 V.F.2 Fuel Cell Fundamentals at Low and Subzero Temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-211 Acumentrics Corporation V.J.2 Development of a Low-Cost 3-10 kW Tubular SOFC Power System .

140

Market Transformation Activities - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Market Transformation sub-program is conducting activities to help promote and implement commercial and pre-commercial hydrogen and fuel cell systems in real-world operating environments and to provide feedback to research programs, U.S. industry manufacturers, and potential technology users. One of the sub-program's goals is to achieve sufficient manufacturing volumes in emerging commercial applications that will enable cost reductions through economies of scale, which will help address the current high cost of fuel cells (currently the capital and installation costs of fuel cells are from five to six times higher than

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Annual report, FY 1979 Spent fuel and fuel pool component integrity.  

Science Conference Proceedings (OSTI)

International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

1980-05-01T23:59:59.000Z

142

Hydrogen Delivery Infrastructure Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Amgad Elgowainy (Primary Contact), Marianne Mintz and Krishna Reddi Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-3074 Email: aelgowainy@anl.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 2007 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Identify cost drivers of current technologies for hydrogen * delivery to early market applications of fuel cells Evaluate role of high-pressure tube-trailers in reducing * hydrogen delivery cost Identify and evaluate benefits of synergies between *

143

Aluminum Hydride - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jason Graetz (Primary Contact), James Wegrzyn Brookhaven National Laboratory (BNL) Building 815 Upton, NY 11973 Phone: (631) 344-3242 Email: graetz@bnl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop onboard vehicle storage systems using aluminum hydride that meets all of DOE's targets for proton exchange membrane fuel cell vehicles. Produce aluminum hydride material with a hydrogen * storage capacity greater than 9.7% gravimetric (kg-H 2 /kg) and 0.13 kg-H 2 /L volumetric. Develop practical and economical processes for *

144

Fuel Cell Combined Heat and Power Industrial Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kriston P. Brooks (Primary Contact), Siva P. Pilli, Dale A. King Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: (509) 372-4343 Email: kriston.brooks@pnnl.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Contract Number: DE-AC05-76RL01830 Subcontractor: ClearEdge Power, Portland, OR Project Start Date: May 2010 Project End Date: September 2012

145

Advanced Materials and Concepts for Portable Power Fuel Cells - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report P. Zelenay (Primary Contact), H. Chung, C.M. Johnston, Y.S. Kim, Q. Li, D. Langlois, D. Spernjak, P. Turner, G. Wu Materials Physics and Applications Division Los Alamos National Laboratory (LANL) Los Alamos, NM 87545 Phone: (505) 667-0197 Email: zelenay@lanl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Subcontractors: * R.R. Adzic (PI), S. Bliznakov, M. Li, P. Liu, K. Sasaki, M.-P. Zhou Brookhaven National Laboratory, Upton, NY * Y. Yan (PI), S. Alia, J. Zheng University of Delaware, Newark, DE

146

Fuel Cell Fundamentals at Low and Subzero Temperatures - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

11 11 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Adam Z. Weber Lawrence Berkeley National Laboratory (LBNL) 1 Cyclotron Rd, MS 70-108B Berkeley, CA 94720 Phone: (510) 486-6308 Email: azweber@lbl.gov DOE Manager HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov Subcontractors: * Los Alamos National Laboratory, Los Alamos, NM * United Technologies Research Center, East Hartford, CT * 3M Company, St Paul, MN * The Pennsylvania State University, State College, PA Project Start Date: September 21, 2009 Project End Date: September 30, 2013

147

Sustainable Hydrogen Fueling Station, California State University, Los Angeles - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report David Blekhman California State University Los Angeles Los Angeles, CA 90032 Phone: (323) 343-4569 Email: blekhman@calstatela.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0000443 Subcontractors: * General Physics Corporation, Elkridge, MD * Weaver Construction, Anaheim, CA Project Start Date: January, 2009 Project End Date: December, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Procure core equipment for the California State *

148

Fuel cells: applied research fuel cell materials and electrocatalysis. Annual report, January 1976--December 1976  

DOE Green Energy (OSTI)

Research is described on electrocatalysis of fuel cell reactions including the topics (1) mixed oxides as oxygen electrodes, (2) electrolyte effects on the oxygen reduction reaction, (3) anion effects on the oxygen reduction reaction, and (4) selection and evaluation of electrocatalysts for oxygen reduction in KHCO/sub 3//K/sub 2/CO/sub 3/ buffered electrolytes. Phosphoric acid fuel cell studies include inhibition of sintering of fuel cell catalyst particles: electrochemical methods for surface regeneration and temperature effects on the oxygen reduction reaction at platinum in phosphoric acid electrolyte. Research on the characterization of overpotentials of solid electrolyte fuel cells and selection and evaluation of interconnector materials for solid electrolyte fuel cells is summarized. (WHK)

Srinivasan, S; Isaacs, H S

1977-09-01T23:59:59.000Z

149

Development of Kilowatt-Scale Coal Fuel Cell Technology - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Steven S.C. Chuang (Primary Contact), Tritti Siengchum, Jelvehnaz Mirzababaei, Azadeh Rismanchian, and Seyed Ali Modjtahedi The University of Akron 302 Buchtel Common Akron, OH 44310-3906 Phone: (330) 972-6993 Email: schuang@uakron.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-08GO0881114 Project Start Date: June 1, 2008 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives To develop a kilowatt-scale coal-based solid oxide fuel cell (SOFC) technology. The outcome of this research effort

150

Alternative Fuel Cell Membranes for Energy Independence - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Robson F. Storey (Primary Contact), Daniel A. Savin, Derek L. Patton The University of Southern Mississippi 118 College Drive #5050 Hattiesburg, MS 30406 Phone: (601) 266-4879 Email: Robson.Storey@usm.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-08GO88106 Project Start Date: August 1, 2009 Project End Date: May 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Synthesize novel, low-cost hydrocarbon fuel cell * membrane polymers with high-temperature performance and long-term chemical/mechanical durability.

151

Accelerating Acceptance of Fuel Cell Backup Power Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1799 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Subcontractor: IdaTech LLC, Bend, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the performance of 20 low-temperature fuel * cell systems at two locations Optimize the maintenance of the systems and data * collection practices The project is intended to increase distributed power * generation, improve reliability and efficiency of

152

EIA-Assumptions to the Annual Energy Outlook - Renewable Fuels Module  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuels Module Renewable Fuels Module Assumptions to the Annual Energy Outlook 2007 Renewable Fuels Module The NEMS Renewable Fuels Module (RFM) provides natural resources supply and technology input information for forecasts of new central-station U.S. electricity generating capacity using renewable energy resources. The RFM has seven submodules representing various renewable energy sources, biomass, geothermal, conventional hydroelectricity, landfill gas, solar thermal, solar photovoltaics, and wind.112 Some renewables, such as landfill gas (LFG) from municipal solid waste (MSW) and other biomass materials, are fuels in the conventional sense of the word, while others, such as water, wind, and solar radiation, are energy sources that do not involve the production or consumption of a fuel. Renewable technologies cover the gamut of commercial market penetration, from hydroelectric power, which was one of the first electric generation technologies, to newer power systems using biomass, geothermal, LFG, solar, and wind energy. In some cases, they require technological innovation to become cost effective or have inherent characteristics, such as intermittency, which make their penetration into the electricity grid dependent upon new methods for integration within utility system plans or upon the availability of low-cost energy storage systems.

153

DOE Hydrogen and Fuel Cells Program: 2012 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2012 Annual Progress Report II. Hydrogen Production This section of the 2012 Annual Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on hydrogen production. Hydrogen Production Sub-Program Overview, Sara Dillich, U.S. Department of Energy A. Distributed Bio-Derived Liquid Production Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming, David King, Pacific Northwest National Laboratory Distributed Bio-Oil Reforming, Stefan Czernik, National Renewable Energy Laboratory Back to Top B. Biomass Gasification One Step Biomass Gas Reforming-Shift Separation Membrane Reactor, Mike Roberts, Gas Technology Institute Back to Top C. Separations Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production, Paul Liu, Media

154

Hydrogen Materials and Components Compatibility - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Complete Canadian Standards Association (CSA) Test * Method for Evaluating Material Compatibility for Compressed Hydrogen Applications - Phase I - Metals (CHMC1) document Issue Sandia report reflecting updated content from * Technical Reference website

155

Composite Technology for Hydrogen Pipelines - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact), Barbara J. Frame and Lawrence M. Anovitz Oak Ridge National Laboratory (ORNL) P. O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Start Date: January 2005 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Complete high-pressure cyclic fatigue tests to verify that * a combination of H 2 environment and stress does not adversely affect composite pipeline integrity and service life. Identify the requisite data, provide data, and contribute * to the codification of hydrogen composite pipelines, in

156

Component Standard Research and Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Robert Burgess (Primary Contact), William Buttner, Matthew Post, Carl Rivkin, Chad Blake National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3823 Email: robert.burgess@nrel.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractor: SAE International, Troy, MI Project Start Date: Fiscal Year (FY) 2008 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Support development of new codes and standards * required for commercialization of hydrogen technologies. Create code language that is based on the latest scientific *

157

Hydrogen Embrittlement of Structural Steels - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Daniel Dedrick (Primary Contact), Brian Somerday Sandia National Laboratories P.O. Box 969 Livermore, CA 94550 Phone: (925) 294-1552 Email: dededri@sandia.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: January, 2007 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Determine the threshold level of oxygen impurity * concentration required to mitigate accelerated fatigue crack growth of X52 steel in hydrogen at gas pressures up to 3,000 psi (21 MPa) Measure the fatigue crack growth (da/dN vs. * ∆K) relationship at constant H 2 gas pressure in X65 pipeline

158

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

XV-1 XV-1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program A Aceves, Salvador. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .III.11 Adzic, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.D.6 Ahluwalia, Rajesh. . . . . . . . . . . . . . . . . . . . . . . . IV.E.1, V.A.4 Ainscough, Chris . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.A.8 Anton, Don . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV.D.1 Arif, Muhammad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V.A.6 Atanasoski, Radoslav . . . . . . . . . . . . . . . . . . . . . . . . . . . V.D.3 Autrey, Tom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IV.H.16 Ayers, Katherine . . . . . . . . . . . . . . . . . . . . . . . . . II.D.2, II.D.5 B Baxter-Clemmons, Shannon. . . . . . . . . . . . . . . . . . . IX.1, X.4

159

National Codes and Standards Coordination - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Carl Rivkin, (Primary Contact), Chad Blake, Robert Burgess, William Buttner, and Matthew Post National Renewable Energy Laboratory (NREL) 1617 Cole Boulevard Golden, CO 80401 Phone: (303) 275-3839 Email: carl.rivkin@nrel.gov DOE Manager Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractors: * CSA, Standards, Cleveland, OH * FP2 Fire Protection Engineering, Golden, CO * GWS Solutions, Tolland, CT * Kelvin Hecht, Avon, CT * MorEvents, Englewood, CO * SAE International (SAE), Warrendale, PA

160

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report - Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Printable Version 2010 Annual Progress Report VII. Systems Analysis This section of the 2010 Progress Report for the DOE Hydrogen Program focuses on systems analysis. Each technical report is available as an individual Adobe Acrobat PDF. Systems Analysis Sub-Program Overview, Fred Joseck, DOE Scenario Evaluation, Regionalization and Analysis (SERA) Model, Brian Bush, National Renewable Energy Laboratory Analysis of Energy Infrastructures and Potential Impacts from an Emergent Hydrogen Fueling Infrastructure, David Reichmuth, Sandia National Laboratories Agent-Based Model of the Transition to Hydrogen-Based Personal Transportation: Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power, Matthew Mahalik, Argonne National

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Florida Hydrogen Initiative (FHI) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program David L. Block, Director Emeritus Florida Solar Energy Center/University of Central Florida 1679 Clearlake Road Cocoa, FL 32922 Phone: (321) 638-1001 Email: block@fsec.ucf.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Greg Kleen Phone: (720) 356-1672 Email: Greg.Kleen@go.doe.gov Contract Number: DE-FC36-04GO14225 Subcontractors: * EnerFuels, Inc., West Palm Beach, FL * Florida Atlantic University, Boca Raton, FL * Florida Solar Energy Center, Cocoa, FL * SRT Group, Inc., Miami, FL * Electrolytic Technologies Corporation, Miami, FL

162

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2012 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2009. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

163

Education Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Education sub-program facilitates early market hydrogen and fuel cell deployments and supports future commercialization by providing technically accurate and objective information to key target audiences that can help transform the market (see Table 1). Table 1. Key Target Audiences for the Education Sub-Program target audience Rationale code officials Code officials must be familiar with hydrogen to facilitate the permitting process and local project approval. First Responders Firefighters, as well as law enforcement and emergency medical personnel, must know how to handle potential incidents; their understanding can also facilitate local project approval. Local communities/General Public

164

Hawaii Hydrogen Power Park - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Richard (Rick) E. Rocheleau (Primary Contact), Mitch Ewan Hawaii Natural Energy Institute School of Ocean and Earth Science and Technology University of Hawaii at Manoa 1680 East-West Road, POST 109 Honolulu, HI 96822 Phone: (808) 956-8346 Email: rochelea@hawaii.edu DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805; Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC51-02R021399 A008 Project Start Date: June 29, 2009 Project End Date: December 31, 2014 Fiscal Year (FY) 2012 Objectives Island of Hawaii (Big Island) Install hydrogen fueling station infrastructure at Hawaii * Volcanoes (HAVO) National Park on the Big Island of

165

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2013 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2010. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

166

California Hydrogen Infrastructure Project - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Edward C. Heydorn Air Products and Chemicals, Inc. 7201 Hamilton Boulevard Allentown, PA 18195 Phone: (610) 481-7099 Email: heydorec@airproducts.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Jim Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: DE-FC36-05GO85026 Working Partners/Subcontractors: * University of California Irvine (UCI), Irvine, CA * National Fuel Cell Research Center (NFCRC), Irvine, CA Project Start Date: August 1, 2005 Project End Date: December 31, 2011 Fiscal Year (FY) 2012 Objectives Demonstrate a cost-effective infrastructure model in

167

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

168

Landfill Gas-to-Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

20 20 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Shannon Baxter-Clemmons (Primary Contact), Russ Keller 1 South Carolina Hydrogen Fuel Cell Alliance P.O. Box 12302 Columbia, SC 29211 Phone: (803) 727-2897 Emails: baxterclemmons@schydrogen.org; russ.keller@ati.org DOE Managers HQ: Pete Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-FG36-08GO18113 Subcontractor: 1 Advanced Technology International, Charleston, SC Project Start Date: March 1, 2011 Project End Date: January 31, 2013 Fiscal Year (FY) 2012 Objectives Validate that a financially viable business case * exists for a full-scale deployment of commercially

169

Solid Oxide Fuel Cell Diesel Auxiliary Power Unit Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Dan Hennessy (Primary Contact), Jim Banna Delphi Automotive Systems, LLC 300 University Drive m/c 480-300-385 Auburn Hills, MI 48326 Phone: (248) 732-0656 Email: daniel.t.hennessy@delphi.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000478 Subcontractors: * Electricore, Inc., Valencia, CA * PACCAR, Inc., Bellevue, WA * TDA Research, Inc., Wheat Ridge, CO Project Start Date: August 1, 2009 Project End Date: April 30, 2013 Objectives

170

Stationary Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Bryan Pivovar Phone: (303) 275-3809 Email: bryan.pivovar@nrel.gov Sub-Contract Number No: AGB-0-40628-01 under Prime Contract No. DE-AC36-08G028308 Project Start Date: July 8, 2010 Project End Date: September 7, 2012 Fiscal Year (FY) 2012 Objectives Perform Design for Manufacturing and Assembly * (DFMA ® ) cost analysis for low-temperature (LT)

171

Analysis of Laboratory Fuel Cell Technology Status … Voltage Degradation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jennifer Kurtz (Primary Contact), Keith Wipke, Sam Sprik, Genevieve Saur, Huyen Dinh National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4061 Email: jennifer.kurtz@nrel.gov DOE Manager HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.dog.gov Project Start Date: July 1, 2009 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Conduct an independent assessment to benchmark * state-of-the-art fuel cell durability in a non-proprietary method Leverage analysis experience from the Fuel Cell Electric * Vehicle Learning Demonstration project Collaborate with key fuel cell developers on the analysis

172

Hydrogen Emergency Response Training for First Responders - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

52 52 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Monte R. Elmore Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd. Richland, WA 99352 Phone: (509) 372-6158 Email: monte.elmore@pnnl.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Subcontractors: * Jennifer Hamilton, California Fuel Cell Partnership (CaFCP), Sacramento, CA * Hanford Fire Department, Richland, WA * Hazardous Materials Management and Emergency

173

U.S. Department of Energy Hydrogen and Fuel Cells Program, 2013 Annual Merit Review and Peer Evaluation Report (Book)  

DOE Green Energy (OSTI)

The fiscal year (FY) 2013 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting (AMR), in conjunction with DOE's Vehicle Technologies Office AMR, was held from May 13-16, 2013, at the Crystal City Marriott and Crystal Gateway Marriott in Arlington, Virginia. This report is a summary of comments by AMR peer reviewers about the hydrogen and fuel cell projects funded by DOE's Office of Energy Efficiency and Renewable Energy (EERE).

Not Available

2013-10-01T23:59:59.000Z

174

U.S. Department of Energy Hydrogen and Fuel Cells Program 2011 Annual Merit Review and Peer Evaluation Report  

DOE Green Energy (OSTI)

This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the FY 2011 U.S. Department of Energy (DOE) Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 9-13, 2011 in Arlington, Virginia

Satypal, S.

2011-09-01T23:59:59.000Z

175

Accelerated Testing Validation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Rangachary Mukundan 1 (Primary Contact), Rod Borup 1 , John Davey 1 , Roger Lujan 1 , Dennis Torraco 1 , David Langlois 1 , Fernando Garzon 1 , Dusan Spernjak 1 , Joe Fairweather 1 , Sivagaminathan Balasubramanian 2 , Adam Weber 2 , Mike Brady 3 , Karren More 3 , Greg James 4 , Dana Ayotte 4 , and Steve Grot 5 1 Los Alamos National Laboratory MS D429, P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 665-8523 Email: Mukundan@lanl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Subcontractors: 2 Lawrence Berkeley National Lab, Berkeley, CA 3 Oak Ridge National Laboratory, Oak Ridge TN 4 Ballard Power Systems, Burnaby, BC V5J 5J8 Canada 5 Ion Power, New Castle, DE Project Start Date: Oct 2009

176

Resource Analysis for Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Donna Heimiller National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: October 1, 2009 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Understand the hydrogen production requirements for a * future demand scenario Estimate low-carbon energy resources required to meet * the future scenario demand Compare resource requirements to current consumption * and projected future consumption Determine resource availability geographically and on a *

177

Transport in PEMFC Stacks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Cortney Mittelsteadt (Primary Contact), Hui Xu, Junqing Ma (GES); John Van Zee, Sirivatch Shimpalee, Visarn Lilavivat (USC); James E. McGrath Myoungbae Lee, Nobuo Hara, Kwan-Soo Lee, Chnng Hyun (VT); Don Conners, Guy Ebbrell (Ballard); Kevin Russell (Tech Etch) Giner Electrochemical Systems, LLC 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0529 Email: cmittelsteadt@ginerinc.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0000471 Subcontractors: * Tech-Etch, Plymouth, MA * Ballard Material Products, Inc., Lowell, MA

178

Electrochemical Reversible Formation of Alane - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Ragaiy Zidan 1 (Primary Contact), Douglas A. Knight 1 , Scott Greenway 2 1 Savannah River National Laboratory 999-2W Room 121 Savannah River Site Aiken, SC 29808 Phone: (803) 646-8876 Email: ragaiy.zidan@srnl.doe.gov 2 Greenway Energy DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Project Start Date: October 1, 2006 Project End Date: October 1, 2012 Fiscal Year (FY) 2012 Objectives Identify means for achieving energy efficiency * improvements of over 50%. Perform electrochemical production of alane and alane * adducts in a pressurized electrochemical cell and demonstrate production of α-alane. Demonstrate the formation of alane and the regeneration *

179

DOE Hydrogen and Fuel Cells Program: 2011 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2011 Annual Progress Report II. Hydrogen Production This section of the 2011 Progress Report for the DOE Hydrogen and Fuel Cells Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Hydrogen Production Sub-Program Overview, Sara Dillich, DOE A. Distributed Bio-Derived Liquid Production Biomass-Derived Liquids Distributed (Aqueous Phase) Reforming, David King, Pacific Northwest National Laboratory Distributed Bio-Oil Reforming, Stefan Czernik, National Renewable Energy Laboratory Distributed Reforming of Renewable Liquids Using Oxygen Transport Membranes (OTMs), Balu Balachandran, Argonne National Laboratory Back to Top B. Biomass Gasification A Novel Slurry-Based Biomass Reforming Process, Sean Emerson, United

180

Hydrogen Refueling Infrastructure Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Darlene Steward National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Subcontractor: IDC Energy Insights, Framingham, MA Project Start Date: October 1, 2010 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Identify the capacity (kg/day) and capital costs * associated with "Early Commercial" hydrogen stations (defined below) Identify cost metrics for larger numbers of stations and * larger capacities Technical Barriers This project addresses the following technical barriers

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Photoelectrochemical Materials: Theory and Modeling - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Muhammad N. Huda (Primary Contact), Yanfa Yan*, Todd Deutsch*, Mowafak M. Al-Jassim* and A. John A. Turner* Department of Physics University of Texas at Arlington Arlington, TX 76019 Phone: (817) 272-1097 Email: huda@uta.edu *National Renewable Energy Laboratory DOE Manager HQ: Eric L. Miller Phone: (202) 287-5892 Email: Eric.Miller@ee.doe.gov Subcontractor: University of Texas at Arlington, Arlington, TX Project Start Date: September 2009 Project End Date: August 2012 Fiscal Year (FY) 2012 Objectives For FY 2012, the main goal of this project was to improve materials efficiency by understanding and hence tuning the following by theoretical/computational modeling

182

State and Local Government Partnership - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Joel M. Rinebold Connecticut Center for Advanced Technology (CCAT), Inc. 222 Pitkin Street, Suite 101 East Hartford, CT 06108 Phone: (860) 291-8832 Email: Jrinebold@ccat.us DOE Managers HQ: Connie Bezanson Phone: (202) 586-8055 Email: Connie.Bezanson@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-FC36-08GO18116 / 003 Project Start Date: September 1, 2008 Project End Date: December 31, 2011 Project Objectives Foster strong relationships among federal, state, and * local government officials, industry, and appropriate stakeholders. Serve as a conduit between the DOE and state and local *

183

Photoelectrochemical Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Arun Madan MVSystems, Incorporated (MVS) 500 Corporate Circle, Suite L Golden, CO 80401 Phone: (303) 271-9907 Email: ArunMadan@aol.com or amadan@mvsystemsinc.com DOE Managers HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FC36-07GO17105, A00 Subcontractor: University of Hawaii at Manoa (UH), Honolulu, HI Project Start Date: September 1, 2007 Project End Date: December 31, 2012 Fiscal Year (FY) 2012 Objectives Work closely with the DOE Working Group on * Photoelectrochemical (PEC) Hydrogen Production for optimizing PEC materials and devices. Develop new PEC film materials compatible with high- *

184

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

185

Proceedings of the eighth annual coal-fueled heat engines and gas stream cleanup systems contractors review meeting  

SciTech Connect

The goal of the Heat Engines and Gas Stream Cleanup Programs at Morgantown Energy Technology Center is to develop essential technologies so the private sector can commercialize power plants burning coal-derived fuels. The purpose of this annual meeting is to provide a forum for scientists and engineers to present their results, exchange ideas and talk about their plans. Topics discussed were: Heat Engines Commercialization and Proof of Concepts Projects; Components and Testing of Coal-Fueled Gas Turbines; Advances in Barrier Filters; Pulse Combustion/Agglomeration; Advances in Coal-Fueled Diesels; Gas Stream Cleanup; Turbine and Diesel Emissions; and Poster Presentations.

Webb, H.A.; Bedick, R.C.; Geiling, D.W.; Cicero, D.C. (eds.)

1991-07-01T23:59:59.000Z

186

Next Generation H2 Station Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Sam Sprik (Primary Contact), Keith Wipke, Todd Ramsden, Chris Ainscough, Jen Kurtz National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4431 Email: sam.sprik@nrel.gov DOE Manager HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov Project Start Date: October 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Collect data from state-of-the-art hydrogen (H2) fueling * facilities, such as those funded by the California Air Resources Board (CARB), to enrich the analyses and composite data products (CDPs) on H2 fueling originally established by the Learning Demonstration project.

187

New MEA Materials for Improved Direct Methanol Fuel Cell (DMFC) Performance, Durability, and Cost - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Fletcher (Primary Contact), Philip Cox University of North Florida (UNF) 1 UNF Drive Jacksonville, FL 32224 Phone: (904) 620-1844 Email: jfletche@UNF.edu DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0000475 Subcontractors: * University of Florida, Gainesville, FL * Northeastern University, Boston, MA * Johnson Matthey Fuel Cells, Swindon, UK

188

Life-Cycle Analysis of Vehicle and Fuel Systems with the GREET Model - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Wang (Primary Contact), Amgad Elgowainy, Jeongwoo Han and Hao Cai Argonne National Laboratory (ANL) ESD362 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-2819 Email: mqwang@anl.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Project Start Date: October 2009 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Evaluate environmental benefits of hydrogen fuel * cell electric vehicles (FCEVs) with various renewable hydrogen production pathways relative to baseline gasoline pathways. Conduct vehicle-cycle analysis of hydrogen FCEVs. *

189

Enlarging the Potential Market for Stationary Fuel Cells Through System Design Optimization - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Chris Ainscough (Primary Contact), Sam Sprik, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3781 Email: chris.ainscough@nrel.gov DOE Manager HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov Subcontractor: University of California Irvine, Irvine, CA (planned) Project Start Date: January 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop a complete stationary fuel cell model user's * guide including: Operational details on the model with guidance on - appropriate inputs. Documentation of control strategy algorithms. -

190

Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM (Fuel Cell) Soft Goods - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Eric Stanfield (Primary Contact), Michael Stocker National Institute of Standards and Technology (NIST) 100 Bureau Drive, MS 8211 Gaithersburg, MD 20899-8211 Phone: (301) 975-5102 Email: eric.stanfield@nist.gov, michael.stocker@nist.gov DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421

191

Advanced Materials for Reversible Solid Oxide Fuel Cell (RSOFC), Dual-Mode Operation with Low Degradation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Eric Tang, Tony Wood, Sofiane Benhaddad, Casey Brown, Hongpeng He, Jeff Nelson, Oliver Grande, Ben Nuttall, Mark Richard, Randy Petri (Primary Contact) Versa Power Systems 10720 Bradford Road #110 Littleton, CO 80127 Phone: (303) 226-0762 Email: randy.petri@versa-power.com DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov

192

Technology Validation Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Technology Validation sub-program demonstrates, tests, and validates hydrogen and fuel cell technologies and uses the results to provide feedback to the Program's research and development (R&D) activities. This year, the sub-program concluded the National Fuel Cell Electric Vehicle Learning Demonstration, the principal emphasis of the sub-program over the past decade, which encompassed the co- development and integration of hydrogen infrastructure with hydrogen fuel cell-powered vehicles, allowing industry to assess progress toward technology readiness. In addition, the Technology Validation sub-program completed a project on combined hydrogen, heat, and power (tri-generation or CHHP). Continuing efforts

193

Safety, Codes & Standards Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Safety, Codes and Standards sub-program supports research and development (R&D) to provide an experimentally validated fundamental understanding of the relevant physics, critical data, and safety information needed to define the requirements for technically sound and defensible codes and standards. This information is used to help facilitate and enable the widespread deployment and commercialization of hydrogen and fuel cell technologies. In Fiscal Year (FY) 2012, the sub-program continued to identify and evaluate safety

194

Fluid Phase Chemical Hydrogen Storage Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Benjamin L. Davis (Primary Contact), Tessui Nakagawa, Biswajit Paik, and Troy A. Semelsberger Materials Physics and Applications, Materials Chemistry Los Alamos National Laboratory (LANL), MS J514 P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 500-2463 Email: bldavis@lanl.gov DOE Manager Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@hq.doe.gov Partner Tom Baker, University of Ottawa, Ontario, Canada Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop fluid, pumpable ammonia-borane (AB)-based fuels with high-H 2 content. Technical Barriers

195

Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

19 19 th Annual Triple "E" Seminar Presented by U.S. Department of Energy National Energy Technology Laboratory and Spectroscopy Society of Pittsburgh Thursday, January 20, 2011 8:00 a.m. Registration & Breakfast 8:30 a.m. Opening Remarks/Welcome Michael Nowak, Senior Management & Technical Advisor National Energy Technology Laboratory 8:35 a.m. Overview of Energy Issues Michael Nowak, Senior Management & Technical Advisor National Energy Technology Laboratory 8:45 a.m. Introduction of Presenters McMahan Gray National Energy Technology Laboratory 8:50 a.m. Jane Konrad, Pgh Regional Center for Science Teachers "Green - What Does it Mean" 9:45 a.m. Break 10:00 a.m. John Varine, Spectroscopy Society of Pittsburgh

196

Power Generation from an Integrated Biomass Reformer and Solid Oxide Fuel Cell (SBIR Phase III) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Quentin Ming (Primary Contact), Patricia Irving InnovaTek, Inc. 3100 George Washington Way, Suite 108 Richland, WA 99354 Phone: (509) 375-1093 Email: ming@innovatek.com DOE Managers HQ: Charles Russomanno Phone: (202) 586-7543 Email: Charles.Russomanno@ee.doe.gov HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov Contract Number: DE-EE0004535 Project Start Date: October 1, 2010 Project End Date: September 30, 2013 Fiscal Year (FY) 2012 Objectives Establish the requirements and design for an integrated * fuel cell and fuel processor that will meet the technical and operational needs for distributed energy production. Develop and integrate key system components - *

197

Mass-Production Cost Estimation for Automotive Fuel Cell Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Kevin Baum, Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski, Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0005236 Project Start Date: September 30, 2011 Project End Date: September 30, 2016 Fiscal Year (FY) 2012 Objectives Update 2011 automotive fuel cell cost model to include * latest performance data and system design information. Examine costs of fuel cell systems (FCSs) for light-duty * vehicle and bus applications.

198

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

DOE Green Energy (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

199

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

SciTech Connect

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

200

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fueling station HFSS High-flux solar simulator HFV Hydrogen-fueled vehicle HGEF Hawaii Gateway Energy Center XIV. Acronyms, Abbreviations and Definitions XIV-10 DOE...

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

Report;" and predecessor forms. Imports and Exports: Mexico data - DOE, Fossil Fuels, Office of Fuels Programs, Form OE-781R, "Annual Report of International Electrical Export...

202

Air-Cooled Stack Freeze Tolerance - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Dave Hancock Plug Power Inc. 968 Albany Shaker Rd Latham, NY 12110 Phone: (518) 782-7700 Email: david_hancock@plugpower.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Walt Podolski Phone: (630) 252-7558 Email: podolski@anl.gov Contract Number: DE-EE0000473 Subcontractor: Ballard Power Systems, Burnaby, British Columbia, Canada Project Start Date: June 1, 2009 Project End Date: November 15, 2011 Fiscal Year (FY) 2012 Objectives Advance the state of the art in technology for air-cooled * proton exchange membrane (PEM) fuel cell stacks and related GenDrive(tm) material handling application fuel

203

Validation of an Integrated Hydrogen Energy Station - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Edward C. Heydorn Air Products and Chemicals, Inc. 7201 Hamilton Blvd Allentown, PA 18195 Phone: (610) 481-7099 Email: heydorec@airproducts.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Jim Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: DE-FC36-01GO11087 Subcontractor: FuelCell Energy, Danbury, CT Project Start Date: September 30, 2001 Project End Date: December 31, 2011 Fiscal Year (FY) 2012 Objectives Demonstrate the technical and economic viability of a hydrogen energy station using a high-temperature fuel cell designed to produce power and hydrogen. Complete a technical assessment and economic analysis *

204

U.S. Department of Energy Hydrogen and Fuel Cells Program 2012 Annual Merit Review and Peer Evaluation Report: May 14-18, 2012, Arlington, VA  

DOE Green Energy (OSTI)

This document summarizes the comments provided by peer reviewers on hydrogen and fuel cell projects presented at the fiscal year (FY) 2012 U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting (AMR), held May 14-18, 2012, in Arlington, VA.

Not Available

2012-09-01T23:59:59.000Z

205

Fuel Cell Membrane Electrode Assembly Manufacturing R&D - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Ulsh (Primary Contact), Guido Bender, Niccolo Aieta, Huyen Dinh National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3842 Email: michael.ulsh@nrel.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Partners: * Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA * Colorado School of Mines, Golden, CO * University of Hawaii, Hawaii Natural Energy Institute, Honolulu, HI * Rensselaer Polytechnic Institute, Troy, NY

206

Development of Novel Non-PGM Electrocatalysts for Proton Exchange Membrane Fuel Cell Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Sanjeev Mukerjee Department of Chemistry and Chemical Biology, Northeastern University (NEU) Boston, MA 02115 Phone: (617) 373-2382 Email: S.mukerjee@neu.edu DOE Managers HQ: Kathi Epping Martin Phone: (202) 586 7425 Email: Kathi.Epping@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000459 Subcontractors: * University of New Mexico, Albuquerque, NM (UNM) (Prof. Plamen Atanassov) * Michigan State University, East Lansing, MI (MSU) (Prof. Scott Barton) * University of Tennessee, Knoxville, TN (UTK)

207

Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Timothy Patterson (Primary Contact), V. Srinivasamurthi, T. Skiba UTC Power Corp. 195 Governor's Highway South Windsor, CT 06074 Phone: (860) 727-2274 Email: timothy.patterson@utcpower.com DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000468 Subcontractors: * United Technologies Research Center, East Hartford, CT * Los Alamos National Laboratory, Los Alamos, NM * Oak Ridge National Laboratory, Oak Ridge, TN

208

DOE Hydrogen and Fuel Cells Program: 2005 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2005 Annual Merit Review Proceedings 2005 Annual Merit Review Proceedings Printable Version 2005 Annual Merit Review Proceedings The US Department of Energy Hydrogen Program held its 2005 Annual Merit Review May 23-26, 2005, in Arlington, Virginia. Principal investigators presented their project status and results in these presentations and posters. Plenary Session Presentations Hydrogen Production and Delivery Presentations A. Distributed Production Technologies B. DOE Fossil Energy C. Separations D. Biomass Reforming E. Biological Production F. Photoelectrochemical Production G. Electrolysis H. DOE Nuclear Energy I. Hi-Temp Thermochemical J. Hydrogen Delivery Posters A. Distributed Production Technologies B. DOE Fossil Energy C. Separations D. Biomass Reforming E. Biological Production F. Photoelectrochemical Production

209

DOE Hydrogen and Fuel Cells Program: 2006 Annual Merit Review Proceedings  

NLE Websites -- All DOE Office Websites (Extended Search)

2006 Annual Merit Review Proceedings 2006 Annual Merit Review Proceedings Printable Version 2006 Annual Merit Review Proceedings Logo for the 2006 DOE Hydrogen Program Review, May 16-19, Washinton, D.C. The DOE Hydrogen Program held its Annual Merit Review May 16-19, 2006 in Arlington, Virginia. Principal investigators presented their project status and results in these oral and poster presentations. Plenary Session Presentations Hydrogen Production and Delivery Presentations Distributed Production Photoelectrochemical Production Electrolysis Nuclear Energy Initiative Hi-Temp Thermochemical Hydrogen Delivery Hydrogen from Coal Posters Distributed Production Separations Biomass Reforming Biological Production Photoelectrochemical Electrolysis Nuclear Energy Initiative Hi-Temp Thermochemical Hydrogen Delivery

210

Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jennifer Kurtz (Primary Contact), Keith Wipke, Sam Sprik, Todd Ramsden, Genevieve Saur, and Chris Ainscough National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4061 Email: jennifer.kurtz@nrel.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Subcontractors: Pacific Northwest National Laboratory, Richland, WA Project Start Date: August 2009 Project End Date: December 2012, with future evaluations covered under DOE's Technology Validation sub-program Objectives Perform an independent assessment of technology in * real-world operation conditions, focusing on fuel cell

211

Renewable Electrolysis Integrated Systems Development and Testing - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kevin Harrison National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-7091 Email: Kevin.Harrison@nrel.gov DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contributors: Chris Ainscough and Michael Peters Subcontractor: Marc Mann, Spectrum Automation Controls, Arvada, CO Project Start Date: October 1, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Validate stack and system efficiency and contributing * sub-system performance of DOE-awarded advanced electrolysis systems Collaborate with industry to optimize and demonstrate *

212

Lifecycle Verification of Polymeric Storage Tank Liners - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact) and Lawrence M. Anovitz Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Start Date: June 2008 Projected End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Continue temperature cycling and permeation * measurements on tank liner polymers, and use permeation data to assess ability of tank liners to retain a steady-state hydrogen discharge rate that does not exceed 110% of the 75 normal cubic centimeters per minute (Ncc)/min permeation requirement of SAE International

213

Fermentation and Electrohydrogenic Approaches to Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Pin-Ching Maness (Primary Contact), Katherine Chou, and Lauren Magnusson National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6114 Email: pinching.maness@nrel.gov DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Subcontractor: Bruce Logan, Pennsylvania State University, State College, PA Start Date: October 1, 2004 Projected End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Optimize sequencing fed-batch parameters in converting * cellulose to hydrogen by the cellulolytic bacterium Clostridium thermocellum; aimed at lowering feedstock cost. Improve plasmid stability in * C. thermocellum; aimed

214

Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)  

DOE Green Energy (OSTI)

This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

Not Available

2012-03-01T23:59:59.000Z

215

Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by...  

NLE Websites -- All DOE Office Websites (Extended Search)

is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in fossil-fuel CO2 emissions over...

216

Computational studies of hydrogen interactions with storage materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Chris G. Van de Walle (Primary Contact), Lars Ismer, Anindya Roy, and Anderson Janotti Materials Department, University of California Santa Barbara, CA 93106-5050 Phone: (805) 893-7144 Email: vandewalle@mrl.ucsb.edu DOE Program Officer: James Davenport Phone: (301) 903-0035 Email: James.Davenport@science.doe.gov Objectives Building on our accumulated knowledge of hydrogen interactions with semiconductors and insulators we have been conducting computational studies with the goal of developing new insights for hydrogen interactions with hydrogen storage materials. Using state-of-the-art density functional calculations, our research addresses the energetics

217

PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Monjid Hamdan (Primary Contact), Tim Norman Giner, Inc. (Formerly Giner Electrochemical Systems, LLC.) 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0526 Email: mhamdan@ginerinc.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-08GO18065 Subcontractors: * Virginia Polytechnic Institute and University, Blacksburg, VA * Parker Hannifin Ltd domnick hunter Division, Hemel Hempstead, United Kingdom Project Start Date: May 1, 2008

218

Hydrogen Storage in Metal-Organic Frameworks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jeffrey Long (Primary Contact), Martin Head-Gordon Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 95720 Phone: (510) 642-0860 Email: jrlong@berkeley.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractors: * National Institute of Standards and Technology, Gaithersburg, MD (Craig Brown) * General Motors Corporation, Warren, MI (Anne Dailly) Project Start Date: April 1, 2012 Project End Date: March 31, 2015 Fiscal Year (FY) 2012 Objectives

219

Theory of Hydrogen Storage in Complex Hydrides - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

53 53 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Christopher Wolverton Department of Materials Science & Engineering, Northwestern University 2220 Campus Drive, Room 2036 Evanston, IL 60208-3108 Phone: (734) 678-6319 Email: c-wolverton@northwestern.edu Vidvuds Ozolins Department of Materials Science & Engineering, University of California, Los Angeles DOE Program Officer: James Davenport Program Manager Theoretical Condensed Matter Physics Office of Basic Energy Sciences Email: James.Davenport@science.doe.gov Phone: (301) 903-0035 Objectives Using first-principles methods, determine the atomic- level processes that are rate limiting in hydrogen storage

220

Ammonia-Borane under High Pressure - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jiuhua Chen (Primary Contact), Shah Najiba, Yongzhou Sun, Jennifer Girard, Vadym Drozd Center for the Study of Matters at Extreme Conditions Department of Mechanical and Materials Engineering Florida International University 11200 SW 8 th Street Miami, FL 33199 Phone: (305) 348-3140 Email: chenj@fiu.edu DOE Program Officer: Dr. Lane Wilson Phone: (301) 903-5877 Email: Lane.Wilson@science.doe.gov Subcontractor: Wendy Mao, Stanford University Objectives Understand pressure influence on the structure, phase * stability, dehydrogenation of ammonia borane and its

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

VALIDATION VALIDATION 380 | FY 2013 Merit Review and Peer Evaluation Report 2013 - Technology Validation Summary of Annual Merit Review of the Technology Validation Program Summary of Reviewer Comments on the Technology Validation Program: In general, the reviewers believed the program area was adequately covered. The role of the Technology Validation program within the structure of the Fuel Cell Technologies Office was clearly identified. Progress relating to projects was clearly presented and plans were identified for addressing issues and challenges. The partnership with the National Renewable Energy Laboratory's (NREL's) data collection/analysis team was seen as key to the success

222

Ammonia-Borane: a Promising Material for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Larry G. Sneddon (Primary Contact), Martin Bluhm, Dan Himmelberger, William Ewing, Laif Alden, Emily Berkeley, Chang Won Yoon and Allegra Marchione University of Pennsylvania Department of Chemistry 231 S. 34 th Street Philadelphia, PA 19104-6323 Phone: (215) 898-8632 Email: lsneddon@sas.upenn.edu DOE Program Officer: Larry Rahn Phone: (301) 903-2508 Email: Larry.Rahn@science.doe.gov Subcontractors: R. Tom Baker, Richard Burchell, Felix Gaertner, Hassan Kalviri, Morgane Le Fur, Larena Menant, Giovanni Rachiero Matthew Rankin, Johannes Thomas,

223

Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Bryan Pivovar (Primary Contact), Shyam Kocha, KC Neyerlin, Jason Zack, Shaun Alia, Arrelaine Dameron, Tim Olson, Svitlana Pylypenko, Justin Bult, Brian Larsen, Jeremy Leong, Niccolo Aieta, Guido Bender National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3809 Email: Bryan.Pivovar@nrel.gov DOE Manager HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov Subcontractors: * Kelly Perry, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN * Rod Borup, Los Alamos National Laboratory (LANL), Los Alamos, NM * Yushan Yan, University of Delaware, Newark, DE

224

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

ANALYSIS ANALYSIS FY 2013 Merit Review and Peer Evaluation Report | 465 2013 - Systems Analysis Summary of Annual Merit Review of the Systems Analysis Program Summary of Reviewer Comments on the Systems Analysis Program: The reviewers considered the Systems Analysis program to be an essential component of the U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program's (the Program's) mission. The projects were considered to be appropriately diverse and focused on addressing technical barriers and meeting targets. In general, the reviewers noted that the Systems Analysis program is well managed and demonstrated the ability to address immediate analytical needs and overall objectives and plans, especially to implement the new initiative, H

225

High Performance, Low Cost Hydrogen Generation from Renewable Energy - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Dr. Katherine Ayers (Primary Contact), Andy Roemer Proton Energy Systems d/b/a Proton OnSite 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2190 Email: kayers@protononsite.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Dave Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE000276 Subcontractors: * Entegris, Inc., Chaska, MN * The Electrochemical Engine Center at Penn State, University Park, PA * Oak Ridge National Laboratory, Oak Ridge, TN Project Start Date: September 1, 2009

226

Nanosegregated Cathode Catalysts with Ultra-Low Platinum Loading - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Nenad M. Markovic (Primary Contact) and Vojislav R. Stamenkovic Argonne National Laboratory (ANL) Argonne, IL 60439 Phone: (630) 252-5181 Email: nmmarkovic@anl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Subcontractors: * Karren More, Oak Ridge National Laboratory, Oak Ridge, TN * Charles Hays, Jet Propulsion Laboratory, Pasadena, CA * Shuoheng Sun, Brown University, Providence, RI * Guofeng Wang, University of Pittsburgh, Pittsburgh, PA * Radoslav Atanasoski, 3M Company, Saint Paul, MN

227

Development of Hydrogen Education Programs for Government Officials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Shannon Baxter-Clemmons South Carolina Hydrogen and Fuel Cell Alliance (SCHFCA) P.O. Box 12302 Columbia, SC 29211 Phone: (803) 545-0189 Email: baxterclemmons@schydrogen.org DOE Manager GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Kim Cierpik Phone: (720) 356-1266 Email: kim.cierpik@go.doe.gov Contract Number: DE-FG36-08GO18113 Subcontractors: * Greenway Energy, Aiken, SC * Advanced Technology International, Charleston, SC Project Start Date: October 1, 2008 Project End Date: January 31, 2013 Fiscal Year (FY) 2012 Objectives Further develop relationships with government *

228

Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A.  

NLE Websites -- All DOE Office Websites (Extended Search)

State-Level Emission Estimates State-Level Emission Estimates Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 graphics Graphics data Data (ASCII comma-delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6335, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 DOI 10.3334/CDIAC/00003 Period of Record 1960-2001 Methods Consumption data for coal, petroleum, and natural gas are multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel consumed (i.e., per cubic foot, barrel, or ton), to

229

Hydrogen Delivery Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Hydrogen Delivery sub-program supports research and development (R&D) of technologies that enable low-cost, efficient, and safe delivery of hydrogen to the end-user in order to achieve a threshold cost of $2-$4 per gallon gasoline equivalent (gge) of hydrogen (produced, delivered, and dispensed), which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost- per-mile basis with competing vehicles (gasoline-powered hybrid-electric vehicles) in 2020. 1 The Hydrogen Delivery sub-program addresses all hydrogen distribution activities from the point of production to the point

230

Highly Dispersed Alloy Catalyst for Durability - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

95 95 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Vivek S. Murthi (Primary Contact), Elise Izzo, Wu Bi, Sandra Guerrero and Lesia Protsailo UTC Power Corporation 195 Governor's Highway South Windsor, CT 06042 Phone: (860) 727-2126 Email: vivek.srinivasamurthi@utcpower.com DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: Benjamin@anl.gov Contract Number: DE-FG36-07GO17019 Subcontractors: * Johnson-Matthey Fuel Cells, Sonning Commons, UK * Texas A&M University, College Station, TX

231

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

TRANSFORMATION TRANSFORMATION 442 | FY 2013 Merit Review and Peer Evaluation Report 2013 - Market Transformation Summary of Annual Merit Review of the Market Transformation Program Summary of Reviewer Comments on the Market Transformation Program: The purpose of the Market Transformation program is to spur market growth for domestically produced hydrogen and fuel cell systems. By supporting increased sales in key early markets, this program helps to identify and overcome non-technical barriers to commercial deployment and to reduce the life cycle costs of fuel cell power by helping to achieve economies of scale. The current focus of the Market Transformation program is to build on past successes in lift truck and emergency backup power applications (part of the U.S. Department of Energy's [DOE's]

232

Federal Alternative Fuel Program Light Duty Vehicle Operations. Second annual report to Congress for fiscal year 1992  

DOE Green Energy (OSTI)

This annual report to Congress details the second year of the Federal light duty vehicle operations as required by Section 400AA(b)(1)(B) of the Energy Policy and Conservation Act as amended by the Alternative Motor Fuels Act of 1988, Public Law 100-494. In 1992, the Federal alternative fuel vehicle fleet expanded significantly, from the 65 M85 (85 percent methanol and 15 percent unleaded gasoline) vehicles acquired in 1991 to an anticipated total of 3,267 light duty vehicles. Operating data are being collected from slightly over 20 percent, or 666, of these vehicles. The 601 additional vehicles that were added to the data collection program in 1992 include 75 compressed natural gas Dodge full-size (8-passenger) vans, 25 E85 (85 percent denatured ethanol and 15 percent unleaded gasoline) Chevrolet Lumina sedans, 250 M85 Dodge Spirit sedans (planned to begin operation in fiscal year 1993), and 251 compressed natural gas Chevrolet C-20 pickup trucks. Figure ES-1 illustrates the locations where the Federal light duty alternative fuel vehicles that are participating in the data collection program are operating. The primary criteria for placement of vehicles will continue to include air quality attainment status and the availability of an alternative fuel infrastructure to support the vehicles. This report details the second year of the Federal light duty vehicle operations, from October 1991 through September 1992.

Not Available

1993-07-01T23:59:59.000Z

233

EPAct Fleet Information and Regulations: State and Alternative Fuel Provider Program, Annual Report FY 2001  

DOE Green Energy (OSTI)

A detailed account of the activity and accomplishments made by fleets covered by the EPAct State and Alternative Fuel Provider Program.

Melendez, M; White, H.

2001-12-06T23:59:59.000Z

234

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

1981-06-25T23:59:59.000Z

235

Research and Development for Off-Road Fuel Cell Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael T. Hicks IdaTech, LLC 63065 NE 18 th Street Bend, OR 97701 Phone: (541) 322-1040 Email: mhicks@idatech.com DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Technical Advisor Walt Podolski Phone: (630) 252-7558 Email: podolski@anl.gov Contract Number: DE-FC36-04G014303 Subcontractors: * The Toro Company, Bloomington, MN * University of California, Davis, CA (UC Davis) Project Start Date: August, 2007 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives Build test stand for evaluation of commercial air filters *

236

Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Scott Kliever Sysco Houston 10710 Greens Crossing Boulevard Houston, TX 77038 Phone: (713) 679-5574 Email: kliever.scott@hou.sysco.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463; Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000485 Subcontractors: * Plug Power Inc., Latham, NY * Air Products, Allentown, PA * Big-D Construction, Salt Lake City, UT Project Start Date: October 1, 2009 Project End Date: September 30, 2013 Objectives The objectives of this project are to: Convert a fleet of 79 class-3 electric lift trucks to *

237

Development of Micro-Structural Mitigation Strategies for PEM Fuel Cells: Morphological Simulations and Experimental Approaches - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Dr. Silvia Wessel (Primary Contact), David Harvey, Dr. Vesna Colbow Ballard Power Systems 9000 Glenlyon Parkway Burnaby, B.C. V5J 5J8 Phone: (604) 453-3668 Email: silvia.wessel@ballard.com DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Technical Advisor John Kopasz Phone: (630) 252-7531 Email: kopasz@anl.gov Contract Number: DE-EE0000466 Subcontractors: * Georgia Institute of Technology, Atlanta, GA (Dr. S.S. Yang) * Los Alamos National Laboratory, Los Alamos, NM (Dr. R. Borup) * Michigan Technological University, Houghton, MI

238

The Effect of Airborne Contaminants on Fuel Cell Performance and Durability - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

63 63 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jean St-Pierre (Primary Contact), Yunfeng Zhai, Michael Angelo, Trent Molter, Leonard Bonville, Ugur Pasaogullari, Mark Aindow, William Collins, Silvia Wessel Hawaii Natural Energy Institute 1680 East-West Road Honolulu, HI 96822 Phone: (808) 956-3909 Email: jsp7@hawaii.edu DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Walt Podolski Phone: (630) 252-7558 Email: podolski@anl.gov Contract Number: DE-EE0000467 Subcontractors: * University of Connecticut, Storrs, CT * UTC Power, South Windsor, CT * Ballard Power Systems, Burnaby, BC, Canada

239

Development of Ultra-Low Platinum Alloy Cathode Catalyst for PEM Fuel Cells - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Branko N. Popov University of South Carolina (USC) 301 Main Street Columbia, SC 29208 Phone: (803) 777-7314 Email: popov@cec.sc.edu DOE Managers HQ: Donna Lee Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov Contract Number: DE-EE0000460 Subcontractor: Dr. Hansung Kim (Co-PI) Yonsei University, S. Korea. Project Start Date: September 1, 2010 Project End Date: May 31, 2014 Objectives Develop low-cost and durable hybrid cathode catalyst * (HCC). Develop Pt alloy/activated graphitic carbon catalyst. * Develop corrosion resistant supports. *

240

Investigation of Micro- and Macro-Scale Transport Processes for Improved Fuel Cell Performance - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Jon P. Owejan (Primary Contact), Matthew Mench, Michael Hickner, Satish Kandlikar, Thomas Trabold, Jeffrey Gagliardo, Anusorn Kongkanand, Wenbin Gu, Paul Nicotera General Motors 10 Carriage Street Honeoye Falls, NY 14472 Phone: (585) 953-5558 Email: jon.owejan@gm.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Technical Advisor John Kopasz Phone: (630) 252-7531 Email: kopasz@anl.gov Contract Number: DE-EE0000470 Subcontractors: * Penn State University, University Park, PA * University of Tennessee, Knoxville, TN

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Industrial Fuel Gas Demonstration Plant Program. Annual progress report, January-December 1979  

SciTech Connect

The objective of the Industrial Fuel Gas Demonstration Plant Program is to demonstrate the feasibility of converting agglomerating and high sulfur coal to clean fuel gas and utilizing this gas in a commercial application. Specific objectives are to conduct process analysis, design, construction, testing, operation and evaluation of a plant based on the U-Gas process for converting coal to industrial fuel gas. Phase I of the MLGW Industrial Fuel Gas Demonstration Plant Program started in September, 1977. In the first quarter of 1978, a conceptual design of a commercial plant was started, together with environmental monitoring activities and technical support work at the U-Gas pilot plant. After a series of successful pilot plant runs during the October 1978-March 1979 period, design work on the Demonstration Plant commenced. With the exception of Task I - Design and Evaluation of Commercial Plant, the majority of all other efforts were completed in 1979. These tasks are listed.

None

1980-01-01T23:59:59.000Z

242

High Performance Fuel Design for Next Generation PWRs 2nd Annual Report  

E-Print Network (OSTI)

The overall objective of this NERI project is to examine the potential for a high performance advanced fuel design for Pressurized Water Reactors (PWRs), which would accommodate a substantial increase of core power density ...

Ballinger, Ronald G.

243

Lightweight Metal Hydrides for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Ji-Cheng Zhao (Primary Contact), Xuenian Chen, Sheldon G. Shore The Ohio State University, Department of Materials Science and Engineering, 286 Watts Hall, 2041 College Road Columbus, OH 43210 Phone: (614) 292-9462 Email: zhao.199@osu.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC3605GO15062 Project Start Date: January 1, 2005 Project End Date: August 31, 2011 (No-cost extension to December 31, 2012) Fiscal Year (FY) 2012 Objectives Develop a high-capacity lightweight hydride for * reversible vehicular hydrogen storage, capable of meeting or exceeding the 2010 DOE FreedomCAR

244

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

245

HGMS: Glasses and Nanocomposites for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kris Lipinska (Primary Contact), Oliver Hemmers Harry Reid Center, University of Nevada Las Vegas (UNLV) 4505 Maryland Parkway, Box 454009 Las Vegas, NV 89154-4009 Phones: (702) 895-4450, (702) 895-3742 Emails: kristina.lipinska@unlv.edu, oliver.hemmers@unlv.edu DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-EE0000269 Project Start Date: November 25, 2009 Project End Date: October 31, 2012 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Fabricate glasses and nanocrystalline composites: * improve materials composition by introducing functional dopants Demonstrate controlled nucleation of nanocrystals

246

Characterization of Materials for Photoelectrochemical (PEC) Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Clemens Heske Department of Chemistry University of Nevada, Las Vegas 4505 S. Maryland Parkway Las Vegas, NV 89154-4003 Phone: (702) 895-2694 Email: heske@unlv.nevada.edu DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Project Start Date: November 4, 2011 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives Enhance the understanding of PEC materials and interfaces and promote break-through discoveries by: Utilizing and developing cutting-edge soft X-ray and * electron spectroscopy characterization. Determining electronic and chemical structures of PEC * candidate materials. Addressing materials performance, materials lifetime, * and capital costs through close collaboration with the

247

Hydrogen Storage by Novel CBN Heterocycle Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Shih-Yuan Liu University of Oregon Department of Chemistry 1253 University of Oregon Eugene, OR 97403-1253 Phone: (541) 346-5573 Email: lsy@uoregon.edu DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18143 Project Start Date: September 1, 2008 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives The objective of this project is to develop novel boron- nitrogen heterocycles as liquid-phase hydrogen storage materials with storage capacities and thermodynamic properties that have the potential to lead to rechargeable systems capable of meeting DOE targets. We seek to:

248

Complex Hydrides - A New Frontier for Future Energy Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Vitalij K. Pecharsky, 1 Marek Pruski, 2 L. Scott Chumbley, 3 Duane D. Johnson, 4 Takeshi Kobayashi 5 1 FWP Leader: Ames Laboratory, 253 Spedding Hall, Ames, IA 50011, Email: vitkp@ameslab.gov, Phone: (515) 294-8220 2 PI: Ames Laboratory, 230 Spedding Hall, Ames, IA 50011, Email: mpruski@iastate.edu, Phone: (515) 294-2017 3 PI: Ames Laboratory, 214 Wilhelm Hall, Ames, IA 50011, Email: chumbley@iastate.edu, Tel.: 515-2947903; 4 PI: Ames Laboratory, 311 TASF, Ames, IA 50011, Email: ddj@ameslab.gov, Phone: (515) 2949649 5 Ames Laboratory, 229 Spedding Hall, Ames, IA 50011, Email: takeshi@iastate.edu, Phone: (515)-294-6823 DOE Program Officer: Dr. Refik Kortan

249

Novel Molecular Materials for Hydrogen Storage Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Maddury Somayazulu (Primary Contact), Timothy Strobel, Robert Potter, Raja Chellappa, Viktor Struzhkin, Russell J Hemley Geophysical Laboratory Carnegie Institution of Washington 5251 Broad Branch Rd NW Washington, D.C. 20015 Phone: (202) 478-8911 Email: zulu@gl.ciw.edu DOE Program Manager: Dr. P. Thiyagarajan Phone: (301) 903-9706 Email: P.Thiyagarajan@science.doe.gov Objectives Discover, identify and characterize novel hydrogen-rich * compounds that can be used for hydrogen storage or as agents for rehydrogenation of hydrogen storage materials at high pressures. Investigate high pressure routes to rehydrogenating * ammonia borane and polymeric complexes of ammonia borane. Investigate interaction of hydrogen with metallo-organic *

250

Hydrogen Storage Engineering Center of Excellence - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Donald L. Anton (Primary Contact), Theodore Motyka, Bruce Hardy and David Tamburello Savannah River National Laboratory (SRNL) Bldg. 999-2W Aiken, SC 29808 Phone: (803) 507-8551 Email: DONALD.ANTON@SRNL.DOE.GOV DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Technical Advisor Robert Bowman Phone: 818-354-7941 Email: rcbjr1967@gmail.com Subcontractors: * Pacific Northwest National Laboratory (PNNL) * United Technologies Research Center (UTRC) * General Motors Corp (GM) * Ford Motor Corp. (FMC)

251

Development of Improved Composite Pressure Vessels for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Norman Newhouse (Primary Contact), Jon Knudsen, John Makinson Lincoln Composites, Inc. 5117 NW 40 th Street Lincoln, NE 68524 Phone: (402) 470-5035 Email: nnewhouse@lincolncomposites.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19004 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Improve the performance characteristics, including * weight, volumetric efficiency, and cost, of composite pressure vessels used to contain hydrogen in adsorbants. Evaluate design, materials, or manufacturing process *

252

Effects of Technology Cost Parameters on Hydrogen Pathway Succession - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark F. Ruth* (Primary Contact), Victor Diakov*, Brian James † , Julie Perez ‡ , Andrew Spisak † *National Renewable Energy Laboratory 15013 Denver West Pkwy. Golden, CO 80401 Phone: (303) 817-6160 Email: Mark.Ruth@nrel.gov and Victor.Diakov@nrel.gov † Strategic Analysis, Inc. ‡ New West Technologies DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Subcontractor: Strategic Analysis, Inc., Arlington, VA Project Start Date: February 1, 2009 Project End Date: October 31, 2011 Fiscal Year (FY) 2012 Objectives Develop a macro-system model (MSM): * Aimed at performing rapid cross-cutting analysis - Utilizing and linking other models - Improving consistency between models -

253

Chemical Hydride Rate Modeling, Validation, and System Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Troy A. Semelsberger (Primary Contact), Biswajit Paik, Tessui Nakagawa, Ben Davis, and Jose I. Tafoya Los Alamos National Laboratory MS J579, P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 665-4766 Email: troy@lanl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Project Start Date: February 2009 Project End Date: February 2014 Fiscal Year (FY) 2012 Objectives Investigate reaction characteristics of various fluid-phase * ammonia-borane (AB)-ionic liquid (IL) compositions Identify and quantify hydrogen impurities and develop *

254

Energy Storage in Clathrate Hydrogen Material - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Carolyn A. Koh (Primary Contact), Amadeu K. Sum, R. Gary Grim, Matthew R. Walsh, Prasad B. Kerkar Center for Hydrate Research Colorado School of Mines 1600 Illinois Street Golden, CO 80401 Phone: (303) 273-3237 Email: ckoh@mines.edu DOE Program Officer: Bonnie Gersten Phone: (303) 903-0002 Email: Bonnie.Gersten@science.doe.gov Objectives The current project aims to probe key questions surrounding the metastability of hydrates relating to synthesis, structure, and composition. The questions on metastability are crucial in all energy applications of clathrate hydrates including energy storage, energy transportation, and energy recovery. Specifically, this project

255

Development of a Centrifugal Hydrogen Pipeline Gas Compressor - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Francis A. Di Bella, P.E. Concepts ETI, Inc., d.b.a. Concepts NREC 285 Billerica Road, Suite 102 Chelmsford, MA 01824-4174 Phone: (781) 937-4718 Email: fdibella@conceptsnrec.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18059 Subcontractors: Texas A&M University, College Station, TX HyGen Industries, Eureka, CA Project Start Date: June 1, 2008 Project End Date: May, 2013 Overall Project Objectives Develop and demonstrate an advanced centrifugal * compressor system for high-pressure hydrogen pipeline transport to support DOE's strategic hydrogen

256

Component Testing for Industrial Trucks and Early Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Brian Somerday, Chris San Marchi Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: January 2010 Project End Date: May 2011 (carryover from Fiscal Year [FY] 2011 extended objectives into FY 2012) Fiscal Year (FY) 2012 Objectives (1) Provide technical basis for the development of standards defining the use of steel (Type 1) storage pressure vessels for gaseous hydrogen: Compare fracture mechanics based design approach - for fatigue assessment of pressure vessels for

257

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

SAFETY, CODES AND STANDARDS SAFETY, CODES AND STANDARDS 402 | FY 2013 Merit Review and Peer Evaluation Report 2013 - Safety, Codes and Standards Summary of Annual Merit Review of the Safety, Codes and Standards Program Summary of Reviewer Comments on the Safety, Codes and Standards Program: The Safety, Codes and Standards program supports research and development (R&D) that provides the critical information needed to define requirements and close gaps in safety, codes, and standards to enable the safe use and handling of hydrogen and fuel cell technologies. The program also conducts safety activities focused on promoting safety practices among U.S. Department of Energy (DOE) projects and the development of information resources and best practices. Reviewers recognized that the program continues to provide strong support in the following

258

Analysis of Durability of MEAs in Automotive PEMFC Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Randal L. Perry E.I. du Pont de Nemours and Company Chestnut Run Plaza, 701/209 4417 Lancaster Pike Wilmington, DE 19805 Phone: (302) 999-6545 Email: randal.l.perry @usa.dupont.com DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: Benjamin@anl.gov Contract Number: DE-EE0003772 Subcontractors: * Nissan Technical Center North America, Farmington Hills, MI * Illinois Institute of Technology (IIT), Chicago, IL Project Start Date: September 1, 2010

259

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

AND DELIVERY AND DELIVERY FY 2013 Merit Review and Peer Evaluation Report | 7 2013 - Hydrogen Production and Delivery Summary of Annual Merit Review of the Hydrogen Production and Delivery Program Summary of Reviewer Comments on the Hydrogen Production and Delivery Program: This review session evaluated hydrogen production and delivery research and development (R&D) activities in the U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) in the Office of Energy Efficiency and Renewable Energy. The hydrogen production projects reviewed represented a diverse portfolio of technologies to produce hydrogen from renewable energy sources. Production project sub-categories included water electrolysis, solar-driven thermochemical cycles, photoelectrochemical (PEC) direct water splitting, and biological hydrogen

260

System Level Analysis of Hydrogen Storage Options - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Rajesh K. Ahluwalia (Primary Contact), T. Q. Hua, J-K Peng, Hee Seok Roh, and Romesh Kumar Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 Phone: (630) 252-5979 Email: walia@anl.gov DOE Manager HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov Start Date: October 1, 2004 Projected End Date: September 30, 2014 Objective The overall objective of this effort is to support DOE with independent system level analyses of various H 2 storage approaches, to help to assess and down-select options, and to determine the feasibility of meeting DOE targets. Fiscal Year (FY) 2012 Objectives Model various developmental hydrogen storage systems. * Provide results to Hydrogen Storage Engineering Center *

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hydrogen Storage Cost Analysis, Preliminary Results - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 E-mail: bjames@sainc.com DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005253 Project Start Date: September 30, 2012 Project End Date: September 29, 2016 Fiscal Year (FY) 2012 Objectives Develop cost models of carbon fiber hydrogen storage * pressure vessels. Explore the sensitivity of pressure vessel cost to design * parameters including hydrogen storage quantity, storage

262

Spent Fuel and Waste Management Technology Development Program. Annual progress report  

SciTech Connect

This report provides information on the progress of activities during fiscal year 1993 in the Spent Fuel and Waste Management Technology Development Program (SF&WMTDP) at the Idaho Chemical Processing Plant (ICPP). As a new program, efforts are just getting underway toward addressing major issues related to the fuel and waste stored at the ICPP. The SF&WMTDP has the following principal objectives: Investigate direct dispositioning of spent fuel, striving for one acceptable waste form; determine the best treatment process(es) for liquid and calcine wastes to minimize the volume of high level radioactive waste (HLW) and low level waste (LLW); demonstrate the integrated operability and maintainability of selected treatment and immobilization processes; and assure that implementation of the selected waste treatment process is environmentally acceptable, ensures public and worker safety, and is economically feasible.

Bryant, J.W.

1994-01-01T23:59:59.000Z

263

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

264

2011 Annual Progress Report: DOE Hydrogen and Fuel Cells Program (Book)  

DOE Green Energy (OSTI)

In the past year, the DOE Hydrogen and Fuel Cells Program (the Program) made substantial progress toward its goals and objectives. The Program has conducted comprehensive and focused efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. With emphasis on applications that will effectively strengthen our nation's energy security and improve our stewardship of the environment, the Program engages in research, development, and demonstration of critical improvements in the technologies. Highlights of the Program's accomplishments can be found in the sub-program chapters of this report.

Not Available

2011-11-01T23:59:59.000Z

265

Demonstrating Economic and Operational Viability of 72-Hour Hydrogen PEM Fuel Cell Systems to Support Emergency Communications on the Sprint Nextel Network - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kevin Kenny Sprint Nextel 12000 Sunrise Valley Drive MS: VARESQ0401-E4064 Reston, VA 20191 Phone: (703) 592-8272 Email: kevin.p.kenny@sprint.com DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: James Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: EE-0000486 Project Partners: * Air Products & Chemicals, Inc., Allentown, PA (Fuel Project Partner) * Altergy Systems, Folsum, CA (PEM Fuel Cell Project Partner) * Black & Veatch Corporation, Overland Park, KS (A&E

266

Molten carbonate fuel cell (MCFC) product development test. Annual report, October 1994--September 1995  

DOE Green Energy (OSTI)

This report summarizes the technical progress that has occurred in conjunction with Cooperative Agreement No. DE-FC21-92MC28065, Molten Carbonate Fuel Cell Product Development Test (PDT) during the period of October 1, 1994 through September 30, 1995. Information is presented on stack design, manufacturing, stack assembly, procurement, site preparation, and test plan.

NONE

1996-01-01T23:59:59.000Z

267

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

268

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report - Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery Delivery Printable Version 2008 Annual Progress Report III. Delivery This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on delivery. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Delivery Sub-Program Overview, Rick Farmer, U.S. Department of Energy (PDF 218 KB) Hydrogen Delivery Infrastructure Options Analysis, TP Chen, Nexant, Inc. (PDF 242 KB) Hydrogen Delivery Infrastructure Analysis, Marrianne Mintz, Argonne National Laboratory (PDF 324 KB) Hydrogen Embrittlement of Pipelines: Fundamentals, Experiments, Modeling, Petros Sofronis, University of Illinois, Urbana-Champaign (PDF 686 KB) Materials Solutions for Hydrogen Delivery in Steel Pipeline, Subodh Das, Secat, Inc. (PDF 691 KB)

269

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Delivery Hydrogen Delivery Printable Version 2009 Annual Progress Report III. Hydrogen Delivery This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on hydrogen delivery. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Delivery Program Element Introduction, Monterey Gardiner, U.S. Department of Energy (PDF 67 KB ) Hydrogen Delivery Infrastructure Analysis (PDF 267 KB), Marianne Mintz, Argonne National Laboratory H2A Delivery Components Module (PDF 315 KB), Olga Sozinova, National Renewable Energy Laboratory Hydrogen Regional Infrastructure Program in Pennsylvania (PDF 1.3 MB), Eileen Schmura, Concurrent Technologies Corporation Oil-Free Centrifugal Hydrogen Compression Technology Demonstration

270

Molten carbonate fuel cell product development test. Annual report, October 1992--September 1993  

DOE Green Energy (OSTI)

Advanced fuel cell active components have been developed and scaled up from laboratory scale to commercial scale. Full width components of both the stabilized nickel cathodes and the low chrome anodes have been successfully cast on M-C Power`s production tape caster. An improved design for a fuel cell separator plate has been developed. The improved design meets the goals of lower cost and manufacturing simplicity, and addresses performance issues of the current commercial area plate. The engineering that the Bechtel Corporation has completed for the MCFC power plant includes a site design, a preliminary site layout, a Process Flow Diagram, and specification for the procurement of some of the major equipment items. Raw materials for anode and cathode components were ordered and received during the first half of 1993. Tape casting of anodes was started in late summer and continued through August. In addition to the technical progress mentioned above, an environment assessment was prepared in compliance with the National Environmental Policy Act of 1969 (NEPA). As a result, the PDT has received a categorical exclusion from the Air Pollution Control District permit requirements. The PDT is configured to demonstrate the viability of natural gas-fueled MCFC for the production of electricity and thermal energy in an environmentally benign manner for use in commercial and industrial applications.

Not Available

1993-12-01T23:59:59.000Z

271

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

Annual Energy Outlook 2012 Table G1. Heat rates Fuel Units Approximate heat content Coal 1 Production . . . . . . . . . . . . . . . . . . . . . . . . million Btu per short ton...

272

Annual Energy Outlook 2012  

Annual Energy Outlook 2012 (EIA)

unless otherwise noted) Supply, disposition, prices, and emissions Reference case Annual growth 2010-2035 (percent) 2009 2010 2015 2020 2025 2030 2035 Generation by fuel...

273

Annual Coal Report 2001  

U.S. Energy Information Administration (EIA)

DOE/EIA-0584 (2001) Annual Coal Report 2001 Energy Information Administration Office of Coal, Nuclear, Electric, and Alternate Fuels U.S. Department of Energy

274

Solar Hydrogen Production with a Metal Oxide-Based Thermochemical Cycle - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Anthony McDaniel (Primary Contact), Ivan Ermanoski Sandia National Laboratories (SNL) MS9052 PO Box 969 Livermore, CA 94550 Phone: (925) 294-1440 Email: amcdani@sandia.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Subcontractors: * Nathan Siegel, Bucknell University, Lewisburg, PA. * Alan Weimer, University of Colorado, Boulder, CO. Project Start Date: October 1, 2008 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Discover and characterize suitable materials for two- *

275

ANNUAL PROGRESS REPORT ON FUEL ELEMENT DEVELOPMENT FOR FISCAL YEAR 1961  

SciTech Connect

Progress in fuels and materials development is summarized. Major areas of investigation include a materials study by means of sample fuel plates containing uranium alloys or cermets, burnable poisons, non-uniform fuel and poison distributions and clad with various aluminum alloys; and an engineering study of fuel element geometries optimized in heat transfer, hydraulics, and materials strength. Up to 45 wt% U-Al alloys, 6 to 65 wt% UO/-Al and U3O6-Al dispersions, including enrichments ranging from 20% to 93%, were tested to 70% burnup in de-ionized water at 200 deg F in the MTR. Their performance at higher temperature is still being investigated. Test results for the MTR conditions indicate that all of the compositions investigated to date will successfully withstand even the longest irradiation at these conditions if properly fabricated. Some high strength aluminum alloy claddings, not yet fully tested, show some peculiar surface effects which may be related to corrosion. Metallographic studies of irradiated cermets reveal a reaction'' (diffusion) zone produced around UO/sub 2/ particles in contact with aluminum. These zones are being studied by means of x-ray diffraction, electron microscopy, and electron microprobe analysis. From engineering studies has come promise of improved heat removal and lower pumping requlrements for reactors through artificial roughening of fuel plates. Computer optimizatlon studies and hydraulic tests indicated 80% improvement in heat transfer or 60% less flow for the same heat load are obtainable for MTR conditions. Heat transfer test results from 0.110 x 2.624 ' electrically-heated channels using heat fluxes up to 2.88 x 10/sup 6/ Btu/hr-ft/ sup 2/, sgree better with correlations based on bulk temperatures than with the more widely used modified Colburn equation. In this range, a modifled Colburn equation with a 20% safety factor, as is presently used, seems adequate. However, an equation based on the bulk coolant temperature could be used employing a smaller safety factor because of its greater accuracy. ( auth)

Gibson, G.W.; Shupe, O.K.

1962-03-01T23:59:59.000Z

276

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage Printable Version 2007 Annual Progress Report IV. Hydrogen Storage This section of the 2007 Progress Report for the DOE Hydrogen Program focuses on hydrogen storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Sub-Program Overview, Sunita Satyapal, U.S. Department of Energy (PDF 729 KB) A. Metal Hydrides-Independent Projects Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity, Daniel A. Mosher, United Technologies Research Center (PDF 475 KB) Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods, David A. Lesch, UOP LLC (PDF 529 KB) High Density Hydrogen Storage System Demonstration Using NaAlH4 Complex Compound Hydrides, Daniel A. Mosher, United Technologies Research

277

DOE Hydrogen and Fuel Cells Program: 2006 Annual Progress Report - Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Printable Version 2006 Annual Progress Report IV. Storage This section of the 2006 Progress Report for the DOE Hydrogen Program focuses on storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Sub-Program Overview, Sunita Satyapal, Storage Team Lead, DOE Hydrogen Program (PDF 298 KB) A. Metal Hydrides High Density Hydrogen Storage System Demonstration Using NaAlH4 Based Complex Compound Hydrides, Dan Mosher, United Technologies Research Center (PDF 763 KB) Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods, David Lesch, UOP LLC (PDF 780 KB) Complex Hydride Compounds with Enhanced Hydrogen Storage Capacity, Dan Mosher, United Technologies Research Center (PDF 678 KB)

278

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Delivery Hydrogen Delivery Printable Version 2010 Annual Progress Report III. Hydrogen Delivery This section of the 2010 Progress Report for the DOE Hydrogen Program focuses on hydrogen delivery. Each technical report is available as an individual Adobe Acrobat PDF. Hydrogen Delivery Sub-Program Overview, Sara Dillich, DOE Hydrogen Delivery Infrastructure Analysis, Marianne Mintz, Argonne National Laboratory H2A Delivery Analysis and H2A Delivery Components Model, Olga Sozinova, National Renewable Energy Laboratory Oil-Free Centrifugal Hydrogen Compression Technology Demonstration, Hooshang Heshmat Development of a Centrifugal Hydrogen Pipeline Gas Compressor, Francis Di Bella, Concepts NREC Advanced Hydrogen Liquefaction Process, Joseph Schwartz, Praxair, Inc. Active Magnetic Regenerative Liquefier, John Barclay, Prometheus

279

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2009 Annual Progress Report II. Hydrogen Production This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Sub-Program Overview, Richard Farmer, U.S. Department of Energy (PDF 76 KB) A. Distributed Production from Bio-Derived Liquids Low-Cost Hydrogen Distributed Production System Development (PDF 246 KB), Frank Lomax, H2Gen Innovations, Inc. Distributed Hydrogen Production from Biomass Reforming (PDF 485 KB), Yong Wang, Pacific Northwest National Laboratory Hydrogen Generation from Biomass-Derived Carbohydrates via the Aqueous-Phase Reforming (APR) Process (PDF 234 KB), Greg Keenan, Virent

280

DOE Hydrogen and Fuel Cells Program: 2008 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2008 Annual Progress Report II. Hydrogen Production This section of the 2008 Progress Report for the DOE Hydrogen Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Sub-Program Overview, Richard Farmer, U.S. Department of Energy (PDF 319 KB) A. Distributed Production from Bio-Derived Liquids Low-Cost Hydrogen Distributed Production System Development, Frank Lomax, H2Gen Innovations, Inc. (PDF 298 KB) Distributed Hydrogen Production from Biomass Reforming, David King, Pacific Northwest National Laboratory (PDF 372 KB) Analysis of Ethanol Reforming System Configurations, Brian James, Directed Technologies, Inc. (PDF 515 KB)

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage Printable Version 2009 Annual Progress Report IV. Hydrogen Storage This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on hydrogen storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Program Element Introduction, Sara Dillich, U.S. Department of Energy (PDF 489 KB) A. Metal Hydride Center of Excellence Metal Hydride Center of Excellence Metal Hydride Center of Excellence (PDF 243 KB), Lennie Klebanoff, Sandia National Laboratories Thermodynamically Tuned Nanophase Materials for Reversible Hydrogen Storage: Structure and Kinetics of Nanoparticle and Model System Materials (PDF 324 KB), Bruce Clemens, Stanford University Development of Metal Hydrides at Sandia National Laboratories (PDF

282

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report - Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery Delivery Printable Version 2005 Annual Progress Report V. Delivery This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on delivery. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Delivery Sub-program Overview, Mark Paster, Department of Energy (PDF 159 KB) A. Pipelines Hydrogen Permeability and Integrity of Hydrogen Transfer Pipelines, Zhili Feng, Oak Ridge National Laboratory (PDF 596 KB) New Materials for Hydrogen Pipelines, Barton Smith, Oak Ridge National Laboratory (PDF 562 KB) Materials Solutions for Hydrogen Delivery in Pipelines, Subodh K. Das, SECAT Inc (PDF 248 KB) Evaluation of Natural Gas Pipeline Materials for Hydrogen/Mixed Hydrogen-natural Gas Service, Thad M. Adams, Savannah River National

283

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production and Delivery Hydrogen Production and Delivery Printable Version 2004 Annual Progress Report II. Hydrogen Production and Delivery Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Production and Delivery Sub-Program Review, Pete Devlin, DOE (PDF 220 KB) A. Distributed Production Technologies Ceramic Membrane Reactor Systems for Converting Natural Gas to Hydrogen and Synthesis Gas (ITM Syngas), Christopher Chen, Air Products (PDF 316 KB) Integrated Ceramic Membrane System for Hydrogen Production, Joseph Schwartz, Praxair (PDF 421 KB) Low Cost Hydrogen Production Platform, Tim Aaron, Praxair (PDF 500 KB) Autothermal Cyclic Reforming Based Hydrogen Generating and Dispensing System, Ravi Kumar, GE Energy (PDF 511 KB)

284

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report - Delivery  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery Delivery Printable Version 2007 Annual Progress Report III. Delivery This section of the 2007 Progress Report for the DOE Hydrogen Program focuses on delivery. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Delivery Sub-Program Overview, Mark Paster, U.S. Department of Energy (PDF 182 KB) A. Analysis Hydrogen Delivery Infrastructure Options Analysis, Tan-Ping Chen, Nexant, Inc. (PDF 620 KB) B. Liquefaction Innovative Hydrogen Liquefaction Cycle, Martin A. Shimko, Gas Equipment Engineering Corp. (PDF 514 KB) C. Carriers Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen, Guido P. Pez, Air Products & Chemicals, Inc. (PDF 528 KB) D. Storage Inexpensive Delivery of Compressed Hydrogen with Advanced Vessel

285

DOE Hydrogen and Fuel Cells Program: 2010 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage Printable Version 2010 Annual Progress Report IV. Hydrogen Storage This section of the 2010 Progress Report for the DOE Hydrogen Program focuses on hydrogen storage. Each technical report is available as an individual Adobe Acrobat PDF. Hydrogen Storage Sub-Program Overview, Ned Stetson, DOE A. Metal Hydride Center of Excellence Metal Hydride Center of Excellence Five-Year Review of Metal Hydride Center of Excellence, Lennie Klebanoff, Sandia National Laboratories Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides, Craig Jensen, University of Hawaii Lightweight Metal Hydrides for Hydrogen Storage, J.-C. Zhao, Ohio State University Development of Metal Hydrides at Sandia National Laboratories, Lennie Klebanoff, Sandia National Laboratories

286

DOE Hydrogen and Fuel Cells Program: 2005 Annual Progress Report - Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Printable Version 2005 Annual Progress Report VI. Storage This section of the 2005 Progress Report for the DOE Hydrogen Program focuses on storage. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Storage Sub-program Overview, Sunita Satyapal, Department of Energy (PDF 244 KB) A. Metal Hydrides Catalytically Enhanced Hydrogen Storage Systems, Craig M. Jensen, University of Hawaii (PDF 441 KB) High Density Hydrogen Storage System Demonstration using NaAlH4 Based Complex Compound Hydrides, Donald L. Anton, United Technologies Research Center (PDF 633 KB) Discovery of Novel Complex Metal Hydrides for Hydrogen Storage through Molecular Modeling and Combinatorial Methods, David A. Lesch, UOP LLC (PDF 308 KB)

287

DOE Hydrogen and Fuel Cells Program: 2007 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Hydrogen Production Printable Version 2007 Annual Progress Report II. Hydrogen Production This section of the 2007 Progress Report for the DOE Hydrogen Program focuses on hydrogen production. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Hydrogen Production Sub-Program Overview, Mark Paster, Roxanne Garland, Arlene Anderson, U.S. Department of Energy (PDF 242 KB) A. Distributed Production from Natural Gas Low Cost Hydrogen Production Platform, Tim Aaron, Praxair, Inc. (PDF 399 KB) Low-Cost Hydrogen Distributed Production System Development, Franklin D. Lomax, H2Gen Innovations, Inc. (PDF 309 KB) Integrated Hydrogen Production, Purification and Compression System, Satish Tamhankar, The BOC Group, Inc. (PDF 123 KB)

288

DOE Hydrogen and Fuel Cells Program: 2004 Annual Progress Report - Hydrogen  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage Printable Version 2004 Annual Progress Report III. Hydrogen Storage Each individual technical report is available as an individual Adobe Acrobat PDF for easier use. Download Adobe Reader. Hydrogen Storage Sub-Program Review, JoAnn Milliken, DOE (PDF 227 KB) A. Compressed/Liquid H2 Tanks Low-Cost, High-Efficiency, High-Pressure Hydrogen Storage, Jui Ko, Quantum (PDF 373 KB) Optimum Utilization of Available Space in a Vehicle through Conformable Hydrogen Tanks, Salvador Aceves, LLNL (PDF 614 KB) Next Generation Physical Hydrogen Storage, Andrew Weisberg, LLNL (PDF 1 MB) Back to Top B. Chemical Hydrides Low-Cost, Off-Board Regeneration of Sodium Borohydride, Ying Wu, Millennium Cell (PDF 420 KB) Hydrogen Storage: Radiolysis for Borate Regeneration, Bruce Wilding,

289

DOE Hydrogen and Fuel Cells Program: 2009 Annual Progress Report - Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Analysis Systems Analysis Printable Version 2009 Annual Progress Report VII. Systems Analysis This section of the 2009 Progress Report for the DOE Hydrogen Program focuses on systems analysis. Each technical report is available as an individual Adobe Acrobat PDF. Download Adobe Reader. Systems Analysis Program Element Introduction, Fred Joseck, U.S. Department of Energy (PDF 411 KB) HyDRA: Hydrogen Demand and Resource Analysis Tool (PDF 243 KB), Johanna Levene, National Renewable Energy Laboratory Water Needs and Constraints for Hydrogen Pathways (PDF 99 KB), A.J. Simon, Lawrence Livermore National Laboratory Cost Implications of Hydrogen Quality Requirements (PDF 817 KB), Shabbir Ahmed, Argonne National Laboratory Macro-System Model (PDF 384 KB), Mark Ruth, National Renewable

290

Fuel property effects on engine combustion processes. Annual report, January 1, 1993--December 31, 1993  

DOE Green Energy (OSTI)

Our engine studies have concentrated on 2 areas of interest to autoignition and emissions from engines. In the first, we investigated the effect of nitric oxide (NO) on the reactivity and autoignition behavior of 87 PRF. In the second study, we continued work on the effects of blending ethers on the reactivity and autoignition of a primary reference fuel blend, 87 PRF, with emphasis placed on the chemical interactions between ethers and the baseline fuel. The effects of nitric oxide (NO) on the reactivity and autoignition behavior of 87 PRF were examined in our research engine under motored conditions at compression ratios of 5.2 and 8.2. The most significant conclusions of our study are: (1) nitric oxide does interact with the hydrocarbon oxidation at conditions typically experienced by the end gas in a fired engine; (2) the effect is complex and, depending on the reaction environment, the same concentration of NO can produce dramatically different results. These results are particularly important given the fact that residual fractions and recycled exhaust gases in spark ignited engines typically result in about 200--600 ppm of NO in the unburned charge. The octane enhancing ethers, MTBE, ETBE, TAME, and DIPE, were blended into 87 PRF at a constant 0 atom fraction of 1.94% in the fuel mixtures and the mixtures were tested under motored conditions at our new compression ratio of 8.2. This new compression ratio allows studies on autoignition behaviors of 87 PRF with and without ethers. The results showed that, when using 87 PRF/ether mixtures, reactivity was significantly reduced as indicated by the higher inlet temperature required to initiate reactivity, significantly lower maximum CO concentration and the significantly higher inlet temperature required for autoignition.

Cernansky, N.P.

1994-01-10T23:59:59.000Z

291

Advanced Test Reactor LEU Fuel Conversion Feasibility Study -- 2006 Annual Report  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the U.S. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2s. Because of these operating parameters, and the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U 235 enrichment required in the fuel meat to yield an equivalent Keff between the HEU core and a LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U 235 loading in the LEU core, such that the differences in Keff and heat profile between the HEU and LEU core can be minimized for operation at 125 EFPD with a total core power of 115 MW. The Monte-Carlo coupled with ORIGEN2 (MCWO) depletion methodology was used to calculate Keff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the Keff versus EFPDs plot is similar in shape to the reference ATR HEU case. The LEU core conversion feasibility study can also be used to optimize the U-235 content of each fuel plate, so that the relative radial fission heat flux profile is bounded by the reference ATR HEU case. The detailed radial, axial, and azimuthal heat flux profiles of the HEU and optimized LEU cases have been investigated. However, to demonstrate that the LEU core fuel cycle performance can meet the UFSAR safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (OSCC, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.

G. S. Chang; R. G. Ambrosek

2006-10-01T23:59:59.000Z

292

Advanced Test Reactor LEU Fuel Conversion Feasibility Study (2006 Annual Report)  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2s. Because of these operating parameters, and the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat profile between the HEU and LEU core can be minimized for operation at 125 EFPD with a total core power of 115 MW. The depletion methodology, Monte-Carlo coupled with ORIGEN2 (MCWO), was used to calculate K-eff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar in shape to the reference ATR HEU case. The LEU core conversion feasibility study can also be used to optimize the U-235 content of each fuel plate, so that the relative radial fission heat flux profile is bounded by the reference ATR HEU case. The detailed radial, axial, and azimuthal heat flux profiles of the HEU and optimized LEU cases have been investigated. However, to demonstrate that the LEU core fuel cycle performance can meet the UFSAR safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders (OSCCs), safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.

Gray S. Chang; Richard G. Ambrosek; Misti A. Lillo

2006-12-01T23:59:59.000Z

293

On-site fuel cell field test support program. Annual report Jul 81-Jun 82  

SciTech Connect

United continued this past year to assist the utilities and the Gas Research Institute in the review and selection of sites for data monitoring. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation continued to show that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

Staniunas, J.W.; Merten, G.P.

1982-09-01T23:59:59.000Z

294

Advanced coal-fueled gas turbine systems. Annual report, July 1991--June 1992  

DOE Green Energy (OSTI)

Westinghouse`s Advanced Coal-Fueled Gas Turbine System Program (DE-AC2l-86MC23167) was originally split into two major phases - a Basic Program and an Option. The Basic Program also contained two phases. The development of a 6 atm, 7 lb/s, 12 MMBtu/hr slagging combustor with an extended period of testing of the subscale combustor, was the first part of the Basic Program. In the second phase of the Basic Program, the combustor was to be operated over a 3-month period with a stationary cascade to study the effect of deposition, erosion and corrosion on combustion turbine components. The testing of the concept, in subscale, has demonstrated its ability to handle high- and low-sulfur bituminous coals, and low-sulfur subbituminous coal. Feeding the fuel in the form of PC has proven to be superior to CWM type feed. The program objectives relative to combustion efficiency, combustor exit temperature, NO{sub x} emissions, carbon burnout, and slag rejection have been met. Objectives for alkali, particulate, and SO{sub x} levels leaving the combustor were not met by the conclusion of testing at Textron. It is planned to continue this testing, to achieve all desired emission levels, as part of the W/NSP program to commercialize the slagging combustor technology.

Not Available

1992-09-01T23:59:59.000Z

295

Molten carbonate fuel cell product design improvement. Annual report, December 20, 1996--December 20, 1997  

DOE Green Energy (OSTI)

This program is designed to advance the carbonate fuel cell technology from the current full-size field test to the commercial design by the turn of the century. The specific objectives selected to attain the overall program goal are: Define power plant requirements and specifications; Establish the design for a multifuel, low-cost, modular, market-responsive power plant; Resolve power plant manufacturing issues and define the design for the commercial-scale manufacturing facility; Define the stack and balance-of-plant (BOP) equipment packaging arrangement and module designs; Acquire capability to support developmental testing of stacks and critical BOP equipment to prepare for commercial design; and Resolve stack and BOP equipment technology issues, and design, build, and field test a modular prototype power plant to demonstrate readiness for commercial entry. ERC is currently in the third year of the multiyear program for development and demonstration of a MW-class power plant. The product definition and specification have been derived with input from potential users, including the Fuel Cell Commercialization Group (FCCG). The baseline power plant final design has been completed. Detailed power plant system and packaging designs are being developed using stack and BOP development results. A MW-scale prototype modular power plant representative of the commercial design is planned. Based on the experience and data generated in the current program, ERC also plans to acquire manufacturing capability for market-entry products through expansion of the existing Torrington production facility.

Maru, H.C.; Farooque, M.

1998-09-01T23:59:59.000Z

296

ac/dc power converter for batteries and fuel cells. Annual report  

SciTech Connect

The overall objective of the EPRI RP841-1 program is the design of an advanced power converter for use in both battery energy storage and fuel cell generation systems in the 1980's. This goal will be accomplished by expansion of United's existing FCG-1 fuel cell power conditioning inverter into a high-efficiency inverter--rectifier system employing improved commutation circuits and advanced (1980's) semiconductor devices capable of operating over wider dc voltage ranges. A separate but concurrent program for the U.S. Department of Energy (DOE) -- E(49-18)2122 -- is examining augmentation of the present FCG-1 inverter for operation as an inverter--rectifier with battery systems; feasibility and operating characteristics have been demonstrated. United's activities and accomplishments in the EPRI RP841-1 program include revision of the preliminary specification for ac/dc conversion equipment contained in the Statement of Work, survey of seven semiconductor manufacturers to project characteristics of 1980's thyristors, screening of fifteen commutation concepts and selection of the two most promising options for experimental evaluation, and modifications of existing experimental power pole hardware to evaluate the selected advanced commutation circuits. 34 figures, 3 tables.

Rosati, R.W. (ed.)

1978-08-01T23:59:59.000Z

297

Impact of DOE Program Goals on Hydrogen Vehicles: Market Prospect, Costs, and Benefits - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Zhenhong Lin (Primary Contact), David Greene, Jing Dong Oak Ridge National Laboratory (ORNL) National Transportation Research Center 2360 Cherahala Boulevard Knoxville, TN 37932 Phone: (865) 946-1308 Email: linz@ornl.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: October 2011 Project End Date: September 2012 Fiscal Year (FY) 2012 Objectives Project market penetrations of hydrogen vehicles under * varied assumptions on processes of achieving the DOE program goals for fuel cells, hydrogen storage, batteries, motors, and hydrogen supply. Estimate social benefits and public costs under different *

298

Sensitivity Analysis of H2-Vehicles' Market Prospects, Costs and Benefits - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program David L. Greene (Primary Contact), Zhenhong Lin, Jing Dong Oak Ridge National Laboratory National Transportation Research Center 2360 Cherahala Boulevard Knoxville, TN 37932 Phone: (865) 946-1310 Email: dlgreene@ornl.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Subcontractor: Department of Industrial Engineering, University of Tennessee, Knoxville, TN Project Start Date: October, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Project market shares of hydrogen fuel cell vehicles * (FCVs) under varying market conditions using the Market Acceptance of Advanced Automotive Technologies (MA3T) model.

299

Risk-Informed Safety Requirements for H2 Codes and Standards Development - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Aaron Harris (Primary Contact), Jeffrey LaChance, Katrina Groth Sandia National Laboratories P.O. Box 969 Livermore, CA 94551-0969 Phone: (925) 294-4530 Email: apharri@sandia.gov DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: October 1, 2003 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Present results of indoor refueling risk assessment to the * National Fire Protection Association (NFPA) 2 Fueling Working Group. Perform and document required risk assessment (with * input from NFPA 2 and others) for developing science- based risk-informed codes and standards for indoor

300

Biological production of liquid fuels from biomass. Annual report, September 1, 1978-August 31, 1979  

DOE Green Energy (OSTI)

The production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper were studied. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The process is aimed at achieving total raw material utilization and maximization of high value by-product recovery. Specific goals of the investigation are the demonstration of the process technical feasibility and economic practicality and its optimization for maximum economic yield and efficiency. The construction of a pilot apparatus for solvent delignifying 150g samples of lignocellulosic feeds has been completed. Also, an analysis method for characterizing the delignified product has been selected and tested. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis.

Pye, E.K.; Humphrey, A.E.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Molten carbonate fuel cell (MCFC) product development test. Annual report, September 1993--September 1994  

DOE Green Energy (OSTI)

M-C Power Corporation will design, fabricate, install, test and evaluate a 250 kW Proof-of-Concept Molten Carbonate Fuel Cell (MCFC) Power Plant. The plant is to be located at the Naval Air Station Miramar in San Diego, California. This report summarizes the technical progress that has occurred in conjunction with this project in 1994. M-C Power has completed the tape casting and sintering of cathodes and is proceeding with the tape casting and sintering of anodes for the first 250 cell stack. M-C Power and San Diego Gas and Electric relocated the fuel cell demonstration project to an alternate site at the Naval Air Station Miramar. For the new project location at the Naval Air Station Miramar, an Environmental Assessment has been prepared by the Department of Energy in compliance with the National Environmental Policy Act of 1969. The Environmental Assessment resulted in a categorical exclusion of the proposed action from all environmental permit requirements. Bechtel Corporation has completed the reformer process design coordination, a Process Description, the Pipe and Instrumentation Diagrams, a Design Criteria Document and General Project Requirement Document. Bechtel developed the requirements for soils investigation report and issued the following equipment bid packages to the suppliers for bids: Inverter, Reformer, Desulfurization Vessels, Hot Gas Recycle Blower, Heat Recovery Steam Generator, and Recycle Gas Cooler. SDG and E has secured necessary site permits, conducted soils investigations, and is working on the construction plan. They are in final negotiations with the US Navy on a site agreement. Site drawings are required for finalization of the agreement.

NONE

1995-02-01T23:59:59.000Z

302

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, Annual Survey of Alternative Fueled Vehicles; ...

303

Task 3.7 -- Fuel utilization properties. Semi-annual report, January 1--June 30, 1995  

SciTech Connect

The goal of the fuel utilization properties project was to determine the impacts of specific coal properties and additives on ash formation and deposition in advanced power systems. At the forefront of advanced power systems for coal utilization are pressurized fluidized bed (PFB) reactors and integrated gasifier-combined cycle (IGCC) reactors. Some of these systems are still in the infancy of their development and commercialization and very little is known about the types of ash deposition problems that could occur. Ash deposition in power generating systems is a significant problem that decreases efficiency and can lead to severe operational problems. During high temperature conversion of coal, the inorganic constituents in the coal are transformed into solid, liquid, and vapor species that differ in composition and size from the original inorganic constituents present in the coal. The chemical and physical properties of the intermediate ash stream are dependent in part upon the types, quantities and association of the minerals and other inorganics in the coal. There is a pressing need to obtain critical information on the aspects of inorganic transformations and deposit formation that will apply to advanced power systems so that mitigation measures can be prescribed such as predictive models, system design or operational changes, and the use of additives. The focus was on integrated gasification combined cycle (IGCC)-type systems, whereby small-scale furnaces were employed to simulate gasification or highly reducing conditions in order to produce entrained ash and deposits for analysis. Specific goals for this year`s work in the area of ash formation and deposition included the following: Determining the general chemical and physical properties of simulated entrained ash and deposits that may lead to operational problems, and Identifying and testing methods to mitigate deposition in IGCC-type systems.

Zygarlicke, C.J.

1997-08-01T23:59:59.000Z

304

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability Low-Cost Supports - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Radoslav Adzic (Primary Contact), Miomir Vukmirovic, Kotaro Sasaki, Jia Wang, Yang Shao-Horn 1 , Rachel O'Malley 2 Brookhaven National Laboratory (BNL), Bldg. 555 Upton, NY 11973-5000 Phone: (631) 344-4522 Email: adzic@bnl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Subcontractors: 1 Massachusetts Institute of Technology (MIT), Cambridge MA 2 Johnson Matthey Fuel Cells (JMFC), London, England Project Start Date: July 1, 2009 Project End Date: September 30, 2013 Fiscal Year (FY) 2012 Objectives Developing high-performance fuel cell electrocatalysts for the oxygen reduction reaction (ORR) comprising contiguous Pt monolayer (ML) on stable, inexpensive metal

305

Solar-Thermal ALD Ferrite-Based Water Splitting Cycle - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Alan W. Weimer (Primary Contact), Darwin Arifin, Xinhua Liang, Victoria Aston and Paul Lichty University of Colorado Campus Box 596 Boulder, CO 80309-0596 Phone: (303) 492-3759 Email: alan.weimer@colorado.edu DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Contract Number: DE-FC36-05GO15044 Project Start Date: March 31, 2005 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Demonstrate the "hercynite cycle" feasibility for * carrying out redox. Initiate design, synthesis and testing of a nanostructured * active material for fast kinetics and transport.

306

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Genevieve Saur (Primary Contact), Chris Ainscough. National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3783 Email: genevieve.saur@nrel.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Corroborate recent wind electrolysis cost studies using a * more detailed hour-by-hour analysis. Examine consequences of different system configuration * and operation for four scenarios, at 42 sites in five

307

Infrastructure Costs Associated with Central Hydrogen Production from Biomass and Coal - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Darlene Steward (Primary Contact), Billy Roberts, Karen Webster National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3837 Email: Darlene.Steward@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: Fiscal Year (FY) 2010 Project End Date: Project continuation and direction determined annually by DOE FY 2012 Objectives Elucidate the location-dependent variability of * infrastructure costs for biomass- and coal-based central hydrogen production and delivery and the tradeoffs inherent in plant-location choices Provide modeling output and correlations for use in other * integrated analyses and tools

308

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

309

Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Zhili Feng (Primary Contact), Wei Zhang, John Wang and Fei Ren Oak Ridge National Laboratory (ORNL) 1 Bethel Valley Rd, PO Box 2008, MS 6095 Oak Ridge, TN 37831 Phone: (865) 576-3797 Email: fengz@ornl.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Subcontractors: * Global Engineering and Technology LLC, Camas, WA * Ben C. Gerwick Inc., Oakland, CA * MegaStir Technologies LLC, Provo, UT * University of Michigan, Ann Arbor, MI Project Start Date: October 1, 2010 Project End Date: Project continuation and direction

310

Elucidation of Hydrogen Interaction Mechanisms with Metal-Doped Carbon Nanostructures - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Ragaiy Zidan (Primary Contact), Joseph A.Teprovich Jr., Douglas A Knight, Robert Lascola, Lucile C. Teague Savannah River National Laboratory Building 999-2W, Aiken, SC 29808 Phone: (803) 646-8876 Email: ragaiy.zidan@srnl.doe.gov Collaborators: * Prof. Puru Jena - Department of Physics - Virginia Commonwealth University * Prof. Mark Conradi - Department of Physics - Washington University of St. Louis * Prof. Sonjong Hwang - Chemistry and Chemical Engineering Division - California Institute of Technology

311

Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kevin L. Simmons (Primary Contact), Kenneth Johnson, and Kyle Alvine Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd Richland, WA 99352 Phone: (509) 375-3651 Email: Kevin.Simmons@pnnl.gov Norman Newhouse (Lincoln Composites, Inc.), Mike Veenstra (Ford Motor Company), Anand V. Rau (TORAY Carbon Fibers America) and Thomas Steinhausler (AOC, L.L.C.) DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams

312

Systems Engineering of Chemical Hydride, Pressure Vessel, and Balance of Plant for Onboard Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

34 34 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jamie D. Holladay (Primary Contact), Kriston P. Brooks, Ewa C.E. Rönnebro, Kevin L. Simmons and Mark R. Weimar. Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd Richland, WA 99352 Phone: (509) 371-6692 Email: Jamie.Holladay@pnnl.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-AC05-76RL01830

313

Development of Low-Cost, High Strength Commercial Textile Precursor (PAN-MA) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report C.D. Warren and Felix L. Paulauskas Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge, TN 37831 Phone: (865) 574-9693 Email: warrencd@ornl.gov Email: paulauskasfl@ornl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Contributors: * Hippolyte Grappe (ORNL) * Fue Xiong (ORNL) * Ana Paula Vidigal (FISIPE) * Jose Contrerias (FISIPE) Project Start Date: April 21, 2011 Project End Date: July 31, 2013 Fiscal Year (FY) 2012 Objectives Down-select from 11 polymer candidate polymer *

314

Synthetic Design of New Metal-Organic Framework Materials for Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Pingyun Feng (Primary Contact), Qipu Lin, Xiang Zhao Department of Chemistry University of California Riverside, CA 92521 Phone: (951) 827-2042 Email: pingyun.feng@ucr.edu DOE Program Officer: Dr. Michael Sennett Phone: (301) 903-6051 Email: Michael.Sennett@science.doe.gov Objectives Design and * synthesize new metal-organic framework materials using lightweight chemical elements to help improve gravimetric hydrogen storage capacity. Develop new synthetic strategies to generate novel * active binding sites on metal ions and ligands to enhance solid-gas interactions for increased uptake near ambient conditions.

315

Activation of Hydrogen with Bi-Functional Ambiphillic Catalyst Complexes - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Tom Autrey (Primary Contact), Greg Schenter, Don Camaioni, Abhi Karkamkar, Herman Cho, Bojana Ginovska-Pangovska Pacific Northwest National Laboratory P.O. Box 999 MS#K2-57 Richland, WA 99352 Phone: (509) 375-3792 Email: tom.autrey@pnnl.gov DOE Program Officer: Raul Miranda Objectives The objective of our research is to develop fundamental insight into small molecule activation in molecular complexes that will provide the basis for developing rational approaches

316

Novel Carbon(C)-Boron(B)-Nitrogen(N)-Containing H2 Storage Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Shih-Yuan Liu University of Oregon Department of Chemistry 1253 University of Oregon Eugene, OR 97403-1253 Phone: (541) 346-5573 Email: lsy@uoregon.edu In colloaboration with: * Dr. Tom Autrey, Dr. Abhi Karkamkar, and Mr. Jamie Holladay Pacific Northwest National Laboratory * Dr. David Dixon The University of Alabama * Dr. Paul Osenar Protonex Technology Corporation DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov

317

Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. 25242 Arctic Ocean Drive Lake Forest, CA 92630 Phone: (949) 399-4584 Email: mleavitt@qtww.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FG36-08GO18055 Subcontractors: * Boeing Research and Technology, Seattle, WA * Pacific Northwest National Laboratory (PNNL), Richland, WA Project Start Date: September 1, 2008 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Develop new methods for manufacturing Type IV

318

High-Temperature Membrane with Humidification-Independent Cluster Structure - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Ludwig Lipp (Primary Contact), Pinakin Patel, Ray Kopp FuelCell Energy (FCE), Inc. 3 Great Pasture Road Danbury, CT 06813 Phone: (203) 205-2492 Email: llipp@fce.com DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Greg Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Thomas Benjamin Phone: (630) 252-1632 Email: benjamin@anl.gov Contract Number: 36-06GO16033 Start Date: June 1, 2006 Projected End Date: August 31, 2012 Fiscal Year (FY) 2012 Objectives Develop humidity-independent, thermally stable, low * equivalent weight composite membranes with controlled ion-cluster morphology, to provide high proton- conductivity at up to 120 o C (overall goal: meet DOE

319

Metal- and Cluster-Modified Ultrahigh-Area Materials for the Ambient Temperature Storage of Molecular Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Joseph E. Mondloch (Primary Contact), Joseph T. Hupp, Omar K. Farha Northwestern University 2145 Sheridan Road Evanston, IL 60208 Phone: (847) 467-4932 Email: mojo0001@gmail.com DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: This research was supported in part by the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards under the EERE Fuel Cell Technologies Program administered by Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by Oak Ridge Associated

320

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Emory S. De Castro BASF Fuel Cell, Inc. 39 Veronica Avenue Somerset, NJ 08873 Phone: (732) 545-5100 ext 4114 Email: Emory.DeCastro@BASF.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-EE0000384 Subcontractor: Dr. Vladimir Gurau Case Western Reserve University, Cleveland, Ohio Project Start Date: July 1, 2009 Project End Date: June 30, 2013 Fiscal Year (FY) 2012 Objectives Reduce cost in fabricating gas diffusion electrodes * through the introduction of high speed coating technology, with a focus on materials used for the high- temperature membrane electrode assemblies (MEAs)

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Development of a Low-Cost 3-10 kW Tubular SOFC Power System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Norman Bessette Acumentrics Corporation 20 Southwest Park Westwood, MA 02090 Phone: (781) 461-8251; Email: nbessette@acumentrics.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-03NT41838 Project Start Date: April 1, 2008 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives The goal of the project is to develop a low-cost 3-10 kW solid oxide fuel cell (SOFC) power generator capable of meeting multiple market applications. This is accomplished by: Improving cell power and stability * Cost reduction of cell manufacturing

322

Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992  

SciTech Connect

This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

Boden, T.A.; Marland, G. [Oak Ridge National Lab., TN (United States); Andres, R.J. [University of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering

1995-12-01T23:59:59.000Z

323

Non-Contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Eric Stanfield National Institute of Standards and Technology 100 Bureau Dr., MS 8211-8211 Gaithersburg, MD 20899 Phone: (301) 975-4882 Email: eric.stanfield@nist.gov DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-EE0001047 Project Start Date: October 1, 2009

324

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

DOE Green Energy (OSTI)

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

325

DOE Hydrogen and Fuel Cells Program: Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards May 21, 2013 The U.S. Department of Energy's (DOE's) Hydrogen and Fuel Cells Program presented its annual awards...

326

Molecular-Scale, Three-Dimensional Non-Platinum Group Metal Electrodes for Catalysis of Fuel Cell Reactions - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report John B. Kerr 1 (Primary Contact), Piotr Zelenay 2 , Steve Hamrock 3 1 Lawrence Berkeley National Laboratory (LBNL) MS 62R0203, 1 Cyclotron Road Berkeley, CA 94720 Phone: (510) 486-6279 Email: jbkerr@lbl.gov 2 Los Alamos National Laboratory (LANL) 3 3M Fuel Cell Components Program DOE Manager HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov Collaborators: * Adam Weber, John Arnold Jeff Reimer, Martin Head-Gordon, Robert Kostecki (LBNL) * James Boncella, Yu Sueng Kim, Jerzy Chlistunoff, Neil Henson (LANL) * Radoslav Atanasoski (3M) Project Start Date: August 31, 2009

327

Highly Efficient, 5-kW CHP Fuel Cells Demonstrating Durability and Economic Value in Residential and Light Commercial Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Petrecky Plug Power 968 Albany Shaker Road Latham, NY 12110 Phone: (518) 782-7700 ext: 1977 Email: james_petrecky@plugpower.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Vendor: ClearEdge Power, Hillsboro, OR Project Start Date: October 1, 2009 Project End Date: September 15, 2013 Objectives Quantify the durability of proton exchange membrane * (PEM) fuel cell systems in residential and light commercial combined heat and power (CHP) applications in California. Optimize system performance though testing of multiple * high-temperature units through collection of field data.

328

Low-Enriched Uranium Fuel Conversion Activities for the High Flux Isotope Reactor, Annual Report for FY 2011  

SciTech Connect

This report describes progress made during FY11 in ORNL activities to support converting the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum (UMo) alloy. With both radial and axial contouring of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current levels achieved with HEU fuel. Studies are continuing to demonstrate that the fuel thermal safety margins can be preserved following conversion. Studies are also continuing to update other aspects of the reactor steady state operation and accident response for the effects of fuel conversion. Technical input has been provided to Oregon State University in support of their hydraulic testing program. The HFIR conversion schedule was revised and provided to the GTRI program. In addition to HFIR conversion activities, technical support was provided directly to the Fuel Fabrication Capability program manager.

Renfro, David G [ORNL; Cook, David Howard [ORNL; Freels, James D [ORNL; Griffin, Frederick P [ORNL; Ilas, Germina [ORNL; Sease, John D [ORNL; Chandler, David [ORNL

2012-03-01T23:59:59.000Z

329

Coal-fueled high-speed diesel engine development. Annual technical progress report, October 1990--September 1991  

DOE Green Energy (OSTI)

The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

Not Available

1991-11-01T23:59:59.000Z

330

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in target channels and discharged a few times more frequently than the natural-uranium driver fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

331

Beyond Basic Target Enrichment: New Tools to Fuel Your NGS Research ( 7th Annual SFAF Meeting, 2012)  

Science Conference Proceedings (OSTI)

Jennifer Carter on "Beyond Basic Target Enrichment: New Tools to fuel your NGS Research" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

Carter, Jennifer [Agilent

2012-06-01T23:59:59.000Z

332

Hybrid fuels for highway transportation. Second annual technical progress report for the period 1 June 1979-1 June 1980  

DOE Green Energy (OSTI)

A program has been developed to investigate the potential of hybrid fuels for use in highway transportation. Hybrids are fuels derived from combinations of readily available energetic non-conventional materials with petroleum. They are generally formulated as solutions, emulsions, or slurries. The underlying objective of the program is to reduce the use of petroleum-derived fuels and/or to minimize the processing requirements of the finished hybrid fuels. During the first year of the program, extensive work was done on the development and testing of water and alcohol emulsions and alcohol solutions. In the second year, the emphasis was placed on the development and testing of hybrid fuel slurries. Components evaluated included carbohydrates and various forms of carbon. It was concluded that, of the slurries tested, the carbon (coke, carbon black, etc.) slurries have the most potential for development into finished fuels. The efforts during the third year will concentrate on advancing the development of the slurries (especially the carbon slurries) to the same point as the solutions and emulsions. This work will include examination of the mechanical difficulties, the stability problems, and the combustion phenomena observed when using slurries in heat engines.

Ryan, T.W.; Likos, W.; Moses, C.A.

1980-06-01T23:59:59.000Z

333

Annual book of ASTM Standards 2008. Section Five. Petroleum products, lubricants, and fossil fuels. Volume 05.06. Gaseous fuels; coal and coke  

SciTech Connect

The first part covers standards for gaseous fuels. The second part covers standards on coal and coke including the classification of coals, determination of major elements in coal ash and trace elements in coal, metallurgical properties of coal and coke, methods of analysis of coal and coke, petrogrpahic analysis of coal and coke, physical characteristics of coal, quality assurance and sampling.

NONE

2008-09-15T23:59:59.000Z

334

Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program F. Colin Busby W.L. Gore & Associates, Inc (Gore) Gore Electrochemical Technologies Team 201 Airport Road Elkton, MD 21921 Phone: (410) 392-3200 Email: CBusby@WLGore.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FСЗ6-08G018052 Subcontractors: * UTC Power, South Windsor, CT * University of Delaware, Newark, DE (UD) * University of Tennessee, Knoxville, TN (UTK) Project Start Date: October 1, 2008 Project End Date: June 30, 2014

335

Fundamental Studies of Advanced High-Capacity, Reversible Metal Hydrides - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Craig M. Jensen (Primary Contact) and Marina Chong University of Hawaii Department of Chemistry Honolulu, HI 96822 Phone: (808) 956-2769 Email: jensen@hawaii.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC36-05GO15063 Project Start Date: April 1, 2005 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives The objective of this project is to develop a new class of reversible materials that have the potential to meet the DOE kinetic and system gravimetric storage capacity targets. During the past year, our investigations have focused on the study of novel, high hydrogen capacity, borohydrides that can

336

Development of Hydrogen Selective Membranes/Modules as Reactors/Separators for Distributed Hydrogen Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Paul KT Liu Media and Process Technology Inc. (M&P) 1155 William Pitt Way Pittsburgh, PA 15238 Phone: (412) 826-3711 Email: pliu@mediaandprocess.com DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-05GO15092 Subcontractor: University of Southern California Project Start Date: July 1, 2005 Projected End Date: December 31, 2012 Fiscal Year (FY) 2012 Objectives The water-gas shift (WGS) reaction becomes less efficient when high CO conversion is required, such as for distributed hydrogen production applications. Our project

337

Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Philip D. Weyman (Primary Contact), Isaac T. Yonemoto, Hamilton O. Smith J. Craig Venter Institute 10355 Science Center Dr. San Diego, CA 92121 Phone: (858) 200-1815 Email: pweyman@jcvi.org DOE Managers HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FC36-05GO15027 National Laboratory Collaborators: * Karen Wawrousek, Scott Noble, Jianping Yu, and Pin-Ching Maness * National Renewable Energy Laboratory (NREL), Golden, CO Project Start Date: May 1, 2005 Project End Date: January 30, 2014

338

Multiply Surface-Functionalized Nanoporous Carbon for Vehicular Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report P. Pfeifer (Primary Contact), C. Wexler, P. Yu, G. Suppes, F. Hawthorne, S. Jalisatgi, M. Lee, D. Robertson University of Missouri 223 Physics Building Columbia, MO 65211 Phone: (573) 882-2335 Email: pfeiferp@missouri.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FG36-08GO18142 Subcontractors: Midwest Research Institute, Kansas City, MO Project Start Date: September 1, 2008 Project End Date: November 30, 2013 Fiscal Year (FY) 2012 Objectives Fabricate high-surface-area, multiply surface- * functionalized carbon ("substituted materials") for reversible hydrogen storage with superior storage

339

Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Dr. Katherine Ayers (Primary Contact), Chris Capuano Proton Energy Systems d/b/a Proton OnSite 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2190 Email: kayers@protononsite.com DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Contract Number: DE-SC0001338 Subcontractors: * 3M, Minneapolis, MN * University of Wyoming, Laramie, WY Project Start Date: June 19, 2010 (Phase 1) Project End Date: August 18, 2013 (with Phase 2 continuation) Fiscal Year (FY) 2012 Project Objectives Demonstrate optimal membrane electrode assembly * (MEA) efficiency through: Refinement of catalyst compositions based on -

340

Synthesis and Characterization of Mixed-Conducting Corrosion Resistant Oxide Supports - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Vijay K. Ramani (Primary Contact), Jai Prakash Illinois Institute of Technology (IIT) 10 W 33 rd Street 127 PH Chicago, IL 60616 Phone: (312) 567-3064 Email: ramani@iit.edu DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0000461 Subcontractor: Nissan Technical Center, North America (NTCNA) Farmington Hills, MI Project Start Date: September 1, 2010 Project End Date: August 31, 2013 Fiscal Year (FY) 2012 Objectives To develop and optimize innovative non-carbon mixed * conducting materials that will serve as corrosion resistant, high surface area supports for anode and

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Key Technologies, Thermal Management, and Prototype Testing for Advanced Solid-State Hydrogen Storage Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Joseph W. Reiter (Primary Contact), Alexander Raymond, Channing C. Ahn (Caltech), Bret Naylor, Otto Polanco, Rajeshuni Ramesham, and Erik Lopez Jet Propulsion Laboratory (JPL) 4800 Oak Grove Drive, Mail Stop 79-24 Pasadena, CA 91109-8099 Phone: (818) 354-4224; Email: Joseph.W.Reiter@jpl.nasa.gov DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Subcontractor: California Institute of Technology, Pasadena, CA Project Start Date: February, 2009 Project End Date: September, 2014 Fiscal Year (FY) 2012 Objectives Identify state-of-art concepts and designs for * cryosorbent-based hydrogen storage systems

342

Advancement of Systems Designs and Key Engineering Technologies for Materials-Based Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Bart van Hassel (Primary Contact), Jose Miguel Pasini, Andi Limarga, John Holowczak, Igor Fedchenia, John Khalil, Reddy Karra, Ron Brown, Randy McGee United Technologies Research Center (UTRC) 411 Silver Lane East Hartford, CT 06108 Phone: (860) 610-7701 Email: vanhasba@utrc.utc.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19006 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Collaborate closely with the Hydrogen Storage * Engineering Center of Excellence (HSECoE) partners to advance materials-based hydrogen storage system

343

Failure Analysis, Permeation, and Toughness of Glass Fiber Composite Pressure Vessels for Inexpensive Delivery of Cold Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Andrew Weisberg (Primary Contact), Salvador Aceves Lawrence Livermore National Laboratory (LLNL) P.O. Box 808, L-792 Livermore, CA 94551 Phone: (925) 422-0864 Email: saceves@llnl.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Subcontractor: Spencer Composites Corporation (SCC), Sacramento, CA Project Start Date: October, 2004 Project End Date: October, 2012 Fiscal Year (FY) 2012 Objectives Optimize hydrogen delivery by tube trailer * Develop materials and manufacturing for low- * temperature hydrogen delivery Quantify performance and economics of delivery * pressure vessels Technical Barriers This project addresses the following technical barriers

344

Ford/BASF SE/UM Activities in Support of the Hydrogen Storage Engineering Center of Excellence - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

51 51 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Veenstra (Primary Contact, Ford), Andrea Sudik (Ford), Donald Siegel (UM), Justin Purewal (UM), Chunchuan Xu (UM), Yang Ming (UM), Manuela Gaab (BASF SE), Stefan Maurer (BASF SE), Ulrich Müller (BASF SE), Jun Yang (Ford) Ford Motor Company 2101 Village Road Dearborn, MI 48121 Phone: (313) 322-3148 Email: mveenstr@ford.com DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-GO19002 Subcontractors: * University of Michigan, Ann Arbor, MI * BASF SE, Ludwigshafen, Germany Project Start Date: February 1, 2009

345

One Step Biomass Gas Reforming-Shift Separation Membrane Reactor - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Michael Roberts (Primary Contact), Razima Souleimanova Gas Technology Institute (GTI) 1700 South Mount prospect Rd, Des Plaines, IL 60018 Phone: (847) 768-0518 Email: roberts@gastechnology.org DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-07GO17001 Subcontractors: * National Energy Technology Laboratory (NETL), Pittsburgh, PA * Schott North America, Duryea, PA * ATI Wah Chang, Albany, OR Project Start Date: February 1, 2007 Project End Date: June 30, 2013

346

Development of a Practical Hydrogen Storage System Based on Liquid Organic Hydrogen Carriers and a Homogeneous Catalyst - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Craig Jensen 1 (Primary Contact), Daniel Brayton 1 , and Scott Jorgensen 2 1 Hawaii Hydrogen Carriers, LLC 531 Cooke Street Honolulu, HI 96813 Phone: (808) 339-1333 Email: hhcllc@hotmail.com 2 General Motors Technical Center DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005020 Project Start Date: July 1, 2011 Project End Date: June 30, 2013 *Congressionally directed project Fiscal Year (FY) 2012 Objectives The objective of this project is to optimize a hydrogen storage media based on a liquid organic carrier (LOC) for hydrogen and design a commercially viable hydrogen

347

Process Intensification of Hydrogen Unit Operations Using an Electrochemical Device - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Glenn Eisman (Primary Contact), Dylan Share, Chuck Carlstrom H2Pump LLC 11 Northway Lane North Latham, NY 12110 Phone: (518) 783-2241 Email: glenn.eisman@h2pumpllc.com DOE Manager HQ: Richard Farmer Phone: (202) 586-1623 Email: Richard.Farmer@ee.doe.gov Contract Number: DE-SC0002185 Subcontractor: PBI Performance Products, Inc., Rock Hill, SC Project Start Date: Phase II: August 15, 2010 Project End Date: August 15, 2012 Fiscal Year (FY) 2012 Objectives Develop and demonstrate a multi-functional hydrogen production technology based on a polybenzimidazole (PBI) membrane which exhibits: High efficiency (70%) * Up to 100 scfh pumping capability * CO * 2 and CO tolerance

348

Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jon Knudsen (Primary Contact), Don Baldwin Lincoln Composites 5117 N.W. 40 th Street Lincoln, NE 68524 Phone: (402) 470-5039 Email: jknudsen@lincolncomposites.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18062 Project Start Date: July 1, 2008 Project End Date: April 30, 2013 Fiscal Year (FY) 2012 Objectives The objective of this project is to design and develop the most effective bulk hauling and storage solution for hydrogen in terms of: Cost * Safety * Weight * Volumetric Efficiency * Technical Barriers This project addresses the following technical barriers

349

Cost, Energy Use, and Emissions of Tri-Generation Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark F. Ruth* (Primary Contact), Michael E. Goldsby † , Timothy J. Sa † , Victor Diakov* *National Renewable Energy Laboratory 15013 Denver West Pkwy. Golden, CO 80401 Phone: (303) 817-6160 Email: Mark.Ruth@nrel.gov † Sandia National Laboratories DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Project Start Date: December 1, 2010 Project End Date: October 31, 2011 Fiscal Year (FY) 2012 Objectives Develop a macro-system model (MSM): * Aimed at performing rapid cross-cutting analysis - Utilizing and linking other models - Improving consistency between models - Incorporate tri-generation systems into the MSM and * develop a methodology for MSM users to analyze

350

A Biomimetic Approach to Metal-Organic Frameworks with High H2 Uptake - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hong-Cai (Joe) Zhou Dept. of Chem., Texas A&M University P.O. Box 30012 College Station, TX 77842-3012 Phone: (979) 845-4034 Email: zhou@mail.chem.tamu.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-07GO17033 Project Start Date: July 1, 2007 Project End Date: June 30, 2013 Fiscal Year (FY) 2012 Objectives Design, synthesis, and characterization of metal-organic * frameworks (MOFs) with potential anchors for active metal centers introduction. Design, synthesis, and optimization of porous polymer * frameworks (PPNs) with different functionalities. These functionalized MOFs and PPNs demonstrate much *

351

Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kevin Drost (Primary Contact), Goran Jovanovic, Vinod Narayanan, Brian Paul School of Mechanical, Industrial and Manufacturing Engineering Rogers Hall Oregon State University (OSU) Corvallis, OR 97331 Phone: (541) 713-1344 Email: Kevin.Drost@oregonstate.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FC36-09GO19005 Project Start Date: February 1, 2009 Project End Date: June 30, 2014 Fiscal Year (FY) 2012 Objectives Use microchannel processing techniques to: Demonstrate reduction in size and weight of hydrogen * storage systems. Improve charge/and discharge rates of hydrogen storage *

352

Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Liwei Xu (Primary Contact) 1 , Anke E. Abken 2 , William B. Ingler 3 , John Turner 4 1 Midwest Optoelectronics LLC (MWOE) 2801 W. Bancroft Street Mail Stop 230 Toledo, OH 43606 Phone: (419) 215-8583 Email: xu@mwoe.com 2 Xunlight Corporation (Xunlight) 3 University of Toledo, Toledo, OH (UT) 4 National Renewable Energy Laboratory, Golden, CO (NREL) DOE Managers HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-05GO15028 Subcontractors: * Xunlight Corporation, Toledo, OH * University of Toledo, Toledo, OH * National Renewable Energy Laboratory, Golden, CO

353

Leak Detection and H2 Sensor Development for Hydrogen Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Eric L. Brosha 1 (Primary Contact), Fernando H. Garzon 1 , Robert S. Glass 2 , Cortney Kreller 1 , Rangachary Mukundan 1 , Catherine G. Padro 1 , and Leta Woo 2 1 Los Alamos National Laboratory (LANL) MS D429, P.O. Box 1663 Los Alamos, NM 87545 Phone: (505) 665 4008 Email: Brosha@lanl.gov 2 Lawrence Livermore National Laboratory (LLNL) DOE Manager HQ: Antonio Ruiz Phone: (202) 586-0729 Email: Antonio.Ruiz@ee.doe.gov Project Start Date: Fiscal Year (FY) 2008 Project End Date: FY 2014 FY 2012 Objectives Develop a low-cost, low-power, durable, and reliable * hydrogen safety sensor for a wide range of vehicle and infrastructure applications. Continually advance test prototypes guided by materials * selection, sensor design, electrochemical research and

354

From Fundamental Understanding to Predicting New Nanomaterials for High-Capacity Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Taner Yildirim 1,2 1 Department of Materials Science and Eng. University of Pennsylvania Philadelphia, PA 19104 2 National Institute of Standards and Technology, NCNR Gaithersburg, MD 20899 Phone: (301) 975-6228 Email: taner@seas.upenn.edu DOE Program Manager: Dr. Thiyaga P. Thiyagarajan Phone: (301) 903-9706 Email: P.Thiyagarajan@science.doe.gov Objectives Use neutron scattering methods along with first- * principles computation to achieve fundamental understanding of the chemical and structural interactions governing the storage and release of hydrogen/methane and carbon capture in a wide spectrum of candidate materials. Study the effect of scaffolding, nanosizing, doping of *

355

Unitized Design for Home Refueling Appliance for Hydrogen Generation to 5,000 psi - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Timothy Norman (Primary Contact), Monjid Hamdan Giner, Inc. (formerly Giner Electrochemical Systems, LLC) 89 Rumford Avenue Newton, MA 02466 Phone: (781) 529-0556 Email: tnorman@ginerinc.com DOE Manager HQ: Eric L. Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-SC0001486 Project Start Date: August 15, 2010 Project End Date: August 14, 2012 Fiscal Year (FY) 2012 Objectives Detail design and demonstrate subsystems for a unitized * electrolyzer system for residential refueling at 5,000 psi to meet DOE targets for a home refueling appliance (HRA) Fabricate and demonstrate unitized 5,000 psi system * Identify and team with commercialization partner(s) * Technical Barriers

356

Best Practices for Characterizing Engineering Properties of Hydrogen Storage Materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Karl J. Gross (Primary Contact), Russell Carrington 1 , Steven Barcelo 1 , Abhi Karkamkar 2 , Justin Purewal 3 , Pierre Dantzer 4 , Shengqian Ma and Hong-Cai Zhou 5 , Kevin Ott 6 , Tony Burrell 6 , Troy Semeslberger 6 , Yevheniy Pivak 7 , Bernard Dam 7 , Dhanesh Chandra 8 H2 Technology Consulting LLC P.O. Box 1302 Alamo, CA 94507 Phone: (510) 468-7515 Email: kgross@h2techconsulting.com 1 University of California Berkeley 2 Pacific Northwest National Laboratory 3 California Institute of Technology 4 Université Paris-Sud 5 Texas A&M University 6 Los Alamos National Laboratory 7 VU University Amsterdam and the Delft University of Technology

357

Design and Synthesis of Chemically and Electronically Tunable Nanoporous Organic Polymers for Use in Hydrogen Storage Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hani M. El-Kaderi (Primary Contact), Mohammad G. Rabbani, Thomas E. Reich, Karl T. Jackson, Refaie M. Kassab Virginia Commonwealth University Department of Chemistry 1001 West Main St Richmond, VA 23284-2006 Phone: (804) 828-7505 Email: helkaderi@vcu.edu DOE Program Officer: Michael Sennett Phone: (301) 903-6051 Email: Michael.Sennett@science.doe.go Objectives Design and synthesis of new classes of low density * nanoporous organic polymers that are linked by strong covalent bonds and composed of chemically and electronically tunable building blocks. Use gas sorption experiments to investigate porosity and * determine hydrogen storage at variable temperature and

358

Solar High-Temperature Water Splitting Cycle with Quantum Boost - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Robin Taylor (Primary Contact), Roger Davenport, David Genders 1 , Peter Symons 1 , Lloyd Brown 2 , Jan Talbot 3 , Richard Herz 3 Science Applications International, Corp. (SAIC) 10210 Campus Point Drive San Diego, CA 92121 Phone: (858) 826-9124 Email: taylorro@saic.com 1 Electrosynthesis Co., Inc. (ESC) 2 Thermochemical Engineering Solutions (TCHEME) 3 University of California, San Diego (UCSD) DOE Managers HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-07GO17002 Subcontractors: * Electrosynthesis Co., Inc., Lancaster, NY * Thermochemical Engineering Solutions, San Diego, CA

359

Improving Reliability and Durability of Efficient and Clean Energy Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

10 10 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Prabhakar Singh Center for Clean Energy Engineering University of Connecticut (UConn) 44 Weaver Road, Unit 5233 Storrs, CT 06268-5233 Phone: (860) 486-8379 Email: singh@engr.uconn.edu DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Technical Advisor Thomas Benjamin Phone: (720) 356-1805 Email: benjamin@anl.gov Contract Number: DE-EE00003226 Project Start Date: August 1, 2010 Project End Date: July 31, 2013 *Congressionally directed project Fiscal Year (FY) 2012 Objectives Develop an understanding of the degradation processes * in advanced electrochemical energy conversion systems.

360

INL Site FY 2010 Executable Plan for Energy and Transportation Fuels Management with the FY 2009 Annual Report  

Science Conference Proceedings (OSTI)

It is the policy of the Department of Energy (DOE) that sustainable energy and transportation fuels management will be integrated into DOE operations to meet obligations under Executive Order (EO) 13423 "Strengthening Federal Environmental, Energy, and Transportation Management," the Instructions for Implementation of EO 13423, as well as Guidance Documents issued in accordance thereto and any modifcations or amendments that may be issued from time to time. In furtherance of this obligation, DOE established strategic performance-based energy and transportation fuels goals and strategies through the Transformational Energy Action Management (TEAM) Initiative, which were incorporated into DOE Order 430.2B "Departmental Energy, Renewable energy, and Transportation Management" and were also identified in DOE Order 450.1A, "Environmental Protection Program." These goals and accompanying strategies are to be implemented by DOE sites through the integration of energy and transportation fuels management into site Environmental Management Systems (EMS).

Ernest L. Fossum

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Fuel Cells Reversible Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Twitter Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Google Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Delicious Rank Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Digg Find More places to share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

362

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, 2 June 1992--1 June 1993  

SciTech Connect

This program was initiated in June of 1986 because advances in coal-fueled gas turbine technology over the previous few years, together with DOE-METC sponsored studies, served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine could ultimately be the preferred system in appropriate market application sectors. In early 1991 it became evident that a combination of low natural gas prices, stringent emission limits of the Clean Air Act and concerns for CO{sub 2} emissions made the direct coal-fueled gas turbine less attractive. In late 1991 it was decided not to complete this program as planned. The objective of the Solar/METC program was to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. Component development of the coal-fueled combustor island and cleanup system while not complete indicated that the planned engine test was feasible. Preliminary designs of the engine hardware and installation were partially completed. A successful conclusion to the program would have initiated a continuation of the commercialization plan through extended field demonstration runs. After notification of the intent not to complete the program a replan was carried out to finish the program in an orderly fashion within the framework of the contract. A contract modification added the first phase of the Advanced Turbine Study whose objective is to develop high efficiency, natural gas fueled gas turbine technology.

LeCren, L.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1993-06-01T23:59:59.000Z

363

Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)  

DOE Green Energy (OSTI)

Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

2005-05-01T23:59:59.000Z

364

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

365

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

366

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

367

A Total Cost of Ownership Model for Design and Manufacturing Optimization of Fuel Cells in Stationary and Emerging Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Max Wei (Primary Contact), Tom McKone, Tim Lipman 1 , David Dornfeld 2 , Josh Chien 2 , Chris Marnay, Adam Weber, Paul Beattie 3 , Patricia Chong 3 Lawrence Berkeley National Laboratory (LBNL) 1 Cyclotron Road MS 90R-4000 Berkeley, CA 94706 Phone: (510) 486-5220 Email: mwei@lbl.gov DOE Manager HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov Subcontractors: 1 University of California, Berkeley, Transportation Sustainability Research Center and DOE Pacific Region Clean Energy Application Center, Berkeley, CA 2 University of California, Berkeley, Laboratory for Manufacturing and Sustainability, Department of Mechanical Engineering, Berkeley, CA

368

New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs (SBIR Phase I) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Earl H. Wagener (Primary Contact), Brad P. Morgan, Jeffrey R. DiMaio Tetramer Technologies L.L.C. 657 S. Mechanic St. Pendleton, SC 29670 Phone: (864) 646-6282 Email: earl.wagener@tetramertechnologies.com DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Contract Number: DE-SC0006172 Project Start Date: June 17, 2011 Project End Date: March 16, 2012 Fiscal Year (FY) 2012 Objectives Demonstrate water vapor transport membrane with * >18,000 gas permeation units (GPU) Water vapor membrane with less than 20% loss in * performance after stress tests Crossover leak rate: <150 GPU * Temperature Durability of 90°C with excursions to * 100°C Cost of <$10/m

369

Thin film fuel cell/battery power generating system. Annual report, April 1, 1978-March 31, 1979  

DOE Green Energy (OSTI)

Work on the modified lanthanum chromite interconnection (IC) proceeded in a number of areas. Toward determining the stability of the IC, oxygen ion transport mechanisms were evaluated, as well as IC stability under low oxygen partial pressures (10/sup -6/t 10/sup -18/ atm). To produce long, continuous, 40 ..mu..m thick IC films on 0.3 m long porous support tubes, improvements were made in both the EVD apparatus and process. Porous support tubes of calcia-stabilized zirconia were produced, up to 0.3 m long, for fuel cell stack fabrication. Work on the air electrode current collector covered several areas. The high-temperature resistivity of doped indium oxide was studied at various doping levels, as a function of oxygen partial pressure. Also, other possible current collector formulations were investigated. By incorporating materials and process improvements, as well as improved porous support tubes, in the fabrication of 20 cell stacks, stack quality and performance at 400 mA/cm/sup 2/ and 1000/sup 0/C have steadily improved. Measurement techniques have been refined on the fuel cell and its components. Realistic combination specimens, as fuel electrode-interconnection layers on a porous support tube, have been used to determine interconnection apparent resistivity at 1000/sup 0/C. From polarization tests on fabricated fuel cell stacks, major electrical resistance contributors to the total cell resistance are the air electrode and the interconnection, with the latter being the largest contributor.

Not Available

1979-04-30T23:59:59.000Z

370

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

DOE Green Energy (OSTI)

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

Sefer, N.R.; Russell, J.A.

1981-12-01T23:59:59.000Z

371

Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979  

SciTech Connect

This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

Bergman, H.L.

1980-01-04T23:59:59.000Z

372

Annual Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Occupational Radiation Exposure Occupational Radiation Exposure Home Welcome What's New Register Dose History Request Data File Submittal REMS Data Selection HSS Logo Annual Reports User Survey on the Annual Report Please take the time to complete a survey on the Annual Report. Your input is important to us! The 2012 Annual Report View or print the annual report in PDF format The 2011 Annual Report View or print the annual report in PDF format The 2010 Annual Report View or print the annual report in PDF format The 2009 Annual Report View or print the annual report in PDF format The 2008 Annual Report View or print the annual report in PDF format The 2007 Annual Report View or print the annual report in PDF format The 2006 Annual Report View or print the annual report in PDF format The 2005 Annual Report

373

Task 4.7 - diesel fuel desulfurization. Semi-annual report, July 1, 1995--December 31, 1995  

DOE Green Energy (OSTI)

Reductions in the maximum permissible sulfur content of diesel fuel to less than 0.05 wt% will require deep desulfurization to meet these standards. In some refineries, a new hydrogenation catalyst may be required for diesel fuel production. The work very briefly described in this document is on the use of hydrotalcite-supported molybdenum sulfide in the catalysis of ethanol. The catalyst reaction was highly selective for 1-butanol, providing a very clean reaction. Since the catalysis contains the MoS{sub 2} needed for the dehydrogenation and hydrogenation steps, the reaction can be performed at lower temperatures and higher selectivity. The catalyst was very stable and not destroyed by the water produced in the reaction.

Olson, E.S.

1998-12-31T23:59:59.000Z

374

Annual Site EnvironmentalAnnual Site Environmental ReportReport  

E-Print Network (OSTI)

or trichloroethylene TCLP toxic characteristic leaching procedure (RCRA) TDS total dissolved solids TFTR Tokamak Fusion requested of NJDEP a total, fuel use limit for all four boilers. NJDEP granted that request and imposed a maximum annual fuel use limitation for the C site boilers of 227,370 gallons of #4 fuel oil and 88

375

Monolithic solid oxide fuel cell technology advancement for coal-based power generation. Annual report, October 1991--September 1992  

DOE Green Energy (OSTI)

The program is being conducted by a team consisting of AlliedSignal Aerospace Systems & Equipment (ASE) (formerly AiResearch Los Angeles Division) and Argonne National Laboratory (ANL). The objective of the program is to advance materials and fabrication methodologies to develop a monolithic solid oxide fuel cell (MSOFC) system capable of meeting performance, life, and cost goals for coal-based power generation. The program focuses on materials research and development, fabrication process development, cell/stack performance testing and characterization, cost and system analysis, and quality development.

Not Available

1993-05-01T23:59:59.000Z

376

New electrolytes for direct methane fuel cells. Annual report, January 10, 1977-January 9, 1978. [Perhalogenated sulfonic acids  

DOE Green Energy (OSTI)

The program is aimed at developing a fuel cell electrolyte for the direct oxidation of CH/sub 4/ and/or impure H/sub 2/ fuels. Work in the first year has focused on the di- and tribasic methane sulfonic acids CX/sub 2/(SO/sub 3/H)/sub 2/ and CX(SO/sub 3/H)/sub 3/ where X was H, F, or Cl. Synthesis of the halogenated acids proved to be more difficult than anticipated, and only three acids, viz. CH(SO/sub 3/H)/sub 3/; CH/sub 2/(SO/sub 3/H)/sub 2/; CCl/sub 2/(SO/sub 3/H)/sub 2/ were prepared in sufficient quantity for electrochemical testing. However, promising synthetic routes have been identified for the other acids. Cyclic voltammetry was used to study the adsorption properties of the acids and half cell tests with gas diffusion electrodes were used to determine their suitability as fuel cell electrolytes. Results are presented and discussed. Also a program has been under way to develop low Pt loading (1 mg cm/sup -2/) fuel cell electrodes. The objective was to achieve control over the mass transfer parameters of an electrode so that optimum structures could be designed for use with the new electrolytes. In the interest of reproducibility, the experimental electrodes incorporated only well characterized materials; all forms of carbon were omitted. Optimum performance with H/sub 3/PO/sub 4/ was achieved with electrodes made as follows. One mg cm/sup -2/ Pt black and 1 mg cm/sup -2/ TFE 30 were mixed and filtered onto porous TFE tape. The tape was pressed into Au plated Ta screen sintered for 10 minutes at 340/sup 0/C. Current vs potential curves for both anodic reactions (CH/sub 4/ and H/sub 2/ oxidation) and cathodic reactions (O/sub 2/ and air reduction) were superior to the curves obtained with an American Cyanamid electrode containing 25 mg Pt cm/sup -2/. (WHK)

Brummer, S.B.; McHardy, J.; Koch, V.; Turner, M.; Toland, D.

1978-01-01T23:59:59.000Z

377

EIA - Annual Energy Outlook 2014 Early Release  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ... with annual growth averaging 0.8 million ...

378

Fuel Guide Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

379

U.S. Department of Energy Hydrogen and Fuel Cells Program 2013 Annual Merit Review (AMR) and Peer Evaluation Report  

NLE Websites -- All DOE Office Websites (Extended Search)

A: ATTENDEE LIST A: ATTENDEE LIST FY 2013 Merit Review and Peer Evaluation Report | 511 Attendee List: 2013 Hydrogen and Fuel Cells Program Last Name First Name Organization Abdel-Baset Tarek Chrysler Group LLC Abraham Judi Conference Management Associates, Inc. Aceves Salvador Lawrence Livermore National Laboratory Adams Jesse U.S. Department of Energy, Golden Field Office Adzic Radoslav Brookhaven National Laboratory Afzal Kareem PDC Machines Agar Ertan Drexel University Agrawal Nisha Defense Production Act Committee Ahluwalia Rajesh Argonne National Laboratory Ahmed Aysha National Highway Traffic Safety Administration Ahmed Shabbir Argonne National Laboratory Ahn Channing U.S. Department of Energy (IPA from California Institute of Technology) Ahn Sang Hyun National Institute of Standards and Technology

380

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1996 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

382

C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP  

Annual Energy Outlook 2012 (EIA)

9 Energy Information Administration Historical Natural Gas Annual 1930 Through 2000 State Residential Commercial Industrial Vehicle Fuel Consumption (thousand cubic feet) Cost...

383

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

system-efficiency Go system-efficiency Go Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-1fnxsdr Average Per-Passenger Fuel Economy of Various Travel Modes Generated_thumb20130810-31804-1fnxsdr Comparison of per-passenger fuel economy for various modes of transportation. Last update April 2013 View Graph Graph Download Data Average Annual Fuel Use of Major Vehicle Categories Class 8 Truck Transit Bus Refuse Truck Para. Shuttle Taxi Delivery Truck School Bus Police Light Truck Light-Duty Vehicle Car Motorcycle Annual Fuel Use (GGE) 11500 10063 9876.738 2695 3392 1814 1896.33375 1423.474 853.56725 528.8785 459.4805 33

384

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

J. , Gottesfeld, S. , 1999. Direct methanol fuel cells.Fuel cells for transportation. 1999 Annual Progress Report.Auxiliary power units; Fuel cells 1. Introduction A large

2002-01-01T23:59:59.000Z

385

Evaluation of Fuel Cell Auxiliary Power Units for Heavy-Duty Diesel Trucks  

E-Print Network (OSTI)

Fuel cells for transportation. 1999 Annual Progress Report.J. , Gottesfeld, S. , 1999. Direct methanol fuel cells.Auxiliary power units; Fuel cells 1. Introduction A large

2002-01-01T23:59:59.000Z

386

Petroleum Marketing Annual 2009  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Marketing Annual 2009 Petroleum Marketing Annual 2009 Released: August 6, 2010 Monthly price and volume statistics on crude oil and petroleum products at a national, regional and state level. Notice: Changes to EIA Petroleum Data Program Petroleum Marketing Annual --- Full report in PDF (1.2 MB) Previous Issues --- Previous reports are available on the historical page. Summary Statistics Summary Statistics Tables PDF 1 Crude Oil Prices PDF TXT 1A Refiner Acquisition Cost of Crude Oil by PAD Districts HTML PDF TXT 2 U.S. Refiner Prices of Petroleum Products to End Users HTML PDF TXT 3 U.S. Refiner Volumes of Petroleum Products to End Users PDF TXT Motor Gasoline to End Users HTML Residual Fuel Oil and No. 4 Fuel to End Users HTML Other Petroleum Products to End Users HTML

387

Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Sales Renewable Fuel Sales Volume Goals to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Sales Volume Goals on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel

388

Annual Energy Review 1997  

Gasoline and Diesel Fuel Update (EIA)

7 7 Exported Energy Coal Other NGPL Other Adjustments Total Consumption Total Supply Nucle ar Rene wable s Crude Oil and Products Fossil Fuels Renewables Domestic Production Industrial Use Transportation Use Residential and Commercial Use Coal Natural Gas Petroleum Nuclear Imported Energy Fossil Fuels Coal Crude Oil Natural Gas Energy Information Administration July 1998 DOE/EIA-0384(97) Annual Energy Review 1997 The Annual Energy Review (AER) presents the Energy Information Admin- istration's historical energy statistics. For many series, statistics are given for every year from 1949 through 1997. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, in- cluding consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable en-

389

Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Idaho Natural Gas Vehicle Fuel Consumption (Million Cubic...

390

Texas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Texas Natural Gas Vehicle Fuel Consumption (Million Cubic...

391

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

392

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

393

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

394

South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) South Dakota Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Vehicle Fuel Consumption...

395

South Dakota Natural Gas Lease and Plant Fuel Consumption (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease and Plant Fuel...

396

South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) South Dakota Natural Gas Vehicle Fuel Price (Dollars...

397

South Dakota Natural Gas Lease Fuel Consumption (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic Feet) South Dakota Natural Gas Lease Fuel Consumption (Million Cubic...

398

Novel theoretical and experimental approaches for understanding and optimizing hydrogen-sorbent interactions in metal organic framework materials - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Yves. J. Chabal (Primary Contact), Jing Li, Timo Thonhauser UT Dallas - Department of Materials Science and Engineering 800 W. Campbell Road, RL 10 Richardson, TX 75080 Phone: (972) 883-5751 Email: chabal@utdallas.edu DOE Program Officer: Dr. Bonnie Gersten Phone: (301) 903-0002 Email: Bonnie.Gersten@science.doe.gov Subcontractors: * Jing Li (Rutgers University) * Timo Thonhauser (Wake Forest University) Objectives Develop a * comprehensive understanding of how small molecules (e.g. H 2 ) bind inside metal organic framework

399

EPA Fuel Economy Ratings  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Window Sticker Current Window Sticker The U.S. Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) recently redesigned and enhanced the window sticker that appears on new vehicles. The new Fuel Economy and Environment Label will be mandatory on all new vehicles beginning with the 2013 model year. For the 2012 model year, manufacturers can use the new window sticker or the older window sticker shown below. Roll over the highlighted elements on the label below to learn more about EPA's current fuel economy label. EPA's Current Fuel Economy Label EPA's New Fuel Economy Label Estimated Annual Fuel Cost: $2,039 based on 15,000 mile at $2.80 per gallon Your fuel cost may differ depending on annual miles and fuel prices. Combined Fuel Economy for this Vehicle: 21 MPG, Range for all SUVs: 10-31

400

Renewable Fuels Module  

Reports and Publications (EIA)

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook forecasts.

Chris Namovicz

2013-07-03T23:59:59.000Z

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen Fuel Quality (Presentation)  

DOE Green Energy (OSTI)

Jim Ohi of NREL's presentation on Hydrogen Fuel Quality at the 2007 DOE Hydrogen Program Annual Merit Review and Peer Evaluation on May 15-18, 2007 in Arlington, Virginia.

Ohi, J.

2007-05-17T23:59:59.000Z

402

Alliant Energy Interstate Power and Light (Gas) - Business Energy...  

Open Energy Info (EERE)

150 or 400 Programmable Thermostat: 25 WindowsSash: 20 Custom: Based on Annual Energy Dollar Savings Equipment Requirements Boilers (< 300,000 Btu): AFUE 85% Furnaces (<...

403

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Fuel Cell Bus Joint Fuel Cell Bus Workshop to someone by E-mail Share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Facebook Tweet about Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Twitter Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Google Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Delicious Rank Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Digg Find More places to share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars

404

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

405

C:\\Annual\\VENTCHAP.V8\\NGA02.vp  

Annual Energy Outlook 2012 (EIA)

Form EIA-895, "Monthly Quan- tity and Value of Natural Gas Report", EIA-906, "Power Plant Report"; EIA-886, "Annual Survey of Alternative Fueled Vehicle Suppliers and...

406

Energy Information Administration / Natural Gas Annual 2007 74  

Annual Energy Outlook 2012 (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2007 75 Table 31. Summary...

407

Energy Information Administration / Natural Gas Annual 2008 74  

Gasoline and Diesel Fuel Update (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2008 75 Table 31. Summary...

408

Hydrogen Program Contacts; DOE Hydrogen Program FY 2008 Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 FY 2008 Annual Progress Report DOE Hydrogen Program JoAnn Milliken, DOE Hydrogen Program Manager and Chief Engineer Office of Hydrogen, Fuel Cells and Infrastructure Technologies...

409

Energy Information Administration / Natural Gas Annual 2005 124  

Gasoline and Diesel Fuel Update (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2005 125 Table 57. Summary...

410

Energy Information Administration / Natural Gas Annual 2006 124  

Gasoline and Diesel Fuel Update (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2006 125 Table 57. Summary...

411

Energy Information Administration / Natural Gas Annual 2007 128  

Annual Energy Outlook 2012 (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2007 129 Table 58. Summary...

412

Energy Information Administration / Natural Gas Annual 2008 128  

Annual Energy Outlook 2012 (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2008 129 Table 58. Summary...

413

Annual Energy Outlook Forecast Evaluation  

Gasoline and Diesel Fuel Update (EIA)

Title of Paper Annual Energy Outlook Forecast Evaluation Title of Paper Annual Energy Outlook Forecast Evaluation by Susan H. Holte OIAF has been providing an evaluation of the forecasts in the Annual Energy Outlook (AEO) annually since 1996. Each year, the forecast evaluation expands on that of the prior year by adding the most recent AEO and the most recent historical year of data. However, the underlying reasons for deviations between the projections and realized history tend to be the same from one evaluation to the next. The most significant conclusions are: Natural gas has generally been the fuel with the least accurate forecasts of consumption, production, and prices. Natural gas was the last fossil fuel to be deregulated following the strong regulation of energy markets in the 1970s and early 1980s. Even after deregulation, the behavior

414

Print the Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Print the Fuel Economy Guide Print the Fuel Economy Guide 2014 Fuel Economy Guide 2014 Fuel Economy Guide Adobe Acrobat Icon MPG data updated December 19, 2013 The annual fuel cost estimates in the 2008-2014 electronic fuel economy guides are updated weekly to match EIA's current national average prices for gasoline and diesel fuel. Order a printed copy: Order Note that the published guides may not be as up-to-date at the downloadable version. View vehicles from 1984 to the present: Go to Find-a-Car Unlike the annual guides which cover only one model year, Find-a-Car provides the most up-to-date fuel economy information for vehicles from model year 1984 to the present, along with environmental and safety data. Find a Car Developer Tools 2013 Fuel Economy Guide 2013 Fuel Economy Guide Adobe Acrobat Icon

415

Vehicle Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Progress Reports Annual Progress Reports 2013 DOE Vehicle Technologies Office Annual Merit Review 2012 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Fuel & Lubricant Technologies Lightweight Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2011 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research and Development Lightweighting Materials Propulsion Materials Vehicle and Systems Simulation and Testing 2010 Advanced Combustion Engine Research and Development Advanced Power Electronics and Electric Motors

416

Technology Validation: Fuel Cell Bus Evaluations (Presentation)  

DOE Green Energy (OSTI)

This presentation by Leslie Eudy at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's fuel cell bus evaluations.

Eudy, L.

2007-05-18T23:59:59.000Z

417

Vehicle Fuel Consumption of Natural Gas (Summary)  

U.S. Energy Information Administration (EIA)

... electric power price data are for regulated ... Gas volumes delivered for use as vehicle fuel are included in the State annual totals through 2010 but not in ...

418

Fuel Cell Bus Evaluation Results (Presentation)  

DOE Green Energy (OSTI)

Presentation on the results from the DOE fuel cell bus evaluation given at the Transportation Research Board's 87th annual meeting, January 14, 2008.

Eudy, L.

2008-01-14T23:59:59.000Z

419

Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global, Regional, and National Annual Time Series (1751-2010) Latest Published Global Estimates (1751-2010) Preliminary 2011 Global & National Estimates...

420

,"California Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

NREL: Vehicles and Fuels Research - Regulatory Support  

NLE Websites -- All DOE Office Websites (Extended Search)

can run on nonpetroleum fuels, including natural gas, electricity, ethanol, biodiesel, propane, and hydrogen. Under EPAct, a certain percentage of a fleet's annual new light-duty...

422

,"Texas Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

423

,"Texas Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

424

Natural Gas Annual, 2002  

Gasoline and Diesel Fuel Update (EIA)

2 2 EIA Home > Natural Gas > Natural Gas Data Publications Natural Gas Annual, 2002 Natural Gas Annual 2002 Release date: January 29, 2004 Next release date: January 2005 The Natural Gas Annual, 2002 provides information on the supply and disposition of natural gas in the United States. Production, transmission, storage, deliveries, and price data are published by State for 2002. Summary data are presented for each State for 1998 to 2002. “The Natural Gas Industry and Markets in 2002” is a special report that provides an overview of the supply and disposition of natural gas in 2002 and is intended as a supplement to the Natural Gas Annual 2002. Changes to data sources for this Natural Gas Annual, as a result of ongoing data quality efforts, have resulted in revisions to several data series. Production volumes have been revised for the Federal offshore and several States. Several data series based on the Form EIA-176, including deliveries to end-users in several States, were also revised. Additionally, revisions have been made to include updates to the electric power and vehicle fuel end-use sectors.

425

A Technical Review of Non-Destructive Assay Research for the Characterization of Spent Nuclear Fuel Assemblies Being Conducted Under the US DOE NGSI - 11544  

E-Print Network (OSTI)

the Characterization of Spent Nuclear Fuel Assemblies BeingSocietys Advances in Nuclear Fuel Management IV, HiltonPlutonium Mass in Spent Nuclear Fuel, 2010 ANS Annual

Croft, S.

2012-01-01T23:59:59.000Z

426

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Transition: Designing a Fuel- Cell Hypercar. 8th Annual

Williams, Brett D

2010-01-01T23:59:59.000Z

427

Directed Nano-Scale and Macro-Scale Architectures for Semiconductor Absorbers and Transparent Conducting Substrates for Photoelectrochemical Water Splitting - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Thomas F. Jaramillo (Primary Contact), Arnold J. Forman, Zhebo Chen Dept. of Chemical Engineering, 381 N-S Axis Stanford University Stanford, CA 94305 Phone: (650) 498-6879 Email: jaramillo@stanford.edu DOE Manager HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@hq.doe.gov Contract Number: DE-AC36-08GO28308 Subcontract Number: NFT-9-88567-01 Subcontractor: Board of Trustees of the Leland Stanford Junior University, Stanford, CA Project Start Date: December 18, 2008 Projected End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives The main objective of this project is to develop third- generation materials and structures with new properties that can potentially meet DOE targets (2013 and 2018) for

428

A Joint Theory and Experimental Project in the Synthesis and Testing of Porous COFs for Onboard Vehicular Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Omar M. Yaghi Department of Chemistry and Biochemistry University of California - Los Angeles 607 Charles E. Young Drive East Los Angeles, CA 90095 Phone: (310) 206-0398 Email: yaghi@chem.ucla.edu DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18141 Project Start Date: September 1, 2008 Project End Date: July 31, 2012 Fiscal Year (FY) 2012 Objectives Design optimal frameworks with potential metal binding * sites for metal impregnation. Predict H * 2 uptake isotherm for designed frameworks using our newly developed force field.

429

Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and  

NLE Websites -- All DOE Office Websites (Extended Search)

4: October 26, 4: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes to someone by E-mail Share Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Facebook Tweet about Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Twitter Bookmark Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Google Bookmark Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Delicious Rank Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Digg

430

Proceedings: 1991 Fuel Oil Utilization Workshop  

Science Conference Proceedings (OSTI)

To assist utilities in improving fossil steam plant operations, EPRI continues to conduct annual fuel oil utilization workshops. At the 1991 conference, personnel from 16 electric utilities exchanged ideas on improving residual fuel oil utilization in their generating plants.

1991-05-01T23:59:59.000Z

431

Reactor Physics and Criticality Benchmark Evaluations for Advanced Nuclear Fuel, Progress Report for Work through August 31, 2002, First Annual/4th Quarterly Report  

SciTech Connect

OAK B204 The objective of this Nuclear Energy Research Initiative (NERI) project is to design, perform, and analyze critical benchmark experiments for validating reactor physics methods and models for fuel enrichments greater than 5-wt% 235U. These experiments will also provide additional information for application to the criticality-safety bases for commercial fuel facilities handling greater than 5-wt% 235U fuel. These experiments are designed as reactor physics benchmarks, to include measurements of critical boron concentration, burnable absorber worth, relative pin powers, and relative average powers.The first year focused primarily on designing the experiments using available fuel, preparing the necessary plans, procedures and authorization basis for performing the experiments, and preparing for the transportation, receipt and storage of the Pathfinder fuel currently stored at Pennsylvania State University.Framatome ANP, Inc. leads the project with the collaboration of Oak Ridge National Laboratory (ORNL), Sandia National Laboratories (SNL), and the University of Florida (UF). The project is organized into 5 tasks:Task 1: Framatome ANP, Inc., ORNL, and SNL will design the specific experiments, establish the safety authorization, and obtain approvals to perform these experiments at the SNL facility. ORNL will apply their sensitivity/uncertainty methodology to verify the need for particular experiments and the parameters that these experiments need to explore.Task 2: Framatome ANP, Inc., ORNL, and UF will analyze the proposed experiments using a variety of reactor-physics methods employed in the nuclear industry. These analyses will support the operation of the experiments by predicting the expected experimental values for the criticality and physics parameters.Task 3: This task encompasses the experiments to be performed. The Pathfinder fuel will be transported from Penn State to SNL for use in the experiments. The experiments will be performed and the hardware will be decontaminated and decommissioned.Task 4: Framatome ANP, Inc., ORNL, and UF will analyze the experiments and compare calculated values of physics parameters for the experiments with the measured values. Potential sources of differences will be sought between calculated physics parameter values and the experimental values. The results of all analyses will be documented.Task 5: UF and Framatome ANP, Inc. will evaluate typical fuel-processing operations to establish the limits and restrictions required for fabricating higher-enriched fuel.Work in Year 1 included completion of Task 1 and the licensing of a transportation cask under Task 5. This work entailed a number of milestones accomplished in Year 1. These include:?h Issuance of the Preliminary Design Report in February 2002?h Completion of the Sensitivity and Uncertainty Analysis in May 2002?h Completion of the Final Design Report in June 2002?h Submittal of the NRC license application for the transportation package in May 2002.This first year was a year of successes as all deliverables were met on time and the project completed the year within the budget.In Year 2, the project moves into a manufacturing and application phase. Year 2 includes successful completion of the licensing process for the transportation package and transportation of the fuel from Pennsylvania State University to Sandia National Laboratories in Albuquerque, New Mexico. Also, Year 2 includes the fabrication of the fuel into smaller aluminum cladding. Once the fuel is ready and the necessary approvals are in place, the experiments will end; begin following the design presented in the Final Design Report. Although Year 2 will be primarily ''hand's on'' fabrication and handling work, the analytical work will continue on the experiments and the generic fuel processing facility.

Anderson, William J.; Ake, Timothy N.; Punatar, Mahendra; Pitts, Michelle L.; Harms, Gary A.; Rearden, Bradley T.; Parks, Cecil V.; Tulenko, James S.; Dugan, Edward; Smith, Robert M.

2002-09-23T23:59:59.000Z

432

Fuel Cell Technologies Office: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to Presentations to someone by E-mail Share Fuel Cell Technologies Office: Presentations on Facebook Tweet about Fuel Cell Technologies Office: Presentations on Twitter Bookmark Fuel Cell Technologies Office: Presentations on Google Bookmark Fuel Cell Technologies Office: Presentations on Delicious Rank Fuel Cell Technologies Office: Presentations on Digg Find More places to share Fuel Cell Technologies Office: Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells

433

Home Energy Saver  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary Heating, Ventilation and Cooling Terminology System Capacity System capacity is a measurement of the total amount of heat or cooling the furnace, heat pump or air conditioner can produce in one hour. This amount is reported in Btu/hr on the nameplate of the equipment. Btu Btu, short for British Thermal Unit is a unit of heat energy. One Btu is the amount of heat needed to raise the temperature of one pound of water 1°F. To get a rough idea of how much heat energy this is, the heat given off by burning one wooden kitchen match is approximately one Btu. AFUE The AFUE, or Annualized Fuel Utilization Efficiency, is the ratio of the total useful heat the gas furnace delivers to the house to the heat value of the fuel it consumes. Heat Pump A heat pump is basically an air conditioner with a reversible valve

434

Investigation of carbon-formation mechanisms and fuel-conversion rates in the adiabatic reformer. Annual report, March 19, 1980-March 19, 1981  

Science Conference Proceedings (OSTI)

Fuel cell power plants may be required to use coal derived liquid fuels or heavy petroleum distillates as fuels. Among the fuel processor candidates, the adiabatic reformer is at the most advanced state of development. The objective of the present program is to establish a reactor model for the adiabatic reformer which will predict process stream compositions and include carbon formation processes. Four subordinate tasks were proposed to achieve the objective. These are: 1) to determine on selected catalysts rate expressions for catalytic reactions occurring in the entrance section of the adiabatic reformer; 2) to determine with microbalance experiments critical conditions for carbon formation on selected catalysts; 3) to establish a reactor model to predict process stream compositions in the adiabatic reformer using data from Task 1 for catalytic reactions and data from the literature for homogeneous gas phase reactions; and 4) to establish a model to predict carbon formation by combination of the model for process stream composition from Task 3 and data for carbon formation from Task 2. Progress is reported. (WHK)

Not Available

1981-01-01T23:59:59.000Z

435

FY 91 Annual Research Plan  

SciTech Connect

In line with the Federal Oil Research Program to maximize the economic producibility of the domestic oil resource, the National Institute for Petroleum and Energy Research (NIPER) presents this FY91 Annual Research Plan. NIPER is organized into two research departments -- Energy Production Research (EPR) and Fuels Research (FR). Projects in EPR deal with various aspects of enhanced oil recovery and include reservoir characterization, chemical flooding, gas injection, steam injection, microbial enhanced oil recovery, and the environmental concerns related to these processes. Projects in FR consider the impact of heavy oil and alternative fuels on the processing and end-use of fuels. Projects are briefly described.

Not Available

1990-12-01T23:59:59.000Z

436

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Colorado Incentives and Laws Colorado Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuels Tax and Vehicle Decal Repealed: 05/15/2013 Fuel tax exemptions are granted for natural gas and liquefied petroleum gas (propane) vehicle owners. Owners of natural gas and propane vehicles must purchase an annual tax decal from the Colorado Department of Revenue or a decal vendor as follows: Gross Vehicle Weight Rating Annual License Tax Fee 1-10,000 pounds (lbs.) $70 10,001-16,000 lbs. $100 Over 16,000 lbs. $125 All natural gas and propane vehicles must display a current fuel tax decal. Non-profit transit agencies are exempt from the fuel tax.

437

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

438

I-NERI ANNUAL TECHNICAL PROGRESS REPORT: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels  

SciTech Connect

An attractive alternative to the once-through disposal of electrorefiner salt is to selectively remove the active fission products from the salt and recycle the salt back to the electrorefiner (ER). This would allow salt reuse for some number of cycles before ultimate disposal of the salt in a ceramic waste form. Reuse of ER salt would, thus, greatly reduce the volume of ceramic waste produced during the pyroprocessing of spent nuclear fuel. This final portion of the joint I-NERI research project is to demonstrate the separation of fission products from molten ER salt by two methods previously selected during phase two (FY-08) of this project. The two methods selected were salt/zeolite contacting and rare-earth fission product precipitation by oxygen bubbling. The ER salt used in these tests came from the Mark-IV electrorefiner used to anodically dissolved driver fuel from the EBR-II reactor on the INL site. The tests were performed using the Hot Fuel Dissolution Apparatus (HFDA) located in the main cell of the Hot Fuels Examination Facility (HFEF) at the Materials and Fuels complex on the INL site. Results from these tests were evaluated during a joint meeting of KAERI and INL investigators to provide recommendations as to the future direction of fission product removal from electrorefiner salt that accumulate during spent fuel treatment. Additionally, work continued on kinetic measurements of surrogate quaternary salt systems to provide fundamental kinetics on the ion exchange system and to expand the equilibrium model system developed during the first two phases of this project. The specific objectives of the FY09 I-NERI research activities at the INL include the following: Perform demonstration tests of the selected KAERI precipitation and INL salt/zeolite contacting processes for fission product removal using radioactive, fission product loaded ER salt Continue kinetic studies of the quaternary Cs/Sr-LiCl-KCl system to determine the rate of ion exchange during the salt/zeolite contacting process Compare the adsorption models to experimentally obtained, ER salt results Evaluate results obtained from the oxygen precipitation and salt/zeolite ion exchange studies to determine the best processes for selective fission-product removal from electrorefiner salt.

S. Frank

2009-09-01T23:59:59.000Z

439

C:\\ANNUAL\\Vol2chps.v8\\ANNUAL2.VP  

Annual Energy Outlook 2012 (EIA)

Historical Natural Gas Annual 1930 Through 2000 34. Average Price of Natural Gas Delivered to U.S. Vehicle Fuel Consumers by State, 1990-2000 (Dollars per Thousand...

440

DOE Hydrogen and Fuel Cells Program: DOE Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Releases 2012 Annual Progress Report Jan 18, 2013 The U.S. Department of Energy (DOE) Hydrogen and Fuel Cells Program reports on activities and...

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Annual Energy Review 2000  

Gasoline and Diesel Fuel Update (EIA)

Review Review 2000 www.eia.doe.gov On the Web at: www.eia.doe.gov/aer Energy Information Administration DOE/EIA-0384(2000) August 2001 Annual Energy Review 2000 The Annual Energy Review (AER) presents the Energy Information Admin- istration's historical energy statistics. For many series, statistics are given for every year from 1949 through 2000. The statistics, expressed in either physical units or British thermal units, cover all major energy activities, in- cluding consumption, production, trade, stocks, and prices, for all major energy commodities, including fossil fuels, electricity, and renewable en- ergy sources. Publication of this report is required under Public Law 95-91 (Department of Energy Organization Act), Section 205(c), and is in keeping with re- sponsibilities given to the Energy Information Administration under Sec- tion 205(a)(2), which

442

Renewable energy annual 1995  

DOE Green Energy (OSTI)

The Renewable Energy Annual 1995 is the first in an expected series of annual reports the Energy Information Administration (EIA) intends to publish to provide a comprehensive assessment of renewable energy. This report presents the following information on the history, status, and prospects of renewable energy data: estimates of renewable resources; characterizations of renewable energy technologies; descriptions of industry infrastructures for individual technologies; evaluations of current market status; and assessments of near-term prospects for market growth. An international section is included, as well as two feature articles that discuss issues of importance for renewable energy as a whole. The report also contains a number of technical appendices and a glossary. The renewable energy sources included are biomass (wood), municipal solid waste, biomass-derived liquid fuels, geothermal, wind, and solar and photovoltaic.

NONE

1995-12-01T23:59:59.000Z

443

Petroleum marketing annual 1994  

SciTech Connect

The Petroleum Marketing Annual (PMA) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysis, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the fob and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Annual. For this production, all estimates have been recalculated since their earlier publication in the Petroleum Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication date.

NONE

1995-08-24T23:59:59.000Z

444

1998 Cost and Quality Annual  

Gasoline and Diesel Fuel Update (EIA)

8) 8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 1998 Tables June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions regarding the availability of these data should

445

Electricity and Natural Gas Efficiency Improvements for Residential Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Efficiency Improvements for Residential Gas and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Title Electricity and Natural Gas Efficiency Improvements for Residential Gas Furnaces in the U.S. Publication Type Report LBNL Report Number LBNL-59745 Year of Publication 2006 Authors Lekov, Alexander B., Victor H. Franco, Stephen Meyers, James E. McMahon, Michael A. McNeil, and James D. Lutz Document Number LBNL-59745 Publisher Lawrence Berkeley National Laboratory City Berkeley Abstract This paper presents analysis of the life-cycle costs for individual households and the aggregate energy and economic impacts from potential energy efficiency improvements in U.S. residential furnaces. Most homes in the US are heated by a central furnace attached to ducts for distributing heated air and fueled by natural gas. Electricity consumption by a furnace blower is significant, comparable to the annual electricity consumption of a major appliance. Since the same blower unit is also used during the summer to circulate cooled air in centrally air conditioned homes, electricity savings occur year round. Estimates are provided of the potential electricity savings from more efficient fans and motors. Current regulations require new residential gas-fired furnaces (not including mobile home furnaces) to meet or exceed 78% annual fuel utilization efficiency (AFUE), but in fact nearly all furnaces sold are at 80% AFUE or higher. The possibilities for higher fuel efficiency fall into two groups: more efficient non-condensing furnaces (81% AFUE) and condensing furnaces (90-96% AFUE). There are also options to increase the efficiency of the furnace blower. This paper reports the projected national energy and economic impacts of requiring higher efficiency furnaces in the future. Energy savings vary with climate, with the result that condensing furnaces offer larger energy savings in colder climates. The range of impacts for a statistical sample of households and the percent of households with net savings in life cycle cost are shown. Gas furnaces are somewhat unusual in that the technology does not easily permit incremental change to the AFUE above 80%. Achieving significant energy savings requires use of condensing technology, which yields a large efficiency gain (to 90% or higher AFUE), but has a higher cost. With respect to electricity efficiency design options, the ECM has a negative effect on the average LCC. The current extra cost of this technology more than offsets the sizable electricity savings.

446

Annual ENSO  

Science Conference Proceedings (OSTI)

Using various observational data, the seasonal cycle of the tropical Pacific is investigated, suggesting the existence of an annual El NioSouthern Oscillation (ENSO). A positive sea surface temperature anomaly (SSTA) appearing off Peru in ...

Tomoki Tozuka; Toshio Yamagata

2003-08-01T23:59:59.000Z

447

Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012  

SciTech Connect

Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace several obsolete components of the current analytical tool set used for ATR neutronics support. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). It will also greatly facilitate the LEU conversion effort, since the upgraded computational capabilities are now at a stage where they can be, and in fact have been, used for the required physics analysis from the beginning. In this context, extensive scoping neutronics analyses were completed for six preconceptual candidate LEU fuel element designs for the ATR (and for its companion critical facility, ATRC). Of these, four exhibited neutronics performance in what is believed to be an acceptable range. However, there are currently some concerns with regard to fabricability and mechanical performance that have emerged for one of the four latter concepts. Thus three concepts have been selected for more comprehensive conceptual design analysis during the upcoming fiscal year.

David W. Nigg; Sean R. Morrell

2012-09-01T23:59:59.000Z

448

Nuclear Energy Research Initiative Annual Report-Innovative Approaches to Automating QA/QC of Fuel Particle Production Using On-Line Nondestructive Methods for Higher Reliability.  

Science Conference Proceedings (OSTI)

This document summarizes the activities performed and progress made in FY-03. Various approaches for automating the particle fuel production QC process using on-line nondestructive methods for higher reliability were evaluated. In this first-year of a three-year project, surrogate fuel particles made available for testing included leftovers from initial coater development runs. These particles had a high defect fraction and the particle properties spanned a wide range, providing the opportunity to examine worst-case conditions before refining the inspection methods to detect more subtle coating features. Particles specifically designed to evaluate the NDE methods being investigated under this project will be specified and fabricated at ORNL early next reporting period. The literature was reviewed for existing inspection technology and to identify many of the fuel particle conditions thought to degrade its performance. A modeling study, including the electromagnetic and techniques, showed that the in-line electromagnetic methods should provide measurable responses to missing layers, kernel diameter, and changes in coating layer thickness, with reasonable assumptions made for material conductivities. The modeling study for the ultrasonic methods provided the resonant frequencies that should be measured using the resonant ultrasound technique, and the results from these calculations were published in the proceedings for two conferences. The notion of a particle quality index to relate coating properties to fabrication process parameters was explored. Progress was made in understanding the fabrication process. GA identified key literature in this area and Saurwein (2003a) provided a literature review/summary. This literature has been reviewed. An approach previously applied to flexible manufacturing was adopted and the modification and development of the concepts to meet TRISO particle fuel manufacturing and QA/QC needs initiated. This approach establishes relationships between key process parameters and part parameters, including ''defects'' for each manufacturing step--which in this case is a coating layer. This activity will continue in year two, when an initial evaluation will be made using available process and particle data. Radiographic and Computed Tomography (CT) techniques were developed and refined to examine individual particles and batches of up to about 30 to 40 particles for kernel diameter, coating layer thickness and spatial uniformity. These results are essential for developing the defect library of characterized particles that will be used to calibrate the high-speed nondestructive measurement methods that are found capable of automatically detecting particles having properties outside a specified range. The in-line inspection methods evaluated include the electrical property measurement methods traditionally referred to as eddy current and capacitance (or dielectric) in the nondestructive test methods literature. An eddy current technique was developed and evaluated on stationary particles. Good correlation was found between the eddy current measurements and the radiographically determined particle dimensions. Initial measurements on fuel compacts using the eddy current approach showed that these materials are amenable to electrical inspection and that significant coil impedance variability can be observed among different samples.

Hockey, Ronald L.; Bond, Leonard J.; Ahmed, Salahuddin; Sandness, Gerald A.; Gray, Joseph N.; Batishko, Charles R.; Flake, Matthew; Panetta, Paul D.; Saurwein, John J.; Lowden, Richard A.; Good, Morris S.

2004-04-20T23:59:59.000Z

449

NERSC Annual Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Annual Reports NERSC Annual Reports Sort by: Default | Name anrep2000.png NERSC Annual Report 2000 Download Image: anrep2000.png | png | 203 KB Download File:...

450

Fueling area site assessment  

SciTech Connect

This report provides results of a Site Assessment performed at the Fuel Storage Area at Buckley ANG Base in Aurora, Colorado. Buckley ANG Base occupies 3,328 acres of land within the City of Aurora in Arapahoe County, Colorado. The Fuel Storage Area (also known as the Fueling Area) is located on the west side of the Base at the intersection of South Powderhorn Street and East Breckenridge Avenue. The Fueling Area consists of above ground storage tanks in a bermed area, pumps, piping, valves, an unloading stand and a fill stand. Jet fuel from the Fueling Area is used to support aircraft operations at the Base. Jet fuel is stored in two 200,000 gallon above ground storage tanks. Fuel is received in tanker trucks at the unloading stand located south and east of the storage tanks. Fuel required for aircraft fueling and other use is transferred into tanker trucks at the fill stand and transported to various points on the Base. The Fuel Storage Area has been in operation for over 20 years and handles approximately 7 million gallons of jet fuel annually.

1996-08-15T23:59:59.000Z

451

Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC  

Buildings Energy Data Book (EERE)

3 3 Efficiency Standards for Residential Boilers Effective for products manufactured before September 1, 2012 AFUE(%) (1) Boilers (excluding gas steam) Gas Steam Boilers Effective for products manufactured on or after September 1, 2012 (2) AFUE (%) (1) No Constant Burning Pilot Automatic Means for Adjusting Water Temperature Gas Steam No Constant Burning Pilot Oil Hot Water Automatic Means for Adjusting Water Temperature Oil Steam None Electric Hot water Automatic Means for Adjusting Water Temperature Electric Steam None Note(s): Source(s): 84 82 None None 1) Annual Fuel Utilization Efficiency. 2) Boilers manufactured to operate without any need for electricity, an electric connection, electric gauges, electric pumps, electric wires, or electric devices are not required to comply with the revised standards that take effect September 1,

452

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Sites Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of special compliance conditions Discussion of the facilitys environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

453

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David Frederick

2012-02-01T23:59:59.000Z

454

Annual Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 09 THROUGH 09/30/2010 The following Annual Freedom of Information Act report covers the Period 10/01/2009, through 09/30/2010, as required by 5 U.S.C. 552. I. BASIC INFORMATION REGARDING REPORT 1. Kevin T. Hagerty, Director Office of Information Resources, MA-90 U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 202-586-5955 Alexander Morris, FOIA Officer Sheila Jeter, FOIA/Privacy Act Specialist FOIA Office, MA-90 Office of Information Resources U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 202-586-5955 2. An electronic copy of the Freedom of Information Act (FOIA) report can be obtained at http://management.energy.gov/documents/annual_reports.htm. The report can then be accessed by clicking FOIA Annual Reports.

455

PRINCETON PLASMA PHYSICS LABORATORY (PPPL) ANNUAL SITE ENVIRONMENTAL REPORT  

E-Print Network (OSTI)

leaching procedure (RCRA) TDS total dissolved solids TFTR Tokamak Fusion Test Reactor TPH total petroleum of the NJDEP a total fuel use limit for all four boilers. The NJDEP granted that request and imposed a maximum annual fuel use limitation for the C site boilers of 227,370 gallons of #4 fuel oil and 88.6 million

456

Electric power annual 1992  

SciTech Connect

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

457

Fuel Cell Development Status  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and sustainable fuel cell solutions UTC Power About Us PureCell ® Model 400 Solution Process Overview Power Conditioner Converts DC power to high-quality AC power 3 Fuel Cell Stack Generates DC power from hydrogen and air 2 Fuel Processor Converts natural gas fuel to hydrogen

458

Nano-Scale Irradiation Induced Chemistry Changes in Oxide Fuel ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Radiation Effects in Oxide Ceramics and Novel LWR Fuels. Presentation Title...

459

Irradiation-Induced Defects in Oxide Nuclear Fuels  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium , Radiation Effects in Ceramic Oxide and Novel LWR Fuels. Presentation Title...

460

Natural Gas Vehicle Fuel Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Gas volumes delivered for use as vehicle fuel are included in the State annual totals through 2009 but not in ... electric power price data are for regulated ...

Note: This page contains sample records for the topic "afue annual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Infrastructure Analysis of Early Market Transition of Fuel Cell...  

NLE Websites -- All DOE Office Websites (Extended Search)

1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Brian Bush (Primary Contact), Marc Melaina, Olga Sozinova, Michael Penev National Renewable Energy Laboratory...

462

Reflections on Fuel Pellet-Cladding Interaction (PCI)  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Radiation Effects in Oxide Ceramics and Novel LWR Fuels. Presentation Title...

463

,"U.S. Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","10312013"...

464

,"U.S. Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

465

High-Activity Dealloyed Catalysts - DOE Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Frederick T. Wagner (Primary Contact), Anusorn Kongkanand General Motors, LLC (GM) 10 Carriage St. Honeoye...

466

,"New Mexico Natural Gas Lease Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

467

,"New Mexico Natural Gas Plant Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2011 ,"Release Date:","1031...

468

,"New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Lease and Plant Fuel Consumption (MMcf)",1,"Annual",1998 ,"Release...

469

,"New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2011...

470

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit