National Library of Energy BETA

Sample records for africa-gtz bus rapid

  1. South Africa-GTZ Bus Rapid Transit Johannesburg | Open Energy...

    Open Energy Info (EERE)

    and 20 stations, will be completed by June 2009 and shall be operational before the Soccer Confederation Cup in June 2009. Phase 1B (intended to bring the total busways to 63km...

  2. South Africa-GTZ Clean Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Clean Energy Project Jump to: navigation, search Logo: South Africa-GTZ Clean Energy Project Name South Africa-GTZ Clean Energy Project AgencyCompany Organization GTZ Partner...

  3. Global Bus Rapid Transit (BRT) Database | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentglobal-bus-rapid-transit-brt-database Language: English Related Tools GIZ Sourcebook Module 4e: Intelligent Transport Systems...

  4. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Developing a Natural Gas- Powered Bus Rapid Transit Service: A Case Study George Mitchell National Renewable Energy Laboratory Technical Report NREL/TP-5400-64756 November 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308

  5. Developing a Natural Gas-Powered Bus Rapid Transit Service. A Case Study

    SciTech Connect (OSTI)

    Mitchell, George

    2015-11-01

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largest rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.

  6. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study

    SciTech Connect (OSTI)

    Mitchell, G.

    2015-11-03

    The Roaring Fork Transit Authority (RFTA) and its VelociRFTA Bus Rapid Transit (BRT) program are unique in many ways. For example, VelociRFTA was the first rural BRT system in the United States and the operational environment of the VelociRFTA BRT is one of the most severe in the country, with extreme winter temperatures and altitudes close to 8,000 feet. RFTA viewed high altitude operation as the most challenging characteristic when it began considering the use of natural gas. RFTA is the second-largest public transit system in Colorado behind Denver's Regional Transportation District (RTD), and it is one of the largest rural public transit systems in the country. In 2013, RFTA accepted delivery of 22 new compressed natural gas (CNG) buses that went into service after completion of maintenance and refueling facilities earlier that year. This paper examines the lessons learned from RFTA's experience of investigating--and ultimately choosing--CNG for their new BRT program and focuses on the unique environment of RFTA's BRT application; the decision process to include CNG fueling in the project; unforeseen difficulties encountered in the operation of CNG buses; public perception; cost comparison to competing fuels; and considerations for indoor fueling facilities and project funding.

  7. FTA-Characteristics of Bus Rapid Transit for Decision-Making...

    Open Energy Info (EERE)

    Rapid Transit for Decision-Making AgencyCompany Organization: Federal Transit Administration, United States Department of Transportation Focus Area: Transportation Resource...

  8. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K.; Norton, P.; Clark, N.

    2000-11-07

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  9. Hydrogen powered bus

    ScienceCinema (OSTI)

    None

    2013-11-22

    Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

  10. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet) Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell ...

  11. Orion Bus Industries | Open Energy Information

    Open Energy Info (EERE)

    Bus Industries Jump to: navigation, search Name: Orion Bus Industries Place: Ontario, Canada Information About Partnership with NREL Partnership with NREL Yes Partnership Type...

  12. Bus Rollover Testing and Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bus Rollover Testing And Simulation Computational Structural Mechanics Collaborator Research Highlights - Florida State University & Florida Department of Transportation Current research conducted at FAMU-FSU College of Engineering pertains to comprehensive crashworthiness and safety assessment of a paratransit bus on a Chevrolet 138" wheelbase. The design process of passenger compartment structure in paratransit buses is not regulated by any of crashworthiness standards. FAMU-FSU

  13. Users Perspective on Advanced Fuel Cell Bus Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Users Perspective on Advanced Fuel Cell Bus Technology Users Perspective on Advanced Fuel Cell Bus Technology Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, Washington,...

  14. Joint Fuel Cell Bus Workshop Summary Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Bus Workshop Summary Report Joint Fuel Cell Bus Workshop Summary Report Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, June 7, 2010 PDF icon...

  15. Kentucky Hybrid Electric School Bus Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    icon tiarravt062settle2010p.pdf More Documents & Publications Kentucky Hybrid Electric School Bus Program Kentucky Hybrid Electric School Bus Program Plug IN Hybrid Vehicle Bus...

  16. Shuttle Bus and Couriers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shuttle Bus and Couriers Shuttle Bus and Couriers Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. The shuttle bus departure and arrival times may be impacted by traffic, weather, or other logistical

  17. Fuel Cell Bus Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Fuel Cell Bus Workshop Presentation at DOE and DOT Joint Fuel Cell Bus Workshop, June 7, 2010 PDF icon buswksp10_papageorgopoulos.pdf More Documents & Publications Joint Fuel Cell Bus Workshop Summary Report Fuel Cell Buses Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status

  18. Pybus -- A Python Software Bus

    SciTech Connect (OSTI)

    Lavrijsen, Wim T.L.P.

    2004-10-14

    A software bus, just like its hardware equivalent, allows for the discovery, installation, configuration, loading, unloading, and run-time replacement of software components, as well as channeling of inter-component communication. Python, a popular open-source programming language, encourages a modular design on software written in it, but it offers little or no component functionality. However, the language and its interpreter provide sufficient hooks to implement a thin, integral layer of component support. This functionality can be presented to the developer in the form of a module, making it very easy to use. This paper describes a Pythonmodule, PyBus, with which the concept of a ''software bus'' can be realized in Python. It demonstrates, within the context of the ATLAS software framework Athena, how PyBus can be used for the installation and (run-time) configuration of software, not necessarily Python modules, from a Python application in a way that is transparent to the end-user.

  19. Electrical system architecture having high voltage bus

    DOE Patents [OSTI]

    Hoff, Brian Douglas; Akasam, Sivaprasad

    2011-03-22

    An electrical system architecture is disclosed. The architecture has a power source configured to generate a first power, and a first bus configured to receive the first power from the power source. The architecture also has a converter configured to receive the first power from the first bus and convert the first power to a second power, wherein a voltage of the second power is greater than a voltage of the first power, and a second bus configured to receive the second power from the converter. The architecture further has a power storage device configured to receive the second power from the second bus and deliver the second power to the second bus, a propulsion motor configured to receive the second power from the second bus, and an accessory motor configured to receive the second power from the second bus.

  20. PinBus Interface Design

    SciTech Connect (OSTI)

    Hammerstrom, Donald J.; Adgerson, Jewel D.; Sastry, Chellury; Pratt, Richard M.; Pratt, Robert G.

    2009-12-30

    On behalf of the U.S. Department of Energy, PNNL has explored and expanded upon a simple control interface that might have merit for the inexpensive communication of smart grid operational objectives (demand response, for example) to small electric end-use devices and appliances. The approach relies on bi-directional communication via the electrical voltage states of from one to eight shared interconnection pins. The name PinBus has been suggested and adopted for the proposed interface protocol. The protocol is defined through the presentation of state diagrams and the pins’ functional definitions. Both simulations and laboratory demonstrations are being conducted to demonstrate the elegance and power of the suggested approach. PinBus supports a very high degree of interoperability across its interfaces, allowing innumerable pairings of devices and communication protocols and supporting the practice of practically any smart grid use case.

  1. Overview of Fuel Cell Electric Bus Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy ... o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o ...

  2. Alternative Fuels Data Center: School Bus Idle Reduction Strategies

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    School Bus Idle Reduction Strategies to someone by E-mail Share Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Facebook Tweet about Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Twitter Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Google Bookmark Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Delicious Rank Alternative Fuels Data Center: School Bus Idle Reduction Strategies on Digg Find

  3. Alternative Fuel School Bus Information Resources

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 4-page Clean Cities fact sheet provides a list of important resources for learning more about alternative fuels in school buses. It includes information regarding Alternative Fuel School Bus Manufacturers, Alternative Fuel HD Engine Manufacturers, Alternative Fuel School Bus Operators, and Key Web Resources for Alternative Fuels.

  4. Interprocessor bus switching system for simultaneous communication in plural bus parallel processing system

    DOE Patents [OSTI]

    Atac, Robert; Fischler, Mark S.; Husby, Donald E.

    1991-01-01

    A bus switching apparatus and method for multiple processor computer systems comprises a plurality of bus switches interconnected by branch buses. Each processor or other module of the system is connected to a spigot of a bus switch. Each bus switch also serves as part of a backplane of a modular crate hardware package. A processor initiates communication with another processor by identifying that other processor. The bus switch to which the initiating processor is connected identifies and secures, if possible, a path to that other processor, either directly or via one or more other bus switches which operate similarly. If a particular desired path through a given bus switch is not available to be used, an alternate path is considered, identified and secured.

  5. Interprocessor bus switching system for simultaneous communication in plural bus parallel processing system

    DOE Patents [OSTI]

    Atac, R.; Fischler, M.S.; Husby, D.E.

    1991-01-15

    A bus switching apparatus and method for multiple processor computer systems comprises a plurality of bus switches interconnected by branch buses. Each processor or other module of the system is connected to a spigot of a bus switch. Each bus switch also serves as part of a backplane of a modular crate hardware package. A processor initiates communication with another processor by identifying that other processor. The bus switch to which the initiating processor is connected identifies and secures, if possible, a path to that other processor, either directly or via one or more other bus switches which operate similarly. If a particular desired path through a given bus switch is not available to be used, an alternate path is considered, identified and secured. 11 figures.

  6. Demonstration Project for Fuel Cell Bus Commercialisation in...

    Open Energy Info (EERE)

    Project for Fuel Cell Bus Commercialisation in China Jump to: navigation, search Name: Demonstration Project for Fuel Cell Bus Commercialisation in China Place: Beijing and...

  7. Low Cost, High Temperature, High Ripple Current DC Bus Capacitors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost, High Temperature, High Ripple Current DC Bus Capacitors Low Cost, High Temperature, High Ripple Current DC Bus Capacitors 2010 DOE Vehicle Technologies and Hydrogen...

  8. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results This...

  9. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Evaluation: Report for the 2001 Hydrogen Program Review Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review This paper, presented at the 2001 DOE ...

  10. VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation) VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation) Details hydrogen fuel cell buses being ...

  11. Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Projects Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies Hydrogen Fuel Cell Bus Evaluation for California Transit Agencies In February 2000, the ...

  12. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus DOE Hydrogen Program (Fact Sheet) PDF icon 42407.pdf More ...

  13. A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007...

    Open Energy Info (EERE)

    on Worldwide Hydrogen Bus Demonstrations, 2002-2007 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Report on Worldwide Hydrogen Bus Demonstrations, 2002-2007 Agency...

  14. Fuel Cell Bus Takes a Starring Role in the Burbank Bus Fleet

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's involvement.

  15. Bus Rapid Transit Planning Guide | Open Energy Information

    Open Energy Info (EERE)

    from the LEDS Global Partnership. When to Use This Tool While building a low emission strategy for your country's transportation system, this tool is most useful during these...

  16. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  17. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB: ...

  18. NREL Energy DataBus/Nonprofit Partners | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History NREL Energy DataBusNonprofit Partners < NREL Energy DataBus Jump to: navigation, search...

  19. NREL Energy DataBus/Resources | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History NREL Energy DataBusResources < NREL Energy DataBus Jump to: navigation, search View the...

  20. Fuel Cell Bus Evaluation Results (Presentation) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Results (Presentation) Fuel Cell Bus Evaluation Results (Presentation) Presented at the Transportation Research Board (TRB) 87th Annual Meeting held January 13-17, 2008 in Washington, D.C. PDF icon 42665.pdf More Documents & Publications Technology Validation: Fuel Cell Bus Evaluations Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix VTA Prototype Fuel Cell Bus Evaluation:

  1. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's (DOE) involvement; included are specifications for the fuel cell bus and information about its operation.

  2. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet.

    Broader source: Energy.gov [DOE]

    Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOE’s Advanced Vehicle Testing Activity.

  3. Energy DataBus (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    NREL has developed the Energy DataBus, an open-sourced software that collects massive amounts of energy-related data at second-to-second intervals; stores it in a massive, scalable database; and turns it into useful information.

  4. Foothill Transit Battery Electric Bus Demonstration Results

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Foothill Transit Battery Electric Bus Demonstration Results Leslie Eudy, Robert Prohaska, Kenneth Kelly, and Matthew Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-65274 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  5. DOE HQ Shuttle Bus Schedule and Route | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shuttle Bus Schedule and Route DOE HQ Shuttle Bus Schedule and Route The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. The shuttle bus departure and arrival times may be impacted by traffic, weather, or other logistical interruptions.

  6. Alloy Foam Diesel Emissions Control School Bus Implementation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alloy Foam Diesel Emissions Control School Bus Implementation Poster presentation from the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, ...

  7. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration This document ...

  8. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration; Appendix Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix ...

  9. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus...

    Broader source: Energy.gov (indexed) [DOE]

    (part of the medium and heavy-duty truck data) describes testing results of the Idaho National Laboratory's demonstration hybrid shuttle bus. This research was conducted by Idaho ...

  10. AVTA: Idaho National Laboratory Experimental Hybrid Shuttle Bus Testing Results

    Broader source: Energy.gov [DOE]

    The following report describes testing results of the Idaho National Laboratory's demonstration hybrid shuttle bus. This research was conducted by Idaho National Laboratory.

  11. DOE HQ Shuttle Bus Route and Schedule, April 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    bus comes to a complete stop for one minute. > 270 Corporate Center (20300 Century Boulevard) - Front entrance > Portals - Main entrance located at 1201 Maryland Ave., S.W. > ...

  12. Audit of Bus Service Subsidies at the Idaho National Engineering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AUDIT OF BUS SERVICE SUBSIDIES AT THE IDAHO NATIONAL ENGINEERING LABORATORY The Office of Inspector General wants to make the distribution of its reports as customer friendly and ...

  13. SunLine Tests HHICE Bus in Desert Climate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tests HHICE Bus in Desert Climate SunLine Tests HHICE Bus in Desert Climate Fuel Cell Bus Demonstration Projects (Fact Sheet). PDF icon 40107.pdf More Documents & Publications...

  14. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2008-10-01

    This report provides preliminary results from a National Renewable Energy Laboratory evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment; early results and agency experience are also provided.

  15. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results

    Broader source: Energy.gov [DOE]

    This report provides preliminary results from the evaluation of a protoptye fuel cell transit bus operating at Connecticut Transit in Hartford. Included are descriptions of the planned fuel cell bus demonstration and equipment, early results and agency experience are also provided.

  16. Typical Oak Ridge cemesto houses and city bus | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Typical Oak Ridge cemesto ... Typical Oak Ridge cemesto houses and city bus Typical Oak Ridge cemesto houses and city bus

  17. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons ...

  18. Bus bar electrical feedthrough for electrorefiner system

    DOE Patents [OSTI]

    Williamson, Mark; Wiedmeyer, Stanley G; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2013-12-03

    A bus bar electrical feedthrough for an electrorefiner system may include a retaining plate, electrical isolator, and/or contact block. The retaining plate may include a central opening. The electrical isolator may include a top portion, a base portion, and a slot extending through the top and base portions. The top portion of the electrical isolator may be configured to extend through the central opening of the retaining plate. The contact block may include an upper section, a lower section, and a ridge separating the upper and lower sections. The upper section of the contact block may be configured to extend through the slot of the electrical isolator and the central opening of the retaining plate. Accordingly, relatively high electrical currents may be transferred into a glovebox or hot-cell facility at a relatively low cost and higher amperage capacity without sacrificing atmosphere integrity.

  19. Joint Fuel Cell Bus Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Bus Workshop Joint Fuel Cell Bus Workshop The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) held a Fuel Cell Bus Workshop on June 7, 2010 in Washington, D.C. in conjunction with the DOE Hydrogen and Fuel Cell Program Annual Merit Review. The workshop plenary and breakout session brought together technical experts from industry, end users, academia, DOE national laboratories, and other government agencies to address the status and technology needs of

  20. NREL: Energy Analysis - The Energy DataBus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the National Renewable Energy Laboratory (NREL) has created the Energy DataBus-a system for organizations to store and process their energy data (or any time-series data)....

  1. VTA Prototype Fuel Cell Bus Evaluation: Interim Results (Presentation)

    Broader source: Energy.gov [DOE]

    Details hydrogen fuel cell buses being evaluated in service at AC Transit. Presented at the APTA Bus and Paratransit Conference in Anaheim, California, April 30 through May 3, 2006.

  2. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethylether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operation in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges have continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. As of late June 2002, it appears that the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head is being installed on the system to alleviate this problem and get the shuttle bus back in operation. In summary, the conversion is completed but there have been operational challenges in the field. They continue to work to make the shuttle bus as reliable to operate on DME-diesel blends as possible.

  3. Designing New Transit Bus Garages to be Fuel Flexible

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Designing New Transit Bus Garages to be Fuel Flexible Prepared By: Marathon Technical Services Six Venus Crescent P.O. Box 318 Heidelberg, Ontario, Canada N0B1Y0 Telephone: 519-699-9250 May 12, 2006 ______________________________________________________________________________ DESIGNING NEW TRANSIT BUS GARAGES TO BE FUEL FLEXIBLE Background Information Before discussing the building design features that are recommended for CNG and GH2 buses, it is important to understand what makes these fuels

  4. Final Report for the H2Fuel Bus

    SciTech Connect (OSTI)

    Jacobs, W.D.

    1998-11-25

    The H2Fuel Bus is the world's first hydrogen-fueled electric hybrid transit bus. It was a project developed through a public/private partnership involving several leading technological and industrial organizations, with primary funding by the Department of Energy (DOE). The primary goals of the project are to gain valuable information on the technical readiness and economic viability of hydrogen fueled buses and to enhance the public awareness and acceptance of emerging hydrogen technologies.

  5. DOE HQ Shuttle Bus Route and Schedule, April 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April, 2016 DOE HQ Shuttle Bus Route and Schedule The DOE Shuttle Buses follow the same schedules between the two main Headquarters locations, Forrestal and Germantown. The buses start their routes at each Headquarters facility at the same times, see the schedule below. The subsequent stops at the other facilities are relative to the departure time of each route. Headquarters employees are reminded of the statutory provisions that authorize and limit the use of the shuttle bus service. Specific

  6. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus DOE Hydrogen Program (Fact Sheet) PDF icon 42407.pdf More Documents & Publications Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results

  7. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

  8. American Fuel Cell Bus Project Evaluation. Second Report

    SciTech Connect (OSTI)

    Eudy, Leslie; Post, Matthew

    2015-09-01

    This report presents results of the American Fuel Cell Bus (AFCB) Project, a demonstration of fuel cell electric buses operating in the Coachella Valley area of California. The prototype AFCB was developed as part of the Federal Transit Administration's (FTA's) National Fuel Cell Bus Program. Through the non-profit consortia CALSTART, a team led by SunLine Transit Agency and BAE Systems developed a new fuel cell electric bus for demonstration. SunLine added two more AFCBs to its fleet in 2014 and another in 2015. FTA and the AFCB project team are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory to evaluate the buses in revenue service. This report summarizes the performance results for the buses through June 2015.

  9. Durathon Battery in New Bus | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery-Dominant Fuel Cell Bus Uses New Durathon(tm) Battery Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Battery-Dominant Fuel Cell Bus Uses New Durathon(tm) Battery Researchers at GE Global Research, the General Electric Company's (NYSE: GE) technology development arm, have achieved a first step in reducing the

  10. RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary K. Proc, R. Barnitt, and R.L. McCormick Technical Report NREL/TP-540-38364 August 2005 RTD Biodiesel (B20) Transit Bus Evaluation: Interim Review Summary K. Proc, R. Barnitt, and R.L. McCormick Prepared under Task No. FC05.9400 Technical Report NREL/TP-540-38364 August 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy

  11. UNDP-GEF Fuel Cell Bus Programme: Update | Open Energy Information

    Open Energy Info (EERE)

    GEF Fuel Cell Bus Programme: Update Jump to: navigation, search Tool Summary LAUNCH TOOL Name: UNDP-GEF Fuel Cell Bus Programme: Update AgencyCompany Organization: United Nations...

  12. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency Report details the six-month evaluation...

  13. SunLine Begins Extended Testing of Hybrid Fuel Cell Bus | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Begins Extended Testing of Hybrid Fuel Cell Bus SunLine Begins Extended Testing of Hybrid Fuel Cell Bus DOE Hydrogen Program (Fact Sheet) PDF icon 43203.pdf More Documents & ...

  14. SunLine Leads the Way in Demonstrating Hydrogen-Fueled Bus Technologies (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    This brochure describes SunLine Transit Agency's newest advanced technology fuel cell electric bus. SunLine is collaborating with the U.S. Department of Energy's Fuel Cell Technologies Program to evaluate the bus in revenue service. This bus represents the sixth generation of hydrogen-fueled buses that the agency has operated since 2000.

  15. A Segmented Drive System with a Small DC Bus Capacitor | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy apep_08_su.pdf More Documents & Publications A Segmented Drive Inverter Topology with a Small DC Bus Capacitor A Segmented Drive Inverter Topology with a Small DC Bus Capacitor A Segmented Drive Inverter Topology with a Small DC Bus Capacitor

  16. Development of the bus joint for the ITER Central Solenoid

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N; Irick, David Kim; Kenney, Steven J

    2013-01-01

    The terminations of the Central Solenoid (CS) modules are connected to the bus extensions by joints located outside the CS in the gap between the CS and Torodial Field (TF) assemblies. These joints have very strict space limitations. Low resistance is a common requirement for all ITER joints. In addition, the CS bus joints will experience and must be designed to withstand significant variation in the magnetic field of several tenths of a Tesla per second during initiation of plasma. The joint resistance is specified to be less than 4 nOhm. The joints also have to be soldered in the field and designed with the possibility to be installed and dismantled in order to allow cold testing in the cold test facility. We have developed coaxial joints that meet these requirements and have demonstrated the feasibility to fabricate and assemble them in the vertical configuration. We introduced a coupling cylinder with superconducting strands soldered to the surface of the cable that can be installed in the ITER assembly hall and at the Cold Test Facility. This cylinder serves as a transition area between the CS module and the bus extension. We made two racetrack samples and tested four bus joints in our Joint Test Apparatus. Resistance of the bus joints was measured by a decay method and by a microvoltmeter; the value of the current was measured by the Hall probes. This measurement method was verified in the previous tests. The resistance of the joints varied insignificantly from 1.5 to 2 nOhm. One of the challenges associated with a soldered joint is the inability to use corrosive chemicals that are difficult to clean. This paper describes our development work on cable preparation, chrome removal, compaction, soldering, and final assembly and presents the test results.

  17. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: First Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2011-03-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This report provides the early data results and implementation experience of the AT fuel cell bus since it was placed in service.

  18. Discharging a DC bus capacitor of an electrical converter system

    DOE Patents [OSTI]

    Kajouke, Lateef A; Perisic, Milun; Ransom, Ray M

    2014-10-14

    A system and method of discharging a bus capacitor of a bidirectional matrix converter of a vehicle are presented here. The method begins by electrically shorting the AC interface of the converter after an AC energy source is disconnected from the AC interface. The method continues by arranging a plurality of switching elements of a second energy conversion module into a discharge configuration to establish an electrical current path from a first terminal of an isolation module, through an inductive element, and to a second terminal of the isolation module. The method also modulates a plurality of switching elements of a first energy conversion module, while maintaining the discharge configuration of the second energy conversion module, to at least partially discharge a DC bus capacitor.

  19. BC Transit Fuel Cell Bus Project: Evaluation Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Post, M.

    2014-02-01

    This report evaluates a fuel cell electric bus demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. This evaluation report covers two years of revenue service data on the buses from April 2011 through March 2013.

  20. Safety evaluation of a hydrogen fueled transit bus

    SciTech Connect (OSTI)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T.

    1997-12-31

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  1. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Third Results Reports

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2012-05-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. NREL has previously published two reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from July 2011 through January 2012.

  2. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2013-01-01

    SunLine Transit Agency, which provides public transit services to the Coachella Valley area of California, has demonstrated hydrogen and fuel cell bus technologies for more than 10 years. In May 2010, SunLine began demonstrating the advanced technology (AT) fuel cell bus with a hybrid electric propulsion system, fuel cell power system, and lithium-based hybrid batteries. This report describes operations at SunLine for the AT fuel cell bus and five compressed natural gas buses. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is working with SunLine to evaluate the bus in real-world service to document the results and help determine the progress toward technology readiness. NREL has previously published three reports documenting the operation of the fuel cell bus in service. This report provides a summary of the results with a focus on the bus operation from February 2012 through November 2012.

  3. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Bus Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surpasses 2016 and Ultimate Technical Targets Fuel Cell Electric Bus Reliability Surpasses 2016 and Ultimate Technical Targets Project Technology Validation: Fuel Cell Electric Bus Evaluations Contact Leslie Eudy Related Publications Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015 Results from NREL's fuel cell electric bus (FCEB) evaluations show that manufacturers have made consistent progress over the last few years in improving durability and reliability. The transit industry

  4. Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine Transit Agency

    Broader source: Energy.gov [DOE]

    Report details the six-month evaluation of the ThunderPower hydrogen fuel cell bus demonstrated at SunLine Transit Agency.

  5. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report and Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses.

  6. Hydrogen Fuel Cell Bus Evaluation: Report for the 2001 Hydrogen Program Review

    Broader source: Energy.gov [DOE]

    This paper, presented at the 2001 DOE Hydrogen Program Review, describes the prototype fuel cell bus, fueling infrastructure, and maintenance facility for an early technology adopter.

  7. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location.

  8. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  9. BC Transit Fuel Cell Bus Project Evaluation Results: Second Report

    SciTech Connect (OSTI)

    Eudy, L.; Post, M.

    2014-09-01

    Second report evaluating a fuel cell electric bus (FCEB) demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. NREL published its first report on the demonstration in February 2014. This report is an update to the previous report; it covers 3 full years of revenue service data on the buses from April 2011 through March 2014 and focuses on the final experiences and lessons learned.

  10. American Fuel Cell Bus Project Evaluation: Second Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    American Fuel Cell Bus Project Evaluation: Second Report Leslie Eudy and Matthew Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-64344 September 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  11. BC Transit Fuel Cell Bus Project Evaluation Results: Second Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    BC Transit Fuel Cell Bus Project Evaluation Results: Second Report L. Eudy and M. Post National Renewable Energy Laboratory Technical Report NREL/TP-5400-62317 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National

  12. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet describes the initiation of NREL’s evaluation of a fuel cell hybrid electric bus at Hickam Air Force Base in Honolulu, Hawaii as part of DOE’s Hydrogen, Fuel Cells & Infrastructure Technologies Program.

  13. NREL's Hydrogen-Powered Bus Serves as Showcase for Advanced Vehicle Technologies (AVT) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Brochure describes the hydrogen-powered internal combustion engine (H2ICE) shuttle bus at NREL. The U.S. Department of Energy (DOE) is funding the lease of the bus from Ford to demonstrate market-ready advanced technology vehicles to visitors at NREL.

  14. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  15. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Second Results Report and Appendices

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2011-10-01

    This report describes operations at SunLine Transit Agency for their newest prototype fuel cell bus and five compressed natural gas (CNG) buses. In May 2010, SunLine began operating its sixth-generation hydrogen fueled bus, an Advanced Technology (AT) fuel cell bus that incorporates the latest design improvements to reduce weight and increase reliability and performance. The agency is collaborating with the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to evaluate the bus in revenue service. This is the second results report for the AT fuel cell bus since it was placed in service, and it focuses on the newest data analysis and lessons learned since the previous report. The appendices, referenced in the main report, provide the full background for the evaluation. They will be updated as new information is collected but will contain the original background material from the first report.

  16. COMPARISON OF PARALLEL AND SERIES HYBRID POWERTRAINS FOR TRANSIT BUS APPLICATION

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Smith, David E; Jones, Perry T; LaClair, Tim J; Parks, II, James E

    2016-01-01

    The fuel economy and emissions of both conventional and hybrid buses equipped with emissions aftertreatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicate that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar CO and HC tailpipe emissions but were also predicted to have reduced NOx tailpipe emissions compared to the conventional bus in higher speed cycles. For the New York bus cycle (NYBC), which has the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus, while the parallel hybrid bus had significantly lower tailpipe emissions. All three bus powertrains were found to require periodic active DPF regeneration to maintain PM control. Plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed due to the relatively large battery capacity that is typical of the series hybrid configuration.

  17. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2010-01-01

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

  18. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

  19. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

  20. Fuel Cell Transit Bus Coordination and Evaluation Plan California Fuel Cell Transit Evaluation Team

    Broader source: Energy.gov [DOE]

    The purpose of this document is to describe the coordination and evaluation of the demonstration of seven full-size (40-foot) fuel cell transit buses. The descriptions in this document include the partners, fuel cell bus demonstration sites, objectives...

  1. TCAT to Receive Ithaca's First 'Cutting-Edge' Fuel Cell Bus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TCAT to Receive Ithaca's First 'Cutting-Edge' Fuel Cell Bus September 6th, 2013 By Kerry Close Within two years, TCAT riders may be able to make their commute on a "clean,...

  2. Pardon me, boy, is that the Chattanooga...bus? | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Rep. Chuck Fleischmann (R-Tenn.) streamed out of a charter bus at the New Hope Center on Oct. 14, she continued to see the same thing on the faces of her colleagues...

  3. Advanced Methods Approach to Hybrid Powertrain Systems Optimization of a Transit Bus Application

    Broader source: Energy.gov [DOE]

    Design refinements of the GTB-40 mass-transit bus include new optimization processes, subsystem, and powertrain system requirements along with traction motor, battery, and APU development and integration

  4. Vehicle Technologies Office Merit Review 2015: Advanced Bus and Truck Radial Materials for Fuel Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given by PPG at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced bus and truck radial materials...

  5. Vehicle Technologies Office Merit Review 2014: High Performance DC Bus Film Capacitor

    Broader source: Energy.gov [DOE]

    Presentation given by GE Global Research at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

  6. Vehicle Technologies Office Merit Review 2015: High Performance DC Bus Film Capacitor

    Broader source: Energy.gov [DOE]

    Presentation given by GE Global Research at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high performance DC bus...

  7. VTA, SamTrans Look into Future with Bus Demo | Department of Energy

    Energy Savers [EERE]

    VTA, SamTrans Look into Future with Bus Demo VTA, SamTrans Look into Future with Bus Demo Fact sheet describes the study being conducted on three fuel cell buses at the Santa Clara Valley Transportation Authority and the San Mateo County Transit District. PDF icon 38265.pdf More Documents & Publications Santa Clara Valley Transportation Authority and San Mateo County Transit District -- Fuel Cell Transit Buses: Evaluation Results Santa Clara Valley Transportation Authority and San Mateo

  8. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fuel Cell Bus Evaluations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Fuel Cell Bus Evaluations Transit buses are one of the best early transportation applications for fuel cell technology. Buses operate in congested areas where pollution is already a problem. These buses are centrally located and fueled, highly visible, and subsidized by government. By evaluating the experiences of these early adopters, NREL can determine the status of bus fuel cell systems and establish lessons learned to aid other fleets in implementing the next generation of these

  9. All Other Editions Are Obsolete U.S. Department of Energy Shuttle Bus Passenger List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    511.1 (02-94) All Other Editions Are Obsolete U.S. Department of Energy Shuttle Bus Passenger List Date: Time: Bus Number: Driver's Signature: The U.S. Department of Energy (DOE) Shuttle operates Express between the Germantown Building and the Washington Office (Forrestal Building). ICC regulations prohibits en-route stops. The information being collected below is for the purpose of identifying individuals utilizing DOE Shuttle service. It is not retrievable by a personal identifier and is,

  10. Analysis of the University of Texas at Austin compressed natural gas demonstration bus. Interim research report

    SciTech Connect (OSTI)

    Wu, C.M.; Matthews, R.; Euritt, M.

    1994-06-01

    A demonstration compressed natural gas (CNG) bus has been operating on The University of Texas at Austin shuttle system since 1992. This CNG vehicle, provided by the Blue Bird Company, was an opportunity for the University to evaluate the effectiveness of a CNG bus for shuttle operations. Three basic operating comparisons were made: (1) fuel consumption, (2) tire wear, and (3) vehicle performance. The bus was equipped with a data logger, which was downloaded regularly, for trip reports. Tire wear was monitored regularly, and performance tests were conducted at the Natural Gas Vehicle Technology Center. Overall, the data suggest that fuel costs for the CNG bus are comparable to those for University diesel buses. This is a result of the lower fuel price for natural gas. Actual natural gas fuel consumption was higher for the CNG buses than for the diesel buses. Due to weight differences, tire wear was much less on the CNG buses. Finally, after installation of a closed-loop system, the CNG bus out-performed the diesel bus on acceleration, grade climbing ability, and speed.

  11. A new vehicle data bus architecture and IVIS evaluation platform for ITS modulus

    SciTech Connect (OSTI)

    Spelt, P.F.; Kirson, A.M.; Scott, S.

    1998-12-31

    An increasing number of ITS-related after-market systems present a set of in-vehicle installation and use problems relatively unique in the history of automobile use. Many automobile manufacturers would like to offer these new state of the art devices to customers, but are hampered by the current design cycle of new cars. While auto manufacturers are indeed using multiplex buses (the automotive equivalent of a computer local area network), problems remain because manufacturers are not converging on a single bus standard. This paper presents a new dual-bus architecture to address these problems, with an In-Vehicle Information System (IVIS) research platform on which the principles embodied in the ITS Data Bus architecture can be evaluated. The dual-bus architecture has been embodied in a proposed SAE standard, with a ratification vote in December, 1996. The architecture and a reference model for the interfaces and protocols of the new bus are presented and described. The goals of the ITS Data Bus are to be inexpensive and easy to install, and to provide for safe and secure functioning. These high-level goals are embodied in the proposed standard. The IVIS Development Platform comprises a number of personal computers linked via ethernet LAN, with a high-end PC serving as the IVIS computer. In this LAN, actual devices can be inserted in place of the original PC which emulated them. This platform will serve as the development and test bed for an ITS Data Bus Conformity Test, the SAE standard for which has also been developed.

  12. The ACP (Advanced Computer Program) Branch bus and real-time applications of the ACP multiprocessor system

    SciTech Connect (OSTI)

    Hance, R.; Areti, H.; Atac, R.; Biel, J.; Cook, A.; Fischler, M.; Gaines, I.; Husby, D.; Nash, T.; Zmuda, T.

    1987-05-08

    The ACP Branchbus, a high speed differential bus for data movement in multiprocessing and data acquisition environments, is described. This bus was designed as the central bus in the ACP multiprocessing system. In its full implementation with 16 branches and a bus switch, it will handle data rates of 160 MByte/sec and allow reliable data transmission over inter rack distances. We also summarize applications of the ACP system in experimental data acquisition, triggering and monitoring, with special attention paid to FASTBUS environments.

  13. Increasing throughput of multiplexed electrical bus in pipe-lined architecture

    DOE Patents [OSTI]

    Asaad, Sameh; Brezzo, Bernard V; Kapur, Mohit

    2014-05-27

    Techniques are disclosed for increasing the throughput of a multiplexed electrical bus by exploiting available pipeline stages of a computer or other system. For example, a method for increasing a throughput of an electrical bus that connects at least two devices in a system comprises introducing at least one signal hold stage in a signal-receiving one of the two devices, such that a maximum frequency at which the two devices are operated is not limited by a number of cycles of an operating frequency of the electrical bus needed for a signal to propagate from a signal-transmitting one of the two devices to the signal-receiving one of the two devices. Preferably, the signal hold stage introduced in the signal-receiving one of the two devices is a pipeline stage re-allocated from the signal-transmitting one of the two devices.

  14. The Wheels on the Bus Go Round and Round... | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Wheels on the Bus Go Round and Round... The Wheels on the Bus Go Round and Round... March 9, 2010 - 5:30am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program I have a love/hate relationship with buses. I love that they save me gasoline, are more efficient than driving a car, and reduce my greenhouse gas emissions. However, I hate them when they're running late! But there is one category of buses that I'm particularly fond of - those that run on alternative fuels. In

  15. EERE Success Story-California and Connecticut: National Fuel Cell Bus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs Drive Fuel Economy Higher | Department of Energy Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher EERE Success Story-California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher August 21, 2013 - 12:00am Addthis In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses. During this

  16. Orbital disc insulator for SF.sub.6 gas-insulated bus

    DOE Patents [OSTI]

    Bacvarov, Dosio C.; Gomarac, Nicholas G.

    1977-01-01

    An insulator for supporting a high voltage conductor within a gas-filled grounded housing consists of radially spaced insulation rings fitted to the exterior of the bus and the interior of the grounded housing respectively, and the spaced rings are connected by trefoil type rings which are integrally formed with the spaced insulation rings.

  17. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report

    Broader source: Energy.gov [DOE]

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  18. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report and Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008.

  19. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-05-01

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.

  20. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report-- Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  1. SunLine Transit Agency Fuel Cell Transit Bus: Fifth Evaluation Report (Report and Appendices)

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2009-08-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five compressed natural gas (CNG) buses. This is the fifth evaluation report for this site, and it describes results and experiences from October 2008 through June 2009. These results are an addition to those provided in the previous four evaluation reports.

  2. SunLine Transit Agency Fuel Cell Transit Bus: Fourth Evaluation Report (Report and Appendices)

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-01-01

    This report describes operations at SunLine Transit Agency for a prototype fuel cell bus and five new compressed natural gas (CNG) buses. This is the fourth evaluation report for this site, and it describes results and experiences from April 2008 through October 2008. These results are an addition to those provided in the previous three evaluation reports.

  3. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    SciTech Connect (OSTI)

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  4. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    DOE Patents [OSTI]

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  5. DART's (Dallas Area Rapid Transit) LNG Bus Fleet Start-Up Experience (Alternative Fuel Transit Buses Brochure)

    SciTech Connect (OSTI)

    Battelle

    2000-06-30

    This report, based on interviews and site visits conducted in October 1999, describes the start-up activities of the DART liquefied natural gas program, identifying problem areas, highlighting successes, and capturing the lessons learned in DART's ongoing efforts to remain at the forefront of the transit industry.

  6. Multilevel-Dc-Bus Inverter For Providing Sinusoidal And Pwm Electrical Machine Voltages

    DOE Patents [OSTI]

    Su, Gui-Jia [Knoxville, TN

    2005-11-29

    A circuit for controlling an ac machine comprises a full bridge network of commutation switches which are connected to supply current for a corresponding voltage phase to the stator windings, a plurality of diodes, each in parallel connection to a respective one of the commutation switches, a plurality of dc source connections providing a multi-level dc bus for the full bridge network of commutation switches to produce sinusoidal voltages or PWM signals, and a controller connected for control of said dc source connections and said full bridge network of commutation switches to output substantially sinusoidal voltages to the stator windings. With the invention, the number of semiconductor switches is reduced to m+3 for a multi-level dc bus having m levels. A method of machine control is also disclosed.

  7. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report and Appendices, Alameda-Contra Costa Transit District (AC Transit)

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-01-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).

  8. St. Louis Metro Biodiesel (B20) Transit Bus Evaluation: 12-Month Final Report

    SciTech Connect (OSTI)

    Barnitt, R.; McCormick, R. L.; Lammert, M.

    2008-07-01

    The St. Louis Metro Bodiesel Transit Bus Evaluation project is being conducted under a Cooperative Research and Development Agreement between NREL and the National Biodiesel Board to evaluate the extended in-use performance of buses operating on B20 fuel. The objective of this research project is to compare B20 and ultra-low sulfur diesel buses in terms of fuel economy, veicles maintenance, engine performance, component wear, and lube oil performance.

  9. Construction, Qualification, and Low Rate Production Start-up of a DC Bus

    Broader source: Energy.gov (indexed) [DOE]

    Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt029_ape_sawyer_2012_p.pdf More Documents & Publications Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles

  10. Construction, Qualification, and Low Rate Production Start-up of a DC Bus

    Broader source: Energy.gov (indexed) [DOE]

    Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt029_ape_sawyer_2011_p.pdf More Documents & Publications Construction, Qualification, and Low Rate Production Start-up of a DC Bus Capacitor High Volume Manufacturing Facility with Capacity to Support 100,000 Electric Drive Vehicles

  11. Comparison of LNG, CNG, and diesel transit bus economics. Topical report, July 1992-September 1993

    SciTech Connect (OSTI)

    Powars, C.A.; Moyer, C.B.; Luscher, D.R.; Lowell, D.D.; Pera, C.J.

    1993-10-20

    The purpose of the report is to compare the expected costs of operating a transit bus fleet on liquefied natural gas (LNG), compressed natural gas (CNG), and diesel fuel. The special report is being published prior to the overall project final report in response to the current high level of interest in LNG transit buses. It focuses exclusively on the economics of LNG buses as compared with CNG and diesel buses. The reader is referred to the anticipated final report, or to a previously published 'White Paper' report (Reference 1), for information regarding LNG vehicle and refueling system technology and/or the economics of other LNG vehicles. The LNG/CNG/diesel transit bus economics comparison is based on total life-cycle costs considering all applicable capital and operating costs. The costs considered are those normally borne by the transit property, i.e., the entity facing the bus purchase decision. These costs account for the portion normally paid by the U.S. Department of Transportation (DOT) Federal Transit Administration (FTA). Transit property net costs also recognize the sale of emissions reduction credits generated by using natural gas (NG) engines which are certified to levels below standards (particularly for NOX).

  12. Compressed Natural Gas (CNG) Transit Bus Experience Survey: April 2009--April 2010

    SciTech Connect (OSTI)

    Adams, R.; Horne, D. B.

    2010-09-01

    This survey was commissioned by the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) to collect and analyze experiential data and information from a cross-section of U.S. transit agencies with varying degrees of compressed natural gas (CNG) bus and station experience. This information will be used to assist DOE and NREL in determining areas of success and areas where further technical or other assistance might be required, and to assist them in focusing on areas judged by the CNG transit community as priority items.

  13. Statistical Characterization of School Bus Drive Cycles Collected via Onboard Logging Systems

    SciTech Connect (OSTI)

    Duran, A.; Walkowicz, K.

    2013-10-01

    In an effort to characterize the dynamics typical of school bus operation, National Renewable Energy Laboratory (NREL) researchers set out to gather in-use duty cycle data from school bus fleets operating across the country. Employing a combination of Isaac Instruments GPS/CAN data loggers in conjunction with existing onboard telemetric systems resulted in the capture of operating information for more than 200 individual vehicles in three geographically unique domestic locations. In total, over 1,500 individual operational route shifts from Washington, New York, and Colorado were collected. Upon completing the collection of in-use field data using either NREL-installed data acquisition devices or existing onboard telemetry systems, large-scale duty-cycle statistical analyses were performed to examine underlying vehicle dynamics trends within the data and to explore vehicle operation variations between fleet locations. Based on the results of these analyses, high, low, and average vehicle dynamics requirements were determined, resulting in the selection of representative standard chassis dynamometer test cycles for each condition. In this paper, the methodology and accompanying results of the large-scale duty-cycle statistical analysis are presented, including graphical and tabular representations of a number of relationships between key duty-cycle metrics observed within the larger data set. In addition to presenting the results of this analysis, conclusions are drawn and presented regarding potential applications of advanced vehicle technology as it relates specifically to school buses.

  14. Product-form solution techniques for the performance analysis of multiple-bus multiprocessor systems with nonuniform memory references

    SciTech Connect (OSTI)

    Chiola, G.; Marsan, M.A.; Balbo, G.

    1988-05-01

    Recursive relations are derived for the exact computation of the steady-state probability distribution of some queueing models with passive resources that can be used to analyze the performance of multiple-bus multiprocessor system architectures. The most general case that was shown to admit a product-form solution is described, and a recursive solution is obtained considering different processor access rates, different memory selection probabilities, and an FCFS bus scheduling policy. Several simpler cases allowing easier model solutions are also considered. Numerical evaluations of large computing systems with nonuniform memory references show the usefulness of the results.

  15. Development of a rotary engine powered APU for a medium duty hybrid shuttle bus. Interim report July 1995--July 1996

    SciTech Connect (OSTI)

    McBroom, S.T.

    1998-07-01

    Under contract to the TARDEC Petroleum and Water Business Area, sponsored by the Defense Advanced Research Projects Agency, SwRI has procured and installed a rotary Auxiliary Power Unit on a medium-duty series hybrid electric bus. This report covers the specification and distillation of the APU and the lessons learned from those efforts.

  16. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOE Patents [OSTI]

    Parry, G.W.

    1988-04-21

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperature resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC. 11 figs.

  17. Rapid Diagnosis of Tuberculosis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-29444 This document is approved for public release; further dissemination unlimited Rapid Diagnosis of Tuberculosis Rapid Diagnosis of Tuberculosis Rapid diagnosis of active tuberculosis to minimize associated mortality, and facilitate timely countermeasures A novel pathogen biomarker-based assay for the diagnosis of active tuberculosis and validated it in a blinded clinical study. Current diagnosis of active tuberculosis is inadequate, especially with HIV co-infection in endemic populations

  18. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives were achieved in the following ways: Through presentations and papers provided to a variety of audiences in multiple venues, the project team fulfilled its goal of providing education and outreach on hydrogen technology to statewide audiences. The project team generated interest that exists well beyond the completion of the project, and indeed, helped to generate financial support for a subsequent hydrogen vehicle project in Austin. The University of Texas, Center for ElectroMechanics operated the fuel cell-electric Ebus vehicle for over 13,000 miles in Austin, Texas in a variety of routes and loading configurations. The project took advantage of prior efforts that created a hydrogen fueling station and fuel cell electric-hybrid bus and continued to verify their technical foundation, while informing and educating potential future users of how these technologies work.

  19. 10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement

    SciTech Connect (OSTI)

    Noel Duckwtiz

    2011-05-01

    Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: • Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. • Provide backup power to the critical ATR loads in the event of a loss of commercial power. • Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: 1. Evaluation Criteria #2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. 2. Evaluation Criteria #3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary object to maintain or reduce CDF and does not negatively affect the efficacy of the currently approved strategy. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps, based on the pre-conceptual design, will require the addition of two quick start diesel generators, their associated power coordination/distribution controls, and a UPS to the list of safety-related SSCs. Similarly to item 1 above, the addition of these active SSCs to the list of safety-related SSCs and replacement of the E-3 bus requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., seismic qualification, isolation of redundant trains from common fault failures) to ensure no adverse impacts to the safety-related functions.

  20. Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration (Report and Appendix)

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2010-11-01

    This document describes the fuel cell transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration (FTA). This document provides a description of the demonstration sites, funding sources, and data collection activities for fuel cell transit bus evaluations currently planned from FY10 through FY12.

  1. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report #2, Alameda-Contra Costa Transit District (AC Transit) and Appendices

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2010-06-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006, comparing similar diesel buses operating from the same depot. It covers November 2007 through February 2010. Results include implementation experience, fueling station operation, evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and road calls), and a summary of achievements and challenges encountered during the demonstration.

  2. The Energy DataBus: NREL's Open-Source Application for Large-Scale Energy Data Collection and Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NREL’s Energy DataBus is used for tracking and analyzing energy use on its own campus. The system is applicable to other facilities—including anything from a single building to a large military base or college campus—or for other energy data management needs. Managing and minimizing energy consumption on a large campus is usually a difficult task for facility managers: There may be hundreds of energy meters spread across a campus, and the meter data are often recorded by hand. Even when data are captured electronically, there may be measurement issues or time periods that may not coincide. Making sense of this limited and often confusing data can be a challenge that makes the assessment of building performance a struggle for many facility managers. The Energy DataBus software was developed by NREL to address these issues on its own campus, but with an eye toward offering its software solutions to other facilities. Key features include the software's ability to store large amounts of data collected at high frequencies—NREL collects some of its energy data every second—and rich functionality to integrate this wide variety of data into a single database [copied from http://en.openei.org/wiki/NREL_Energy_DataBus].

  3. The Energy DataBus: NREL's Open-Source Application for Large-Scale Energy Data Collection and Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NREL’s Energy DataBus is used for tracking and analyzing energy use on its own campus. The system is applicable to other facilities—including anything from a single building to a large military base or college campus—or for other energy data management needs. Managing and minimizing energy consumption on a large campus is usually a difficult task for facility managers: There may be hundreds of energy meters spread across a campus, and the meter data are often recorded by hand. Even when data are captured electronically, there may be measurement issues or time periods that may not coincide. Making sense of this limited and often confusing data can be a challenge that makes the assessment of building performance a struggle for many facility managers. The Energy DataBus software was developed by NREL to address these issues on its own campus, but with an eye toward offering its software solutions to other facilities. Key features include the software's ability to store large amounts of data collected at high frequencies—NREL collects some of its energy data every second—and rich functionality to integrate this wide variety of data into a single database [copied from http://en.openei.org/wiki/NREL_Energy_DataBus].

  4. Manifold, bus support and coupling arrangement for solid oxide fuel cells

    DOE Patents [OSTI]

    Parry, Gareth W. (East Windsor, CT)

    1989-01-01

    Individual, tubular solid oxide fuel cells (SOFCs) are assembled into bundles called a module within a housing, with a plurality of modules arranged end-to-end in a linear, stacked configuration called a string. A common set of piping comprised of a suitable high temperture resistant material (1) provides fuel and air to each module housing, (2) serves as electrically conducting buses, and (3) provides structural support for a string of SOFC modules. The piping thus forms a manfold for directing fuel and air to each module in a string and makes electrical contact with the module's anode and cathode to conduct the DC power generated by the SOFC. The piping also provides structureal support for each individual module and maintains each string of modules as a structurally integral unit for ensuring high strength in a large 3-dimensional array of SOFC modules. Ceramic collars are used to connect fuel and air inlet piping to each of the electrodes in an SOFC module and provide (1) electrical insulation for the current carrying bus bars and gas manifolds, (2) damping for the fuel and air inlet piping, and (3) proper spacing between the fuel and air inlet piping to prevent contact between these tubes and possible damage to the SOFC.

  5. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1999-01-01

    Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

  6. Realistic Financial Planning and Rapid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Realistic Financial Planning and Rapid Modification to Project Execution are Essential ... Ignition Facility Title: Realistic Financial Planning and Rapid Modification to ...

  7. Developing a Natural Gas-Powered Bus Rapid Transit Service: A Case Study on Leadership: Roaring Fork Transportation Authority (Presentation); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Schroeder, A.

    2015-03-01

    The Roaring Fork Transportation Authority (RFTA) represents a series of unique successes in alternative fuel deployment by pushing the envelope with innovative solutions. In the last year, RFTA demonstrated the ability to utilize compressed natural gas buses at a range of altitudes, across long distances, in extreme weather conditions and in a modern indoor fueling and maintenance facility - allwhile saving money and providing high-quality customer service. This case study will highlight how the leadership of organizations and communities that are implementing advances in natural gas vehicle technology is paving the way for broader participation.

  8. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, L.M.

    1998-05-05

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find at the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was not heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past. 2 figs.

  9. Rapid road repair vehicle

    DOE Patents [OSTI]

    Mara, Leo M.

    1998-01-01

    Disclosed is a rapid road repair vehicle capable of moving over a surface to be repaired at near normal posted traffic speeds to scan for and find an the high rate of speed, imperfections in the pavement surface, prepare the surface imperfection for repair by air pressure and vacuum cleaning, applying a correct amount of the correct patching material to effect the repair, smooth the resulting repaired surface, and catalog the location and quality of the repairs for maintenance records of the road surface. The rapid road repair vehicle can repair surface imperfections at lower cost, improved quality, at a higher rate of speed than was was heretofor possible, with significantly reduced exposure to safety and health hazards associated with this kind of road repair activities in the past.

  10. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, Richard W. (Santa Clara, CA)

    1985-01-01

    A rapidly refuelable dual cell of an electrochemical type wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  11. Rapidly refuelable fuel cell

    DOE Patents [OSTI]

    Joy, R.W.

    1982-09-20

    A rapidly refuelable dual cell of an electrochemical type is described wherein a single anode cooperates with two cathodes and wherein the anode has a fixed position and the cathodes are urged toward opposite faces of the anodes at constant and uniform force. The associated cathodes are automatically retractable to permit the consumed anode remains to be removed from the housing and a new anode inserted between the two cathodes.

  12. Rapid prototype and test

    SciTech Connect (OSTI)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  13. On rapid plasma rotation

    SciTech Connect (OSTI)

    Helander, P.

    2007-10-15

    The conditions under which rapid plasma rotation may occur in a general three-dimensional magnetic field with flux surfaces, such as that of a stellarator, are investigated. Rotation velocities comparable to the ion thermal speed are found to be attainable only in magnetic fields whose strength B depends on the arc length l along the field in approximately the same way for all field lines on each flux surface {psi}, i.e., B{approx_equal}f({psi},l). Moreover, it is shown that the rotation must be in the direction of the vector {nabla}{psi}x{nabla}B.

  14. Clean air program: Design guidelines for bus transit systems using liquefied petroleum gas (LPG) as an alternative fuel. Final report, July 1995-April 1996

    SciTech Connect (OSTI)

    Raj, P.K.; Hathaway, W.T.; Kangas, R.

    1996-09-01

    The Federal Transit Administration (FTA) has initiated the development of `Design Guidelines for Bus Transit Systems Using Alternative Fuels.` This report provides design guidelines for the safe uses of Liquefied Petroleum Gas (LPG). It forms a part of the series of individual monographs being published by the FTA on (the guidelines for the safe use of) Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes for the subject fuel the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

  15. rapidMCR

    Energy Science and Technology Software Center (OSTI)

    2011-11-04

    rapidMCR is a user friendly software package that includes automatic preprocessing, analysis, and viewing of hyperspectral image data sets. Currently, this software package specifically preprocesses and analyzes hyperspectral fluorescence image data sets that have been created on Sandia hyperspectral imaging microscopes; however, this software can be modified to include spectroscopic image data sets from other (non-Sandia developed) instruments as well. This software relies on using prior information about the spectroscopic image data sets by conductingmore » a rigorous characterization of the instrument. By characterizing the instrument for noise and artifacts, we can implement our algorithms to account for the effects specific to a particular instrument. This allows us to automate the data preprocessing while improving the analysis results.« less

  16. Solid state rapid thermocycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  17. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix

    Broader source: Energy.gov [DOE]

    This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation’s Federal Transit Administration (FTA).

  18. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration

    Broader source: Energy.gov [DOE]

    This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation’s Federal Transit Administration (FTA).

  19. RAPID/Contact | Open Energy Information

    Open Energy Info (EERE)

    RAPIDContact < RAPID(Redirected from RAPID toolkitContact) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  20. RAPID/Roadmap/Coverage | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmapCoverage < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA RAPID Toolkit About Bulk Transmission...

  1. RAPID/Outreach | Open Energy Information

    Open Energy Info (EERE)

    Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Outreach Materials RAPID 2-page Flyer RAPID 2-page Flyer Last updated: 8 Apr 2014 RAPID Project...

  2. Development of the Cummins L10 engine to operate on natural gas for heavy duty transit bus applications. Final report, August 1988-December 1991

    SciTech Connect (OSTI)

    Welliver, D.R.

    1993-07-01

    This report covers all of the activities of a program undertaken to develop a natural gas fueled engine using the Cummins L10 diesel engine as the base engine. The base diesel engine is a 10 liter turbocharged jacket water aftercooled carcass that develops 270 hp at 2100 rpm. The design goals included developing a natural gas version at 240 hp with 750 lb-ft of peak torque with exhaust emission level demonstration meeting the 1991 EPA Urban Bus Emission Mandate. Additional goals included demonstrating diesel like vehicle performance and diesel like reliability and durability. Two fuel delivery systems were evaluated, one mechanical and the other electronic closed loop. Field and laboratory test engines were utilized to document reliability. Results of this program led to the production release of the gas engine for transit bus applications and California Air Resources Board certification during 1992.

  3. Diesel and CNG Transit Bus Emissions Characterization By Two Chassis Dynamometer Laboratories: Results and Issues

    SciTech Connect (OSTI)

    Nigel N. Clark, Mridul Gautam; Byron L. Rapp; Donald W. Lyons; Michael S. Graboski; Robert L. McCormick; Teresa L. Alleman; Paul Norton

    1999-05-03

    Emissions of six 32 passenger transit buses were characterized using one of the West Virginia University (WVU) Transportable Heavy Duty Emissions Testing Laboratories, and the fixed base chassis dynamometer at the Colorado Institute for Fuels and High Altitude Engine Research (CIFHAER). Three of the buses were powered with 1997 ISB 5.9 liter Cummins diesel engines, and three were powered with the 1997 5.9 liter Cummins natural gas (NG) counterpart. The NG engines were LEV certified. Objectives were to contrast the emissions performance of the diesel and NG units, and to compare results from the two laboratories. Both laboratories found that oxides of nitrogen and particulate matter (PM) emissions were substantially lower for the natural gas buses than for the diesel buses. It was observed that by varying the rapidity of pedal movement during accelerations in the Central Business District cycle (CBD), CO and PM emissions from the diesel buses could be varied by a factor of three or more. The driving styles may be characterized as aggressive and non-aggressive, but both styles followed the CBD speed command acceptably. PM emissions were far higher for the aggressive driving style. For the NG fueled vehicles driving style had a similar, although smaller, effect on NO{sub x}. It is evident that driver habits may cause substantial deviation in emissions for the CBD cycle. When the CO emissions are used as a surrogate for driver aggression, a regression analysis shows that NO{sub x} and PM emissions from the two laboratories agree closely for equivalent driving style. Implications of driver habit for emissions inventories and regulations are briefly considered.

  4. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  5. Epidemiological-environmental study of diesel bus garage workers: chronic effects of diesel exhaust on the respiratory system

    SciTech Connect (OSTI)

    Gamble, J.; Jones, W.; Minshall, S.

    1987-10-01

    Two hundred and eighty-three (283) male diesel bus garage workers from four garages in two cities were examined to determine if there was excess chronic respiratory morbidity related to diesel exposure. The dependent variables were respiratory symptoms, radiographic interpretation for pneumoconiosis, and pulmonary function (FVC, FEV1, and flow rates). Independent variables included race, age, smoking, drinking, height, and tenure (as surrogate measure of exposure). Exposure-effect relationships within the study population showed no detectable associations of symptoms with tenure. There was an apparent association of pulmonary function and tenure. Seven workers (2.5%) had category 1 pneumoconiosis (three rounded opacities, two irregular opacities, and one with both rounded and irregular). The study population was also compared to a nonexposed blue-collar population. After indirect adjustment for age, race, and smoking, the study population had elevated prevalences of cough, phlegm, and wheezing, but there was no association with tenure. Dyspnea showed a dose-response trend but no apparent increase in prevalence. Mean percent predicted pulmonary function of the study population was greater than 100%, i.e., elevated above the comparison population. These data show there is an apparent effect of diesel exhaust on pulmonary function but not chest radiographs. Respiratory symptoms are high compared to blue-collar workers, but there is no relationship with tenure.

  6. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  7. RAPID/Tools | Open Energy Information

    Open Energy Info (EERE)

    RAPIDTools < RAPID(Redirected from RAPIDResources) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  8. RAPID/Contact | Open Energy Information

    Open Energy Info (EERE)

    Contact < RAPID Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute...

  9. RAPID/Tools | Open Energy Information

    Open Energy Info (EERE)

    Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History RAPIDTools < RAPID Jump to: navigation, search RAPID Regulatory and Permitting Information...

  10. PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rapid Development of Disruptive Photovoltaic Technologies PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic Technologies Funding Opportunity: SuNLaMP SunShot ...

  11. RAPID/Geothermal/Roadmap | Open Energy Information

    Open Energy Info (EERE)

    Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History RAPIDGeothermalRoadmap < RAPID | Geothermal Jump to: navigation, search RAPID Regulatory...

  12. RAPID/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History RAPIDGeothermal < RAPID(Redirected from RAPIDRoadmapGeo) Jump to: navigation, search RAPID...

  13. RAPID/Geothermal/Roadmap | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalRoadmap < RAPID | Geothermal(Redirected from RAPIDRoadmapGeoSections) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit...

  14. RAPID/Best Practices/ | Open Energy Information

    Open Energy Info (EERE)

    < RAPID | Best Practices Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  15. RAPID/Overview | Open Energy Information

    Open Energy Info (EERE)

    RAPIDOverview < RAPID(Redirected from RAPIDAtlas) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  16. RAPID/Hydropower | Open Energy Information

    Open Energy Info (EERE)

    Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History RAPIDHydropower < RAPID Jump to: navigation, search RAPID Regulatory and Permitting Information...

  17. RAPID/Roadmap/11 | Open Energy Information

    Open Energy Info (EERE)

    Roadmap11 < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  18. RAPID/Roadmap/6 | Open Energy Information

    Open Energy Info (EERE)

    Roadmap6 < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  19. RAPID/Roadmap/4 | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap4 < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  20. RAPID/Roadmap/19 | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap19 < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  1. RAPID/Roadmap/20 | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap20 < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  2. RAPID/Roadmap/13 | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap13 < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  3. Cedar Rapids Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Cedar Rapids Wind Project Facility Cedar Rapids Sector Wind energy Facility Type Community Wind Location NE Coordinates 41.562199, -98.148048...

  4. Template:RAPID-Breadcrumb | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Description Template:RAPID-Breadcrumb is used to generate the top level breadcrumb trail for select RAPID Toolkit pages. Usage To call...

  5. Factors affecting the failure of copper connectors brazed to copper bus bar segments on a 615-MVA hydroelectric generator at Grand Coulee Dam

    SciTech Connect (OSTI)

    Atteridge, D.G.; Klein, R.F.; Layne, R.; Anderson, W.E.; Correy, T.B.

    1988-01-01

    On March 21, 1986, the United States Bureau of Reclamation experienced a ground fault in the main parallel ring assembly of Unit G19 - a 615-MVA hydroelectric generator - at Grand Coulee Dam, Washington. Inspection of the unit revealed that the ground fault had been induced by fracture of one or more of the copper connectors used to join adjacent segments of one of the bus bars in the north half of the assembly. Various experimental techniques were used to detect and determine the presence of cracks, crack morphology, corrosion products, and material microstructure and/or embrittlement. The results of these inspections and recommendations are given. 7 refs., 27 figs.

  6. Rapid synthesis of beta zeolites

    DOE Patents [OSTI]

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  7. Laboratory Shuttle Bus Routes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UC Campus, Downtown Berkeley BART, and Rockridge BART stations. Shuttles offer free wifi onboard. Riders are asked to adhere to riding instructions. Active shuttle stops are...

  8. Epidemiological-environmental study of diesel bus garage workers: acute effects of NO/sub 2/ and respirable particulate on the respiratory system

    SciTech Connect (OSTI)

    Gamble, J.; Jones, W.; Minshall, S.

    1987-02-01

    Personal samples of nitrogen dioxide (NO/sub 2/) and respirable particulate (RP) were collected over the shift on 232 workers in four diesel bus garages. Response was assessed by an acute respiratory questionnaire and before and after shift spirometry. Measures of exposure to NO/sub 2/ and RP were associated with work-related symptoms of cough; itching, burning, or watering eyes; difficult or labored breathing; chest tightness; and wheeze. The prevalence of burning eyes, headaches, difficult or labored breathing, nausea, and wheeze experienced at work were higher in the diesel bus garage workers than in a comparison population of battery workers, while the prevalence of headaches was reduced. Mean reductions in forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV1), peak flow, and flows at 50 and 75% of FVC were not obviously different from zero. There was no detectable association of exposure to NO/sub 2/ or respirable particulate and acute reductions in pulmonary function. Workers who often had respiratory work-related symptoms generally had a slightly greater mean acute reduction in FEV1 and FEF50 than did those who did not have these symptoms, but these differences were not statistically significant.

  9. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  10. Rapid starting methanol reactor system

    DOE Patents [OSTI]

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  11. RAPID/Outreach | Open Energy Information

    Open Energy Info (EERE)

    as an overview of the RAPID Toolkit and its features. File:RAPID Roadmap Overview.pptx Reading the Regulatory Roadmap This "Getting Started" presentation walks through how to read...

  12. Rapid Syndrome Validation Project (RSVP)

    Energy Science and Technology Software Center (OSTI)

    2004-03-26

    RSVP facilitates the two-way communication between physicians (who are the “sensors” for disease in a community) and public health officials (who are the true “experts” in determining whether or not disease outbreaks are taking place in community). Currently, there is no software product that enables real-time on line reporting to local public health officials, nor timely feedback to clinicians taking care of ill patients. RSVP takes into consideration the cultural differences in the practice ofmore » medicine across the US and internationally, and provides for automated alerting of public health officials in the setting of a potentially serious disease outbreak. In addition, clinicians’ parficipation is immediately rewarded by providing information that is meaningful for the management of their patients. We envision the addition to RSVP of automated statistical analysis of data (currentty being done on a case-by-case basis by hand), including SNL technology based on neural network analysis. Integration of other SNL technology into RSVP will provide added-value, and will dramatically assist public health officials in their quest to identify disease outbreaks as early as possible in an epidemic (even before the actual level of known cases exceeds historical background) based on other parameters such as rapidity of spread of symptoms in a population. In addition, we are developing a parallel system of syndrome surveillance in animals (called "RSVP-A"), in collaboration with Kansas State University. Data from animal disease outbreaks will also be made available to physicians caring for human patients as zoonotic disease may be important in human epidemics.« less

  13. Flashback: Rapid scanning for radiological threats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flashback: Rapid scanning for radiological threats Flashback: Rapid scanning for radiological threats The ability to identify distinct material density enables the Multi-Mode Passive Detection System (MMPDS)to quickly detect unshielded to heavily shielded nuclear threats, as well as gamma rays, with near-zero false alarms. November 1, 2015 Decision Science Decision Science Decision Sciences' Multi-Mode Passive Detection System: Rapid scanning forradiological threats Click on headline to go to

  14. Rapid Scan AERI Observations: Benefits and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Scan AERI Observations: Benefits and Analysis W. F. Feltz, D. D. Turner, R. O. ... Madison, Wisconsin D. D. Turner Pacific Northwest National Laboratory ...

  15. RAPID/Bulk Transmission | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History RAPIDBulk Transmission < RAPID(Redirected from RAPIDOverviewBulkTransmission) Redirect page Jump to: navigation, search REDIRECT RAPIDBulkTransmission...

  16. RAPID/Roadmap/Geo | Open Energy Information

    Open Energy Info (EERE)

    Geo < RAPID | Roadmap Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Regulatory Roadmap GRR-logo.png Map of GRR states.jpg Since April 2012, the...

  17. Category:RAPID Toolkit | Open Energy Information

    Open Energy Info (EERE)

    and Permitting RAPIDBulkTransmission RAPIDBulkTransmissionAbout RAPIDBulkTransmissionAir Quality RAPIDBulkTransmissionAlaska RAPIDBulkTransmissionArizona RAPID...

  18. Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen...

    Office of Scientific and Technical Information (OSTI)

    Bacteria Pathogen Detection in Human Blood. Citation Details In-Document Search Title: Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen Detection in Human Blood. ...

  19. User:Nlangle/RAPID-Solar-Search | Open Energy Information

    Open Energy Info (EERE)

    RAPID-Solar-Search < User:Nlangle Jump to: navigation, search Total RAPID Pages: 955 Category RAPID & Category Solar: 40 RAPIDSolar RAPIDSolarAir Quality RAPIDSolarCalifornia...

  20. Category:RAPID State Permitting Properties | Open Energy Information

    Open Energy Info (EERE)

    RAPID State Permitting Properties Jump to: navigation, search These properties are used by the RAPID toolkit state level permitting forms. Pages in category "RAPID State Permitting...

  1. RAPID/Geothermal/Exploration/California | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalExplorationCalifornia < RAPID | Geothermal | Exploration(Redirected from RAPIDOverviewGeothermalExplorationCalifornia) Jump to: navigation, search RAPID...

  2. RAPID/Geothermal/Exploration/California | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalExplorationCalifornia < RAPID | Geothermal | Exploration Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  3. RAPID/Geothermal/Exploration/Federal | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalExplorationFederal < RAPID | Geothermal | Exploration Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  4. 2.3-MW Medium-Voltage, Three-Level Wind Energy Inverter Applying a Unique Bus Structure and 4.5-kV Si/SiC Hybrid Isolated Power Modules: Preprint

    SciTech Connect (OSTI)

    Erdman, W.; Keller, J.; Grider, D.; VanBrunt, E.

    2014-11-01

    A high-efficiency, 2.3-MW, medium-voltage, three-level inverter utilizing 4.5-kV Si/SiC (silicon carbide) hybrid modules for wind energy applications is discussed. The inverter addresses recent trends in siting the inverter within the base of multimegawatt turbine towers. A simplified split, three-layer laminated bus structure that maintains low parasitic inductances is introduced along with a low-voltage, high-current test method for determining these inductances. Feed-thru bushings, edge fill methods, and other design features of the laminated bus structure provide voltage isolation that is consistent with the 10.4-kV module isolation levels. Inverter efficiency improvement is a result of the (essential) elimination of the reverse recovery charge present in 4.5-kV Si PIN diodes, which can produce a significant reduction in diode turn-off losses as well as insulated-gate bipolar transistor (IGBT) turn-on losses. The hybrid modules are supplied in industry-standard 140 mm x 130 mm and 190 mm x 130 mm packages to demonstrate direct module substitution into existing inverter designs. A focus on laminated bus/capacitor-bank/module subassembly level switching performance is presented.

  5. RAPID/Contribute | Open Energy Information

    Open Energy Info (EERE)

    log in to your OpenEI account. Go to the page you want to watch, select EDIT at the top, and choose WATCH THIS PAGE at the bottom the page. Contribute to the RAPID Toolkit The...

  6. RAPID/Get Involved | Open Energy Information

    Open Energy Info (EERE)

    join us as a contributor or attend one of our upcoming meetings. Be a Contributor Update.jpg RAPID OpenEI Tutorial.pdf Please feel free to log in to OpenEI and make content...

  7. RAPID/Wizard | Open Energy Information

    Open Energy Info (EERE)

    English References: NREL 1 The RAPID Roadmap Wizard is a tool designed to help you zero in on the permits needed for your project. Your answers to a few basic questions will...

  8. Connecticut's Health Impact Study Rapidly Increasing Weatherization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efforts | Department of Energy Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts June 18, 2014 - 10:49am Addthis Weatherization workers are trained in the house as a system approach. The Energy Department's Weatherization Assistance Program funded technical assistance as part of Connecticut's Health Impact Assessment project. | Photo courtesy of Weatherization Assistance Program Technical

  9. Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen

    Office of Scientific and Technical Information (OSTI)

    Detection in Human Blood. (Conference) | SciTech Connect Conference: Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen Detection in Human Blood. Citation Details In-Document Search Title: Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen Detection in Human Blood. Abstract not provided. Authors: Mai, Junyu ; Piccini, Matthew Ernest ; Hatch, Anson V. ; Abhyankar, Vinay V. ; Olano, Juan ; Willson, Richard Publication Date: 2014-01-01 OSTI Identifier: 1140705

  10. Working with SRNL - Our Facilities- Rapid Fabrication Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Fabrication Facility Working with SRNL Our Facilities - Rapid Fabrication Facility At SRNL's Rapid Fabrication Facility, low-cost prototypes are produced, as well as parts and complete working models

  11. Rapid Cycling Synchrotron Option for Project X (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Rapid Cycling Synchrotron Option for Project X Citation Details In-Document Search Title: Rapid Cycling Synchrotron Option for Project X This paper presents an 8 GeV Rapid Cycling ...

  12. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2007-03-20

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  13. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  14. High precision, rapid laser hole drilling

    DOE Patents [OSTI]

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2005-03-08

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  15. PyTrilinos Rapid Prototyping Package

    Energy Science and Technology Software Center (OSTI)

    2005-03-01

    PyTrilinos provides access to selected Trilinos packages from the python scripting language. This allows interactive and dynamic creation of Trilinos objects, rapid prototyping that does not require compilation, and "gluing" Trilinos scripts to other python modules, such as plotting, etc. The currently supported packages are Epetra, EpetraExt, and NOX.

  16. RAPID/Roadmap/6-UT-c | Open Energy Information

    Open Energy Info (EERE)

    UT-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  17. RAPID/Roadmap/4-OR-c | Open Energy Information

    Open Energy Info (EERE)

    OR-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  18. Rapid quantification of mutant fitness in diverse bacteria by...

    Office of Scientific and Technical Information (OSTI)

    Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons Citation Details In-Document Search Title: Rapid quantification of mutant...

  19. RAPID/Roadmap/19-NM-g | Open Energy Information

    Open Energy Info (EERE)

    g < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  20. RAPID/Roadmap/3-UT-g | Open Energy Information

    Open Energy Info (EERE)

    g < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  1. RAPID/Roadmap/3-NM-g | Open Energy Information

    Open Energy Info (EERE)

    g < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  2. RAPID/Roadmap/3-FD-g | Open Energy Information

    Open Energy Info (EERE)

    g < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  3. Category:RAPID Roadmap Contact Properties | Open Energy Information

    Open Energy Info (EERE)

    RAPID Roadmap Contact Properties Jump to: navigation, search This page contains properties that are used with Contacts to set RAPID Roadmap Section contact values, and provide that...

  4. RAPID/Roadmap/19-CA-d | Open Energy Information

    Open Energy Info (EERE)

    d < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  5. Rapid Assessment of City Emissions (RACE): Case of Batangas City...

    Open Energy Info (EERE)

    Rapid Assessment of City Emissions (RACE): Case of Batangas City, Philippines Jump to: navigation, search Tool Summary Name: Rapid Assessment of City Emissions (RACE): Case of...

  6. Rapid City, South Dakota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    under South Dakota's At-large congressional district.12 Contents 1 US Recovery Act Smart Grid Projects in Rapid City, South Dakota 2 Registered Energy Companies in Rapid...

  7. RAPID/Geothermal/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand Access < RAPID | Geothermal(Redirected from RAPIDGeothermalLeasing) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop...

  8. RAPID/Geothermal/Environment/Federal | Open Energy Information

    Open Energy Info (EERE)

    GeothermalEnvironmentFederal < RAPID | Geothermal | Environment Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  9. RAPID/BulkTransmission/Exploration | Open Energy Information

    Open Energy Info (EERE)

    search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Bulk Transmission ...

  10. RAPID/Geothermal/Well Field/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWell FieldNevada < RAPID | Geothermal | Well Field Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  11. RAPID/Geothermal/Land Use/Federal | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand UseFederal < RAPID | Geothermal | Land Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  12. RAPID/Geothermal/Exploration/Nevada | Open Energy Information

    Open Energy Info (EERE)

    GeothermalExplorationNevada < RAPID | Geothermal | Exploration(Redirected from RAPIDOverviewGeothermalExplorationNevada) Jump to: navigation, search RAPID Regulatory...

  13. RAPID/Geothermal/Exploration/Idaho | Open Energy Information

    Open Energy Info (EERE)

    GeothermalExplorationIdaho < RAPID | Geothermal | Exploration(Redirected from RAPIDOverviewGeothermalExplorationIdaho) Jump to: navigation, search RAPID Regulatory and...

  14. RAPID/Geothermal/Exploration/Alaska | Open Energy Information

    Open Energy Info (EERE)

    GeothermalExplorationAlaska < RAPID | Geothermal | Exploration(Redirected from RAPIDOverviewGeothermalExplorationAlaska) Jump to: navigation, search RAPID Regulatory...

  15. RAPID/Geothermal/Exploration/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalExplorationNevada < RAPID | Geothermal | Exploration Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  16. RAPID/Geothermal/Land Access/Colorado | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessColorado < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  17. RAPID/Geothermal/Land Access/Oregon | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessOregon < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  18. RAPID/Geothermal/Land Access/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessAlaska < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  19. RAPID/Roadmap/19-NM-j | Open Energy Information

    Open Energy Info (EERE)

    j < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  20. RAPID/Overview/Geothermal/Exploration/Nevada | Open Energy Information

    Open Energy Info (EERE)

    Nevada < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationNevada) Redirect page Jump to: navigation, search REDIRECT RAPID...

  1. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping ...

  2. RAPID/Solar/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDSolarLand Access < RAPID | Solar(Redirected from RAPIDSolarLeasing) Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  3. RAPID/Solar/Environment/California | Open Energy Information

    Open Energy Info (EERE)

    SolarEnvironmentCalifornia < RAPID | Solar | Environment Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  4. RAPID/Geothermal/Land Access/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessUtah < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  5. RAPID/Geothermal/Land Access/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand AccessNevada < RAPID | Geothermal | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  6. RAPID/BulkTransmission/Land Access | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Access < RAPID | BulkTransmission(Redirected from RAPIDBulkTransmissionLeasing) Jump to: navigation, search RAPID Regulatory and Permitting...

  7. RAPID/Solar/Land Access/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDSolarLand AccessNevada < RAPID | Solar | Land Access Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  8. RAPID/BulkTransmission/Land Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionLand Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  9. RAPID/Geothermal/Land Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalLand Use < RAPID | Geothermal Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  10. RAPID/Roadmap/4-FD-b | Open Energy Information

    Open Energy Info (EERE)

    FD-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  11. RAPID/Roadmap/8-NM-b | Open Energy Information

    Open Energy Info (EERE)

    b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  12. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping...

  13. RAPID/Roadmap/7-FD-s | Open Energy Information

    Open Energy Info (EERE)

    7-FD-s < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  14. RAPID/Roadmap/6-HI-a | Open Energy Information

    Open Energy Info (EERE)

    HI-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  15. RAPID/Roadmap/8-HI-c | Open Energy Information

    Open Energy Info (EERE)

    HI-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  16. RAPID/Roadmap/11-HI-a | Open Energy Information

    Open Energy Info (EERE)

    HI-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  17. RAPID/Roadmap/13-HI-a | Open Energy Information

    Open Energy Info (EERE)

    HI-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  18. RAPID/Roadmap/1-FD-a | Open Energy Information

    Open Energy Info (EERE)

    Roadmap1-FD-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  19. RAPID/Roadmap/8 (1) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap8 (1) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  20. RAPID/Roadmap/3-HI-e | Open Energy Information

    Open Energy Info (EERE)

    HI-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  1. RAPID/Roadmap/8-UT-c | Open Energy Information

    Open Energy Info (EERE)

    UT-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  2. RAPID/Roadmap/6 (1) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap6 (1) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  3. RAPID/Roadmap/6-CO-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap6-CO-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  4. RAPID/Roadmap/8-ID-e | Open Energy Information

    Open Energy Info (EERE)

    ID-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  5. RAPID/Roadmap/3-ID-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  6. RAPID/Roadmap/18 (1) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap18 (1) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  7. RAPID/Roadmap/3-TX-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  8. RAPID/Roadmap/3-WA-e | Open Energy Information

    Open Energy Info (EERE)

    e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  9. RAPID/Roadmap/7-CA-f | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap7-CA-f < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  10. RAPID/Roadmap/1-FD-b | Open Energy Information

    Open Energy Info (EERE)

    FD-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  11. RAPID/Roadmap/11-FD-c | Open Energy Information

    Open Energy Info (EERE)

    FD-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  12. RAPID/Roadmap/1-MT-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap1-MT-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  13. RAPID/Roadmap/19-CA-e | Open Energy Information

    Open Energy Info (EERE)

    e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  14. RAPID/Roadmap/7-NV-c | Open Energy Information

    Open Energy Info (EERE)

    NV-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  15. RAPID/Roadmap/3-CO-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-CO-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  16. RAPID/Roadmap/3-NV-e | Open Energy Information

    Open Energy Info (EERE)

    NV-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  17. RAPID/Roadmap/8-NV-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  18. RAPID/Roadmap/19-VT-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap19-VT-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  19. RAPID/Roadmap/7-NM-c | Open Energy Information

    Open Energy Info (EERE)

    NM-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  20. RAPID/Roadmap/14-AK-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap14-AK-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  1. RAPID/Roadmap/13-FD-g | Open Energy Information

    Open Energy Info (EERE)

    Roadmap13-FD-g < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  2. RAPID/Roadmap/1 (3) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap1 (3) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  3. RAPID/Roadmap/6-NV-b | Open Energy Information

    Open Energy Info (EERE)

    NV-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  4. RAPID/Roadmap/18-CA-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap18-CA-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  5. RAPID/Roadmap/3-FD-e | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-FD-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  6. RAPID/Roadmap/3-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  7. RAPID/Roadmap/7-VT-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap7-VT-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  8. RAPID/Roadmap/13-FD-b | Open Energy Information

    Open Energy Info (EERE)

    FD-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  9. RAPID/Roadmap/7-FD-e | Open Energy Information

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit with form History RAPIDRoadmap7-FD-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and...

  10. RAPID/Roadmap/14-NM-b | Open Energy Information

    Open Energy Info (EERE)

    Roadmap14-NM-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  11. RAPID/Roadmap/13-FD-e | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap13-FD-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  12. RAPID/Roadmap/6-CA-b | Open Energy Information

    Open Energy Info (EERE)

    CA-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  13. RAPID/Roadmap/18-UT-b | Open Energy Information

    Open Energy Info (EERE)

    b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  14. RAPID/Roadmap/3-NV-b | Open Energy Information

    Open Energy Info (EERE)

    b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  15. RAPID/Roadmap/7-FD-d | Open Energy Information

    Open Energy Info (EERE)

    d < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  16. RAPID/Roadmap/14-NV-a | Open Energy Information

    Open Energy Info (EERE)

    a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  17. RAPID/Roadmap/17-AK-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap17-AK-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  18. RAPID/Roadmap/14-CA-e | Open Energy Information

    Open Energy Info (EERE)

    e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  19. RAPID/Roadmap/8-CO-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap8-CO-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  20. RAPID/Roadmap/8-VT-c | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap8-VT-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  1. RAPID/Roadmap/1-VT-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap1-VT-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  2. RAPID/Roadmap/1 (1) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap1 (1) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  3. RAPID/Roadmap/7-FD-g | Open Energy Information

    Open Energy Info (EERE)

    Roadmap7-FD-g < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  4. RAPID/Roadmap/8 (2) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap8 (2) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  5. RAPID/Roadmap/1 (2) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap1 (2) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  6. RAPID/Roadmap/11-FD-d | Open Energy Information

    Open Energy Info (EERE)

    d < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  7. RAPID/Roadmap/8-FD-d | Open Energy Information

    Open Energy Info (EERE)

    d < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  8. RAPID/Roadmap/17 (1) | Open Energy Information

    Open Energy Info (EERE)

    Roadmap17 (1) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  9. RAPID/Roadmap/8-AK-c | Open Energy Information

    Open Energy Info (EERE)

    8-AK-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  10. RAPID/Roadmap/6-NV-a | Open Energy Information

    Open Energy Info (EERE)

    NV-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  11. RAPID/Roadmap/14-FD-b | Open Energy Information

    Open Energy Info (EERE)

    FD-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  12. RAPID/Roadmap/3-NM-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-NM-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  13. RAPID/Roadmap/6-UT-b | Open Energy Information

    Open Energy Info (EERE)

    b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  14. RAPID/Roadmap/13-CA-c | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap13-CA-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  15. RAPID/Roadmap/12-NV-a | Open Energy Information

    Open Energy Info (EERE)

    NV-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  16. RAPID/Roadmap/14-CA-d | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap14-CA-d < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  17. RAPID/Roadmap/8-AZ-a | Open Energy Information

    Open Energy Info (EERE)

    AZ-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  18. RAPID/Roadmap/7-AK-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  19. RAPID/Roadmap/3-ID-e | Open Energy Information

    Open Energy Info (EERE)

    ID-e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  20. RAPID/Roadmap/14-ID-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap14-ID-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  1. RAPID/Roadmap/13 (1) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap13 (1) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  2. RAPID/Roadmap/14-WA-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap14-WA-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  3. RAPID/Roadmap/14-UT-a | Open Energy Information

    Open Energy Info (EERE)

    a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  4. RAPID/Roadmap/6-CO-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap6-CO-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  5. RAPID/Roadmap/8-CO-c | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap8-CO-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  6. RAPID/Roadmap/13-CA-b | Open Energy Information

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit with form History RAPIDRoadmap13-CA-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and...

  7. RAPID/Roadmap/14-FD-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap14-FD-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  8. RAPID/Roadmap/3-CA-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-CA-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  9. RAPID/Roadmap/20 (1) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap20 (1) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  10. RAPID/Roadmap/1-CO-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap1-CO-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  11. RAPID/Roadmap/6-CA-a | Open Energy Information

    Open Energy Info (EERE)

    CA-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  12. RAPID/Roadmap/8-CA-a | Open Energy Information

    Open Energy Info (EERE)

    a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  13. RAPID/Roadmap/1-NV-a | Open Energy Information

    Open Energy Info (EERE)

    -NV-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  14. RAPID/Roadmap/11-NV-a | Open Energy Information

    Open Energy Info (EERE)

    NV-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  15. RAPID/Roadmap/3-CA-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  16. RAPID/Roadmap/3-CO-a | Open Energy Information

    Open Energy Info (EERE)

    Roadmap3-CO-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  17. RAPID/Roadmap/8-CA-c | Open Energy Information

    Open Energy Info (EERE)

    CA-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  18. RAPID/Roadmap/11-MT-c | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap11-MT-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  19. RAPID/Roadmap/3 (3) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3 (3) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  20. RAPID/Roadmap/3-CO-c | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap3-CO-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  1. RAPID/Roadmap/14 (1) | Open Energy Information

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit with form History RAPIDRoadmap14 (1) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and...

  2. RAPID/Roadmap/8-ID-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap8-ID-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  3. RAPID/Roadmap/3-AK-c | Open Energy Information

    Open Energy Info (EERE)

    AK-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  4. RAPID/Roadmap/6-ID-b | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap6-ID-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower...

  5. RAPID/Roadmap/14-NV-b | Open Energy Information

    Open Energy Info (EERE)

    14-NV-b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  6. RAPID/Roadmap/11-FD-b | Open Energy Information

    Open Energy Info (EERE)

    b < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  7. RAPID/Roadmap/3-WA-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  8. RAPID/Roadmap/3-HI-f | Open Energy Information

    Open Energy Info (EERE)

    HI-f < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  9. RAPID/Roadmap/6-VT-a | Open Energy Information

    Open Energy Info (EERE)

    Roadmap6-VT-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  10. RAPID/Roadmap/3 (2) | Open Energy Information

    Open Energy Info (EERE)

    (2) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  11. RAPID/Roadmap/11-CA-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap11-CA-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  12. RAPID/Roadmap/14-UT-e | Open Energy Information

    Open Energy Info (EERE)

    e < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  13. RAPID/Roadmap/3-NV-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  14. RAPID/Roadmap/13-VT-a | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap13-VT-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  15. RAPID/Roadmap/9-FD-k | Open Energy Information

    Open Energy Info (EERE)

    Roadmap9-FD-k < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  16. RAPID/Roadmap/6-FD-a | Open Energy Information

    Open Energy Info (EERE)

    FD-a < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  17. RAPID/Roadmap/3-CO-d | Open Energy Information

    Open Energy Info (EERE)

    Roadmap3-CO-d < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  18. RAPID/Roadmap/8-NM-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  19. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalAir QualityAlaska < RAPID | Geothermal | Air Quality Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  20. RAPID/Geothermal/Air Quality | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalAir Quality < RAPID | Geothermal Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  1. RAPID/BulkTransmission/Air Quality | Open Energy Information

    Open Energy Info (EERE)

    BulkTransmissionAir Quality < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  2. RAPID/Geothermal/Air Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalAir QualityAlaska < RAPID | Geothermal | Air Quality(Redirected from RAPIDOverviewGeothermalAir QualityAlaska) Jump to: navigation, search RAPID...

  3. RAPID/BulkTransmission/General Construction | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionGeneral Construction < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  4. Rapidity divergences and deep inelastic scattering in the endpoint...

    Office of Scientific and Technical Information (OSTI)

    Rapidity divergences and deep inelastic scattering in the endpoint region Citation Details In-Document Search Title: Rapidity divergences and deep inelastic scattering in the ...

  5. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    build, and commissioning of a RApid Freeform sheet metal Forming Technology (RAFFT) that eliminates stamping and forming dies that will enable rapid prototyping for vehicle ...

  6. RAPID/Geothermal/Water Quality/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater QualityAlaska < RAPID | Geothermal | Water Quality Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  7. RAPID/Geothermal/Water Use/Nevada | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseNevada < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  8. RAPID/Geothermal/Water Use/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseHawaii < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  9. RAPID/Geothermal/Water Use/Montana | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseMontana < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  10. RAPID/Geothermal/Water Use | Open Energy Information

    Open Energy Info (EERE)

    Water Use < RAPID | Geothermal Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar...

  11. RAPID/Geothermal/Water Use/Idaho | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseIdaho < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  12. RAPID/Geothermal/Water Use/Oregon | Open Energy Information

    Open Energy Info (EERE)

    Water UseOregon < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  13. RAPID/Geothermal/Water Use/Texas | Open Energy Information

    Open Energy Info (EERE)

    GeothermalWater UseTexas < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  14. RAPID/BulkTransmission/Water Use | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionWater Use < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission...

  15. RAPID/Geothermal/Water Use/Utah | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseUtah < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  16. RAPID/Geothermal/Water Use/Colorado | Open Energy Information

    Open Energy Info (EERE)

    GeothermalWater UseColorado < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  17. RAPID/Geothermal/Water Use/California | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseCalifornia < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  18. RAPID/Geothermal/Water Use/Alaska | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWater UseAlaska < RAPID | Geothermal | Water Use Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  19. Centrality, Rapidity And Transverse-Momentum Dependence of Cold...

    Office of Scientific and Technical Information (OSTI)

    Centrality, Rapidity And Transverse-Momentum Dependence of Cold Nuclear Matter Effects on ... Title: Centrality, Rapidity And Transverse-Momentum Dependence of Cold Nuclear Matter ...

  20. RAPID/Roadmap/8-FD-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  1. RAPID/Roadmap/7-ID-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  2. RAPID/Roadmap/3-FD-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  3. RAPID/Roadmap/19-CO-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  4. RAPID/Roadmap/8-OR-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  5. RAPID/Roadmap/8-ID-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  6. RAPID/Roadmap/7-CA-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  7. RAPID/Roadmap/8-WY-c | Open Energy Information

    Open Energy Info (EERE)

    WY-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  8. RAPID/Roadmap/19-AK-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  9. RAPID/Roadmap/19-NM-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  10. RAPID/Roadmap/20-FD-c | Open Energy Information

    Open Energy Info (EERE)

    c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  11. RAPID/Roadmap/8-AZ-c | Open Energy Information

    Open Energy Info (EERE)

    AZ-c < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  12. RAPID/BulkTransmission/Power Plant | Open Energy Information

    Open Energy Info (EERE)

    RAPIDBulkTransmissionPower Plant < RAPID | BulkTransmission Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk...

  13. Rapidity gap survival in central exclusive diffraction: Dynamical...

    Office of Scientific and Technical Information (OSTI)

    Rapidity gap survival in central exclusive diffraction: Dynamical mechanisms and uncertainties Citation Details In-Document Search Title: Rapidity gap survival in central exclusive ...

  14. Rapid scanning system for fuel drawers

    DOE Patents [OSTI]

    Caldwell, J.T.; Fehlau, P.E.; France, S.W.

    A nondestructive method for uniquely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  15. Superconductivity and magnetism in rapidly solidified perovskites

    SciTech Connect (OSTI)

    O'Handley, R.C.; Kalonji, G.

    1991-01-01

    The report is divided into six parts, reflecting major thrusts of our work since 1987. The six areas are: molecular orbital theory of high {Tc} superconductivity; rapid solidification processing of oxide superconductors; time dependent magnetic and superconducting properties of these inhomogeneous materials; excess Gd in Gd{sub 1+x}Ba{sub 2-x}Cu{sub 3}O{sub 7-{delta}} perovskites; rapid solidification and directional annealing to achieve high Jc; and Mossbauer studies of T = Fe, Co and Ni site selection in YBa{sub 2}(CuT){sub 3}O{sub 7-{delta}} and GdBa{sub 2}(CuT){sub 3}O{sub 7-{delta}}.

  16. Rapid scanning system for fuel drawers

    DOE Patents [OSTI]

    Caldwell, John T. (Los Alamos, NM); Fehlau, Paul E. (Los Alamos, NM); France, Stephen W. (Los Alamos, NM)

    1981-01-01

    A nondestructive method for uniqely distinguishing among and quantifying the mass of individual fuel plates in situ in fuel drawers utilized in nuclear reactors is described. The method is both rapid and passive, eliminating the personnel hazard of the commonly used irradiation techniques which require that the analysis be performed in proximity to an intense neutron source such as a reactor. In the present technique, only normally decaying nuclei are observed. This allows the analysis to be performed anywhere. This feature, combined with rapid scanning of a given fuel drawer (in approximately 30 s), and the computer data analysis allows the processing of large numbers of fuel drawers efficiently in the event of a loss alert.

  17. RAPID MAPPING TOOL: AN ARCMAP EXTENSION

    SciTech Connect (OSTI)

    STEVE P. LINGER; PAUL M. RICH; DOUG WALTHER; MARC S. WITKOWSKI; MARCIA A. JONES; HARI S. KHALSA

    2002-06-18

    Cartographic production laboratories produce large volumes of maps for diverse customers. Turnaround time and consistency are key concerns. The Rapid Mapping Tool is an ArcMap based tool that enables rapid creation of maps to meet customer needs. This tool was constructed using VB/VBA, ArcObjects, and ArcGIS templates. The core capability of ArcMap is extended for custom map production by storing specifications associated with a map or template in a companion XML document. These specifications include settings and preferences used to create custom maps. The tool was developed as a component of an enterprise GIS, which enables spatial data management and delivery using ArcSDE, ArcIMS, Oracle, and a web-based request tracking system.

  18. RRTT - Rapid Response Team for Transmission

    Energy Savers [EERE]

    Rapid Response Team- Transmission Exploring the Business Link Opportunity: Transmission & Clean Energy Development in the West TRIBAL LEADER FORUM SERIES February 7, 2012 Laura Smith Morton Department of Energy Laura.morton@hq.doe.gov Nine Agency MOU * Improves uniformity, consistency, and transparency - Establishes the roles and responsibilities of the nine signatory agencies regarding electric transmission infrastructure project applicants * Provides single point of contact for

  19. Rapid determination of actinides in seawater samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomore » separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  20. Rapid determination of actinides in asphalt samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  1. Rapid determination of actinides in asphalt samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  2. Plug IN Hybrid Vehicle Bus

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  3. Energy-beam-driven rapid fabrication system

    DOE Patents [OSTI]

    Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.

    2002-01-01

    An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.

  4. RAPID DETERMINATION OF RADIOSTRONTIUM IN SEAWATER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-01-16

    A new method for the determination of radiostrontium in seawater samples has been developed at the Savannah River National Laboratory (SRNL) that allows rapid preconcentration and separation of strontium and yttrium isotopes in seawater samples for measurement. The new SRNL method employs a novel and effective pre-concentration step that utilizes a blend of calcium phosphate with iron hydroxide to collect both strontium and yttrium rapidly from the seawater matrix with enhanced chemical yields. The pre-concentration steps, in combination with rapid Sr Resin and DGA Resin cartridge separation options using vacuum box technology, allow seawater samples up to 10 liters to be analyzed. The total {sup 89}Sr + {sup 90}Sr activity may be determined by gas flow proportional counting and recounted after ingrowth of {sup 90}Y to differentiate {sup 89}Sr from {sup 90}Sr. Gas flow proportional counting provides a lower method detection limit than liquid scintillation or Cerenkov counting and allows simultaneous counting of samples. Simultaneous counting allows for longer count times and lower method detection limits without handling very large aliquots of seawater. Seawater samples up to 6 liters may be analyzed using Sr Resin for {sup 89}Sr and {sup 90}Sr with a Minimum Detectable Activity (MDA) of 1-10 mBq/L, depending on count times. Seawater samples up to 10 liters may be analyzed for {sup 90}Sr using a DGA Resin method via collection and purification of {sup 90}Y only. If {sup 89}Sr and other fission products are present, then {sup 91}Y (beta energy 1.55 MeV, 58.5 day half-life) is also likely to be present. {sup 91}Y interferes with attempts to collect {sup 90}Y directly from the seawater sample without initial purification of Sr isotopes first and {sup 90}Y ingrowth. The DGA Resin option can be used to determine {sup 90}Sr, and if {sup 91}Y is also present, an ingrowth option with using DGA Resin again to collect {sup 90}Y can be performed. An MDA for {sup 90}Sr of <1 mBq/L for an 8 hour count may be obtained using 10 liter seawater sample aliquots.

  5. THE FREQUENCY OF RAPID ROTATION AMONG K GIANT STARS (Journal...

    Office of Scientific and Technical Information (OSTI)

    THE FREQUENCY OF RAPID ROTATION AMONG K GIANT STARS Citation Details In-Document Search Title: THE FREQUENCY OF RAPID ROTATION AMONG K GIANT STARS We present the results of a ...

  6. Locality and rapidity of the ultra-large elastic deformation...

    Office of Scientific and Technical Information (OSTI)

    Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix Title: Locality and rapidity of the ultra-large elastic deformation ...

  7. Rapid global structure determination of large RNA and RNA complexes...

    Office of Scientific and Technical Information (OSTI)

    Rapid global structure determination of large RNA and RNA complexes using NMR and small-angle X-ray scattering Citation Details In-Document Search Title: Rapid global structure...

  8. Rapid pressure cycle effects on flexible pipe

    SciTech Connect (OSTI)

    Hill, R.T.; Upchurch, J.L.; McMahan, J.M. Jr.

    1995-12-01

    The use of subsea satellite wells tied back to a central manifold unit is a field development concept currently being used by operating companies for staged production of either commingled oil or gas. Remote platform operated control systems that couple the satellite wells and manifold require that safe operating pressure cycle parameters be established for all subsea components. Because of start-up and shut-in procedures, extreme pressure variations in the form of rapid pressurization and depressurization must be considered. This paper describes the test procedures, equipment and results specific to the evaluation of high pressure non-bonded flexible pipe used for subsea production jumpers between satellite wells and manifold system. Recommendation of safe rates of pressurization and depressurization are included.

  9. Rapid deployable global sensing hazard alert system

    DOE Patents [OSTI]

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  10. World NGL markets continue rapid expansion

    SciTech Connect (OSTI)

    Otto, K.; Gist, R.; Whitley, C.; Haun, R.

    1998-06-08

    The international LPG industry has expanded rapidly during the 1990s and undergone significant changes. LPG consumption has expanded at nearly twice the rate of world petroleum demand. In particular, LPG use in residential and commercial markets has more than doubled in many developing countries. Markets for LPG and other petroleum products have been opened in many countries, accelerating demand growth and creating investment opportunities in all downstream segments. This has led to an overall strengthening of global LPG pricing and the development of many new export gas-processing projects. The paper discusses world LPG demand in residential and commercial markets and in petrochemicals, world LPG supply, regional increases, international trade, the US situation in natural gas, NGL supply, and NGL demand.

  11. Methods and compositions for rapid thermal cycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Benett, William J; Frank, James M; Deotte, Joshue R; Spadaccini, Christopher

    2015-11-06

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  12. Methods and compositions for rapid thermal cycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2015-10-27

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  13. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect (OSTI)

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  14. Rapid infrared joining takes on the advanced materials

    SciTech Connect (OSTI)

    Blue, C.A.; Warrier, S.G.; Robson, M.T.; Lin, R.Y. . Dept. of Materials Science and Engineering)

    1993-06-01

    Applying the rapid infrared joining technique, the authors have successfully joined steels, Inconel[sup [reg sign

  15. RAPID/Geothermal/Exploration/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Geothermal Exploration Hawaii Geothermal...

  16. RAPID/Geothermal/Exploration/Colorado | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Geothermal Exploration Colorado Geothermal...

  17. RAPID/Geothermal/Exploration/Idaho | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Geothermal Exploration Idaho Geothermal...

  18. RAPID/Overview/Geothermal/Exploration/Montana | Open Energy Informatio...

    Open Energy Info (EERE)

    Montana < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationMontana) Redirect page Jump to: navigation, search REDIRECT...

  19. RAPID/Overview/Geothermal/Exploration/Idaho | Open Energy Information

    Open Energy Info (EERE)

    Idaho < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationIdaho) Redirect page Jump to: navigation, search REDIRECT...

  20. RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information

    Open Energy Info (EERE)

    Utah < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationUtah) Redirect page Jump to: navigation, search REDIRECT...

  1. RAPID/Overview/Geothermal/Exploration/Oregon | Open Energy Information

    Open Energy Info (EERE)

    Oregon < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationOregon) Redirect page Jump to: navigation, search REDIRECT...

  2. RAPID/Overview/Geothermal/Exploration/Colorado | Open Energy...

    Open Energy Info (EERE)

    Colorado < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationColorado) Redirect page Jump to: navigation, search REDIRECT...

  3. RAPID/Overview/Geothermal/Exploration/Texas | Open Energy Information

    Open Energy Info (EERE)

    Texas < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationTexas) Redirect page Jump to: navigation, search REDIRECT...

  4. RAPID/Overview/Geothermal/Exploration/Hawaii | Open Energy Information

    Open Energy Info (EERE)

    Hawaii < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationHawaii) Redirect page Jump to: navigation, search REDIRECT...

  5. Rapid heating of materials using high power lasers

    SciTech Connect (OSTI)

    Bang, Woosuk

    2015-12-01

    Presentation covering uniform & rapid heating of a target, study of warm dense matter, study of nuclear fusion reactions

  6. Rapid Deployment Shelter System, Application | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex Rapid Deployment Shelter ... Rapid Deployment Shelter System, Application The mp4 video format is not supported by this browser. Download video Captions: On Time: 3:30 min. The RDSS provides humanitarian and disaster relief first responders with a versatile portable shelter that is rapidly deployed under adverse conditions

  7. Method for rapid isolation of sensitive mutants

    DOE Patents [OSTI]

    Freyer, J.P.

    1997-07-29

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned. 15 figs.

  8. Method for rapid isolation of sensitive mutants

    DOE Patents [OSTI]

    Freyer, James P.

    1997-01-01

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned.

  9. Rapid onsite assessment of spore viability.

    SciTech Connect (OSTI)

    Branda, Steven; Lane, Todd W.; VanderNoot, Victoria A.; Gaucher, Sara P.; Jokerst, Amanda S.

    2005-12-01

    This one year LDRD addresses problems of threat assessment and restoration of facilities following a bioterror incident like the incident that closed down mail facilities in late 2001. Facilities that are contaminated with pathogenic spores such as B. anthracis spores must be shut down while they are treated with a sporicidal agent and the effectiveness of the treatment is ascertained. This process involves measuring the viability of spore test strips, laid out in a grid throughout the facility; the CDC accepted methodologies require transporting the samples to a laboratory and carrying out a 48 hr outgrowth experiment. We proposed developing a technique that will ultimately lead to a fieldable microfluidic device that can rapidly assess (ideally less than 30 min) spore viability and effectiveness of sporicidal treatment, returning facilities to use in hours not days. The proposed method will determine viability of spores by detecting early protein synthesis after chemical germination. During this year, we established the feasibility of this approach and gathered preliminary results that should fuel a future more comprehensive effort. Such a proposal is currently under review with the NIH. Proteomic signatures of Bacillus spores and vegetative cells were assessed by both slab gel electrophoresis as well as microchip based gel electrophoresis employing sensitive laser-induced fluorescence detection. The conditions for germination using a number of chemical germinants were evaluated and optimized and the time course of protein synthesis was ascertained. Microseparations were carried out using both viable spores and spores inactivated by two different methods. A select number of the early synthesis proteins were digested into peptides for analysis by mass spectrometry.

  10. Rapid cycling medical synchrotron and beam delivery system (Patent) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Patent: Rapid cycling medical synchrotron and beam delivery system Citation Details In-Document Search Title: Rapid cycling medical synchrotron and beam delivery system A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined

  11. Rapidity gap survival in central exclusive diffraction: Dynamical

    Office of Scientific and Technical Information (OSTI)

    mechanisms and uncertainties (Conference) | SciTech Connect Rapidity gap survival in central exclusive diffraction: Dynamical mechanisms and uncertainties Citation Details In-Document Search Title: Rapidity gap survival in central exclusive diffraction: Dynamical mechanisms and uncertainties We summarize our understanding of the dynamical mechanisms governing rapidity gap survival in central exclusive diffraction, pp -> p + H + p (H = high-mass system), and discuss the uncertainties in

  12. CMI Unique Facility: Rapid Analysis of Combinatoric Sample Arrays |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Rapid Analysis of Combinatoric Sample Arrays The Rapid Analysis of Combinatoric Sample Arrays is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. Combinatorial 'libraries' of newly synthesized experimental compounds are assessed in a facility at the Stanford Synchrotron Radiation Laboratory (SSRL). Serving three Energy Innovation Hubs - Joint Center f rapid

  13. RAPID/Geothermal/Exploration/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us RAPID Geothermal Exploration New Mexico Geothermal...

  14. Rapid development of an ice sheet climate application using the...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Rapid development of an ice sheet climate ... Country of Publication: United States Language: English Word Cloud More Like This Full ...

  15. Rapid Gas Hydrate Formation Process - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Energy Storage Find More Like This Return to Search Rapid Gas Hydrate Formation Process National Energy Technology Laboratory Contact NETL About This Technology...

  16. Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rapid Aging Protocols for Diesel Aftertreatment Devices: NOx Abatement Catalysts Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER ...

  17. Rapid Compression Machine Â… A Key Experimental Device to Effectively...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Effectively Collaborate with Basic Energy Sciences Rapid Compression Machine A Key Experimental Device to Effectively Collaborate with Basic Energy Sciences 2011 DOE ...

  18. Widget:RAPID-Loop11 | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Pages that call this widget will include javascript for usability testing, used with Loop11. Parameters none Usage Widget:RAPID-Loop1...

  19. RAPID/Overview/BulkTransmission/Siting/Colorado | Open Energy...

    Open Energy Info (EERE)

    Colorado < RAPID | Overview | BulkTransmission | Siting(Redirected from RAPIDAtlasBulkTransmissionSitingColorado) Redirect page Jump to: navigation, search REDIRECT...

  20. Grand Rapids Public Util Comm | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesGrand-Rapids-Public-Utilities108782819203449?skwall Outage Hotline: 218-326-4806 References: EIA Form EIA-861 Final Data File for 2010 -...

  1. Cryogenic Pressure Vessels for H2 Vehicles Rapidly Refueled by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cryogenic Pressure Vessels for H 2 Vehicles Rapidly Refueled by LH 2 pump to 700 bar ... (cryogenic) vessels * Refueling with LH 2 Pump * Test Vessel Cycling Facility * System ...

  2. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  3. Enabling Smart Grid Cosimulation Studies: Rapid Design and Development...

    Office of Scientific and Technical Information (OSTI)

    Enabling Smart Grid Cosimulation Studies: Rapid Design and Development of the Technologies and Controls Citation Details In-Document Search Title: Enabling Smart Grid Cosimulation ...

  4. RAPID/Roadmap/Geo/Sections | Open Energy Information

    Open Energy Info (EERE)

    Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon RAPIDRoadmapGeoSections < RAPID | Roadmap | Geo Jump to: navigation, search GRR-logo.png...

  5. RAPID/Roadmap/7-FD-k | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Under DevelopmentAll sections of the RAPID Toolkit...

  6. RAPID/Roadmap/9-CA-b | Open Energy Information

    Open Energy Info (EERE)

    Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Under DevelopmentAll sections of the RAPID Toolkit...

  7. Catalyst functionalized buffer sorbent pebbles for rapid separation...

    Office of Scientific and Technical Information (OSTI)

    of carbon dioxide from gas mixtures Title: Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures A method for separating ...

  8. File:RAPID Single Slide.pdf | Open Energy Information

    Open Energy Info (EERE)

    state, some details may not fully reflect the modified file. Image title Author Young, Katherine Short title RAPID Single Slide.pptx Software used PowerPoint Conversion...

  9. File:RAPID Overview presentation.pdf | Open Energy Information

    Open Energy Info (EERE)

    state, some details may not fully reflect the modified file. Image title Author Young, Katherine Short title RAPID Toolkit Presentation - 2014-10-29.pptx Software used...

  10. RAPID/Roadmap/1-CA-a | Open Energy Information

    Open Energy Info (EERE)

    RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Land Use Planning (1-CA-a) Land...

  11. RAPID/Roadmap/1-OR-a | Open Energy Information

    Open Energy Info (EERE)

    RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us Land Use Planning (1-OR-a) Land...

  12. RAPID/Roadmap/9-WA-c | Open Energy Information

    Open Energy Info (EERE)

    RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Environmental Impact...

  13. RAPID/Roadmap/9-WA-a | Open Energy Information

    Open Energy Info (EERE)

    RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools Contribute Contact Us State Environmental Overview...

  14. Rapides Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Cleco Power LLC Places in Rapides Parish, Louisiana Alexandria, Louisiana Ball, Louisiana Boyce, Louisiana Cheneyville, Louisiana Deville, Louisiana Forest Hill,...

  15. Rapid Deployment Shelter System | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rapid Deployment Shelter ... Rapid Deployment Shelter System The mp4 video format is not supported by this browser. Download video Captions: On Time: 5:03 min. Originally designed as a mobile surgical suite, the RDSS can also be converted and used for a command, control, logisitics, or operations center

  16. Rapidity Dependence of Bose-Einstein Correlations at SPS energies

    SciTech Connect (OSTI)

    Kniege, Stefan

    2006-04-11

    This article is devoted to results on {pi}-{pi}--Bose-Einstein correlations in central Pb+Pb collisions measured by the NA49 experiment at the CERN SPS. Rapidity as well as transverse momentum dependences of the correlation lengths will be shown for collisions at 20A, 30A, 40A, 80A, and 158A GeV beam energy. Only a weak energy dependence of the radii is observed at SPS energies. The kt-dependence of the correlation lengths as well as the single particle mt-spectra will be compared to model calculations. The rapidity dependence is analysed in a range of 2.5 units of rapidity starting at the center of mass rapidity at each beam energy. The correlation lengths measured in the longitudinally comoving system show only a weak dependence on rapidity.

  17. Rapid Cycling Medical Synchrotron (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Rapid Cycling Medical Synchrotron Citation Details In-Document Search Title: Rapid Cycling Medical Synchrotron The goal of this CRADA was to perform early prototyping on the Rapid Cycling Medical Synchrotron, leading to more accurate cost and schedule estimates. Authors: Peggs, Stephen Publication Date: 2007-07-17 OSTI Identifier: 973828 Report Number(s): BNL--91095-2007 C-06-07; TRN: US1400007 DOE Contract Number: DE-AC02-98CH10886 Resource Type: Technical Report Research Org: Brookhaven

  18. Rapid Freeform Sheet Metal Forming Project Touted in the News

    Broader source: Energy.gov [DOE]

    Fabricating and Forming Journal's April issue includes "Forming the Future," a feature story about AMO's Innovative Manufacturing Initiative (IMI) Project – Rapid Freeform Sheet Metal Forming. This project, begun in 2013, involves Ford, Boeing, Northwestern University, Penn State, and MIT.

  19. Wisconsin Rapids W W & L Comm | Open Energy Information

    Open Energy Info (EERE)

    W W & L Comm Jump to: navigation, search Name: Wisconsin Rapids W W & L Comm Place: Wisconsin Phone Number: 715.423.6300 Website: wrwwlc.com Twitter: @wrwwlc Outage Hotline: (715)...

  20. City of Grand Rapids- Green Power Purchasing Policy

    Broader source: Energy.gov [DOE]

    In 2005, the City of Grand Rapids established a goal of purchasing 20% of its municipal power demand from renewable energy by 2008. In November 2007, the city signed a three-year agreement with a...

  1. Rapid first-cycle lithiation strategy for enhanced performance...

    Office of Scientific and Technical Information (OSTI)

    performance of Li-MoS2 batteries as identified by in situ studies. Citation Details In-Document Search Title: Rapid first-cycle lithiation strategy for enhanced performance of ...

  2. City of Eaton Rapids, Michigan (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Michigan Phone Number: (517) 663-8118, press 3 Website: cityofeatonrapids.comindex.ph Facebook: https:www.facebook.comCityOfEatonRapids Outage Hotline: (517) 663-8118,...

  3. Global Heat Exchangers Market to be driven by Rapidly Expanding...

    Open Energy Info (EERE)

    by Rapidly Expanding End-user Industries Home > Groups > Renewable Energy RFPs Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 2 July, 2015 - 00:43 Heat...

  4. Rapidity evolution of gluon TMD from low to moderate x

    SciTech Connect (OSTI)

    Balitsky, Ian; Tarasov, A.

    2015-10-05

    In this article, we study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small $x \\ll 1$ to linear evolution at moderate $x \\sim 1$.

  5. Sioux Rapids, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Sioux Rapids is a city in Buena Vista County, Iowa. It falls under Iowa's 5th congressional district.12 References ...

  6. RAPID/Geothermal/Roadmap/Flowcharts | Open Energy Information

    Open Energy Info (EERE)

    components of the RAPID Toolkit. Existing Flowcharts by Section 0 - OverallFlow-1 01-FD-a - LandUsePlanning 01-FD-b - LandUsePlanAmendmentProcess 01AKALandUseConsiderations...

  7. RAPID FREEFORM SHEET METAL FORMING: TECHNOLOGY DEVELOPMENT AND SYSTEM VERIFICATION

    Broader source: Energy.gov [DOE]

    This project will develop RApid Freeform Sheet Metal Forming Technology (RAFFT) in an industrial environment based on Double Sided Incremental Forming (DSIF) to produce industrial parts within one week while also satisfying dimensional accuracy, surface finish, and cycle time.

  8. RAPID/BulkTransmission/Utah | Open Energy Information

    Open Energy Info (EERE)

    Administration Current Projects Transwest Express Zephyr Populus to Ben Lomand Sigurd to Red Butte No. 2 345kV Transmission Project Print PDF RAPID-State-Summary Retrieved from...

  9. Rapidity evolution of gluon TMD from low to moderate x

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balitsky, Ian; Tarasov, A.

    2015-10-05

    In this article, we study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at smallmore » $$x \\ll 1$$ to linear evolution at moderate $$x \\sim 1$$.« less

  10. Climate Rapid Overview and Decision Support (C-ROADS) Simulator...

    Open Energy Info (EERE)

    Climate Rapid Overview and Decision Support (C-ROADS) Simulator1 Related Tools Gold Standard Program Model CRiSTAL VS Ex Ante Appraisal Carbon-Balance Tool (EX-ACT) ......

  11. RAPID DETERMINATION OF {sup 210} PO IN WATER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2013-05-22

    A new rapid method for the determination of {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of {sup 210}Po in water samples have typically involved spontaneous auto-deposition of {sup 210}Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin?, often in combination with 210Pb analysis. A new rapid method for {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin? (N,N,N?,N? tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of {sup 210}Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate {sup 210} Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of {sup 210}Po.

  12. Enabling Smart Grid Cosimulation Studies: Rapid Design and Development of

    Office of Scientific and Technical Information (OSTI)

    the Technologies and Controls (Journal Article) | SciTech Connect Enabling Smart Grid Cosimulation Studies: Rapid Design and Development of the Technologies and Controls Citation Details In-Document Search Title: Enabling Smart Grid Cosimulation Studies: Rapid Design and Development of the Technologies and Controls The 21st century electric power grid is transforming with an unprecedented increase in demand and increase in new technologies. In the United States Energy Independence and

  13. Innovation Ecosystems Spur Rapid Growth for Startups, Entrepreneurs |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Innovation Ecosystems Spur Rapid Growth for Startups, Entrepreneurs Innovation Ecosystems Spur Rapid Growth for Startups, Entrepreneurs September 14, 2011 - 4:22pm Addthis Rich Earley, CEO of Clean Urban Energy presents at Clean Energy Trust's Clean Energy Challenge in March 2011 | Courtesy of Clean Energy Trust Rich Earley, CEO of Clean Urban Energy presents at Clean Energy Trust's Clean Energy Challenge in March 2011 | Courtesy of Clean Energy Trust Sarah Jane Maxted

  14. PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Rapid Development of Disruptive Photovoltaic Technologies PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic Technologies Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $2,000,000 This project aims to demonstrate potentially disruptive, novel photovoltaic (PV) absorbers by developing proof-of-concept PV device prototypes composed of defect-tolerant inorganic thin film

  15. Rapid Cycling Medical Synchrotron (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Rapid Cycling Medical Synchrotron Citation Details In-Document Search Title: Rapid Cycling Medical Synchrotron × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for sale to the public from the National

  16. Rapidity divergences and deep inelastic scattering in the endpoint region

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Rapidity divergences and deep inelastic scattering in the endpoint region Citation Details In-Document Search Title: Rapidity divergences and deep inelastic scattering in the endpoint region Authors: Fleming, Sean ; Labun, Ou Z. Publication Date: 2015-05-12 OSTI Identifier: 1179737 Grant/Contract Number: FG02-06ER41449; FG02-04ER41338 Type: Publisher's Accepted Manuscript Journal Name: Physical Review D Additional Journal Information: Journal Volume: 91;

  17. Microstructures in rapidly solidified Ni-Mo alloys

    SciTech Connect (OSTI)

    Jayaraman, N.; Tewari, S.N.; Hemker, K.J.; Glasgow, T.K.

    1985-01-01

    Ni-Mo alloys of compositions ranging from pure Ni to Ni-40 at % Mo were rapidly solidified by chill block melt spinning in vacuum and were examined by optical metallography, x-ray diffraction and transmission electron microscopy. Rapid solidification resulted in an extension of molybdenum solubility in nickel from 28 to 37.5 at %. A number of different phases and microstructures were seen at different depths (solidification conditions) from the quenched surface of the melt spun ribbons.

  18. Catalyst functionalized buffer sorbent pebbles for rapid separation of

    Office of Scientific and Technical Information (OSTI)

    carbon dioxide from gas mixtures (Patent) | DOEPatents Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures Title: Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid.

  19. Rapid Temperature Swing Adsorption using Polymeric/Supported Amine Hollow

    Office of Scientific and Technical Information (OSTI)

    Fibers (Technical Report) | SciTech Connect Technical Report: Rapid Temperature Swing Adsorption using Polymeric/Supported Amine Hollow Fibers Citation Details In-Document Search Title: Rapid Temperature Swing Adsorption using Polymeric/Supported Amine Hollow Fibers This project is a bench-scale, post-combustion capture project carried out at Georgia Tech (GT) with support and collaboration with GE, Algenol Biofuels, Southern Company and subcontract to Trimeric Corporation. The focus of the

  20. RAPID-CURE COATINGS SYSTEM - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search RAPID-CURE COATINGS SYSTEM Naval Research Laboratory Contact NRL About This Technology Publications: PDF Document Publication MAT14FactSheet (55 KB) Technology Marketing SummaryThe Naval Research Laboratory has developed a durable, rapid cure coatings system that is designed for harsh environments. Developed for the maritime industry, it is suit-able for the interior &

  1. Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Citation Details In-Document Search Title: Ultrafast Laser Fabrication: a Rapid Prototyping Capability for CINT Authors: McCulloch, Quinn [1] ; Dattelbaum, Andrew M. [1] ; Nath, Pulak [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-03-04 OSTI Identifier: 1067392 Report Number(s): LA-UR-13-21541 DOE Contract Number: AC52-06NA25396

  2. Rapid prototyping: A paradigm shift in investment casting

    SciTech Connect (OSTI)

    Atwood, C.L.; Maguire, M.C.; Baldwin, M.D.; Pardo, B.T.

    1996-09-01

    The quest for fabricating complex metal parts rapidly and with minimal cost has brought rapid prototyping (RP) processes to the forefront of the investment casting industry. Relatively recent advances in DTM Corporation`s selective laser sintering (SLS) and 3D Systems stereolithography (SL) processes have had a significant impact on the overall quality of patterns produced using these rapid prototyping processes. Sandia National Laboratories uses patterns generated from rapid prototyping processes to reduce the cycle time and cost of fabricating prototype and small lot production parts in support of a program called FASTCAST. The SLS process is used to fabricate patterns from materials such as investment casting wax, polycarbonate, and a new material called TrueForm PM{trademark}. With the timely introduction of each of these materials, the quality of patterns fabricated has improved. The development and implementation of SL QuickCast{trademark} software has enabled this process to produce highly accurate patterns for use in investment casting. This paper focuses on the successes with these new pattern materials and the infrastructure required to cast rapid prototyping patterns successfully. In addition, a brief overview of other applications of rapid prototyping at Sandia will be discussed.

  3. Rapid determination of 226Ra in emergency urine samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-02-27

    A new method has been developed at the Savannah River National Laboratory (SRNL) that can be used for the rapid determination of 226Ra in emergency urine samples following a radiological incident. If a radiological dispersive device event or a nuclear accident occurs, there will be an urgent need for rapid analyses of radionuclides in urine samples to ensure the safety of the public. Large numbers of urine samples will have to be analyzed very quickly. This new SRNL method was applied to 100 mL urine aliquots, however this method can be applied to smaller or larger sample aliquots as needed.more » The method was optimized for rapid turnaround times; urine samples may be prepared for counting in <3 h. A rapid calcium phosphate precipitation method was used to pre-concentrate 226Ra from the urine sample matrix, followed by removal of calcium by cation exchange separation. A stacked elution method using DGA Resin was used to purify the 226Ra during the cation exchange elution step. This approach combines the cation resin elution step with the simultaneous purification of 226Ra with DGA Resin, saving time. 133Ba was used instead of 225Ra as tracer to allow immediate counting; however, 225Ra can still be used as an option. The rapid purification of 226Ra to remove interferences using DGA Resin was compared with a slightly longer Ln Resin approach. A final barium sulfate micro-precipitation step was used with isopropanol present to reduce solubility; producing alpha spectrometry sources with peaks typically <40 keV FWHM (full width half max). This new rapid method is fast, has very high tracer yield (>90 %), and removes interferences effectively. The sample preparation method can also be adapted to ICP-MS measurement of 226Ra, with rapid removal of isobaric interferences.« less

  4. Regulatory and Permitting Information Desktop (RAPID) Toolkit (Poster)

    SciTech Connect (OSTI)

    Young, K. R.; Levine, A.

    2014-09-01

    The Regulatory and Permitting Information Desktop (RAPID) Toolkit combines the former Geothermal Regulatory Roadmap, National Environmental Policy Act (NEPA) Database, and other resources into a Web-based tool that gives the regulatory and utility-scale geothermal developer communities rapid and easy access to permitting information. RAPID currently comprises five tools - Permitting Atlas, Regulatory Roadmap, Resource Library, NEPA Database, and Best Practices. A beta release of an additional tool, the Permitting Wizard, is scheduled for late 2014. Because of the huge amount of information involved, RAPID was developed in a wiki platform to allow industry and regulatory agencies to maintain the content in the future so that it continues to provide relevant and accurate information to users. In 2014, the content was expanded to include regulatory requirements for utility-scale solar and bulk transmission development projects. Going forward, development of the RAPID Toolkit will focus on expanding the capabilities of current tools, developing additional tools, including additional technologies, and continuing to increase stakeholder involvement.

  5. Rapid gas hydrate formation processes: Will they work?

    SciTech Connect (OSTI)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  6. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Keskula, Donald H.; Doan, Tien M.; Clingerman, Bruce J.

    2004-09-14

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  7. Methods and systems for rapid prototyping of high density circuits

    DOE Patents [OSTI]

    Palmer, Jeremy A.; Davis, Donald W.; Chavez, Bart D.; Gallegos, Phillip L.; Wicker, Ryan B.; Medina, Francisco R.

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  8. Rapid gas hydrate formation processes: Will they work?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  9. Staged venting of fuel cell system during rapid shutdown

    DOE Patents [OSTI]

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and system for rapid shutdown of a fuel cell apparatus of the type used in a vehicle propulsion system. H.sub.2 and air flows to the fuel cell stack are slowly bypassed to the combustor upon receipt of a rapid shutdown command. The bypass occurs over a period of time (for example one to five seconds) using conveniently-sized bypass valves. Upon receipt of the rapid shutdown command, the anode inlet of the fuel cell stack is instantaneously vented to a remote vent to remove all H.sub.2 from the stack. Airflow to the cathode inlet of the fuel cell stack gradually diminishes over the bypass period, and when the airflow bypass is complete the cathode inlet is also instantaneously vented to a remote vent to eliminate pressure differentials across the stack.

  10. Rapidly solidified ceramics: Processing, structure, and magnetic properties

    SciTech Connect (OSTI)

    Kalonji, G.M.; O'Handley, R.C.

    1985-01-01

    Since its initiation in September 1984, work under this contract has progressed in two areas: construction of a gas atomizer for rapid solidification of ceramics; and characterization of rapidly solidified materials in the SrO-Fe{sub 2}O{sub 3}, BaO-Fe{sub 2}O{sub 3}, MnFe{sub 2}O{sub 4}-SiO{sub 2}, and CoFe{sub 2}O{sub 4}-SiO{sub 2} systems. This report summarize this work.

  11. Discovery and characteristics of the rapidly rotating active asteroid

    Office of Scientific and Technical Information (OSTI)

    (62412) 2000 SY178 in the main belt (Journal Article) | SciTech Connect Journal Article: Discovery and characteristics of the rapidly rotating active asteroid (62412) 2000 SY178 in the main belt Citation Details In-Document Search Title: Discovery and characteristics of the rapidly rotating active asteroid (62412) 2000 SY178 in the main belt We report a new active asteroid in the main belt of asteroids between Mars and Jupiter. Object (62412) 2000 SY178 exhibited a tail in images collected

  12. Rapid Determination Of Radiostrontium In Large Soil Samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Shaw, Patrick J.

    2012-05-24

    A new method for the determination of radiostrontium in large soil samples has been developed at the Savannah River Environmental Laboratory (Aiken, SC, USA) that allows rapid preconcentration and separation of strontium in large soil samples for the measurement of strontium isotopes by gas flow proportional counting. The need for rapid analyses in the event of a Radiological Dispersive Device (RDD) or Improvised Nuclear Device (IND) event is well-known. In addition, the recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident. The method employs a novel pre-concentration step that utilizes an iron hydroxide precipitation (enhanced with calcium phosphate) followed by a final calcium fluoride precipitation to remove silicates and other matrix components. The pre-concentration steps, in combination with a rapid Sr Resin separation using vacuum box technology, allow very large soil samples to be analyzed for {sup 89,90}Sr using gas flow proportional counting with a lower method detection limit. The calcium fluoride precipitation eliminates column flow problems typically associated with large amounts of silicates in large soil samples.

  13. Rapid heating of matter using high power lasers

    SciTech Connect (OSTI)

    Bang, Woosuk

    2015-11-05

    This report describes rapid heating technology with ion sources. LANL calculated the expected heating per atom and temperatures of the target materials, used alumium ion beams to heat gold and diamond, produced deuterium fusion plasmas and then measured the ion temperature at the time of the fusion reactions.

  14. RAPID/Geothermal/Well Field/New Mexico | Open Energy Information

    Open Energy Info (EERE)

    RAPIDGeothermalWell FieldNew Mexico < RAPID | Geothermal | Well Field Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About...

  15. RAPID/Roadmap/7-FD-c(2) | Open Energy Information

    Open Energy Info (EERE)

    RAPIDRoadmap7-FD-c(2) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal...

  16. RAPID/Roadmap/3-FD-b (2) | Open Energy Information

    Open Energy Info (EERE)

    2) < RAPID | Roadmap Jump to: navigation, search RAPID Regulatory and Permitting Information Desktop Toolkit BETA About Bulk Transmission Geothermal Hydropower Solar Tools...

  17. RAPID DETERMINATION OF RA-226 IN ENVIRONMENTAL SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2012-01-03

    A new rapid method for the determination of {sup 226}Ra in environmental samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for emergency response or routine sample analyses. The need for rapid analyses in the event of a Radiological Dispersive Device or Improvised Nuclear Device event is well-known. In addition, the recent accident at Fukushima Nuclear Power Plant in March, 2011 reinforces the need to have rapid analyses for radionuclides in environmental samples in the event of a nuclear accident. {sup 226}Ra (T1/2 = 1,620 years) is one of the most toxic of the long-lived alpha-emitters present in the environment due to its long life and its tendency to concentrate in bones, which increases the internal radiation dose of individuals. The new method to determine {sup 226}Ra in environmental samples utilizes a rapid sodium hydroxide fusion method for solid samples, calcium carbonate precipitation to preconcentrate Ra, and rapid column separation steps to remove interferences. The column separation process uses cation exchange resin to remove large amounts of calcium, Sr Resin to remove barium and Ln Resin as a final purification step to remove {sup 225}Ac and potential interferences. The purified {sup 226}Ra sample test sources are prepared using barium sulfate microprecipitation in the presence of isopropanol for counting by alpha spectrometry. The method showed good chemical recoveries and effective removal of interferences. The determination of {sup 226}Ra in environmental samples can be performed in less than 16 h for vegetation, concrete, brick, soil, and air filter samples with excellent quality for emergency or routine analyses. The sample preparation work takes less than 6 h. {sup 225}Ra (T1/2 = 14.9 day) tracer is used and the {sup 225}Ra progeny {sup 217}At is used to determine chemical yield via alpha spectrometry. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory radium particles are effectively digested. The preconcentration and column separation steps can also be applied to aqueous samples with good results.

  18. RAPID RADIOCHEMICAL ANALYSES IN SUPPORT OF FUKUSHIMA NUCLEAR ACCIDENT

    SciTech Connect (OSTI)

    Maxwell, S.

    2012-11-07

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90} Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ~0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA. Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities.

  19. Rapid Radiochemical Analyses in Support of Fukushima Nuclear Accident - 13196

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2013-07-01

    There is an increasing need to develop faster analytical methods for emergency response, including emergency soil and air filter samples [1, 2]. The Savannah River National Laboratory (SRNL) performed analyses on samples received from Japan in April, 2011 as part of a U.S. Department of Energy effort to provide assistance to the government of Japan, following the nuclear event at Fukushima Daiichi, resulting from the earthquake and tsunami on March 11, 2011. Of particular concern was whether it was safe to plant rice in certain areas (prefectures) near Fukushima. The primary objectives of the sample collection, sample analysis, and data assessment teams were to evaluate personnel exposure hazards, identify the nuclear power plant radiological source term and plume deposition, and assist the government of Japan in assessing any environmental and agricultural impacts associated with the nuclear event. SRNL analyzed approximately 250 samples and reported approximately 500 analytical method determinations. Samples included soil from farmland surrounding the Fukushima reactors and air monitoring samples of national interest, including those collected at the U.S. Embassy and American military bases. Samples were analyzed for a wide range of radionuclides, including strontium-89, strontium-90, gamma-emitting radionuclides, and plutonium, uranium, americium and curium isotopes. Technical aspects of the rapid soil and air filter analyses will be described. The extent of radiostrontium contamination was a significant concern. For {sup 89,90}Sr analyses on soil samples, a rapid fusion technique using 1.5 gram soil aliquots to enable a Minimum Detectable Activity (MDA) of <1 pCi {sup 89,90}Sr /g of soil was employed. This sequential technique has been published recently by this laboratory for actinides and radiostrontium in soil and vegetation [3, 4]. It consists of a rapid sodium hydroxide fusion, pre-concentration steps using iron hydroxide and calcium fluoride precipitations, followed by Sr-Resin separation and gas flow proportional counting. To achieve a lower detection limit for analysis of some of the Japanese soil samples, a 10 gram aliquot of soil was taken, acid-leached and processed with similar preconcentration chemistry. The MDA using this approach was ∼0.03 pCi/g (1.1 mBq/g)/, which is less than the 0.05-0.10 pCi/g {sup 90}Sr levels found in soil as a result of global fallout. The chemical yields observed for the Japanese soil samples was typically 75-80% and the laboratory control sample (LCS) and matrix spike (MS) results looked very good for this work Individual QC results were well within the ± 25% acceptable range and the average of these results does not show significant bias. Additional data for a radiostrontium in soil method for 50 gram samples will also be presented, which appears to be a significant step forward based on looking at the current literature, with higher chemical yields for even larger sample aliquots and lower MDA [5, 6, 7] Hou et al surveyed a wide range of separation methods for Pu in waters and environmental solid samples [8]. While there are many actinide methods in the scientific literature, few would be considered rapid due to the tedious and time-consuming steps involved. For actinide analyses in soil, a new rapid method for the determination of actinide isotopes in soil samples using both alpha spectrometry and inductively-coupled plasma mass spectrometry was employed. The new rapid soil method utilizes an acid leaching method, iron/titanium hydroxide precipitation, a lanthanum fluoride soil matrix removal step, and a rapid column separation process with TEVA Resin. The large soil matrix is removed easily and rapidly using these two simple precipitations with high chemical recoveries and effective removal of interferences. [9, 10] Vacuum box technology and rapid flow rates were used to reduce analytical time. Challenges associated with the mineral content in the volcanic soil will be discussed. Air filter samples were reported within twenty-four (24) hours of receipt using rapid techniques published previously. [11] The rapid reporting of high quality analytical data arranged through the U.S. Department of Energy Consequence Management Home Team was critical to allow the government of Japan to readily evaluate radiological impacts from the nuclear reactor incident to both personnel and the environment. SRNL employed unique rapid methods capability for radionuclides to support Japan that can also be applied to environmental, bioassay and waste management samples. New rapid radiochemical techniques for radionuclides in soil and other environmental matrices as well as some of the unique challenges associated with this work will be presented that can be used for application to environmental monitoring, environmental remediation, decommissioning and decontamination activities. (authors)

  20. Technology Validation: Fuel Cell Bus Evaluations | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the DOE Hydrogen Program 2007 Annual Merit Review held May 15-18, 2007 in Arlington, Virginia under the Technology Validation - Systems Analysis section. PDF icon ...