National Library of Energy BETA

Sample records for affect future energy

  1. Enhanced Oil Recovery Affects the Future Energy Mix | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery Affects the Future Energy Mix Click to email this to a friend (Opens ... Enhanced Oil Recovery Affects the Future Energy Mix Trevor Kirsten 2012.11.19 One of the ...

  2. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy for the Future

  3. Energy for the Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy for the future Energy for the Future Harnessing the energy of the sun and stars to meet the Earth's energy needs has been a scientific and engineering challenge for decades. A self-sustaining fusion burn has been achieved for brief periods under experimental conditions, but the amount of energy that went into creating it was greater than the amount of energy it generated. What's needed next, for fusion energy to supply a continuous stream of electricity, is energy gain. The National

  4. GDF Future Energies | Open Energy Information

    Open Energy Info (EERE)

    Future Energies Jump to: navigation, search Name: GDF Future Energies Place: France Product: Clean energy subsidiary of Gaz de France. References: GDF Future Energies1 This...

  5. Transportation Energy Futures Snapshot

    Broader source: Energy.gov [DOE]

    This snapshot is a summary of the EERE reports that provide a detailed analysis of opportunities and challenges along the path to a more sustainable transportation energy future.

  6. Energy futures-2

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers the proceedings of the Symposium on Energy Futures II. Topics covered include: The National Energy Strategy; The Gas and petroleum industry; energy use in the paper industry; solar energy technology; hydroelectric power; biomass/waste utilization; engine emissions testing laboratories; integrated coal gassification-combined-cycle power plants.

  7. Transportation Energy Futures Study

    Broader source: Energy.gov [DOE]

    Transportation accounts for 71% of total U.S. petroleum consumption and 33% of total greenhouse gas emissions. The Transportation Energy Futures (TEF) study examines underexplored oil-savings and...

  8. Future Energy Solutions | Open Energy Information

    Open Energy Info (EERE)

    Solutions Jump to: navigation, search Name: Future Energy Solutions Place: Didcot, United Kingdom Zip: OX11 0QR Product: Future Energy Solutions is a sustainable energy...

  9. Energy structures and environmental futures

    SciTech Connect (OSTI)

    Haugland, T.; Bergesen, H.O.; Roland, K.

    1998-11-01

    Energy is not only a basis for modern society, but also a product of it. This book is a study of the close and ever-changing relationship between the energy sector and the society that surrounds it. At the end of the twentieth century this relationship faces two fundamental challenges: First, the national confinement of modern energy systems is undermined by technological progress, making long-distance trade increasingly attractive, and by the broad trend towards economic internationalization in general and political integration in Europe in particular. Second, the risk of climate change may lead governments and publics to demand a profound restructuring of the entire energy sector. The purpose is to analyze how these two fundamental challenges, and the connection between them, can affect future energy developments in Europe. The analysis must be rooted in a firm understanding of the past. The first part of the book is therefore devoted to a systematic description and analysis of the energy sector in Europe as it has developed over the past twenty-five years, by major subsectors and with examples from the most important countries. Part 1 discusses trends and policies related to energy demand, energy sector developments in oil, coal, natural gas, and electricity, achievements and challenges in the environment, and the role of international policy bodies. Part 2 forecasts future developments in 1995--2020, by discussing the following: Paths for future developments; National rebound scenario; Liberalization and trade; Liberalization versus national rebound; and Environmental futures.

  10. Future Energy Assets LP | Open Energy Information

    Open Energy Info (EERE)

    Assets LP Jump to: navigation, search Name: Future Energy Assets LP Place: Austin, Texas Zip: 78701 Product: String representation "Future Energy A ... S and in China." is too...

  11. Hydrogen & Our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Future Hydrogen & Our Energy Future DOE overview of hydrogen fuel initiative and hydrogen production, delivery and storate hydrogenenergyfutureweb.pdf More Documents &...

  12. Growing America's Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. Bioenergy can help ensure a secure, sustainable, and economically sound future by reducing U.S. dependence on foreign oil, developing domestic clean energy sources, and generating domestic green jobs. Bioenergy can also help address growing concerns about climate change by reducing greenhouse gas emissions to

  13. Bioenergy: America's Energy Future

    ScienceCinema (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-08-12

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  14. Bioenergy: America's Energy Future

    SciTech Connect (OSTI)

    Nelson, Bruce; Volz, Sara; Male, Johnathan; Wolfson, Johnathan; Pray, Todd; Mayfield, Stephen; Atherton, Scott; Weaver, Brandon

    2014-07-31

    Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports media initiatives to expand the public's understanding of the bioenergy industry and sustainable transportation and was developed by the U.S. Department of Energy Bioenergy Technologies Office (BETO), Oak Ridge National Laboratory, Green Focus Films, and BCS, Incorporated.

  15. Global Energy Futures Model

    Energy Science and Technology Software Center (OSTI)

    2004-01-01

    The Global Energy Futures Model (GEFM) is a demand-based, gross domestic product (GDP)-driven, dynamic simulation tool that provides an integrated framework to model key aspects of energy, nuclear-materials storage and disposition, environmental effluents from fossil and non fossil energy and global nuclear-materials management. Based entirely on public source data, it links oil, natural gas, coal, nuclear and renewable energy dynamically to greenhouse-gas emissions and 13 other measures of environmental impact. It includes historical data frommore » 1990 to 2000, is benchmarked to the DOE/EIA/IEO 2002 [5] Reference Case for 2000 to 2020, and extrapolates energy demand through the year 2050. The GEFM is globally integrated, and breaks out five regions of the world: United States of America (USA), the Peoples Republic of China (China), the former Soviet Union (FSU), the Organization for Economic Cooperation and Development (OECD) nations excluding the USA (other industrialized countries), and the rest of the world (ROW) (essentially the developing world). The GEFM allows the user to examine a very wide range of what ir scenarios through 2050 and to view the potential effects across widely dispersed, but interrelated areas. The authors believe that this high-level learning tool will help to stimulate public policy debate on energy, environment, economic and national security issues.« less

  16. Future Energy Pty Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pty Ltd Jump to: navigation, search Name: Future Energy Pty Ltd Place: Victoria, Australia Zip: 3121 Sector: Wind energy Product: Victoria based community wind project developer....

  17. Energy for our Future

    Energy Savers [EERE]

    ... gallons of diesel per year "Stronger Together for the Next 100 Years" Looking into The Future... (Traditional Athabascan Solar Array?) "Stronger Together for the Next 100 Years"

  18. Beyond Renewable Portfolio Standards: An Assessment of Regional Supply and Demand Conditions Affecting the Future of Renewable Energy in the West; Report and Executive Summary

    SciTech Connect (OSTI)

    Hurlbut, D. J.; McLaren, J.; Gelman, R.

    2013-08-01

    This study assesses the outlook for utility-scale renewable energy development in the West once states have met their renewable portfolio standard (RPS) requirements. In the West, the last state RPS culminates in 2025, so the analysis uses 2025 as a transition point on the timeline of RE development. Most western states appear to be on track to meet their final requirements, relying primarily on renewable resources located relatively close to the customers being served. What happens next depends on several factors including trends in the supply and price of natural gas, greenhouse gas and other environmental regulations, consumer preferences, technological breakthroughs, and future public policies and regulations. Changes in any one of these factors could make future renewable energy options more or less attractive.

  19. The future of nuclear energy

    SciTech Connect (OSTI)

    Cugnon, J.

    2005-06-14

    Various aspects of the World energy problem indicate that nuclear energy will still be needed in the future. Conditions for a continued valuable use are discussed. Special attention is focused on the nuclear waste problem.

  20. Growing America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growing America's Energy Future Growing America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensuring American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in

  1. Bioenergy: America's Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy: America's Energy Future Bioenergy: America's Energy Future Addthis Description Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. Text Version Below is the text version for the Bioenergy:

  2. Future Energy Yorkshire | Open Energy Information

    Open Energy Info (EERE)

    Yorkshire Jump to: navigation, search Name: Future Energy Yorkshire Place: Leeds, United Kingdom Zip: LS11 5AE Sector: Services Product: Leeds-based, wholly owned subsidiary of...

  3. Future Energy Enterprises | Open Energy Information

    Open Energy Info (EERE)

    Enterprises Jump to: navigation, search Name: Future Energy Enterprises Place: Wilmette, IL Website: futureenergyenterprises.biz References: Partnership for Advanced Residential...

  4. Problems of future energy systems

    SciTech Connect (OSTI)

    Kaya, Y.

    1981-04-01

    The purpose of this paper is to describe some of the key issues in the present energy system and to discuss possible future visions of the system. The first part of this paper deals with the progress in energy conservation since the oil embargo in 1973. Assuming the prospect that the petroleum supply will peak within this century and then will go down, and that the limit of energy conservation of the present energy systems will be achieved during the same period, the possible and desirable image is discussed of the future energy system. 5 refs.

  5. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rush Robinett Energy &Infrastructure Future Group Sandia National Laboratories rdrobin@sandia.gov Energy & Infrastructure Future Overview 2 Sandia's Core Purpose "Helping our Nation Secure a Peaceful and Free World through Technology" * National Security Laboratory * Broad mission in developing science and technology applications to meet our rapidly changing, complex national security challenges * Safety, security and reliability of our nation's nuclear weapon stockpile 3

  6. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency...

    Energy Savers [EERE]

    Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable ...

  7. Examining Future Global Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Examining Future Global Transportation Energy Demand For EIA Energy Conference July 11, 2016 | Washington, DC By John Maples Outline * Model overview - Passenger travel - Freight travel - Energy consumption for 16 regions: * USA, Canada, Mexico/Chile, OECD Europe, Japan, S. Korea, Australia/New Zealand * Russia, Non-OECD Europe/Eurasia, China, India, Non-OECD Asia, Middle East, Africa, Brazil, Other South/Central * IEO2016 Reference case transportation projections * Preliminary scenario results

  8. Drivers of Future Energy Demand

    U.S. Energy Information Administration (EIA) Indexed Site

    Drivers of Future Energy Demand in China Asian Energy Demand Outlook 2014 EIA Energy Conference July 14, 2014 Valerie J. Karplus MIT Sloan School of Management 2 www.china.org.cn www.flickr.com www.wikimedia.org globalchange.mit.edu Global Climate Change Human Development Local Pollution Industrial Development & Resource Needs How to balance? 0 500 1000 1500 2000 2500 3000 3500 4000 1981 1991 2001 2011 Non-material Sectors/Other Construction Commercial consumption Residential consumption

  9. Growing America's Energy Future: Bioenergy Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Energy Future: Bioenergy Technologies Office Successes of 2014 Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 The Bioenergy Technologies ...

  10. Toward an energy surety future.

    SciTech Connect (OSTI)

    Tatro, Marjorie L.; Jones, Scott A.; Covan, John Morgan; Kuswa, Glenn W.; Menicucci, David F.; Robinett, Rush D. III

    2005-10-01

    Because of the inevitable depletion of fossil fuels and the corresponding release of carbon to the environment, the global energy future is complex. Some of the consequences may be politically and economically disruptive, and expensive to remedy. For the next several centuries, fuel requirements will increase with population, land use, and ecosystem degradation. Current or projected levels of aggregated energy resource use will not sustain civilization as we know it beyond a few more generations. At the same time, issues of energy security, reliability, sustainability, recoverability, and safety need attention. We supply a top-down, qualitative model--the surety model--to balance expenditures of limited resources to assure success while at the same time avoiding catastrophic failure. Looking at U.S. energy challenges from a surety perspective offers new insights on possible strategies for developing solutions to challenges. The energy surety model with its focus on the attributes of security and sustainability could be extrapolated into a global energy system using a more comprehensive energy surety model than that used here. In fact, the success of the energy surety strategy ultimately requires a more global perspective. We use a 200 year time frame for sustainability because extending farther into the future would almost certainly miss the advent and perfection of new technologies or changing needs of society.

  11. Options for Kentucky's Energy Future

    SciTech Connect (OSTI)

    Larry Demick

    2012-11-01

    Three important imperatives are being pursued by the Commonwealth of Kentucky: ? Developing a viable economic future for the highly trained and experienced workforce and for the Paducah area that today supports, and is supported by, the operations of the US Department of Energy’s (DOE’s) Paducah Gaseous Diffusion Plant (PGDP). Currently, the PGDP is scheduled to be taken out of service in May, 2013. ? Restructuring the economic future for Kentucky’s most abundant indigenous resource and an important industry – the extraction and utilization of coal. The future of coal is being challenged by evolving and increasing requirements for its extraction and use, primarily from the perspective of environmental restrictions. Further, it is important that the economic value derived from this important resource for the Commonwealth, its people and its economy is commensurate with the risks involved. Over 70% of the extracted coal is exported from the Commonwealth and hence not used to directly expand the Commonwealth’s economy beyond the severance taxes on coal production. ? Ensuring a viable energy future for Kentucky to guarantee a continued reliable and affordable source of energy for its industries and people. Today, over 90% of Kentucky’s electricity is generated by burning coal with a delivered electric power price that is among the lowest in the United States. Anticipated increased environmental requirements necessitate looking at alternative forms of energy production, and in particular electricity generation.

  12. Transportation Energy Futures: Combining Strategies for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENERGY FUTURES Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions Significant Energy Consumption - and Opportunities for Reduction Transportation is...

  13. Transportation Energy Futures Series: Alternative Fuel Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel ... A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable ...

  14. Coal: Energy for the future

    SciTech Connect (OSTI)

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  15. Investing in our Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investing in our Energy Future Investing in our Energy Future A report on the ways in which the recovery act is promoting a clean energy economy. PDF icon Investing in our Energy ...

  16. Noncommercial Trading in the Energy Futures Market

    Reports and Publications (EIA)

    1996-01-01

    How do futures markets affect spot market prices? This is one of the most pervasive questions surrounding futures markets, and it has been analyzed in numerous ways for many commodities.

  17. Hydrogen and OUr Energy Future

    SciTech Connect (OSTI)

    Rick Tidball; Stu Knoke

    2009-03-01

    In 2003, President George W. Bush announced the Hydrogen Fuel Initiative to accelerate the research and development of hydrogen, fuel cell, and infrastructure technologies that would enable hydrogen fuel cell vehicles to reach the commercial market in the 2020 timeframe. The widespread use of hydrogen can reduce our dependence on imported oil and benefit the environment by reducing greenhouse gas emissions and criteria pollutant emissions that affect our air quality. The Energy Policy Act of 2005, passed by Congress and signed into law by President Bush on August 8, 2005, reinforces Federal government support for hydrogen and fuel cell technologies. Title VIII, also called the 'Spark M. Matsunaga Hydrogen Act of 2005' authorizes more than $3.2 billion for hydrogen and fuel cell activities intended to enable the commercial introduction of hydrogen fuel cell vehicles by 2020, consistent with the Hydrogen Fuel Initiative. Numerous other titles in the Act call for related tax and market incentives, new studies, collaboration with alternative fuels and renewable energy programs, and broadened demonstrations--clearly demonstrating the strong support among members of Congress for the development and use of hydrogen fuel cell technologies. In 2006, the President announced the Advanced Energy Initiative (AEI) to accelerate research on technologies with the potential to reduce near-term oil use in the transportation sector--batteries for hybrid vehicles and cellulosic ethanol--and advance activities under the Hydrogen Fuel Initiative. The AEI also supports research to reduce the cost of electricity production technologies in the stationary sector such as clean coal, nuclear energy, solar photovoltaics, and wind energy.

  18. The future of energy gases

    SciTech Connect (OSTI)

    Howell, D.G.

    1995-04-01

    Natural gas, mainly methane, produces lower CO {sub 2}, CO, NO{sub x}, SO {sub 2} and particulate emissions than either oil or coal; thus further substitutions of methane for these fuels could help mitigate air pollution. Methane is, however, a potent greenhouse gas and the domestication of ruminants, cultivation of rice, mining of coal, drilling for oil, and transportation of natural gas have all contributed to a doubling of the amount of atmospheric methane since 1800. Today nearly 300,000 wells yearly produce each 21 trillion cubic feet of methane. Known reserves suggest about a 10 year supply at the above rates of recovery; and the potential for undiscovered resources is obscured by uncertainty involving price, new technologies, and environmental restrictions stemming from the need to drill an enormous number of wells, many in ecologically sensitive areas. The atomic simplicity of methane, composed of one carbon and four hydrogen atoms, may mask the complexity of this, the most basic of organic molecules. Within the Earth, methane is produced through thermochemical alteration of organic materials, and by biochemical reactions mediated by metabolic processes of archaebacteria; some methane may even be primordial, a residue of planetary accretion. Methane is known to exist in the mantle and lower crust. Near the Earth`s surface, methane occurs in enormous oil and/or gas reservoirs in rock, and is absorbed in coal, dissolved in water, and trapped in a latticework of ice-like material called gas hydrate. Methane also occurs in smaller volumes in landfills, rice paddies, termite complexes, ruminants, and even many humans. As an energy source, methane accounts for roughly 25 percent of current U.S. consumption, but its full energy potential is controversial. Methane is touted by some as a viable bridge to future energy systems, fueled by the sun and uranium and carried by electricity and hydrogen.

  19. FutureWorld Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: FutureWorld Energy Inc Place: Florida Zip: 33701 Product: Florida-based marine energy project developer. References: FutureWorld Energy Inc1 This article is a...

  20. A Global Sustainable Energy Future | Department of Energy

    Office of Environmental Management (EM)

    A Global Sustainable Energy Future A Global Sustainable Energy Future April 19, 2013 - 10:56am Addthis World energy leaders at the ribbon cutting for the CEM Innovation Showcase ...

  1. WATER POWER FOR A CLEAN ENERGY FUTURE

    Office of Environmental Management (EM)

    WATER POWER FOR A CLEAN ENERGY FUTURE March 2016 WATER POWER PROGRAM WATER POWER PROGRAM Building a Clean Energy Economy Leading the world in clean energy is critical to ...

  2. Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Use Future Use Facility or infrastructure reuse could avoid costs associated with demolition and disposal. Facility or infrastructure reuse could avoid costs associated with demolition and disposal. PPPO works with GDP communities as they identify their future use vision. PPPO works with GDP communities as they identify their future use vision. Facility or infrastructure reuse could avoid costs associated with demolition and disposal. PPPO works with GDP communities as they identify their

  3. Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy (EERE) | Department of Energy Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Securing America's Clean Energy Future (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy. 51111.pdf (656.28 KB) More Documents & Publications Office of the Biomass Program Educational Opportunities

  4. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Ruth, M.; Mai, T.; Newes, E.; Aden, A.; Warner, E.; Uriarte, C.; Inman,...

  5. 25 x 25 America s Energy Future | Open Energy Information

    Open Energy Info (EERE)

    x 25 America s Energy Future Jump to: navigation, search Name: 25 x '25 America's Energy Future Place: Maryland Zip: 21093 Website: www.25x25.org References: 25 x '25 America's...

  6. "The Future of Geothermal Energy" and Its Challenges | Open Energy...

    Open Energy Info (EERE)

    "The Future of Geothermal Energy" and Its Challenges Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: "The Future of Geothermal Energy" and Its...

  7. Masdar Abu Dhabi Future Energy Company | Open Energy Information

    Open Energy Info (EERE)

    Abu Dhabi- based subsidiary created to manage the implementation of renewable and alternative energy initiatives. References: Masdar Abu Dhabi Future Energy Company1 This...

  8. Future Energy Zone Private Ltd FEZ | Open Energy Information

    Open Energy Info (EERE)

    Zone Private Ltd FEZ Jump to: navigation, search Name: Future Energy Zone Private Ltd (FEZ) Place: Chennai, Tamil Nadu, India Sector: Renewable Energy Product: Focused on building...

  9. Growing America's Energy Future Factsheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growing America's Energy Future Factsheet Growing America's Energy Future Factsheet The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts produced from a range of abundant, renewable biomass resources. overview_factsheet.pdf (133.31 KB) More Documents & Publications Growing America's Energy Future Webinar: Bioproducts in the Federal Bioeconomy Portfolio Webinar Conversion Factsheet

  10. Water Power for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Power for a Clean Energy Future Water Power for a Clean Energy Future This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower and marine and hydrokinetic technologies. Accomplishments Report: Water Power for a Clean Energy Future (9.59 MB) More Documents & Publications Before the Subcommittee on Water and Power - Senate Committee on

  11. The Future of Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Geothermal Energy The Future of Geothermal Energy The Future of Geothermal Energy report is an evaluation of geothermal energy as a major supplier of energy in the United States. An 18-member assessment panel with broad experience and expertise was formed to conduct the study beginning in September 2005. The work evaluated three major areas of Enhanced Geothermal Systems (EGS): Magnitude and distribution of the EGS resource Status and remaining requirements of EGS technology needed

  12. A Renewable Energy Future: Innovation and Beyond | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Renewable Energy Future: Innovation and Beyond A Renewable Energy Future: Innovation and Beyond This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session by Dr. Dan E. Arvizu, director of NREL. Entitled "A Renewable Energy Future: Innovation and Beyond," the presentation demonstrates the transformation needed in the energy sector to achieve a clean energy vision and identifies innovation as what is

  13. IM Future | Open Energy Information

    Open Energy Info (EERE)

    Sector: Services, Wind energy Product: Spain-based firm that provides operation and maintenance services for wind farms owned by Babcock & Brown Wind Partners and FCC. References:...

  14. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  15. Toward an efficient energy future

    SciTech Connect (OSTI)

    English, M.R.; Bohm, R.A.; Clinard, L.A.

    1983-01-01

    This is the last in the 3-part International Energy Symposia Series sponsored by the 1982 World's Fair, Knoxville, TN. The first two Symposia's Proceedings were released in October, 1981, and May, 1982, respectively, appearing under the titles (1) World Energy Production and Productivity, and (2) Improving World Energy Production and Productivity - both earlier volumes are also available from Ballinger Publishing Co. Symposium III was designed to conclude the Series' work by moving from technical, economic, social, and environmental considerations to government policy issues; the emphasis was on ministerial/cabinet-level participants who could represent their nations' energy strategies. A separate abstract was prepared for each of 17 of the 21 chapters, eliminating the following: (1) Symposium III Participants' Comments; (2) Draft Communique; (3) Selected Comments; and (4) Closing Remarks by Walter N. Lambert, Executive Vice President, The 1982 World's Fair.

  16. Charting the Future of Energy Storage | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charting the Future of Energy Storage Charting the Future of Energy Storage August 7, 2013 - 2:53pm Addthis Watch the video above to learn how Urban Electric Power is creating a market for energy storage technology. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As we continue to incorporate more renewable energy into the grid, energy storage technologies will be key to

  17. Transportation Energy Futures Analysis Snapshot

    Broader source: Energy.gov [DOE]

    Transportation currently accounts for 71% of total U.S. petroleum use and 33% of the nation's total carbon emissions. The TEF project explores how combining multiple strategies could reduce GHG emissions and petroleum use by 80%. Researchers examined four key areas – lightduty vehicles, non-light-duty vehicles, fuels, and transportation demand – in the context of the marketplace, consumer behavior, industry capabilities, technology and the energy and transportation infrastructure. The TEF reports support DOE long-term planning. The reports provide analysis to inform decisions about transportation energy research investments, as well as the role of advanced transportation energy technologies and systems in the development of new physical, strategic, and policy alternatives.

  18. NREL: Energy Analysis - Transportation Energy Futures Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the energy and carbon implications of altering the current U.S. energy profile. Users can explore a TEF scenario output in BITES using inputs based on study findings, or ...

  19. Growing Americas Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Energy Future The emerging U.S. bioenergy industry provides a secure and growing supply of transportation fuels, biopower, and bioproducts from a range of biomass resources. Abundant, renewable bioenergy can help secure America's energy future, reducing our dependence on foreign oil and ensur- ing American prosperity while protecting the environment. Bioenergy can also help mitigate growing concerns about climate change by having an impact in decreasing green- house gas emissions,

  20. THE FUTURE OF GEOTHERMAL ENERGY

    SciTech Connect (OSTI)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  1. NREL: Speeches - Nation's Energy Future at Risk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Future at Risk, National Lab Director Says For more information contact: George Douglas, 303-275-4096 e:mail: George Douglas Washington, D.C., July 27, 1999 — America must invest in its energy future now, Richard Truly, director of the U.S. Department of Energy's National Renewable Energy Laboratory said today. Otherwise, he said, the nation could face supply shortages and fall behind foreign competitors. Truly, speaking at the National Press Club's Newsmakers program, said that U.S.

  2. Alternative Energy Development and China's Energy Future

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  3. Geothermal Energy in Hawaii: Present and Future | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Energy in Hawaii: Present and Future Abstract Discussed the development of...

  4. The Future of Energy from Nuclear Fission

    SciTech Connect (OSTI)

    Kim, Son H.; Taiwo, Temitope

    2013-04-13

    . In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Associations data, the realization of Chinas deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.

  5. U. S. Fusion Energy Future

    SciTech Connect (OSTI)

    John A. Schmidt; Dan Jassby; Scott Larson; Maria Pueyo; Paul H. Rutherford

    2000-10-12

    Fusion implementation scenarios for the US have been developed. The dependence of these scenarios on both the fusion development and implementation paths has been assessed. A range of implementation paths has been studied. The deployment of CANDU fission reactors in Canada and the deployment of fission reactors in France have been assessed as possible models for US fusion deployment. The waste production and resource (including tritium) needs have been assessed. The conclusion that can be drawn from these studies is that it is challenging to make a significant impact on energy production during this century. However, the rapid deployment of fission reactors in Canada and France support fusion implementation scenarios for the US with significant power production during this century. If the country can meet the schedule requirements then the resource needs and waste production are found to be manageable problems.

  6. Factors affecting robust retail energy markets

    SciTech Connect (OSTI)

    Michelman, T.S.

    1999-04-01

    This paper briefly defines an active retail market, details the factors that influence market activity and their relative importance, compares activity in various retail energy markets to date, and predicts future retail energy market activity. Three primary factors translate into high market activity: supplier margins, translated into potential savings for actively shopping customers; market size; and market barriers. The author surveys activity nationwide and predicts hot spots for the coming year.

  7. Building a Better Future Through Clean Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Better Future Through Clean Energy Building a Better Future Through Clean Energy April 22, 2015 - 10:56am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs Matty Greene Matty Greene Former Videographer How can I participate? Follow us on Twitter and Energy.gov all week long for more #EarthWeek coverage! Friday, April 22 is Earth Day, a celebration of environmental protection throughout the nation and across the globe. The Energy Department is committed to

  8. Critical Materials for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Critical Materials for a Clean Energy Future Critical Materials for a Clean Energy Future October 19, 2011 - 5:46pm Addthis David Sandalow David Sandalow Former Under Secretary of Energy (Acting) and Assistant Secretary for Policy & International Affairs Why does it matter? Four clean energy technologies-wind turbines, electric vehicles, photovoltaic cells and fluorescent lighting-use materials at risk of supply disruptions in the next five years. Earlier this month, United States, Japanese

  9. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  10. Water Power For a Clean Energy Future Cover Photo | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a Clean Energy Future Cover Photo Water Power For a Clean Energy Future Cover Photo Image icon Water Power For a Clean Energy Future Cover.JPG More Documents & Publications ...

  11. Enterprise SRS Future Initiatives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Initiatives Enterprise SRS Future Initiatives SRS has a sound heritage based on innovation and expertise with a willingness to take on complex challenges to improve and enhance the security of our nation. The expertise and technical capabilities of SRNL, combined with the SRS infrastructure, facilities, and safety culture, make SRS a prime location for the deployment of innovative solutions to address the nation's most pressing issues in clean energy, national security and environmental

  12. Future high energy colliders symposium. Summary report

    SciTech Connect (OSTI)

    Parsa, Z. |

    1996-12-31

    A `Future High Energy Colliders` Symposium was held October 21-25, 1996 at the Institute for Theoretical Physics (ITP) in Santa Barbara. This was one of the 3 symposia hosted by the ITP and supported by its sponsor, the National Science Foundation, as part of a 5 month program on `New Ideas for Particle Accelerators`. The long term program and symposia were organized and coordinated by Dr. Zohreh Parsa of Brookhaven National Laboratory/ITP. The purpose of the symposium was to discuss the future direction of high energy physics by bringing together leaders from the theoretical, experimental and accelerator physics communities. Their talks provided personal perspectives on the physics objectives and the technology demands of future high energy colliders. Collectively, they formed a vision for where the field should be heading and how it might best reach its objectives.

  13. Winning the Biofuel Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biofuel Future Winning the Biofuel Future March 7, 2011 - 4:44pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy Today, the Department announced that a research team at our BioEnergy Science Center achieved yet another advance in the drive toward next generation biofuels: using a microbe to convert plant matter directly into isobutanol. Isobutanol can be burned in regular car engines with a heat value higher than ethanol and similar to gasoline. This is part of a broad portfolio

  14. Thorium Energy Futures (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Thorium Energy Futures Citation Details In-Document Search Title: Thorium Energy Futures The potential for thorium as an alternative or supplement to uranium in fission ...

  15. 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic ...

  16. The Road to a Sustainable Energy Future | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium The Road to a Sustainable Energy Future Professor Emily Carter, Department ... Science on Saturday, January 31, 2015, "The Road to a Sustainable Energy Future", Prof. ...

  17. Assisting Federal Facilities with Energy Conservation Technologies (AFFECT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity | Department of Energy Project Financing » Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Opportunity Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) Funding Opportunity The Federal Energy Management Program (FEMP) provides project assistance through the AFFECT funding opportunity. AFFECT provides grants for the development of capital projects to increase the energy efficiency and renewable energy

  18. The future of energy and climate

    ScienceCinema (OSTI)

    None

    2011-10-06

    The talk will review some of the basic facts about the history and present status of the use of energy and its climatic consequences. It is clear that the world will have to change its way of energy production, the sooner the better. Because of the difficulty of storing electric energy, by far the best energy source for the future is thermal solar from the deserts, with overnight thermal storage. I will give some description of the present status of the technologies involved and end up with a pilot project for Europe and North Africa.

  19. Brainstorming Apps for a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Brainstorming Apps for a Clean Energy Future Brainstorming Apps for a Clean Energy Future July 20, 2012 - 1:03pm Addthis Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Notes from the July 9th Energy Data Jam in New York City | Credit: Openei.org Nick Sinai U.S. Deputy Chief Technology Officer, White House Office of Science and Technology Policy Ian Kalin Director of the Energy Data Initiative How can I participate? You can contribute ideas for new products,

  20. EO 13211: Regulations That Significantly Affect Energy Supply...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EO 13211: Regulations That Significantly Affect Energy Supply, Distribution, or Use EO 13211: Regulations That Significantly Affect Energy Supply, Distribution, or Use I am...

  1. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world`s major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  2. World energy: Building a sustainable future

    SciTech Connect (OSTI)

    Schipper, L.; Meyers, S.

    1992-04-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use energy. These include local and regional environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect, and threats to international relations in connection with oil supply or nuclear proliferation. For developing countries, the financial cost of providing energy to provide basic needs and fuel economic development pose an additional burden. To assess the magnitude of future problems and the potential effectiveness of response strategies, it is important to understand how and why energy use has changed in the post and where it is heading. This requires study of the activities for which energy is used, and of how people and technology interact to provide the energy services that are desired. The authors and their colleagues have analyzed trends in energy use by sector for most of the world's major energy-consuming countries. The approach we use considers three key elements in each sector: the level of activity, structural change, and energy intensity, which expresses the amount of energy used for various activities. At a disaggregated level, energy intensity is indicative of energy efficiency. But other factors besides technical efficiency also shape intensity.

  3. COLLOQUIUM: Energy Return on Investment for Future Energy Sources |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab October 26, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Energy Return on Investment for Future Energy Sources Dr. Charles Neumeyer Princeton Plasma Physics Laboratory Colloquium Committee: The Princeton Plasma Physics Laboratory 2016-2017 Colloquium Committee is comprised of the following people. Please feel free to contact them by e-mail regarding any possible speakers or topics for future colloquia. Carol Ann Austin,

  4. Future Communications Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future Communications Needs Future Communications Needs Chart of Oncor Electric Delivery's Future Communications Needs PDF icon Future Communications Needs More Documents & ...

  5. Coal and nuclear power: Illinois' energy future

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This conference was sponsored by the Energy Resources Center, University of Illinois at Chicago; the US Department of Energy; the Illinois Energy Resources Commission; and the Illinois Department of Energy and Natural Resources. The theme for the conference, Coal and Nuclear Power: Illinois' Energy Future, was based on two major observations: (1) Illinois has the largest reserves of bituminous coal of any state and is surpassed in total reserves only by North Dakota, and Montana; and (2) Illinois has made a heavy commitment to the use of nuclear power as a source of electrical power generation. Currently, nuclear power represents 30% of the electrical energy produced in the State. The primary objective of the 1982 conference was to review these two energy sources in view of the current energy policy of the Reagan Administration, and to examine the impact these policies have on the Midwest energy scene. The conference dealt with issues unique to Illinois as well as those facing the entire nation. A separate abstract was prepared for each of the 30 individual presentations.

  6. AFFECT 2016: Assisting Federal Facilities with Energy Conservation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Webinar | Department of Energy AFFECT 2016: Assisting Federal Facilities with Energy Conservation Technologies Webinar AFFECT 2016: Assisting Federal Facilities with Energy Conservation Technologies Webinar Webinar describes the 2016 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) funding opportunity offered by the Federal Energy Management Program. View the webinar slides.

  7. Energy Department Selects Global Laser Enrichment for Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm ...

  8. 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Feedstocks | Department of Energy Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks 2016 Bioenergizeme Infographic Challenge: Energy Crops: The Future of Bioenergy Feedstocks This infographic was created by students from Franklin High School in Franklin, MA

  9. Creating the Future of Solar Energy, Today | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Creating the Future of Solar Energy, Today Creating the Future of Solar Energy, Today November 4, 2014 - 11:14am Addthis SunShot Catalyst team holds a “jamathon” on September 24th with WeWork, an incubator with offices in D.C. providing support services and work space to its small business members. | Photo Courtesy: SunShot Initiative SunShot Catalyst team holds a "jamathon" on September 24th with WeWork, an incubator with offices in D.C. providing support services and work

  10. Powering the Future - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 28, 2013, Videos Powering the Future powering_the_future_video Deputy Director of Development and Demonstration Jeff Chamberlain discusses the future of energy storage with CBS News in this video.

  11. New Methane Hydrate Research: Investing in Our Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ...

  12. Secretary Moniz Speaks on Future of Fossil Energy | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moniz Speaks on Future of Fossil Energy Secretary Moniz Speaks on Future of Fossil Energy July 30, 2013 - 1:17pm Addthis April Saylor April Saylor Former Digital Outreach ...

  13. Chu at COP-16: Building a Sustainable Energy Future | Department...

    Office of Environmental Management (EM)

    at COP-16: Building a Sustainable Energy Future Chu at COP-16: Building a Sustainable Energy Future December 7, 2010 - 11:16pm Addthis John Schueler John Schueler Former New Media ...

  14. Harvesting Solar Energy for the Future | Photosynthetic Antenna Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Harvesting Solar Energy for the Future Harvesting Solar Energy for the Future In this video, we detail the vision and goals of PARC's research in a broader context.

  15. The Role Of IC Engines In Future Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Of IC Engines In Future Energy Use The Role Of IC Engines In Future Energy Use Reviews future market trends and forecasts, and future engine challenges and research focus PDF icon ...

  16. Secretary Moniz: Biofuels Important to America's Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Moniz: Biofuels Important to America's Energy Future Secretary Moniz: Biofuels Important to America's Energy Future August 1, 2013 - 5:54pm Addthis Watch the video of Secretary Moniz's remarks on the importance of biofuels to America's clean energy future. | Video by Matty Greene, the Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Today at the Energy Department's Biomass 2013 annual conference in Washington,

  17. FEMP's Assisting Federal Facilities with Energy Conservation Technologies (AFFECT)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFFECT 2016 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) June 8, 2016 David Boomsma AFFECT Program Manager Federal Energy Management Program (FEMP) Energy Efficiency and Renewable Energy Department of Energy Federal Energy Management Program 2 Event Date FOA Issue Date May 26, 2016 Letter of Intent (LOI) Deadline June 27, 2016 5:00pm ET Full Application Deadline July 27, 2016 5:00pm ET Notification of Award Selections October 28, 2016 Timeframe for Award

  18. DOE/Sandia Tribal Energy Internship Program: Immersion of Future...

    Broader source: Energy.gov (indexed) [DOE]

    DOE SANDIA TRIBAL ENERGY - INTERNSHIP PROGRAM Immersion of future leaders into ... Energy Resources in Tribal Communities" "It was really nice when an ...

  19. Transportation Energy Futures Study Reveals Potential for Deep...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Transportation Energy Futures (TEF) study, ... gas (GHG) emissions in the transportation sector. "Transportation is ... related to energy efficiency and renewable ...

  20. Take Action Now: Empower a Secure Energy Future 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future 2 handout.

  1. Take Action Now: Empower a Secure Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document features a Federal Energy Management Program (FEMP) template for creating a Take Action Now: Empower a Secure Energy Future campaign handout.

  2. NREL: Energy Analysis - Renewable Electricity Futures Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Electricity Futures Study RE Futures Scenario Viewer A screenshot of the main map on the RE Futures Scenario Viewer Explore the RE Futures scenarios at a state-level and download the data. RE Futures Visualizations These visualizations are based on RE Futures modeling and represent the transformation of the U.S. electric system to a high renewable system from 2010 to 2050 and the hourly operation and transmission flow of that system in 2050. Transformation of the Electric Sector

  3. Energy, helium, and the future: II

    SciTech Connect (OSTI)

    Krupka, M.C.; Hammel, E.F.

    1980-01-01

    The importance of helium as a critical resource material has been recognized specifically by the scientific community and more generally by the 1960 Congressional mandate to institute a long-range conservation program. A major study mandated by the Energy Reorganization Act of 1974 resulted in the publication in 1975 of the document, The Energy-Related Applications of Helium, ERDA-13. This document contained a comprehensive review and analysis relating to helium resources and present and future supply/demand relationships with particular emphasis upon those helium-dependent energy-related technologies projected to be implemented in the post-2000 year time period, e.g., fusion. An updated overview of the helium situation as it exists today is presented. Since publication of ERDA-13, important changes in the data base underlying that document have occurred. The data have since been reexamined, revised, and new information included. Potential supplies of helium from both conventional and unconventional natural gas resources, projected supply/demand relationships to the year 2030 based upon a given power-generation scenario, projected helium demand for specific energy-related technologies, and the supply options (national and international) available to meet that demand are discussed. An updated review will be given of the energy requirements for the extraction of helium from natural gas as they relate to the concentration of helium. A discussion is given concerning the technical and economic feasibility of several methods available both now and conceptually possible, to extract helium from helium-lean natural gas, the atmosphere, and outer space. Finally, a brief review is given of the 1980 Congressional activities with respect to the introduction and possible passage of new helium conservation legislation.

  4. Coal: America's energy future. Volume I

    SciTech Connect (OSTI)

    2006-03-15

    Secretary of Energy Samuel W. Bodman requested the National Coal Council in April 2005 a report identifying the challenges and opportunities of more fully exploring the USA's domestic coal resources to meet the nations' future energy needs. This resultant report addresses the Secretary's request in the context of the President's focus, with eight findings and recommendations that would use technology to leverage the USA's extensive coal assets and reduce dependence on imported energy. Volume I outlines these findings and recommendations. Volume II provides technical data and case histories to support the findings and recommendations. Chapter headings of Volume I are: Coal-to-Liquids to Produce 2.6 MMbbl/d; Coal-to-Natural Gas to Produce 4.0 Tcf Per Year; Coal-to-Clean Electricity; Coal to Produce Ethanol; Coal-to-Hydrogen; Enhanced Oil and Gas (Coalbed Methane); Recovery as Carbon Management Strategies; Delineate U.S. Coal Reserves and Transportation Constraints as Part of an Effort to Maximize U.S. Coal Production; and Penn State Study, 'Economic Benefits of Coal Conversion Investments'.

  5. Renewable: A key component of our global energy future

    SciTech Connect (OSTI)

    Hartley, D.

    1995-12-31

    Inclusion of renewable energy sources in national and international energy strategies is a key component of a viable global energy future. The global energy balance is going to shift radically in the near future brought about by significant increases in population in China and India, and increases in the energy intensity of developing countries. To better understand the consequences of such global shifts in energy requirements and to develop appropriate energy strategies to respond to these shifts, we need to look at the factors driving choices among supply options by geopolitical consumers and the impact these factors can have on the future energy mix.

  6. Accelerating Materials Development for a Clean Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Materials Development for a Clean Energy Future Accelerating Materials Development for a Clean Energy Future February 24, 2016 - 2:30pm Addthis Accelerating Materials Development for a Clean Energy Future Reuben Sarkar Reuben Sarkar Deputy Assistant Secretary for Transportation Megan Brewster Senior Policy Advisor for Advanced Manufacturing at the White House Office of Science and Technology Policy Lloyd Whitman Assistant Director for Nanotechnology and Advanced Materials at the

  7. Capturing the Sun, Creating a Clean Energy Future (Brochure)...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE) Capturing the Sun, Creating a Clean ...

  8. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect (OSTI)

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  9. Federal Energy Management Program Issues 2016 AFFECT Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announcement | Department of Energy Federal Energy Management Program Issues 2016 AFFECT Funding Opportunity Announcement Federal Energy Management Program Issues 2016 AFFECT Funding Opportunity Announcement May 25, 2016 - 5:26pm Addthis On May 26, 2016, the Federal Energy Management Program (FEMP) issued a Funding Opportunity Announcement (FOA) on the EERE Exchange titled Assisting Federal Facilities with Energy Conservation Technologies 2016. The Assisting Federal Facilities with Energy

  10. Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Future Bioeconomy Growing the Future Bioeconomy Breakout Session IA-Conversion Technologies I: Industrial Perspectives on Pathways to Advanced Biofuels Growing the Future Bioeconomy Joel Velasco, Senior Vice President, Amyris, Inc velasco_biomass_2014 (3.29 MB) More Documents & Publications Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Sustainable Alternative Jet Fuels

  11. NREL Launches Interactive Tool for Developing a Cleaner Energy Future -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Launches Interactive Tool for Developing a Cleaner Energy Future January 9, 2013 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) has created an energy analysis tool to help individuals and educators experiment with future energy use scenarios. The interactive Buildings, Industry, Transportation, Electricity, and Transportation Scenarios (BITES) allows users to explore how changes in energy demand and supply can impact carbon dioxide

  12. CHP: Effective Energy Solutions for a Sustainable Future, December 2008 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effective Energy Solutions for a Sustainable Future, December 2008 CHP: Effective Energy Solutions for a Sustainable Future, December 2008 Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. This report describes in detail the four key areas where CHP has proven its

  13. Geothermal Power - the Future is Now | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power - the Future is Now Geothermal Power - the Future is Now September 25, 2012 - 1:11pm Addthis The United States Department of Energy is breaking the sound barrier, delivering...

  14. Biomass 2008: Fueling Our Future Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy...

  15. Innovation: Enabling a Sustainable Energy Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy's SunShot Initiative-to make large-scale solar energy systems cost- competitive with other energy sources by 2020. 3 Energy Market Dynamics Global...

  16. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  17. NYMEX Coal Futures - Energy Information Administration

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    providing companies in the electric power industry with secure and reliable risk management tools by creating a series of electricity futures contracts fashioned to meet the...

  18. Buildings of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings of the Future Buildings of the Future Imagine buildings of the future. What will they look like and how will they interact with us-their occupants-to improve our lives and the Earth? Click to view the fact sheet. Click to view the fact sheet. Future Buildings: A Call for Collaboration, Vision Click to view the fact sheet. Lead Performer: Pacific Northwest National Laboratory - Richland, WA
 DOE Funding: $200,000 Project Term: 10/1/2014 - 9/30/2015 Project Website:

  19. Generating a Sustainable Wind Energy Future Thanks to Low Prices |

    Energy Savers [EERE]

    Department of Energy Generating a Sustainable Wind Energy Future Thanks to Low Prices Generating a Sustainable Wind Energy Future Thanks to Low Prices August 17, 2016 - 4:00pm Addthis The U.S. wind power market remains strong thanks to sustained low prices, rapidly increasing wind energy generation, and growing corporate demand. The U.S. wind power market remains strong thanks to sustained low prices, rapidly increasing wind energy generation, and growing corporate demand. Patrick Gilman

  20. Internships Help Future Energy Leaders Gain Hands-On Experience |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Internships Help Future Energy Leaders Gain Hands-On Experience Internships Help Future Energy Leaders Gain Hands-On Experience August 23, 2013 - 10:19am Addthis EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. Rebecca

  1. Winning the Future with a Responsible Budget | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future with a Responsible Budget Winning the Future with a Responsible Budget February 11, 2011 - 2:24pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy As part of President Obama's commitment to winning the future, the Department of Energy will make critical investments in science, research and innovation that will create jobs, grow the economy, and position America to lead the global clean energy economy. Next week, the Administration will unveil its budget for FY 2012, which

  2. How Has Saving Energy Affected Your Health?

    Broader source: Energy.gov [DOE]

    We don't often speak of it in these terms, but saving energy can sometimes have a positive influence on your health.

  3. The Future is Here - Smart Home Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Here - Smart Home Technology, call ... A Fresh Look at Home Performance Business Models and Service Offerings (301) Einstein and Energy Efficiency: Making Homes ...

  4. Energy futures: Trading opportunities for the 1990s

    SciTech Connect (OSTI)

    Treat, J.E.

    1990-01-01

    This volume contains an edited collection of views from practitioners in the rapidly growing area of energy futures and options trading, a major element of risk management. Four chapters are devoted to Trading Theories and Strategies. This section is aimed at the specialist in energy, rather than finance. The complexities of options trading are described in another chapter. The remaining sections of this book present a variety of topics in this field including Natural Gas Trading and Futures, Energy Futures and Options Trading, and Accounting, Taxation and Internal Control. The book is a good introduction and reference to the mechanics and institutions of energy futures contracts and trading.

  5. Current Renewable Energy Technologies and Future Projections

    SciTech Connect (OSTI)

    Allison, Stephen W; Lapsa, Melissa Voss; Ward, Christina D; Smith, Barton; Grubb, Kimberly R; Lee, Russell

    2007-05-01

    The generally acknowledged sources of renewable energy are wind, geothermal, biomass, solar, hydropower, and hydrogen. Renewable energy technologies are crucial to the production and utilization of energy from these regenerative and virtually inexhaustible sources. Furthermore, renewable energy technologies provide benefits beyond the establishment of sustainable energy resources. For example, these technologies produce negligible amounts of greenhouse gases and other pollutants in providing energy, and they exploit domestically available energy sources, thereby reducing our dependence on both the importation of fossil fuels and the use of nuclear fuels. The market price of renewable energy technologies does not reflect the economic value of these added benefits.

  6. Securing America's Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This two-page fact sheet provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  7. Securing America's Clean Energy Future (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This letter-fold brochure provides an overview of the activities and programs in DOE's Office of Energy Efficiency and Renewable Energy.

  8. State and Local Resources for a Clean Energy Future Brochure

    Broader source: Energy.gov [DOE]

    The State and Local Resources for a Clean Energy Future brochure explains how to best use state and local resources to meet your community's clean energy goals. View the infographic above or...

  9. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  10. Chu at COP-16: Building a Sustainable Energy Future

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Steven Chu addresses the U.S. Center in Cancun on the need to build a sustainable energy future as part of the United Nations Climate Change Conference, COP-16. In his...

  11. Paducah Site Future Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    based on risk in future use Provides a comparison between the potential end state vision and the current cleanup baseline strategy Includes maps and figures that can be used ...

  12. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect (OSTI)

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible

  13. Secure and Sustainable Energy Future Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Energy.gov » Leadership » Secretary of Energy Advisory Board Secretary of Energy Advisory Board Secretary of Energy Advisory Board SEAB Reports January 26, 2016 Report of the Task Force on Methane Hydrates This report presents the findings and recommendations for the Secretary of Energy Advisory Board (SEAB) Task Force on Methane Hydrates. June 17, 2015 Interim Report of the Task Force on DOE National Laboratories SEAB advice, guidance, and recommendations on important issues related to

  14. About the Bioenergy Technologies Office: Growing America's Energy Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy About the Bioenergy Technologies Office: Growing America's Energy Future About the Bioenergy Technologies Office: Growing America's Energy Future The U.S. Department of Energy's Bioenergy Technologies Office (BETO) establishes partnerships with key public and private stakeholders to develop and demonstrate technologies for producing cost-competitive advanced biofuels from non-food biomass resources, including cellulosic biomass, algae, and wet waste (e.g. biosolids).

  15. Industrial Assessment Centers Train Future Energy-Savvy Engineers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility

  16. Water Power for a Clean Energy Future

    SciTech Connect (OSTI)

    2013-04-12

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable energy generated using hydropower technologies and marine and hydrokinetic technologies.

  17. Buildings of the Future | Department of Energy

    Office of Environmental Management (EM)

    EM's Paducah Site Completes Building Removals EM's Paducah Site Completes Building Removals Addthis

    Energy By The Numbers: Recovery Act Energy By The Numbers: Recovery Act Addthis America is now a world leader in clean energy. But how did we get there? One key reason is the Recovery Act of 2009, a historic investment to revitalize the economy during the worst financial crisis since the Great Depression. This investment created millions of jobs -- including thousands of clean energy jobs in

  18. Transportation Energy Futures Series: Projected Biomass Utilization...

    Office of Scientific and Technical Information (OSTI)

    corn for ethanol and butanol production, soybeans for biodiesel, and algae for diesel. ... LIGNOCELLULOSIC; ETHANOL; BUTANOL; BIODIESEL; Energy Analysis; Bioenergy; ...

  19. Resources for the Future | Open Energy Information

    Open Energy Info (EERE)

    organization that conducts independent research - rooted primarily in economics and other social sciences - on environmental, energy, natural resource and public health issues....

  20. Transportation Energy Futures: Project Overview and Findings...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... a national shift to cleaner production sources under this scenario. 10 Because the costs ... Although the potential energy benefits are significant, studies have identified the ...

  1. SUSTAINABILITY NEWS Assisting Federal Facilities with Energy Conservation Technologies (AFFECT)

    Energy Savers [EERE]

    Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) DOE's Federal Energy Management Program (FEMP) recently issued a notice of intent to release a Funding Opportunity Announcement (FOA) for its new AFFECT program. The program intends to provide direct funding awards of up to $1 million per project to help finance renewable energy and combined heat and power (CHP) projects. Projects that apply for the funding are expected to leverage other financing mechanisms (such as

  2. Growing America's Energy Future: Bioenergy Technologies Office Successes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of 2014 | Department of Energy America's Energy Future: Bioenergy Technologies Office Successes of 2014 Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 The Bioenergy Technologies Office (BETO) forms cost-share public-private partnerships to help sustainably develop cost-competitive biofuels and bioproducts in the United States from non-food biomass resources. accomplishments_two_pager_2014.pdf (194.5 KB) More Documents & Publications Bioenergy

  3. Revolution Now: The Future Arrives for Four Clean Energy Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Revolution Now: The Future Arrives for Four Clean Energy Technologies Revolution Now: The Future Arrives for Four Clean Energy Technologies Editor's note: This report was updated in October 2014. To read the most up-to-date version, visit the Revolution Now 2014 page. This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial

  4. Energy Department Selects Global Laser Enrichment for Future Operations at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paducah Site | Department of Energy Global Laser Enrichment for Future Operations at Paducah Site Energy Department Selects Global Laser Enrichment for Future Operations at Paducah Site November 27, 2013 - 12:00pm Addthis Workers inspect cylinders containing depleted uranium hexafluoride. Workers inspect cylinders containing depleted uranium hexafluoride. Media Contact (202) 586-4940 Washington, D.C. - The U.S. Department of Energy announced today that it will open negotiations with Global

  5. USVI Energy Road Map: Charting the Course to a Clean Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands | Department of Energy USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands This brochure provides an overview of the integrated clean energy deployment process and progress of the

  6. Usibelli Coal Mine - Cleaner Energy, Brighter Future

    Broader source: Energy.gov (indexed) [DOE]

    * Operated by Aurora Energy Services, LLC 14 Historical Coal Export Markets * South Korea - 15 million tons since 1984 * Chile - 3.3 million tons since 2003 * Japan - 840,000 ...

  7. Investing in an Energy Efficient Future

    Broader source: Energy.gov [DOE]

    The Building Technologies Office (BTO) budget advances the development and adoption of cost-effective, real-world technologies and strategies to improve the energy efficiency, quality, and comfort...

  8. Innovation: Enabling a Sustainable Energy Future

    Broader source: Energy.gov [DOE]

    These slides correspond to a presentation given by National Renewable Energy Laboratory (NREL) Director Dr. Dan Arvizu at the 2014 SunShot Grand Challenge Summit and Peer Review in Anaheim, CA....

  9. Energy Department Releases New Wind Report, Examines Future of Industry |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Releases New Wind Report, Examines Future of Industry Energy Department Releases New Wind Report, Examines Future of Industry March 12, 2015 - 11:51am Addthis News Media Contact 202-586-4940 DOENews@hq.doe.gov Present Day to 2050, Report Quantifies the Economic and Social Benefits of Robust Wind Energy Growth WASHINGTON - In support of the President's all-of-the-above energy strategy to diversify our nation's power supplies, the Energy Department today released a new

  10. Revolution Now: The Future Arrives for Five Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies-2015 Update | Department of Energy Five Clean Energy Technologies-2015 Update Revolution Now: The Future Arrives for Five Clean Energy Technologies-2015 Update An illustrated infographic showing the falling costs for clean energy technologies including wind, solar, buildings, and lightin For decades, America has anticipated the transformational impact of clean energy technologies. As the federal government and industry made long-term investments to support those technologies,

  11. USVI Energy Road Map: Charting the Course to a Clean Energy Future...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USVI Energy Road Map Charting the Course to a Clean Energy Future EDIN Energy Development in Island Nations U.S. Virgin Islands EDIN Energy Development in Island Nations U.S. ...

  12. Clean Energy 2030: Building a Sustainable Future - Joint Center for Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage Research December 18, 2013, Videos Clean Energy 2030: Building a Sustainable Future JCESR Director George Crabtree discusses the future of clean energy in "Clean Energy 2030: Building a Sustainable Future," a UChicago - Argonne - Fermilab Joint Speaker Series Event held at Argonne.

  13. Biomass 2014: Growing the Future Bioeconomy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Events » Conferences » Biomass 2014: Growing the Future Bioeconomy Biomass 2014: Growing the Future Bioeconomy Bioenergy: America's Energy Future is a short documentary film showcasing examples of bioenergy innovations across the biomass supply chain and the United States. The film highlights a few stories of individuals and companies who are passionate about achieving the promise of biofuels and addressing the challenges of developing a thriving bioeconomy. This outreach product supports

  14. The Future is Here - Smart Home Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future is Here - Smart Home Technology The Future is Here - Smart Home Technology Better Buildings Residential Network Peer Exchange Call Series: The Future is Here - Smart Home Technology, call slides and discussion summary, April 9, 2015. Call Slides and Discussion Summary (2.05 MB) More Documents & Publications Better Buildings Network View | December 2014 Think Again! A Fresh Look at Home Performance Business Models and Service Offerings (301) Einstein and Energy Efficiency: Making

  15. Walking the Walk to a Brighter Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Walking the Walk to a Brighter Energy Future Walking the Walk to a Brighter Energy Future September 13, 2011 - 12:33pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy There are all kinds of ways to get young people excited about saving energy. Recently, on the Energy Savers Blog, we've been pointing elementary and high school teachers and students to America's Home Energy Education Challenge. This nationwide initiative engages

  16. Advanced Materials for Sustainable, Clean Energy Future

    SciTech Connect (OSTI)

    Yang, Zhenguo

    2009-04-01

    The current annual worldwide energy consumption stands at about 15 terawatts (TW, x1012 watts). Approximately 80% of it is supplied from fossil fuels: oil (34 %), coal (25 %), and natural gas (21 %). Biomass makes up 8% of the energy supply, nuclear energy accounts for 6.5 %, hydropower has a 2% share and other technologies such as wind and solar make up the rest. Even with aggressive conservation and new higher efficiency technology development, worldwide energy demand is predicted to double to 30 TW by 2050 and triple to 46 TW by the end of the century. Meanwhile oil and natural gas production is predicted to peak over the next few decades. Abundant coal reserves may maintain the current consumption level for longer period of time than the oil and gas. However, burning the fossil fuels leads to a serious environmental consequence by emitting gigantic amount of green house gases, particularly CO2 emissions which are widely considered as the primary contributor to global warming. Because of the concerns over the greenhouse gas emission, many countries, and even some states and cities in the US, have adopted regulations for limiting CO2 emissions. Along with increased CO2 regulations, is an emerging trend toward carbon trading, giving benefits to low carbon footprint industries, while making higher emitting industries purchase carbon allowances. There have been an increasing number of countries and states adopting the trade and cap systems.

  17. Marathon Sees Diesel Fuel in Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (840.84 KB) More Documents & Publications What is the Future of U.S. Diesel Production? Diesel vs Gasoline Production Year-in-Review: 2014 Energy Infrastructure Events ...

  18. New Research Facility Holds Promise For Nation's Energy Future...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Research Facility Holds Promise For Nation's Energy Future Leaders Praise Innovative ... Golden, Colo. - Ground was broken today on a new facility at the U.S. Department of ...

  19. Armstrong Teasdale Future Energy Group | Open Energy Information

    Open Energy Info (EERE)

    St. Louis, Missouri Zip: 63105 Sector: Bioenergy, Biofuels, Biomass, Buildings, Carbon, Efficiency, Geothermal energy, Hydro, Hydrogen, Renewable energy, Services, Solar,...

  20. Transportation Energy Futures Series: Projected Biomass Utilization for

    Office of Scientific and Technical Information (OSTI)

    Fuels and Power in a Mature Market (Technical Report) | SciTech Connect Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market Citation Details In-Document Search Title: Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature Market The viability of biomass as transportation fuel depends upon the allocation of limited resources for fuel, power, and products. By focusing on mature markets, this

  1. Investing in Our Energy Future: The Story of General Compression |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Our Energy Future: The Story of General Compression Investing in Our Energy Future: The Story of General Compression February 29, 2012 - 9:23am Addthis April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does government funding mean to a small clean energy startup? In the case of many ARPA-E awardees and small businesses across the country, it means being able to secure the private capital necessary to bring their innovations to

  2. New Feedstocks and Replacement Fuels - Future Energy for Mobility |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuels - Future Energy for Mobility New Feedstocks and Replacement Fuels - Future Energy for Mobility Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_simnick.pdf (542.48 KB) More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Cross-cutting Technologies for Advanced Biofuels Well-to-Wheels Analysis

  3. Biomass 2014: Growing the Future Bioeconomy Agenda | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014: Growing the Future Bioeconomy Agenda Biomass 2014: Growing the Future Bioeconomy Agenda Tuesday, July 29, 2014 7:00 a.m.-8:00 a.m. Breakfast and Registration 8:00 a.m.-8:20 a.m. Welcome and Introduction Jonathan Male, Director, Bioenergy Technologies Office, U.S. Department of Energy 8:20 a.m.-9:00 a.m. Morning Keynotes David Danielson, Assistant Secretary for Energy Efficiency & Renewable Energy, U.S. Department of Energy Byron Paez, Deputy Director for Deputy Assistant

  4. Fossil fuels in a sustainable energy future

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  5. Could Building Energy Codes Mandate Rooftop Solar in the Future?

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.; Williams, Jeremiah

    2012-08-01

    This paper explores existing requirements and compliance options for both commercial and residential code structures. Common alternative compliance options are discussed including Renewable Energy Credits (RECs), green-power purchasing programs, shared solar programs and other community-based renewable energy investments. Compliance options are analyzed to consider building lifespan, cost-effectiveness, energy trade-offs, enforcement concerns and future code development. Existing onsite renewable energy codes are highlighted as case studies for the code development process.

  6. Forming the Future | Department of Energy

    Energy Savers [EERE]

    Strike | Department of Energy Florida's SunSmart Program Helps Provide Power to Schools When Storms Strike Florida's SunSmart Program Helps Provide Power to Schools When Storms Strike May 30, 2014 - 10:34am Addthis The SunSmart Program has installed solar power systems at schools designated as emergency shelters throughout Florida. | Photo by Amy Kidd The SunSmart Program has installed solar power systems at schools designated as emergency shelters throughout Florida. | Photo by Amy Kidd Amy

  7. Using Maps to Predict Solar Futures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maps to Predict Solar Futures Using Maps to Predict Solar Futures June 19, 2015 - 1:43pm Addthis Using Maps to Predict Solar Futures Dr. Lidija Sekaric Dr. Lidija Sekaric Solar Energy Technologies Office Director When first exploring the possibility of going solar, many consumers have questions: How many panels will I need for my rooftop? What is this going to cost me? How much will I save on my electricity bills? Awardees of the Energy Department's SunShot Initiative are working to help answer

  8. Multi-Path Transportation Futures Study - Lessons for the Transportation Energy Futures Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Path Transportation Futures Study -- Lessons for the Transportation Energy Futures Study Steven Plotkin, Argonne National Laboratory LDV Workshop, July 26, 2010 What have we learned that might be useful to TEF?  Do LOTS of sensitivity analysis - in this time frame, uncertainties about fuel price, technology costs, consumer behavior are very large, and effect of changed assumptions on outcomes can be huge  Focus on marginal costs and performance -- Advanced technologies may look good

  9. New Methane Hydrate Research: Investing in Our Energy Future | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Methane Hydrate Research: Investing in Our Energy Future New Methane Hydrate Research: Investing in Our Energy Future August 31, 2012 - 1:37pm Addthis Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped natural gas. Methane hydrates are 3D ice-lattice structures with natural gas locked inside. If methane hydrate is either warmed or depressurized, it will release the trapped

  10. Biomass 2008: Fueling Our Future Conference | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008: Fueling Our Future Conference Biomass 2008: Fueling Our Future Conference April 18, 2008 - 10:49am Addthis Remarks as Prepared for Delivery by Secretary of Energy Samuel Bodman Thank you and good afternoon. It's good to be with you. I want to thank John Mizroch for introducing me, and to congratulate him and all the folks at the Energy Department's biomass office for pulling together what appears to be a very successful event. Our national energy policy centers around one key idea: we must

  11. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  12. Kutscher Elected Future Chair of American Solar Energy Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kutscher Elected Future Chair of American Solar Energy Society For more information contact: e:mail: Public Affairs Golden, Colo., Jan. 14, 1998 — Dr. Chuck Kutscher of the National Renewable Energy Laboratory (NREL) was elected future chair of the American Solar Energy Society. Starting this month, he will serve as vice-chair/chair-elect for two years and then serve a two-year term as chair beginning January 2000. "I'm excited to have the opportunity to be chair at the turn of the

  13. Idaho Save Energy Now - Industries of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Save Energy Now - Industries of the Future Idaho Save Energy Now - Industries of the Future Idaho In 2009, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) ) awarded grants to 23 state and 5 regional entities to help disseminate energy-saving resources and information to industrial manufacturers in their areas. Idaho's Office of Energy Resources (OER) received one of these grants to support its Idaho Save Energy

  14. Transportation Energy Futures: Project Overview and Findings (Presentation)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    The U.S. Department of Energy-sponsored Transportation Energy Futures (TEF) project examines how combining multiple strategies could reduce both GHG emissions and petroleum use by 80%. The project's primary objective was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on previously underexplored opportunities related to energy efficiency and renewable energy in light-duty vehicles, non-light-duty vehicles, fuels, and transportation demand. This PowerPoint provides an overview of the project and its findings.

  15. Fuels and energy for the future: The role of catalysis

    SciTech Connect (OSTI)

    Rostrup-Nielsen, J.R.; Nielsen, R.

    2004-07-01

    There are many reasons to decrease the dependency on oil and to increase the use of other energy sources than fossil fuels. The wish for energy security is balanced by a wish for sustainable growth. Catalysis plays an important role in creating new routes and flexibility in the network of energy sources, energy carriers, and energy conversion. The process technologies resemble those applied in the large scale manufacture of commodities. This is illustrated by examples from refinery fuels, synfuels, and hydrogen and the future role of fossil fuels is discussed.

  16. AgFuture Energy LLC AFE | Open Energy Information

    Open Energy Info (EERE)

    Energy LLC (AFE) Place: Texas Product: The Texas A&M University System has formed a joint venture with a Pennsylvania-based advisory firm to commercialise energy research...

  17. Leading trends in environmental regulation that affect energy development. Final report

    SciTech Connect (OSTI)

    Steele, R V; Attaway, L D; Christerson, J A; Kikel, D A; Kuebler, J D; Lupatkin, B M; Liu, C S; Meyer, R; Peyton, T O; Sussin, M H

    1980-01-01

    Major environmental issues that are likely to affect the implementation of energy technologies between now and the year 2000 are identified and assessed. The energy technologies specifically addressed are: oil recovery and processing; gas recovery and processing; coal liquefaction; coal gasification (surface); in situ coal gasification; direct coal combustion; advanced power systems; magnetohydrodynamics; surface oil shale retorting; true and modified in situ oil shale retorting; geothermal energy; biomass energy conversion; and nuclear power (fission). Environmental analyses of these technologies included, in addition to the main processing steps, the complete fuel cycle from resource extraction to end use. A comprehensive survey of the environmental community (including environmental groups, researchers, and regulatory agencies) was carried out in parallel with an analysis of the technologies to identify important future environmental issues. Each of the final 20 issues selected by the project staff has the following common attributes: consensus of the environmental community that the issue is important; it is a likely candidate for future regulatory action; it deals with a major environmental aspect of energy development. The analyses of the 20 major issues address their environmental problem areas, current regulatory status, and the impact of future regulations. These analyses are followed by a quantitative assessment of the impact on energy costs and nationwide pollutant emissions of possible future regulations. This is accomplished by employing the Strategic Environmental Assessment System (SEAS) for a subset of the 20 major issues. The report concludes with a more general discussion of the impact of environmental regulatory action on energy development.

  18. A Safe, Secure Nuclear Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Safe, Secure Nuclear Future A Safe, Secure Nuclear Future June 8, 2011 - 12:00pm Addthis Secretary Chu Secretary Chu Former Secretary of Energy I am in Russia meeting with business, government and scientific leaders about opportunities for partnership between our two countries. One of the most important areas where we need to work together is on nuclear power and nuclear security. In a speech I delivered earlier today, I mentioned a letter that Albert Einstein wrote to President Roosevelt in

  19. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect (OSTI)

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  20. Growth Rates of Global Energy Systems and Future Outlooks

    SciTech Connect (OSTI)

    Hoeoek, Mikael; Li, Junchen; Johansson, Kersti; Snowden, Simon

    2012-03-15

    The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems' growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid 'oil boom'-development-i.e. they mimic the most extreme historical events-their contribution to global energy supply by 2050 will be marginal.

  1. Water Power for a Clean Energy Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This document describes some of the accomplishments of the Department of Energy Water Power Program, and how those accomplishments are supporting the advancement of renewable...

  2. Carbonless Transportation and Energy Storage in Future Energy Systems

    SciTech Connect (OSTI)

    Lamont, A.D.; Berry, G.D.

    2001-01-17

    By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

  3. Renewable Energy in Indian Country Handbook: Past, Present and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Indian Country The Handbook: Past, Present and Future Douglas C. MacCourt, Ater Wynne LLP Chair Member and Former Chair Indian Law Group Executive Committee Ater Wynne LLP Indian Law Section dcm@aterwynne.com Oregon State Bar Association Tribal Energy Program United States Department of Energy Annual Program Review May 4-7, 2015 Denver, Colorado Overview of Presentation * Overview of the Handbook - Origins - Goals - Details * Trends * Blueprint for a New Handbook Origins * In 2007, TEP

  4. Energy efficiency in passenger transportation: What the future may hold

    SciTech Connect (OSTI)

    Plotkin, S.

    1996-12-31

    This presentation very briefly projects future impacts of energy efficiency in passenger transportation. Continuing expansion of the U.S. transportation sector, with a corresponding increased dependency on imported oil, is noted. Freight trucks and air fleets are targeted as having the greatest potential for increased energy efficiency. The light duty vehicle is identified as the only technology option for major efficiency increases. 4 figs., 11 tabs.

  5. Status and future directions of the ENERGY STAR program

    SciTech Connect (OSTI)

    Brown, Richard E.; Webber, Carrie A.; Koomey, Jonathan G.

    2000-06-19

    In 1992 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products, in order to reduce carbon dioxide emissions. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has expanded the program to cover nearly the entire buildings sector, spanning new homes, commercial buildings, residential heating and cooling equipment, major appliances, office equipment, commercial and residential lighting, and home electronics. This paper provides a snapshot of the ENERGY STAR program in the year 2000, including a general overview of the program, its accomplishments, and the possibilities for future development. First, we describe the products that are currently eligible for the ENERGY STAR label and the program mechanisms that EPA and DOE are using to promote these products. Second, we illustrate selected milestones achieved in some markets, and ways that EPA and DOE are responding to challenges or changes in certain markets. Third, we discuss the evolving ENERGY STAR brand strategy. Next, we explore ways in which ENERGY STAR interacts with and enhances other policies, such as appliance standards and regional market transformation collaboratives. We then discuss evaluation studies that EPA and DOE are undertaking to quantify the impact of the ENERGY STAR program. Finally, we discuss future areas of expansion for the ENERGY STAR program, including labeling of new products and integrated programs for commercial and existing residential buildings.

  6. Innovating a Sustainable Energy Future (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Little, Mark (GE Global Research)

    2012-03-14

    The second speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was Mark Little, Senior Vice President and Director of GE Global Research. He discussed the role that industry and in particular GE is playing as a partner in innovative energy research. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  7. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    1 Energy Policy Act of 2005, Provisions Affecting Energy Consumption in Federal Buildings Source(s): Energy Management Requirements - Amended reduction goals set by the National Energy Conservation Policy Act, and requires increasing percentage reductions in energy consumption through FY 2015, with a final energy consumption reduction goal of 20 percent savings in FY 2015, as compared to the baseline energy consumption of Federal buildings in FY 2003. (These goals were superseded by Section 431

  8. Energy Department Charting New Future for Wastewater Treatment

    Broader source: Energy.gov [DOE]

    It will cost about $600 billion over the next 20 years to continue reliably transporting and treating wastewater, according to the Environmental Protection Agency (EPA). Find out how the Department of Energy collaborated with the National Science Foundation and EPA to explore a smarter future for water treatment.

  9. Energy technologies at Sandia National Laboratories: Past, Present, Future

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

  10. Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.

    2013-03-01

    Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  11. Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future

    SciTech Connect (OSTI)

    Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

    2013-03-01

    Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

  12. Smart Federal Partnerships Build Our Biofuels Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Federal Partnerships Build Our Biofuels Future Smart Federal Partnerships Build Our Biofuels Future April 13, 2015 - 10:30am Addthis The Energy Department’s Bioenergy Technologies Office engages with the U.S. Department of Agriculture on many projects, including guidance on the proper removal of corn stover (non-edible corn husks, stalks, and leaves) from the field when it is used for cellulosic ethanol and other advanced biofuel production. A corn stover bale is pictured here. The

  13. COLLOQUIUM: Long Term Energy Future for New Jersey | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab November 30, 2016, 4:15pm to 5:30pm Colloquia MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Long Term Energy Future for New Jersey Dr. Ralph Izzo Public Service Enterprise Group (PSEG) Colloquium Committee: The Princeton Plasma Physics Laboratory 2016-2017 Colloquium Committee is comprised of the following people. Please feel free to contact them by e-mail regarding any possible speakers or topics for future colloquia. Carol Ann Austin, caustin@pppl.gov Soha Aslam, saslam@pppl.gov

  14. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in

  15. Status and Future of TRANSCOM | Department of Energy

    Office of Environmental Management (EM)

    and Future of TRANSCOM Status and Future of TRANSCOM Current Program Status Upcoming Changes Glimpse at Future Options DOE Commitments PDF icon Status and Future of TRANSCOM More...

  16. Wind Plant Cost of Energy: Past and Future (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2013-03-01

    This presentation examines trends in wind plant cost of energy over the last several decades and discusses methods and examples of projections for future cost trends. First, the presentation explores cost trends for wind energy from the 1980s, where there had been an overall downward trend in wind plant energy costs. Underlying factors that influenced these trends, including turbine technology innovation for lower wind speed sites, are explored. Next, the presentation looks at projections for the future development of wind energy costs and discusses a variety of methods for establishing these projections including the use of learning curves, qualitative assessment using expert elicitation, and engineering-based analysis. A comparison of the methods is provided to explore their relative merits. Finally, a brief introduction is provided for the U.S. Department of Energy program-wide shift towards an integrative use of qualitative and quantitative methods for assessing the potential impacts of wind plant technology innovations on reducing the wind plant cost of energy.

  17. Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Future Print Information about the future expansion of research fields for synchrotrons and the growing number of light sources, including free electron lasers (FELs) will be posted here shortly.

  18. Video: Training Clean Energy Leaders of the Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Training Clean Energy Leaders of the Future Video: Training Clean Energy Leaders of the Future October 22, 2013 - 10:26am Addthis Watch our latest video for highlights from this year's Solar Decathlon and insights into how the competition is shaping the careers of the students involved and making sustainable home design popular. | Video by Matty Greene, Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs Matty Greene Matty Greene

  19. Future U.S. water consumption : The role of energy production.

    SciTech Connect (OSTI)

    Elcock, D.; Environmental Science Division

    2010-06-01

    This study investigates how meeting domestic energy production targets for both fossil and renewable fuels may affect future water demand. It combines projections of energy production developed by the U.S. Department of Energy with estimates of water consumption on a per-unit basis (water-consumption coefficients) for coal, oil, gas, and biofuels production, to estimate and compare the domestic freshwater consumed. Although total domestic freshwater consumption is expected to increase by nearly 7% between 2005 and 2030, water consumed for energy production is expected to increase by nearly 70%, and water consumed for biofuels (biodiesel and ethanol) production is expected to increase by almost 250%. By 2030, water consumed in the production of biofuels is projected to account for nearly half of the total amount of water consumed in the production of all energy fuels. Most of this is for irrigation, and the West North Central Region is projected to consume most of this water in 2030. These findings identify an important potential future conflict between renewable energy production and water availability that warrants further investigation and action to ensure that future domestic energy demand can be met in an economically efficient and environmentally sustainable manner.

  20. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM's Project LIBERTY cellulosic ethanol biorefinery in Emmetsburg, Iowa, was made possible with $100 million in BETO cost-shared funding. Photo courtesy POET-DSM. Growing America's Energy Future: Bioenergy Technologies Office Successes of 2014 The Bioenergy Technologies Office (BETO) forms cost-share public-private partnerships to help sustainably develop cost- competitive biofuels and bioproducts in the United States from non-food biomass resources. The potential exists to sustainably

  1. Future Air traffic management Concepts Evaluation Tool (FACET) - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Analysis Energy Analysis Find More Like This Return to Search Future Air traffic management Concepts Evaluation Tool (FACET) National Aeronautics and Space Administration Ames Laboratory Contact NASA About This Technology Technology Marketing Summary The NASA Ames Research Center offers the opportunity to license and co-develop FACET, a flexible software tool for air traffic management. With thousands of planes flying overhead in the U.S. at any given time, there is an

  2. Future of the Department of Energy's uranium enrichment enterprise

    SciTech Connect (OSTI)

    Sewell, P.G.

    1991-11-01

    The national energy strategy (NES) developed at President Bush's direction provides a focus for the US Department of Energy (DOE) future policy and funding initiatives including those of the uranium enrichment enterprise. The NES identifies an important and continuing role for nuclear energy as part of a balanced array of energy sources for meeting US energy needs, especially the growing demand for electricity. For many years, growth in US electricity demand has exhibited a strong correlation with growth in gross national product. NEW projections indicate that the US will need between 190 and 275 GW of additional system capacity by 2010. In order to unable nuclear power to help meet this need, the NEW establishes basic objectives for nuclear power. These objectives are to have a first order of a new nuclear power plant by 1995 and to have such a plant operational by 2000. The expansion of nuclear power anticipated in the NEW affirms a continuing need for a strong domestic uranium enrichment services supply capability. In terms of the future outlook for uranium enrichment, the atomic vapor laser isotope separation (AVLIS) technology continues to hold great promise for commercial application. If AVLIS efforts are successful, significant financial benefits from the commercial use of AVLIS will be realized by customers and the AVLIS deployment entity by approximately the year 2000 and thereafter.

  3. Search for a bridge to the energy future: Proceedings

    SciTech Connect (OSTI)

    Saluja, S.S.

    1986-01-01

    The alarming effects, concerns, and even the insights into long-range energy planning that grew out of the OPEC oil embargo of 1973 are fading from the view of a shortsighted public. The enthusiastic initiatives taken in many countries for the development of alternative energy sources have withered due to lack of economic and/or ideological incentive. The events since December 1985, when the members of OPEC decided to increase production in an effort to capture their share of market, have brought down the prices of a barrel of crude to less than US $11 and have made any rational analysis very complex. This has made even the proponents of the alternative energy sources pause and think. The US has, as usual, oscillated from panic to complacency. The Libyan crisis, however, has brought the dangers of complacency into sharp focus. The first commercial coal gasification plant, constructed with a capital investment of over US $2 billion, was abandoned by the owners and is being operated by the US Department of Energy temporarily. In their effort to find a private owner, the US Department of Energy has set the date of auction of this prestigious plant for May 28, 1986. And if an appropriate bid is not forthcoming, the plant faces a very uncertain future. Coal, considered by the World Coal Study (WOCOL) at MIT in 1980, to be a bridge to a global energy future, seems to have lost its luster due to the oil glut which we all know is temporary. This was evident when the bill to grant the Right of Eminent Domain for transportation of coal was defeated. This conference was organized to bring together experts in different areas from various countries to discuss the state of the art and the rate of progress in different alternative energy forms. The recent accident at the Chernobyl nuclear power plant in USSR has brought home the need of diversification of the alternative energy sources.

  4. U.S. Department of Energy Fuel Cell Activities: Progress and Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Directions: Total Energy USA 2012 | Department of Energy S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 Presentation by Sunita Satyapal at Total Energy USA 2012 in Houston, Texas, on November 27, 2012. U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions (1.48 MB) More Documents & Publications National Fuel

  5. Crystal Ball: On the Future High Energy Colliders

    SciTech Connect (OSTI)

    Shiltsev, Vladimir

    2015-09-20

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of next generation collider facilities have been proposed and are currently under consideration for the medium- and far-future of the accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance reach and cost range. We briefly review such post-LHC options as linear e+e- colliders in Japan (ILC) or at CERN (CLIC), muon collider, and circular lepton or hadron colliders in China (CepC/SppC) and Europe (FCC). We conclude with a look into ultimate energy reach accelerators based on plasmas and crystals, and some perspectives for the far future of accelerator-based particle physics.

  6. The Future of Energy at the ARPA-E Summit | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    future blogs by email. Subscribe to all future posts Who Todd Wetzel What Energy Aero-Thermal & Mechanical Systems Employee Events Thermal Sciences Why Powering Subscribe...

  7. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Wind and Water Power Program's water power research activities. Water power is the nation's largest source of clean, domestic, renewable energy. Harnessing energy from rivers, manmade waterways, and oceans to generate electricity for the nation's homes and businesses can help secure America's energy future. Water power technologies fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower facilities include run-of-the-river, storage, and pumped storage. Most conventional hydropower plants use a diversion structure, such as a dam, to capture water's potential energy via a turbine for electricity generation. Marine and hydrokinetic technologies obtain energy from waves, tides, ocean currents, free-flowing rivers, streams and ocean thermal gradients to generate electricity. The United States has abundant water power resources, enough to meet a large portion of the nation's electricity demand. Conventional hydropower generated 257 million megawatt-hours (MWh) of electricity in 2010 and provides 6-7% of all electricity in the United States. According to preliminary estimates from the Electric Power Resource Institute (EPRI), the United States has additional water power resource potential of more than 85,000 megawatts (MW). This resource potential includes making efficiency upgrades to existing hydroelectric facilities, developing new low-impact facilities, and using abundant marine and hydrokinetic energy resources. EPRI research suggests that ocean wave and in-stream tidal energy production potential is equal to about 10% of present U.S. electricity consumption (about 400 terrawatt-hours per year). The greatest of these resources is wave energy, with the most potential in Hawaii, Alaska, and the Pacific Northwest. The Department of Energy's (DOE's) Water Power Program works with industry, universities, other federal agencies, and DOE

  8. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    DOE R&D Accomplishments [OSTI]

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  9. USVI Energy Road Map: Charting the Course to a Clean Energy Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Future (Brochure), EDIN (Energy Development in Island Nations), U.S. Virgin Islands U.S. Virgin Islands Infographic A 448-kW PV system installed at the Cyril E. King Airport on St. ...

  10. Supercomputing Our Way to a Clean Energy Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercomputing Our Way to a Clean Energy Future Supercomputing Our Way to a Clean Energy Future August 6, 2012 - 2:34pm Addthis Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck manufacturer Navistar is able to improve vehicle fuel efficiency and durability without the expense of wind tunnel testing. | Photo courtesy of LLNL Livermore Valley Open Campus. Using computer modeling technology from Lawrence Livermore National Laboratory (LLNL), truck

  11. New Science for a Secure and Sustainable Energy Future

    SciTech Connect (OSTI)

    2008-12-01

    Over the past five years, the Department of Energy's Office of Basic Energy Sciences has engaged thousands of scientists around the world to study the current status, limiting factors and specific fundamental scientific bottlenecks blocking the widespread implementation of alternate energy technologies. The reports from the foundational BESAC workshop, the ten 'Basic Research Needs' workshops and the panel on Grand Challenge science detail the necessary research steps (http://www.sc.doe.gov/bes/reports/list.html). This report responds to a charge from the Director of the Office of Science to the Basic Energy Sciences Advisory Committee to conduct a study with two primary goals: (1) to assimilate the scientific research directions that emerged from these workshop reports into a comprehensive set of science themes, and (2) to identify the new implementation strategies and tools required to accomplish the science. From these efforts it becomes clear that the magnitude of the challenge is so immense that existing approaches - even with improvements from advanced engineering and improved technology based on known concepts - will not be enough to secure our energy future. Instead, meeting the challenge will require fundamental understanding and scientific breakthroughs in new materials and chemical processes to make possible new energy technologies and performance levels far beyond what is now possible.

  12. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    2 Executive Order 13423, Provisions Affecting Energy Consumption in Federal Buildings Source(s): -- Requires Federal agencies to improve energy efficiency and reduce greenhouse gas emissions by either 3 percent annual reductions through FY 2015, or by 30 percent by 2015, as compared to FY 2003. -- Requires Federal agencies to obtain at least half of required renewable energy from new renewable sources. Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation

  13. 2013 Domenici Public Policy Conference: The Future of American Energy, Las

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cruces, NM, September 18-19 Domenici Public Policy Conference: The Future of American Energy, Las Cruces, NM, September 18-19 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power &

  14. Roadmap for the Future of Commercial Energy Codes

    SciTech Connect (OSTI)

    Rosenberg, Michael I.; Hart, Philip R.; Zhang, Jian; Athalye, Rahul A.

    2015-01-26

    Building energy codes have significantly increased building efficiency over the last 38 years, since the first national energy code was published in 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, the inability to handle optimization that is specific to building type and use, the inability to account for project-specific energy costs, and the lack of follow-through or accountability after a certificate of occupancy is granted. It is likely that an approach that considers the building as an integrated system will be necessary to achieve the next real gains in building efficiency. This report provides a high-level review of different formats for commercial building energy codes, including prescriptive, prescriptive packages, capacity constrained, outcome based, and predictive performance approaches. This report also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. For commercial building energy codes to continue to progress as they have over the last 40 years, the next generation of building codes will need to provide a path that is led by energy performance, ensuring a measurable trajectory toward net zero energy buildings. This report outlines a vision to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building-specific prescriptive packages that are designed both to be cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target, as demonstrated by whole building energy

  15. Energy Use in China: Sectoral Trends and Future Outlook

    SciTech Connect (OSTI)

    Zhou, Nan; McNeil, Michael A.; Fridley, David; Lin, Jiang; Price,Lynn; de la Rue du Can, Stephane; Sathaye, Jayant; Levine, Mark

    2007-10-04

    This report provides a detailed, bottom-up analysis ofenergy consumption in China. It recalibrates official Chinese governmentstatistics by reallocating primary energy into categories more commonlyused in international comparisons. It also provides an analysis of trendsin sectoral energy consumption over the past decades. Finally, itassesses the future outlook for the critical period extending to 2020,based on assumptions of likely patterns of economic activity,availability of energy services, and energy intensities. The followingare some highlights of the study's findings: * A reallocation of sectorenergy consumption from the 2000 official Chinese government statisticsfinds that: * Buildings account for 25 percent of primary energy, insteadof 19 percent * Industry accounts for 61 percent of energy instead of 69percent * Industrial energy made a large and unexpected leap between2000-2005, growing by an astonishing 50 percent in the 3 years between2002 and 2005. * Energy consumption in the iron and steel industry was 40percent higher than predicted * Energy consumption in the cement industrywas 54 percent higher than predicted * Overall energy intensity in theindustrial sector grew between 2000 and 2003. This is largely due tointernal shifts towards the most energy-intensive sub-sectors, an effectwhich more than counterbalances the impact of efficiency increases. *Industry accounted for 63 percent of total primary energy consumption in2005 - it is expected to continue to dominate energy consumption through2020, dropping only to 60 percent by that year. * Even assuming thatgrowth rates in 2005-2020 will return to the levels of 2000-2003,industrial energy will grow from 42 EJ in 2005 to 72 EJ in 2020. * Thepercentage of transport energy used to carry passengers (instead offreight) will double from 37 percent to 52 percent between 2000 to 2020,.Much of this increase is due to private car ownership, which willincrease by a factor of 15 from 5.1 million in 2000 to 77

  16. The great ``retail wheeling`` illusion, and more productive energy futures

    SciTech Connect (OSTI)

    Cavanagh, R.

    1994-12-31

    This paper sets out the reasons why many environmental and public interest organizations oppose retail wheeling. Cavanagh argues that retail wheeling would destroy incentives for energy efficiency improvements and renewable energy generation--benefits that reduce long-term energy service costs to society as a whole. The current debate over the competitive restructuring of the electric power industry is critical from both economic and environmental perspectives. All attempts to introduce broad-scale retail wheeling in the United States have failed; instead, state regulators are choosing a path that emphasizes competition and choice, but acknowledges fundamental differences between wholesale and retail markets. Given the physical laws governing the movement of power over centrally controlled grids, the choice offered to customers through retail wheeling of electricity is a fiction -- a re-allocation of costs is all that is really possible. Everyone wants to be able to claim the cheapest electricity on the system; unfortunately, there is not enough to go around. By endorsing the fiction of retail wheeling for certain types of customers, regulators would be recasting the retail electricity business as a kind of commodity exchange. That would reward suppliers who could minimize near-term unit costs of electricity while simultaneously destroying incentives for many investments, including cost-effective energy efficiency improvements and renewable energy generation, that reduce long-term energy service costs to society as a whole. This result, which has been analogized unpersuasively to trends in telecommunications and natural gas regulation, is neither desirable nor inevitable. States should go on saying no to retail wheeling in order to be able to create something better: regulatory reforms that align utility and societal interests in pursuing a least-cost energy future. An appendix contains notes on some recent Retail Wheeling Campaigns.

  17. PARC: Harvesting Solar Energy for the Future (Other) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Other: PARC: Harvesting Solar Energy for the Future Citation Details In-Document Search Title: PARC: Harvesting Solar Energy for the Future You are accessing a document from the...

  18. Sun Rises on Tribal Energy Future in Nevada | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sun Rises on Tribal Energy Future in Nevada Sun Rises on Tribal Energy Future in Nevada March 24, 2014 - 3:04pm Addthis 1 of 4 On March 21, 2014, tribal leaders and community members of the Moapa Band of Paiute in Nevada celebrated the groundbreaking of the 250-megawatt Moapa Southern Paiute Solar Project, making it the first utility-scale solar project on tribal land. Tribal leaders balanced the tribe's high energy costs with preserving the Moapa land and cultural heritage. Image: Jim Laurie. 2

  19. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  20. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    SciTech Connect (OSTI)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  1. FutureGen Industrial Alliance Inc | Open Energy Information

    Open Energy Info (EERE)

    FutureGen Industrial Alliance Inc Jump to: navigation, search Name: FutureGen Industrial Alliance Inc Place: Washington, Washington, DC Zip: 20006 Product: The FutureGen Industrial...

  2. Department of Energy and FutureGen Alliance Discuss Next Steps for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FutureGen 2.0 in Illinois | Department of Energy FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois Department of Energy and FutureGen Alliance Discuss Next Steps for FutureGen 2.0 in Illinois August 19, 2010 - 12:00am Addthis Washington, DC - At a meeting today in Chicago, officials from the Department of Energy, the state of Illinois, Ameren, Babcock & Wilcox, American Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen 2.0 carbon capture

  3. AFFECT 2016: Assisting Federal Facilities with Energy Conservation Technologies Webinar Slides

    Broader source: Energy.gov [DOE]

    Webinar slides describe the 2016 Assisting Federal Facilities with Energy Conservation Technologies (AFFECT) funding opportunity offered by the Federal Energy Management Program.

  4. Science for Our Nation's Energy Future | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 11.18.10 Science for Our Nation's Energy Future Print Text Size: A A A Subscribe FeedbackShare Page May 25-27, 2011 :: Science for Our Nation's Energy Future, the inaugural Energy Frontier Research Centers Summit and Forum on May 25 - 27, 2011 at the Renaissance Penn Quarter

  5. Vision of the Future Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Grid Tech Team » Vision of the Future Grid Vision of the Future Grid Vision of the Future Grid The GTT developed a draft vision (below) which describes a future electricity system and lists several key attributes of that system. In its current form, this vision incorporates comments made by stakeholders during meetings organized by the GTT. The vision will continue to evolve and be refined as the GTT engages with the broader stakeholder community. Vision of the Future Grid A seamless,

  6. Hydrogen and the materials of a sustainable energy future

    SciTech Connect (OSTI)

    Zalbowitz, M.

    1997-02-01

    The National Educator`s Workshop (NEW): Update 96 was held October 27--30, 1996, and was hosted by Los Alamos National Laboratory. This was the 11th annual conference aimed at improving the teaching of material science, engineering and technology by updating educators and providing laboratory experiments on emerging technology for teaching fundamental and newly evolving materials concepts. The Hydrogen Education Outreach Activity at Los Alamos National Laboratory organized a special conference theme: Hydrogen and the Materials of a Sustainable Energy Future. The hydrogen component of the NEW:Update 96 offered the opportunity for educators to have direct communication with scientists in laboratory settings, develop mentor relationship with laboratory staff, and bring leading edge materials/technologies into the classroom to upgrade educational curricula. Lack of public education and understanding about hydrogen is a major barrier for initial implementation of hydrogen energy technologies and is an important prerequisite for acceptance of hydrogen outside the scientific/technical research communities. The following materials contain the papers and view graphs from the conference presentations. In addition, supplemental reference articles are also included: a general overview of hydrogen and an article on handling hydrogen safely. A resource list containing a curriculum outline, bibliography, Internet resources, and a list of periodicals often publishing relevant research articles can be found in the last section.

  7. Buildings Energy Data Book: 4.4 Legislation Affecting Energy Consumption of Federal Buildings and Facilities

    Buildings Energy Data Book [EERE]

    3 Energy Independence and Security Act of 2007, Provisions Affecting Energy Consumption in Federal Buildings Source(s): Standard Relating to Solar Hot Water - Requires new Federal buildings, or Federal buildings undergoing major renovations, to meet at least 30 percent of hot water demand through the use of solar hot water heaters, if cost-effective. [Section 523] Federally-Procured Appliances with Standby Power - Requires all Federal agencies to procure appliances with standby power consumption

  8. ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COMBINED HEAT AND POWER Effective Energy Solutions for a Sustainable Future December 1, 2008 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000

  9. Future Directions in Engines and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The vision of the VW group for the future of diesel engines and future fuels is presented. PDF icon deer10sjohnson.pdf More Documents & Publications The Diesel Engine Powering ...

  10. Shell Future Fuels and CO2 | Open Energy Information

    Open Energy Info (EERE)

    Shell Future Fuels and CO2 Jump to: navigation, search Name: Shell Future Fuels and CO2 Place: Glasgow, Scotland, United Kingdom Zip: G1 9BG Sector: Hydro, Hydrogen Product:...

  11. Biomass 2009: Fueling Our Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09: Fueling Our Future Biomass 2009: Fueling Our Future We would like to thank everyone who attended Biomass 2009: Fueling Our Future, including the speakers, moderators, sponsors, and exhibitors who helped make the conference a great success. Biomass 2009: Fueling Our Future was held on March 17 and 18, 2009, at the Gaylord National Harbor in National Harbor, Maryland. More than 600 participants from industry, finance, government, and academia were in attendance, including several large and

  12. EO 13211: Regulations That Significantly Affect Energy Supply...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I am requiring that agencies shall prepare a Statement of Energy Effects when undertaking certain agency actions. As described more fully below, such Statements of Energy Effects ...

  13. DOE/Sandia Tribal Energy Internship Program: Immersion of Future...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fall 2011 Sandra Begay-Campbell skbegay@sandia.gov DOE SANDIA TRIBAL ENERGY - INTERNSHIP PROGRAM ... of Energy Resource Use in Tribal Communities" 12 | Tribal Energy Program ...

  14. Idaho Save Energy Now – Industries of the Future

    Broader source: Energy.gov [DOE]

    This fact sheet contains details regarding a Save Energy Now industrial energy efficiency project that the U.S. Department of Energy funded in Idaho.

  15. State and Local Resources for a Clean Energy Future

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the adoption of energy efficiency and renewable energy technologies and best practices. ... http:energy.goveereslscespc BENCHMARKING AND TRANSPARENCY POLICIES AND ...

  16. Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Prospects for Future Very High-Energy Gamma-Ray Sky Survey: Impact of Secondary Gamma Rays Citation Details In-Document Search Title: Prospects for Future Very ...

  17. Department of Energy and FutureGen Alliance Discuss Next Steps...

    Broader source: Energy.gov (indexed) [DOE]

    Officials from the Department of Energy, the state of Illinois, Ameren, Babcock & Wilcox, American Air Liquide and the FutureGen Alliance discussed the next steps for the FutureGen ...

  18. Fuels of the Future for Cars and Trucks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Future for Cars and Trucks Fuels of the Future for Cars and Trucks 2002 DEER Conference Presentation: U.S. Department of Energy PDF icon 2002deereberhardt.pdf More...

  19. #WomenInSTEM: Making a Cleaner Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    #WomenInSTEM: Making a Cleaner Future #WomenInSTEM: Making a Cleaner Future Addthis Duration 1:44 Topic Energy Sector Jobs Solar Wind Science Education

  20. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy

  1. Transportation Energy Futures: Combining Strategies for Deep Reductions in Energy Consumption and GHG Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This fact sheet summarizes actions in the areas of light-duty vehicle, non-light-duty vehicle, fuel, and transportation demand that show promise for deep reductions in energy use. Energy efficient transportation strategies have the potential to simultaneously reduce oil consumption and greenhouse gas (GHG) emissions. The Transportation Energy Futures (TEF) project examined how the combination of multiple strategies could achieve deep reductions in GHG emissions and petroleum use on the order of 80%. Led by NREL, in collaboration with Argonne National Laboratory, the project's primary goal was to help inform domestic decisions about transportation energy strategies, priorities, and investments, with an emphasis on underexplored opportunities. TEF findings reveal three strategies with the potential to displace most transportation-related petroleum use and GHG emissions: 1) Stabilizing energy use in the transportation sector through efficiency and demand-side approaches. 2) Using additional advanced biofuels. 3) Expanding electric drivetrain technologies.

  2. Better Buildings for a Brighter Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings for a Brighter Future Better Buildings for a Brighter Future This program fact sheet provides an overview of the Better Buildings Neighborhood Program,and the program's accomplishments/progress to date. Better Buildings for a Brighter Future (883.67 KB) More Documents & Publications The BetterBuildings View BetterBuildings for Michigan: Residential Program The Better Buildings Neighborhood View - September 2012

  3. Powertrain Trends and Future Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Trends and Future Potential Powertrain Trends and Future Potential Gasoline and clean diesel engines have the potential to reduce CO2 further as technology for both types of engines continues to evolve deer09_rueger.pdf (851.21 KB) More Documents & Publications SCR Technologies for NOx Reduction Injection System and Engine Strategies for Advanced Emission Standards Advanced Diesel Common Rail Injection System for Future Emission Legislation

  4. ITP Glass: Glass Industry of the Future: Energy and Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Glass: Industrial Glass Bandwidth Analysis Final Report, August 2007 ITP Glass: A Clear Vision for a Bright Future ITP Glass: Glass Industry Technology Roadmap; April 2002

  5. Future Fuels: Issues and Opportunities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels: Issues and Opportunities Future Fuels: Issues and Opportunities 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon...

  6. Better Buildings for a Brighter Future | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    program fact sheet provides an overview of the Better Buildings Neighborhood Program,and the program's accomplishmentsprogress to date. Better Buildings for a Brighter Future More...

  7. US energy policies: Will they be responsive to future needs?

    SciTech Connect (OSTI)

    Hemphill, J.G.

    1995-12-31

    This paper reviews the history of early US energy policy as a prescription for failure, the evolution of national goals in energy, and the basic principles of energy policy (market based, clean energy alternatives should receive recognition; energy and environment planning coordinated; progress measured and adjustments made; technology transfer encouraged; government assistance should support economic and environmental objectives).

  8. Joint DOE/NRCan Study of North American Transportation Energy Futures: Phase 2 Results

    SciTech Connect (OSTI)

    None

    2009-01-18

    Joint DOE/NRCan Study of North American Transportation Energy Futures: Discussion of the Study, Presentation of Phase 2 Results - April 30, 2003

  9. Water Power for a Clean Energy Future (Fact Sheet), Wind and...

    Broader source: Energy.gov (indexed) [DOE]

    for a Clean Energy Future Water power is the nation's largest source of clean, domestic, ... Water power technologies fall into two broad categories: conventional hydropower and ...

  10. Fossil energy, clean coal technology, and FutureGen

    SciTech Connect (OSTI)

    Sarkus, T.A.

    2008-07-15

    Future fossil use will rely heavily on carbon sequestration. Clean coal technologies are being incorporated in the USA, including air pollution control, and will need to incorporate carbon capture and sequestration. The paper ends with an outline of the restructured FutureGen project. 7 figs.