Sample records for afb central heat

  1. Central Multifamily Water Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Building America Program is hosting a no-cost, webinar-based training on Central Multifamily Water Heating Systems. The webinar will focus the effective use of central heat pump water heaters...

  2. Griffiss AFB integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01T23:59:59.000Z

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  3. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    This U.S. Department of Energy Building America webinar, Central Multifamily Water Heating Systems, will take place on January 21, 2015.

  4. Nellis AFB 'Sun Park' Photovoltaic Power Project

    Broader source: Energy.gov (indexed) [DOE]

    Briefing is: UNCLASSIFIED Headquarters Air Combat Command Nellis AFB 'Sun Park' Photovoltaic Power Project *Capt Frank Hollifield *AFLOAJACLULT Overview *Objective * Provide...

  5. Building America Webinar: Central Multifamily Water Heating Systems

    Broader source: Energy.gov [DOE]

    Hosted by DOE's Building America program, this webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water distribution.

  6. Building America Webinar: Central Multifamily Water Heating Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 4:30PM EST This free webinar will focus on the effective use of central heat pump water heaters (HPWHs) and control systems to reduce the energy use in hot water...

  7. Design of a high temperature hot water central heating system

    SciTech Connect (OSTI)

    Beaumont, E.L.; Johnson, R.C.; Weaver, J.M.

    1981-11-01T23:59:59.000Z

    The paper reviews the conceptual design of a central heating system at Los Alamos Scientific Laboratory. The resource considered for this heating system design was hot dry rock geothermal energy. Design criteria were developed to ensure reliability of energy supply, to provide flexibility for adaptation to multiple energy resources, to make optimum use of existing equipment and to minimize reinvestment cost. A variable temperature peaking high temperature water system was selected for this purpose.

  8. Nellis AFB 'Sun Park' Photovoltaic Power Project | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Nellis AFB 'Sun Park' Photovoltaic Power Project Nellis AFB 'Sun Park' Photovoltaic Power Project Presentation covers the FUPWG Meeting, held on May 1-2, 2007 in Cape Canaveral,...

  9. Griffiss AFB integrated resource assessment. Volume 2, Electric baseline detail

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01T23:59:59.000Z

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk`s primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  10. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationCentral Air Conditioners and Heat Pumps. Washington DC:Central Air Conditioners and Heat Pumps Energy Conservation

  11. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Products: Central Air Conditioners and Heat Pumps EnergyResidential Central Air Conditioners and Heat Pumps.Products: Central Air Conditioners and Heat Pumps Energy

  12. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners 

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

    1986-01-01T23:59:59.000Z

    This report summarizes: (1) the performance improvements possible for central air conditioners and heat pumps using conventional design improvements, (2) the development of a methodology for estimating the seasonal performance of variable speed heat...

  13. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB:...

  14. Selection guidelines for central heat plant controls. Final report

    SciTech Connect (OSTI)

    Warner, S.R.; Lin, M.C.; Schandche, G.W.

    1994-11-01T23:59:59.000Z

    The operation and control of Central Heating Plants (CHPs) are important factors in maintaining the readiness of U.S. Army installations. Aging CHPs often experience increased interruptions, maintenance difficulties, and inefficient operation. As fuel costs increase, there is a growing need to take advantage of new, emerging control technologies. Microprocessor-based controls can provide opportunities for increased reliability, enhanced safety, better performance monitoring, and cost reduction. However, upgraded control systems cannot compensate for a boiler in poor mechanical condition. Any proposed control systems upgrade must be preceded by a mechanical assessment of the boiler. These CHP control guidelines can help installation personnel develop budgetary-cost proposals to upgrade gas/oil-fired boiler controls for gas/oil-fired steam or high temperature hot water (HTHW) systems. These general guidelines provide basic information to evaluate the feasibility of upgrading boiler control systems, and a methodology for developing budget proposals. Judgement is required to develop designs for specific unit and site characteristics, boiler safety codes, and local regulatory requirements. These guidelines do not eliminate the need for competent professional engineers to finalize assessments of existing conditions, to develop a plant control system design that meets existing and new requirements, and to evaluate alternative contractor proposals.

  15. Cytoskeletal stability and heat shock-mediated thermoprotection of central pattern generation in Locusta migratoria

    E-Print Network [OSTI]

    Robertson, Meldrum

    Cytoskeletal stability and heat shock-mediated thermoprotection of central pattern generation heat shock is not fully understood, and our goal was to test the idea that cytoskeletal stability) were bath-applied in semi-intact locust preparations in both control (C) and pre-treated heat

  16. UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings

    E-Print Network [OSTI]

    Hayden, Nancy J.

    UVM Central Heating & Cooling Plant Annual Maintenance Shutdown 2013 Affected Buildings Sunday 19 heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES > Given Boiler Plant will be in operation to provide heating, hot water and critical air conditioning > NO CAGE WASHING > NO AUTOCLAVES

  17. Cost Effective Measurement and Verification at Fairchild AFB

    E-Print Network [OSTI]

    Culp, C.; Hart, Q.; Turner, B.; Berry-Lewis, S.

    2003-01-01T23:59:59.000Z

    ballasts. Incandescent lighting will be replaced with compact florescent. Incandescent exit signs will be upgraded to Light Emitting Diode (LED) exit signs. The Central Heating Plant (CHP) supplies steam for 79 buildings. This steam plant facility...

  18. Nellis AFB, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation,Nebraska/WindNeedham,AFB Solar PowerAFB,

  19. Building Energy Audit Report, for Hickam AFB, HI

    SciTech Connect (OSTI)

    Chvala, William D.; De La Rosa, Marcus I.; Brown, Daryl R.; Dixon, Douglas R.

    2010-09-30T23:59:59.000Z

    A building energy assessment was performed by a team of engineers from Pacific Northwest National Laboratory (PNNL) under contract to the Department of Energy/Federal Energy Management program (FEMP). The effort used the Facility Energy Decision System (FEDS) model to determine how energy is consumed at Hickam AFB, identify the most cost-effective energy retrofit measures, and calculate the potential energy and cost savings. This documents reports the results of that assessment.

  20. Characterization of the geothermal resource at Lackland AFB, San Antonio, Texas. Phase I report

    SciTech Connect (OSTI)

    Lawford, T.W.; Malone, C.R.; Allman, D.W.; Zeisloft, J.; Foley, D.

    1983-06-01T23:59:59.000Z

    The geothermal resource under Lackland Air Force Base (AFB), San Antonio, Texas was studied. It is the conclusion of the investigators that a geothermal well drilled at the site recommended by this study has a high probability of delivering geothermal fluids in sufficient quantity and at adequate temperatures to support a projected space and domestic hot water heating system. An exploratory production well location is recommended in the southwest sector of the base, based upon geologic conditions and the availability of sufficient open space to support the drilling operation. It is projected that a production well drilled at the recommended location would produce geothermal fluid of 130 to 145/sup 0/F at a rate of approximately 1000 gpm with reasonable fluid drawdowns. The Environmental Assessment for the drilling portion of the project has been completed, and no irreversible or irretrievable impacts are anticipated as a result of this drilling program. The permitting process is proceeding smoothly.

  1. Heat flow and subsurface temperature distributions in central and western New York. Volume 2

    SciTech Connect (OSTI)

    Hodge, D.S.; Fromm, K.A.

    1982-08-01T23:59:59.000Z

    Existing data in western and central New York indicates the possibility of a low-temperature, direct-use geothermal resource. This report evaluates the heat flow and provides a representation of temperatures at depth in this area. This has been done by: (1) analyzing known temperature distributions, (2) measuring the thermal conductivity of sedimentary rock units. Based on this information, areas of higher-than-normal heat flow and temperatures in possible geothermal source reservoirs are described to aid in targeting areas for the exploitation of geothermal energy in New York.

  2. 13 SEER Standard for Central Air Conditioners and Heat Pumps (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In January 2004, after years of litigation in a case that pitted environmental groups and Attorneys General from 10 states against the U.S. Secretary of Energy, the U.S. Court of Appeals for the Second Circuit reestablished the central air conditioner and heat pump standard originally set in January 200. The Courts ruling, which struck down a May 2002 rollback of the 2001 standard to a 12 Seasonal Energy Efficiency Ratio (SEER) mandates that all new central air conditioners and heat pumps meet a 13 SEER standard by January 2006, requiring a 30% increase in efficiency relative to current law. The Annual Energy Outlook 2005 reference case incorporates the 13 SEER standard as mandated by the Courts ruling.

  3. Central Heating Plant site characterization report, Marine Corps Combat Development Command, Quantico, Virginia

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    This report presents the methodology and results of a characterization of the operation and maintenance (O M) environment at the US Marine Corps (USMC) Quantico, Virginia, Central Heating Plant (CHP). This characterization is part of a program intended to provide the O M staff with a computerized artificial intelligence (AI) decision support system that will assist the plant staff in more efficient operation of their plant. 3 refs., 12 figs.

  4. Wheeler AFB, Hawaii: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°,WetzelTechnologies Inc Place: Hampton,AFB,

  5. Nellis AFB Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcerns Jump to: navigation,Nebraska/WindNeedham,AFB Solar Power

  6. Eielson AFB, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka WaveKansas:NewEgginEielson AFB,

  7. March AFB, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana, Arizona:Ohio: EnergyM SiahAFB,

  8. Edwards AFB, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision| Open JumpEcology &Edisto Electric Coop, IncAFB,

  9. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    E-Print Network [OSTI]

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Energy ConservationW.R. Coleman. 1990. “Heat Pump Life and Compressor LongevityC.C.. 1990. “Predicting Future Heat Pump Production Volume

  10. Assessment and Prediction of the Thermal Performance of a Centralized Latent Heat Thermal Energy Storage Utilizing Artificial Neural Network

    E-Print Network [OSTI]

    El-Sawi, A.; Haghighat, F.; Akbari, H.

    2013-01-01T23:59:59.000Z

    A simulation tool is developed to analyze the thermal performance of a centralized latent heat thermal energy storage system (LHTES) using computational fluid dynamics (CFD). The LHTES system is integrated with a mechanical ventilation system...

  11. Building America Technology Solutions for New and Existing Homes: Multifamily Central Heat Pump Water Heaters (Fact Sheet)

    Broader source: Energy.gov [DOE]

    To evaluate the performance of central heat pump water heaters for multifamily applications, the Alliance for Residential Building Innovation team monitored the performance of a 10.5 ton central HPWH installed on a student apartment building at the West Village Zero Net Energy Community in Davis, California, for 16 months.

  12. The effects of air pollution on visibility at Edwards AFB, California

    E-Print Network [OSTI]

    Tongue, Jeffrey Scott

    1987-01-01T23:59:59.000Z

    THE EFFECTS OF AIR POLLUTION ON VISIBILITY AT EDWARDS AFB, CALIFORNIA A Thesis by JEFFREY SCOTT TONGUE Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... May 1987 Major Subject: Meteorology THE EFFECTS OF AIR POLLUTION ON VISIBILITY AT EDWARDS AFB, CALIFORNIA A Thesis by JEFFREY SCOTT TONGUE Approved as to style and content by: Walter K. Henry (Chairman of Committee) Kenneth C. Brundidge...

  13. Quantitative Analysis of the Principal-Agent Problem in Commercial Buildings in the U.S.: Focus on Central Space Heating and Cooling

    E-Print Network [OSTI]

    Blum, Helcio

    2010-01-01T23:59:59.000Z

    2007): “Market Barriers Affecting Water Heating in Norway. ”heating and cooling energy consumed by centrally installed equipment in order to verify whether a marketheating and cooling. The non-existence of the equipment efficiency-related market

  14. Heat flow and subsurface temperature distributions in central and western New York. Final report

    SciTech Connect (OSTI)

    Hodge, D.S.; Fromm, K.

    1984-01-01T23:59:59.000Z

    Initiation of a geothermal energy program in western and central New York requires knowledge of subsurface temperatures for targeting areas of potential resources. The temperature distribution in possible geothermal reservoirs, calculated from heat flow measurements and modeling techniques, shows that a large area of New York can be considered for exploitation of geothermal resources. Though the temperatures at currently accessible depths show the availability of only a low-temperature (less than 100/sup 0/C), direct-use resource, this can be considered as an alternative for the future energy needs of New York State. From analysis of bottom-hole-temperature data and direct heat flow measurements, estimates of temperatures in the Cambrian Sandstones provide the basis of the economic evaluation of the reservoir. This reservoir contains the extractable fluids needed for targeting a potential geothermal well site in the low-temperature geothermal target zone. In the northern section of the Appalachian basin, reservoir temperatures in the Cambrian are below 50/sup 0/C but may be over 80/sup 0/C in the deeper parts of the basin in southern New York State. Using a minimum of 50/sup 0/C as a useful reservoir temperature, temperatures in excess of this value are encountered in the Theresa Formation at depths in excess of 1300 meters. Considering a maximum depth for economical drilling to be 2500 meters with present technology, the 2500 meters to the Theresa (sea level datum) forms the lower limit of the geothermal resource. Temperatures in the range of 70/sup 0/C to 80/sup 0/C are predicted for the southern portion of New York State.

  15. Floating atomic central heating-and-power plant converted from a strategic submarine

    SciTech Connect (OSTI)

    Bilashenko, V.P.; Gorigledzhan, E.A.; Slonimsky, V.J. [Military Regiment Nl., Moscow (Russian Federation)

    1993-12-31T23:59:59.000Z

    In accordance with {open_quotes}The Treaty on the Reduction of Strategic Offensive Arms{close_quotes} signed in July 1991, the operations envisages by {open_quotes}The Procedures for elimination of SSBN`s Launchers{close_quotes} should be accomplished at submarines of the second generation both by eliminating missile compartments together with launchers and by removal of launchers only from missile compartments. THe number of such ships could reach 30 units as has been forecasted for the year of 1998 inclusive. With regard to the fact that the remaining operation life of the main power plant equipment of a nuclear submarine decommissioned in accordance with the Treaty is about 50 per cent, potentially there is a possibility to convert them into floating atomic central heating-and-power plants. The latter variant envisaged in the {open_quotes}Procedures...{close_quotes} is preferable for developing a floating plant based on ships decommissioned from the Navy, since it permits to remove launchers without cutting and subsequent connection of main cables, pipelines and systems which provide the control of the main power plant, nuclear safety, radiological safety, damage control and fire safety of the floating plant. A submarine could be delivered for refitting into a floating plant only after accomplishing the works envisaged by the {open_quotes}Procedures...{close_quotes}.

  16. Evaluation and demonstration of decentralized space and water heating versus centralized services for new and rehabilitated multifamily buildings. Final report

    SciTech Connect (OSTI)

    Belkus, P. [Foster-Miller, Inc., Waltham, MA (US); Tuluca, A. [Steven Winter Associates, Inc., Norwalk, CT (US)

    1993-06-01T23:59:59.000Z

    The general objective of this research was aimed at developing sufficient technical and economic know-how to convince the building and design communities of the appropriateness and energy advantages of decentralized space and water heating for multifamily buildings. Two main goals were established to guide this research. First, the research sought to determine the cost-benefit advantages of decentralized space and water heating versus centralized systems for multifamily applications based on innovative gas piping and appliance technologies. The second goal was to ensure that this information is made available to the design community.

  17. An Analysis of Efficiency Improvements in Residential Sized Heat Pumps and Central Air Conditioners

    E-Print Network [OSTI]

    O'Neal, D. L.; Boecker, C. L.; Penson, S. B.

    1986-01-01T23:59:59.000Z

    ) Increased tube rows 3.1 1C) Increased fin density 3.2 ID) Increased heat transfer coefficient 3.2 IE) Increased parallel circuits 3.2 2) Decreased Compressor Size 3.2 3) Increased Combined Fan and Motor Efficiency 3.2 4) Demand Defrost Control Systems (Heat... Pumps Only) 3.3 5) High Efficiency Compressors 3.3 6) Two Speed Compressors 3.3 References 3.4 iii CHAPTER PAGE 4 CONVENTIONAL DESIGN IMPROVEMENTS: RESULTS 4.1 Heat Pumps 4.1 Baseline Units 4.2 Final Conventional Designs 4.7 3 Ton Split Systems 4.7 3 Ton...

  18. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden City Central Office

    Fuel Cell Technologies Publication and Product Library (EERE)

    This case study describes how Verizon's Central Office in Garden City, NY, installed a 1.4-MW phosphoric acid fuel cell system as an alternative solution to bolster electric reliability, optimize the

  19. Solar space and water heating system at Stanford University Central Food Services Building. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    This active hydronic domestic hot water and space heating system was 840 ft/sup 2/ of single-glazed, liquid, flat plate collectors and 1550 gal heat storage tanks. The following are discussed: energy conservation, design philosophy, operation, acceptance testing, performance data, collector selection, bidding, costs, economics, problems, and recommendations. An operation and maintenance manual and as-built drawings are included in appendices. (MHR)

  20. Wastewater recycling and heat reclamation at the Red Lion Central Laundry, Portland, Oregon

    SciTech Connect (OSTI)

    Garlick, T.F.; Halverson, M.A.; Ledbetter, M.R.

    1996-09-01T23:59:59.000Z

    This report discusses water, energy, and cost savings that can be achieved in a commercial laundry through the use of a wastewater recycling and heat recovery system. Cost savings are achieved through reductions in water use, reduction in sewage charges, reductions in water heating energy, and potential reductions in water treatment chemicals. This report provides an economic analysis of the impact of capital investment, daily consumption, and local utility rates on the payback period.

  1. Improving central heating plant performance at the defense construction supply center (DCSC): Advanced operation and maintenance methods. Final report

    SciTech Connect (OSTI)

    Savoie, M.J.; Standerfer, J.; Schmidt, C.M.; Gostich, J.; Mignacca, J.

    1994-11-01T23:59:59.000Z

    A 1987 air pollution emissions test done by the U.S. Army Environmental Hygiene Agency (USAEHA) identified several problems with the central heating plant (CHP) at the Defense Construction Supply Center (DCSC), Columbus, OH. Though DCSC repaired the specified problems, improved coal specifications, and tried to reduce air infiltration, CHP performance remained at unacceptable levels. Consequently, DCSC contracted the U.S. Army Construction Engineering Research Laboratories (USACERL) to apply advanced operation and maintenance procedures to improve its combustion system. This study employed a system-wide approach to evaluate the CHP 5 fuel storage, combustion, heat distribution, and the control of air emissions. Many short-term improvements to the CHP were identified and tested. Subsequent combustion and air emissions tests revealed that the recommended improvements successfully increased CHP efficiency. Long-term improvements were also recommended to help maintain the short-term improvements.

  2. Heat flow and thermotectonic problems of the central Ventura Basin, southern California

    SciTech Connect (OSTI)

    De Rito, R.F.; Lachenbruch, A.H.; Moses, T.H. Jr.; Munroe, R.J. (Geological Survey, Menlo Park, CA (USA))

    1989-01-10T23:59:59.000Z

    The Ventura Basin, southern Califronia, is located near the Big Bend area of the San Andreas fault system, within the Transverse Ranges physiographic province. Continuous equilibrium temperature logs were measured in 12 idle oil wells located within the onshore Ventura Avenue, San Miguelito, Filmore, Oxnard, and West Montalvo fields to an average depth of about 3100 m (10,200 feet). Thermal conductivities were measured on all available samples. Heat flows were calculated with the aid of a thermostratigraphic scheme based on correlative gradient intervals and average thermal conductivity for the appropriate units. Negative curvature of the Ventura Avenue temperature profiles may be explained by an increase in thermal conductivity associated with tectonic compaction of the underlying Pliocene clastic sequence. Temperature profiles at Fillmore are enigmatic but suggest highly unusual geotectonic conditions. Basinwide, heat flow averages about 48 mW/m{sup 2}, a value which is low relative to most of southern California. As heat flow does not vary systematically to the maximum measured depth of about 4 km, this anomaly is not easily explained in terms of hydrologic effect or recent uplift and erosion. However, a diminution of heat flow is an expectable consequence of the accumulation of cold sediments (up to 12 km) since Eocene time. If 70 mW/m{sub 2} is accepted as the background heat flow, then the sedimentation effect is probably sufficient to explain the anomaly.

  3. OBSERVATIONS OF CENTRAL TOROIDAL ROTATION IN ICRF HEATED ALCATOR C-MOD PLASMAS

    E-Print Network [OSTI]

    Greenwald, Martin

    , Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America Associazione ENEA energy (confinement enhancement), induced by ICRF heating, although other factors may be at play. A radial electric field of 300 V/cm at r/a = 0.3 has been inferred from the force balance equation

  4. Systematic method for the condition assessment of central heating plants in Air Force Logistics Command. Master's thesis

    SciTech Connect (OSTI)

    Starmack, G.J.

    1990-09-01T23:59:59.000Z

    Air Force Logistics Command (AFLC), facing decreasing funds and aging utility systems, needed a method to objectively rate its central heating plants. Such a rating system would be used to compare heating plants throughout the command to identify potential problem areas and prioritize major repair projects. This thesis used a Delphi questionnaire to gather opinions from heating plant experts in order to identify and prioritize components considered most critical to overall plant operation. In addition, the experts suggested measurements which could be used to evaluate component conditions. By combining expert opinions and reading from technical literature, component model rating schemes were developed for AFLC's steam and high temperature hot water plants. Based on measurements and observations of critical components in the plant, a score between 0 and 100 is assigned to each component (for example, condensate piping, deaerator, etc.), each plant subsystem (distribution system, water treatment system, etc.), and to the plant as a whole. These component model rating schemes and the resultant overall condition index scores will enable AFLC to focus their management attention and allocate needed resources to the plants in greatest need of repair.

  5. Fast ignition when heating the central part of an inertial confinement fusion target by an ion beam

    SciTech Connect (OSTI)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Zmitrenko, N. V. [Russian Academy of Sciences, Keldysh Institute of Applied Mathematics (Russian Federation); Il’in, D. V.; Sherman, V. E. [St. Petersburg State Technical University (Russian Federation)

    2014-11-15T23:59:59.000Z

    We investigate the ignition and burning of a precompressed laser fusion target when it is rapidly heated by an ion beam with the formation of a temperature peak in the central part of the target. We present the results of our comprehensive numerical simulations of the problem that include the following components: (1) the target compression under the action of a profiled laser pulse, (2) the heating of the compressed target with spatially nonuniform density and temperature distributions by a beam of high-energy ions, and (3) the burning of the target with the initial spatial density distribution formed at the instant of maximum target compression and the initial spatial temperature distribution formed as a result of the compressed-target heating by an ion beam. The dependences of the threshold energies of the igniting ion beam and the thermonuclear gain on the width of the Gaussian beam ion energy spectrum have been established. The peculiarities of fast ignition by an ion beam related to the spatial distribution of parameters for the target precompressed by a laser pulse are discussed.

  6. Gallium-cladding compatibility testing plan: Phase 3 -- Test plan for centrally heated surrogate rodlet test. Revision 2

    SciTech Connect (OSTI)

    Morris, R.N.; Baldwin, C.A.; Wilson, D.F.

    1998-07-01T23:59:59.000Z

    The Fissile Materials Disposition Program (FMDP) is investigating the use of weapons grade plutonium in mixed oxide (MOX) fuel for light-water reactors (LWR). Commercial MOX fuel has been successfully used in overseas reactors for many years; however, weapons derived fuel may differ from the previous commercial fuels because of small amounts of gallium impurities. A concern presently exists that the gallium may migrate out of the fuel, react with and weaken the clad, and thereby promote loss of fuel pin integrity. Phases 1 and 2 of the gallium task are presently underway to investigate the types of reactions that occur between gallium and clad materials. This is a Level-2 document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-Oxide Fuel Irradiation Test Project Plan. This Plan summarizes the projected Phase 3 Gallium-Cladding compatibility heating test and the follow-on post test examination (PTE). This work will be performed using centrally-heated surrogate pellets, to avoid unnecessary complexities and costs associated with working with plutonium and an irradiation environment. Two sets of rodlets containing pellets prepared by two different methods will be heated. Both sets will have an initial bulk gallium content of approximately 10 ppm. The major emphasis of the PTE task will be to examine the material interactions, particularly indications of gallium transport from the pellets to the clad.

  7. Monitored performance of residential geothermal heat pumps in central Texas and Southern Michigan

    SciTech Connect (OSTI)

    Sullivan, W.N.

    1997-11-01T23:59:59.000Z

    This report summarizes measured performance of residential geothermal heat pumps (GHP`s) that were installed in family housing units at Ft. Hood, Texas and at Selfridge Air National Guard base in Michigan. These units were built as part of a joint Department of Defense/Department of Energy program to evaluate the energy savings potential of GHP`s installed at military facilities. At the Ft. Hood site, the GHP performance was compared to conventional forced air electric air conditioning and natural gas heating. At Selfridge, the homes under test were originally equipped with electric baseboard heat and no air conditioning. Installation of the GHP systems at both sites was straightforward but more problems and costs were incurred at Selfridge because of the need to install ductwork in the homes. The GHP`s at both sites produced impressive energy savings. These savings approached 40% for most of the homes tested. The low cost of energy on these bases relative to the incremental cost of the GHP conversions precludes rapid payback of the GHP`s from energy savings alone. Estimates based on simple payback (no inflation and no interest on capital) indicated payback times from 15 to 20 years at both sites. These payback times may be reduced by considering the additional savings possible due to reduced maintenance costs. Results are summarized in terms of 15 minute, hourly, monthly, and annual performance parameters. The results indicate that all the systems were working properly but several design shortcomings were identified. Recommendations are made for improvements in future installations at both sites.

  8. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    SciTech Connect (OSTI)

    Rosenquist, Gregory; Chan, Peter; Lekov, Alex; McMahon, James; Van Buskirk, Robert

    2001-10-10T23:59:59.000Z

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER.

  9. A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific

    SciTech Connect (OSTI)

    Liu H.; Lin W.; Liu, X.; Zhang, M.

    2011-08-26T23:59:59.000Z

    Coupled ocean-atmospheric models suffer from the common bias of a spurious rain belt south of the central equatorial Pacific throughout the year. Observational constraints on key processes responsible for this bias are scarce. The recently available reanalysis from a coupled model system for the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data is a potential benchmark for climate models in this region. Its suitability for model evaluation and validation, however, needs to be established. This paper examines the mixed layer heat budget and the ocean surface currents - key factors for the sea surface temperature control in the double Inter-Tropical Convergence Zone in the central Pacific - from 5{sup o}S to 10{sup o}S and 170{sup o}E to 150{sup o}W. Two independent approaches are used. The first approach is through comparison of CFSR data with collocated station observations from field experiments; the second is through the residual analysis of the heat budget of the mixed layer. We show that the CFSR overestimates the net surface flux in this region by 23 W m{sup -2}. The overestimated net surface flux is mainly due to an even larger overestimation of shortwave radiation by 44 W m{sup -2}, which is compensated by a surface latent heat flux overestimated by 14 W m{sup -2}. However, the quality of surface currents and the associated oceanic heat transport in CFSR are not compromised by the surface flux biases, and they agree with the best available estimates. The uncertainties of the observational data from field experiments are also briefly discussed in the present study.

  10. EA-1892: Direct Final Rule Energy Conservation Standards for Residential Furnaces and Residential Central Air Conditioners & Heat Pumps

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to adopt energy conservation standards for various consumer products and certain commercial and industrial equipment, including residential furnaces and residential air conditioners and heat pumps, as required by the Energy Policy and Conservation Act, as amended (42 U.S.C. 6291 et seq.)

  11. System design study to reduce capital and operating cost of a moving distributor, AFB advanced concept - comparison with an oil-fired boiler. Final report

    SciTech Connect (OSTI)

    Mah, C.S.; West, L.K.; Anderson, R.E.; Berkheimer, I.L.; Cahill, D.V.

    1985-12-01T23:59:59.000Z

    The Aerojet Energy Conversion Company, under contract with the United States Department of Energy, has performed a comparative economic study of the Aerojet Universal Atmospheric Fluidized Bed Combustion (UAFBC) system and a coventional atmospheric fluidized bed combustion (AFBC) system. The program title, ''System Design Study to Reduce Capital and Operating Cost and Bench Scale Testing of a Moving Distributor, AFB Concept,'' is a good description of the general objective of the program. The specific objective was to compare the UAFBC with the conventional AFBC in terms of normalized steam cost. The boilers were designed for 150,00 lb/hr of steam at 650 psig and 750/sup 0/F. The reference coal used in the analysis was Pittsburgh No. 8 coal with a sulfur content of 4.3% and a higher heating value of 12,919 Bru/lb. The analysis assumed a plant life of 20 years and a discount rate of 15%. The UAFBC systems included the usual elements of the conventional cola-fired AFBC steam plant, but the coal preparation sysbsystem for the UAFBC was considerably simpler because the system can use ''run-of-mine'' coal. The UAFBC boiler itself consisted of a staged-combustion fluidized-bed, superimposed over a static bed, the latter supported by a moving distributor. It incorporated a fines burnup combustor, an entrained reciculating gas cleanup bed, and conventional convection boiler. The key features of the UAFBC design were: High fuel flexibility; low NO/sub x/ emission; and superior turndown capability. 30 refs., 52 figs., 12 tabs.

  12. Determining benefits and costs of improved central air conditioner efficiencies

    E-Print Network [OSTI]

    Rosenquist, G.

    2010-01-01T23:59:59.000Z

    Products: Central Air Conditioners and Heat Pumps Energyof Improved Central Air Conditioner Efficiencies Authorsresidential-type central air conditioner energy-efficiency

  13. Building America Webinar: Retrofitting Central Space Conditioning...

    Energy Savers [EERE]

    Strategies for Multifamily Buildings - Control strategies to improve hydronic space heating performance Building America Webinar: Retrofitting Central Space Conditioning...

  14. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Subsystem Summary Heat Input to the Receiver - 513 MW Heathours, assuming constant heat input to the receiver, Enoughwhich assumed constant heat input to the central receiver 8

  15. Shemya AFB, Alaska 1992 IRP field investigation report. Volume 3, Appendixes B, C, and D: Final report

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force`s Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island`s drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. Geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendices B, C, and D contains information on the following: geophysical contour maps and profile plots; human health risk assessment; and ecological risk assessment.

  16. Enforcement Policy Statement: Off Mode Standards for Central...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enforcement Policy Statement: Off Mode Standards for Central Air Conditioners and Central Air Conditioning Heat Pumps July 8, 2014 On June 27, 2011, the Department of Energy (DOE)...

  17. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    models: aggregated by SMSA market share central cooling all gas space heat all oilmodels: aggregated by regions market share central cooling all gas space heat all oil

  18. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  19. Liquid Phase Heating Systems

    E-Print Network [OSTI]

    Mordt, E. H.

    1979-01-01T23:59:59.000Z

    Temperature Water (HTW) central district heating systems are far superior to steam systems in large, spread out installations such as airports, universities and office complexes. Water, pressurized to keep it in the liquid state, is distributed at 400o...

  20. East Central Electric Cooperative- Residential Rebate Program

    Broader source: Energy.gov [DOE]

    East Central Electric Cooperative offers rebates to residential customers to install energy-efficient ground source heat pumps, electric water heaters, and appliances. To qualify for the rebate...

  1. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    among different space heating technologies to household andhousehold's choice of heating technology is modeled jointlymodel five space heating technologies given central cooling

  2. A STUDY OF AGGREGATION BIAS IN ESTIMATING THE MARKET FOR HOME HEATING AND COOLING EQUIPMENT

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    air choice elec forced air choice heat pump choice elecwith ac elecforced air, with ac heat pump elec baseboard,central air conditioning (including heat pumps), and eight

  3. Jones-Onslow EMC- Residential Heating and Cooling Rebate Program

    Broader source: Energy.gov [DOE]

    Jones-Onslow Electric Membership Corporation offers rebates to residential members who install energy efficient heating and cooling equipment. Members can replace an existing central AC or heat...

  4. Building America Webinar: Central Multifamily Water Heating Systems- Multifamily Central Heat Pump Water Heating

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the U.S. Department of Energy Building America webinar on January 21, 2015.

  5. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    Central Air Conditioners and Heat Pumps Including. May,pump technology to extract heat from the surrounding air (air flow requirements of HPWHs increase installation costs. Introduction A heat pump

  6. Residential Central Wood Pellet Heating Program

    Broader source: Energy.gov [DOE]

    Project sites must be located in a utility territory that contributes to the Renewable Energy Trust Fund (National Grid, NSTAR, WMECO, Unitil, and municipal light plants that have agreed to pay i...

  7. Central Lincoln People's Utility District- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Central Lincoln People's Utility District provides financial incentives for its commercial and residential customers to install photovoltaic (PV), solar water heating, wind, and hydro electric...

  8. Central Alabama Electric Cooperative- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Alabama Electric Cooperative, a Touchstone Electric Cooperative, offers the Touchstone Energy Home Program. Touchstone Energy Homes with a dual-fuel or geothermal heat pump qualify for...

  9. Central Lincoln People's Utility District- Renewable Energy Incentive Program (Oregon)

    Broader source: Energy.gov [DOE]

    Central Lincoln People's Utility District provides financial incentives for its commercial and residential customers to install photovoltaic (PV), solar water heating, wind, and hydro electric...

  10. Central Energy Systems - Applications to Economic Development

    E-Print Network [OSTI]

    Myers, M. S.; Diserens, S. E.

    1985-01-01T23:59:59.000Z

    the conceptual stage of design. The second program, Central Energy Systems Analysis Program (CESAP) analyzes energy efficiency for a group of buildings and determines if a new district heating and cooling (DHC) system would be a cost effective application...

  11. Central solar energy receiver

    DOE Patents [OSTI]

    Drost, M. Kevin (Richland, WA)

    1983-01-01T23:59:59.000Z

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  12. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study...

  13. Central Station DHC Phase 1 feasibility

    SciTech Connect (OSTI)

    Henderson, H.L.

    1992-03-01T23:59:59.000Z

    This project assisted a private real estate developer in technically assessing the feasibility of integrating a central DHC system into a proposed 72 acre area mixed-use Planned Development (Central Station) just south of the Chicago Central Business District (Loop). The technical assessment concluded that a district heating and cooling system for Central Station will be feasible, provided that a major anchor load can be connected to the system. The system conceived for the site employs a modular approach that adjusts production capacity to actual load growth. The design concept includes gas-fired boilers for heating, gas turbine driven chillers for base loading, electric motor driven chillers for peaking, steam turbines for peak power and back pressure operation, and chilled water storage. Energy will be supplied to the users in the form of steam or low temperature hot water for heating, and low temperature chilled water for cooling.

  14. Table 26. Natural gas home customer-weighted heating degree...

    Gasoline and Diesel Fuel Update (EIA)

    92 Created on: 3262015 1:21:33 PM Table 26. Natural gas home customer-weighted heating degree days New England Middle Atlantic East North Central West North Central South...

  15. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  16. Radial flow heat exchanger

    DOE Patents [OSTI]

    Valenzuela, Javier (Hanover, NH)

    2001-01-01T23:59:59.000Z

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  17. Lighting a building with a single bulb : toward a system for illumination in the 21st c.; or, A centralized illumination system for the efficient decoupling and recovery of lighting related heat

    E-Print Network [OSTI]

    Levens, Kurt Antony, 1961-

    1997-01-01T23:59:59.000Z

    Piping light represents the first tenable method for recovery and reutilization of lighting related heat. It can do this by preserving the energy generated at the lamp as radiative, departing from precedent and avoiding ...

  18. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  3. Lung cancer and indoor pollution from heating and cooking with solid fuels - The IARIC International Multicentre Case-Control study in Eastern/Central Europe and the United Kingdom

    SciTech Connect (OSTI)

    Lissowska, J.; Bardin-Mikolajczak, A.; Fletcher, T.; Zaridze, D.; Szeszenia-Dabrowska, N.; Rudnai, P.; Fabianova, E.; Cassidy, A.; Mates, D.; Holcatova, I.; Vitova, V.; Janout, V.; Mannetje, A.; Brennan, P.; Boffetta, P. [Center for Cancer, Warsaw (Poland). Dept. of Epidemiology & Cancer Prevention

    2005-08-15T23:59:59.000Z

    Exposure to fuel from cooking and heating has not been studied in Europe, where lung cancer rates are high and many residents have had a long tradition of burning coal and unprocessed biomass. Study subjects included 2,861 cases and 3,118 controls recruited during 1998-2002 in the Czech Republic, Hungary, Poland, Romania, Russia, Slovakia, and the United Kingdom. The odds ratio of lung cancer associated with solid fuel use was 1.22 (95% confidence interval (CI): 1.04, 1.44) for cooking or heating, 1.37 (95% CI: 0.90, 2.09) for solid fuel only for cooking, and 1.24 (95% CI: 1.05, 1.47) for solid fuels used for both cooking and heating. Risk increased relative to the percentage of time that solid fuel was used for cooking (P-trend {lt} 0.0001), while no risk increase was detected for solid fuel used for heating. The odds ratio of lung cancer in whole-life users of solid cooking fuel was 1.80 (95% CI: 1.35, 2.40). Switching to nonsolid fuels resulted in a decrease in risk. The odds ratio for the longest duration of time since switching was 0.76 (95% CI: 0.63, 0.92). The data suggest a modest increased risk of lung cancer related to solid-fuel use for cooking rather than heating.

  4. Heating system

    SciTech Connect (OSTI)

    Nishman, P.J.

    1983-03-08T23:59:59.000Z

    A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

  5. NSTX Organization 2009 Heating Systems

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    Erik Perry Central I&C Paul Sichta Power Systems John Lacenere Auxiliary Systems Bill Blanchard Physics Analysis and Simulation Stan Kaye Advanced Scenarios and Control David Gates, Jon Menard Modeling1 NSTX Organization ­ 2009 Heating Systems Tim Stevenson Device Operation Al von Halle Construction

  6. System design study to reduce capital and operating costs and bench-scale testing of a circulating-bed AFB advanced concept. Phase 1, Task 2: interim report on Task 1 results

    SciTech Connect (OSTI)

    Fraley, L.D.; Hsiao, K.H.; Lee, M.M.; Lin, Y.Y.; Sadhukhan, P.; Schlossman, M.; Schreiner, W.C.; Solbakken, A.

    1985-08-01T23:59:59.000Z

    The M.W. Kellogg Company has had under consideration for many years a combustor design involving a circulating fluid bed of ash, coal, lime/limestone sorbent, and calcium sulfate. In a previous study for the Department of Energy, M.W. Kellogg performed a design analysis for an atmospheric fluidized-bed combustor whose performance should significantly exceed conventional FBC operation performance, i.e., the Kellogg CFBC. The analysis conclusively showed that the Kellogg CFBC met or exceeded performance criteria for advanced atmospheric FBC's. This is superior to those FBC's currently in the market place. The objective of the study presented here was to reduce capital and operating costs of the Kellogg CFBC, configured into an industrial boiler system of 150,000 pounds per hour steaming capacity. This report presents the design optimization, detailed designs, and cost estimates required to compare CFBC with conventional AFB. The results show the Kellogg CFBC to be a very economical concept. Technically, the Kellogg CFBC can meet or exceed all of the design criteria established for an advanced AFBC. Its compact design resembles an FCC unit in structure and operation. By staged combustion, NO/sub x/ emissions are controlled by the reducing atmosphere and sulfur absorption enhanced in the improved kinetics of the H/sub 2/S-CaO reaction. The unique combustor/riser design keeps the boiler tubes from exposure to corrosive combustion gases, solving the erosion and corrosion problems existing in conventional bubbling-bed AFB. 7 refs., 28 figs., 17 tabs.

  7. Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

    Broader source: Energy.gov [DOE]

    The webinar focused on improving the performance of central space conditioning systems in multifamily buildings, including hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).

  8. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01T23:59:59.000Z

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  9. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  10. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29T23:59:59.000Z

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  11. Site selection and preliminary evaluation of potential solar-industrial-process-heat applications for federal buildings in Texas

    SciTech Connect (OSTI)

    Branz, M A

    1980-09-30T23:59:59.000Z

    The potential for solr process heat applications for federal buildings in Texas is assessed. The three sites considered are Reese Air Force Base, Lubbock; Fort Bliss, El Paso; and Dyess Air Force Base, Abilene. The application at Lubbock is an electroplating and descaling facility for aircraft maintenance. The one at El Paso is a laundry facility. The Abilene system would use solar heat to preheat boiler feedwater makeup for the base hospital boiler plant. The Lubbock site is found to be the most appropriate one for a demonstration plant, with the Abilene site as an alternate. The processes at each site are described. A preliminary evaluation of the potential contribution by solar energy to the electroplating facility at Reese AFB is included. (LEW)

  12. ITER HEAT REMOVAL SYSTEM SYSTEM & PROCESS CONTROL DESIGN

    E-Print Network [OSTI]

    Raffray, A. René

    normal pulse operation, the heat deposited in the in-vessel components is released into the environment. Ito 1 , P. Lorenzetto 4 , Y. Okawa 5 1 ITER Joint Central Team, 11025 North Torrey Pines Road, La Jolla, CA, 92037, USA; 2 ITER Joint Central Team, Naka, Japan; 3 ITER Joint Central Team, Garching

  13. Management and Control for Optimal Performance of the Heating Substation

    E-Print Network [OSTI]

    Yang, J.

    2006-01-01T23:59:59.000Z

    With the development of the scale of central heating, a higher managing level is needed for the heating substation. How to economize the more energy is the first factor that managers need to consider while ensuring the comfort of the heating...

  14. Management and Control for Optimal Performance of the Heating Substation 

    E-Print Network [OSTI]

    Yang, J.

    2006-01-01T23:59:59.000Z

    With the development of the scale of central heating, a higher managing level is needed for the heating substation. How to economize the more energy is the first factor that managers need to consider while ensuring the comfort of the heating...

  15. Central solar-energy receiver

    DOE Patents [OSTI]

    Not Available

    1981-10-27T23:59:59.000Z

    An improved tower-mounted central solar energy receiver for heating air drawn through the receiver by an induced draft fan is described. A number of vertically oriented, energy absorbing, fin-shaped slats are radially arranged in a number of concentric cylindrical arrays on top of the tower coaxially surrounding a pipe having air holes through which the fan draws air which is heated by the slats which receive the solar radiation from a heliostat field. A number of vertically oriented and wedge-shaped columns are radially arranged in a number of concentric cylindrical clusters surrounding the slat arrays. The columns have two mirror-reflecting sides to reflect radiation into the slat arrays and one energy absorbing side to reduce reradiation and reflection from the slat arrays.

  16. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ livingPattern : Room ­? behaviour; setTemp : Room ­? num; heatSwitchOn, heatSwitchOff, userReset : simple

  17. Quality assurance program plan for FRG sealed isotopic heat sources project (C-229)

    SciTech Connect (OSTI)

    Tanke, J.M.

    1997-05-16T23:59:59.000Z

    This QAPP implements the Quality Assurance Program Plan for the FRG Sealed Isotopic Heat Sources Project (C-229). The heat source will be relocated from the 324 Building and placed in interim storage at the Central Waste Complex (CWC).

  18. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Nick Rosenberry, Harris Companies

    2012-05-04T23:59:59.000Z

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  19. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  20. Geothermal heating

    SciTech Connect (OSTI)

    Aureille, M.

    1982-01-01T23:59:59.000Z

    The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

  1. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  2. Water and Space Heating Heat Pumps

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01T23:59:59.000Z

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  3. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  4. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26T23:59:59.000Z

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  5. Dead heat

    SciTech Connect (OSTI)

    Oppenheimer, M.; Boyle, R.H.

    1990-01-01T23:59:59.000Z

    This paper reports on the prospect of global warming. This paper proposes a workable solution, and a road map for getting there. The author explains how we became addicted to fossil fuels and evokes a bleak picture should this dependence continue. But the book also explores how industry can become a vehicle for solving, instead of precipitating, the global environmental crisis. The decoupling of energy from pollution can be accomplished without sacrificing prosperity by powering the economy with solar energy. Dead Heat takes us step by step to a greenhouse-friendly world fueled only by the sun.

  6. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  7. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean (Lafayette, IN); Willi, Martin Leo (Dunlap, IL); Fiveland, Scott Byron (Metamara, IL); Timmons, Kristine Ann (Chillicothe, IL)

    2010-12-14T23:59:59.000Z

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  8. Geothermal heat pumps for heating and cooling

    SciTech Connect (OSTI)

    Garg, S.C.

    1994-03-01T23:59:59.000Z

    Naval Facilities Engineering Service Center (NFESC) has been tasked by Naval Shore Facilities Energy Office to evaluate the NAS Patuxent River ground-source heat pump (GHP) installation. A large part of a building`s energy consumption consists of heating and air conditioning for occupant comfort. The space heating requirements are normally met by fossil-fuel-fired equipment or electric resistance heating. Cooling is provided by either air conditioners or heat pumps, both using electricity as an energy source.

  9. Central Equatorial Pacific Experiment (CEPEX)

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Earth's climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27[degree]C, but never 31[degree]C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  10. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01T23:59:59.000Z

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump working fluid is reactive...

  11. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  12. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating...

  13. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  14. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  15. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  16. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland,...

  17. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  18. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  19. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  20. Industrial Waste Heat Recovery Using Heat Pipes

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01T23:59:59.000Z

    -expanding variety of industrial processes. One notable application in recent years has been for combustion airs preheat of fired heaters in petroleum refineries and petrochemical plants. Another recent development has been a waste heat recovery boiler using heat...

  1. HEATING AND COOLING PROTOSTELLAR DISKS

    SciTech Connect (OSTI)

    Hirose, S. [Institute for Research on Earth Evolution, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa-ku, Yokohama, Kanagawa 236-0001 (Japan); Turner, N. J., E-mail: shirose@jamstec.go.jp, E-mail: neal.turner@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2011-05-10T23:59:59.000Z

    We examine heating and cooling in protostellar disks using three-dimensional radiation-MHD calculations of a patch of the Solar nebula at 1 AU, employing the shearing-box and flux-limited radiation diffusion approximations. The disk atmosphere is ionized by stellar X-rays, well coupled to magnetic fields, and sustains a turbulent accretion flow driven by magnetorotational instability, while the interior is resistive and magnetically dead. The turbulent layers are heated by absorbing the light from the central star and by dissipating the magnetic fields. They are optically thin to their own radiation and cool inefficiently. The optically thick interior in contrast is heated only weakly, by re-emission from the atmosphere. The interior is colder than a classical viscous model and isothermal. The magnetic fields support an extended atmosphere that absorbs the starlight 1.5 times higher than the hydrostatic viscous model. The disk thickness thus measures not the internal temperature, but the magnetic field strength. Fluctuations in the fields move the starlight-absorbing surface up and down. The height ranges between 13% and 24% of the radius over timescales of several orbits, with implications for infrared variability. The fields are buoyant, so the accretion heating occurs higher in the atmosphere than the stresses. The heating is localized around current sheets, caused by magnetorotational instability at lower elevations and by Parker instability at higher elevations. Gas in the sheets is heated above the stellar irradiation temperature, even though accretion is much less than irradiation power when volume averaged. The hot optically thin current sheets might be detectable through their line emission.

  2. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  3. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16T23:59:59.000Z

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  4. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  5. Locating Heat Recovery Opportunities

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01T23:59:59.000Z

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  6. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    transient the heat transfer model. T h i s required the roofto develop and calibrate heat transfer models to be able toE S station, the heat transfer models described i n sections

  7. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16T23:59:59.000Z

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  8. Total Space Heat-

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  10. Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in

    E-Print Network [OSTI]

    Blumsack, Seth

    the potential for significant energy savings [1]. The performance of ground-source heat pumps for residential1 Efficiency, Economic and Environmental Assessment of Ground-Source Heat Pumps in Central, the efficiency gain for the ground-source heat pump compared to electricity is 43% for cooling and 81

  11. Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings

    Broader source: Energy.gov [DOE]

    This webinar will focus on improving the performance of central space conditioning systems in multifamily buildings. Presenters will discuss hydronic heating strategies and the evaluation of thermostatically controlled radiator valves (TRVs).

  12. Residential Bulk-Fed Wood-Pellet Central Boilers and Furnace Rebate Program

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) is offering rebates of 30% of the installed cost of qualifying new residential bulk-fed, wood-pellet central heating boilers or furnaces. The...

  13. Central Hudson Gas and Electric (Gas)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Home Energy SavingsCentral Program offers customers rebates of up to $1,000 on energy efficient equipment and measures for residential gas customers who upgrade heating, cooling or ventilation...

  14. Central Hudson Gas and Electric (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Home Energy SavingsCentral Program offers customers rebates of between $25 and $600 for energy efficient equipment and measures. This is for residential electric customers who upgrade heating,...

  15. Usefulness of North Carolina olivine in heat storage bricks

    SciTech Connect (OSTI)

    Palmour, H.; Gay, B.M.; Cochrane, R.L.

    1980-07-01T23:59:59.000Z

    Sensible heat storage systems are available which make use of low cost electric energy during off-peak hours to heat ceramic refractories to approx. 1500/sup 0/F. Thereafter, heat is extracted as needed and without further energy demand (fan excluded) by controlled circulation of air through the core to meet residential or commercial space conditioning needs. Heat storage furnaces represent valuable load-leveling capabilities for central electric utilities and safe, convenient, reliable heat sources for consumers. The background of this new technology is reviewed, the different available types of heat storage furnaces are described, and attention is focused on materials selections, ceramic processing, thermal and mechanical properties and in-service performance factors for the ceramic refractories which make up the actual storage core. Prototype domestic heat storage refractories produced from North Carolina olivine (magnesium iron orthosilicate) are used as examples in discussing some of the available engineering options and tradeoffs, and their technical and economic consequences.

  16. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D. (Shelly, ID)

    1988-01-01T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  17. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11T23:59:59.000Z

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  18. Mass and Heat Recovery 

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    In the last few years heat recovery was under spot and in air conditioning fields usually we use heat recovery by different types of heat exchangers. The heat exchanging between the exhaust air from the building with the fresh air to the building...

  19. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E. (Pleasanton, CA); Van Konynenburg, Richard (Livermore, CA); VanSant, James H. (Tracy, CA)

    1992-01-01T23:59:59.000Z

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  20. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14T23:59:59.000Z

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  1. Mass and Heat Recovery

    E-Print Network [OSTI]

    Hindawai, S. M.

    2010-01-01T23:59:59.000Z

    - 1 - MASS AND HEAT RECOVERY SYSTEM SALAH MAHMOUD HINDAWI DIRECTOR HINDAWI FOR ENGINEERING SERVICES & CONTRACTING NEW DAMIETTA , EGYPT ABSTRACT : In the last few years heat recovery was under spot . and in air conditioning fields... ) as a heat recovery . and I use the water as a mass recovery . The source of mass and heat recovery is the condensate water which we were dispose and connect it to the drain lines . THE BENEFIT OF THIS SYSTEM ARE : 1) Using the heat energy from...

  2. CENTRAL PLATEAU REMEDIATION

    SciTech Connect (OSTI)

    ROMINE, L.D.

    2006-02-01T23:59:59.000Z

    A systematic approach to closure planning is being implemented at the Hanford Site's Central Plateau to help achieve the goal of closure by the year 2035. The overall objective of Central Plateau remediation is to protect human health and the environment from the significant quantity of contaminated material that resulted from decades of plutonium production in support of the nation's defense. This goal will be achieved either by removing contaminants or placing the residual contaminated materials in a secure configuration that minimizes further migration to the groundwater and reduces the potential for inadvertent intrusion into contaminated sites. The approach to Central Plateau cleanup used three key concepts--closure zones, closure elements, and closure process steps--to create an organized picture of actions required to complete remediation. These actions were merged with logic ties, constraints, and required resources to produce an integrated time-phased schedule and cost profile for Central Plateau closure. Programmatic risks associated with implementation of Central Plateau closure were identified and analyzed. Actions to mitigate the most significant risks are underway while high priority remediation projects continue to make progress.

  3. Heat Integrate Heat Engines in Process Plants

    E-Print Network [OSTI]

    Hindmarsh, E.; Boland, D.; Townsend, D. W.

    ~C. T min Table 3. Problem Table Algorithm Applied to Petrochemicals Process Interval GJ ltiour 'Temperatures ! C! 2 ) ? ~ Cold. Hot Aecumulated Heat Heat FJ.owa Interval Streams StrePlS Deficit. Input OUtput -OUtt!utInput. 20 30 -2... of heat which can be passed on in this manner is performed in column 2 and column 3 of Table 3. It is initially assumed that the heat input from external utilities is zero. This is represented in Table 3 by a zero input to the top interval. Having...

  4. Experimental Research on Solar Assisted Heat Pump Heating System with Latent Heat Storage 

    E-Print Network [OSTI]

    Han, Z.; Zheng, M.; Liu, W.; Wang, F.

    2006-01-01T23:59:59.000Z

    Assisted Heat Pump Heating System with Latent Heat Storage. In this system, solar energy is the major heat source for a heat pump, and the supplementary heat source is soil. The disagreement in time between the space heat load and heat collected by solar...

  5. Modern hot water district heating

    SciTech Connect (OSTI)

    Karnitz, M.A.; Barnes, M.H.; Kadrmas, C.; Nyman, H.O.

    1984-06-01T23:59:59.000Z

    The history of district heating in Europe is drastically different from that in the United States. The development of district heating in northern and eastern Europe started in the early 1950s. Hot water rather than steam was used as the transport medium and the systems have proven to be more economical. Recently, the northern European concept has been introduced into two US cities - St. Paul and Willmar, Minnesota. The hot water project in St. Paul started construction and operation in the summer and fall of 1983, respectively. The entire first phase of the St. Paul project will take two summers to construct and will connect approximately 80 buildings for a total of 150 MW(t). The system spans the entire St. Paul business district and includes privately owned offices and retail buildings, city and county government buildings, hospitals, the state Capitol complex, and several industrial customers. The City of Willmar, Minnesota, replaced an old steam system with a modern hot water system in the summer of 1982. The first phase of the hot water system was constructed in the central business district. The system serves a peak thermal load of about 10 MW(t) and includes about 12,000 ft of network. The Willmar system completed the second stage of development in the fall of 1983. These two new systems demonstrate the benefits of the low-temperature hot water district heating technology. The systems are economical to build, have high reliability, and have low maintenance and operating cost.

  6. POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC

    E-Print Network [OSTI]

    POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC Abstract. A semigroup is said to be power centralized if for every pair of elements x and y there exists a power of x commuting with y. The structure of power centralized groups and semigroups is investigated. In particular, we characterize 0-simple power centralized

  7. RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System

    E-Print Network [OSTI]

    Whitehouse, Kamin

    RoomZoner: Occupancy-based Room-Level Zoning of a Centralized HVAC System Tamim Sookoor & Kamin. In this paper we present a CPS that enables a centralized Heating, Ventila- tion, and Air Conditioning (HVAC application due to residential HVAC systems ac- counting for over 15% of all U.S. energy usage, making it one

  8. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    SciTech Connect (OSTI)

    Liu, Xiaobing [Oak Ridge National Lab] [Oak Ridge National Lab

    2014-06-01T23:59:59.000Z

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  9. HEATING6 verification

    SciTech Connect (OSTI)

    Bryan, C.B.; Childs, K.W.; Giles, G.E.

    1986-12-01T23:59:59.000Z

    The HEATING series of general purpose, finite-difference, conduction heat transfer codes have been in use for many years. During this time the codes have been used extensively, and a general confidence has been developed in regard to their accuracy. However, there has never been a formal verification in a published, citable document. This report documents just such a verification study for the latest code in the HEATING series, HEATING6. This study confirms that HEATING6 is capable of producing accurate results for a large class of heat transfer problems. 11 refs., 170 figs., 82 tabs.

  10. Heat Pump for High School Heat Recovery

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01T23:59:59.000Z

    ) [3] Yayun FAN. Experimental study on a heat pump technology in solar thermal utilization[J]. Acta Energiae Solaris Sinica, Oct.,2002; Vol.23,No.5 ? 581-585.(In Chinese) [4] Nengxi JIANG. Air-conditioning Heat Pump Technology and Its Applications...

  11. Video Resources Central Asia

    E-Print Network [OSTI]

    Qian, Ning

    ://archive.org/details/central-asia · Kyrgyzstan: Crisis in Kyrgyzstan: Fuel, Contracts, and Revolution along the Afghan Supply Chain http://www.c-span.org/video/?24094-1/crisis-kyrgyzstan-fuel-contracts-revolution-along- afghan-supply-chain 2:58 Alex Cooley · Cotton

  12. DELIVERABLE Central North Sea

    E-Print Network [OSTI]

    Haszeldine, Stuart

    International Energy Agency Energy Technology Perspectives 2012 #12;4 Central North Sea ­ CO2 Storage Hub within the UK and EU. CCS development zones can also attract new energy intensive industries to locate of intermittency which is inevitable with wind power, thereby helping to address the need for energy security

  13. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Broader source: Energy.gov [DOE]

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  14. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    designs (relatively) Photovoltaic Solar P a n e l AtmosphereCALIFORNIA, SAN DIEGO Photovoltaic Roof Heat Flux A ThesisABSTRACT OF T H E THESIS Photovoltaic Roof Heat Flux by

  15. DistrictHeating Nuevasaladecalderasydistribucin

    E-Print Network [OSTI]

    Fraguela, Basilio B.

    DistrictHeating Nuevasaladecalderasydistribución decaloreneláreauniversitariade AZapateira Jesús, difusión. DISTRICT HEATING O CALEFACCIÓN DE BARRIO #12;MATERIALIZACIÓN INTEGRACIÓN VISUAL DE ELEMENTOS rendimiento global de la instalación. - Contabilización de pérdidas en tuberías de distribución. #12;DISTRICT

  16. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  17. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  18. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23T23:59:59.000Z

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  19. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J. (Oakland, CA); Hansen, Leif J. (Berkeley, CA); Evans, David B. (Orinda, CA)

    1985-01-01T23:59:59.000Z

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  20. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29T23:59:59.000Z

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  1. Industrial Waste Heat Recovery

    E-Print Network [OSTI]

    Ward, M. E.; Solomon, N. G.; Tabb, E. S.

    1980-01-01T23:59:59.000Z

    INDUSTRIAL WASTE HEAT RECOVREY M. E. Ward and N. G. Solomon E. S. Tabb Solar Turbines International and Gas Research Institute San Diego, California Chicago, Illinois ABSTRACT i I One hundred fifty reports were reviewed along with interviews... tests, promising low temperature heat exchanger tube alloys and coated surfaces were identified. 1INTROUCTION of advanced technology heat recovery techniques 1_ Recovering waste heat from the flue gases of the pr~ary objective. Specific objectives...

  2. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10T23:59:59.000Z

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  3. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  4. Heat Transfer Guest Editorial

    E-Print Network [OSTI]

    Kandlikar, Satish

    Journal of Heat Transfer Guest Editorial We are indeed delighted in bringing out this special issue was showcased in diverse areas such as traditional heat and mass transfer, lab-on-chip, sensors, biomedical applica- tions, micromixers, fuel cells, and microdevices. Selected papers in the field of heat transfer

  5. Pioneering Heat Pump Project

    Broader source: Energy.gov [DOE]

    Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

  6. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

    2007-05-01T23:59:59.000Z

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  7. Comfort-constrained distributed heat pump management

    E-Print Network [OSTI]

    Parkinson, Simon; Crawford, Curran; Djilali, Ned

    2011-01-01T23:59:59.000Z

    This paper introduces the design of a demand response network control strategy aimed at thermostatically controlled electric heating and cooling systems in buildings. The method relies on the use of programmable communicating thermostats, which are able to provide important component-level state variables to a system-level central controller. This information can be used to build power density distribution functions for the aggregate heat pump load. These functions lay out the fundamental basis for the methodology by allowing for consideration of customer-level constraints within the system-level decision making process. The proposed strategy is then implemented in a computational model to simulate a distribution of buildings, where the aggregate heat pump load is managed to provide the regulation services needed to successfully integrate wind power generators. Increased exploitation of wind resources will place similarly themed ancillary services in high-demand, traditionally provided by dispatchable energy ...

  8. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  9. Energy Recovery By Direct Contact Gas-Liquid Heat Exchange

    E-Print Network [OSTI]

    Fair, J. R.; Bravo, J. L.

    ENERGY RECOVERY BY DIRECf CONTACf GAS-LIQUID HEAT EXCHANGE James R. Fair and Jose L. Bravo Separations Research Program The University o/Texas at Austin Austin, Texas ABSIRACf Energy from hot gas discharge streams can be recovered... by transfer directly to a coolant liquid in one of several available gas-liquid contacting devices. The design of the device is central to the theme of this paper, and experimental work has verified that the analogy between heat transfer and mass transfer...

  10. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN); Perez-Blanco, Horacio (Knoxville, TN)

    1984-01-01T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  11. Applied heat transfer

    SciTech Connect (OSTI)

    Ganapathy, V.

    1982-01-01T23:59:59.000Z

    Heat transfer principles are discussed with emphasis on the practical aspects of the problems. Correlations for heat transfer and pressure drop from several worldwide sources for flow inside and outside of tubes, including finned tubes are presented, along with design and performance calculations of heat exchangers economizers, air heaters, condensers, waste-heat boilers, fired heaters, superheaters, and boiler furnaces. Vibration analysis for tube bundles and heat exchangers are also discussed, as are estimating gas-mixture properties at atmospheric and elevated pressures and life-cycle costing techniques. (JMT)

  12. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Horowitz, Jeffrey S. (Woodridge, IL)

    1983-01-01T23:59:59.000Z

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  13. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. (Pasco, WA) [Pasco, WA; Roberts, Gary L. (West Richland, WA) [West Richland, WA; Call, Charles J. (Pasco, WA) [Pasco, WA; Wegeng, Robert S. (Richland, WA) [Richland, WA; Wang, Yong (Richland, WA) [Richland, WA

    2001-01-01T23:59:59.000Z

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  14. EVALUATION OF A SULFUR OXIDE CHEMICAL HEAT STORAGE PROCESS FOR A STEAM SOLAR ELECTRIC PLANT

    E-Print Network [OSTI]

    Dayan, J.

    2011-01-01T23:59:59.000Z

    central receiver of a solar plant, that absorbs heat duringper kW-hr produced by the solar plant and the sulfur-oxideis essential if solar power plants are ever to supply a

  15. Policies supporting Heat Pump Technologies

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Policies supporting Heat Pump Technologies in Canada IEA Heat Pump Workshop London, UK November 13 in the world, with an average of 16,995 kilowatt-hours per annum. #12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat

  16. Optimization of Heat Exchangers

    SciTech Connect (OSTI)

    Ivan Catton

    2010-10-01T23:59:59.000Z

    The objective of this research is to develop tools to design and optimize heat exchangers (HE) and compact heat exchangers (CHE) for intermediate loop heat transport systems found in the very high temperature reator (VHTR) and other Generation IV designs by addressing heat transfer surface augmentation and conjugate modeling. To optimize heat exchanger, a fast running model must be created that will allow for multiple designs to be compared quickly. To model a heat exchanger, volume averaging theory, VAT, is used. VAT allows for the conservation of mass, momentum and energy to be solved for point by point in a 3 dimensional computer model of a heat exchanger. The end product of this project is a computer code that can predict an optimal configuration for a heat exchanger given only a few constraints (input fluids, size, cost, etc.). As VAT computer code can be used to model characteristics )pumping power, temperatures, and cost) of heat exchangers more quickly than traditional CFD or experiment, optimization of every geometric parameter simultaneously can be made. Using design of experiment, DOE and genetric algorithms, GE, to optimize the results of the computer code will improve heat exchanger disign.

  17. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  18. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Shaker Heights, OH); Moore, Paul B. (Fedhaven, FL)

    1983-01-01T23:59:59.000Z

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  19. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01T23:59:59.000Z

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  20. Centralized maintenance procedures

    SciTech Connect (OSTI)

    Barber, J.R.

    1994-02-01T23:59:59.000Z

    In 1989, shortly after Westinghouse Hanford Company (WHC) assumed maintenance responsibilities for the Hanford site, a Department of Energy (DOE) maintenance audit found that field (working level) maintenance procedures and procedure practices of the facilities scattered across Hanford`s 560 square miles varied as greatly as the locations of those facilities. In some of the audited facilities there were few or no procedures; in others, procedures conflicted with or were redundant to procedures at other facilities. This document presents current efforts to centralize maintenance procedures.

  1. Centralized Procurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos Laboratory NastasiPASTCentral AirCentral

  2. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP :ProductsVaisala CL51InstrumentsCentral Facility SGP Related Links

  3. Fluidized bed heat treating system

    DOE Patents [OSTI]

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06T23:59:59.000Z

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  4. Summer HeatSummer Heat Heat stress solutions

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    occur (then drink a lightly salted beverage like a sports drink). The water's temperature should be cool How should gardeners avoid becoming a safety threat to themselves and others when it's hot? Start to the heat. Become a weather watcher. Set up a small weather station (with a high/low thermom eter, rain

  5. On Heating of Cluster Cooling Flows by Sound Waves

    E-Print Network [OSTI]

    Yutaka Fujita; Takeru Ken Suzuki

    2005-08-10T23:59:59.000Z

    We investigate heating of the cool core of a galaxy cluster through the dissipation of sound waves excited by the activities of the central active galactic nucleus (AGN). Using a weak shock theory, we show that this heating mechanism alone cannot reproduce observed temperature and density profiles of a cluster, because the dissipation length of the waves is much smaller than the size of the core and thus the wave energy is not distributed to the whole core. However, we find that if it is combined with thermal conduction from the hot outer layer of the cluster, the wave heating can reproduce the observational results.

  6. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J. (Knoxville, TN)

    2006-04-18T23:59:59.000Z

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  7. Investigating AGN Heating in a Sample of Nearby Clusters

    E-Print Network [OSTI]

    Dunn, R J H

    2006-01-01T23:59:59.000Z

    We analyse those objects in the Brightest 55 sample of clusters of galaxies which have a short central cooling time and a central temperature drop. Such clusters are likely to require some form of heating. Where clear radio bubbles are observed in these clusters, their energy injection is compared to the X-ray cooling rate. Of the 20 clusters requiring heating, at least 14 have clear bubbles, implying a duty cycle for the bubbling activity of at least 70 per cent. The average distance out to which the bubbles can offset the X-ray cooling, r_heat is given by r_heat/r_cool=0.86+/-0.11 where r_cool is defined as the radius as which the radiative cooling time is 3 Gyr. 10 out of 16 clusters have r_heat/r_cool>1, but there is a large range in values. The clusters which require heating but show no clear bubbles were combined with those clusters which have a radio core to form a second sub-sample. Using r_heat=0.86 r_cool we calculate the size of an average bubble expected in these clusters. In five cases (3C129.1, ...

  8. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01T23:59:59.000Z

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  9. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29T23:59:59.000Z

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  10. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16T23:59:59.000Z

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  11. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  12. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2007-09-18T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  13. Heat and mass exchanger

    DOE Patents [OSTI]

    Lowenstein, Andrew (Princeton, NJ); Sibilia, Marc J. (Princeton, NJ); Miller, Jeffrey A. (Hopewell, NJ); Tonon, Thomas (Princeton, NJ)

    2011-06-28T23:59:59.000Z

    A mass and heat exchanger includes at least one first substrate with a surface for supporting a continuous flow of a liquid thereon that either absorbs, desorbs, evaporates or condenses one or more gaseous species from or to a surrounding gas; and at least one second substrate operatively associated with the first substrate. The second substrate includes a surface for supporting the continuous flow of the liquid thereon and is adapted to carry a heat exchange fluid therethrough, wherein heat transfer occurs between the liquid and the heat exchange fluid.

  14. Waste Heat Recovery

    Office of Environmental Management (EM)

    DRAFT - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the TechnologySystem ......

  15. Passive solar space heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1980-01-01T23:59:59.000Z

    An overview of passive solar space heating is presented indicating trends in design, new developments, performance measures, analytical design aids, and monitored building results.

  16. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C. (Richland, WA); Tokarz, Richard D. (Richland, WA); Parry, Jr., Harvey L. (Richland, WA); Braun, Daniel J. (Richland, WA)

    1980-01-01T23:59:59.000Z

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  17. Colorado Heat Flow Data from IHFC

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01T23:59:59.000Z

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: The International Heat Flow Commission (IHFC) Publication Date: 2012 Title: Colorado IHFC Data Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: Abstract: This layer contains the heat flow sites and data of the State of Colorado compiled from the International Heat Flow Commission (IHFC) of the International Association of Seismology and Physics of the Earth's Interior (IASPEI) global heat flow database (www.heatflow.und.edu/index2.html). The data include different items: Item number, descriptive code, name of site, latitude and longitude, elevation, depth interval, number of temperature data, temperature gradient, number of conductivity measurement, average conductivity, number of heat generation measurements, average heat production, heat flow, number of individual sites, references, and date of publication. Spatial Domain: Extent: Top: 4522121.800672 m Left: 165356.134075 m Right: 621836.776246 m Bottom: 4097833.419676 m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude Of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  18. Ductless Mini-Split Heat Pump Comfort Evaluation

    SciTech Connect (OSTI)

    Roth, K.; Sehgal, N.; Akers, C.

    2013-03-01T23:59:59.000Z

    Field tests were conducted in two homes in Austin, TX to evaluate the comfort performance of ductless mini-split heat pumps (DMSHPs), measuring temperature and relative humidity measurements in four rooms in each home before and after retrofitting a central HVAC system with DMSHPs.

  19. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, Desikan (Lakewood, CO); Bohn, Mark S. (Golden, CO); Williams, Thomas A. (Arvada, CO)

    1995-01-01T23:59:59.000Z

    A hybrid combined cycle power plant including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production.

  20. Hybrid solar central receiver for combined cycle power plant

    DOE Patents [OSTI]

    Bharathan, D.; Bohn, M.S.; Williams, T.A.

    1995-05-23T23:59:59.000Z

    A hybrid combined cycle power plant is described including a solar central receiver for receiving solar radiation and converting it to thermal energy. The power plant includes a molten salt heat transfer medium for transferring the thermal energy to an air heater. The air heater uses the thermal energy to preheat the air from the compressor of the gas cycle. The exhaust gases from the gas cycle are directed to a steam turbine for additional energy production. 1 figure.

  1. IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER

    E-Print Network [OSTI]

    IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS #12;ii IMPLEMENTING GROUND SOURCE HEAT PUMP AND GROUND LOOP HEAT EXCHANGER MODELS IN THE ENERGYPLUS............................................................... 2 1.3. Overview of the Parameter Estimation Water-to-Water Heat Pump Model ........... 5 1

  2. Heat pipes and use of heat pipes in furnace exhaust

    DOE Patents [OSTI]

    Polcyn, Adam D. (Pittsburgh, PA)

    2010-12-28T23:59:59.000Z

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  3. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  4. Microchannel heat sink assembly

    DOE Patents [OSTI]

    Bonde, W.L.; Contolini, R.J.

    1992-03-24T23:59:59.000Z

    The present invention provides a microchannel heat sink with a thermal range from cryogenic temperatures to several hundred degrees centigrade. The heat sink can be used with a variety of fluids, such as cryogenic or corrosive fluids, and can be operated at a high pressure. The heat sink comprises a microchannel layer preferably formed of silicon, and a manifold layer preferably formed of glass. The manifold layer comprises an inlet groove and outlet groove which define an inlet manifold and an outlet manifold. The inlet manifold delivers coolant to the inlet section of the microchannels, and the outlet manifold receives coolant from the outlet section of the microchannels. In one embodiment, the manifold layer comprises an inlet hole extending through the manifold layer to the inlet manifold, and an outlet hole extending through the manifold layer to the outlet manifold. Coolant is supplied to the heat sink through a conduit assembly connected to the heat sink. A resilient seal, such as a gasket or an O-ring, is disposed between the conduit and the hole in the heat sink in order to provide a watertight seal. In other embodiments, the conduit assembly may comprise a metal tube which is connected to the heat sink by a soft solder. In still other embodiments, the heat sink may comprise inlet and outlet nipples. The present invention has application in supercomputers, integrated circuits and other electronic devices, and is suitable for cooling materials to superconducting temperatures. 13 figs.

  5. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  6. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  7. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  8. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01T23:59:59.000Z

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  9. Central Characterization Program (CCP) Reconciliation of Data...

    Energy Savers [EERE]

    Central Characterization Program (CCP) Reconciliation of Data Quality Objectives (DQOs) and Reporting Characterization Data Central Characterization Program (CCP) Reconciliation of...

  10. Solar heating system

    DOE Patents [OSTI]

    Schreyer, James M. (Oak Ridge, TN); Dorsey, George F. (Concord, TN)

    1982-01-01T23:59:59.000Z

    An improved solar heating system in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75.degree. to 180.degree. F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing and releasing heat for distribution.

  11. Knudsen heat capacity

    SciTech Connect (OSTI)

    Babac, Gulru, E-mail: babac@itu.edu.tr [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey)] [Institute of Energy, Istanbul Technical University, Istanbul 34469 (Turkey); Reese, Jason M. [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)] [School of Engineering, University of Edinburgh, Edinburgh EH9 3JL (United Kingdom)

    2014-05-15T23:59:59.000Z

    We present a “Knudsen heat capacity” as a more appropriate and useful fluid property in micro/nanoscale gas systems than the constant pressure heat capacity. At these scales, different fluid processes come to the fore that are not normally observed at the macroscale. For thermodynamic analyses that include these Knudsen processes, using the Knudsen heat capacity can be more effective and physical. We calculate this heat capacity theoretically for non-ideal monatomic and diatomic gases, in particular, helium, nitrogen, and hydrogen. The quantum modification for para and ortho hydrogen is also considered. We numerically model the Knudsen heat capacity using molecular dynamics simulations for the considered gases, and compare these results with the theoretical ones.

  12. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16T23:59:59.000Z

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  13. Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal...

    Open Energy Info (EERE)

    heat flow values as high as several watts per meter squared can be found. Systematic interpretation of heat flow patterns sheds light on heat transfer mechanisms at depth on...

  14. Economic Options for Upgrading Waste Heat 

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  15. Economic Options for Upgrading Waste Heat

    E-Print Network [OSTI]

    Erickson, D. C.

    1983-01-01T23:59:59.000Z

    There are at least six major types of equipment that upgrade waste heat: (1) thermocompressor; (2) electric drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat...

  16. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations

    E-Print Network [OSTI]

    Kirol, L. D.

    for water and gas connections, and temperature variations. Recent work on heat pump cycles using complex compound reactions includes development of energy storage systems at laboratories in Europe (11) and the United States (12), and residential...ABSTRACT Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, hl~a: driven heat pumps in which either heat engine or heat pump working fluid...

  17. ELECTRIC CO-HEATING: A METHOD FOR EVALUATING SEASONAL HEATING EFFICIENCIES AND HEAT LOSS RATES IN DWELLINGS

    E-Print Network [OSTI]

    Modera, M.P.

    2012-01-01T23:59:59.000Z

    Effi~ ciency of Fossil~Fired Heating Systems for LabelingInfo. Division, Ext. 6782 Electric Co-heating: A Methodfor Evaluating Seasonal Heating Efficiencies and Heat Loss

  18. Central Equatorial Pacific Experiment (CEPEX). Design document

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    The Earth`s climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27{degree}C, but never 31{degree}C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  19. Workshop on Condensing Heating and Water Heating Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop on Condensing Heating and Water Heating Equipment Thursday, October 9, 2014 List of Attendees OrganizationAttendees DOE - John Cymbalsky - Ashley Armstrong - Johanna...

  20. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls...

  1. Condensing Heating and Water Heating Equipment Workshop Location...

    Energy Savers [EERE]

    Condensing Heating and Water Heating Equipment Workshop Location: Washington Gas Light Appliance Training Facility 6801 Industrial Road Springfield, VA Date: October 9, 2014 Time:...

  2. Proceedings: Heat exchanger workshop

    SciTech Connect (OSTI)

    Not Available

    1987-07-01T23:59:59.000Z

    Heat transfer processes are of controlling importance in the operation of a thermal power plant. Heat exchangers are major cost items and are an important source of problems causing poor power plant availability and performance. A workshop to examine the improvements that can be made to heat exchangers was sponsored by the Electric Power Research Institute (EPRI) on June 10-11, 1986, in Palo Alto, California. This workshop was attended by 25 engineers and scientists representing EPRI-member utilities and EPRI consultants. A forum was provided for discussions related to the design, operation and maintenance of utility heat transfer equipment. The specific objectives were to identify research directions that could significantly improve heat exchanger performance, reliability and life cycle economics. Since there is a great diversity of utility heat transfer equipment in use, this workshop addressed two equipment categories: Boiler Feedwater Heaters (FWH) and Heat Recovery Steam Generators (HRSG). The workshop was divided into the following panel sessions: functional design, mechanical design, operation, suggested research topics, and prioritization. Each panel session began with short presentations by experts on the subject and followed by discussions by the attendees. This report documents the proceedings of the workshop and contains recommendations of potentially valuable areas of research and development. 4 figs.

  3. Micro heat barrier

    DOE Patents [OSTI]

    Marshall, Albert C.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2003-08-12T23:59:59.000Z

    A highly effective, micron-scale micro heat barrier structure and process for manufacturing a micro heat barrier based on semiconductor and/or MEMS fabrication techniques. The micro heat barrier has an array of non-metallic, freestanding microsupports with a height less than 100 microns, attached to a substrate. An infrared reflective membrane (e.g., 1 micron gold) can be supported by the array of microsupports to provide radiation shielding. The micro heat barrier can be evacuated to eliminate gas phase heat conduction and convection. Semi-isotropic, reactive ion plasma etching can be used to create a microspike having a cusp-like shape with a sharp, pointed tip (<0.1 micron), to minimize the tip's contact area. A heat source can be placed directly on the microspikes. The micro heat barrier can have an apparent thermal conductivity in the range of 10.sup.-6 to 10.sup.-7 W/m-K. Multiple layers of reflective membranes can be used to increase thermal resistance.

  4. Integrating preconcentrator heat controller

    DOE Patents [OSTI]

    Bouchier, Francis A. (Albuquerque, NM); Arakaki, Lester H. (Edgewood, NM); Varley, Eric S. (Albuquerque, NM)

    2007-10-16T23:59:59.000Z

    A method and apparatus for controlling the electric resistance heating of a metallic chemical preconcentrator screen, for example, used in portable trace explosives detectors. The length of the heating time-period is automatically adjusted to compensate for any changes in the voltage driving the heating current across the screen, for example, due to gradual discharge or aging of a battery. The total deposited energy in the screen is proportional to the integral over time of the square of the voltage drop across the screen. Since the net temperature rise, .DELTA.T.sub.s, of the screen, from beginning to end of the heating pulse, is proportional to the total amount of heat energy deposited in the screen during the heating pulse, then this integral can be calculated in real-time and used to terminate the heating current when a pre-set target value has been reached; thereby providing a consistent and reliable screen temperature rise, .DELTA.T.sub.s, from pulse-to-pulse.

  5. District heating feasibility, Industrial Corridor, Jamestown, New York

    SciTech Connect (OSTI)

    Not Available

    1988-06-01T23:59:59.000Z

    The Industrial Corridor of Jamestown, New York, contains more than twenty industrial/manufacturing companies, whose thermal demands, in addition to space heating, include significant process heating loads. This study investigated in depth, the technical and economic feasibility of implementing a district heating system in the Industrial Corridor which can serve both process and space heating loads. Based upon the heat load assessment conducted, the study focused upon nine companies with the largest thermal demand. Alternative system implementation designs were considered including new conventional centralized boiler plants, gas turbine cogeneration, and both high temperature hot water and steam as the heat transport media in an underground distribution system. The study concluded that, in view of the nature of existing prospective customer loads being primarily steam based, the most economical system for near term phased development is a steam based system with a new conventional centrally located steam boiler plant. The economic potential for a cogeneration system was found to be sensitive to electricity buy back rates, which at present, are not attractive. Implementing a modern high temperature hot water system would require significant customer retrofit costs to convert their steam based systems to hot water, resulting in long and unattractive pay back periods. Unless customer hot water retrofit costs can be expended without penalty to the district system economics, hot water district heating is not considered economically feasible. Chapters describe heat load assessment; heat source analysis; system implementation; transmission and distribution systems assessment; institutional assessment; system economic analysis; and customer retrofit, economic analysis, and conclusions 20 figs., 22 tabs.

  6. Complex Compound Chemical Heat Pumps 

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    1987-01-01T23:59:59.000Z

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  7. Energy 101: Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe ...

  8. Complex Compound Chemical Heat Pumps

    E-Print Network [OSTI]

    Rockenfeller, U.; Langeliers, J.; Horn, G.

    Complex-compound solid-vapor fluid pairs can be used in heat of reaction heat pumps for temperature amplifier (TA) as well as heat amplifier (HA) cycle configurations. This report describes the conceptual hardware design for complex compound...

  9. Optimization of Heat Exchanger Cleaning 

    E-Print Network [OSTI]

    Siegell, J. H.

    1986-01-01T23:59:59.000Z

    The performance of heat integration systems is quantified in terms of the amount of heat that is recovered. This decreases with time due to increased fouling of the heat exchange surface. Using the "Total Fouling Related Expenses (TFRE)" approach...

  10. Heat treatment furnace

    DOE Patents [OSTI]

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21T23:59:59.000Z

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  11. Molecular heat pump

    E-Print Network [OSTI]

    Dvira Segal; Abraham Nitzan

    2005-10-11T23:59:59.000Z

    We propose a novel molecular device that pumps heat against a thermal gradient. The system consists of a molecular element connecting two thermal reservoirs that are characterized by different spectral properties. The pumping action is achieved by applying an external force that periodically modulates molecular levels. This modulation affects periodic oscillations of the internal temperature of the molecule and the strength of its coupling to each reservoir resulting in a net heat flow in the desired direction. The heat flow is examined in the slow and fast modulation limits and for different modulation waveforms, thus making it possible to optimize the device performance.

  12. Specifying Waste Heat Boilers

    E-Print Network [OSTI]

    Ganapathy, V.

    or hydrochloric acid vapor should be mentioned upfront so the HRSG designer can take proper precauations while designing the unit.Material selection is also impacted by the presence of corrosive gases.If partial pressure of hydrogen is high in the gas stream...SPECIFYING WASTE HEAT BOILERS V.Ganapathy.ABCO Industries Abilene,Texas ABSTRACT Waste heat boilers or Heat Recovery Steam 'Generators(HRSGs) as they are often called are used to recover energy from waste gas streams in chemical plants...

  13. NGNP Process Heat Utilization: Liquid Metal Phase Change Heat Exchanger

    SciTech Connect (OSTI)

    Piyush Sabharwall; Mike Patterson; Vivek Utgikar; Fred Gunnerson

    2008-09-01T23:59:59.000Z

    One key long-standing issue that must be overcome to fully realize the successful growth of nuclear power is to determine other benefits of nuclear energy apart from meeting the electricity demands. The Next Generation Nuclear Plant (NGNP) will most likely be producing electricity and heat for the production of hydrogen and/or oil retrieval from oil sands and oil shale to help in our national pursuit of energy independence. For nuclear process heat to be utilized, intermediate heat exchange is required to transfer heat from the NGNP to the hydrogen plant or oil recovery field in the most efficient way possible. Development of nuclear reactor - process heat technology has intensified the interest in liquid metals as heat transfer media because of their ideal transport properties. Liquid metal heat exchangers are not new in practical applications. An important rational for considering liquid metals is the potential convective heat transfer is among the highest known. Thus explains the interest in liquid metals as coolant for intermediate heat exchange from NGNP. For process heat it is desired that, intermediate heat exchangers (IHX) transfer heat from the NGNP in the most efficient way possible. The production of electric power at higher efficiency via the Brayton Cycle, and hydrogen production, requires both heat at higher temperatures and high effectiveness compact heat exchangers to transfer heat to either the power or process cycle. Compact heat exchangers maximize the heat transfer surface area per volume of heat exchanger; this has the benefit of reducing heat exchanger size and heat losses. High temperature IHX design requirements are governed in part by the allowable temperature drop between the outlet and inlet of the NGNP. In order to improve the characteristics of heat transfer, liquid metal phase change heat exchangers may be more effective and efficient. This paper explores the overall heat transfer characteristics and pressure drop of the phase change heat exchanger with Na as the heat exchanger coolant. In order to design a very efficient and effective heat exchanger one must optimize the design such that we have a high heat transfer and a lower pressure drop, but there is always a trade-off between them. Based on NGNP operational parameters, a heat exchanger analysis with the sodium phase change will be presented to show that the heat exchanger has the potential for highly effective heat transfer, within a small volume at reasonable cost.

  14. Composite heat damage assessment

    SciTech Connect (OSTI)

    Janke, C.J.; Wachter, E.A. [Oak Ridge National Lab., TN (United States); Philpot, H.E. [Oak Ridge K-25 Site, TN (United States); Powell, G.L. [Oak Ridge Y-12 Plant, TN (United States)

    1993-12-31T23:59:59.000Z

    The effects of heat damage were determined on the residual mechanical, physical, and chemical properties of IM6/3501-6 laminates, and potential nondestructive techniques to detect and assess material heat damage were evaluated. About one thousand preconditioned specimens were exposed to elevated temperatures, then cooled to room temperature and tested in compression, flexure, interlaminar shear, shore-D hardness, weight loss, and change in thickness. Specimens experienced significant and irreversible reduction in their residual properties when exposed to temperatures exceeding the material upper service temperature of this material (350{degrees}F). The Diffuse Reflectance Infrared Fourier Transform and Laser-Pumped Fluorescence techniques were found to be capable of rapid, in-service, nondestructive detection and quantitation of heat damage in IM6/3501- 6. These techniques also have the potential applicability to detect and assess heat damage effects in other polymer matrix composites.

  15. Mechanical Compression Heat Pumps 

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    1986-01-01T23:59:59.000Z

    to develop, design and test compressors built to meet the needs of the mechanically demanding industrial heat pump applications which often require high compression ratios and temperatures in excess of 200 degrees F. This paper will review the theoretical...

  16. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    e l Atmosphere ceiling, back panel roof, exposed roof insideSAN DIEGO Photovoltaic Roof Heat Flux A Thesis submitted i no n Convection Exposed Roof Temperature Seasonal Temperature

  17. Photovoltaic roof heat flux

    E-Print Network [OSTI]

    Samady, Mezhgan Frishta

    2011-01-01T23:59:59.000Z

    under the offset unit's solar panel, the hf formula (16) wasdrop below the angle unit's solar panel at night time. D u rfor both the units, the solar panel covered roof was a heat

  18. Passive solar heating analysis

    SciTech Connect (OSTI)

    Balcomb, J.D.; Jones, R.W.; Mc Farland, R.D.; Wray, W.O.

    1984-01-01T23:59:59.000Z

    This book discusses about the design of solar heating systems. The terms and symbols are clearly defined. Step-by-step procedures are indicated. Worked examples are given with tables, graphs, appendixes.

  19. Mechanical Compression Heat Pumps

    E-Print Network [OSTI]

    Apaloo, T. L.; Kawamura, K.; Matsuda, J.

    dampened because there is a current abundance of the basic sources of industrial energy (namely oil and natural gas). Meanwhile, Mycom used the window of the current opportunities to develop, design and test compressors built to meet the needs... requirements of the compressors which constitute the heart and soul of the system. It will also provide a quick survey of the available types of compressors for heat pumping and some of the industrial processes where simultaneous heating and cooling...

  20. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  1. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  2. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1984-01-01T23:59:59.000Z

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  3. Convective heat flow probe

    DOE Patents [OSTI]

    Dunn, J.C.; Hardee, H.C.; Striker, R.P.

    1984-01-09T23:59:59.000Z

    A convective heat flow probe device is provided which measures heat flow and fluid flow magnitude in the formation surrounding a borehole. The probe comprises an elongate housing adapted to be lowered down into the borehole; a plurality of heaters extending along the probe for heating the formation surrounding the borehole; a plurality of temperature sensors arranged around the periphery of the probe for measuring the temperature of the surrounding formation after heating thereof by the heater elements. The temperature sensors and heater elements are mounted in a plurality of separate heater pads which are supported by the housing and which are adapted to be radially expanded into firm engagement with the walls of the borehole. The heat supplied by the heater elements and the temperatures measured by the temperature sensors are monitored and used in providing the desired measurements. The outer peripheral surfaces of the heater pads are configured as segments of a cylinder and form a full cylinder when taken together. A plurality of temperature sensors are located on each pad so as to extend along the length and across the width thereof, with a heating element being located in each pad beneath the temperature sensors. An expansion mechanism driven by a clamping motor provides expansion and retraction of the heater pads and expandable packet-type seals are provided along the probe above and below the heater pads.

  4. Overheating in Hot Water- and Steam-Heated Multifamily Buildings

    SciTech Connect (OSTI)

    Dentz, J.; Varshney, K.; Henderson, H.

    2013-10-01T23:59:59.000Z

    Apartment temperature data have been collected from the archives of companies that provide energy management systems (EMS) to multifamily buildings in the Northeast U.S. The data have been analyzed from more than 100 apartments in eighteen buildings where EMS systems were already installed to quantify the degree of overheating. This research attempts to answer the question, 'What is the magnitude of apartment overheating in multifamily buildings with central hot water or steam heat?' This report provides valuable information to researchers, utility program managers and building owners interested in controlling heating energy waste and improving resident comfort. Apartment temperature data were analyzed for deviation from a 70 degrees F desired setpoint and for variation by heating system type, apartment floor level and ambient conditions. The data shows that overheating is significant in these multifamily buildings with both hot water and steam heating systems.

  5. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P

    2013-12-10T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  6. Solar air heating system for combined DHW and space heating

    E-Print Network [OSTI]

    Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren Østergaard Jensen

  7. Heat exchanger device and method for heat removal or transfer

    DOE Patents [OSTI]

    Koplow, Jeffrey P. (San Ramon, CA)

    2012-07-24T23:59:59.000Z

    Systems and methods for a forced-convection heat exchanger are provided. In one embodiment, heat is transferred to or from a thermal load in thermal contact with a heat conducting structure, across a narrow air gap, to a rotating heat transfer structure immersed in a surrounding medium such as air.

  8. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer) which employs a natural gas fired Stirling engine to drive a Rankine cycle vapor compressor is presently by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  9. Waste Heat Recovery Using a Circulating Heat Medium Loop

    E-Print Network [OSTI]

    Manning, E., Jr.

    1981-01-01T23:59:59.000Z

    by a circulating heat medium loop where waste heat is recovered for useful purposes. The heat medium chosen is turbine fuel. It is pumped around the refinery to pick up heat at the crude distilling unit, the hydrocracker, the catalytic cracker...

  10. Zero Energy Communities with Central Solar Plants using Liquid Desiccants and Local Storage: Preprint

    SciTech Connect (OSTI)

    Burch, J.; Woods, J.; Kozubal, E.; Boranian, A.

    2012-08-01T23:59:59.000Z

    The zero energy community considered here consists of tens to tens-of-thousands of residences coupled to a central solar plant that produces all the community's electrical and thermal needs. A distribution network carries fluids to meet the heating and cooling loads. Large central solar systems can significantly reduce cost of energy vs. single family systems, and they enable economical seasonal heat storage. However, the thermal distribution system is costly. Conventional district heating/cooling systems use a water/glycol solution to deliver sensible energy. Piping is sized to meet the peak instantaneous load. A new district system introduced here differs in two key ways: (i) it continuously distributes a hot liquid desiccant (LD) solution to LD-based heating and cooling equipment in each home; and (ii) it uses central and local storage of both LD and heat to reduce flow rates to meet average loads. Results for piping sizes in conventional and LD thermal communities show that the LD zero energy community reduces distribution piping diameters meeting heating loads by {approx}5X and meeting cooling loads by {approx}8X for cooling, depending on climate.

  11. Centralized digital control of accelerators

    SciTech Connect (OSTI)

    Melen, R.E.

    1983-09-01T23:59:59.000Z

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  12. Central Valley Salmon: A Perspective on Chinook and Steelhead in the Central Valley of California

    E-Print Network [OSTI]

    Williams, John G.

    2006-01-01T23:59:59.000Z

    effects of environmental heat stress on heat-shock mRNA andor other stresses induces synthesis of small "heat shock "

  13. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31T23:59:59.000Z

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  14. Toolbox Safety Talk Heat Stress

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Heat Stress Environmental Health & Safety Facilities Safety & Health Section for inducing heat stress. When the body is unable to cool itself by sweating, several heat-induced illnesses Stress · Know signs/symptoms of heat-related illnesses; monitor yourself and coworkers. · Block out

  15. temperature heat pumps applied to

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    losses (waste heat) 250-300°C......1100°C ~ 100 TWh/year Low temperature thermal losses (waste heat) 25°C;Waste heat recovery (1) In a decreasing energetic interest order Achema 2012 Frankfurt June 21th 2012>>Twaste #12;Waste heat recovery (2) Achema 2012 Frankfurt June 21th 2012 There is no interesting thermal

  16. Freestall Facilities in Central Texas

    E-Print Network [OSTI]

    Stokes, Sandra R.; Gamroth, Mike

    1999-06-04T23:59:59.000Z

    surveyed recently for infor- L-5311 5-99 Freestall Dairy Facilities in Central Texas Sandy Stokes and Mike Gamroth* *Extension Dairy Specialist, Texas A&M University System, and Extension Dairy Specialist, Oregon State University. Freestall housing...

  17. CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY

    SciTech Connect (OSTI)

    BERGMAN, T. B.; STEFANSKI, L. D.; SEELEY, P. N.; ZINSLI, L. C.; CUSACK, L. J.

    2012-09-19T23:59:59.000Z

    THE CENTRAL PLATEAU REMEDIATION OPTIMIZATION STUDY WAS CONDUCTED TO DEVELOP AN OPTIMAL SEQUENCE OF REMEDIATION ACTIVITIES IMPLEMENTING THE CERCLA DECISION ON THE CENTRAL PLATEAU. THE STUDY DEFINES A SEQUENCE OF ACTIVITIES THAT RESULT IN AN EFFECTIVE USE OF RESOURCES FROM A STRATEGIC PERSPECTIVE WHEN CONSIDERING EQUIPMENT PROCUREMENT AND STAGING, WORKFORCE MOBILIZATION/DEMOBILIZATION, WORKFORCE LEVELING, WORKFORCE SKILL-MIX, AND OTHER REMEDIATION/DISPOSITION PROJECT EXECUTION PARAMETERS.

  18. Heat distribution ceramic processing method

    DOE Patents [OSTI]

    Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

  19. Heat and Power Systems Design

    E-Print Network [OSTI]

    Spriggs, H. D.; Shah, J. V.

    HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

  20. Overshooting by differential heating

    E-Print Network [OSTI]

    Andrássy, R

    2015-01-01T23:59:59.000Z

    On the long nuclear time scale of stellar main-sequence evolution, even weak mixing processes can become relevant for redistributing chemical species in a star. We investigate a process of "differential heating," which occurs when a temperature fluctuation propagates by radiative diffusion from the boundary of a convection zone into the adjacent radiative zone. The resulting perturbation of the hydrostatic equilibrium causes a flow that extends some distance from the convection zone. We study a simplified differential-heating problem with a static temperature fluctuation imposed on a solid boundary. The astrophysically relevant limit of a high Reynolds number and a low P\\'eclet number (high thermal diffusivity) turns out to be interestingly non-intuitive. We derive a set of scaling relations for the stationary differential heating flow. A numerical method adapted to a high dynamic range in flow amplitude needed to detect weak flows is presented. Our two-dimensional simulations show that the flow reaches a sta...

  1. Air heating system

    DOE Patents [OSTI]

    Primeau, John J. (19800 Seminole Rd., Euclid, OH 44117)

    1983-03-01T23:59:59.000Z

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  2. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  3. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  4. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01T23:59:59.000Z

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  5. Covered Product Category: Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioners Covered Product Category: Residential Central Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for residential...

  6. Heat-transfer coefficients in agitated vessels. Latent heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States)] [Ashland Chemical Co., Columbus, OH (United States)

    1996-03-01T23:59:59.000Z

    Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.

  7. Optimisation du rseau de transfert thermique des centrales solaires convertisseurs hliothermiques distribus.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    This study is concerned with power plants based on a distributed network of collectors to convert solar energy into heat ; the fluid transport network, between collectors and the central production unit collectors of the THEK type, installed on a site with meteorological conditions similar to those

  8. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1992-01-01T23:59:59.000Z

    A heat recovery system with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature.

  9. Wastewater heat recovery apparatus

    DOE Patents [OSTI]

    Kronberg, J.W.

    1992-09-01T23:59:59.000Z

    A heat recovery system is described with a heat exchanger and a mixing valve. A drain trap includes a heat exchanger with an inner coiled tube, baffle plate, wastewater inlet, wastewater outlet, cold water inlet, and preheated water outlet. Wastewater enters the drain trap through the wastewater inlet, is slowed and spread by the baffle plate, and passes downward to the wastewater outlet. Cold water enters the inner tube through the cold water inlet and flows generally upward, taking on heat from the wastewater. This preheated water is fed to the mixing valve, which includes a flexible yoke to which are attached an adjustable steel rod, two stationary zinc rods, and a pivoting arm. The free end of the arm forms a pad which rests against a valve seat. The rods and pivoting arm expand or contract as the temperature of the incoming preheated water changes. The zinc rods expand more than the steel rod, flexing the yoke and rotating the pivoting arm. The pad moves towards the valve seat as the temperature of the preheated water rises, and away as the temperature falls, admitting a variable amount of hot water to maintain a nearly constant average process water temperature. 6 figs.

  10. Heat exchange assembly

    DOE Patents [OSTI]

    Lowenstein, Andrew; Sibilia, Marc; Miller, Jeffrey; Tonon, Thomas S.

    2004-06-08T23:59:59.000Z

    A heat exchange assembly comprises a plurality of plates disposed in a spaced-apart arrangement, each of the plurality of plates includes a plurality of passages extending internally from a first end to a second end for directing flow of a heat transfer fluid in a first plane, a plurality of first end-piece members equaling the number of plates and a plurality of second end-piece members also equaling the number of plates, each of the first and second end-piece members including a recessed region adapted to fluidly connect and couple with the first and second ends of the plate, respectively, and further adapted to be affixed to respective adjacent first and second end-piece members in a stacked formation, and each of the first and second end-piece members further including at least one cavity for enabling entry of the heat transfer fluid into the plate, exit of the heat transfer fluid from the plate, or 180.degree. turning of the fluid within the plate to create a serpentine-like fluid flow path between points of entry and exit of the fluid, and at least two fluid conduits extending through the stacked plurality of first and second end-piece members for providing first fluid connections between the parallel fluid entry points of adjacent plates and a fluid supply inlet, and second fluid connections between the parallel fluid exit points of adjacent plates and a fluid discharge outlet so that the heat transfer fluid travels in parallel paths through each respective plate.

  11. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression 

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    of each approach as a function of the source and sink temperatures and magnitude of heat flow. Generic heat pumps and vapor recompression designs are explained, costed, estimated in performance, and evaluated as a function of the economic parameters...

  12. Modeling of Heat Transfer in Geothermal Heat Exchangers 

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    Ground-coupled heat pump (GCHP) systems have been gaining increasing popularity for space conditioning in residential and commercial buildings. The geothermal heat exchanger (GHE) is devised for extraction or injection of thermal energy from...

  13. HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    Session on Heat Transfer in Nuclear Waste Disposal, C'.heat transfer processes associated with underground nuclear wasteheat transfer and related processes in an un­ derground environment similar to that expected in a mined nuclear waste

  14. TRANSPARENT HEAT MIRRORS FOR PASSIVE SOLAR HEATING APPLICATIONS

    E-Print Network [OSTI]

    Selkowitz, S.

    2011-01-01T23:59:59.000Z

    heating purposes. BACKGROUND The reduction of heat transfer rates by the use of thermal infraredheating applications should become available on the marketplace. Due to their high reflectivity to thermal infrared

  15. Low Level Heat Recovery Through Heat Pumps and Vapor Recompression

    E-Print Network [OSTI]

    Gilbert, J.

    1980-01-01T23:59:59.000Z

    The intent of this paper is to examine the methods and economics of recovering low level heat through heat pumps and vapor recompression. Actual commercially available equipment is considered to determine the near-term and future economic viability...

  16. Heat Transfer Derivation of differential equations for heat transfer conduction

    E-Print Network [OSTI]

    Veress, Alexander

    ) or kW *h or Btu. U is the change in stored energy, in units of kW *h (kWh) or Btu. qx is the heat conducted (heat flux) into the control volume at surface edge x, in units of kW/m2 or Btu/(h-ft2). qx volume is positive), in kW/m3 or Btu/(h-ft3) (a heat sink, heat drawn out of the volume, is negative

  17. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, P.R.; McLennan, G.A.

    1984-08-30T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  18. Fast reactor power plant design having heat pipe heat exchanger

    DOE Patents [OSTI]

    Huebotter, Paul R. (Western Springs, IL); McLennan, George A. (Downers Grove, IL)

    1985-01-01T23:59:59.000Z

    The invention relates to a pool-type fission reactor power plant design having a reactor vessel containing a primary coolant (such as liquid sodium), and a steam expansion device powered by a pressurized water/steam coolant system. Heat pipe means are disposed between the primary and water coolants to complete the heat transfer therebetween. The heat pipes are vertically oriented, penetrating the reactor deck and being directly submerged in the primary coolant. A U-tube or line passes through each heat pipe, extended over most of the length of the heat pipe and having its walls spaced from but closely proximate to and generally facing the surrounding walls of the heat pipe. The water/steam coolant loop includes each U-tube and the steam expansion device. A heat transfer medium (such as mercury) fills each of the heat pipes. The thermal energy from the primary coolant is transferred to the water coolant by isothermal evaporation-condensation of the heat transfer medium between the heat pipe and U-tube walls, the heat transfer medium moving within the heat pipe primarily transversely between these walls.

  19. Design of Heat Exchanger for Heat Recovery in CHP Systems

    E-Print Network [OSTI]

    Kozman, T. A.; Kaur, B.; Lee, J.

    with a heat exchanger to work as a Combined Heat and Power system for the University which will supplement the chilled water supply and electricity. The design constraints of the heat recovery unit are the specifications of the turbine and the chiller...

  20. Heat-transfer coefficients in agitated vessels. Sensible heat models

    SciTech Connect (OSTI)

    Kumpinsky, E. [Ashland Chemical Co., Columbus, OH (United States). Research and Development Dept.

    1995-12-01T23:59:59.000Z

    Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.

  1. Using the central VAX cluster at ANL

    SciTech Connect (OSTI)

    Caruthers, C.M.; Vote, S.L. [eds.; Lifka, D.A.; Raffenetti, R.C.

    1992-08-01T23:59:59.000Z

    This report is a manual that discusses the following topics on the Central Vax Cluster at ANL: What the Central Vax Cluster is; how the Vax Cluster works; operational policies; getting started; using tapes; printing on the Vax Cluster; developing programs in VMS; using the X window system on the Central Vax Cluster; and using Central Vax Cluster file sharing services.

  2. Central Facility Benefits from Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C oCNMSStaff Highlight NinaCentersCentralCentral2

  3. Heat Recovery from Coal Gasifiers

    E-Print Network [OSTI]

    Wen, H.; Lou, S. C.

    1981-01-01T23:59:59.000Z

    This paper deals with heat recovery from pressurized entrained and fixed bed coal gasifiers for steam generation. High temperature waste heat, from slagging entrained flow coal gasifier, can be recovered effectively in a series of radiant...

  4. Heat Pumps - Theory and Applications

    E-Print Network [OSTI]

    Altin, M.

    1982-01-01T23:59:59.000Z

    compressors (heat pumps) with actual applications in Monsanto. Guidelines for possible application areas are drawn from the analysis, and conclusions are drawn both about the usefulness of exergy analysis and about the heat pump application areas....

  5. Residential Solar Water Heating Rebates

    Broader source: Energy.gov [DOE]

    New Hampshire offers a rebate for residential solar water-heating systems and solar space-heating systems. The rebate is equal to $1,500 for systems with an annual estimated output of 5.5 MMBTU to...

  6. Geothermal Heat Pump Grant Program

    Broader source: Energy.gov [DOE]

    The Maryland Energy Administration (MEA) offers rebates of $3,000 for residential geothermal heat pump systems and up to $4,500 for non-residential geothermal heat pump systems. The residential...

  7. Heat Pipes: An Industrial Application

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  8. Challenges in Industrial Heat Recovery

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  9. Faculty Positions Heat Transfer and

    E-Print Network [OSTI]

    Faculty Positions Heat Transfer and Thermal/Energy Sciences Naval Postgraduate School Monterey-track faculty position at the assistant professor level in the areas of Heat Transfer and Thermal/Fluid Sciences

  10. Heat Pipes: An Industrial Application 

    E-Print Network [OSTI]

    Murray, F.

    1984-01-01T23:59:59.000Z

    This paper reviews the basics of heat pipe exchangers. Included are how they are constructed, how they operate, where they have application, and various aspects of evaluating a potential application. After discussing the technical aspects of heat...

  11. Challenges in Industrial Heat Recovery 

    E-Print Network [OSTI]

    Dafft, T.

    2007-01-01T23:59:59.000Z

    This presentation will address several completed and working projects involving waste heat recovery in a chemical plant. Specific examples will be shown and some of the challenges to successful implementation and operation of heat recovery projects...

  12. Low Level Heat Recovery Technology

    E-Print Network [OSTI]

    O'Brien, W. J.

    1982-01-01T23:59:59.000Z

    level heat recovery technology. This paper discusses heat distribution systems, latest developments in absorption refrigeration and organic Rankine cycles, and pressure, minimization possibilities. The relative merits and economics of the various...

  13. Cluster Heating by Viscous Dissipation of Sound Waves

    E-Print Network [OSTI]

    Mateusz Ruszkowski; Marcus Bruggen; Mitchell C. Begelman

    2004-04-23T23:59:59.000Z

    We simulate the effects of viscous dissipation of waves that are generated by AGN activity in clusters of galaxies. We demonstrate that the amount of viscous heating associated with the dissipation of these waves can offset radiative cooling rates in cooling flow clusters of galaxies. This heating mechanism leads to spatially distributed and approximately symmetrical dissipation. The heating waves reach a given distance from the cluster center on a timescale shorter than the cooling time. This means that this heating mechanism has the potential of quenching cooling flows in a quasi-stable fashion. Moreover, the heating is gentle as no strong shocks are present in the simulations. We first investigated whether a single continuous episode of AGN activity can lead to adequate dissipation to balance cooling rates. These simulations demonstrated that, whereas secondary waves generated by the interaction of the rising bubble with the intracluster medium are clearly present, viscous heating associated with the dissipation of these waves is insufficient to balance radiative cooling. It is only when the central source is intermittent that the viscous dissipation of waves associated with subsequent episodes of activity can offset cooling. This suggests that the ripples observed in the Perseus cluster can be interpreted as being due to the AGN duty cycle, i.e., they trace AGN activity history. The simulations were performed using the PPM adaptive mesh refinement code FLASH in two dimensions.

  14. Feedback Heating by Cosmic Rays in Clusters of Galaxies

    E-Print Network [OSTI]

    Fulai Guo; S. Peng OH

    2007-11-07T23:59:59.000Z

    Recent observations show that the cooling flows in the central regions of galaxy clusters are highly suppressed. Observed AGN-induced cavities/bubbles are a leading candidate for suppressing cooling, usually via some form of mechanical heating. At the same time, observed X-ray cavities and synchrotron emission point toward a significant non-thermal particle population. Previous studies have focused on the dynamical effects of cosmic-ray pressure support, but none have built successful models in which cosmic-ray heating is significant. Here we investigate a new model of AGN heating, in which the intracluster medium is efficiently heated by cosmic-rays, which are injected into the ICM through diffusion or the shredding of the bubbles by Rayleigh-Taylor or Kelvin-Helmholtz instabilities. We include thermal conduction as well. Using numerical simulations, we show that the cooling catastrophe is efficiently suppressed. The cluster quickly relaxes to a quasi-equilibrium state with a highly reduced accretion rate and temperature and density profiles which match observations. Unlike the conduction-only case, no fine-tuning of the Spitzer conduction suppression factor f is needed. The cosmic ray pressure, P_c/P_g heating is a very attractive alternative to mechanical heating, and may become particularly compelling if GLAST detects the gamma-ray signature of cosmic-rays in clusters.

  15. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    for the solar-heated hot water. This heater can be seen inwater (solar heated, boosted, or heated entirely in the auxiliary heater)

  16. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heating and cooling systems covering a wide range ofpractical heating and cooling system configurations andexperimental heating and cooling system, the main purpose of

  17. Research & Development Roadmap: Emerging Water Heating Technologies...

    Energy Savers [EERE]

    Emerging Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating...

  18. HEAT AND MOISTURE TRANSFER THROUGH CLOTHING

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.between convective heat transfer and mass transferConvective and radiative heat transfer coefficients for

  19. Heat and moisture transfer through clothing

    E-Print Network [OSTI]

    Voelker, Conrad; Hoffmann, Sabine; Kornadt, Oliver; Arens, Edward; Zhang, Hui; Huizenga, Charlie

    2009-01-01T23:59:59.000Z

    R. C. Eberhart (ed), Heat transfer in medicine and biology.Convective and radiative heat transfer coefficients forbetween convective heat transfer and mass transfer

  20. Heat Waves, Global Warming, and Mitigation

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01T23:59:59.000Z

    Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

  1. Heat transfer probe

    DOE Patents [OSTI]

    Frank, Jeffrey I.; Rosengart, Axel J.; Kasza, Ken; Yu, Wenhua; Chien, Tai-Hsin; Franklin, Jeff

    2006-10-10T23:59:59.000Z

    Apparatuses, systems, methods, and computer code for, among other things, monitoring the health of samples such as the brain while providing local cooling or heating. A representative device is a heat transfer probe, which includes an inner channel, a tip, a concentric outer channel, a first temperature sensor, and a second temperature sensor. The inner channel is configured to transport working fluid from an inner inlet to an inner outlet. The tip is configured to receive at least a portion of the working fluid from the inner outlet. The concentric outer channel is configured to transport the working fluid from the inner outlet to an outer outlet. The first temperature sensor is coupled to the tip, and the second temperature sensor spaced apart from the first temperature sensor.

  2. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-04-22T23:59:59.000Z

    Quantum physics revolutionized classical disciplines of mechanics, statistical physics, and electrodynamics. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to quantum regimes. Development of quantum heat engines (QHEs) requires emerging field of quantum thermodynamics. Studies of QHEs debate whether quantum coherence can be used as a resource. We explore an alternative where it can function as an effective catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work output becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up QHE, our result is a fundamental difference of a quantum fuel from its classical counterpart.

  3. Optical heat flux gauge

    DOE Patents [OSTI]

    Noel, B.W.; Borella, H.M.; Cates, M.R.; Turley, W.D.; MacArthur, C.D.; Cala, G.C.

    1991-04-09T23:59:59.000Z

    A heat flux gauge is disclosed comprising first and second thermographic phosphor layers separated by a layer of a thermal insulator, wherein each thermographic layer comprises a plurality of respective thermographic sensors in a juxtaposed relationship with respect to each other. The gauge may be mounted on a surface with the first thermographic phosphor in contact with the surface. A light source is directed at the gauge, causing the phosphors to luminesce. The luminescence produced by the phosphors is collected and its spectra analyzed in order to determine the heat flux on the surface. First and second phosphor layers must be different materials to assure that the spectral lines collected will be distinguishable. 9 figures.

  4. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-08-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  5. Heat and mass transfer considerations in advanced heat pump systems

    SciTech Connect (OSTI)

    Panchal, C.B.; Bell, K.J.

    1992-01-01T23:59:59.000Z

    Advanced heat-pump cycles are being investigated for various applications. However, the working media and associated thermal design aspects require new concepts for maintaining high thermal effectiveness and phase equilibrium for achieving maximum possible thermodynamic advantages. In the present study, the heat- and mass-transfer processes in two heat-pump systems -- those based on absorption processes, and those using refrigerant mixtures -- are analyzed. The major technical barriers for achieving the ideal performance predicted by thermodynamic analysis are identified. The analysis provides general guidelines for the development of heat- and mass-transfer equipment for advanced heat-pump systems.

  6. Characterization of industrial process waste heat and input heat streams

    SciTech Connect (OSTI)

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01T23:59:59.000Z

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  7. Heat Pump Strategies and Payoffs 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01T23:59:59.000Z

    After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

  8. Industrial Heat Pump Case Study

    E-Print Network [OSTI]

    Wagner, J. R.; Brush, F. C.

    with operating the evaporator. The open-cycle heat pump design uses an electrically driven centrifugal compressor to recover the latent heat of the water vapor generated by the evaporator. (Steam was the original heat source but is now only needed for start...

  9. Heat Pump Strategies and Payoffs

    E-Print Network [OSTI]

    Gilbert, J. S.

    1982-01-01T23:59:59.000Z

    After evaluating numerous waste heat sources and heat pump designs for energy recovery, we have become aware that a great deal of confusion exists about the economics of heat pumps. The purpose of this article is to present some simple formulas...

  10. Energy 101: Geothermal Heat Pumps

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  11. Energy 101: Geothermal Heat Pumps

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    An energy-efficient heating and cooling alternative, the geothermal heat pump system moves heat from the ground to a building (or from a building to the ground) through a series of flexible pipe "loops" containing water. This edition of Energy 101 explores the benefits Geothermal and the science behind how it all comes together.

  12. Heating and cooling in the Perseus cluster core

    E-Print Network [OSTI]

    A. C. Fabian; J. S. Sanders

    2006-12-15T23:59:59.000Z

    It is well known that the radiative cooling time of the hot X-ray emitting gas in the cores of most clusters of galaxies is less than 10^10 yr. In many clusters the gas temperature also drops towards the centre. If we draw a causal connection between these two properties then we infer the presence of a cooling flow onto the central galaxy. High spectral resolution XMM-Newton data and high spatial resolution Chandra data, show however a lack of X-ray emitting gas below about one third of the cluster virial temperature. The explanation is that some form of heating balances cooling. The smoothness and similarity of the cooling time profiles and the flatness of the required heating profiles all indicate that we must seek a relatively gentle, quasi-continuous (on timescales heat source. The likely such source is the central black hole and its powerful jets which create bubble-like cavities in the inner hot gas. We briefly review the general heating and cooling statistics in an X-ray bright sample of cluster before we discuss the detailed situation in the Perseus cluster, the X-ray brightest cluster in the Sky.

  13. Industrial Heat Recovery - 1982

    E-Print Network [OSTI]

    Csathy, D.

    1982-01-01T23:59:59.000Z

    like: "Vertical, natural circulation boilers are intrinsically mbre reliable than horizontal, forced circula tion boilers.",4 and " it will be seen that horizontal tubes have much lower heat fluxes at burnout than do vertical ones, though...-steam density difference dia gram (Figure 1) has been presented repeat edly in order to indicate a significant density difference between the two phases (even close to the critical pressure) which induces natural circulation. However, this diagra...

  14. Nuclear reactor fuel element having improved heat transfer

    DOE Patents [OSTI]

    Garnier, J.E.; Begej, S.; Williford, R.E.; Christensen, J.A.

    1982-03-03T23:59:59.000Z

    A nuclear reactor fuel element having improved heat transfer between fuel material and cladding is described. The element consists of an outer cladding tube divided into an upper fuel section containing a central core of fissionable or mixed fissionable and fertile fuel material, slightly smaller in diameter than the inner surface of the cladding tube and a small lower accumulator section, the cladding tube being which is filled with a low molecular weight gas to transfer heat from fuel material to cladding during irradiation. A plurality of essentially vertical grooves in the fuel section extend downward and communicate with the accumulator section. The radial depth of the grooves is sufficient to provide a thermal gradient between the hot fuel surface and the relatively cooler cladding surface to allow thermal segregation to take place between the low molecular weight heat transfer gas and high molecular weight fission product gases produced by the fuel material during irradiation.

  15. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    SciTech Connect (OSTI)

    Josh A. Salmond

    2009-08-07T23:59:59.000Z

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  16. High-gravity central stars

    E-Print Network [OSTI]

    Thomas Rauch

    2006-07-11T23:59:59.000Z

    NLTE spectral analyses of high-gravity central stars by means of state-of-the-art model atmosphere techniques provide information about the precursor AGB stars. The hydrogen-deficient post-AGB stars allow investigations on the intershell matter which is apparently exhibited at the stellar surface. We summarize recent results from imaging, spectroscopy, and spectropolarimetry.

  17. Innovative Miniaturized Heat Pumps for Buildings: Modular Thermal Hub for Building Heating, Cooling and Water Heating

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Georgia Tech is using innovative components and system design to develop a new type of absorption heat pump. Georgia Tech’s new heat pumps are energy efficient, use refrigerants that do not emit greenhouse gases, and can run on energy from combustion, waste heat, or solar energy. Georgia Tech is leveraging enhancements to heat and mass transfer technology possible in microscale passages and removing hurdles to the use of heat-activated heat pumps that have existed for more than a century. Use of microscale passages allows for miniaturization of systems that can be packed as monolithic full-system packages or discrete, distributed components enabling integration into a variety of residential and commercial buildings. Compared to conventional heat pumps, Georgia Tech’s design innovations will create an absorption heat pump that is much smaller, has higher energy efficiency, and can also be mass produced at a lower cost and assembly time.

  18. The Difficulty of the Heating of Cluster Cooling Flows by Sound Waves and Weak Shocks

    E-Print Network [OSTI]

    Yutaka Fujita; Takeru Ken Suzuki

    2006-10-23T23:59:59.000Z

    We investigate heating of the cool core of a galaxy cluster through the dissipation of sound waves and weak shocks excited by the activities of the central active galactic nucleus (AGN). Using a weak shock theory, we show that this heating mechanism alone cannot reproduce observed temperature and density profiles of a cluster, because the dissipation length of the waves is much smaller than the size of the core and thus the wave energy is not distributed to the whole core.

  19. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2013-10-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. of Cambridge, Massachusetts, to implement and study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating control systems in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded.

  20. Absorption-heat-pump system

    DOE Patents [OSTI]

    Grossman, G.; Perez-Blanco, H.

    1983-06-16T23:59:59.000Z

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  1. The Temperature of Interstellar Clouds from Turbulent Heating

    E-Print Network [OSTI]

    Liubin Pan; Paolo Padoan

    2008-10-22T23:59:59.000Z

    To evaluate the effect of turbulent heating in the thermal balance of interstellar clouds, we develop an extension of the log-Poisson intermittency model to supersonic turbulence. The model depends on a parameter, d, interpreted as the dimension of the most dissipative structures. By comparing the model with the probability distribution of the turbulent dissipation rate in a simulation of supersonic and super-Alfvenic turbulence, we find a best-fit value of d=1.64. We apply this intermittency model to the computation of the mass-weighted probability distribution of the gas temperature of molecular clouds, high-mass star-forming cores, and cold diffuse HI clouds. Our main results are: i) The mean gas temperature in molecular clouds can be explained as the effect of turbulent heating alone, while cosmic ray heating may dominate only in regions where the turbulent heating is low; ii) The mean gas temperature in high-mass star-forming cores with typical FWHM of ~6 km/s (corresponding to a 1D rms velocity of 2.5 km/s) may be completely controlled by turbulent heating, which predicts a mean value of approximately 36 K, two to three times larger than the mean gas temperature in the absence of turbulent heating; iii) The intermittency of the turbulent heating can generate enough hot regions in cold diffuse HI clouds to explain the observed CH+ abundance, if the rms velocity on a scale of 1 pc is at least 3 km/s, in agreement with previous results based on incompressible turbulence. Because of its importance in the thermal balance of molecular clouds and high-mass star-forming cores, the process of turbulent heating may be central in setting the characteristic stellar mass and in regulating molecular chemical reactions.

  2. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  3. Performance Optimization of an Irreversible Heat Pump with Variable-temperature Heat Reservoirs 

    E-Print Network [OSTI]

    Huang, Y.; Sun, D.

    2006-01-01T23:59:59.000Z

    An irreversible cycle model of a heat pump operating between two variable-temperature heat reservoirs is established and used to analyze the performance of the heat pump affected by heat resistances, heat leakage and internal dissipation...

  4. Development of a Heat Transfer Model for the Integrated Facade Heating

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  5. Development of a Heat Transfer Model for the Integrated Facade Heating 

    E-Print Network [OSTI]

    Gong, X.; Archer, D. H.; Claridge, D. E.

    2007-01-01T23:59:59.000Z

    the heat transfer process of facade heating (mullion radiators) in a pilot research project in Pittsburgh, PA. The heat transfer model for facade heating is developed and verified by measured data. The comparison shows that the heat transfer model predicts...

  6. CONTROL SYSTEM FOR SOLAR HEATING and COOLING

    E-Print Network [OSTI]

    Dols, C.

    2010-01-01T23:59:59.000Z

    solar heated, boosted, or heated entirely in the auxiliary heater)for the solar-heated hot water. This heater can be seen insolar heating and cooling system, showing plumbing runs containing solenoid valves, auxiliary heater (

  7. Visual Simulation of Heat Shimmering and Mirage

    E-Print Network [OSTI]

    Mueller, Klaus

    and the surrounding air. We introduce a heat transfer model between the heat source objects and the ambient flow the heat sources to the ambient flow. Although heat transfer modeling has been used before in computer

  8. Heat Supply Who What Where and -Why

    E-Print Network [OSTI]

    Columbia University

    ................................................. 6 District-heating (DH) supply: key figures .............................. 6 What is biomass Geothermics ..........................................................................11 Waste for heat supplyHeat Supply in Denmark Who What Where and - Why #12;Title: Heat Supply in Denmark - Who What Where

  9. absorption heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drive compressor heat pump; (3) absorption heat pump; (4) high temperature heat powered compressor heat pump; (5) reverse absorption heat... Erickson, D. C. 1983-01-01 26...

  10. apparent molal heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: efficient use of renewable energy in district heating individual heat pumps solar heating and wood pellets individual heat pumps, solar heating and...

  11. apparent molar heat: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: efficient use of renewable energy in district heating individual heat pumps solar heating and wood pellets individual heat pumps, solar heating and...

  12. North Village Ground Source Heat Pumps

    Broader source: Energy.gov [DOE]

    Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

  13. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  14. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  15. An Evaluation of the Effects of Refrigerant Charge on a Residential Central Air Conditioner with Orifice Expansion 

    E-Print Network [OSTI]

    O'Neal, D. L.; Ramsey, C. J.; Farzad, M.

    1989-01-01T23:59:59.000Z

    conditioning and heat pump performance testing. Dew point and room temperatures can be maintained within +/-0.2 F of the set point. The room temperature was controlled by a Texas Instruments TI-550 controller which was integrated into the control system... Air Conditioner with Capillary Tube Expansion", ESL/CON/88-1, Energy Systems Laboratory, Texas A&M University, July 1988. 2. Department of Energy, "Test Procedures for Central Air- Conditioners, Including Heat Pumps", Federal Register, pp. 76700...

  16. Solar heated rotary kiln

    DOE Patents [OSTI]

    Shell, Pamela K. (Tracy, CA)

    1984-01-01T23:59:59.000Z

    A solar heated rotary kiln utilized for decomposition of materials, such as zinc sulfate. The rotary kiln has an open end and is enclosed in a sealed container having a window positioned for directing solar energy into the open end of the kiln. The material to be decomposed is directed through the container into the kiln by a feed tube. The container is also provided with an outlet for exhaust gases and an outlet for spent solids, and rests on a tiltable base. The window may be cooled and kept clear of debris by coolant gases.

  17. Gelling by Heating

    E-Print Network [OSTI]

    Sandalo Roldan-Vargas; Frank Smallenburg; Walter Kob; Francesco Sciortino

    2013-03-11T23:59:59.000Z

    We introduce a simple model, a binary mixture of patchy particles, which has been designed to form a gel upon heating. Due to the specific nature of the particle interactions, notably the number and geometry of the patches as well as their interaction energies, the system is a fluid both at high and at low temperatures, whereas at intermediate temperatures the system forms a solid-like disordered open network structure, i.e. a gel. Using molecular dynamics we investigate the static and dynamic properties of this system.

  18. Heat Transfer Technology

    E-Print Network [OSTI]

    Lefevre, M. R.

    1984-01-01T23:59:59.000Z

    crossflow and counterflow plume. 3) COMBINATION OF HET AND DRY TOWERS When there is not enough water available to provide the makeup for a conventional wet cooling tower, the only solution is to use "DRY" cooling to dissipate part of the heat load. a... 11. The water is cooled first in the DRY section because DRY cooling is much more expensive than WET cooling and this arrangement leads to the smallest DRY tower. It must also be kept in mind that the DRY tower has a physical cooling limit equal...

  19. Combined Heat and Power

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSprings Gets anColoring andCombined Heat

  20. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OFMaterialsAnnual Reports27,ListAtmospheric Heat

  1. Heat Pump Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of EnergyHearingsWater Heating »

  2. Heat Source Lire,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of EnergyHearingsWater Heating

  3. Central Exclusive Production at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, Leszek [Faculty of Physics and Applied Computer Science , AGH - University of Science and Technology, Krakow, (Poland); Guryn, Wlodek [Brookhaven National Laboratory (BNL), Upton, NY (United States); Turnau, Jacek [Institute of Nuclear Physics, Krakow, (Poland)

    2014-11-10T23:59:59.000Z

    The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment’s Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at ps = 200 GeV. The preliminary spectra of two pion and four pion invariant mass reconstructed by STAR TPC in central region of pseudo-rapidity |#17;| < 1, are presented. Near future plans to take data with the current system at center-of-mass energy ps = 200 GeV and plans to upgrade the forward proton tagging sys- tem are presented. Also a possible addition of the Roman Pots to the sPHENIX detector is discussed.

  4. Central Exclusive Production at RHIC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Adamczyk, Leszek; Guryn, Wlodek; Turnau, Jacek

    2014-11-10T23:59:59.000Z

    The present status and future plans of the physics program of Central Exclusive Production (CEP) at RHIC are described. The measurements are based on the detection of the forward protons from the Double Pomeron Exchange (DPE) process in the Roman Pot system and of the recoil system of charged particles from the DPE process measured in the STAR experiment’s Time Projection Chamber (TPC). The data described here were taken using polarized proton-proton collisions at ps = 200 GeV. The preliminary spectra of two pion and four pion invariant mass reconstructed by STAR TPC in central region of pseudo-rapidity |#17;| more »1, are presented. Near future plans to take data with the current system at center-of-mass energy ps = 200 GeV and plans to upgrade the forward proton tagging sys- tem are presented. Also a possible addition of the Roman Pots to the sPHENIX detector is discussed.« less

  5. Heat Pump Markets UK in Europe

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Heat Pump Markets UK in Europe IEA Heat Pump Workshop 13. November 2012 Zoltan Karpathy #12;2 Excellence in Market Intelligence Agenda About BSRIA WMI UK in the European Heat Pump Market Heating BSRIA WMI UK in the European Heat Pump Market Heating Technologies in New and Existing Buildings Hybrid

  6. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  7. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08T23:59:59.000Z

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  8. Heat pump with freeze-up prevention

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX)

    1981-01-01T23:59:59.000Z

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid prevents freeze up of the second heat exchanger by keeping the temperature above the dew point; and, optionally, provides heat for efficient operation.

  9. Cab Heating and Cooling

    SciTech Connect (OSTI)

    Damman, Dennis

    2005-10-31T23:59:59.000Z

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  10. Superradiant Quantum Heat Engine

    E-Print Network [OSTI]

    Ali Ü. C. Hardal; Özgür E. Müstecapl?oglu

    2015-03-12T23:59:59.000Z

    Quantum physics has revolutionized the classical disciplines of mechanics, statistical physics, and electrodynamics. It modernized our society with many advances such as lasers and transistors. One branch of scientific knowledge however seems untouched: thermodynamics. Major motivation behind thermodynamics is to develop efficient heat engines. Technology has a trend to miniaturize engines, reaching to the quantum regimes. Inevitably, development of quantum heat engines (QHEs) requires investigations of thermodynamical principles from quantum mechanical perspective, and motivates the emerging field of quantum thermodynamics. Studies of QHEs debate on whether quantum coherence can be used as a resource. We explore an alternative that quantum coherence can be a catalyst. We propose a QHE which consists of a photon gas inside an optical cavity as the working fluid and quantum coherent atomic clusters as the fuel. Utilizing the superradiance, where a cluster can radiate quadratically faster than a single atom, we show that the work capability of the QHE becomes proportional to the square of the number of the atoms. In addition to practical value of cranking up a QHE, our results reveal a fundamental difference of a quantum fuel from its classical counterpart.

  11. A state, characteristics, and perspectives of the Czech combined heating and power (CHP) systems

    SciTech Connect (OSTI)

    Kadrnozka, J. [Technical Univ. of Brno (Czech Republic)

    1994-12-31T23:59:59.000Z

    The combined production of electricity and heat is a significant method for saving primary energy sources like fossil fuels, as well as reducing the production of CO{sub 2} and its emission to the atmosphere. The paper discusses the total efficiency of combined heat and power generation (CHP), comparing various types of CHP plants. The paper then describes the situation in the Czech Republic with regard to their centralized heat supply. The author concludes that there is no simple way to rebuild the Czech CHP systems, and that it would be better to start construction on more modern plants. He lists several starting principles to follow in the planning and design stage.

  12. Design manual. [High temperature heat pump for heat recovery system

    SciTech Connect (OSTI)

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01T23:59:59.000Z

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  13. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  14. Water-loop heat pump systems

    SciTech Connect (OSTI)

    Eley, C.; Hydeman, M. (Eley (Charles) Associates, San Francisco, CA (United States))

    1992-12-01T23:59:59.000Z

    Water-loop heat pump (WLHP) systems are reliable, versatile, energy-efficient alternatives to conventional systems such as packaged rooftop or central chiller systems. These systems offer low installed costs, unparalleled design flexibility, and an inherent ability to recover heat in a variety of commercial and multifamily residential buildings for both new construction and retrofit markets. Southern California Edison Co. (SCE) teamed with EPRI to develop a comprehensive design guide for WLHP systems that incorporated recent research by EPRI, SCE, and others. The project team reviewed current literature, equipment data, and design guidelines from equipment manufacturers. They next discussed design and application practices with consulting engineers as well as design and building contractors. The team also ran extensive computer simulations on commercial and multifamily residential building models for Southern California, both to determine the sensitivity of energy use to WLHP system design parameters and to establish optimal design parameters. This information culminated in a comprehensive engineering guide. Volume 1 of this report, provides step-by-step technical design data for selection, application, and specification of WLHP systems. This guide emphasizes energy-efficient design principles and incorporates the findings of the computer simulations and research. For example, it recommends lowering the loop temperature in buildings dominated by internal loads. Reducing the loop temperature from 90 to 80[degrees]F provides a 7--10% savings in the total system energy in Southern California climate areas. Other recommendations include (1) installing a cooling tower with a propeller fan, which uses one fourth to one third of the energy of a cooling tower with a centrifugal fan; and (2) incorporating variable-speed pumps in conjunction with two-position valves in the heat pumps to reduce the system pump energy use by up to 50%.

  15. COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY

    E-Print Network [OSTI]

    Laughlin, Robert B.

    CALIFORNIA ENERGY COMMISSION COMPARATIVE COSTS OF CALIFORNIA CENTRAL STATION ELECTRICITY GENERATION and Anitha Rednam, Comparative Costs of California Central Station Electricity Generation Technologies................................................................................................... 1 CHAPTER 1: Summary of Technology Costs

  16. IEA Annex 26: Advanced Supermarket Refrigeration/Heat Recovery Systems

    SciTech Connect (OSTI)

    Baxter, VAN

    2003-05-19T23:59:59.000Z

    With increased concern about the impact of refrigerant leakage on global warming, a number of new supermarket refrigeration system configurations requiring significantly less refrigerant charge are being considered. In order to help promote the development of advanced systems and expand the knowledge base for energy-efficient supermarket technology, the International Energy Agency (IEA) established IEA Annex 26 (Advanced Supermarket Refrigeration/Heat Recovery Systems) under the ''IEA Implementing Agreement on Heat Pumping Technologies''. Annex 26 focuses on demonstrating and documenting the energy saving and environmental benefits of advanced systems design for food refrigeration and space heating and cooling for supermarkets. Advanced in this context means systems that use less energy, require less refrigerant and produce lower refrigerant emissions. Stated another way, the goal is to identify supermarket refrigeration and HVAC technology options that reduce the total equivalent warming impact (TEWI) of supermarkets by reducing both system energy use (increasing efficiency) and reducing total refrigerant charge. The Annex has five participating countries: Canada, Denmark, Sweden, the United Kingdom, and the United States. The working program of the Annex has involved analytical and experimental investigation of several candidate system design approaches to determine their potential to reduce refrigerant usage and energy consumption. Advanced refrigeration system types investigated include the following: distributed compressor systems--small parallel compressor racks are located in close proximity to the food display cases they serve thus significantly shortening the connecting refrigerant line lengths; secondary loop systems--one or more central chillers are used to refrigerate a secondary coolant (e.g. brine, ice slurry, or CO2) that is pumped to the food display cases on the sales floor; self-contained display cases--each food display case has its own refrigeration unit; low-charge direct expansion--similar to conventional multiplex refrigeration systems but with improved controls to limit charge. Means to integrate store HVAC systems for space heating/cooling with the refrigeration system have been investigated as well. One approach is to use heat pumps to recover refrigeration waste heat and raise it to a sufficient level to provide for store heating needs. Another involves use of combined heating and power (CHP) or combined cooling, heating, and power (CCHP) systems to integrate the refrigeration, HVAC, and power services in stores. Other methods including direct recovery of refrigeration reject heat for space and water heating have also been examined.

  17. Building America Webinar: Retrofitting Central Space Conditioning...

    Energy Savers [EERE]

    Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings - Steam Systems, Retrofit Measure Packages, Hydronic Systems Building America Webinar:...

  18. Distributed trace using central performance counter memory

    DOE Patents [OSTI]

    Satterfield, David L; Sexton, James C

    2013-10-22T23:59:59.000Z

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  19. Distributed trace using central performance counter memory

    DOE Patents [OSTI]

    Satterfield, David L.; Sexton, James C.

    2013-01-22T23:59:59.000Z

    A plurality of processing cores, are central storage unit having at least memory connected in a daisy chain manner, forming a daisy chain ring layout on an integrated chip. At least one of the plurality of processing cores places trace data on the daisy chain connection for transmitting the trace data to the central storage unit, and the central storage unit detects the trace data and stores the trace data in the memory co-located in with the central storage unit.

  20. Program Building Committee's Central Planning Group.

    E-Print Network [OSTI]

    Richardson, Burl B.; Marshall, Mary G.

    1982-01-01T23:59:59.000Z

    Tooe ZTA245.7 8873 Y)O./3~ The Texas A&M (stem r ultural ~ion ~ervrce Damet C Plannstlel. Director College Stallon Program Building Committee's CENTRAL PLANNING GROUP 8-1344 Authors: Burl B. Richardson , Extension Program Specialist... and Mary G. Marshall, Extension Program Specialist Program -Building Committee's CENTRAL PLANNING GROUP This leaflet describes the role of the central planning group in the program development process_ The central planning group is the highest...

  1. Building America Webinar: Retrofitting Central Space Conditioning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Building America Webinar: Retrofitting Central Space Conditioning Strategies for Multifamily Buildings - Introduction This presentation serves as the introduction to...

  2. Energy-efficient water heating

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This fact sheet describes how to reduce the amount of hot water used in faucets and showers, automatic dishwashers, and washing machines; how to increase water-heating system efficiency by lowering the water heater thermostat, installing a timer and heat traps, and insulating hot water pipes and the storage tank; and how to use off-peak power to heat water. A resource list for further information is included.

  3. Heat sinking for printed circuitry

    DOE Patents [OSTI]

    Wilson, S.K.; Richardson, G.; Pinkerton, A.L.

    1984-09-11T23:59:59.000Z

    A flat pak or other solid-state device mounted on a printed circuit board directly over a hole extends therethrough so that the bottom of the pak or device extends beyond the bottom of the circuit board. A heat sink disposed beneath the circuit board contacts the bottom of the pak or device and provides direct heat sinking thereto. Pressure may be applied to the top of the pak or device to assure good mechanical and thermal contact with the heat sink.

  4. Spring 2014 Heat Transfer -2

    E-Print Network [OSTI]

    Virginia Tech

    Spring 2014 Heat Transfer - 2 A thin electronic chip is in the shape of a square wafer, b = 1 cm surface of the chip with a heat transfer coefficient of h = 100 W/m2 -K. Assume the chip has a uniform per side with a mass of m = 0.3 grams and specific heat of C = 103 J/kg-K. The chip is mounted

  5. Enhanced heat transfer using nanofluids

    DOE Patents [OSTI]

    Choi, Stephen U. S. (Lisle, IL); Eastman, Jeffrey A. (Naperville, IL)

    2001-01-01T23:59:59.000Z

    This invention is directed to a method of and apparatus for enhancing heat transfer in fluids such as deionized water. ethylene glycol, or oil by dispersing nanocrystalline particles of substances such as copper, copper oxide, aluminum oxide, or the like in the fluids. Nanocrystalline particles are produced and dispersed in the fluid by heating the substance to be dispersed in a vacuum while passing a thin film of the fluid near the heated substance. The fluid is cooled to control its vapor pressure.

  6. CENTRAL EUROPE MANAGING AUTHORITY CITY OF VIENNA

    E-Print Network [OSTI]

    Genova, Università degli Studi di

    CENTRAL EUROPE MANAGING AUTHORITY CITY OF VIENNA Municipal Department for European affairs (MA 27 PROGRAMME Thematic study: Energy efficiency and renewable energies in the CENTRAL EUROPE Programme Request European regions more competitive, innovative, attractive and accessible. The Central Europe Programme area

  7. 14th Annual Conference Central Eurasian

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    The State of Social Mobilization in Central Eurasia Book Sales Identity Politic (Pre-)Islamic Rituals the City Turkey and the EU in the Post-Soviet Space: Security, Energy and Gender Session II 10:15 am - 12:00 pm China's New Role in Central Asia Book Sales Education and Community Development in Rural Central

  8. West Central Texas Regional Transportation Final Report 

    E-Print Network [OSTI]

    West Central Texas Council of Governments

    2006-01-01T23:59:59.000Z

    WEST CENTRAL TEXAS REGIONAL REGIONAL TRANSPORTATION TRANSPORTATION FINAL REPORT NOVEMBER 2006 West Central Texas Regional Transit Coordination Plan Final Report and Executive Summary November 2006 A&R Consulting The Goodman... Workshops 177 Appendix C - Public Meetings 183 West Central Texas Regional Transit Coordination Plan Final Report and Executive Summary November 2006 A&R Consulting The Goodman Corporation November 2006 3 EXECUTIVE SUMMARY...

  9. Universidad Central de Venezuela Facultad de Ciencias

    E-Print Network [OSTI]

    Coto, Ernesto

    Universidad Central de Venezuela Facultad de Ciencias Escuela de Computación Una herramienta para. Universidad Central de Venezuela. {ecoto, hnavarro, omaira}@opalo.ciens.ucv.ve **Laboratorio TOOLS. Escuela de Computación. Facultad de Ciencias. Universidad Central de Venezuela. amatteo@isys.ciens.ucv.ve Caracas, Enero

  10. Sodium heat engine electrical feedthrough

    DOE Patents [OSTI]

    Weber, Neill (Dearborn, MI)

    1985-01-01T23:59:59.000Z

    A thermoelectric generator device which converts heat energy to electrical energy. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure.

  11. Cyclotron subharmonics resonant (CSR) heating

    SciTech Connect (OSTI)

    Abe, H.

    1994-01-01T23:59:59.000Z

    The cyclotron subharmonics resonant (CSR) heating mechanism is studied using particle simulation codes with an emphasis on the relationship between CSR and the nonlinear Landua damping.

  12. High Heat Flux Components Program

    SciTech Connect (OSTI)

    Whitley, J.B.

    1983-01-01T23:59:59.000Z

    Purpose is the development of the technologies necessary to design, build and operate high heat flux components such as actively cooled limiters, divertor collector plates, R.F. antennas, mirror end cells, mirror halo collectors, direct convertor collectors, and neutral beam dumps. These components require an integrated design that considers the plasma-materials interaction (PMI) issues, heat removal problems and materials issues (including possible low Z coatings and claddings). As a general definition, high heat flux components see heat fluxes ranging from 1 to 100 MW/m/sup 2/. Suitable materials include copper and copper alloys.

  13. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

  14. Holographic Heat Engines

    E-Print Network [OSTI]

    Clifford V. Johnson

    2014-09-04T23:59:59.000Z

    It is shown that in theories of gravity where the cosmological constant is considered a thermodynamic variable, it is natural to use black holes as heat engines. Two examples are presented in detail using AdS charged black holes as the working substance. We notice that for static black holes, the maximally efficient traditional Carnot engine is also a Stirling engine. The case of negative cosmological constant supplies a natural realization of these engines in terms of the field theory description of the fluids to which they are holographically dual. We first propose a precise picture of how the traditional thermodynamic dictionary of holography is extended when the cosmological constant is dynamical and then conjecture that the engine cycles can be performed by using renormalization group flow. We speculate about the existence of a natural dual field theory counterpart to the gravitational thermodynamic volume.

  15. Cooling by heating

    E-Print Network [OSTI]

    A. Mari; J. Eisert

    2011-04-01T23:59:59.000Z

    We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counter-intuitive mechanism of "cooling by heating". In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in opto-mechanical systems with present technology is sketched.

  16. Ceramic heat exchanger

    DOE Patents [OSTI]

    LaHaye, P.G.; Rahman, F.H.; Lebeau, T.P.; Severin, B.K.

    1998-06-16T23:59:59.000Z

    A tube containment system is disclosed. The tube containment system does not significantly reduce heat transfer through the tube wall. The contained tube is internally pressurized, and is formed from a ceramic material having high strength, high thermal conductivity, and good thermal shock resistance. The tube containment system includes at least one ceramic fiber braid material disposed about the internally pressurized tube. The material is disposed about the tube in a predetermined axial spacing arrangement. The ceramic fiber braid is present in an amount sufficient to contain the tube if the tube becomes fractured. The tube containment system can also include a plurality of ceramic ring-shaped structures, in contact with the outer surface of the tube, and positioned between the tube and the ceramic fiber braid material, and/or at least one transducer positioned within tube for reducing the internal volume and, therefore, the energy of any shrapnel resulting from a tube fracture. 6 figs.

  17. Heat Transfer Characteristics of a Generalized Divided Flow Heat Exchanger

    E-Print Network [OSTI]

    Singh, K. P.

    1979-01-01T23:59:59.000Z

    The concept of a "Divided-flow" heat exchanger is generalized by locating the shell inlet (or outlet) nozzle off-center such that the two shell sub-streams are unequal and traverse unequal flow paths. The governing equations for heat transfer...

  18. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  19. Urban Sewage Delivery Heat Transfer System (2): Heat Transfer 

    E-Print Network [OSTI]

    Zhang, C.; Wu, R.; Li, X.; Li, G.; Zhuang, Z.; Sun, D.

    2006-01-01T23:59:59.000Z

    The thimble delivery heat-transfer (TDHT) system is one of the primary modes to utilize the energy of urban sewage. Using the efficiency-number of transfer units method ( ), the heat-transfer efficiencies of the parallel-flow and reverse-flow TDTH...

  20. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    the supply and the demand side · An eye-opener for the Danish politicians · Could be a model for otherHeat Plan DenmarkHeat Plan Denmark Anders Dyrelundy Market Manager for Energy and Climate Rambøll Möller · The first study in Denmark, really to integrate the energy and building sectors ­ to combine

  1. Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or

    E-Print Network [OSTI]

    About CHP Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of energy. CHP is a type of distributed generation, which, unlike central station generation, is located fuel in a furnace or boiler to produce thermal energy, consumers use CHP to provide these energy

  2. Corrosion of Aluminum-fin, Copper-tube Heat Exchange Coils

    E-Print Network [OSTI]

    Field, J. E.

    2002-01-01T23:59:59.000Z

    Over the past several years the HVAC industry has experienced a large increase in instances of leaks in the central portion of aluminum-finned, coppertube heat exchange coils. These leaks are characterized as being very small in size and very high...

  3. Corrosion of Aluminum-fin, Copper-tube Heat Exchange Coils 

    E-Print Network [OSTI]

    Field, J. E.

    2002-01-01T23:59:59.000Z

    Over the past several years the HVAC industry has experienced a large increase in instances of leaks in the central portion of aluminum-finned, coppertube heat exchange coils. These leaks are characterized as being very small in size and very high...

  4. "Table HC14.5 Space Heating Usage Indicators by West Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used" "Heat Pump",0.6,"Q","N","Q" "Central Warm-Air Furnace",2.3,0.6,"Q",0.5 "SteamHot Water System","Q","Q","N","Q" "Built-in Electric Units",2.2,0.7,"Q",0.5 "Built-in Pipeless...

  5. "Table HC12.5 Space Heating Usage Indicators by Midwest Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used" "Heat Pump",0.6,"Q","Q","Q" "Central Warm-Air Furnace",2.3,0.9,0.5,0.3 "SteamHot Water System","Q","Q","Q","N" "Built-in Electric Units",2.2,0.6,0.4,0.3 "Built-in Pipeless...

  6. "Table HC13.5 Space Heating Usage Indicators by South Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Heat Pump",0.6,0.4,0.3,"Q","N" "Central Warm-Air Furnace",2.3,0.7,0.3,0.2,"Q" "SteamHot Water System","Q","N","N","N","N" "Built-in Electric Units",2.2,0.4,0.3,"Q","N" "Built-in...

  7. "Table HC15.5 Space Heating Usage Indicators by Four Most Populated...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Heat Pump",0.6,"N","N","N","Q" "Central Warm-Air Furnace",2.3,"Q","Q","Q",0.3 "SteamHot Water System","Q","N","N","N","N" "Built-in Electric Units",2.2,"Q","Q","N",0.3 "Built-in...

  8. "Table HC11.5 Space Heating Usage Indicators by Northeast Census...

    U.S. Energy Information Administration (EIA) Indexed Site

    Used" "Heat Pump",0.6,"N","N","N" "Central Warm-Air Furnace",2.3,"Q","Q","Q" "SteamHot Water System","Q","Q","Q","Q" "Built-in Electric Units",2.2,0.4,"Q",0.2 "Built-in Pipeless...

  9. Luke AFB 15 MW Solar Array Challenges and Lessons Learned

    Broader source: Energy.gov (indexed) [DOE]

    Legal Authorities to be used by the project FAR Part 41 (utility service contract) Arizona Public Service (APS) is electrical service provider Utility Law...

  10. afb south carolina: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mack- erel, Sromber scombrus, and south- ern bluefin tuna, Thunnus maccoyii, Euthynnus pelamis, and yellowfin tuna, Thunnus albacares, bluefin tuna, T. thynnus, black skipjack 156...

  11. Historical chronology of Hanscom AFB 1941-1986

    SciTech Connect (OSTI)

    Del Papa, E.M.; Warner, M.P.

    1987-11-01T23:59:59.000Z

    This report contents are Initial Efforts; Program Guidance; Development, Test and Evaluation (DTandE)/Initial; Operational Test and Evaluation (IOTandE); Production Contract for HAVE A QUICK AN/ARC-164 Modification Kits; Additional HAVE QUICK Requirements; Additional HAVE QUICK Program Guidance; HAVE QUICK Extension; Deployment and Testing; FY 1981 Supplemental Budget Buy of HAVE QUICK Production Units AN/GRC-171 HAVE QUICK Modified Radio Contract; HAVE QUICK for the E-3A AWACS; Program Management Responsibility Transfer (PMRT) for the HAVE QUICK AN/ARC-164 Radio; HAVE QUICK for the Tactical Air Control System (TACS); Additional HAVE QUICK Program Guidance; Air Force Organizational Excellence Award to HAVE QUICK Program Office; HAVE QUICK for the E-3A; HAVE QUICK for NATO; AN/GRC-171 HAVE QUICK Modified Radio; HAVE QUICK Contract F19628-81-c-0151; SEEK BARON; Additional HAVE QUICK Program Guidance; Production; HAVE QUICK Net Rollover Problem; HAVE QUICK System Timing; GRC-171(V)4 Enhancements and Production; HAVE QUICK Technical Order (TO) Issues; HAVE QUICK GRC-171 Multiplexing (MUX) Network; HAVE QUICK for NATO; Navy Problem with HAVE QUICK; Nuclear Hardening, HAVE QUICK ARC-164C; HAVE QUICK GRC-171A(V)2; Midnight Madness; HAVE QUICK GRC-171 Multiplexing (MUX) Network; U.S. Marine Corps HAVE QUICK requirements; HAVE QUICK for NATO; HAVE QUICK Program Costs; and Summary and Conclusion.

  12. afb biomass gasification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Algae Engineering Websites Summary: on their metabolism. Sometimes the levels of metals found in algal biomass served to detect the water contami- nation, Inc. Key words:...

  13. afb alaska final: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    statistically significant. We do not know if sea duck population declines are related to metals or other contaminants. Charles J. Henny; Deborah D. Rudis; Thomas J. Roffe 249...

  14. Microsoft Word - 2005 CCR- Nellis AFB _2_.RTF

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch Project Lead SAMS NEVADACFRA269.l2005

  15. Wright-Patterson AFB, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters5654°, -92.539603°

  16. FOR OFFICIAL USE ONLY KIRTLAND AFB PASS REQUEST SPONSOR'S INFORMATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecularGE,OzoneContacts FOIAHow toOFFICIAL USE

  17. Gamma Ray Burst Central Engines

    E-Print Network [OSTI]

    Todd A. Thompson

    2008-07-04T23:59:59.000Z

    I review aspects of the theory of long-duration gamma-ray burst (GRB) central engines. I focus on the requirements of any model; these include the angular momentum of the progenitor, the power, Lorentz factor, asymmetry, and duration of the flow, and both the association and the non-association with bright supernovae. I compare and contrast the collapsar and millisecond proto-magnetar models in light of these requirements. The ability of the latter model to produce a flow with Lorentz factor ~100 while simultaneously maintaining a kinetic luminosity of ~10^50 ergs/s for a timescale of ~10-100 s is emphasized.

  18. Central Ferry-Lower Monumental

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamos Laboratory NastasiPASTCentral AirCentral Ferry Lower

  19. PREDICTING THE TIME RESPONSE OF A BUILDING UNDER HEAT INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS

    E-Print Network [OSTI]

    Warren, Mashuri L.

    2013-01-01T23:59:59.000Z

    Solar Energy Systems for Heating and Cooling. May, 1978. (Washington:Hemisphere heating, Publishing Corp. , 1978),INPUT CONDITIONS FOR ACTIVE SOLAR HEATING SYSTEMS Mashuri L.

  20. Frontiers in Heat and Mass Transfer (FHMT), 2, 013001 (2011) DOI: 10.5098/hmt.v2.1.3001

    E-Print Network [OSTI]

    Zhao, Tianshou

    2011-01-01T23:59:59.000Z

    Digital Central ISSN: 2151-8629 1 NUMERICAL INVESTIGATION OF HEAT TRANSPORT IN A DIRECT METHANOL FUEL CELL in this paper to investigate the heat generation and transport phenomena in a direct methanol fuel cell in the DMFC by altering the distribution of temperature across the MEA. Keywords: direct methanol fuel cell

  1. Central Hudson Gas and Electric (Electric)- Commercial Lighting Rebate Program

    Broader source: Energy.gov [DOE]

    Central Hudson Gas and Electric's (Central Hudson) Commercial Lighting Rebate Program is for businesses, retailers, institutional customers and non-profit customers of Central Hudson. The progam...

  2. Application for Presidential Permit OE Docket No. PP-059 Central...

    Office of Environmental Management (EM)

    59 Central Power and Light Company (CPL) Application for Presidential Permit OE Docket No. PP-059 Central Power and Light Company (CPL) Application from Central Power and Light...

  3. Comparison of ICRF and NBI heated plasmas performances in the JET ITER-like wall

    SciTech Connect (OSTI)

    Mayoral, M.-L. [EFDA Close Support Unit, Garching, Germany and Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Pütterich, T.; Bobkov, V. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Jacquet, P. [Euratom/CCFE Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Lerche, E.; Van-Eester, D.; Bourdelle, C.; Colas, L. [CEA, IRFM, F-13108 Saint-Paul-Lez-Durance (France); Czarnecka, A. [Association Euratom-IPPLM, Hery 23, 01-497 Warsaw (Poland); Mlynar, J. [Association Euratom-IPP.CR, Institute of Plasma Physics AS CR, 18200 Prague (Czech Republic); Neu, R. [EFDA Close Support Unit, Garching, Germany and Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, Garching (Germany); Collaboration: JET-EFDA Contributors

    2014-02-12T23:59:59.000Z

    During the initial operation of the JET ITER-like wall, particular attention was given to the characterization of the Ion Cyclotron Resonance Frequency (ICRF) heating in this new metallic environment. In this contribution we compare L-modes plasmas heated by ICRF or by Neutral Beam Injection (NBI). ICRF heating as expected led to a much higher centrally peaked power deposition on the electrons and due to the central fast ion population to stronger sawtooth activity. Surprisingly, although a higher bulk radiation was observed during the ICRF phase, the thermal plasma energy was found similar for both cases, showing that a higher radiation inside the separatrix was not incompatible with an efficient central heating scheme. The higher radiation was attributed to the presence Tungsten (W). Tomographic inversion of SXR emissions allowed a precise observation of the sawtooth effect on the radiation pattern. W concentration profiles deconvolved from SXR emission showed the flattening of the profiles due to sawtooth for both heating and the peaking of the profiles in the NBI case only hinting for extra transport effect in the ICRF case.

  4. HEATING THE ATMOSPHERE ABOVE SUNSPOTS

    E-Print Network [OSTI]

    Rucklidge, Alastair

    become fragmented and twisted, and where they generate the necessary energy to heat the solar coronaHEATING THE ATMOSPHERE ABOVE SUNSPOTS David Alexander and Neal E. Hurlburt Lockheed Martin Solar, University of Cambridge, Cambridge, CB3 9EW, UK Abstract We present our results of a hybrid model of sunspots

  5. Critical heat flux test apparatus

    DOE Patents [OSTI]

    Welsh, Robert E. (West Mifflin, PA); Doman, Marvin J. (McKeesport, PA); Wilson, Edward C. (West Mifflin, PA)

    1992-01-01T23:59:59.000Z

    An apparatus for testing, in situ, highly irradiated specimens at high temperature transients is provided. A specimen, which has a thermocouple device attached thereto, is manipulated into test position in a sealed quartz heating tube by a robot. An induction coil around a heating portion of the tube is powered by a radio frequency generator to heat the specimen. Sensors are connected to monitor the temperatures of the specimen and the induction coil. A quench chamber is located below the heating portion to permit rapid cooling of the specimen which is moved into this quench chamber once it is heated to a critical temperature. A vacuum pump is connected to the apparatus to collect any released fission gases which are analyzed at a remote location.

  6. High Temperature Heat Exchanger Project

    SciTech Connect (OSTI)

    Anthony E. Hechanova, Ph.D.

    2008-09-30T23:59:59.000Z

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  7. WP AFB,WP AFB, DaytonDayton RT 2006RT 2006 1 Robust and Randomized Control Design

    E-Print Network [OSTI]

    Tempo, Roberto

    Flight Test Video and Computer Graphics Animation Randomized Algorithms: A Success Story Conclusions #12 This activity is supported by the Italian Ministry for Research within the National Project Study dynamic modeling - DC motor modeling - blade element theory - gain synthesis - control laws implementation

  8. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1999-01-01T23:59:59.000Z

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  9. Heat pipe with embedded wick structure

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Shen, David S. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM); Palmer, David W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM)

    1998-01-01T23:59:59.000Z

    A heat pipe has an embedded wick structure that maximizes capillary pumping capability. Heat from attached devices such as integrated circuits evaporates working fluid in the heat pipe. The vapor cools and condenses on a heat dissipation surface. The condensate collects in the wick structure, where capillary pumping returns the fluid to high heat areas.

  10. IEA HPP Annex 41 Cold Climate Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    of Air-Source Heat Pumps Van D. Baxter Oak Ridge National Laboratory European Heat Pump Summit Nuremberg ­ Cold Climate Heat Pumps Improving low ambient temperature performance of air-source heat pumps as having large number of hours with OD temperature -7 °C (19 °F). Air-source heat pumps (ASHP

  11. Combined Heat and Power Plant Steam Turbine

    E-Print Network [OSTI]

    Rose, Michael R.

    Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

  12. Applying DDC and VFD to Central Chilled Water Plants for Profits

    E-Print Network [OSTI]

    Utesch, A. L.

    continuous series of improvements, serves over 3 million square feet utilizing less chiller capacity and less boiler capacity than was used in 1974. The energy usage per square foot of facility served has been reduced by at least 65% and the value... less than 25% on a per square foot basis. The cost avoidances were generated primarily by the elimination of reheat for space conditioning and modifications and improvements to the central heating and cooling equipment. The remainder of this paper...

  13. Central Solenoid Insert Technical Specification

    SciTech Connect (OSTI)

    Martovetsky, Nicolai N [ORNL; Smirnov, Alexandre [ORNL

    2011-09-01T23:59:59.000Z

    The US ITER Project Office (USIPO) is responsible for the ITER central solenoid (CS) contribution to the ITER project. The Central Solenoid Insert (CSI) project will allow ITER validation the appropriate lengths of the conductors to be used in the full-scale CS coils under relevant conditions. The ITER Program plans to build and test a CSI to verify the performance of the CS conductor. The CSI is a one-layer solenoid with an inner diameter of 1.48 m and a height of 4.45 m between electric terminal ends. The coil weight with the terminals is approximately 820 kg without insulation. The major goal of the CSI is to measure the temperature margin of the CS under the ITER direct current (DC) operating conditions, including determining sensitivity to load cycles. Performance of the joints, ramp rate sensitivity, and stability against thermal or electromagnetic disturbances, electrical insulation, losses, and instrumentation are addressed separately and therefore are not major goals in this project. However, losses and joint performance will be tested during the CSI testing campaign. The USIPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at the Japan Atomic Energy Agency (JAEA), Naka, Japan. The industrial vendors (the Suppliers) will report to the USIPO (the Company). All approvals to proceed will be issued by the Company, which in some cases, as specified in this document, will also require the approval of the ITER Organization. Responsibilities and obligations will be covered by respective contracts between the USIPO, called Company interchangeably, and the industrial Prime Contractors, called Suppliers. Different stages of work may be performed by more than one Prime Contractor, as described in this specification. Technical requirements of the contract between the Company and the Prime Contractor will be covered by the Fabrication Specifications developed by the Prime Contractor based on this document and approved by the Company and ITER. The Fabrication Specifications may reflect some national requirements and regulations that are not fully provided here. This document presents the ITER CSI specifications.

  14. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI); Marsala, Joseph (Glen Ellyn, IL)

    1994-11-29T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium.

  15. Modeling of Heat Transfer in Geothermal Heat Exchangers

    E-Print Network [OSTI]

    Cui, P.; Man, Y.; Fang, Z.

    2006-01-01T23:59:59.000Z

    , University of Lund, Sweden, [7] Fang, Z., Diao, N., and Cui, P., Discontinuous operation of geothermal heat exchangers [J], Tsinghua Science and Technology. , 2002, 7 194?197. [8] Hellstrom, G., Ground heat storage -- Thermal analysis of duct storage... systems [D], Department of Mathem Sweden, 1991. [9] Mei, V. C. and Baxter, V. D., Performance of a ground-coupled heat pump with multiple dissimilar U-tu Transactions, 1986, 92 Part 2, 22-25. [10] Yavuzturk, C., Spitler, J. D. and Rees, S. J., A...

  16. Quantum Optomechanical Heat Engine

    E-Print Network [OSTI]

    Keye Zhang; Francesco Bariani; Pierre Meystre

    2014-04-17T23:59:59.000Z

    We investigate theoretically a quantum optomechanical realization of a heat engine. In a generic optomechanical arrangement the optomechanical coupling between the cavity field and the oscillating end-mirror results in polariton normal mode excitations whose character depends on the pump detuning and the coupling strength. By varying that detuning it is possible to transform their character from phonon-like to photon-like, so that they are predominantly coupled to the thermal reservoir of phonons or photons, respectively. We exploit the fact that the effective temperatures of these two reservoirs are different to produce a Otto cycle along one of the polariton branches. We discuss the basic properties of the system in two different regimes: in the optical domain it is possible to extract work from the thermal energy of a mechanical resonator at finite temperature, while in the microwave range one can in principle exploit the cycle to extract work from the blackbody radiation background coupled to an ultra-cold atomic ensemble.

  17. Suppression MHD instabilities by IBW heating in HT-7 Tokamak

    E-Print Network [OSTI]

    C. M. Qin; Y. P. Zhao; X. J. Zhang; P. Xu; Y. Yang; the HT-7 team

    2010-01-21T23:59:59.000Z

    In HT-7 tokamak, the m= 2/1 tearing mode can be effectively suppressed by the ion bernstein wave (IBW) when the location of power deposition is near the q=2 rational surface. Off-axis electron heating and greatly increase of electron density was observed, in the meantime, the particle confinement appears to be improved with the increased of the central line averaged electron density and the drop of Da emission. Induced large ne gradients and pressures were spatially correlated with the IBW deposition profile by theoretical calculation >. It is suggested that off-axis IBW heating modifies the electron pressure profile, and so the current density profile could be redistributed resulting in the suppression of the magnetohydrodynamics (MHD) instability. It provides an integrated way for making combined effects on both the stabilization of tearing modes and controlling of pressure profile.

  18. Federal technology alert. Parabolic-trough solar water heating

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  19. Geographic Information System At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada...

  20. Heating 7. 2 user's manual

    SciTech Connect (OSTI)

    Childs, K.W.

    1993-02-01T23:59:59.000Z

    HEATING is a general-purpose conduction heat transfer program written in Fortran 77. HEATING can solve steady-state and/or transient heat conduction problems in one-, two-, or three-dimensional Cartesian, cylindrical, or spherical coordinates. A model may include multiple materials, and the thermal conductivity, density, and specific heat of each material may be both time- and temperature-dependent. The thermal conductivity may also be anisotropic. Materials may undergo change of phase. Thermal properties of materials may be input or may be extracted from a material properties library. Heat-generation rates may be dependent on time, temperature, and position, and boundary temperatures may be time- and position-dependent. The boundary conditions, which may be surface-to-environment or surface-to-surface, may be specified temperatures or any combination of prescribed heat flux, forced convection, natural convection, and radiation. The boundary condition parameters may be time- and/or temperature-dependent. General gray-body radiation problems may be modeled with user-defined factors for radiant exchange. The mesh spacing may be variable along each axis. HEATING uses a runtime memory allocation scheme to avoid having to recompile to match memory requirements for each specific problem. HEATING utilizes free-form input. Three steady-state solution techniques are available: point-successive-overrelaxation iterative method with extrapolation, direct-solution, and conjugate gradient. Transient problems may be solved using any one of several finite-difference schemes: Crank-Nicolson implicit, Classical Implicit Procedure (CIP), Classical Explicit Procedure (CEP), or Levy explicit method. The solution of the system of equations arising from the implicit techniques is accomplished by point-successive-overrelaxation iteration and includes procedures to estimate the optimum acceleration parameter.

  1. Heat Pump Cycle with Solution Circuit and Internal Heat Exchange

    E-Print Network [OSTI]

    Radermacher, R.

    Vapor compression heat pumps which employ working fluid mixtures rather than pure substances offer significant advantages leading to larger temperature lifts at low pressure ratios or to completely new applications. The main feature of such cycles...

  2. Active heat transfer enhancement in integrated fan heat sinks

    E-Print Network [OSTI]

    Staats, Wayne Lawrence

    2012-01-01T23:59:59.000Z

    Modern computer processors require significant cooling to achieve their full performance. The "efficiency" of heat sinks is also becoming more important: cooling of electronics consumes 1% of worldwide electricity use by ...

  3. Solar steam generation by heat localization

    E-Print Network [OSTI]

    Ghasemi, Hadi

    Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated ...

  4. Design Considerations for Industrial Heat Recovery Systems 

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  5. Stochastic Ion Heating by Lower Hybrid Turbulence

    E-Print Network [OSTI]

    Candy, J.

    2010-01-01T23:59:59.000Z

    of Tur b ulent S jpectrum Heating S imulations. Run 1A 2A 3ADivision Stochastic Ion Heating by Lower Hybrid Turbulenceweb development in this heating process is also discussed. I

  6. Heating Energy Meter Validation for Apartments

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  7. Ice Heating Up Cold Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ice Heating Up Cold Clouds Ice Heating Up Cold Clouds Released: October 04, 2011 In a heated battle, ice crystals win the competition for cloud water vapor The mighty cloud ice...

  8. Heating Energy Meter Validation for Apartments 

    E-Print Network [OSTI]

    Cai, B.; Li, D.; Hao, B.

    2006-01-01T23:59:59.000Z

    Household heat metering is the core of heating system reform. Because of many subjective and objective factors, household heat metering has not been put into practice to a large extent in China. In this article, the research subjects are second...

  9. Development Requirements for Advanced Industrial Heat Pumps 

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    1985-01-01T23:59:59.000Z

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  10. Electrolyte injection with electrical resistance heating

    E-Print Network [OSTI]

    Jaimes Gomez, Olmedo

    1992-01-01T23:59:59.000Z

    reservoir to extract hydrocarbons. These processes include the Radio-Frequency Heating of oil shales and tar sands , the Microwave Heating of oil shales ", the Induction Heating , the Electrocarbonization , the Selective ERH and the Electric Preheat...

  11. Heat-Traced Fluid Transfer Lines

    E-Print Network [OSTI]

    Schilling, R. E.

    1984-01-01T23:59:59.000Z

    HEAT-TRACED FLUID TRANSFER LINES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio This paper discusses basic considerations in designing a heat tracing system using either steam or electrical tracing. Four basic reasons to heat...

  12. Development Requirements for Advanced Industrial Heat Pumps

    E-Print Network [OSTI]

    Chappell, R. N.; Priebe, S. J.; Bliem, C. J.; Mills, J. I.

    DOE is attempting to advance the use of heat pumps to save energy in industrial processes. The approach has emphasized developing better heat pump technology and transferring that technology to the private sector. DOE requires that heat pump...

  13. Geothermal Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it work? A geothermal heat pump uses the constant below ground temperature of soil or water to heat and cool your home. Geothermal heat pumps (GHPs), sometimes referred to as...

  14. Design Considerations for Industrial Heat Recovery Systems

    E-Print Network [OSTI]

    Bywaters, R. P.

    1979-01-01T23:59:59.000Z

    recovery design considerations as well as a summary of typical "waste heat" sources and application sites. A procedure for conducting industrial waste heat surveys is presented. Thermodynamic and heat transfer factors are discussed. Problems associated...

  15. Modelling and simulation of a heat pump for simultaneous heating and cooling

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    production and space cooling at the same time. An answer to a dual energy demand is the heat pump, sinceModelling and simulation of a heat pump for simultaneous heating and cooling Paul Byrne1 *, Jacques-012-0089-0 #12;1. ABSTRACT The heat pump for simultaneous heating and cooling (HPS) carries out space heating

  16. Solar heat storages in district heating Klaus Ellehauge Thomas Engberg Pedersen

    E-Print Network [OSTI]

    References 45 Appendix 1 Danish companies 48 #12;6/50 Solar heat storages in district heating networksJuly 2007 . #12;#12;Solar heat storages in district heating networks July 2007 Klaus Ellehauge 97 22 11 tep@cowi.dk www.cowi.com #12;#12;Solar heat storages in district heating networks 5

  17. Value of electrical heat boilers and heat pumps for wind power integration

    E-Print Network [OSTI]

    Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

  18. Heat exchanger using graphite foam

    DOE Patents [OSTI]

    Campagna, Michael Joseph; Callas, James John

    2012-09-25T23:59:59.000Z

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  19. Heat exchanger with ceramic elements

    DOE Patents [OSTI]

    Corey, John A. (North Troy, NY)

    1986-01-01T23:59:59.000Z

    An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.

  20. Heat pump assisted geothermal heating system for Felix Spa, Romania

    SciTech Connect (OSTI)

    Rosca, Marcel; Maghiar, Teodor

    1996-01-24T23:59:59.000Z

    The paper presents a pre-feasibility type study of a proposed heat pump assisted geothermal heating system for an average hotel in Felix Spa, Romania. After a brief presentation of the geothermal reservoir, the paper gives the methodology and the results of the technical and economical calculations. The technical and economical viability of the proposed system is discussed in detail in the final part of the paper.

  1. absorption heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating capacity k jet nozzle Closed Cycles: AbsorptionAdsorption heat pump thermal compressor driven by waste heat1 Industrial heat pumps in Germany - potentials,...

  2. absorption heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heating capacity k jet nozzle Closed Cycles: AbsorptionAdsorption heat pump thermal compressor driven by waste heat1 Industrial heat pumps in Germany - potentials,...

  3. advanced heat pumps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  4. advanced heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  5. agency heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  6. automotive heat pump: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12;Canada's Context for Heat Pumps Impacts avenues: Ground source heat pumps for cold climates (heating and cooling) Reversible air source heat Oak Ridge National Laboratory...

  7. Waste Heat Management Options for Improving Industrial Process...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers...

  8. Heat Pump Water Heaters and American Homes: A Good Fit?

    E-Print Network [OSTI]

    Franco, Victor

    2011-01-01T23:59:59.000Z

    the indirect increase in home heating (and the decrease inincrease the home’s heating load in the heating season (Heaters, Direct Heating Equipment, Mobile Home Furnaces,

  9. Building America Case Study: Boiler Control Replacement for Hydronically Heated Multifamily Buildings, Cambridge, Massachusetts (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  10. Hydronic Heating Retrofits for Low-Rise Multifamily Buildings: Boiler Control Replacement and Monitoring

    SciTech Connect (OSTI)

    Dentz, J.; Henderson, H.; Varshney, K.

    2014-09-01T23:59:59.000Z

    The ARIES Collaborative, a U.S. Department of Energy Building America research team, partnered with NeighborWorks America affiliate Homeowners' Rehab Inc. (HRI) of Cambridge, Massachusetts, to study improvements to the central hydronic heating system in one of the nonprofit's housing developments. The heating controls in the three-building, 42-unit Columbia Cambridge Alliance for Spanish Tenants housing development were upgraded. Fuel use in the development was excessive compared to similar properties. A poorly insulated thermal envelope contributed to high energy bills, but adding wall insulation was not cost-effective or practical. The more cost-effective option was improving heating system efficiency. Efficient operation of the heating system faced several obstacles, including inflexible boiler controls and failed thermostatic radiator valves. Boiler controls were replaced with systems that offer temperature setbacks and one that controls heat based on apartment temperature in addition to outdoor temperature. Utility bill analysis shows that post-retrofit weather-normalized heating energy use was reduced by 10%-31% (average of 19%). Indoor temperature cutoff reduced boiler runtime (and therefore heating fuel consumption) by 28% in the one building in which it was implemented. Nearly all savings were obtained during night which had a lower indoor temperature cut off (68 degrees F) than day (73 degrees F). This implies that the outdoor reset curve was appropriately adjusted for this building for daytime operation. Nighttime setback of heating system supply water temperature had no discernable impact on boiler runtime or gas bills.

  11. Internal Heat Transfer Coefficient Determination in a Packed Bed From the Transient Response Due to Solid Phase Induction Heating

    E-Print Network [OSTI]

    Geb, David; Zhou, Feng; Catton, Ivan

    2012-01-01T23:59:59.000Z

    to Solid Phase Induction Heating Nonintrusive measurementsgeneration rate via induction heating. The fluid temperaturetechnique, induction heating, bypass effect, channeling

  12. Central Invariants of the Constrained KP Hierarchies

    E-Print Network [OSTI]

    Si-Qi Liu; Youjin Zhang; Xu Zhou

    2015-02-06T23:59:59.000Z

    We compute the central invariants of the bihamiltonian structures of the constrained KP hierarchies, and show that these integrable hierarchies are topological deformations of their hydrodynamic limits.

  13. Fire hazards analysis of central waste complex

    SciTech Connect (OSTI)

    Irwin, R.M.

    1996-05-30T23:59:59.000Z

    This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  14. Central Characterization Program (CCP), Acceptable Knowledge...

    Office of Environmental Management (EM)

    for Los Alamos National Laboratory, TA-55 Mixed Transuranic Waste Streams Central Characterization Program (CCP), Acceptable Knowledge Summary Report for Los Alamos National...

  15. Central Characterization Program (CCP) Transuranic Waste Certification...

    Office of Environmental Management (EM)

    Certification Plan Central Characterization Program (CCP) Transuranic Waste Certification Plan This document was used to determine facts and conditions during the Department of...

  16. Central Characterization Program (CCP) Transuranic Waste Characterizat...

    Office of Environmental Management (EM)

    Characterization Quality Assurance Project Plan Central Characterization Program (CCP) Transuranic Waste Characterization Quality Assurance Project Plan This document was used to...

  17. Central Characterization Program (CCP) Acceptable Knowledge Documentat...

    Office of Environmental Management (EM)

    Acceptable Knowledge Documentation Central Characterization Program (CCP) Acceptable Knowledge Documentation This document was used to determine facts and conditions during the...

  18. Central Characterization Program (CCP) Transuranic Authorized...

    Office of Environmental Management (EM)

    Authorized Methods for Payload Control Central Characterization Program (CCP) Transuranic Authorized Methods for Payload Control This document was used to determine facts and...

  19. Central Characterization Program (CCP) TRU Nonconforming Item...

    Office of Environmental Management (EM)

    TRU Nonconforming Item Reporting and Control Central Characterization Program (CCP) TRU Nonconforming Item Reporting and Control This document was used to determine facts and...

  20. cole Centrale de Nantes cole Doctorale

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    'équipe MPTC du GeM à l'Ecole Centrale de Nantes. Cependant, cette thèse a été réalisée avec plusieurs

  1. Stirling's approximation for central polynomial coefficients

    E-Print Network [OSTI]

    Eger, Steffen

    2012-01-01T23:59:59.000Z

    We derive asymptotic formulae for central polynomial coefficients, a generalization of binomial coefficients, using the distribution of the sum of independent uniform random variables and the CLT.

  2. Emerging Water Heating Technologies Research & Development Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heating Technologies Research & Development Roadmap Emerging Water Heating Technologies Research & Development Roadmap The Research and Development (R&D) Roadmap for Emerging...

  3. Solar Water Heating Webinar | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Weatherization Assistance Program Pilot Projects Solar Water Heating Webinar Solar Water Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL)...

  4. THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS

    E-Print Network [OSTI]

    Mertol, Atila

    2012-01-01T23:59:59.000Z

    The Performance of Solar Water Heater With Natural Ci rcul2-6, 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERSJune 1980 THERMOSIPHON WATER HEATERS WITH HEAT EXCHANGERS*

  5. Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

  6. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

  7. Reduce Radiation Losses from Heating Equipment

    SciTech Connect (OSTI)

    Not Available

    2006-01-01T23:59:59.000Z

    This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing expensive heat losses from industrial heating equipment, such as furnaces.

  8. Water Heating Technologies Research and Development Roadmap ...

    Energy Savers [EERE]

    Water Heating Technologies Research and Development Roadmap Water Heating Technologies Research and Development Roadmap This roadmap establishes a set of high-priority RD&D...

  9. Low-Cost Microchannel Heat Exchanger

    Energy Savers [EERE]

    process Produce prototype heat exchangers for electronics cooling and high pressure waste heat recovery power system applications Test integrity and confirm high...

  10. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  11. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, J.A.; Prenger, F.C. Jr.

    1985-10-25T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe or pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  12. Magnetic refrigeration apparatus with heat pipes

    DOE Patents [OSTI]

    Barclay, John A. (Los Alamos, NM); Prenger, Jr., F. Coyne (Madison, WI)

    1987-01-01T23:59:59.000Z

    A magnetic refrigerator operating in the 4 to 20 K range utilizes heat pipes to transfer heat to and from the magnetic material at the appropriate points during the material's movement. In one embodiment circular disks of magnetic material can be interleaved with the ends of the heat pipes. In another embodiment a mass of magnetic material reciprocatingly moves between the end of the heat pipe of pipes that transmits heat from the object of cooling to the magnetic material and the end of the heat pipe or pipes that transmits heat from the magnetic material to a heat sink.

  13. Human Health Science Building Geothermal Heat Pumps

    Broader source: Energy.gov (indexed) [DOE]

    HUMAN HEALTH SCIENCE BLDG GEO HEAT PUMP SYSTEMS Principal Investigator Source Heat Pumps Demo Projects May 20, 2010 This presentation does not contain any proprietary confidential,...

  14. Heat Controller: Noncompliance Determination (2014-SE-15004)...

    Office of Environmental Management (EM)

    a Notice of Noncompliance Determination to Heat Controller, Inc. finding that the room air conditioner distributed in commerce by Heat Controller as Comfort Aire brand models...

  15. Purchasing a New Energy-Efficient Central Heating System | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - TProcuring SolarNo. 195 -Pueblo de San IldefonsoEnergy

  16. Heat Flow And Geothermal Potential In The South-Central United States |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJumpEnergyStrategyHayes CenterHearthStone Homes JumpOpen

  17. Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change RequestFirstchampions, checklists, tap-

  18. Harvesting Electricity From Wasted Heat

    SciTech Connect (OSTI)

    Schwede, Jared

    2014-06-30T23:59:59.000Z

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  19. Sodium heat engine electrical feedthrough

    DOE Patents [OSTI]

    Weber, N.

    1985-03-19T23:59:59.000Z

    A thermoelectric generator device which converts heat energy to electrical energy is disclosed. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure. 4 figs.

  20. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, S.R.

    1999-07-27T23:59:59.000Z

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  1. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, Steven R. (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  2. Industrial Heat Pump Design Options

    E-Print Network [OSTI]

    Gilbert, J. S.

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  3. Harvesting Electricity From Wasted Heat

    ScienceCinema (OSTI)

    Schwede, Jared

    2014-07-16T23:59:59.000Z

    Scientists as SLAC National Laboratory explain the concept, Photon Enhanced Thermionic Emission (PETE), and how this process can capture more energy from photovoltaic panels by harnessing heat energy from sunlight.

  4. Industrial Heat Pump Design Options 

    E-Print Network [OSTI]

    Gilbert, J. S.

    1985-01-01T23:59:59.000Z

    There are numerous industries that can incorporate heat pumps into their operations to save energy costs and payoff the investment in well under two years. Many of these industries can cut energy costs associated with evaporation by over 75...

  5. Mass Save- HEAT Loan Program

    Broader source: Energy.gov [DOE]

    Note: For a limited time, expanded HEAT loan offerings are available. These are being funded by a $3.8 million grant from the U.S. Department of Energy.

  6. Utility solar water heating workshops

    SciTech Connect (OSTI)

    Barrett, L.B. [Barrett Consulting Associates, Inc., Colorado Springs, CO (United States)

    1992-01-01T23:59:59.000Z

    The objective of this project was to explore the problems and opportunities for utility participation with solar water heating as a DSM measure. Expected benefits from the workshops included an increased awareness and interest by utilities in solar water heating as well as greater understanding by federal research and policy officials of utility perspectives for purposes of planning and programming. Ultimately, the project could result in better information transfer, increased implementation of solar water heating programs, greater penetration of solar systems, and more effective research projects. The objective of the workshops was satisfied. Each workshop succeeded in exploring the problems and opportunities for utility participation with solar water heating as a DSM option. The participants provided a range of ideas and suggestions regarding useful next steps for utilities and NREL. According to evaluations, the participants believed the workshops were very valuable, and they returned to their utilities with new information, ideas, and commitment.

  7. Solar Water Heating Incentive Program

    Broader source: Energy.gov [DOE]

    Beginning in the fall of 2003, Energy Trust of Oregon's Solar Water Heating (SWH) Incentive Program offers incentives to customers of Pacific Power, PGE, NW Natural Gas and Cascade Natural Gas who...

  8. Waste Heat Recovery from Refrigeration

    E-Print Network [OSTI]

    Jackson, H. Z.

    1982-01-01T23:59:59.000Z

    heat recovery from refrigeration machines is a concept which has great potential for implementation in many businesses. If a parallel requirement for refrigeration and hot water exists, the installation of a system to provide hot water as a by...

  9. Heat distribution by natural convection

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

  10. Designing Flexible Heat Exchanger Networks

    E-Print Network [OSTI]

    Gautam, R.; Chen, H. S.; Wareck, J. S.

    Procedures and methods used for designing flexible heat exchanger networks are described. The general approach consists of defining the flexibility problem as a set of cases. Pinch Technology is then used to develop an initial network design...

  11. Sandia National Laboratories: Central Receiver test facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test Facility (CRTF) is a major location for developing technology to produce electricity from the heat of the sun's energy. This technology is expected to be commercially...

  12. Building America Webinar: Retrofitting Central Space Conditioning...

    Broader source: Energy.gov (indexed) [DOE]

    of various control strategies to improve hydronic space heating performance in three low-rise multifamily buildings in Cambridge, MA. Presenters showed results from an analysis...

  13. Optimization of Heat Exchanger Cleaning

    E-Print Network [OSTI]

    Siegell, J. H.

    yiven in equations (7) and (8) results in the TFRE curves shown in Figure 6. In performing the calculations to compare chemical and mechanical cleaning, it is important to remember to include the value of the 20 MBtu/Hr heat lost between... MBtu/hr/day 20 Data From Operating Unit 10 20 30 40 50 60 70 ...., ........ ...................... ~.... ---- Time (Days) Figure 4. Comparison of Models for Heat Recovery ~ecay to Simulated Operating Data. MECHANICAL CLEANING W 100 MBtu...

  14. Geothermal heating for Caliente, Nevada

    SciTech Connect (OSTI)

    Wallis, F.; Schaper, J.

    1981-02-01T23:59:59.000Z

    Utilization of geothermal resources in the town of Caliente, Nevada (population 600) has been the objective of two grants. The first grant was awarded to Ferg Wallis, part-owner and operator of the Agua Caliente Trailer Park, to assess the potential of hot geothermal water for heating the 53 trailers in his park. The results from test wells indicate sustainable temperatures of 140/sup 0/ to 160/sup 0/F. Three wells were drilled to supply all 53 trailers with domestic hot water heating, 11 trailers with space heating and hot water for the laundry from the geothermal resource. System payback in terms of energy cost-savings is estimated at less than two years. The second grant was awarded to Grover C. Dils Medical Center in Caliente to drill a geothermal well and pipe the hot water through a heat exchanger to preheat air for space heating. This geothermal preheater served to convert the existing forced air electric furnace to a booster system. It is estimated that the hospital will save an average of $5300 in electric bills per year, at the current rate of $.0275/KWH. This represents a payback of approximately two years. Subsequent studies on the geothermal resource base in Caliente and on the economics of district heating indicate that geothermal may represent the most effective supply of energy for Caliente. Two of these studies are included as appendices.

  15. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect (OSTI)

    Baxter, Van D [ORNL

    2015-01-01T23:59:59.000Z

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  16. Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump

    DOE Patents [OSTI]

    Phillips, Benjamin A. (Benton Harbor, MI); Zawacki, Thomas S. (St. Joseph, MI)

    1996-12-03T23:59:59.000Z

    Numerous embodiments and related methods for generator-absorber heat exchange (GAX) are disclosed, particularly for absorption heat pump systems. Such embodiments and related methods use the working solution of the absorption system for the heat transfer medium. A combination of weak and rich liquor working solution is used as the heat transfer medium.

  17. Promotion of efficient heat pumps for heating (ProHeatPump)

    E-Print Network [OSTI]

    .444283 Supplementary report: Heat pumps in Norway May 2009 Work Package 4: Policy context and measures Authors: Nils ............................................................................................................................1 2 Norway's energy sector .........................................................................................................1 3 HP industry and market in Norway

  18. Gas heat transfer in a heated vertical channel under deteriorated turbulent heat transfer regime

    E-Print Network [OSTI]

    Lee, Jeongik

    2007-01-01T23:59:59.000Z

    Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

  19. Gas Heat Transfer in a Heated Vertical Channel under Deteriorated Turbulent Heat Transfer Regime

    E-Print Network [OSTI]

    Lee, Jeongik

    Passive cooling via natural circulation of gas after a loss of coolant (LOCA) accident is one of the major goals of the Gas-cooled Fast Reactor (GFR). Due to its high surface heat flux and low coolant velocities under ...

  20. Time Centrality in Dynamic Complex Networks

    E-Print Network [OSTI]

    Costa, Eduardo Chinelate; Wehmuth, Klaus; Ziviani, Artur; da Silva, Ana Paula Couto

    2015-01-01T23:59:59.000Z

    There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). So far, however, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal evolution of the network. Nevertheless, for some TVG scenarios, more important than identifying the central nodes under a given definition is identifying the \\emph{key time instants} for taking certain actions. In this paper, we introduce the notion of \\emph{time centrality} in TVGs. Analogously to node centrality, time centrality evaluates the relative importance of time instants in dynamic complex networks. We present two time centrality metrics related to diffusion processes. We evaluate the two defined metrics using a real-world dataset representing a in-person contact dynamic network. We validate the concept of time centrality showing that diffusion starting at the best classified time instants (i.e. the most central ones), according to our metrics, can perform a fa...