Sample records for aesthetics safety protection

  1. Development of guidelines for the aesthetic surface treatment of safety-shaped median barriers 

    E-Print Network [OSTI]

    Ness, Jacob Raymond

    2004-11-15T23:59:59.000Z

    Safety-shaped median barriers have long been employed to keep misguided vehicles on the roadway. In recent years there has been a growing national desire for more aesthetically pleasing roadside safety systems. Adding ...

  2. Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    of care in waste storage and disposal is available on Safety and Environmental Protection Service's (SEPS sustainably and to protect the environment and, in line with this, recycles waste wherever practicable to biological properties). In addition some activities produce radioactive waste. Radioactive waste

  3. Development of guidelines for the aesthetic surface treatment of safety-shaped median barriers

    E-Print Network [OSTI]

    Ness, Jacob Raymond

    2004-11-15T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE August 2004 Major Subject: Civil Engineering DEVELOPMENT OF GUIDELINES FOR THE AESTHETIC SURFACE TREATMENT OF SAFETY-SHAPED MEDIAN BARRIERS A Thesis by JACOB...) Harry Hogan (Member) Paul N. Roschke (Head of Department) August 2004 Major Subject: Civil Engineering iii ABSTRACT Development of Guidelines for the Aesthetic Surface Treatment of Safety-Shaped Median Barriers. (August 2004...

  4. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-05T23:59:59.000Z

    This order establishes the Environmental Protection, Safety, and Health Protection Program for Department of Energy (DOE) operations. Cancels Interim Management Directive No. 5001, Safety, Health And Environmental Protection dated 9-29-77.

  5. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-08-13T23:59:59.000Z

    This Order establishes the Environmental Protection, Safety. and Health Protection Program for Department of Energy (DOE) operations. Cancels DOE 5480.1, dated 5-5-1980, its chapters are not canceled. Canceled by DOE O 5480.1B

  6. Protecting Health and Safety in Education Abroad

    E-Print Network [OSTI]

    Protecting Health and Safety in Education Abroad Faculty and Staff Handbook #12;1 Office of people on campus and beyond CSU to ensure your health and safety. This CSU team serves you before, during . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 In-Country Health and Safety Health and Safety Issues

  7. Safety and Occupational Health Specialist (Fall Protection Specialist)

    Broader source: Energy.gov [DOE]

    The incumbent in this position serves as a Fall Protection Specialist in the Safety Office. Safety is responsible for administering BPA's safety program and providing advice, counsel, direction,...

  8. Electrical Safety and Arc Flash Protections

    SciTech Connect (OSTI)

    R. Camp

    2008-03-04T23:59:59.000Z

    Over the past four years, the Electrical Safety Program at PPPL has evolved in addressing changing regulatory requirements and lessons learned from accident events, particularly in regards to arc flash hazards and implementing NFPA 70E requirements. This presentation will discuss PPPL's approaches to the areas of electrical hazards evaluation, both shock and arc flash; engineered solutions for hazards mitigation such as remote racking of medium voltage breakers, operational changes for hazards avoidance, targeted personnel training and hazard appropriate personal protective equipment. Practical solutions for nominal voltage identification and zero voltage checks for lockout/tagout will also be covered. Finally, we will review the value of a comprehensive electrical drawing program, employee attitudes expressed as a personal safety work ethic, integrated safety management, and sustained management support for continuous safety improvement.

  9. Flood Protection and Dam Safety (Virginia)

    Broader source: Energy.gov [DOE]

    All dams in Virginia are subject to the Dam Safety Act and Dam Safety Regulations unless specifically excluded. A dam is excluded if it: (a) is less than six feet high; (b) has a maximum capacity...

  10. Safety Activities on Safety-Critical Software for Reactor Protection System Gee-Yong Park1

    E-Print Network [OSTI]

    Jee, Eunkyoung

    of nuclear power plants. The various techniques applied to a safety analysis on the structures and systemsSafety Activities on Safety-Critical Software for Reactor Protection System Gee-Yong Park1 , Kee Institute, P.O.Box 105 Yuseong, Daejeon, 305-353 KOREA 2: Korea Advanced Institute of Science and Technology

  11. Influence of safeguards and fire protection on criticality safety

    SciTech Connect (OSTI)

    Six, D E

    1980-01-01T23:59:59.000Z

    There are several positive influences of safeguards and fire protection on criticality safety. Experts in each discipline must be aware of regulations and requirements of the others and work together to ensure a fault-tree design. EG and G Idaho, Inc., routinely uses an Occupancy-Use Readiness Manual to consider all aspects of criticality safety, fire protection, and safeguards. The use of the analytical tree is described.

  12. 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Effective Safety Leadership

    Broader source: Energy.gov [DOE]

    2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Effective Safety Leadership

  13. 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Follow The Yellow Brick Road to Safety

    Broader source: Energy.gov [DOE]

    2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Follow The Yellow Brick Road to Safety

  14. Occupational Safety and Health Administration and Department of Energy Voluntary Protection Program MOU

    Broader source: Energy.gov [DOE]

    Occupational Safety and Health Administration and Department of Energy Voluntary Protection Program MOU

  15. 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Gaps in your Safety Program?

    Broader source: Energy.gov [DOE]

    2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Gaps in your Safety Program?

  16. 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Getting the most out of your Safety Assessment

    Broader source: Energy.gov [DOE]

    2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Getting the most out of your Safety Assessment

  17. Software reliability and safety in nuclear reactor protection systems

    SciTech Connect (OSTI)

    Lawrence, J.D. [Lawrence Livermore National Lab., CA (United States)

    1993-11-01T23:59:59.000Z

    Planning the development, use and regulation of computer systems in nuclear reactor protection systems in such a way as to enhance reliability and safety is a complex issue. This report is one of a series of reports from the Computer Safety and Reliability Group, Lawrence Livermore that investigates different aspects of computer software in reactor National Laboratory, that investigates different aspects of computer software in reactor protection systems. There are two central themes in the report, First, software considerations cannot be fully understood in isolation from computer hardware and application considerations. Second, the process of engineering reliability and safety into a computer system requires activities to be carried out throughout the software life cycle. The report discusses the many activities that can be carried out during the software life cycle to improve the safety and reliability of the resulting product. The viewpoint is primarily that of the assessor, or auditor.

  18. Radiation Protection and Safety Training | Environmental Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnicalPurchase, Delivery, andSmartRadiation EffectsProtection

  19. A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems

    E-Print Network [OSTI]

    A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems Sanghyun Yoon through safety analy- sis is strongly mandated for safety-critical systems. Nuclear plant protection. INTRODUCTION Safety-critical systems (e.g. nuclear power plants and air- planes) require rigorous quality

  20. ELECTRICAL SAFETY HAZARDS HANDBOOK Littelfuse is the global leader in circuit protection

    E-Print Network [OSTI]

    to become the world's leading provider of circuit protection solutions. For over 75 years, Littelfuse has.S. Occupational Safety and Health Administration (OSHA), the National Fire Protection Association (NFPA Safety 16 ElectricalSafetyOrganizations 19 OSHA 19 TheGeneralDutyClause 19 OSHARegulations 19 NFPA 20

  1. Safety First Safety Last Safety Always Personal fall-protection systems include a body harness (safe-

    E-Print Network [OSTI]

    Minnesota, University of

    did it that way doesn't make it right. Personal fall-protection equipment is the only thing between, general requirements 1910.269 Electric power generation, transmission, and distribution 1915.159 Personal

  2. Office of Environmental Protection, Sustainability Support, and Corporate Safety Analysis

    Broader source: Energy.gov [DOE]

    The Office of Environmental Protection, Sustainability Support and Analysis establishes environmental protection requirements and expectations for the Department to ensure protection of workers and the public and protection of the environment from the hazards associated with all Department operations.

  3. On-Line Educational Means on Radiological Protection and Accelerator General Safety Policy in Radiotherapy and Industrial Sterilization Facilities

    E-Print Network [OSTI]

    Spyropoulos, B

    1999-01-01T23:59:59.000Z

    On-Line Educational Means on Radiological Protection and Accelerator General Safety Policy in Radiotherapy and Industrial Sterilization Facilities

  4. Radiation SafetyProtecting the Public and the Environment

    Broader source: Energy.gov [DOE]

    The Department of Energy has a stringent program for protecting its workers, the public, and the environment from radiation.  This web area has links to tools and aids for the radiation protection...

  5. TITLE: RELEASING PROTECTED HEALTH INFORMATION TO PREVENT A SERIOUS THREAT TO HEALTH OR SAFETY

    E-Print Network [OSTI]

    Grishok, Alla

    TITLE: RELEASING PROTECTED HEALTH INFORMATION TO PREVENT A SERIOUS THREAT TO HEALTH OR SAFETY the patient's authorization in order to prevent a serious threat to health or safety. PURPOSE The purpose will release a patient's PHI without the patient's authorization to prevent a serious threat to health

  6. R. D. Bennett, 2006 Safety Topic Personal Protective

    E-Print Network [OSTI]

    Cohen, Robert E.

    (MEK), nitrobenzene, benzene, toluene, styrene, or THF) ­ For high levels of contamination and glove resistant suit may be appropriate ­ Be aware of loose clothing which could inadvertently be exposed Protective Equipment · Hearing protection ­ People exposed to time weighted average of 85 dbA threshold

  7. Engineering aesthetics and aesthetic ergonomics: Theoretical foundations and a dual-process research methodology

    E-Print Network [OSTI]

    Liu, Yili

    Engineering aesthetics and aesthetic ergonomics: Theoretical foundations and a dual, Ann Arbor, MI, 48109-2117, USA Keywords: Engineering aesthetics; Aesthetic ergonomics; Aesthetic human judgments and `educated guesses'. Whilst ergonomics and human factors researchers have made great

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  10. Environment/Health/Safety (EHS): Radiation Protection Group: Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, SafetySafety Committee

  11. ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 19: Personal Protective Equipment

    E-Print Network [OSTI]

    Wechsler, Risa H.

    : http://www-group.slac.stanford.edu/esh/eshmanual/references/PPEQuickstart.pdf 1 Who needs to know about from the Environment, Safety, and Health (ESH) Division, and workers must be trained or informed appropriate ESH Manual chapter. SLAC is responsible for providing PPE to its employees, Stanford University

  12. Office of River Protection Integrated Safety Management System Description

    SciTech Connect (OSTI)

    CLARK, D.L.

    1999-08-09T23:59:59.000Z

    Revision O was never issued. Finding safe and environmentally sound methods of storage and disposal of 54 million gallons of highly radioactive waste contained in 177 underground tanks is the largest challenge of Hanford cleanup. TWRS was established in 1991 and continues to integrate all aspects of the treatment and management of the high-level radioactive waste tanks. In fiscal Year 1997, program objectives were advanced in a number of areas. RL TWRS refocused the program toward retrieving, treating, and immobilizing the tank wastes, while maintaining safety as first priority. Moving from a mode of storing the wastes to getting the waste out of the tanks will provide the greatest cleanup return on the investment and eliminate costly mortgage continuance. There were a number of safety-related achievements in FY1997. The first high priority safety issue was resolved with the removal of 16 tanks from the ''Wyden Watch List''. The list, brought forward by Senator Ron Wyden of Oregon, identified various Hanford safety issues needing attention. One of these issues was ferrocyanide, a chemical present in 24 tanks. Although ferrocyanide can ignite at high temperature, analysis found that the chemical has decomposed into harmless compounds and is no longer a concern.

  13. ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 19: Personal Protective Equipment

    E-Print Network [OSTI]

    Wechsler, Risa H.

    , trips, and, falls Slip-resistant shoes Chemicals, hazardous handling Splash, irritating mists Goggles the ceiling Bump cap Medical work Slip, trips, falls, mild irritants, bio-hazards Disposable gloves Slip irritants Chapter 29, "Respiratory Protection" Construction Falling or rolling objects, flying debris Hard

  14. UNIVERSITY OF GLASGOW 1 Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    , air conditioning and heat pump technology. However, certain fire protection equipment that contains F temperature, e.g. cold rooms, large scale water chillers · Air-conditioning equipment · Heat pumps ­ heating devices that use a refrigeration machine to extract energy from a waste heat source and deliver useful

  15. Statistical Analysis of Occupational Safety Data of Voluntary Protection Program (VPP) and Non-VPP Sites

    Broader source: Energy.gov [DOE]

    The Voluntary Protection Program (VPP) was originally developed by Occupational Safety and Health Administration (OSHA) in 1982 to foster greater ownership of safety and health in the workplace. The Department of Energy (DOE) adopted VPP in 1992; currently 23 sites across the DOE complex participate in the program. As its name implies, it is a voluntary program; i.e. not required by laws or regulations.

  16. Environment/Health/Safety (EHS): Radiation Protection Group: Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, Safety

  17. NREL: Environment, Safety, Health and Quality - Environmental Protection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL is spearheadingIntegratedSystemProtection

  18. Environment/Health/Safety (EHS): Personal Protective Equipment (PPE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, Safety andBerkeley

  19. Environment/Health/Safety (EHS): Radiation Protection Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, Safety andBerkeleyRadiation

  20. Health, Safety and Environmental Protection Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy HealthJanuary 12, 2012Safety

  1. Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety Page 1 of 1 H:\\Courses\\Laboratory Standard\\Course Materials\\PPE_Hazard_Assess.doc Name: PI and Department: Date: Eye Hazards - Tasks that can cause eye hazards include: Working

  2. CRAD, Occupational Safety & Health- Office of River Protection K Basin Sludge Waste System

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a May 2004 assessment of the Environment, Safety and Health program at the Office of River Protection K Basin Sludge Waste System.

  3. River Protection Project Integrated safety management system phase II verification review plan - 7/29/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10T23:59:59.000Z

    The purpose of this review is to verify the implementation status of the Integrated Safety Management System (ISMS) for the River Protection Project (RPP) facilities managed by Fluor Daniel Hanford, Inc. (FDH) and operated by Lockheed Martin Hanford Company (LMHC). This review will also ascertain whether within RPP facilities and operations the work planning and execution processes are in place and functioning to effectively protect the health and safety of the workers, public, environment, and federal property over the RPP life cycle. The RPP ISMS should support the Hanford Strategic Plan (DOERL-96-92) to safely clean up and manage the site's legacy waste and deploy science and technology while incorporating the ISMS central theme to ''Do work safely'' and protect human health and the environment.

  4. Memorandum, Request for Concurrence on fire Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    Request for Concurrence on Three Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

  5. For inquires concerning self inspections, please call Workplace Safety & Environment Protection (WSEP)966-4700

    E-Print Network [OSTI]

    Saskatchewan, University of

    .0 Personal Protective Equipment (PPE) A M UA N/A Comments 2.1 Lab coats/uniforms stored separately from.e. gloves, goggles, safety glasses, boots, lab coats, face shields, etc.) 2.3 Other 3.0 Hazard Communication/A Comments 8.1 Drive mechanism guarded - no open belts, gears or chains 8.2 Tool bit removed after use 8

  6. Secondary Protection for 70 MPa Fueling - A White Paper from the Hydrogen Safety Panel

    SciTech Connect (OSTI)

    Weiner, Steven C.; Kallman, Richard A.

    2009-07-06T23:59:59.000Z

    In developing a 70 megapascal (MPa) fueling infrastructure, it is critical to ensure that a vehicle equipped with a lower service pressure fuel tank is never filled from a 70 MPa fueling source. Filling of a lower service pressure vehicle at a 70 MPa fueling source is likely to result in a catastrophic event with severe injuries or fatalities. The Hydrogen Safety Panel recommends that DOE undertake a two?step process to address this issue: 1. Perform an independent risk analysis of a 70MPa dispenser filling a lower pressure vehicle tank and develop different approaches for prevention and mitigation to meet an acceptable level of safety. Cost effectiveness, reliability, advantages and disadvantages are among the factors that should be evaluated for each approach considered. 2. Until such time as this analysis is complete and any recommended actions implemented, communicate the potential risk to responsible parties and strongly encourage those parties to add a secondary layer of protection to the existing system of mechanically non?interchangeable nozzles/receptacles. This will reduce the probability of a pressure mismatch during this developmental phase for hydrogen fuel cell vehicles and infrastructure. This step can be reassessed after further analysis is completed and the need and effectiveness of secondary protection methods are evaluated. This paper provides background discussion of the problem, current safety systems and strategy and examples of potential future solutions to support the above recommendations.

  7. Memorandum Request for Concurrence on firee Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    Memorandum Request for Concurrence on firee Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

  8. Protecting Your Farm's Markets and Profitability: Writing a Practical Food Safety Plan for Small and Diversified Farms

    E-Print Network [OSTI]

    Hayden, Nancy J.

    the foundation to help you prepare for a Good Agricultural Practices (GAPs) audit certification, it is designedProtecting Your Farm's Markets and Profitability: Writing a Practical Food Safety Plan for Small and Diversified Farms CENTER FOR SUSTAINABLE AGRICULTURE UVM Extension's Center for Sustainable Agriculture

  9. environmental management radiation protection

    E-Print Network [OSTI]

    Entekhabi, Dara

    EHS environmental management biosafety radiation protection industrial hygiene safety Working: Biosafety, Environmental Management, Industrial Hygiene, Radiation Protection and Safety. Each specialized Management Program, Industrial Hygiene, Radiation Protection Program, and the Safety Program. (http

  10. aesthetics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a valuable resource hazard, an aesthetic nuisance, and waste of a valuable resource. A scrap tire stockpile or dump provides; Landfills; Recycling; Slope stability; Drainage....

  11. Radiation Safety Training Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-03-17T23:59:59.000Z

    This Guide provides an acceptable methodology for establishing and operating a radiation safety training program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart J of 10 CFR 835. Canceled by DOE G 441.1-1B.

  12. A Comparison of the Safety Analysis Process and the Generation IV Proliferation Resistance/Physical Protection Assessment Methodology

    SciTech Connect (OSTI)

    T. A. Bjornard; M. D. Zentner

    2006-05-01T23:59:59.000Z

    The Generation IV International Forum (GIF) is a vehicle for the cooperative international development of future nuclear energy systems. The Generation IV program has established primary objectives in the areas of sustainability, economics, safety and reliability, and Proliferation Resistance and Physical Protection (PR&PP). In order to help meet the latter objective a program was launched in December 2002 to develop a rigorous means to assess nuclear energy systems with respect to PR&PP. The study of Physical Protection of a facility is a relatively well established methodology, but an approach to evaluate the Proliferation Resistance of a nuclear fuel cycle is not. This paper will examine the Proliferation Resistance (PR) evaluation methodology being developed by the PR group, which is largely a new approach and compare it to generally accepted nuclear facility safety evaluation methodologies. Safety evaluation methods have been the subjects of decades of development and use. Further, safety design and analysis is fairly broadly understood, as well as being the subject of federally mandated procedures and requirements. It is therefore extremely instructive to compare and contrast the proposed new PR evaluation methodology process with that used in safety analysis. By so doing, instructive and useful conclusions can be derived from the comparison that will help to strengthen the PR methodological approach as it is developed further. From the comparison made in this paper it is evident that there are very strong parallels between the two processes. Most importantly, it is clear that the proliferation resistance aspects of nuclear energy systems are best considered beginning at the very outset of the design process. Only in this way can the designer identify and cost effectively incorporate intrinsic features that might be difficult to implement at some later stage. Also, just like safety, the process to implement proliferation resistance should be a dynamic, iterative process that continually evolves with the design.

  13. Dam Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania Department of Environmental Protection's Division of Dam Safety provides for the regulation and safety of dams and reservoirs throughout the Commonwealth in order to protect the...

  14. From Point to Pixel: A Genealogy of Digital Aesthetics

    E-Print Network [OSTI]

    Hoy, Meredith Anne

    2010-01-01T23:59:59.000Z

    From Point to Pixel: A Genealogy of Digital Aesthetics byFrom Point to Pixel: A Genealogy of Digital Aesthetics byFrom Point to Pixel: A Genealogy of Digital Aesthetics, I

  15. RADIATION SAFETY TRAINING MANUAL Radiation Safety Office

    E-Print Network [OSTI]

    Sibille, Etienne

    protection and the potential risks of ionizing radiation. Radiation Safety Office personnel provide.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. OVERVIEW OF REGULATIONS, PROTECTION STANDARDS, AND RADIATION SAFETY ORGANIZATION.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V. BASIC RADIATION PROTECTION PRINCIPLES

  16. River Protection Project Integrated safety management system phase II verification report, volumes I and II - 8/19/99

    SciTech Connect (OSTI)

    SHOOP, D.S.

    1999-09-10T23:59:59.000Z

    The Department of Energy policy (DOE P 450.4) is that safety is integrated into all aspects of the management and operations of its facilities. In simple and straightforward terms, the Department will ''Do work safely.'' The purpose of this River Protection Project (RPP) Integrated Safety Management System (ISMS) Phase II Verification was to determine whether ISMS programs and processes are implemented within RFP to accomplish the goal of ''Do work safely.'' The goal of an implemented ISMS is to have a single integrated system that includes Environment, Safety, and Health (ES&H) requirements in the work planning and execution processes to ensure the protection of the worker, public, environment, and federal property over the RPP life cycle. The ISMS is comprised of the (1) described functions, components, processes, and interfaces (system map or blueprint) and (2) personnel who are executing those assigned roles and responsibilities to manage and control the ISMS. Therefore, this review evaluated both the ''paper'' and ''people'' aspects of the ISMS to ensure that the system is implemented within RPP. Richland Operations Office (RL) conducted an ISMS Phase I Verification of the TWRS from September 28-October 9, 1998. The resulting verification report recommended that TWRS-RL and the contractor proceed with Phase II of ISMS verification given that the concerns identified from the Phase I verification review are incorporated into the Phase II implementation plan.

  17. rev December 2010 Radiation Safety Manual Section 9 Radiation Protection Procedures

    E-Print Network [OSTI]

    Wilcock, William

    ................................................................................................ 9-5 a. Reduce Radionuclide Handling................................... 9-5 b. "Dry Runs ­ Radiation Protection Procedures Page 9-2 b. Lab Coats

  18. For inquires concerning self inspections, please call Workplace Safety & Environment Protection (WSEP)966-4700

    E-Print Network [OSTI]

    Saskatchewan, University of

    being conducted (i.e. gloves, goggles, safety glasses, boots, lab coats, face shields, etc.) 3.2 Other 4 - no open belts, gears or chains 11.4 Is maximum grinder shaft rpm clearly permanently marked on machine 11

  19. Syncreticity rising: Elizabeth Peabody's Aesthetic papers

    E-Print Network [OSTI]

    Schultz, Catherine Antoinette

    1990-01-01T23:59:59.000Z

    SYNCRETIC ITY RISING: ELIZABETH PEABODY'S AESTHETIC PAPERS A Thesis by CATHERINE ANTOINETTE SCHULTZ Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements for the degree of MASTER... OF ARTS May 1990 Major Subject: English SYNCRETICITY RISING: ELIZABETH PEABODY'S AESTHETIC PAPERS A Thesis CATHERINE ANTOINETTE SCHULTZ Approved as to style and content by: J. Reynolds ( Chair of Cohmnttee ) Lawrence ' . Oliver ( Member ) Tim y...

  20. Regulatory analysis for the resolution of generic issue 57: Effects of Fire Protection System Actuation on Safety-Related Equipment

    SciTech Connect (OSTI)

    Woods, H.W.

    1993-10-01T23:59:59.000Z

    Actuation of Fire Protection Systems (FPS) in Nuclear Power Plants have resulted in adverse interactions with equipment important to safety. Precursor operational experience has shown that 37% of all FPS actuations damaged some equipment, and 20% of all FPS actuations have resulted in a plant transient and reactor trip. On an average 0.17 FPS actuations per reactor year have been experienced in nuclear power plants in this country. This report presents the regulatory analysis for GI-57, ``Effects of Fire Protection System Actuation on Safety-Related Equipment``. The risk reduction estimates, cost/benefit analyses, and other insights gained during this effort have shown that implementation of the recommendations contained in this report can significantly reduce risk, and that these improvements can be warranted in accordance with the backfit rule, 10 CFR 50.109(a)(3). However, plant specific analyses are required in order to identify such improvements. Generic analyses can not serve to identify improvements that could be warranted for individual, specific plants. Plant specific analyses of the type needed for this purpose are underway as part of the Individual Plant Examination of External Events (IPEEE) program.

  1. For inquires concerning self inspections, please call Workplace Safety & Environment Protection (WSEP)966-4700

    E-Print Network [OSTI]

    Saskatchewan, University of

    being conducted (i.e. gloves, goggles, safety glasses, boots, lab coats, face shields, etc.) 3.2 Other 4 belts, gears or chains 9.4 Is maximum grinder shaft rpm clearly permanently marked on machine 9 - no open belts, gears or chains 10.2 Tool bit removed after use 10.3 Fillings and tailings cleaned up after

  2. IEEE Communications, March 2005 Protecting Public Safety With Better Communications Systems

    E-Print Network [OSTI]

    Peha, Jon M.

    local agencies decision-making power, as they understand the local environment better than distant federal bureaucrats. Such a policy presumably worked well when it allowed each community to determine public safety agencies making decisions based primarily on local factors, the predictable result

  3. Safety in Mine Research EstablishmentPresent-day requirements for protection against fire in coal mines 

    E-Print Network [OSTI]

    Kushnarev, A.; Koslyuk, A.; Petrov, P.

    Analysis of a statistical data shows that, on an average, about 50% of the total underground emergencies occurring in coal mines in the USSR are due to fires. Great attention is, therefore, paid in our country to the problem of protection against...

  4. EURISOL-DS Multi?MW Target: Radiological Protection, Radiation Safety and Shielding Aspects

    E-Print Network [OSTI]

    Y. Romanets and R. Luís (ITN)

    The objective of this work was to carry out a detailed study and analysis of all aspects related toradioprotection and radiation safety of the spallation target area and the whole spaces reservedfor the fission targets and spallation target maintenance. Operational and no?operationalconditions were considered for an evaluation of the radiation safety conditions.An analysis of the proposed shielding dimensions and configuration was performed for thesystem during operation time. Parameters as activation, dose rate, energy deposition, etc. aremore important for the no?operation period, in order to evaluate the hazard level anddetermine the staff access type to the maintenance areas (direct or remote control).Such elements as the fission targets and the whole structure involved on it were studied in moredetail because of the disposal issues, after operation. Activation, dose rate and residual nuclideswere studied for each element of the assembly. All parameters were analyzed according to their...

  5. Pacific Northwest Laboratory annual report for 1982 to the DOE Office of the Assistant Secretary for Environmental Protection, Safety and Emergency Preparedness. Part 5. Environmental and occupational protection, assessment, and engineering

    SciTech Connect (OSTI)

    Bair, W.J.

    1983-02-01T23:59:59.000Z

    Part 5 of the 1982 Annual Report to the Department of Energy's Office of Environmental Protection, Safety and Emergency Preparedness presents Pacific Northwest Laboratory's progress on work performed for the Office of Environmental Programs, Office of Operational Safety, and the Office of Nuclear Safety. The report is in three sections, introduced by blue divider pages, corresponding to the program elements: Technology Impacts, Environmental and Safety Engineering, Operational and Environmental Safety. In each section, articles describe progress made during FY 1982 on individual projects, as identified by the Field Task Proposal/Agreement. Authors of these articles represent a broad spectrum of capabilities derived from various segments of the Laboratory, reflecting the interdisciplinary nature of the work.

  6. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change, Safety, The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety,...

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  8. Preparation is the best protection against the dangers of a hurricane. The information below is taken from the American Red Cross Hurricane Safety Checklist.

    E-Print Network [OSTI]

    Varela, Carlos

    Preparation is the best protection against the dangers of a hurricane. The information below is taken from the American Red Cross Hurricane Safety Checklist. What should I do? Check your disaster, lawn furniture). Close windows, doors and hurricane shutters. If you do not have hurricane shutters

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  13. Pacific Northwest Laboratory annual report for 1981 to the DOE Office of the Assistant Secretary for Environmental Protection, Safety and Emergency Preparedness. Part 5. Environmental and occupational protection, assessment, and engineering

    SciTech Connect (OSTI)

    Glass, W.A.

    1982-02-01T23:59:59.000Z

    This report describes research in environment, health, and safety conducted during fiscal year 1981. The five parts of the report are oriented to particular segments of the program. Parts 1 to 4 report on research performed for the DOE Office of Health and Environmental Research in the Office of Energy Research. Part 5 reports progress on all research performed for the Office of the Assistant Secretary for Environmental Protection, Safety and Emergency Preparedness. The parts are: Part 1: Biomedical Sciences under Program Manager, H. Drucker; Part 2: Ecological Sciences, under Program Manager, B.E. Vaughan; Part 3: Atmospheric Sciences under Program Manager, C.E. Elderkin; Part 4: Physical Sciences under Program Manager, J.M. Nielsen; and Part 5: Environmental and Occupational Protection, Assessment, and Engineering under Program Managers, D.L. Hessel, S. Marks, and W.A. Glass.

  14. RADIATION SAFETY MANUAL POLICIES AND PROCEDURES

    E-Print Network [OSTI]

    Zhang, Yuanlin

    RADIATION SAFETY MANUAL POLICIES AND PROCEDURES FOR RADIATION PROTECTION AT TEXAS TECH UNIVERSITY................................................................................................................I-1 B. Radiation Protection Program...............................................................................I-3 D. Radiation Safety Management

  15. Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    or to the environment, that is, to ensure that it is not special waste or radioactive waste. Waste electronic FOR THE CURRENT REVISION. Duty of Care in Waste Storage and Disposal This Note should be read in conjunction of controlled waste (also sometimes known as directive waste). With the exception of radioactive waste all waste

  16. Industrial Safety | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as machine guarding, personal protective equipment (PPE), electrical safety, accident prevention and investigation, building design and code review, fire safety, and...

  17. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  18. Office of Nuclear Safety

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety establishes nuclear safety requirements and expectations for the Department to ensure protection of workers and the public from the hazards associated with nuclear operations with all Department operations.

  19. On the epistemological significance of aesthetic values in architectural theory

    E-Print Network [OSTI]

    Bhatt, Ritu

    2000-01-01T23:59:59.000Z

    This dissertation examines the epistemological significance of "truth," "rationality," and the "aesthetic" first in the nineteenth-century definitions of the nature of Gothic and, then in more recent twentieth-century ...

  20. The aesthetic turn in the face of nihilism 

    E-Print Network [OSTI]

    Craig, Benjamin Taylor

    2008-10-10T23:59:59.000Z

    This thesis outlines one's overcoming of nihilism by consulting two figures, Martin Heidegger and John Dewey. Each thinker holds a pivotal role for art, such that, a turn to the aesthetic allows the individual to overcome this nihilistic age. I...

  1. Voluntary Protection Program Announcement

    Broader source: Energy.gov [DOE]

    Secretary O'Leary formally announced a new initiative, "The Department of Energy Voluntary Protection Program (DOEVPP)," which is designed to recognize contractor sites that are providing excellent safety and health protection to their employees.

  2. Dam Safety Program (Florida)

    Broader source: Energy.gov [DOE]

    Dam safety in Florida is a shared responsibility among the Florida Department of Environmental Protection (FDEP), the regional water management districts, the United States Army Corps of Engineers ...

  3. Safety and Security Enfrocment Process Overview

    Office of Environmental Management (EM)

    are to enhance and protect worker safety and health, nuclear safety, and classified information security by fostering a culture that seeks to attain and sustain compliance...

  4. Revised 7/13/2012 ________________________ _____Environment, Health, & Safety _____ ______________________

    E-Print Network [OSTI]

    Eisen, Michael

    and Personal Protection Article 10. Personal Safety Devices and Safeguards). Participant Evaluation: Online

  5. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

  6. Environmental Protection, Safety, and Health Protection Standards

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-07T23:59:59.000Z

    Cancels Chapter 1 of DOE O 5480.1A. Attachment 2, Paragraph 2C, 2D(2)-(3), 2E(1)-(8) and Attachment 3, Paragraph 2C, 2D(2)-(3), 2E(1). Canceled by DOE O 251.68. -(7) are canceled by DOE O 440.1.

  7. Aesthetics in Software Engineering Technical Report UT-CS-06-579

    E-Print Network [OSTI]

    MacLennan, Bruce

    Aesthetics in Software Engineering Technical Report UT-CS-06-579 Bruce J. MacLennan* Department This report discusses the important role that aesthetics may play in software engineering. We begin to advance and teach the aesthetic di- mension of software engineering. 1 Introduction Software engineering

  8. Radiation Safety Annual Refresher Training

    E-Print Network [OSTI]

    Thomas, David D.

    Radiation Safety Annual Refresher Training Radiation Protection Division Department of Environmental Health & Safety #12;Topics in Radiation Safety (applicable RPD Manual sections indicated) User;Topics in Radiation Safety (applicable RPD Manual sections indicated) User and Non-user topics Types

  9. Radiation Safety (Revised March 2010)

    E-Print Network [OSTI]

    Kay, Mark A.

    to Workers; Inspections 27 10 CFR Part 20Standards for Protection Against Radiation 28 10 CFR Part 35Radiation Safety Manual (Revised March 2010) Updated December 2012 Stanford University, Stanford California #12; #12; Radiation Safety Manual (Revised March 2010) Updated

  10. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  11. APS Experiment Safety Review Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participates in project reviews as requested, recommends laser safety policy, reviews accident investigation conclusions, and evaluates plans to protect personnel where laser...

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  13. Toolbox Safety Talk Respiratory Protection

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Respirators (SAR) and Self Contained Breathing Apparatus (SCBA) are examples of atmosphere supplying

  14. Voluntary Protection Program- Basics

    Broader source: Energy.gov [DOE]

    The Department of Energy Voluntary Protection Program (DOE-VPP) promotes safety and health excellence through cooperative efforts among labor, management, and government at the Department of Energy (DOE) contractor sites. DOE has also formed partnerships with other Federal agencies and the private sector for both advancing and sharing its Voluntary Protection Program (VPP) experiences and preparing for program challenges in the next century. The safety and health of contractor and federal employees are a high priority for the Department.

  15. Carbon Monoxide Safety Tips

    E-Print Network [OSTI]

    Shaw, Bryan W.; Garcia, Monica L.

    1999-07-26T23:59:59.000Z

    Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist....

  16. Hanford’s Robust Safety Culture Gains One More Site-Wide Safety Standard

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – The safety of the Hanford Site workforce has been bolstered with another program added to the list of Site-wide Safety Standards. The latest Site-wide Safety Standard covers Fall Protection.

  17. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21T23:59:59.000Z

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

  18. aesthetic cardiology adipose-derived: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    methods to help them make aesthetic design decisions Liu, Yili 25 (c) Meade & Roach, LLP 1 Medicare's Impact on Cardiology Drugs Biology and Medicine Websites Summary:...

  19. Fire Protection Program Manual

    SciTech Connect (OSTI)

    Sharry, J A

    2012-05-18T23:59:59.000Z

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  20. Some British Aesthetic Theories From Shaftesbury Through Alison

    E-Print Network [OSTI]

    Collins, Marie Taylor

    1914-06-01T23:59:59.000Z

    this characterization in two points; namely, in the inclusion of teleology and an intellectual element in his content of beauty. . . . . . . . . 1. p. 422. The Moralists, Vol. 2. 2. p. 426. ibid. 3. p. 178 B. Bosauquet. History of Aesthetic. Lon- don, 1892. 8... appears to arise in the mind without any external stimulus of beauty. More- over, there is always the inconsistency of his denial of 1. p. 102. Nature and Conduct of the Passions. 2. p. 46. ibid. 3. p. 74. Sec. 6, Art. 3. Of Beauty, Order, Harmony...

  1. Radiation Safety Manual Dec 2012 Page 1 RADIATION SAFETY

    E-Print Network [OSTI]

    Grishok, Alla

    of External and Internal Doses E. Reports and Notices to Workers Chapter VII: Radiation ProtectionRadiation Safety Manual ­ Dec 2012 Page 1 RADIATION SAFETY MANUAL For Columbia University NewYork-Presbyterian Hospital New York State Psychiatric Institute Barnard College December 2012 #12;Radiation Safety Manual

  2. Redox shuttle additives for overcharge protection in lithium batteries

    E-Print Network [OSTI]

    Richardson, Thomas J.; Ross Jr., P.N.

    1999-01-01T23:59:59.000Z

    Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

  3. CONSTRUCTION SAFETY MANUAL ADMINISTRATIVE POLICIES

    E-Print Network [OSTI]

    Knowles, David William

    Revised 06/10 10.1 Subcontractor Safety Policy 10.2 Scope 10.2.1 General 10.2.2 Department of Energy 10 the integration of safety management into all construction processes. Project managers, construction managers.7 Engineered Protective Systems 10.8 Procurement of Hazardous Material 10.9 Safety Training and Education 10

  4. Surveillance Guide - OSS 19.4 Pressure Safety

    Broader source: Energy.gov (indexed) [DOE]

    will examine implementation of applicable DOE requirements and best practices. 2.0 References 2.1 DOE 5480.4, Environmental Protection, Safety and Health Protection...

  5. MSU Safety & Risk Management Page 1 of 2 SAFETY & RISK MANAGEMENT

    E-Print Network [OSTI]

    Dyer, Bill

    MSU Safety & Risk Management Page 1 of 2 SAFETY & RISK MANAGEMENT OCCUPATIONAL HEALTH & SAFETY Safety & Risk Management (SRM) of new hires. Completion of a baseline occupational health evaluation Protection Program.) #12;MSU Safety & Risk Management Page 2 of 2 MSU provides additional medical evaluations

  6. RADIATION SAFETY OFFICE Campus Radiation Safety Manual UNIVERSITY OF NEW ORLEANS Previous Revision: May 1999

    E-Print Network [OSTI]

    Li, X. Rong

    SAFETY OFFICER AND RADIATION PROTECTION STAFF The Radiation Safety Officer has the responsibilityRADIATION SAFETY OFFICE Campus Radiation Safety Manual UNIVERSITY OF NEW ORLEANS Previous Revision radiation safety program will be conducted in such a manner that exposure to faculty, staff, students

  7. Chapter 13 Employee Health and Safety 13.01 Safety Policy and Accident Reporting

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Chapter 13 Employee Health and Safety 13.01 Safety Policy and Accident Reporting General Safety. If an accident occurs, this responsibility includes making an adequate investigation and taking necessary are responsible for following established safety procedures and using protective equipment. Safety and Accident

  8. How to Bridge the Culture Gap: How John Dewey’s Aesthetics May Benefit the Local Church 

    E-Print Network [OSTI]

    Shockley, Paul Russell

    2012-02-14T23:59:59.000Z

    Dewey’s aesthetic philosophy understands the shifting nature of our environment and the value of aesthetic experience, providing beneficial insights to assist unhealthy churches. To better understand the applicability of his philosophy, Chapter II...

  9. War as Aesthetic: The Philosophy of Carl von Clausewitz as the Embodiment of John Dewey's Concept of Experience 

    E-Print Network [OSTI]

    De Berg, Oak Herbert

    2011-10-21T23:59:59.000Z

    This dissertation confirms war as the zenith of aesthetic experience and demonstrates the pragmatic nature of war through explication of John Dewey’s aesthetic philosophy. Likewise, the coherency of Carl von Clausewitz’s philosophy parallels Dewey...

  10. Implementation Guide for DOE Fire Protection and Emergency Services Programs for Use with DOE O 420.1B, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-09-27T23:59:59.000Z

    This Guide facilitates the implementation of requirements of DOE O 420.1B by providing an acceptable approach to meet the requirements for Fire Protection Programs. Cancels DOE G 440.1-5.

  11. Health, Safety, and Environment Division

    SciTech Connect (OSTI)

    Wade, C [comp.] [comp.

    1992-01-01T23:59:59.000Z

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  12. Safety aspects of EB melting

    SciTech Connect (OSTI)

    Hainz, L.C. [Hainz Engineering Services, Inc., Albany, OR (United States)

    1994-12-31T23:59:59.000Z

    Electron Beam melting technology, along with other vacuum metallurgical technologies, requires special attention to safety involving operation and maintenance of the EB furnace and systems. Although the EB industry has been relatively accident free, the importance of safety awareness and compliance becomes increasingly important. It is very important to provide a safe work environment for employees and economically important to protect the equipment from damage and potential downtime. Safety and accident prevention directly affects overhead costs by keeping accident insurance rates at a minimum. Routine safety requirements will be reviewed and safety aspects requiring extra attention will be addressed. Safety improvements and experiences of furnace users will be shared as examples.

  13. Elec 331 -Hospital Safety Power Distribution

    E-Print Network [OSTI]

    Pulfrey, David L.

    - Hospital Safety 7 Ground Fault Interrupter Test Reset Gnd Ref Hot Ref Hot Test / Reset Relay Relay : 5 to 30 mA, Protection #12;Elec 331 - Hospital Safety 8

  14. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    - Hazards Identification EMERGENCY OVERVIEW Irritant. Irritating to eyes, respiratory system and skin. HMIS CONTROLS Mechanical exhaust required. Safety shower and eye bath. PERSONAL PROTECTIVE EQUIPMENT Respiratory

  15. Safety of Dams and Reservoirs Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act regulates dams and associated reservoirs to protect health and public safety and minimize adverse consequences associated with potential dam failure. The act describes the responsibilities...

  16. RESEARCH SAFETY RADIATION SAFETY

    E-Print Network [OSTI]

    and Communications Manager (951) 827-6303 janette.ducut@ucr.edu Beiwei Tu, MS, CIH, CSP Safety and Industrial Hygiene

  17. Protection 1 Protection 1

    E-Print Network [OSTI]

    Lampson, Butler W.

    Protection 1 Protection 1 Butler W. Lampson Xerox Corporation Palo Alto, California Abstract is a malicious act or accident that crashes the system--- this might be considered the ultimate degradation. 1, p 437. It was reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), p 18. This version

  18. Protection 1 Protection1

    E-Print Network [OSTI]

    Lampson, Butler W.

    Protection 1 Protection1 Butler W. Lampson Xerox Corporation Palo Alto, California Abstract is a malicious act or accident that crashes the system-- this might be considered the ultimate degradation. 1, p 437. It was reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), p 18. This version

  19. Nature's objects : geology, aesthetics, and the understanding of materiality in eighteenth-century Britain and France

    E-Print Network [OSTI]

    Ferng, Jennifer Hsiao-Mei

    2012-01-01T23:59:59.000Z

    Explorations of aesthetic design and scientific experimentation have traditionally relied upon the natural world as a source of inspiration. Notably absent from previous studies of the eighteenth century is the dynamic ...

  20. "Art is a Hardy Plant:" : Benjamin Henry Latrobe and the cultivation of a transitional aesthetics

    E-Print Network [OSTI]

    Chuong, Jennifer Y

    2012-01-01T23:59:59.000Z

    This thesis suggests that architect Benjamin Henry Latrobe's engagement with American scientific discourses gave rise to a transitional aesthetics that radically refigured his European-derived notions of art and architecture. ...

  1. Understanding visual preferences for landscapes: an examination of the relationship between aesthetics and emotional bonding 

    E-Print Network [OSTI]

    Cheng, Chia-Kuen

    2009-05-15T23:59:59.000Z

    The relationship between humans and the quality of the environment have been examined primarily through two conceptual constructs: landscape aesthetics and place attachment or emotional place bonding. The former focuses on the physical environment...

  2. Examining the Relationship Between Key Visual Characteristics of Urban Plazas and Aesthetic Response

    E-Print Network [OSTI]

    Ferdous, Farhana

    2013-01-01T23:59:59.000Z

    Urban plazas as public spaces occur in every town and city around the world; however, some plazas are more user-friendly and successful than others. This study examined that “aesthetics” also have a significant impact to determine the extent...

  3. Kinaesthetic impulses : aesthetic experience, bodily knowledge, and pedagogical practices in Germany, 1871-1918

    E-Print Network [OSTI]

    Çelik, Zeynep, Ph. D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    This dissertation studies a moment of transition in German aesthetics in the late nineteenth century. Starting in the 1870s, groups of artists, architects, historians, critics, connoisseurs, and museum officials in Germany ...

  4. Conventional Facilities Chapter 11: Environment, Safety and Health 11-1 NSLS-II Preliminary Design Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Analysis 4. Fire Protection 5. Pressure Safety 6. Industrial Hygiene 7. Other ES&H Issues This document Program a) Fire protection b) Pressure safety c) Industrial hygiene d) Biological safety e) Electrical

  5. Art and the aesthetic thought of John Dewey: observations and applications 

    E-Print Network [OSTI]

    George, Mark Patrick

    1992-01-01T23:59:59.000Z

    of MASTER OF ARTS December 1992 Major Subject: Philosophy ART AND THE AESTHETIC THOUGHT OF JOHN DEWEY: OBSERVATIONS AND APPLICATIONS A Thesis by MARK PATRICK GEORGE Approved as to style and content by: --Jo J. +cDer'mott (C ir of Committee) Dxck... Davison (Member) Larry Hickman (Member) Herma Saatkam (Head of Department) ABSTRACT Art and the Aesthetic Thought of John Dewey: Observations and Applications. (December 1992) Mark Patrick George, B. A. , Valdosta State College Chair of Advisory...

  6. Fire protection design criteria

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  7. RURAL PASSENGER SAFETY RESOURCES Exhibits (Insure for $500)

    E-Print Network [OSTI]

    , A) Don't Let Up (Anti-lock Brake Safet (T, A) Sharing the Highways (with Big Trucks) (C) Street Bicycle Safety Car Pools and the Buckle Rule Child Safety Seat Fact Cards (Eng/Sp) Children and Air Bags Protection Laws in Texas(E/S) One Minute Car Seat Check Up Pedestrian Safety Safety First (Eng/Sp) Safety

  8. Sun Protection Intervention for Highway Workers: Long-Term Efficacy of UV Photography and Skin Cancer Information on Men’s Protective Cognitions and Behavior

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    009-9151-2 ORIGINAL ARTICLE Sun Protection Intervention foramong outdoor workers in key sun- safety behaviors. Am JCA, Maddock JE, Cottrill SD. Sun protection behaviors and

  9. Integrated Safety Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The order ensures that DOE/NNSA, systematically integrates safety into management and work practices at all levels, so that missions are accomplished efficiently while protecting the workers, the public, and the environment. Cancels DOE M 450.4-1 and DOE M 411.1-1C

  10. DOE explosives safety manual

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

  11. Safety Basis Report

    SciTech Connect (OSTI)

    R.J. Garrett

    2002-01-14T23:59:59.000Z

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  12. Fire Protection Program Assessment, Building 9116- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment is intended to evaluate the fire hazards, life safety and fire protection features inherent in Building 9116.

  13. Seismic Safety Guide

    SciTech Connect (OSTI)

    Eagling, D.G. (ed.)

    1983-09-01T23:59:59.000Z

    This guide provides managers with practical guidelines for administering a comprehensive earthquake safety program. The Guide is comprehensive with respect to earthquakes in that it covers the most important aspects of natural hazards, site planning, evaluation and rehabilitation of existing buildings, design of new facilities, operational safety, emergency planning, special considerations related to shielding blocks, non-structural elements, lifelines, fire protection and emergency facilities. Management of risk and liabilities is also covered. Nuclear facilities per se are not dealt with specifically. The principles covered also apply generally to nuclear facilities but the design and construction of such structures are subject to special regulations and legal controls.

  14. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-SafetySafety

  15. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  16. Environmental Health and Safety Radiation Control and Radiological

    E-Print Network [OSTI]

    Slatton, Clint

    Environmental Health and Safety Radiation Control and Radiological Services #12;· Course focuses into six departments: 1) Facility and Fire Safety Pest Control and Fire Equipment Service Units 2) Radiation Control and Radiological Services University-wide radiation protection 3) Occupational

  17. North Carolina State University Environmental Health & Safety Center

    E-Print Network [OSTI]

    DNA Molecules Personal Health Status Chapter 5: Medical Surveillance-proof Rotors and Safety Cups Other Safety Equipment for Aerosol-producing Devices Chapter 7: Safe Work Practices and PPE .............................................23 Personal Protective Equipment Sharps

  18. Independent Activity Report, Office of River Protection Waste...

    Broader source: Energy.gov (indexed) [DOE]

    and Introduction of New Office of Safety and Emergency Management Evaluations Site Lead for the Office of River Protection Waste Treatment Plant and Tank Farms...

  19. active protection system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Technologies and Information Sciences Websites Summary: in implementing safety critical systems such as nuclear reactor protection systems. We have defined new...

  20. Review of the Occupational Radiation Protection Program as Implemented...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Radiation Protection Program as Implemented and Recently Enhanced at the Idaho National Laboratory May 2011 September 2011 Office of Safety and Emergency Management...

  1. Aesthetic Impact of a Proposed Power Plant on an Historic Wilderness Landscape1

    E-Print Network [OSTI]

    Standiford, Richard B.

    Aesthetic Impact of a Proposed Power Plant on an Historic Wilderness Landscape1 2 Carl H. Petrich impact of a proposed nuclear power plant, the historic foundation of American concepts of scenic beauty. This research concluded that building the power plant in this location would entail an unacceptable, negative

  2. Selected Failure Rate Values from ITER Safety Assessment

    Office of Scientific and Technical Information (OSTI)

    NFPA National Fire Protection Association NSSR Non-site Specific Safety Report OREDA Offshore Reliability Data Pa Pascal PHTS Primary Heat Transport System PRA Probabilistic...

  3. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  4. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-04-21T23:59:59.000Z

    This Page Change transmits a revised Attachment 1, a table of contents, and one chapter of DOE O 5480.1.

  5. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-05-01T23:59:59.000Z

    This Page Change transmits a revised Attachment 1, a table of contents, and one chapter of DOE O O 5480.1.

  6. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-12-18T23:59:59.000Z

    This page change transmits a revised Attachment 1, a table of contents, and 6 chapters of DOE O 5480.1.

  7. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-05-22T23:59:59.000Z

    This Page Change transmits a revised table of contents and Attachment 1, and adds four chapters of DOE O 5480.1.

  8. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1981-08-13T23:59:59.000Z

    To transmit revised chapters to the subject Order. The following chapter, revised by the Acting Under Secretary's Task Force, supersede previously published chapters as indicated: Chapter I; Chapter V, which now includes former Chapter IV, also superseded; and Chapter VI.

  9. Public Safety and Resource Protection - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServices »ProjectsPublicAPublic

  10. Health Safety & Environmental Protection Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy Health Physics RecordsHealth

  11. Health Safety and Environmental Protection Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy Health Physics Page 1 Final

  12. Health, Safety and Environmental Protection Committee Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy Health

  13. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    OVERVIEW Harmful. Irritating to eyes, respiratory system and skin. Harmful in contact with skin - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand: Compatible chemical

  14. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    OVERVIEW Irritant. Irritating to eyes, respiratory system and skin. HMIS RATING HEALTH: 2 FLAMMABILITY: 0 Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand: Compatible chemical-resistant gloves

  15. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    to eyes, respiratory system and skin. HMIS RATING #12;HEALTH: 2 FLAMMABILITY: 0 REACTIVITY: 0 NFPA RATING Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory

  16. Operational, aesthetic, and construction process performance for innovative passive and active solar building components for residential buildings

    E-Print Network [OSTI]

    Settlemyre, Kevin (Kevin Franklin), 1971-

    2000-01-01T23:59:59.000Z

    A system-based framework creates the ability to integrate operational, aesthetic, and construction process performance. The framework can be used to evaluate innovations within residential construction. By reducing the ...

  17. Department of Energy- Voluntary Protection Program Contract Transition Process

    Broader source: Energy.gov [DOE]

    The purpose of the Department of Energy (DOE) Voluntary Protection Program (VPP) is to recognize and promote excellence in contractor occupational health and safety programs. These programs, composed of management systems for preventing and controlling occupational hazards, not only ensure that DOE Orders are met, but go beyond requirements to provide the best feasible health and safety protection at the site

  18. Impact of cost constraints on aesthetic ranking following Target Value Design exercises

    E-Print Network [OSTI]

    Rybkowski, Zofia K.; Munankami, Manish; Gottipati, Udaya; Lavy, Sarel; Fernández-Solis, Jose

    2011-07-13T23:59:59.000Z

    IMPACT OF COST CONSTRAINTS ON AESTHETIC RANKING FOLLOWING TARGET VALUE DESIGN EXERCISES Zofia K. Rybkowski1, Manish Munankami2, Udaya Gottipati3, Jose Fernández-Solís 4, and Sarel Lavy5 PURPOSE: Target Value Design (TVD) is a project... delivery subset that shares methodologies with Target Costing and Value Engineering, but is performed within the context of lean construction. TVD has been shown to generate first cost savings of approximately 20% on case study projects. A concern voiced...

  19. Systems Issues in Nuclear Reactor Safety

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Systems Issues in Nuclear Reactor Safety Commissioner George ApostolakisCommissioner George Apostolakis U.S. Nuclear Regulatory Commission CmrApostolakis@nrc.gov MIT SDM Conference on Systems Thinking, source, and special nuclear materials to ensure adequate protection of public health and safety, 3

  20. INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION

    E-Print Network [OSTI]

    INSTITUTE OF NUCLEAR TECHNOLOGY ­ RADIATION PROTECTION ANNUAL REPORT 2008 #12;#12;ANNUAL REPORT a success story for the Institute of Nuclear Technology ­ Radiation Protection over the last decades PROJECTS i #12;ii #12;iii UORGANISATIONAL CHART 2008 REACTOR SAFETY COMMITTEE Chairman: I.A. Papazoglou

  1. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    for increased protection from ionizing radiation for declared pregnant radiation workers. The radiation doseCOLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 regulations of the Rules of the City of New York, Article 175, Radiation Control, there is a requirement

  2. Construction safety in DOE. Part 1, Students guide

    SciTech Connect (OSTI)

    Handwerk, E C

    1993-08-01T23:59:59.000Z

    This report is the first part of a compilation of safety standards for construction activities on DOE facilities. This report covers the following areas: general safety and health provisions; occupational health and environmental control/haz mat; personal protective equipment; fire protection and prevention; signs, signals, and barricades; materials handling, storage, use, and disposal; hand and power tools; welding and cutting; electrical; and scaffolding.

  3. Chemical Hazards and Safety Issues in Fusion Safety Design

    SciTech Connect (OSTI)

    Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

    2003-09-15T23:59:59.000Z

    Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard.

  4. Environmental Health and Safety Standard Operating

    E-Print Network [OSTI]

    Cohen, Itai

    of radiofrequency (RF) and microwave safety, biological effects, and exposure limits to be used at Cornell adopted exposure limits from the National Council on Radiation Protection (NCRP) and can be found in this guide. 2.5 ICNIRP Recommendations The International Commission on Non-Ionizing Radiation Protection

  5. Environmental Health & Radiation Safety rev. 02/11 BIOSAFETY MANUAL

    E-Print Network [OSTI]

    Chapman, Michael S.

    Environmental Health & Radiation Safety rev. 02/11 BIOSAFETY MANUAL #12;Oregon Health & Science-494-4444 OHSU Public Safety 503-494-7744 ENVIRONMENTAL HEALTH & RADIATION SAFETY EHRS Office 503-494-7795 OHSU-494-4649 office Research Subject Protection Analyst Ashlee Moses, PhD 503-690-5285 office IBC Chair MEDICAL

  6. East Carolina University RADIATION SAFETY BASIC SCIENCE COMMITTEE

    E-Print Network [OSTI]

    for the Protection Against Radiation dictates that a radiation safety committee will provide oversight for all11/27/2013 East Carolina University RADIATION SAFETY ­ BASIC SCIENCE COMMITTEE Membership: 16 members Members are recommended by the Radiation Safety Officer but the Vice Chancellor of Health Sciences

  7. Elements of a nuclear criticality safety program

    SciTech Connect (OSTI)

    Hopper, C.M.

    1995-07-01T23:59:59.000Z

    Nuclear criticality safety programs throughout the United States are quite successful, as compared with other safety disciplines, at protecting life and property, especially when regarded as a developing safety function with no historical perspective for the cause and effect of process nuclear criticality accidents before 1943. The programs evolved through self-imposed and regulatory-imposed incentives. They are the products of conscientious individuals, supportive corporations, obliged regulators, and intervenors (political, public, and private). The maturing of nuclear criticality safety programs throughout the United States has been spasmodic, with stability provided by the volunteer standards efforts within the American Nuclear Society. This presentation provides the status, relative to current needs, for nuclear criticality safety program elements that address organization of and assignments for nuclear criticality safety program responsibilities; personnel qualifications; and analytical capabilities for the technical definition of critical, subcritical, safety and operating limits, and program quality assurance.

  8. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-Safety for

  9. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates >-Safety

  10. Safety | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdatesis the FirstSafety

  11. LASER SAFETY POLICY MANUAL ENVIRONMENTAL HEALTH & SAFETY

    E-Print Network [OSTI]

    Houston, Paul L.

    LASER SAFETY POLICY MANUAL ISSUED BY ENVIRONMENTAL HEALTH & SAFETY OFFICE OF RADIOLOGICAL SAFETY and GEORGIA TECH LASER SAFETY COMMITTEE July 1, 2010 Revised July 31, 2012 #12;Laser Safety Program 1-1 #12;Laser Safety Policy Manual TABLE OF CONTENTS 1. POLICY AND SCOPE

  12. ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL

    E-Print Network [OSTI]

    Maroncelli, Mark

    ENVIRONMENTAL HEALTH AND SAFETY GENERAL SAFETY MANUAL May 10, 2002 #12;i Acknowledgements Environmental Health and Safety gratefully acknowledges the assistance provided by the University Safety Council extremely helpful. #12;ii Environmental Health and Safety General Safety Manual Table of Contents Section

  13. Safety Bulletin

    Broader source: Energy.gov (indexed) [DOE]

    in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the...

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  15. Automated Test Coverage Measurement for Reactor Protection System Software

    E-Print Network [OSTI]

    Automated Test Coverage Measurement for Reactor Protection System Software Implemented in Function in implementing safety critical systems such as nuclear reactor protection systems. We have defined new structural- ing a case study using test cases prepared by domain experts for reactor protection system software

  16. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    Establishes requirements for management and operation of the DOE Protective Force (PF), establishes requirements for firearms operations and defines the firearms courses of fire. Cancels: DOE M 473.2-1A DOE M 473.2-2

  17. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-07T23:59:59.000Z

    The manual establishes requirements for management and operation of the DOE Protective Force, establishes requirements for firearms operations and defines the firearms courses of fire. Chg 1 dated 3/7/06. DOE M 470.4-3A cancels DOE M 470.4-3, Chg 1, Protective Force, dated 3-7-06, Attachment 2, Contractor Requirement Document (CRD) only (except for Section C). Chg 1, dated 3-7-06, cancels DOE M 470.4-3

  18. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

  19. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

  20. Corrosion protection

    DOE Patents [OSTI]

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27T23:59:59.000Z

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  1. Facility Safety (9-23-10)--Withdrawn

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-09-23T23:59:59.000Z

    Withdrawn, 5-19-2014--This approval includes revision of the three implementing Guides: DOE G 420.1-1, Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety; DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities; and DOE G 420.1-3, Implementation Guide for DOE Fire Protection and Emergency Services Programs for Use with DOE O 420.1B, Facility Safety

  2. Toolbox Safety Talk Ladder Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Health & Safety for recordkeeping. Slips, trips, and falls constitute the majority of general industry and construction worker injuries. Falls cause 15% of all accidental deaths, and are second only to motor vehicle

  3. Safety Around Sources of Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguards andSafety Alerts Safety

  4. Safety Comes First | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguards andSafety AlertsSafety

  5. Safety Alerts

    Broader source: Energy.gov [DOE]

    Documents downloaded from the password-protected areas of this web site may be made available to the DOE Federal and contractor community and to the military. These documents are not permitted to be made available to the general public via an Internet web site. All parties with access to the password-protected areas of the EHSS web site are to exercise due diligence to maintain control of information.

  6. Radiation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation Protection Regulations: The Federal Regulation

  7. NEW - DOE O 420.1 Chg 1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, cancels DOE O 420.1C, dated 12-4-12.

  8. E-Print Network 3.0 - attitude patient safety Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: attitude patient safety Page: << < 1 2 3 4 5 > >> 1 BEHAVIORAL STANDARDS IN PATIENT CARE Approved by Summary: . B. The patient's safety, health, or welfare shall be protected...

  9. Toolbox Safety Talk Welding & Metal Work Safety

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Welding & Metal Work Safety Environmental Health & Safety Facilities Safety or harmful emission giving metals. Welding Safety When welding outside of a designated welding booth, ensure injury. Avoid welding on materials such as galvanized or stainless steel in order to minimize toxic fume

  10. Nuclear Safety Regulatory Framework

    Broader source: Energy.gov (indexed) [DOE]

    overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

  11. Gas Pipeline Safety (Indiana)

    Broader source: Energy.gov [DOE]

    This section establishes the Pipeline Safety Division within the Utility Regulatory Commission to administer federal pipeline safety standards and establish minimum state safety standards for...

  12. Fire Protection Program Assessment, Building 9203 & 9203A Complex- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment is intended to evaluate the fire hazards, life safety and fire protection features inherent in the Building 9203 and 9203A complex.

  13. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-23T23:59:59.000Z

    This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

  14. The EP-4(0) shielding kits: a new approach to protection from induced voltage

    SciTech Connect (OSTI)

    Vorob'ev, A. Yu.; Otmorskii, S. G.; Smekalov, V. V.; Gorozhankina, E. N.; Sosunov, N. N.; Bol'shunov, A. M.

    2011-09-15T23:59:59.000Z

    Problems of safety in work on overhead power lines and the overhead railroad ac contact network under induced voltages are considered. The use of additional individual protection systems is proposed to provide protection from electric shock during such work.

  15. Construction safety program for the National Ignition Facility, Appendix A

    SciTech Connect (OSTI)

    Cerruti, S.J.

    1997-06-26T23:59:59.000Z

    Topics covered in this appendix include: General Rules-Code of Safe Practices; 2. Personal Protective Equipment; Hazardous Material Control; Traffic Control; Fire Prevention; Sanitation and First Aid; Confined Space Safety Requirements; Ladders and Stairways; Scaffolding and Lift Safety; Machinery, Vehicles, and Heavy Equipment; Welding and Cutting-General; Arc Welding; Oxygen/Acetylene Welding and Cutting; Excavation, Trenching, and Shoring; Fall Protection; Steel Erection; Working With Asbestos; Radiation Safety; Hand Tools; Electrical Safety; Nonelectrical Work Performed Near Exposed High-Voltage Power-Distribution Equipment; Lockout/Tagout Requirements; Rigging; A-Cranes; Housekeeping; Material Handling and Storage; Lead; Concrete and Masonry Construction.

  16. Laser Safety Introduction

    E-Print Network [OSTI]

    McQuade, D. Tyler

    use Integrated Safety Management here at the lab to reduce risk and work to improve the quality and safety of the work? #12;Integrated Safety Management Use (greater in size than wavelength) #12;Integrated Safety Management Remember, we

  17. The beauty of the intricate shapes of spider webs fascinates people, but webs offer more than aesthetic appeal for

    E-Print Network [OSTI]

    Blackledge, Todd

    1937 The beauty of the intricate shapes of spider webs fascinates people, but webs offer more than aesthetic appeal for biological research. The silk fibers used to construct webs have long been a favorite spun by only a few species of spiders, all of which construct similar types of orb webs. Orb webs, flat

  18. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 HgPromisingProtecting your personal

  19. Safety valve

    DOE Patents [OSTI]

    Bergman, Ulf C. (Malmoe, SE)

    1984-01-01T23:59:59.000Z

    The safety valve contains a resilient gland to be held between a valve seat and a valve member and is secured to the valve member by a sleeve surrounding the end of the valve member adjacent to the valve seat. The sleeve is movable relative to the valve member through a limited axial distance and a gap exists between said valve member and said sleeve.

  20. ADVANCED WORKER PROTECTION SYSTEM

    SciTech Connect (OSTI)

    Judson Hedgehock

    2001-03-16T23:59:59.000Z

    From 1993 to 2000, OSS worked under a cost share contract from the Department of Energy (DOE) to develop an Advanced Worker Protection System (AWPS). The AWPS is a protective ensemble that provides the user with both breathing air and cooling for a NIOSH-rated duration of two hours. The ensemble consists of a liquid air based backpack, a Liquid Cooling Garment (LCG), and an outer protective garment. The AWPS project was divided into two phases. During Phase 1, OSS developed and tested a full-scale prototype AWPS. The testing showed that workers using the AWPS could work twice as long as workers using a standard SCBA. The testing also provided performance data on the AWPS in different environments that was used during Phase 2 to optimize the design. During Phase 1, OSS also performed a life-cycle cost analysis on a representative clean up effort. The analysis indicated that the AWPS could save the DOE millions of dollars on D and D activities and improve the health and safety of their workers. During Phase 2, OSS worked to optimize the AWPS design to increase system reliability, to improve system performance and comfort, and to reduce the backpack weight and manufacturing costs. To support this design effort, OSS developed and tested several different generations of prototype units. Two separate successful evaluations of the ensemble were performed by the International Union of Operation Engineers (IUOE). The results of these evaluations were used to drive the design. During Phase 2, OSS also pursued certifying the AWPS with the applicable government agencies. The initial intent during Phase 2 was to finalize the design and then to certify the system. OSS and Scott Health and Safety Products teamed to optimize the AWPS design and then certify the system with the National Institute of Occupational Health and Safety (NIOSH). Unfortunately, technical and programmatic difficulties prevented us from obtaining NIOSH certification. Despite the inability of NIOSH to certify the design, OSS was able to develop and successfully test, in both the lab and in the field, a prototype AWPS. They clearly demonstrated that a system which provides cooling can significantly increase worker productivity by extending the time they can function in a protective garment. They were also able to develop mature outer garment and LCG designs that provide considerable benefits over current protective equipment, such as self donning and doffing, better visibility, and machine washable. A thorough discussion of the activities performed during Phase 1 and Phase 2 is presented in the AWPS Final Report. The report also describes the current system design, outlines the steps needed to certify the AWPS, discusses the technical and programmatic issues that prevented the system from being certified, and presents conclusions and recommendations based upon the seven year effort.

  1. Pipeline safety joint eliminates need for divers

    SciTech Connect (OSTI)

    Not Available

    1983-04-01T23:59:59.000Z

    The Sea-Hook coupling is a diverless pressure-compensated pipeline safety joint designed to protect the pipe from damage by excessive physical loads. The coupling provides a predetermined weak point in the line that will cause a controlled separation when the line is exposed to strong wave action or dragging anchors. Moreover, it offers prepressurized remote lockout protection, metal seal integrity, no hand-up separation, enclosed bolting, optimal manual lockout, and no springs or shear rings.

  2. Dynamic leakage from laboratory safety hoods

    E-Print Network [OSTI]

    Park, Ju-Myon

    2002-01-01T23:59:59.000Z

    Standard Institute) Z 9. 5 Clarification of ANSI/AIHA Z9. 5 Standard "Laboratory Ventilation ". 1999. Page 13, Section 5. 7 80 ? 120 (0. 41 ? 0. 61) NFPA (National Fire Protection Association) NFPA 45 Fire Protection for Laboratories Using... 1910. 1450. Safety and Health Administration) 60- 100 (0. 31 ? 0. 51) SEFA (Scientific Equipment & Furniture Association) Laboratory Fume Hoods Recommended Practices. SEFA 1. 2, 1996. Page 7 75 ? 125 (0. 3 8 ? 0. 64) 2. Turbulence J. O...

  3. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  4. Rules and Regulations for Dam Safety (Rhode Island)

    Broader source: Energy.gov [DOE]

    These rules and regulations seek to provide for the safety of dams to protect the public, real property, and natural resources by establishing reasonable standards and creating a public record for...

  5. Health, Safety, and Environment Division: Annual progress report 1987

    SciTech Connect (OSTI)

    Rosenthal, M.A. (comp.)

    1988-04-01T23:59:59.000Z

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  6. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguards

  7. Protecting Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 HgPromising MagnesiumDOE/RichlandStructureProtecting

  8. Delivering safety

    SciTech Connect (OSTI)

    Baldwin, N.D.; Spooner, K.G.; Walkden, P. [British Nuclear Group Ltd, Daresbury, Warrington (United Kingdom)

    2007-07-01T23:59:59.000Z

    In the United Kingdom there have been significant recent changes to the management of civil nuclear liabilities. With the formation in April 2005 of the Nuclear Decommissioning Authority (NDA), ownership of the civil nuclear licensed sites in the UK, including the Magnox Reactor Stations, passed to this new organisation. The NDAs mission is to seek acceleration of the nuclear clean up programme and deliver increased value for money and, consequently, are driving their contractors to seek more innovative ways of performing work. British Nuclear Group manages the UK Magnox stations under contract to the NDA. This paper summarises the approach being taken within its Reactor Sites business to work with suppliers to enhance working arrangements at sites, improve the delivery of decommissioning programmes and deliver improvements in safety and environmental performance. The UK Magnox stations are 1. generation gas-graphite reactors, constructed in the 1950's and 1960's. Two stations are currently still operating, three are shut-down undergoing defueling and the other five are being decommissioned. Despite the distractions of industry restructuring, an uncompromising policy of demanding improved performance in conjunction with improved safety and environmental standards has been adopted. Over the past 5 years, this policy has resulted in step-changes in performance at Reactor Sites, with increased electrical output and accelerated defueling and decommissioning. The improvements in performance have been mirrored by improvements in safety (DACR of 0 at 5 sites); environmental standards (reductions in energy and water consumption, increased waste recycling) and the overall health of the workforce (20% reduction in sickness absence). These achievements have, in turn, been recognised by external bodies, resulting in several awards, including: the world's first ISRS and IERS level 10 awards (Sizewell, 2006), the NUMEX plant maintenance award (Bradwell, 2006), numerous RoSPA awards at site and sector level and nomination, at Company level, for the RoSPA George Earle trophy for outstanding performance in Health and Safety (Reactor Sites, 2006). After 'setting the scene' and describing the challenges that the company has had to respond to, the paper explains how these improvements have been delivered. Specifically it explains the process that has been followed and the parts played by sites and suppliers to deliver improved performance. With the experience of already having transitioned several Magnox stations from operations to defueling and then to decommissioning, the paper describes the valuable experience that has been gained in achieving an optimum change process and maintaining momentum. (authors)

  9. Safety, Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterialsSafety, Security

  10. Pressure Safety Program Implementation at ORNL

    SciTech Connect (OSTI)

    Lower, Mark [ORNL; Etheridge, Tom [ORNL; Oland, C. Barry [XCEL Engineering, Inc.

    2013-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) is a US Department of Energy (DOE) facility that is managed by UT-Battelle, LLC. In February 2006, DOE promulgated worker safety and health regulations to govern contractor activities at DOE sites. These regulations, which are provided in 10 CFR 851, Worker Safety and Health Program, establish requirements for worker safety and health program that reduce or prevent occupational injuries, illnesses, and accidental losses by providing DOE contractors and their workers with safe and healthful workplaces at DOE sites. The regulations state that contractors must achieve compliance no later than May 25, 2007. According to 10 CFR 851, Subpart C, Specific Program Requirements, contractors must have a structured approach to their worker safety and health programs that at a minimum includes provisions for pressure safety. In implementing the structured approach for pressure safety, contractors must establish safety policies and procedures to ensure that pressure systems are designed, fabricated, tested, inspected, maintained, repaired, and operated by trained, qualified personnel in accordance with applicable sound engineering principles. In addition, contractors must ensure that all pressure vessels, boilers, air receivers, and supporting piping systems conform to (1) applicable American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (2004) Sections I through XII, including applicable code cases; (2) applicable ASME B31 piping codes; and (3) the strictest applicable state and local codes. When national consensus codes are not applicable because of pressure range, vessel geometry, use of special materials, etc., contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local codes. This report documents the work performed to address legacy pressure vessel deficiencies and comply with pressure safety requirements in 10 CFR 851. It also describes actions taken to develop and implement ORNL’s Pressure Safety Program.

  11. CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval -...

  12. UNIVERSITY OF CALIFORNIA, SAN FRANCISCO RADIATION SAFETY TRAINING MANUAL

    E-Print Network [OSTI]

    Lim, Wendell

    for the protection of personnel. #12;RADIATION SAFETY TRAINING MANUAL TABLE OF CONTENTS SECTION DESCRIPTION PAGE` #12;#12;UNIVERSITY OF CALIFORNIA, SAN FRANCISCO RADIATION SAFETY TRAINING MANUAL SEPTEMBER, 1996 This information is being provided in accordance with the following State requirements: CALIFORNIA RADIATION

  13. Pressure relief valve/safety relief valve testing

    SciTech Connect (OSTI)

    Murray, W.A.; Hamm, E.R.; Barber, J.R.

    1994-02-01T23:59:59.000Z

    Pressure vessels and piping systems are protected form overpressurization by pressure relief valves. These safety features are required to be tested-inspected on some periodic basis and, in most cases witnessed by a third party inspector. As a result nonconformances found by third parties Westinghouse Hanford Company initiated a task team to develop a pressure safety program. This paper reveals their findings.

  14. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect (OSTI)

    Bengston, S.J.

    1994-05-01T23:59:59.000Z

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  15. Ecological Conservation Through Aesthetic Landscape Planning: A Case Study of the Lower

    E-Print Network [OSTI]

    Turner, Monica G.

    ; Lathrop and Bognar 1998; Beatley 2000; Maestas and others 2001). These approaches often include strategies that were inadequate to protect threatened popula- tions (Beatley 2000). These approaches also

  16. EM Health and Safety Plan Guidelines

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    This document contains information about the Health and Safety Plan Guidelines. Topics discussed include: Regulatory framework; key personnel; hazard assessment; training requirements; personal protective equipment; extreme temperature disorders or conditions; medical surveillance; exposure monitoring/air sampling; site control; decontamination; emergency response/contingency plan; emergency action plan; confined space entry; and spill containment.

  17. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    . Irritating to eyes, respiratory system and skin. Very toxic to aquatic organisms, may cause long-term adverse and eye bath. Use nonsparking tools. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand: Compatible chemical-resistant gloves. Eye: Chemical safety

  18. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    to eyes, respiratory system and skin. Target organ(s): Blood. Central nervous system. HMIS RATING HEALTH Safety shower and eye bath. Mechanical exhaust required. PERSONAL PROTECTIVE EQUIPMENT SIGMA - MB1 www.sigma-aldrich.com Page 2 #12;Respiratory: Government approved respirator. Hand: Compatible chemical-resistant gloves. Eye

  19. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    Irritant. Irritating to eyes, respiratory system and skin. HMIS RATING HEALTH: 2 FLAMMABILITY: 0 REACTIVITY Safety shower and eye bath. Mechanical exhaust required. ALDRICH - 258741 www.sigma-aldrich.com Page 2 #12;PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government approved respirator. Hand: Compatible

  20. SIGMA-ALDRICH MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    . Irritating to eyes, respiratory system and skin. For additional information on toxicity, please refer - Exposure Controls / PPE ENGINEERING CONTROLS Safety shower and eye bath. Mechanical exhaust required. ALDRICH - M80806 www.sigma-aldrich.com Page 2 #12;PERSONAL PROTECTIVE EQUIPMENT Respiratory: Government

  1. Integration of Safety into the Design Process

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-27T23:59:59.000Z

    The Standard provides guidance on a process of integration of Safety-in-Design intended to implement the applicable ISM core functions—define the work, analyze the hazards, establish the controls—necessary to provide protection of the public, workers, and the environment from harmful effects of radiation and other such toxic and hazardous aspects attendant to the work.

  2. Safety Policy LEAD IN PAINT POLICY

    E-Print Network [OSTI]

    Powers, Robert

    Safety Policy (10/96) LEAD IN PAINT POLICY://ehs.unl.edu/) Purpose: Lead is a recognized health hazard, and consequently, regulations have been developed to assure protection from excessive exposure to lead. Paints and coatings manufactured prior to 1978 often contained

  3. SAFETY MANAGEMENT MANUAL OSU SHIP OPERATIONS

    E-Print Network [OSTI]

    Kurapov, Alexander

    approved personal flotation devices appropriate to the prevailing conditions, hard hats, closed footwearSAFETY MANAGEMENT MANUAL OSU SHIP OPERATIONS 7.20 PERSONAL PROTECTIVE EQUIPMENT Originator of 2 7.20.1 Purpose The purpose of this procedure is to establish guidelines for the use of personal

  4. Safety Cases for Software Application Reuse P Fenelon, T P Kelly, J A McDermid

    E-Print Network [OSTI]

    Kelly, Tim

    on an analysis of a reactor protection system. 1 Introduction There is a long-established principle. These principles have been applied retrospectively to the safety case for a reactor protection system (the Stage 9. These principles have been adopted in developing safety-critical software, but often only through the reuse of low

  5. Fire protection system operating experience review for fusion applications

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    1995-12-01T23:59:59.000Z

    This report presents a review of fire protection system operating experiences from particle accelerator, fusion experiment, and other applications. Safety relevant operating experiences and accident information are discussed. Quantitative order-of-magnitude estimates of fire protection system component failure rates and fire accident initiating event frequencies are presented for use in risk assessment, reliability, and availability studies. Safety concerns with these systems are discussed, including spurious operation. This information should be useful to fusion system designers and safety analysts, such as the team working on the Engineering Design Activities for the International Thermonuclear Experimental Reactor.

  6. DOE Standard: Fire protection design criteria

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  7. 2011 Annual Criticality Safety Program Performance Summary

    SciTech Connect (OSTI)

    Andrea Hoffman

    2011-12-01T23:59:59.000Z

    The 2011 review of the INL Criticality Safety Program has determined that the program is robust and effective. The review was prepared for, and fulfills Contract Data Requirements List (CDRL) item H.20, 'Annual Criticality Safety Program performance summary that includes the status of assessments, issues, corrective actions, infractions, requirements management, training, and programmatic support.' This performance summary addresses the status of these important elements of the INL Criticality Safety Program. Assessments - Assessments in 2011 were planned and scheduled. The scheduled assessments included a Criticality Safety Program Effectiveness Review, Criticality Control Area Inspections, a Protection of Controlled Unclassified Information Inspection, an Assessment of Criticality Safety SQA, and this management assessment of the Criticality Safety Program. All of the assessments were completed with the exception of the 'Effectiveness Review' for SSPSF, which was delayed due to emerging work. Although minor issues were identified in the assessments, no issues or combination of issues indicated that the INL Criticality Safety Program was ineffective. The identification of issues demonstrates the importance of an assessment program to the overall health and effectiveness of the INL Criticality Safety Program. Issues and Corrective Actions - There are relatively few criticality safety related issues in the Laboratory ICAMS system. Most were identified by Criticality Safety Program assessments. No issues indicate ineffectiveness in the INL Criticality Safety Program. All of the issues are being worked and there are no imminent criticality concerns. Infractions - There was one criticality safety related violation in 2011. On January 18, 2011, it was discovered that a fuel plate bundle in the Nuclear Materials Inspection and Storage (NMIS) facility exceeded the fissionable mass limit, resulting in a technical safety requirement (TSR) violation. The TSR limits fuel plate bundles to 1085 grams U-235, which is the maximum loading of an ATR fuel element. The overloaded fuel plate bundle contained 1097 grams U-235 and was assembled under an 1100 gram U-235 limit in 1982. In 2003, the limit was reduced to 1085 grams citing a new criticality safety evaluation for ATR fuel elements. The fuel plate bundle inventories were not checked for compliance prior to implementing the reduced limit. A subsequent review of the NMIS inventory did not identify further violations. Requirements Management - The INL Criticality Safety program is organized and well documented. The source requirements for the INL Criticality Safety Program are from 10 CFR 830.204, DOE Order 420.1B, Chapter III, 'Nuclear Criticality Safety,' ANSI/ANS 8-series Industry Standards, and DOE Standards. These source requirements are documented in LRD-18001, 'INL Criticality Safety Program Requirements Manual.' The majority of the criticality safety source requirements are contained in DOE Order 420.1B because it invokes all of the ANSI/ANS 8-Series Standards. DOE Order 420.1B also invokes several DOE Standards, including DOE-STD-3007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities.' DOE Order 420.1B contains requirements for DOE 'Heads of Field Elements' to approve the criticality safety program and specific elements of the program, namely, the qualification of criticality staff and the method for preparing criticality safety evaluations. This was accomplished by the approval of SAR-400, 'INL Standardized Nuclear Safety Basis Manual,' Chapter 6, 'Prevention of Inadvertent Criticality.' Chapter 6 of SAR-400 contains sufficient detail and/or reference to the specific DOE and contractor documents that adequately describe the INL Criticality Safety Program per the elements specified in DOE Order 420.1B. The Safety Evaluation Report for SAR-400 specifically recognizes that the approval of SAR-400 approves the INL Criticality Safety Program. No new source requirements were released in 2011. A revision to LRD-18001 is

  8. University of Texas at Dallas Radiation Safety Manual

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Principles of Radiation Protection E. Exposure Limits for Radiation Workers F. Types of Radiation Exposure G. Biological Effects of Radiation H. Personnel Monitoring I. Bioassays J. ProtectiveUniversity of Texas at Dallas Radiation Safety Manual Table of Contents Introduction Emergency

  9. Acceptable NSLS Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

  10. How to Bridge the Culture Gap: How John Dewey’s Aesthetics May Benefit the Local Church

    E-Print Network [OSTI]

    Shockley, Paul Russell

    2012-02-14T23:59:59.000Z

    -sensitive church are aligned with the Enlightenment, namely, a late eighteenth- century scientific, social and political revolution that advanced human rationality, personal autonomy, and the scientific method to create better people and better societies.4... movements do not adequately handle the environment and our relationship to it.5 The gap between the local church and culture will inevitably reappear or remain and their solutions may cultivate non-aesthetic activities, habits, and rituals. Moreover...

  11. Pipeline Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Pennsylvania legislature has empowered the Public Utility Commission to direct and enforce safety standards for pipeline facilities and to regulate safety practices of certificated utilities...

  12. Environmental resources of selected areas of Hawaii: Cultural environment and aesthetic resources

    SciTech Connect (OSTI)

    Trettin, L.D. [Univ. of Tennessee (United States)] [Univ. of Tennessee (United States); Petrich, C.H.; Saulsbury, J.W. [Oak Ridge National Lab., TN (United States)] [Oak Ridge National Lab., TN (United States)

    1996-01-01T23:59:59.000Z

    This report has been prepared to make available and archive the background scientific data and related information collected on the cultural environment and aesthetic resources during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The cultural environment in the Geothermal Resource Zone (GRZ) and associated study area consists of Native Hawaiian cultural and religious practices and both Native Hawaiian and non-Native Hawaiian cultural resources. This report consists of three sections: (1) a description of Native Hawaiian cultural and religious rights, practices, and values; (2) a description of historic, prehistoric, and traditional Native Hawaiian sites; and (3) a description of other (non-native) sites that could be affected by development in the study area. Within each section, the level of descriptive detail varies according to the information currently available. The description of the cultural environment is most specific in its coverage of the Geothermal Resource Subzones in the Puna District of the island of Hawaii and the study area of South Maui. Ethnographic and archaeological reports by Cultural Advocacy Network Developing Options and International Archaeological Research Institute, Inc., respectively, supplement the descriptions of these two areas with new information collected specifically for this study. Less detailed descriptions of additional study areas on Oahu, Maui, Molokai, and the island of Hawaii are based on existing archaeological surveys.

  13. Q)Tf(^/7^,\\ Ris-R-625(pff Nuclear Safety Research

    E-Print Network [OSTI]

    and nuclear releases. fields of radiation protection, reactor safety and radioactive waste managementQ)Tf(^/7^,\\ Risø-R-625(pff Nuclear Safety Research Department Annual Progress Report 1991 Edited Roskilde, Denmark March 1992 #12;Nuclear Safety Research Department Annual Progress Report 1991 Riso-R-62S

  14. Safety Cinema: Safety Videos: Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguards andSafety Alerts

  15. SHSD Manager Safety Engineering Group Manager

    E-Print Network [OSTI]

    Safety, Machine Shop Safety, Tier I Program, Traffic Safety S. Moss: Nuclear Criticality Safety G. Shepherd: Explosives Safety, Facility Authorization Basis, Nuclear Safety R. Travis: Readiness Evaluations

  16. The Environmental Protection Agency's Safety Standards for Disposal of Spent Nuclear Fuel: Potential Path Forward in Response to the Report of the Blue Ribbon Commission on America's Nuclear Future - 13388

    SciTech Connect (OSTI)

    Forinash, Betsy; Schultheisz, Daniel; Peake, Tom [U.S. Environmental Protection Agency, Radiation Protection Division (United States)] [U.S. Environmental Protection Agency, Radiation Protection Division (United States)

    2013-07-01T23:59:59.000Z

    Following the decision to withdraw the Yucca Mountain license application, the Department of Energy created a Blue Ribbon Commission (BRC) on America's Nuclear Future, tasked with recommending a national strategy to manage the back end of the nuclear fuel cycle. The BRC issued its final report in January 2012, with recommendations covering transportation, storage and disposal of spent nuclear fuel (SNF); potential reprocessing; and supporting institutional measures. The BRC recommendations on disposal of SNF and high-level waste (HLW) are relevant to the U.S. Environmental Protection Agency (EPA), which shares regulatory responsibility with the Nuclear Regulatory Commission (NRC): EPA issues 'generally applicable' performance standards for disposal repositories, which are then implemented in licensing. For disposal, the BRC endorses developing one or more geological repositories, with siting based on an approach that is adaptive, staged and consent-based. The BRC recommends that EPA and NRC work cooperatively to issue generic disposal standards-applying equally to all sites-early in any siting process. EPA previously issued generic disposal standards that apply to all sites other than Yucca Mountain. However, the BRC concluded that the existing regulations should be revisited and revised. The BRC proposes a number of general principles to guide the development of future regulations. EPA continues to review the BRC report and to assess the implications for Agency action, including potential regulatory issues and considerations if EPA develops new or revised generic disposal standards. This review also involves preparatory activities to define potential process and public engagement approaches. (authors)

  17. Environmental Health and Safety Fire and Life Safety Laboratory Assessment

    E-Print Network [OSTI]

    Environmental Health and Safety Fire and Life Safety Laboratory Assessment PI or environmental concerns were identified. B. Items of safety or environmental concerns were identified. C. Uncorrected repeated safety or environmental items were identified. Safety Equipment # Compliance Items

  18. Safety Enhancements Continue at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguards andSafety29/2011 Page

  19. Industrial Safety | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook linkProtection »Safety General

  20. A REVIEW ON CORROSION OF METALS AND PROTECTION

    E-Print Network [OSTI]

    Satya Vani Yadla; V. Sridevi; M. V. V. Ch; Ana Lakshmi; S. P. Kiran Kumari

    Corrosion is a complex series of reactions between different environmental conditions and metal surfaces. The importance of corrosion studies is threefold includes economic losses, improved safety and conservation. Corrosion control of metals is of technical, economical, environmental and aesthetical importance. The main cause of the structural deterioration of all metallic mains is external corrosion which is included by environmental and operation conditions. It is necessary to remember that the choice of a material depends on many factors, including its corrosion behavior. The engineering aspects of corrosion resistance cannot be over emphasized. Complete corrosion resistance is almost all media can be achieved by the use of either platinum or glass, but these materials are not practical. In this review, we study about the corrosion behavior of the iron and steel in different conditions and environment.

  1. Revised GCFR safety program plan

    SciTech Connect (OSTI)

    Kelley, A.P.; Boyack, B.E.; Torri, A.

    1980-05-01T23:59:59.000Z

    This paper presents a summary of the recently revised gas-cooled fast breeder reactor (GCFR) safety program plan. The activities under this plan are organized to support six lines of protection (LOPs) for protection of the public from postulated GCFR accidents. Each LOP provides an independent, sequential, quantifiable risk barrier between the public and the radiological hazards associated with postulated GCFR accidents. To implement a quantitative risk-based approach in identifying the important technology requirements for each LOP, frequency and consequence-limiting goals are allocated to each. To ensure that all necessary tasks are covered to achieve these goals, the program plan is broken into a work breakdown structure (WBS). Finally, the means by which the plan is being implemented are discussed.

  2. Protecting Life on Earth

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    Review: Protecting Life on Earth: An Introduction to thePeter B. Protecting Life on Earth: An Introduction to theof Protecting Life on Earth is “to explain to an intelligent

  3. Conventional Facilities Chapter 8: Fire Protection 8-1 NSLS-II Preliminary Design Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    .4 ­ Environmental Protection, Safety and Health Protection Standards DOE O413.3A ­ Program and Project Management PROTECTION 8.1 Design Criteria 8.1.1 Codes and Standards The latest edition of the codes, standards, orders the anticipated design completion date. All work will be in accordance with BNL's Implementation Plan for DOE 413

  4. Experts are partnering in Tampa, the Lightning Capital of the U.S., to provide safety information about the dangers of lightning and promote

    E-Print Network [OSTI]

    this free event to learn more about the national Lightning Safety Awareness Campaign to protect your family about the dangers of lightning and promote risk reduction and lightning protection education. Attend safety & protection resources FEATURED GUESTS INCLUDE: · Tampa Mayor Bob Buckhorn · Tampa Fire Chief

  5. Office of Physical Protection

    Broader source: Energy.gov [DOE]

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  6. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    protection logic in each relay 17 Copyright 2010, Southern California Edison Advanced Protection on the System of the Future * Use fault-interrupting switches with relays...

  7. Shore Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Shore Protection Act is the primary legal authority for protection and management of Georgia's shoreline features including sand dunes, beaches, sandbars, and shoals, collectively known as the...

  8. Oak Ridge National Laboratory Health and Safety Long-Range Plan: Fiscal years 1989--1995

    SciTech Connect (OSTI)

    Not Available

    1989-06-01T23:59:59.000Z

    The health and safety of its personnel is the first concern of ORNL and its management. The ORNL Health and Safety Program has the responsibility for ensuring the health and safety of all individuals assigned to ORNL activities. This document outlines the principal aspects of the ORNL Health and Safety Long-Range Plan and provides a framework for management use in the future development of the health and safety program. Each section of this document is dedicated to one of the health and safety functions (i.e., health physics, industrial hygiene, occupational medicine, industrial safety, nuclear criticality safety, nuclear facility safety, transportation safety, fire protection, and emergency preparedness). Each section includes functional mission and objectives, program requirements and status, a summary of program needs, and program data and funding summary. Highlights of FY 1988 are included.

  9. Spent Nuclear Fuel (SNF) project Integrated Safety Management System phase I and II Verification Review Plan

    SciTech Connect (OSTI)

    CARTER, R.P.

    1999-11-19T23:59:59.000Z

    The U.S. Department of Energy (DOE) commits to accomplishing its mission safely. To ensure this objective is met, DOE issued DOE P 450.4, Safety Management System Policy, and incorporated safety management into the DOE Acquisition Regulations ([DEAR] 48 CFR 970.5204-2 and 90.5204-78). Integrated Safety Management (ISM) requires contractors to integrate safety into management and work practices at all levels so that missions are achieved while protecting the public, the worker, and the environment. The contractor is required to describe the Integrated Safety Management System (ISMS) to be used to implement the safety performance objective.

  10. Protected Areas Stacy Philpott

    E-Print Network [OSTI]

    Gottgens, Hans

    · Convention of Biological Diversity, 1992 #12;IUCN Protected Area Management Categories Ia. Strict Nature. Protected Landscape/ Seascape VI. Managed Resource Protected Area #12;Ia. Strict Nature Preserves and Ib. Wilderness Areas · Natural preservation · Research · No · No #12;II. National Parks · Ecosystem protection

  11. Fire Protection Program Metrics

    Broader source: Energy.gov [DOE]

    Presenter: Perry E. D ’Antonio, P.E., Acting Sr. Manager, Fire Protection - Sandia National Laboratories

  12. River Protection Project (RPP) Environmental Program Plan

    SciTech Connect (OSTI)

    POWELL, P.A.

    2000-03-29T23:59:59.000Z

    This Environmental Program Plan was developed in support of the Integrated Environment, Safety, and Health Management System Plan (ISMS) (RPP-MP-003), which establishes a single, defined environmental, safety, and health management system that integrates requirements into the work planning and execution processes to protect workers, the public, and the environment. The ISMS also provides mechanisms for increasing worker involvement in work planning, including hazard and environmental impact identification, analysis, and control; work execution; and feedback/improvement processes. The ISMS plan consists of six core functions. Each section of this plan describes the activities of the River Protection Project (RPP) (formerly known as the Tank Waste Remediation System) Environmental organization according to the following core functions: Establish Environmental Policy; Define the Scope of Work; Identify Hazards, Environmental Impacts, and Requirements; Analyze Hazards and Environmental Impacts and Implement Controls; Perform Work within Controls; and Provide Feedback and Continuous Improvement.

  13. Coal Mine Safety Act (Virginia)

    Broader source: Energy.gov [DOE]

    This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

  14. Nuclear Safety Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Research and Development Proposal Review and Prioritization Process and Criteria Nuclear Safety Research and Development Program Office of Nuclear Safety Office of...

  15. Magnetic Field Safety Magnetic Field Safety

    E-Print Network [OSTI]

    McQuade, D. Tyler

    Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

  16. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  17. Pipeline Safety Rule (Tennessee)

    Broader source: Energy.gov [DOE]

    The Pipeline Safety Rule simply states, "The Minimum Federal Safety Standards for the transportation of natural and other gas by pipeline (Title 49, Chapter 1, Part 192) as published in the Federal...

  18. Dam Safety Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Dam Safety Division within the Department of the Environment is responsible for administering a dam safety program to regulate the construction, operation, and maintenance of dams to prevent...

  19. Dam Safety (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety,...

  20. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  1. DOE handbook electrical safety

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  2. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  3. Department of Environmental Health & Safety Emergency Management

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Management Fire & Life Safety Industrial Hygiene Laboratory Safety Occupational & General Safety Management Environmental Management Fire & Life Safety Industrial Hygiene Laboratory Safety Occupational Values A Note from the Director Environmental Management Fire & Life Safety Lab Safety & Industrial

  4. Environmental Health & Safety

    E-Print Network [OSTI]

    Environmental Health & Safety Sub Department Name 480 Oak Rd, Stanford, CA 94305 T 650.723.0448 F 650.725.3468 DEPUTY DIRECTOR, ENVIRONMENTAL HEALTH AND SAFETY Exempt, Full-Time (100% FTE) Posted May 1, 2014 The Department of Environmental Health and Safety (EH&S) at Stanford University seeks

  5. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2011 - 12 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  6. Earth Sciences Safety Handbook

    E-Print Network [OSTI]

    Cambridge, University of

    Report of Earth Sciences Departmental Safety Committee 2012 - 13 5 Chemical Safety 21 - 22 Chemical Waste Assessment Hire Vehicle Checklist Department Driving Protocol: Bullard vehicles 38 - 48 Electrical Safety 24 and outside adjacent to areas which present a particular fire hazard. Persons wishing to smoke are asked to do

  7. Latest revised date: October 26, 2011 Page 1 of 6 Prepared by: Department of Health & Safety S-009

    E-Print Network [OSTI]

    deYoung, Brad

    Latest revised date: October 26, 2011 Page 1 of 6 Prepared by: Department of Health & Safety S-009 Page 2 of 6 Prepared by: Department of Health & Safety S-009 Printed Copies of this Document with the Department of Health & Safety) the type of hand protection required for the specific hand hazard; Provide

  8. September 2013 Laboratory Safety Manual Section 7 -Safety Training

    E-Print Network [OSTI]

    Wilcock, William

    September 2013 Laboratory Safety Manual Section 7 - Safety Training UW Environmental Health and Safety Page 7-1 Section 7 - Safety Training Contents A. SAFETY TRAINING REQUIREMENTS ......................................................7-1 B. EH&S SAFETY TRAINING AND RECORDS ..............................................7-1 C

  9. Container lid gasket protective strip for double door transfer system

    DOE Patents [OSTI]

    Allen, Jr., Burgess M

    2013-02-19T23:59:59.000Z

    An apparatus and a process for forming a protective barrier seal along a "ring of concern" of a transfer container used with double door systems is provided. A protective substrate is supplied between a "ring of concern" and a safety cover in which an adhesive layer of the substrate engages the "ring of concern". A compressive foam strip along an opposite side of the substrate engages a safety cover such that a compressive force is maintained between the "ring of concern" and the adhesive layer of the substrate.

  10. Center for Intermodal Transportation Safety

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Center for Intermodal Transportation Safety and Security Panagiotis Scarlatos, Ph.D., Director Transportation Safety and Security #12;Center for Intermodal Transportation Safety and Security Partners #12 evacuations · Tracking systems for hazardous materials Center for Intermodal Transportation Safety

  11. Safety Manual Prepared by the

    E-Print Network [OSTI]

    Alpay, S. Pamir

    -3113 Emergency maintenance to report a water leak, electrical outage, non-working fume hood, etc. after normal Radiation and Laser Safety 19 Laser Safety 21 Compressed Gas and Cryogenic Safety 22 Electrical Safety 24

  12. Sandia National Laboratories: Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Testing Phenomenological Modeling Risk and Safety Assessment Cyber-Based Vulnerability Assessments Uncertainty Analysis Transportation Safety Fire Science Human...

  13. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  14. Structural and safety characteristics and warrants for highway traffic barriers 

    E-Print Network [OSTI]

    Kohutek, Terry Lee

    1975-01-01T23:59:59.000Z

    Ross Highway traffic barriers are highway appurtenances that provide vehicle occupants with a relative degree of protection from roadside hazards and from errant vehicles encroaching across a median. The six basic types of traffic barr1ers are roads... are decision criteria that 1dentify sites along highways that need traff1c barrier installations. Structural and safety character- istics of the barr1ers refer to the impact performance, the structural integrity, and the safety of the vehicle occupants upon...

  15. Structural and safety characteristics and warrants for highway traffic barriers

    E-Print Network [OSTI]

    Kohutek, Terry Lee

    1975-01-01T23:59:59.000Z

    Ross Highway traffic barriers are highway appurtenances that provide vehicle occupants with a relative degree of protection from roadside hazards and from errant vehicles encroaching across a median. The six basic types of traffic barr1ers are roads... are decision criteria that 1dentify sites along highways that need traff1c barrier installations. Structural and safety character- istics of the barr1ers refer to the impact performance, the structural integrity, and the safety of the vehicle occupants upon...

  16. R&D ERL: Machine Protection System

    SciTech Connect (OSTI)

    Altinbas, Z.

    2010-01-01T23:59:59.000Z

    The Machine Protection System (MPS) is a device-safety system that is designed to prevent damage to hardware by generating interlocks, based upon the state of input signals generated by selected sub-system. It exists to protect key machinery such as the 50 kW and 1 MW RF Systems. When a fault state occurs, the MPS is capable of responding with an interlock signal within several microseconds. The Machine Protection System inputs are designed to be fail-safe. In addition, all fault conditions are latched and time-stamped. The ERL MPS is based on a National Instruments hardware platform, and is programmed by utilizing National Instruments development environment for a visual programming language.

  17. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-14T23:59:59.000Z

    This Order establishes requirements for the management and operation of the Department of Energy (DOE) Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE.

  18. Interaction, protection and epidemics

    E-Print Network [OSTI]

    Goyal, Sanjeev; Vigier, Adrien

    2015-03-06T23:59:59.000Z

    unique equilibrium: individuals who invest in protection choose to interact more relative to those who do not invest in protection. Changes in the contagiousness of the disease have non-monotonic effects: as a result interaction initially falls...

  19. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30T23:59:59.000Z

    Provides detailed requirements to supplement DOE O 473.2, Protective Force Program, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Does not cancel other directives.

  20. Providing protection: Agencies receive funding to repair, upgrade dams

    E-Print Network [OSTI]

    Wythe, Kathy

    2009-01-01T23:59:59.000Z

    Story by Kathy Wythe tx H2O | pg. 26 Providing protection Agencies receive funding to repair, upgrade dams along with local partners, can apply for grant funds, he said. Construction of the dams began through four federal authorizations..., called floodwater retarding structures and built mostly in rural areas during the 1950s to 1970s, are aging and need repairing. Others now protect urban areas that have developed downstream and need upgrading to meet more stringent safety standards...

  1. Total safety: A new safety culture to integrate nuclear safety and operational safety

    SciTech Connect (OSTI)

    Saji, G. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Murphy, G.A. [ed.

    1991-07-01T23:59:59.000Z

    The creation of a complete and thorough safety culture is proposed for the purpose of providing additional assurance about nuclear safety and improving the performance of nuclear power plants. The safety philosophy developed a combination of the former hardware-oriented nuclear safety approach and recent operational safety concepts. The improvement of the latter, after TMI-2 and Chernobyl, has been proven very effective in reducing the total risk associated with nuclear power plants. The first part of this article introduces a {open_quotes}total safety{close_quotes} concept. This extends the concept of {open_quotes}nuclear safety{close_quotes} and makes it closer to the public perception of safety. This concept is defined by means of a taxonomy of total safety. The second part of the article shows that total safety can be achieved by integrating it into a modern quality assurance (QA) system since it is tailored to make implementation into a framework of QA easier. The author believes that the outstanding success experienced by various industries as a result of introducing the modern QA system should lead to its application for ensuring the safety and performance of nuclear facilities. 15 refs., 3 figs.

  2. Michael J. Cates- 2014 Walter W. Maybee Award for Fire Protection

    Broader source: Energy.gov [DOE]

    The DOE Fire Safety Committee recognizes Mr. Cates’ direct and indirect actions towards the protection of life and property both within and beyond the realm of DOE by presenting him the 2014 Walter W. Maybee Award.

  3. RADIONUCLIDE RADIATION PROTECTION

    E-Print Network [OSTI]

    Healy, Kevin Edward

    RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2002 D. Delacroix* J. P. Guerre** P. Leblanc'Energie Atomique, CEA/Saclay, France ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing #12;RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2nd Edition (2002

  4. Corium protection assembly

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

    1994-01-01T23:59:59.000Z

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  5. Radiation Protection Program Environmental Health and Safety Department

    E-Print Network [OSTI]

    ................................................................................................ 7 2.1. Emergency Contact Information................................................................................................................... 18 5.2. Information Required for Use of Licensed Materials............................................................................................... 21 6.4. Storage and Security

  6. Department of Environmental Health and Instructional Safety Respiratory Protection

    E-Print Network [OSTI]

    de Lijser, Peter

    . Seal Check. 5. Respiratory Fit Testing. 6. Inspection Procedures. 7. Cleaning and Storage Instructions example, to retard spoilage in fruit storage areas), or when oxygen is displaced by a heavier gas or vapor, ammonia, propane, etc. Some processes that use high temperatures (like welding) can involve reactions

  7. Voluntary Protection Program - Business Case for Safety | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment(GATE)Action Plan for

  8. Health Safety & Environmental Protection Committee Meeting Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet When yourecoveryG -Hazmat workHow ORISE

  9. Nuclear Criticality Safety Guide for Fire Protection | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|Work ForceNovemberof

  10. Department of Energy: Safety and Employee Protection Authorities |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0andEnergyGlobal Nuclearof aDepartment oftheALTechnologies for

  11. Health Safety & Environmental Protection Committee Site Risks:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy Health Physics

  12. Health Safety and Environmental Protection Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy Health Physics Page 1 Final

  13. Health Safety and Environmental Protection Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy Health Physics Page 1

  14. Health Safety and Environmental Protection Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy Health Physics Page

  15. Health, Safety and Environmental Protection Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy HealthJanuary 12, 2012 FINAL

  16. Health, Safety and Environmental Protection Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy HealthJanuary 12, 2012

  17. Health, Safety and Environmental Protection Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy HealthJanuary 12,

  18. Health, Safety, and Environmental Protection Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy HealthJanuary 12,Health,May

  19. Health, Safety, and Environmental Protection Committee Page 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment of Energy HealthJanuary

  20. Coastal Marshlands Protection Act (Georgia

    Broader source: Energy.gov [DOE]

    The Coastal Marshlands Protection Act provides the Coastal Resources Division with the authority to protect tidal wetlands. The Coastal Marshlands Protection Act limits certain activities and...

  1. Radiation Protection Guidance Hospital Staff

    E-Print Network [OSTI]

    Kay, Mark A.

    Page 1 Radiation Protection Guidance For Hospital Staff Prepared for Stanford ..................................................................................................................... 17 The Basic Principles of Radiation Protection........................................................... 17 Protection against Radiation Exposure

  2. Antiterrorism design and public safety : reconciling CPTED with the post-9/11 city

    E-Print Network [OSTI]

    Rothrock, Sara E. (Sara Elizabeth)

    2010-01-01T23:59:59.000Z

    Urban downtowns have changed since September 1 1, 2001, sprouting bollards, planters, and barriers installed on the pretense of improved safety and security. While these interventions protect buildings from vehicle bombs, ...

  3. Safety of Department of Energy-Owned Nuclear Reactors

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-23T23:59:59.000Z

    To establish reactor safety program requirements assure that the safety of each Department of Energy-owned (DOE-owned) reactor is properly analyzed, evaluated, documented, and approved by DOE; and reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate protection for health and safety and will be in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. Cancels Chap. 6 of DOE O 5480.1A. Paragraphs 7b(3), 7e(3) & 8c canceled by DOE O 5480.23 & canceled by DOE N 251.4 of 9-29-95.

  4. SYNTHESIS OF SAFETY ANALYSIS AND FIRE HAZARD ANALYSIS METHODOLOGIES

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17T23:59:59.000Z

    Successful implementation of both the nuclear safety program and fire protection program is best accomplished using a coordinated process that relies on sound technical approaches. When systematically prepared, the documented safety analysis (DSA) and fire hazard analysis (FHA) can present a consistent technical basis that streamlines implementation. If not coordinated, the DSA and FHA can present inconsistent conclusions, which can create unnecessary confusion and can promulgate a negative safety perception. This paper will compare the scope, purpose, and analysis techniques for DSAs and FHAs. It will also consolidate several lessons-learned papers on this topic, which were prepared in the 1990s.

  5. Lecture notes for criticality safety

    SciTech Connect (OSTI)

    Fullwood, R.

    1992-03-01T23:59:59.000Z

    These lecture notes for criticality safety are prepared for the training of Department of Energy supervisory, project management, and administrative staff. Technical training and basic mathematics are assumed. The notes are designed for a two-day course, taught by two lecturers. Video tapes may be used at the options of the instructors. The notes provide all the materials that are necessary but outside reading will assist in the fullest understanding. The course begins with a nuclear physics overview. The reader is led from the macroscopic world into the microscopic world of atoms and the elementary particles that constitute atoms. The particles, their masses and sizes and properties associated with radioactive decay and fission are introduced along with Einstein's mass-energy equivalence. Radioactive decay, nuclear reactions, radiation penetration, shielding and health-effects are discussed to understand protection in case of a criticality accident. Fission, the fission products, particles and energy released are presented to appreciate the dangers of criticality. Nuclear cross sections are introduced to understand the effectiveness of slow neutrons to produce fission. Chain reactors are presented as an economy; effective use of the neutrons from fission leads to more fission resulting in a power reactor or a criticality excursion. The six-factor formula is presented for managing the neutron budget. This leads to concepts of material and geometric buckling which are used in simple calculations to assure safety from criticality. Experimental measurements and computer code calculations of criticality are discussed. To emphasize the reality, historical criticality accidents are presented in a table with major ones discussed to provide lessons-learned. Finally, standards, NRC guides and regulations, and DOE orders relating to criticality protection are presented.

  6. A RESEARCH ON SEAMLESS PLATFORM CHANGE OF REACTOR PROTECTION SYSTEM FROM PLC TO FPGA

    E-Print Network [OSTI]

    Hwayang-dong, Gwangjin-gu, Seoul, 143-701, Republic of Korea 2 Korea Atomic Energy Research Institute, Man 1. INTRODUCTION A safety grade PLC is an industrial digital computer used to develop safety-critical systems such as RPS (Reactor Protection System) for nuclear power plants. The software loaded into a PLC

  7. A Preliminary Report on Static Analysis of C Code for Nuclear Reactor Protection System

    E-Print Network [OSTI]

    &C system in nuclear power plants consists of various safety and non-safety components. This paper triesA Preliminary Report on Static Analysis of C Code for Nuclear Reactor Protection System Jong-gu Republic of Korea (e-mail: {kirdess, atang34, jbyoo}@konkuk.ac.kr) **Korea Atomic Energy Research Institute

  8. In case of emergency or if you need help or assistance dial Argonne's Protective Force

    E-Print Network [OSTI]

    Kemner, Ken

    In case of emergency or if you need help or assistance dial Argonne's Protective Force: 911 (from Argonne phones) or (630) 252-1911 (from cell phones) Safety at Work As a staff member or user at the Center for Nanoscale Materials (CNM), you need to be aware of safety regulations at Argonne National

  9. Hydrogen Technologies Safety Guide

    SciTech Connect (OSTI)

    Rivkin, C.; Burgess, R.; Buttner, W.

    2015-01-01T23:59:59.000Z

    The purpose of this guide is to provide basic background information on hydrogen technologies. It is intended to provide project developers, code officials, and other interested parties the background information to be able to put hydrogen safety in context. For example, code officials reviewing permit applications for hydrogen projects will get an understanding of the industrial history of hydrogen, basic safety concerns, and safety requirements.

  10. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  11. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15T23:59:59.000Z

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B.

  12. Battery Safety Testing

    Broader source: Energy.gov (indexed) [DOE]

    Battery Safety Testing Christopher J. Orendorff, Leigh Anna M. Steele, Josh Lamb, and Scott Spangler Sandia National Laboratories 2014 Energy Storage Annual Merit Review...

  13. BNL | ATF Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    be continuously escorted by someone who has such training: The training consists of an eye exam, BNL general laser safety lecture, and formal ATF laser familiarization. Untrained...

  14. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06T23:59:59.000Z

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  15. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  16. Pipeline Safety (Maryland)

    Broader source: Energy.gov [DOE]

    The Public Service Commission has the authority enact regulations pertaining to pipeline safety. These regulations address pipeline monitoring, inspections, enforcement, and penalties.

  17. Intrastate Pipeline Safety (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for gas and liquid pipeline maintenance and operating procedures, per the Federal Hazardous Liquid and Natural Gas Pipeline Safety Acts, and give the...

  18. Pipeline Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    The South Dakota Pipeline Safety Program, administered by the Public Utilities Commission, is responsible for regulating hazardous gas intrastate pipelines. Relevant legislation and regulations...

  19. Gas Safety Law (Florida)

    Broader source: Energy.gov [DOE]

    This law authorizes the establishment of rules and regulations covering the design, fabrication, installation, inspection, testing and safety standards for installation, operation and maintenance...

  20. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  1. The Walter W. Maybee Award for Fire Protection

    Broader source: Energy.gov [DOE]

    Awarded to those whom the Department of Energy (DOE) Fire Safety Committee concludes to be a personification of the ideals of this community and who has achieved a significant degree of accomplishment within the realms of fire protection engineering and emergency services.

  2. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect (OSTI)

    Thate, J.E.

    1992-09-01T23:59:59.000Z

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  3. Standard Guide for Radiation Protection Program for Decommissioning Operations

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    1987-01-01T23:59:59.000Z

    1.1 This guide provides instruction to the individual charged with the responsibility for developing and implementing the radiation protection program for decommissioning operations. 1.2 This guide provides a basis for the user to develop radiation protection program documentation that will support both the radiological engineering and radiation safety aspects of the decommissioning project. 1.3 This guide presents a description of those elements that should be addressed in a specific radiation protection plan for each decommissioning project. The plan would, in turn, form the basis for development of the implementation procedures that execute the intent of the plan. 1.4 This guide applies to the development of radiation protection programs established to control exposures to radiation and radioactive materials associated with the decommissioning of nuclear facilities. The intent of this guide is to supplement existing radiation protection programs as they may pertain to decommissioning workers, members of...

  4. Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety

    E-Print Network [OSTI]

    Machel, Hans

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk all connections and fittings prior to start of anesthesia. Carefully pour Isoflurane from Environmental Health & Safety before re-entering the laboratory. REFERENCES 1. Procedure

  5. Department of Environmental Health & Safety Risk Management Services

    E-Print Network [OSTI]

    Machel, Hans

    Department of Environmental Health & Safety Risk Management Services 3-107 Research Transition of Insurance Policy Standards Department of Management Services Protective Services Management & Risk Management & Risk Assessment Office Resource Planning Tel: 780.248.1147 Tel: 780.492.5050 Tel: 780

  6. Office of Emergency Management UCF Facilities and Safety

    E-Print Network [OSTI]

    Wu, Shin-Tson

    Office of Emergency Management UCF Facilities and Safety Page 1 of 3 Departments within equipment, vital records, and data. When UCF suspends normal operations, prepare to close office: · Planning how to ensure the protection of files, vital records, and valuable equipment in advance

  7. Sandia Energy - Risk and Safety Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Risk and Safety Assessment Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Safety Technologies Risk and Safety Assessment Risk and Safety AssessmentTara...

  8. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  9. Integrating Safety Assessment Methods using the Risk Informed Safety Margins Characterization (RISMC) Approach

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli

    2013-03-01T23:59:59.000Z

    Safety is central to the design, licensing, operation, and economics of nuclear power plants (NPPs). As the current light water reactor (LWR) NPPs age beyond 60 years, there are possibilities for increased frequency of systems, structures, and components (SSC) degradations or failures that initiate safety significant events, reduce existing accident mitigation capabilities, or create new failure modes. Plant designers commonly “over-design” portions of NPPs and provide robustness in the form of redundant and diverse engineered safety features to ensure that, even in the case of well-beyond design basis scenarios, public health and safety will be protected with a very high degree of assurance. This form of defense-in-depth is a reasoned response to uncertainties and is often referred to generically as “safety margin.” Historically, specific safety margin provisions have been formulated primarily based on engineering judgment backed by a set of conservative engineering calculations. The ability to better characterize and quantify safety margin is important to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margin management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. In addition, as research and development (R&D) in the LWR Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. To support decision making related to economics, readability, and safety, the RISMC Pathway provides methods and tools that enable mitigation options known as margins management strategies. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. As the lead Department of Energy (DOE) Laboratory for this Pathway, the Idaho National Laboratory (INL) is tasked with developing and deploying methods and tools that support the quantification and management of safety margin and uncertainty.

  10. Protective Actions and Reentry

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume defines appropriate protective actions and reentry of a site following an emergency. Canceled by DOE G 151.1-4.

  11. Physical Protection Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23T23:59:59.000Z

    Supplements DOE O 473.1, by establishing requirements for the physical protection of safeguards and security interests. Cancels: DOE M 5632.1C-1

  12. Environmental Protection Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as an environmental protection specialist within the Environmental Planning and Analysis department (KEC) of the Environment, Fish, and Wildlife ...

  13. System Protection Control Craftman

    Broader source: Energy.gov [DOE]

    A successful candidate will perform preventative and corrective maintenance on protective relays, revenue meters, telemetering schemes, substation control systems and various kinds of substation...

  14. Asset Protection Analysis Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-21T23:59:59.000Z

    The Guide provides examples of the application of as set protection analysis to several common problems. Canceled by DOE N 251.80.

  15. Integrated Safety Management Policy

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The policy establishes DOE's expectation for safety, including integrated safety management that will enable the Department’s mission goals to be accomplished efficiently while ensuring safe operations at all departmental facilities and activities. Cancels DOE P 411.1, DOE P 441.1, DOE P 450.2A, DOE P 450.4, and DOE P 450.7

  16. SECURITY AND FIRE SAFETY

    E-Print Network [OSTI]

    Barrash, Warren

    ANNUAL SECURITY AND FIRE SAFETY REPORT 2014 #12;2 Boise State University 2014 Annual Security and Fire Safety Report From the Vice President for Campus Operations and General Counsel At Boise State University, we are committed to providing a safe and secure environment for students, staff

  17. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  18. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  19. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  20. Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety

    E-Print Network [OSTI]

    Machel, Hans

    Occupational Hygiene & Chemical Safety Division Department of Environmental Health & Safety Risk (most common ­ personal hygiene very important); d) storage ­ leaks; and e) waste ­ storage and disposal

  1. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  2. CRAD, Facility Safety- Technical Safety Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

  3. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212 Psychiatric Institute Radiation Safety Office (Please complete this form within 24 hours and send a copy to your supervisor and The Radiation Safety Office) Your Name

  4. Normalization of Process Safety Metrics

    E-Print Network [OSTI]

    Wang, Mengtian

    2012-10-19T23:59:59.000Z

    and organizational risks, there is an emerging need to evaluate the process safety implementation across an organization through measurements. Thus, the process safety metric is applied as a powerful tool that measures safety activities, status, and performance...

  5. Audit Report The Procurement of Safety Class/Safety-Significant Items at the Savannah River Site

    SciTech Connect (OSTI)

    None

    2009-04-01T23:59:59.000Z

    The Department of Energy operates several nuclear facilities at its Savannah River Site, and several additional facilities are under construction. This includes the National Nuclear Security Administration's Tritium Extraction Facility (TEF) which is designated to help maintain the reliability of the U.S. nuclear stockpile. The Mixed Oxide Fuel Fabrication Facility (MOX Facility) is being constructed to manufacture commercial nuclear reactor fuel assemblies from weapon-grade plutonium oxide and depleted uranium. The Interim Salt Processing (ISP) project, managed by the Office of Environmental Management, will treat radioactive waste. The Department has committed to procuring products and services for nuclear-related activities that meet or exceed recognized quality assurance standards. Such standards help to ensure the safety and performance of these facilities. To that end, it issued Departmental Order 414.1C, Quality Assurance (QA Order). The QA Order requires the application of Quality Assurance Requirements for Nuclear Facility Applications (NQA-1) for nuclear-related activities. The NQA-1 standard provides requirements and guidelines for the establishment and execution of quality assurance programs during the siting, design, construction, operation, and decommissioning of nuclear facilities. These requirements, promulgated by the American Society of Mechanical Engineers, must be applied to 'safety-class' and 'safety-significant' structures, systems and components (SSCs). Safety-class SSCs are defined as those necessary to prevent exposure off site and to protect the public. Safety-significant SSCs are those whose failure could irreversibly impact worker safety such as a fatality, serious injury, or significant radiological or chemical exposure. Due to the importance of protecting the public, workers, and environment, we initiated an audit to determine whether the Department of Energy procured safety-class and safety-significant SSCs that met NQA-1 standards at the Savannah River Site. Our review disclosed that the Department had procured and installed safety-class and safety-significant SSCs that did not meet NQA-1 quality standards. Specifically, we identified multiple instances in which critical components did not meet required quality and safety standards. For example: (1) Three structural components were procured and installed by the prime contractor at Savannah River during construction of the MOX Facility that did not meet the technical specifications for items relied on for safety. These substandard items necessitated costly and time consuming remedial action to, among other things, ensure that nonconforming materials and equipment would function within safety margins; (2) In six instances, items used in the construction of TEF failed to satisfy quality standards. In one of these situations, operating procedures had to be modified to ensure that the problem item did not compromise safety; and (3) Finally, at the ISP, one component that did not meet quality standards was procured. The failure of the item could have resulted in a spill of up to 15,000 gallons of high-level radioactive waste. Based on an extensive examination of relevant internal controls and procurement practices, we concluded that these failures were attributable to inadequate attention to quality assurance at Savannah River. Simply put, Departmental controls were not adequate to prevent and/or detect quality assurance problems. For example, Federal and prime contractor officials did not expressly require that subcontractors or lower-tiered vendors comply with quality assurance requirements. Additionally, management did not effectively communicate quality assurance concerns between the several Departmental program elements operating at Savannah River. The procurement and installation of these nonconforming components resulted in cost increases. For example, as of October 2008, the MOX Facility had incurred costs of more than $680,000 due to problems associated with the procurement of $11 million of nonconforming safety-class reinforcing steel.

  6. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-01-15T23:59:59.000Z

    To implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by the Department of Energy (DOE) operations and by which DOE cost effectively meets or exceeds compliance with applicable environmental; public health; and resource protection laws, regulations, and DOE requirements. Cancels DOE 5400.1 and DOE N 450.4.

  7. Environmental protection Implementation Plan

    SciTech Connect (OSTI)

    R. C. Holland

    1999-12-01T23:59:59.000Z

    This ``Environmental Protection Implementation Plan'' is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California's commitment to conduct its operations in an environmentally safe and responsible manner. The ``Environmental Protection Implementation Plan'' helps management and staff comply with applicable environmental responsibilities.

  8. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-05-15T23:59:59.000Z

    To establish DOE procedures and responsibilities for implementing the policy and requirements set forth in 10 CFR Part 745, Protection of Human Subjects, ad in DOE P 443.1, Policy on the Protection of Human Subjects. Cancels DOE O 1300.3. Canceled by DOE O 443.1A.

  9. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-12-20T23:59:59.000Z

    The order establishes Department of Energy (DOE) procedures and responsibilities for implementing the policy and requirements set forth in 10 Code of Federal Regulations (CFR) Part 745, Protection of Human Subjects; and in DOE P 443.1A, Protection of Human Subjects, dated 12-20-07. Cancels DOE O 443.1. Canceled by DOE O 443.1B.

  10. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-20T23:59:59.000Z

    Provides detailed requirements to supplement DOE O 473.2, PROTECTIVE FORCE PROGRAM, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Change 1 revised pages in Chapters IV and VI on 12/20/2001.

  11. Content Protection for Optical Media Content Protection for Optical Media

    E-Print Network [OSTI]

    Amir, Yair

    Content Protection for Optical Media Content Protection for Optical Media A Comparison of Self-Protecting Digital Content and AACS Independent Security Evaluators www.securityevaluators.com May 3, 2005 Copyright for Optical Media 2 #12;Content Protection for Optical Media Content Protection for Optical Media 3 Executive

  12. Summer 2012Protecting MU's Health, Safety, and the Environment Laboratory Safety Incidents

    E-Print Network [OSTI]

    Taylor, Jerry

    causing a flash fire. Ms. Sangji was injured and died as a result of her injuries several days later after a high energy metal compound he was working with detonated. As a result of this explosion to laboratory accidents across the United States which included the June 2009 hydrogen explosion

  13. MATERIAL SAFETY Flammability: 0

    E-Print Network [OSTI]

    Rollins, Andrew M.

    Respiratory Protection : N/A Ventilation : Local Exhaust : N/A Mechanical : N/A Special : N/A Other : N

  14. Environmental Health and Safety Department

    E-Print Network [OSTI]

    . Fire Safety, Radiation Safety and Hazardous Materials Facility are at other locations on campus Training Requirements If you work with: · Biological Materials · Chemical Agents · Radiological Materials

  15. Safety Culture in Nuclear Installations

    Broader source: Energy.gov [DOE]

    IAEA-TECDOC-1329 Safety Culture in Nuclear Installations, Guidance for use in the Enhancement of Safety Culture, International Atomic Energy Agency IAEA, December 2002.

  16. Gordon wins NNSA Safety Professional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in electrical safety at the Laboratory and across the DOE complex," said Industrial Hygiene and Safety manager Theresa Cull. "I am very pleased that NNSA has recognized Lloyd's...

  17. Developed 2007 _____________________________ Environment, Health, & Safety _________ __________________

    E-Print Network [OSTI]

    Eisen, Michael

    _________ __________________ Training Program EHS 300~ Fiber optic Safety Course Syllabus Subject Category: Industrial Hygiene Course Alignment EH&S Website: Industrial Hygiene/Laser Safety Group - http

  18. Machine Protection: Availability for Particle Accelerators

    E-Print Network [OSTI]

    Apollonio, Andrea; Schmidt, Ruediger

    2015-03-16T23:59:59.000Z

    Machine availability is a key indicator for the performance of the next generation of particle accelerators. Availability requirements need to be carefully considered during the design phase to achieve challenging objectives in different fields, as e.g. particle physics and material science. For existing and future High-Power facilities, such as ESS (European Spallation Source) and HL-LHC (High-Luminosity LHC), operation with unprecedented beam power requires highly dependable Machine Protection Systems (MPS) to avoid any damage-induced downtime. Due to the high complexity of accelerator systems, finding the optimal balance between equipment safety and accelerator availability is challenging. The MPS architecture, as well as the choice of electronic components, have a large influence on the achievable level of availability. In this thesis novel methods to address the availability of accelerators and their protection systems are presented. Examples of studies related to dependable MPS architectures are given i...

  19. Lithium ion battery with improved safety

    DOE Patents [OSTI]

    Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

    2006-04-11T23:59:59.000Z

    A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

  20. SAFETY EVALUATION OF THE SINGLE SHELL TANKS (SST) MODIFIED SLUICING WASTE RETRIEVAL SYSTEM

    SciTech Connect (OSTI)

    SMITH, R.D.

    2005-03-21T23:59:59.000Z

    The purpose of this safety evaluation is to determine if the potential risk associated with using the single-shell tank (SST) modified sluicing system for retrieval of the 100-series SSTs in the tank farms is adequately addressed and bounded by the current tank farms safety basis (documented safety analysis [DSA]) and to determine if additional controls may be required. This safety evaluation also supports the requirement to perform a generic safety basis amendment for the retrieval of any additional SSTs (other than 241-S-112, and 241-U-107) by modified sluicing from the U.S. Department of Energy, Office of River Protection (ORP) Safety Evaluation Report (SER) 03-TED-066, ''Safety Evaluation Report (SER) for Approval of Justification for Continued Operation (JCO) for Tank Farms Single-Shell Tank (SST) Retrieval/Closure Modified Sluicing''.

  1. Safety Meeting Toolkits - HPMC Occupational Health Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates > Safety

  2. Safety Monitor Joint Working Group (JWG) Tour

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates > Safety4 th

  3. Safety Net (SN) CRAC (rates/adjustments)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates > Safety4

  4. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for X-ray Users for Physics 461 & 462 Protocol Title: Basic Radiation Safety Training for X-ray Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of x-ray producing

  5. Safety Criteria and Safety Lifecycle for Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Criteria and Safety Lifecycle for Artificial Neural Networks Zeshan Kurd, Tim Kelly and Jim. The paper also presents a safety lifecycle for artificial neural networks. This lifecycle focuses, knowledge. INTRODUCTION Artificial neural networks (ANNs) are used in many safety-related applications

  6. Laser Safety Management Policy Statement ............................................................................................................1

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    Laser Safety Management Policy Statement...........................................................2 Laser Users.............................................................................................................2 Unit Laser Safety Officer (ULSO

  7. East Carolina University ENVIRONMENTAL SAFETY COMMITTEE

    E-Print Network [OSTI]

    as workers' compensation, accident prevention, industrial hygiene, occupational safety, fire and life safety

  8. Aviation Management and Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-15T23:59:59.000Z

    To establish a policy framework that will ensure safety, efficiency and effectiveness of government or contractor aviation operations. Cancels DOE O 440.2B. Admin Chg 1, dated 6-22-11, cancels DOE O 440.2C.

  9. Dam Safety Regulation (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Dam Safety Regulation is to ensure that all dams constructed in the state of Mississippi are permitted and thus do not potentially harm wildlife, water supplies and property. ...

  10. High Voltage Safety Act

    Broader source: Energy.gov [DOE]

    The purpose of the High Voltage Safety Act is to prevent injury to persons and property and interruptions of utility service resulting from accidental or inadvertent contact with high-voltage...

  11. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of offsite shipments and onsite transfers of hazardous materials andor modal transport. Cancels DOE 1540.2 and DOE 5480.3

  12. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-27T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Canceled by DOE 460.1A

  13. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-02T23:59:59.000Z

    Establishes safety requirements for the proper packaging and transportation of Department of Energy (DOE) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1.

  14. Promulgating Nuclear Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15T23:59:59.000Z

    Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

  15. Reliability and Safety

    Broader source: Energy.gov [DOE]

    DOE solar reliability and safety research and development (R&D) focuses on testing photovoltaic (PV) modules, inverters, and systems for long-term performance, and helping investors, consumers,...

  16. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  17. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  18. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, and Hazardous...

  19. Dam Safety (North Carolina)

    Broader source: Energy.gov [DOE]

    North Carolina Administrative Code Title 15A, Subchapter 2K lays out further regulations for the design, approval, construction, maintenance, and inspection of dams to ensure public safety and...

  20. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  1. Safety in Buildings 

    E-Print Network [OSTI]

    Hutcheon, N. B.

    Building codes are essentially sets of safety regulations in respect of structure, fire, and health. They were originally developed in response to frequently demonstrated hazards of structural collapse, catastrophic fires, ...

  2. Nuclear Safety (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Nuclear Safety Division conducts a comprehensive nuclear power plant oversight review program of the nine reactors at the five nuclear power sites in Pennsylvania. It also monitors the...

  3. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  4. Occupational Safety and Health Program at the West Valley Demonstration Project

    SciTech Connect (OSTI)

    L. M. Calderon

    1999-04-30T23:59:59.000Z

    The West Valley Nuclear Services Co. LLC (WVNS) is committed to provide a safe, clean, working environment for employees, and to implement U.S. Department of Energy (DOE) requirements affecting worker safety. The West Valley Demonstration Project (WVDP) Occupational Safety and Health Program is designed to protect the safety, health, and well-being of WVDP employees by identifying, evaluating, and controlling biological, chemical, and physical hazards in the work place. Hazards are controlled within the requirements set forth in the reference section at the end of this report. It is the intent of the WVDP Occupational Safety and Health Program to assure that each employee is provided with a safe and healthy work environment. This report shows the logical path toward ensuring employee safety in planning work at the WVDP. In general, planning work to be performed safely includes: combining requirements from specific programs such as occupational safety, industrial hygiene, radiological control, nuclear safety, fire safety, environmental protection, etc.; including WVDP employees in the safety decision-making processes; pre-planning using safety support re-sources; and integrating the safety processes into the work instructions. Safety management principles help to define the path forward for the WVDP Occupational Safety and Health Program. Roles, responsibilities, and authority of personnel stem from these ideals. WVNS and its subcontractors are guided by the following fundamental safety management principles: ''Protection of the environment, workers, and the public is the highest priority. The safety and well-being of our employees, the public, and the environment must never be compromised in the aggressive pursuit of results and accomplishment of work product. A graded approach to environment, safety, and health in design, construction, operation, maintenance, and deactivation is incorporated to ensure the protection of the workers, the public, and the environment.'' These principles are demonstrated through: Conducting all activities in an atmosphere of trust and confidence based on open, honest, and responsive communication. Using innovative and effective approaches to risk identification and management. Applying a systematic approach to planning and execution of all activities that affect the environment, safety, and health through use of the Integrated Environment, Safety, and Health Management System. Holding line management fully accountable to effectively plan and integrate environment, safety, and health activities into field activities. Providing clear policy and direction on environment, safety, and health issues to guide field work. Encouraging and promoting the sharing of environment, safety, and health information and resources. Empowering employees through training, information, tools, and program involvement to effectively protect themselves and the environment. Ensuring it is every employees' responsibility to identify and report potential safety and health hazards and environmental noncompliance. Together, as a team, we accomplish our mission while protecting the environment and preserving the safety and health of each employee and the public.

  5. Toolbox Safety Talk Lead Awareness

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Lead Awareness Environmental Health & Safety Facilities Safety & Health Section Health & Safety for recordkeeping. Lead based paint is commonly found in homes built before 1978 and many industrial paints today still contain lead. Lead overexposure is one of the leading causes of workplace

  6. School of Forest Safety Training

    E-Print Network [OSTI]

    Thomas, Andrew

    ) · Laboratories: ­ Material Safety Data Sheets (MSDS) for chemicals ­ Chemical hygiene plan (CHP) manual

  7. Mondriaan memory protection

    E-Print Network [OSTI]

    Witchel, Emmett Jethro, 1970-

    2004-01-01T23:59:59.000Z

    Reliability and security are quickly becoming users' biggest concern due to the increasing reliance on computers in all areas of society. Hardware-enforced, fine-grained memory protection can increase the reliability and ...

  8. Protective Coatings for Turbomachinery

    E-Print Network [OSTI]

    McCune, B.; Hilty, L.

    of these coatings has lead to the development of tailored coatings for different applications. In addition, coatings now offer multiple benefits. The most advanced compressor coatings restore surface finish, resist erosion, and provide protection from corrosion....

  9. Environmental Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    This Act states general provisions for the protection of the environment. It also states specific regulations for air, water and land pollution as well as atomic radiation, toxic chemical and oil...

  10. Physical Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23T23:59:59.000Z

    Establishes Department of Energy management objectives, requirements and responsibilities for the physical protection of safeguards and security interests. Cancels DOE 5632.1C. Canceled by DOE O 470.4.

  11. Cavern Protection (Texas)

    Broader source: Energy.gov [DOE]

    It is public policy of the state to provide for the protection of caves on or under Texas lands. For the purposes of this legislation, “cave” means any naturally occurring subterranean cavity, and...

  12. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-12-20T23:59:59.000Z

    The Policy is to establish DOE-specific principles for the protection of human subjects involved in DOE research. Cancels DOE P 443.1. Canceled by DOE O 443.1B

  13. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-05-15T23:59:59.000Z

    The purpose of this Policy is to establish DOE-specific policy for the protection of human subjects involved in DOE research. Canceled by DOE P 443.1A.

  14. Cybersecurity: Protecting Our

    E-Print Network [OSTI]

    prosperity in the 21st century will depend on cybersecurity." President Barack Obama We live in a wired world, ipads, game consoles, and other web-enabled devices also need to be protected from viruses and malware

  15. Federal Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-15T23:59:59.000Z

    This Manual establishes requirements for the management and operation of the Department of Energy (DOE) Federal protective forces (FPFs). Cancels DOE M 470.4-3, Chg 1. Canceled by DOE O 473.3.

  16. Groundwater Protection Management Program

    SciTech Connect (OSTI)

    Wells, D.G.

    1999-10-20T23:59:59.000Z

    This document will be a useful reference for those engaged in groundwater protection and management. This document presents a great deal of detail while still addressing the larger issues.

  17. Protective Force Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-02-13T23:59:59.000Z

    To prescribe Department of Energy policy, responsibilities, and requirements for the management and operation of the Protective Force Program. Chg 1 dated 2-13-95. Cancels DOE O 5632.7 and DOE O 5632.8.

  18. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-01-15T23:59:59.000Z

    To implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by the Department of Energy (DOE) operations and by which DOE cost effectively meets or exceeds compliance with applicable environmental; public health; and resource protection laws, regulations, and DOE requirements. Chg 1, dated 1-24-05; Chg 2, dated 12-7-05; Admin Chg 1, dated 1-3-07. Cancels DOE 5400.1 and DOE N 450.4.

  19. Advanced worker protection system

    SciTech Connect (OSTI)

    Caldwell, B.; Duncan, P.; Myers, J.

    1995-12-01T23:59:59.000Z

    The Department of Energy (DOE) is in the process of defining the magnitude and diversity of Decontamination and Decommissioning (D&D) obligations at its numerous sites. The DOE believes that existing technologies are inadequate to solve many challenging problems such as how to decontaminate structures and equipment cost effectively, what to do with materials and wastes generated, and how to adequately protect workers and the environment. Preliminary estimates show a tremendous need for effective use of resources over a relatively long period (over 30 years). Several technologies are being investigated which can potentially reduce D&D costs while providing appropriate protection to DOE workers. The DOE recognizes that traditional methods used by the EPA in hazardous waste site clean up activities are insufficient to provide the needed protection and worker productivity demanded by DOE D&D programs. As a consequence, new clothing and equipment which can adequately protect workers while providing increases in worker productivity are being sought for implementation at DOE sites. This project will result in the development of an Advanced Worker Protection System (AWPS). The AWPS will be built around a life support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack will be combined with advanced protective garments, advanced liquid cooling garment, respirator, communications, and support equipment to provide improved worker protection, simplified system maintenance, and dramatically improve worker productivity through longer duration work cycles. Phase I of the project has resulted in a full scale prototype Advanced Worker Protection Ensemble (AWPE, everything the worker will wear), with sub-scale support equipment, suitable for integrated testing and preliminary evaluation. Phase II will culminate in a full scale, certified, pre-production AWPS and a site demonstration.

  20. General Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1990-06-29T23:59:59.000Z

    To establish environmental protection program requirements, authorities, and responsibilities for Department of Energy (DOE) Operations for assuring compliance with applicable Federal, State and local environmental protection laws and regulations, Executive Orders, and internal Department policies. Cancels DOE O 5480.1A. Para. 2b, 4b, and 4c of Chap. II and para. 2d and 3b of Chap. III canceled by DOE O 231.1.

  1. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04T23:59:59.000Z

    The objective is to implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by DOE operations, and meet or exceed compliance with applicable environmental, public health, and resource protection requirements cost effectively. The revision provides specific expectations for implementation of Executive Order 13423, Strengthening Federal Environment, Energy, and Transportation Management. Cancels DOE O 450.1. Canceled by DOE O 436.1.

  2. Environmental Protection Act (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    The Environmental Protection Act is Ontario's key legislation for environmental protection. The act grants the Ministry of the Environment broad powers to deal with the discharge of contaminants...

  3. Data Protection Policy Version History Data Protection Policy

    E-Print Network [OSTI]

    Doran, Simon J.

    Data Protection Policy Version History ­ Data Protection Policy Version Author Revisions Made Date and Strategy taken by James Newby to the Executive Board 2009. Information Compliance Unit 1 July 2009 #12;DATA PROTECTION POLICY 1. Introduction 1.1 The Data Protection Act 1998 applies to all personal information about

  4. Data Protection Policy Page 1 DATA PROTECTION POLICY

    E-Print Network [OSTI]

    Greenlees, John

    Data Protection Policy Page 1 DATA PROTECTION POLICY POLICY STATEMENT The University intends to fully comply with all requirements of the Data Protection Act 1998 (,,Act) in so far as it affects the Universitys activities. SCOPE This Data Protection Policy: Covers the processing of all personal information

  5. Environment/Health/Safety (EHS): Laser Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8, 2000ConsumptionInnovationEnvironment, Safety andBerkeley LabERPEHS

  6. 2014 APSECA Safe Programming Guidance of Function Block Diagram for Reactor Protection Systems Dong-Ah Lee*, Junbeom Yoo

    E-Print Network [OSTI]

    in safety critical systems ­ Nuclear power plant · RPS (Reactor Protection System) · ESF-CCS (Engineering-Ah Lee*, Junbeom Yoo Konkuk University Jang-Soo Lee Korea Atomic Energy Research Institute Guidelines Safety Feature Component Control System) ­ Automotive systems ­ Medical systems ­ Etc. · Failure

  7. Research priorities for occupational radiation protection

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The Subpanel on Occupational Radiation Protection Research concludes that the most urgently needed research is that leading to the resolution of the potential effects of low-level ionizing radiation. This is the primary driving force in setting appropriate radiation protection standards and in directing the emphasis of radiation protection efforts. Much has already been done in collecting data that represents a compendium of knowledge that should be fully reviewed and understood. It is imperative that health physics researchers more effectively use that data and apply the findings to enhance understanding of the potential health effects of low-level ionizing radiation and improve the risk estimates upon which current occupational radiation protection procedures and requirements depend. Research must be focused to best serve needs in the immediate years ahead. Only then will we get the most out of what is accomplished. Beyond the above fundamental need, a number of applied research areas also have been identified as national priority issues. If effective governmental focus is achieved on several of the most important national priority issues, important occupational radiation protection research will be enhanced, more effectively coordinated, and more quickly applied to the work environment. Response in the near term will be enhanced and costs will be reduced by: developing microprocessor-aided {open_quotes}smart{close_quotes} instruments to simplify the use and processing of radiation data; developing more sensitive, energy-independent, and tissue-equivalent dosimeters to more accurately quantify personnel dose; and developing an improved risk assessment technology base. This can lead to savings of millions of dollars in current efforts needed to ensure personnel safety and to meet new, more stringent occupational guidelines.

  8. Safety Heroes video/program debuts | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguards andSafety29/2011Safety

  9. Rack protection monitor

    DOE Patents [OSTI]

    Orr, Stanley G. (Wheaton, IL)

    2000-01-01T23:59:59.000Z

    A hardwired, fail-safe rack protection monitor utilizes electromechanical relays to respond to the detection by condition sensors of abnormal or alarm conditions (such as smoke, temperature, wind or water) that might adversely affect or damage equipment being protected. When the monitor is reset, the monitor is in a detection mode with first and second alarm relay coils energized. If one of the condition sensors detects an abnormal condition, the first alarm relay coil will be de-energized, but the second alarm relay coil will remain energized. This results in both a visual and an audible alarm being activated. If a second alarm condition is detected by another one of the condition sensors while the first condition sensor is still detecting the first alarm condition, both the first alarm relay coil and the second alarm relay coil will be de-energized. With both the first and second alarm relay coils de-energized, both a visual and an audible alarm will be activated. In addition, power to the protected equipment will be terminated and an alarm signal will be transmitted to an alarm central control. The monitor can be housed in a separate enclosure so as to provide an interface between a power supply for the protected equipment and the protected equipment.

  10. Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work-

    E-Print Network [OSTI]

    Tennessee, University of

    Lab Safety/Hazardous Waste Training Persons (including faculty, staff and students) working in a lab and work- ing with hazardous materials should receive annual training that address- es lab safety, personal protective equipment, storage, use, and disposal of hazardous materials, emergency procedures

  11. University of North Carolina at Charlotte Design and Construction Manual Section 2, Division 28 Electronic Safety and Security

    E-Print Network [OSTI]

    Xie,Jiang (Linda)

    the interior of the secured area. 6. Card readers should be protected against power line disturbances (i.e., have power line filter and watchdog timer circuitry). 7. It is desirable for card readers ­ Electronic Safety and Security SECTION 2 DIVISION 28 ELECTRONIC SAFETY AND SECURITY #12;University of North

  12. 1400.1 Environmental Health and Safety Policy Statement Purpose To emphasize Rensselaer's commitment to ensure a safe and

    E-Print Network [OSTI]

    Linhardt, Robert J.

    1400 - 1 March 2014 1400.1 Environmental Health and Safety Policy Statement Purpose To emphasize members of the campus community. Policy Rensselaer is committed to providing a safe and healthy working and the Environmental Protection Agency, and implements a site-specific safety and health program. All employees

  13. Safety in Numbers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJuly throughR EMaterials (CRM)SafetySafety

  14. Advanced Worker Protection System

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    The Advanced Worker Protection System (AWPS) is a liquid-air-based, self-contained breathing and cooling system with a duration of 2 hrs. AWPS employs a patented system developed by Oceaneering Space Systems (OSS), and was demonstrated at their facility in Houston, TX as well as at Kansas State University, Manhattan. The heart of the system is the life-support backpack that uses liquid air to provide cooling as well as breathing gas to the worker. The backpack is combined with advanced protective garments, an advanced liquid cooling garment (LCG), a respirator, and communications and support equipment. The prototype unit development and testing under Phase 1 has demonstrated that AWPS has the ability to meet performance criteria. These criteria were developed with an understanding of both the AWPS capabilities and the DOE decontamination and decommissioning (D and D) activities protection needs.

  15. Microscope collision protection apparatus

    DOE Patents [OSTI]

    DeNure, Charles R. (Pocatello, ID)

    2001-10-23T23:59:59.000Z

    A microscope collision protection apparatus for a remote control microscope which protects the optical and associated components from damage in the event of an uncontrolled collision with a specimen, regardless of the specimen size or shape. In a preferred embodiment, the apparatus includes a counterbalanced slide for mounting the microscope's optical components. This slide replaces the rigid mounts on conventional upright microscopes with a precision ball bearing slide. As the specimen contacts an optical component, the contacting force will move the slide and the optical components mounted thereon. This movement will protect the optical and associated components from damage as the movement causes a limit switch to be actuated, thereby stopping all motors responsible for the collision.

  16. Tank farm health and safety plan. Revision 2

    SciTech Connect (OSTI)

    Mickle, G.D.

    1995-03-29T23:59:59.000Z

    This Tank Farm Health and Safety Plan (HASP) for the conduct of all operations and work activities at the Hanford Site 200 Area Tank Farms is provided in order to minimize health and safety risks to workers and other onsite personnel. The HASP accomplishes this objective by establishing requirements, providing general guidelines, and conveying farm and facility-specific hazard communication information. The HASP, in conjunction with the job-specific information required by the HASP, is provided also as a reference for use during the planning of work activities at the tank farms. This HASP applies to Westinghouse Hanford Company (WHC), other prime contractors to the U.S. Department of Energy (DOE), and subcontractors to WHC who may be involved in tank farm work activities. This plan is intended to be both a requirements document and a useful reference to aid tank farm workers in understanding the safety and health issues that are encountered in routine and nonroutine work activities. The HASP defines the health and safety responsibilities of personnel working at the tank farms. It has been prepared in recognition of and is consistent with National Institute of Safety and Health (NIOSH), and Occupational Safety and Health Administration (OSHA)/Unlimited State Coast Guard (USCG)/U.S. Environmental Protection Agency (EPA), Occupational Safety and Health Guidance Manual for Hazardous Waste Site Activities (NIOSH 1985); WHC-CM-4-3, Industrial Safety Manual, Volume 4, {open_quotes}Health and Safety Programs for Hazardous Waste Operations;{close_quotes} 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response; WHC-CM-1-1, Management Policies; and WHC-CM-1-3, Management Requirements and Procedures. When differences in governing regulations or policies exist, the more stringent requirements shall apply until the discrepancy can be resolved.

  17. DOE Fire Protection Handbook, Volume I

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The Department of Energy (DOE) Fire Protection Program is delineated in a number of source documents including; the Code of Federal Regulations (CFR), DOE Policy Statements and Orders, DOE and national consensus standards (such as those promulgated by the National Fire Protection Association), and supplementary guidance, This Handbook is intended to bring together in one location as much of this material as possible to facilitate understanding and ease of use. The applicability of any of these directives to individual Maintenance and Operating Contractors or to given facilities and operations is governed by existing contracts. Questions regarding applicability should be directed to the DOE Authority Having Jurisdiction for fire safety. The information provided within includes copies of those DOE directives that are directly applicable to the implementation of a comprehensive fire protection program. They are delineated in the Table of Contents. The items marked with an asterisk (*) are included on the disks in WordPerfect 5.1 format, with the filename noted below. The items marked with double asterisks are provided as hard copies as well as on the disk. For those using MAC disks, the files are in Wordperfect 2.1 for MAC.

  18. Federal Radiological Monitoring and Assessment Center Health and Safety Manual

    SciTech Connect (OSTI)

    FRMAC Health and Safety Working Group

    2012-03-20T23:59:59.000Z

    This manual is a tool to provide information to all responders and emergency planners and is suggested as a starting point for all organizations that provide personnel/assets for radiological emergency response. It defines the safety requirements for the protection of all emergency responders. The intent is to comply with appropriate regulations or provide an equal level of protection when the situation makes it necessary to deviate. In the event a situation arises which is not addressed in the manual, an appropriate management-level expert will define alternate requirements based on the specifics of the emergency situation. This manual is not intended to pertain to the general public.

  19. Safety and performance enhancement circuit for primary explosive detonators

    DOE Patents [OSTI]

    Davis, Ronald W. (Tracy, CA)

    2006-04-04T23:59:59.000Z

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  20. Environmental protection implementation plan

    SciTech Connect (OSTI)

    Holland, R.C.

    1998-03-01T23:59:59.000Z

    This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California`s commitment to conduct its operations in an environmentally safe and responsible manner. The Environmental Protection Implementation Plan helps management and staff comply with applicable environmental responsibilities. SNL is committed to operating in full compliance with the letter and spirit of applicable environmental laws, regulations, and standards. Furthermore, SNL/California strives to go beyond compliance with legal requirements by making every effort practical to reduce impacts to the environment to levels as low as reasonably achievable.

  1. Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Brekke, D.D.

    1995-11-01T23:59:59.000Z

    This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California`s commitment to conduct its operations in an environmentally safe and responsible manner. The Environmental Protection Implementation Plan helps management and staff comply with applicable environmental responsibilities. This report focuses on the following: notification of environmental occurrences; general planning and reporting; special programs and plans; environmental monitoring program; and quality assurance and data verification.

  2. Protections = Defenses in Depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 HgPromisingProtecting your personal informationProtections

  3. Nuclear Safety Information Dashboard | Department of Energy

    Office of Environmental Management (EM)

    Nuclear Safety Information Dashboard Nuclear Safety Information Dashboard The Nuclear Safety Information (NSI) Dashboard provides a new user interface to the Occurrence Reporting...

  4. Safety Interlocks Group - Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Info APS Safety Page ESH Safety Manual Safety Interlocks Systems ACIS PSS FEEPS BLEPS UPS Division Links APS Organization Chart Beamlines Directory APS Engineering Support...

  5. Nuclear Explosive Safety Manual - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

  6. Radiation Safety Training Basic Radiation Safety Training for

    E-Print Network [OSTI]

    Dai, Pengcheng

    Radiation Safety Training Basic Radiation Safety Training for Sealed Source Users for Physics 461 Protocol Title: Training for Sealed Source Users Drafted By: Chris Millsaps, RSS Reviewers: ZB, TU, GS Purpose: To provide basic radiation safety training to the users of sealed sources located

  7. SAFETY PROCEDURE & GUIDELINES SUBJECT: Health and Safety Training

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    SAFETY PROCEDURE & GUIDELINES SUBJECT: Health and Safety Training APPLIES TO: All Departments that the health and safety training program is effective and is in compliance with the applicable federal for conducting training Establish who is responsible for determining the level and type of training required

  8. Safety and Security What do Safety/Security work with?

    E-Print Network [OSTI]

    Safety and Security on campus #12;Agenda · What do Safety/Security work with? · If something happens · Opening hours · Remember · Website · How to find us #12;The Section for Safety and Security work with; · Security revolving work environment · Handle locks, keys, alarms, surveillance · Responsible

  9. Software Safety Tutorial Status Update 1 Software Safety Tutorial

    E-Print Network [OSTI]

    Tian, Jeff

    Software Safety Tutorial Status Update 1 Software Safety Tutorial (Status Update) Jeff Tian, tian@engr.smu.edu CSE, SMU, Dallas, TX 75275 Topics · Project Overview · Software Safety Overview · Project Tasks competency for real-time software engineers. · Project team: Jeff Tian (SMU): Basics of SSE D.T. Huynh

  10. Safety Lifecycle for Developing Safety Critical Artificial Neural Networks

    E-Print Network [OSTI]

    Kelly, Tim

    Safety Lifecycle for Developing Safety Critical Artificial Neural Networks Zeshan Kurd, Tim Kelly.kelly}@cs.york.ac.uk Abstract. Artificial neural networks are employed in many areas of industry such as medicine and defence a safety lifecycle for artificial neural networks. The lifecycle fo- cuses on managing behaviour

  11. Environment, Health, & Safety Training Program

    E-Print Network [OSTI]

    Eisen, Michael

    Requirement based on interpretation of NFPA 75, Standard for the Protection of Information Technology

  12. Local Safety Committee Engineering

    E-Print Network [OSTI]

    Saskatchewan, University of

    Minutes Local Safety Committee Name of Committee Engineering Worksite Mailing Address & Postal Code. Ventilation fume hoods V. Bendig and FMD report that an uninterrupted power supply will be attached to the ventilation control panel the week of Dec. 9. Action: T. Zintel and L. Harder will conduct a test the first

  13. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

  14. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-04T23:59:59.000Z

    To establish safety requirements for the proper packaging and transportation of Department of Energy (DOE)/National Nuclear Security Administration (NNSA) offsite shipments and onsite transfers of hazardous materials and for modal transport. Cancels DOE O 460.1A. Canceled by DOE O 460.1C.

  15. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  16. Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-14T23:59:59.000Z

    The order establishes safety requirements for the proper packaging and transportation of DOE, including NNSA, offsite shipments and onsite transfers of radioactive and other hazardous materials and for modal transportation. Cancels DOE O 460.1B, 5-14-10

  17. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  18. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  19. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  20. Reactor safety method

    DOE Patents [OSTI]

    Vachon, Lawrence J. (Clairton, PA)

    1980-03-11T23:59:59.000Z

    This invention relates to safety means for preventing a gas cooled nuclear reactor from attaining criticality prior to start up in the event the reactor core is immersed in hydrogenous liquid. This is accomplished by coating the inside surface of the reactor coolant channels with a neutral absorbing material that will vaporize at the reactor's operating temperature.

  1. Module Safety Issues (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2012-02-01T23:59:59.000Z

    Description of how to make PV modules so that they are less likely to turn into safety hazards. Making modules inherently safer with minimum additional cost is the preferred approach for PV. Safety starts with module design to ensure redundancy within the electrical circuitry to minimize open circuits and proper mounting instructions to prevent installation related ground faults. Module manufacturers must control the raw materials and processes to ensure that that every module is built like those qualified through the safety tests. This is the reason behind the QA task force effort to develop a 'Guideline for PV Module Manufacturing QA'. Periodic accelerated stress testing of production products is critical to validate the safety of the product. Combining safer PV modules with better systems designs is the ultimate goal. This should be especially true for PV arrays on buildings. Use of lower voltage dc circuits - AC modules, DC-DC converters. Use of arc detectors and interrupters to detect arcs and open the circuits to extinguish the arcs.

  2. Latest revised date: October 26, 2011 Page 1 of 9 Prepared by: Department of Health & Safety S-006

    E-Print Network [OSTI]

    deYoung, Brad

    injury while on University premises, whether owned or leased. For construction sites, the use of eye.2.3 Safety goggles may have direct or indirect ventilation to protect against fogging. Goggles with direct ventilation allow heat and humidity to dissipate, but do not protect against splash hazards. Goggles

  3. Preliminary safety evaluation of the advanced burner test reactor.

    SciTech Connect (OSTI)

    Dunn, F. E.; Fanning, T. H.; Cahalan, J. E.; Nuclear Engineering Division

    2006-09-15T23:59:59.000Z

    Results of a preliminary safety evaluation of the Advanced Burner Test Reactor (ABTR) pre-conceptual design are reported. The ABTR safety design approach is described. Traditional defense-in-depth design features are supplemented with passive safety performance characteristics that include natural circulation emergency decay heat removal and reactor power reduction by inherent reactivity feedbacks in accidents. ABTR safety performance in design-basis and beyond-design-basis accident sequences is estimated based on analyses. Modeling assumptions and input data for safety analyses are presented. Analysis results for simulation of simultaneous loss of coolant pumping power and normal heat rejection are presented and discussed, both for the case with reactor scram and the case without reactor scram. The analysis results indicate that the ABTR pre-conceptual design is capable of undergoing bounding design-basis and beyond-design-basis accidents without fuel cladding failures. The first line of defense for protection of the public against release of radioactivity in accidents remains intact with significant margin. A comparison and evaluation of general safety design criteria for the ABTR conceptual design phase are presented in an appendix. A second appendix presents SASSYS-1 computer code capabilities and modeling enhancements implemented for ABTR analyses.

  4. Degradation and Failure Characteristics of NPP Containment Protective Coating Systems

    SciTech Connect (OSTI)

    Sindelar, R.L.

    2001-04-10T23:59:59.000Z

    Nuclear power plants (NPPs) must ensure that the emergency core cooling system (ECCS) or safety-related containment spray system (CSS) remains capable of performing its design safety function throughout the life of the plant. This requires ensuring that long-term core cooling can be maintained following a postulated loss-of-coolant accident (LOCA). Adequate safety operation can be impaired if the protective coatings which have been applied to the concrete and steel structures within the primary containment fail, producing transportable debris which could then accumulate on BWR ECCS suction strainers or PWR ECCS sump debris screens located within the containment. This document will present the data collected during the investigation of coating specimens from plants.

  5. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

  6. Gas Pipeline Safety (West Virginia)

    Broader source: Energy.gov [DOE]

    The Gas Pipeline Safety Section of the Engineering Division is responsible for the application and enforcement of pipeline safety regulations under Chapter 24B of the West Virginia Code and 49 U.S...

  7. Nuclear Engineering Nuclear Criticality Safety

    E-Print Network [OSTI]

    Kemner, Ken

    development, Nuclear Operations Division (NOD) waste management and storage activities and other laboratoryNuclear Engineering Nuclear Criticality Safety The Nuclear Engineering Division (NE) of Argonne National Laboratory is experienced in performing criticality safety and shielding evaluations for nuclear

  8. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212: _______________ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Radiation Safety Office Approval: ______________________ Date: ________________________ Waste containers in place: Yes ___ No ___ Radiation signage on door: Yes ___ No ___ Room monitoring: Dates

  9. ANNUAL SECURITY FIRE SAFETY REPORT

    E-Print Network [OSTI]

    ANNUAL SECURITY AND FIRE SAFETY REPORT OCTOBER 1, 2013 DARTMOUTH COLLEGE http://www.dartmouth.edu/~security/ #12;1 Table of Contents MESSAGE FROM THE DIRECTOR OF SAFETY AND SECURITY................................................................................................................................................................... 7 ANNUAL SECURITY REPORT

  10. TUFTS UNIVERSITY LASER SAFETY PROGRAM

    E-Print Network [OSTI]

    Dennett, Daniel

    with laser safety regulations promulgated by state, federal, and local agencies. The LSO administers and Maximum Permissible Exposures 12 X. Electrical Hazards 12 XI. General Safety Procedures 13 XII. Laser

  11. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect (OSTI)

    GARVIN, L J; JENSEN, M A

    2004-04-13T23:59:59.000Z

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  12. PROTECTED AREAS AMENDMENTS AND.

    E-Print Network [OSTI]

    as critical fish and wildlife habitat. The "protected areas" amendment is a major step in the Council's efforts to rebuild fish and wildlife populations that have been damaged by hydroelectric development. Low also imposed significant costs. The Northwest's fish and wildlife have suffered extensive losses

  13. Fish passage and protection

    SciTech Connect (OSTI)

    Rinehart, B.N.

    1993-11-01T23:59:59.000Z

    This report consists of reprints on fish passage and protection topics from: American Fisheries Society; American Society of Civil Engineers; Harza Engineering Company; Hydro Review Magazine; Idaho National Engineering Laboratory; Independent Energy Magazine; National Hydropower Association; Northwest Hydroelectric Association; United States Army Corps of Engineers; United States Committee on large dams; and the United States Department of the Interior.

  14. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM); Elder, Michael G. (Los Alamos, NM); Kemme, Joseph E. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  15. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20T23:59:59.000Z

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  16. Protective Force Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30T23:59:59.000Z

    Establishes policy, requirements, responsibilities, and authorities, for the management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels: DOE 5632.7A

  17. Contractor Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-11-05T23:59:59.000Z

    This Manual establishes requirements for the management and operation of the U.S. Department of Energy contractor protective forces. Cancels: DOE M 470.4-3 Chg 1, CRD (Attachment 2) only, except for Section C. Canceled by DOE O 473.3.

  18. Livestock Risk Protection

    E-Print Network [OSTI]

    Thompson, Bill; Bennett, Blake; Jones, Diana

    2008-10-21T23:59:59.000Z

    risk insurance with an ending date of coverage that meets their risk management objectives. Feeder cattle producers may want the end date of coverage to match the William Thompson, Blake Bennett and DeDe Jones* Figure 1: Livestock Risk Protection...

  19. United States Environmental Protection

    E-Print Network [OSTI]

    (DOE) must demonstrate compliance with these standards. The NRC will use its licensing regulations to determine whether DOE has demonstrated compliance with standards prior to receiving the necessary licenses Public Health and Environmental Radiation Protection Standards for Yucca Mountain, Nevada (40 CFR Part

  20. DOE lockout/tagout safety handbook

    SciTech Connect (OSTI)

    Ulm, B.

    1993-09-02T23:59:59.000Z

    In September 1989, the Occupational Safety and Health Administration (OSHA) issued a final ruling on lockout/tagout procedures. This ruling became effective in January 1990 and was eventually incorporated into the Code of Federal Regulations. The purpose of these procedures is to safeguard employees from hazardous energy while performing service or maintenance activities on machines and equipment. Approximately 39 million workers are protected by lockout/tagout procedures in general industry. OSHA estimates that adherence to the requirements in lockout/tagout procedures will eliminate nearly two percent of all workplace deaths. A lockout/tagout program is essential to the safe operation of all Department of Energy (DOE) facilities. The program outlined in this document consists of energy-control procedures, employee training and periodic inspections, and establishes the minimum requirements for lockout/tagout of equipment or system-energy sources that could cause injury to personnel. Because serious consequences can occur due to a lack of understanding and improper administration of this program, this document also includes a method for: Providing guidance for the control of hazardous energy, protecting employees from injury, defining responsibilities, and protecting equipment and facilities from damage.

  1. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14T23:59:59.000Z

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  2. National Synchrotron Light Source safety-analysis report

    SciTech Connect (OSTI)

    Batchelor, K. (ed.)

    1982-07-01T23:59:59.000Z

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given.

  3. Safety still Job No. 1 for PRB users

    SciTech Connect (OSTI)

    Javetski, J.

    2006-06-15T23:59:59.000Z

    A report is given of the annual meeting of the Powder River Basin Coal Users' Group (PRBCUG) held in Atlantic during Electric Power 2006. Papers were presented and discussions held on: Coal handling; boilers and combustion; and fire protection, safety and risk management. PRBCUG's plant of the year award wet to TXU Corp.'s Monticello Steam Electric Station, 120 miles east of Dallas. The Group has a re-vamped website at www.prbcoals.com. 3 photos.

  4. Identifying, Implementing and Complying with Environment, Safety and Health Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-05-15T23:59:59.000Z

    This Policy sets forth the framework for identifying, implementing and complying with environment, safety and health (ES&H) requirements so that work is performed in the DOE complex in a manner that ensures adequate protection of workers, the public and the environment. Ownership of this policy is shared between GC and HS. Cancels DOE P 450.2. Canceled by DOE P 450.4A.

  5. Toolbox Safety Talk Heat Stress

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Toolbox Safety Talk Heat Stress Environmental Health & Safety Facilities Safety & Health Section for inducing heat stress. When the body is unable to cool itself by sweating, several heat-induced illnesses Stress · Know signs/symptoms of heat-related illnesses; monitor yourself and coworkers. · Block out

  6. COLUMBIA UNIVERSITY Radiation Safety Program

    E-Print Network [OSTI]

    Jia, Songtao

    COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia by more than 50 percent. #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212 ________________________________________________________ ________________________________________________________ #12;COLUMBIA UNIVERSITY Radiation Safety Program Medical Center - T: 212-305-0303 F: 212-305-0318 rso-clinical@columbia

  7. pamphlet04.doc SAFETY INFORMATION

    E-Print Network [OSTI]

    Oliver, Douglas L.

    to emergencies such as fire, chemical spill, electrical outage, communication system failure, etc. 2. RESEARCH Drugs 8 Communication Systems 9 Compliance Issues 10 Compressed Gas Cylinders 11 Electrical Safety 12 Electrical Power Failure 13 Emergency Procedures 14 Fire Safety 15 Hazard Reporting 16 Laser Safety 17

  8. Health and Safety Training Reciprocity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14T23:59:59.000Z

    Establishes a policy for reciprocity of employee health and safety training among DOE entities responsible for employee health and safety at DOE sites and facilities to increase efficiency and effectiveness of Departmental operations while meeting established health and safety requirements. Does not cancel other directives.

  9. Events Beyond Design Safety Basis Analysis

    Broader source: Energy.gov [DOE]

    This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. [Safety Bulletin 2011-01

  10. Enforcing safety policies in advanced digital reactor control systems

    SciTech Connect (OSTI)

    Wika, K.G.; Knight, J.C.

    1994-12-31T23:59:59.000Z

    Software-based digital systems in nuclear applications offer many potential benefits in the fields of safety, functionality, flexibility, and control, but they also present substantial challenges in demonstrating software reliability. In at least one nuclear system, serious concerns over the protection-system software have been raised. Achieving the required high level of software dependability through techniques such as testing, inspections, or mathematical verification is difficult because of the quantity and complexity of the software. The goal of the research described here is to facilitate dependability analysis by using a novel kernel software architecture. The kernel encapsulates into a relatively small piece of software the implementation of a set of critical safety policies so that policy enforcement is isolated from the rest of the system. Provided the kernel operates correctly, safety policy compliance is assured irrespective of the actions of the majority of the software.

  11. Site Safety Plan for Lawrence Livermore National Laboratory CERCLA investigations

    SciTech Connect (OSTI)

    Bainer, R.; Duarte, J.

    1993-07-01T23:59:59.000Z

    The safety policy of LLNL is to take every reasonable precaution in the performance of work to protect the environment and the health and safety of employees and the public, and to prevent property damage. With respect to hazardous agents, this protection is provided by limiting human exposures, releases to the environment, and contamination of property to levels that are as low as reasonably achievable (ALARA). It is the intent of this Plan to supply the broad outline for completing environmental investigations within ALARA guidelines. It may not be possible to determine actual working conditions in advance of the work; therefore, planning must allow the opportunity to provide a range of protection based upon actual working conditions. Requirements will be the least restrictive possible for a given set of circumstances, such that work can be completed in an efficient and timely fashion. Due to the relatively large size of the LLNL Site and the different types of activities underway, site-specific Operational Safety Procedures (OSPs) will be prepared to supplement activities not covered by this Plan. These site-specific OSPs provide the detailed information for each specific activity and act as an addendum to this Plan, which provides the general plan for LLNL Main Site operation.

  12. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

  13. Independent Oversight Focused Safety Management Evaluation, Idaho...

    Office of Environmental Management (EM)

    Focused Safety Management Evaluation, Idaho National Engineering and Environmental Laboratory - January 2001 Independent Oversight Focused Safety Management Evaluation, Idaho...

  14. Unreviewed Safety Question Determination - Processing Waste in...

    Office of Environmental Management (EM)

    Unreviewed Safety Question Determination - Processing Waste in the Waste Characterization Glovebox Unreviewed Safety Question Determination - Processing Waste in the Waste...

  15. The Front Lines of Patient Safety

    E-Print Network [OSTI]

    Soloveichik, David

    patient safety · Incident Reporting · Root Cause Analysis · FMEA · Culture of Patient Safety Survey

  16. DISPELLING MYTHS AND MISCONCEPTIONS TO IMPLEMENT A SAFETY CULTURE

    SciTech Connect (OSTI)

    Potts, T. Todd; Smith, Ken; Hylko, James M.

    2003-02-27T23:59:59.000Z

    Industrial accidents are typically reported in terms of technological malfunctions, ignoring the human element in accident causation. However, over two-thirds of all accidents are attributable to human and organizational factors (e.g., planning, written procedures, job factors, training, communication, and teamwork), thereby affecting risk perception, behavior and attitudes. This paper reviews the development of WESKEM, LLC's Environmental, Safety, and Health (ES&H) Program that addresses human and organizational factors from a top-down, bottom-up approach. This approach is derived from the Department of Energy's Integrated Safety Management System. As a result, dispelling common myths and misconceptions about safety, while empowering employees to ''STOP work'' if necessary, have contributed to reducing an unusually high number of vehicle, ergonomic and slip/trip/fall incidents successfully. Furthermore, the safety culture that has developed within WESKEM, LLC's workforce consists of three common characteristics: (1) all employees hold safety as a value; (2) each individual feels responsible for the safety of their co-workers as well as themselves; and (3) each individual is willing and able to ''go beyond the call of duty'' on behalf of the safety of others. WESKEM, LLC as a company, upholds the safety culture and continues to enhance its existing ES&H program by incorporating employee feedback and lessons learned collected from other high-stress industries, thereby protecting its most vital resource - the employees. The success of this program is evident by reduced accident and injury rates, as well as the number of safe work hours accrued while performing hands-on field activities. WESKEM, LLC (Paducah + Oak Ridge) achieved over 800,000 safe work hours through August 2002. WESKEM-Paducah has achieved over 665,000 safe work hours without a recordable injury or lost workday case since it started operations on February 28, 2000.

  17. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  18. Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Summer in Minnesota means high humidity and sunny, hot days. · Heat stroke is life threatening! Symptoms include high body temperature, red and dry skin, rapid before you get thirsty. Adequate fluid intake is the biggest key. Cool (not ice cold) water is the best

  19. Nuclear reactor safety device

    DOE Patents [OSTI]

    Hutter, Ernest (Wilmette, IL)

    1986-01-01T23:59:59.000Z

    A safety device is disclosed for use in a nuclear reactor for axially repositioning a control rod with respect to the reactor core in the event of an upward thermal excursion. Such safety device comprises a laminated helical ribbon configured as a tube-like helical coil having contiguous helical turns with slidably abutting edges. The helical coil is disclosed as a portion of a drive member connected axially to the control rod. The laminated ribbon is formed of outer and inner laminae. The material of the outer lamina has a greater thermal coefficient of expansion than the material of the inner lamina. In the event of an upward thermal excursion, the laminated helical coil curls inwardly to a smaller diameter. Such inward curling causes the total length of the helical coil to increase by a substantial increment, so that the control rod is axially repositioned by a corresponding amount to reduce the power output of the reactor.

  20. Safety review advisor

    SciTech Connect (OSTI)

    Boshers, J.A.; Alguindigue, I.E.; Uhrig, R.E. (Tennessee Univ., Knoxville, TN (USA). Dept. of Nuclear Engineering); Burnett, C.G. (Tennessee Valley Authority, Knoxville, TN (USA))

    1989-01-01T23:59:59.000Z

    The University of Tennessee's Nuclear Engineering Department, in cooperation with the Tennessee Valley Authority (TVA), is evaluating the feasibility of utilizing an expert system to aid in 10CFR50.59 evaluations. This paper discusses the history of 10CFR50.59 reviews, and details the development approach used in the construction of a prototype Safety Review Advisor (SRA). The goals for this expert system prototype are to (1) aid the engineer in the evaluation process by directing his attention to the appropriate critical issues, (2) increase the efficiency, consistency, and thoroughness of the evaluation process, and (3) provide a foundation of appropriate Safety Analysis Report (SAR) references for the reviewer. 6 refs., 2 figs.

  1. Sustainability, Ethics, and Aesthetics

    E-Print Network [OSTI]

    Moldavanova, Alisa

    2013-01-01T23:59:59.000Z

    Among four dimensions of sustainability (environmental, economic, social, and cultural), it is the latter aspect that is least examined by scholars. However, understanding how culture contributes to the long term sustainability of communities...

  2. Bates solar-industrial process-steam application. Draft safety report

    SciTech Connect (OSTI)

    Not Available

    1980-04-01T23:59:59.000Z

    It has been proposed to install approximately 35,000 square feet of linear parabolic trough collectors on the roof of a corrugator plant. The collectors are to collect 5500 lbs/hr of steam to drive the corrugator. Each of the subsystems are described, and for each subsystem the possible safety hazards are identified, and recommendations are made to either eliminate or control the hazards at an acceptable level. Specific systems discussed are the master control system and data aquisition system, the collector, and heat transfer system. Fire safety, protection of personnel from burns and eye injury, and lightning protection are discussed. (LEW)

  3. Mars mission safety

    SciTech Connect (OSTI)

    Buden, D. (EG G Idaho, Idaho Falls (USA))

    1989-06-01T23:59:59.000Z

    Precautions that need to be taken to assure safety on a manned Mars mission with nuclear thermal propulsion are briefly considered. What has been learned from the 1955 SNAP-10A operation of a nuclear reactor in space and from the Rover/NERVA project is reviewed. The ways that radiation hazards can be dealt with at various stages of a Mars mission are examined.

  4. Health and safety

    SciTech Connect (OSTI)

    Snyder, K. (Mine Safety and Health Administration (US))

    1990-05-01T23:59:59.000Z

    This article discusses health and safety in coal mines and the primary issues in this area during 1989. Particular attention is given to the employment figures as well as the fatality statistics. According to this article, employment was up during 1989 to approximately 164,000 workers as compared to 136,000 in 1969. Attention is also given to dealing with coal mining regulations as well as a crackdown on illegal operators in the industry.

  5. Natural Resources Protection Act (Maine)

    Broader source: Energy.gov [DOE]

    Maine's Department of Environmental Protection requires permits for most activities that occur in a protected natural resource area or adjacent to water resources such as rivers or wetlands. An ...

  6. Environmental Protection and Natural Resources

    E-Print Network [OSTI]

    Sánchez-Rodríguez, Roberto; Mumme, Stephen

    2010-01-01T23:59:59.000Z

    59 Stat. 1219. U.S. Environmental Protection Agency (EPA).1992. Integrated Environmental Plan for the Mexican-U.S.EPA, A92-171.toc. U.S. Environmental Protection Agency (

  7. Protected Water Area System (Iowa)

    Broader source: Energy.gov [DOE]

    The Natural Resource Commission maintains a state plan for the design and establishment of a protected water area system and those adjacent lands needed to protect the integrity of that system. A...

  8. Unequal Error Protection Turbo Codes

    E-Print Network [OSTI]

    Henkel, Werner

    Unequal Error Protection Turbo Codes Diploma Thesis Neele von Deetzen Arbeitsbereich Nachrichtentechnik School of Engineering and Science Bremen, February 28th, 2005 #12;Unequal Error Protection Turbo Convolutional Codes / Turbo Codes 18 3.1 Structure

  9. Radiation protection at CERN

    E-Print Network [OSTI]

    Forkel-Wirth, Doris; Silari, Marco; Streit-Bianchi, Marilena; Theis, Christian; Vincke, Heinz; Vincke, Helmut

    2013-01-01T23:59:59.000Z

    This paper gives a brief overview of the general principles of radiation protection legislation; explains radiological quantities and units, including some basic facts about radioactivity and the biological effects of radiation; and gives an overview of the classification of radiological areas at CERN, radiation fields at high-energy accelerators, and the radiation monitoring system used at CERN. A short section addresses the ALARA approach used at CERN.

  10. Evaluation of selected glove materials for worker hand protection against exposure to an aqueous aniline solution

    E-Print Network [OSTI]

    Powell, Marc Kendall

    1977-01-01T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE Nay 1977 Major Subject: Industrial Hygiene EVALUATION OF SELECTED GLOVE MATERIALS FOR WORKER HAND PROTECTION AGAINST EXPOSURE TO AN AQUEOUS ANILINE SOLUTION A Thesis by NARC KENDALL POWELL Approved... glove materials to enable a health or safety professional to justify his selection of protective gloves for aniline workers. The results of this research indicate that any of the four glove materials evaluated would be acceptable to use for hand...

  11. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    SciTech Connect (OSTI)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31T23:59:59.000Z

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  12. Safety study application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly {open_quotes}low{close_quotes}) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, {open_quotes}Technical Safety Requirements,{close_quotes} and 5480.23, {open_quotes}Nuclear Safety Analysis Reports.{close_quotes} A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis.

  13. Colloque CFBR-SHF: Dimensionnement et fonctionnement des vacuateurs de crues, 20-21 janvier 2009, Lyon -Paul Royet, Grard Degoutte, Laurent Peyras, Jacques Lavabre, Franois Lemperrire Cotes et crues de protection, de sret et de danger de rupture

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    crues de protection, de sûreté et de danger de rupture COTES ET CRUES DE PROTECTION, DE SURETE ET DE DANGER DE RUPTURE Protection, safety and danger levels and associated floods Paul Royet, Gérard Degoutte de la cote de sûreté ou de la cote de danger de rupture, et parallèlement de proposer des valeurs

  14. Safety for Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton nSafeguardsUpdates

  15. NAVIGATING A QUALITY ROUTE TO A NATIONAL SAFETY AWARD

    SciTech Connect (OSTI)

    PREVETTE SS

    2009-05-26T23:59:59.000Z

    Deming quality methodologies applied to safety are recognized with the National Safety Council's annual Robert W. Campbell Award. Over the last ten years, the implementation of Statistical Process Control and quality methodologies at the U.S. Department of Energy's Hanford Site have contributed to improved safety. Improvements attributed to Statistical Process Control are evidenced in Occupational Safety and Health records and documented through several articles in Quality Progress and the American Society of Safety Engineers publication, Professional Safety. Statistical trending of safety, quality, and occurrence data continues to playa key role in improving safety and quality at what has been called the world's largest environmental cleanup project. DOE's Hanford Site played a pivotal role in the nation's defense beginning in the 1940s, when it was established as part of the Manhattan Project. After more than 50 years of producing material for nuclear weapons, Hanford, which covers 586 square miles in southeastern Washington state, is now focused on three outcomes: (1) Restoring the Columbia River corridor for multiple uses; (2) Transitioning the central plateau to support long-term waste management; and (3) Putting DOE assets to work for the future. The current environmental cleanup mission faces challenges of overlapping technical, political, regulatory, environmental, and cultural interests. From Oct. 1, 1996 through Sept. 30, 2008, Fluor Hanford was a prime contractor to the Department of Energy's Richland Operations Office. In this role, Fluor Hanford managed several major cleanup activities that included dismantling former nuclear-processing facilities, cleaning up the Site's contaminated groundwater, retrieving and processing transuranic waste for shipment and disposal off-site, maintaining the Site's infrastructure, providing security and fire protection, and operating the Volpentest HAMMER Training and Education Center. On October 1,2008, a transition occurred that changed Fluor's role at Hanford. Fluor's work at Hanford was split in two with the technical scope being assumed by the CH2M HILL Plateau Remediation Company (CHPRC) CHPRC is now spearheading much of the cleanup work associated with former nuclear-processing facilities, contaminated groundwater, and transuranic waste. Fluor is an integrated subcontractor to CH PRC in this effort. In addition, at the time of this writing, while the final outcome is being determined for the new Mission Support Contract, Fluor Hanford has had its contract extended to provide site-wide services that include security, fire protection, infrastructure, and operating the HAMMER facility. The emphasis has to be on doing work safely, delivering quality work, controlling costs, and meeting deadlines. Statistical support is provided by Fluor to the PRC, within Fluor Hanford, and to a third contractor, Washington Closure Hanford, which is tasked with cleaning up approximately 210 square miles designated as the Columbia River corridor along the outer edge of the Hanford Site. The closing months of Fluor Hanford's 12 year contract were busy, characterized by special events that capped its work as a prime cleanup contractor, transitions of work scope and personnel, and the completion numerous activities. At this time, Fluor's work and approach to safety were featured in state and national forums. A 'Blockbuster' presentation at the Washington State Governor's Industrial Safety Conference in September 2008 featured Fluor Hanford's Chief Operating Officer, a company Safety Representative, and me. Simultaneously, an award ceremony in Anaheim, Calif. recognized Fluor Hanford as the winner of the 2008 Robert W. Campbell Award. The Robert W. Campbell Award is co-sponsored by Exxon Mobil Corporation and the National Safety Council. Named after a pioneer of industrial safety, the Campbell Award recognizes organizations that demonstrate how integration of environmental, health and safety (EHS) management into business operations is a cornerstone of their corporate success. Fluor Hanford rec

  16. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    SciTech Connect (OSTI)

    Johnson, A.E.; Harbour, J.L.

    1993-06-01T23:59:59.000Z

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

  17. Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Rich, Bethany M [Los Alamos National Laboratory

    2012-04-02T23:59:59.000Z

    The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

  18. Policies,Safety&U Annual Security and Fire Safety Report

    E-Print Network [OSTI]

    Lee, Dongwon

    ................................................................................ 5 ABOUT THE PENN STATE HARRISBURG SAFETY AND POLICE SERVICES ..... 5 Role, Authority, and Training .................................................................... 7 SECURITY OF and ACCESS TO PENN STATE HARRISBURG FACILITIES ........ 8 Special Considerations

  19. Designing radiation protection signs

    SciTech Connect (OSTI)

    Rodriguez, M.A.; Richey, C.L.

    1995-03-01T23:59:59.000Z

    Entry into hazardous areas without the proper protective equipment is extremely dangerous and must be prevented whenever possible. Current postings of radiological hazards at the Rocky Flats Environmental Technology Site (RFETS) do not incorporate recent findings concerning effective warning presentation. Warning information should be highly visible, quickly, and easily understood. While continuing to comply with industry standards (e.g., Department of Energy (DOE) guidelines), these findings can be incorporated into existing radiological sign design, making them more effective in terms of usability and compliance. Suggestions are provided for designing more effective postings within stated guidelines.

  20. ORISE: Protecting Human Subjects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOENurse Triage Lines SupportPolicyProcess andProtecting