Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Ice Simulation Using GPGPU Shadi Alawneh and Dennis Peters  

E-Print Network [OSTI]

Ice Simulation Using GPGPU Shadi Alawneh and Dennis Peters Electrical and Computer Engineering.alawneh, dpeters}@mun.ca Abstract-- Simulation of the behaviour of a ship operating in pack ice on several different ice fields for several iterations to compare the performance. Our results show speed up

Peters, Dennis

2

AE 400-level (choose 2): AE 410 Computational Aerodynamics  

E-Print Network [OSTI]

AE 400-level (choose 2): AE 410 Computational Aerodynamics AE 412 Viscous flow & Heat Transfer AE 416 Applied Aerodynamics AE 419 Aircraft Flight Mechanics AE 433 Aerospace Propulsion AE 434 Rocket

Gilbert, Matthew

3

Shady Ladies: Sister Acts, Popular Performance, and the Subversion of American Identity  

E-Print Network [OSTI]

in the United States. ?Shady Ladies? explores how sister acts negotiated systems of power iv circumscribing gendered, racial, and sexual identities in the late nineteenth and early twentieth centuries. This interdisciplinary project contributes to a variety... in the genres of minstrelsy and vaudeville. The artists examined here challenged social expectations and limitations for both white women and all people of color in the larger 8 cultural sphere, created space for social response to and dialogue about issues...

Buckner, Jocelyn Louise

2010-04-27T23:59:59.000Z

4

Radiological survey results at 1 Shady Lane, Lodi, New Jersey (LJ095)  

SciTech Connect (OSTI)

The US Department of Energy (DOE) conducted remedial action at the Stepan property in Maywood, New Jersey and several vicinity properties in Lodi, New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Maywood Interim Storage Site (MISS), adjacent to the former Maywood Chemical Works facility. The property at One Shady Lane, Lodi, New Jersey was not one of these vicinity properties but was surveyed by DOE at the request of the owner. At the request of DOE, a team from Oak Ridge National Laboratory conducted a radiological survey at this property. The purpose of the survey, conducted in November 1994, was to confirm whether remedial actions were to be performed on the property in order to be in compliance with the identified Guidelines. The radiological survey included surface gamma scans and gamma readings at 1 meter, and the collection of soil samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at One Shady Lane, Lodi, New Jersey, were comparable to background levels in the area, and well within the limits prescribed by DOE radiological guidelines. Based on the results of the radiological survey data, this property does not meet guidelines for inclusion under FUSRAP.

Foley, R.D.; Johnson, C.A.

1995-07-01T23:59:59.000Z

5

Shadi Dayeh: UCSD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluatingconstructionSessioneight NewShades of

6

AES Solar | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Logo:UseAEE SolarAES Solar

7

AE-LOMONOSOV0813.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEii ABSTRACT6AE --- L

8

AES Groups | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEiiRenewablesAES

9

Matt Rogers on AES Energy Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Matt Rogers on AES Energy Storage Matt Rogers on AES Energy Storage Addthis Description The Department of Energy and AES Energy Storage recently agreed to a 17.1M conditional loan...

10

Shady Oaks | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, IdahoServiciosEnablingOaks Jump

11

Matt Rogers on AES Energy Storage  

ScienceCinema (OSTI)

The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

Rogers, Matt

2013-05-29T23:59:59.000Z

12

AE: Office Supplies Purchasing Stakeholder Survey Notes  

E-Print Network [OSTI]

AE: Office Supplies Purchasing Stakeholder Survey Notes Updated: 2/20/2012 Overview: · Survey Purchasing Factors: · 37% of people make office supplies purchases monthly, 26% weekly, and 15% quarterly used vendors for office supplies · People mostly purchase from vendors other than Staples due

Sheridan, Jennifer

13

Handling AES Emergencies | Advanced Photon Source  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuided Self-Assembly of GoldHAWCHIGSSiteHamada winsAES

14

SunErgy AE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummerside Wind Farm JumpVenturesSunErgy AE Jump

15

AE-NUFACT-SBN-0914.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEii ABSTRACT6AE ---

16

aes physical examination: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

position and dimensions of flaws that produce AE. Time of Flight Diffraction (TOFD), ultrasonic examination is also commonly used for flaw sizing. 1.5 The values stated...

17

Roadmap: Architecture Bachelor of Science [AE-BS-ARCH  

E-Print Network [OSTI]

Roadmap: Architecture ­ Bachelor of Science [AE-BS-ARCH] College of Architecture and Environmental of Science [AE-BS-ARCH] College of Architecture and Environmental Design Catalog Year: 2012­2013 Page 2 of 3 of Architecture I 3 MATH 12002 Analytic Geometry and Calculus I (5) or MATH 12012 Calculus with Precalculus II (3

Sheridan, Scott

18

Magnetism of Herbig Ae/Be stars  

E-Print Network [OSTI]

Observations of magnetic fields of stars at the pre-main sequence phase can provide important new insights into the complex physics of the late stages of star formation. This is especially true at intermediate stellar masses, where magnetic fields are strong and globally organised, and therefore most amenable to direct study. Recent circularly-polarised spectroscopic observations of pre-main sequence Herbig Ae/Be stars have revealed the presence of organised magnetic fields in the photospheres of a small fraction of these objects. To date, 9 magnetic HAeBe stars have been detected, and those detections confirmed by repeated observations. The morphology and variability of their Stokes V signatures indicates that their magnetic fields have important dipole components of kG strength, and that the dipole is stable on timescales ofat least years. These magnetic stars exhibit a large range of stellar mass, from about 2-13 solar masses, and diverse rotational properties, with vsini from a few km/s to 200 km/s. Most ...

Wade, G A; Grunhut, J; Catala, C; Bagnulo, S; Folsom, C P; Landstreet, J D

2009-01-01T23:59:59.000Z

19

On the circularly polarized optical emission from AE Aquarii  

E-Print Network [OSTI]

The reported nightly mean value of the circular polarization of optical emission observed from the close binary system AE Aqr is 0.06% (+-) 0.01%. We discuss a possibility that the observed polarized radiation is emitted mainly by the white dwarf or its vicinity. We demonstrate that this hypothesis is rather unlikely since the contribution of the white dwarf to the optical radiation of the system is too small. This indicates that the polarimetric data on AE Aqr cannot be used for the evaluation of the surface magnetic field strength of the white dwarf in this system.

N. R. Ikhsanov; S. Jordan; N. G. Beskrovnaya

2002-02-14T23:59:59.000Z

20

Shady: Robust Truss Climbing With Mechanical Compliances  

E-Print Network [OSTI]

,carrick,rus}@csail.mit.edu 1 Motivation Many large terrestrial structures--towers, bridges, construction scaffolds--are sparse-space structures such as antennae, solar panel supports, and space-station members. A long-term application

Farritor, Shane

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Roadmap: Architecture Bachelor of Science [AE-BS-ARCH  

E-Print Network [OSTI]

Roadmap: Architecture ­ Bachelor of Science [AE-BS-ARCH] College of Architecture and Environmental Design Foundations Studio II 3 ARCH 10111 History of Architecture I 3 MATH 12002 Analytic Geometry-Year Design Studio I 3 Offered in fall only ARCH 20112 History of Architecture II 3 Offered in fall only

Sheridan, Scott

22

ae uag vom: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

speed (as AES does), throw it away. See Section 5. The author was supported Bernstein, Daniel First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22...

23

E-Print Network 3.0 - avarijnykh vybrosakh aes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OF SEGMENT TYPE Summary: oss-1 "ss. If an irreducible admissible representation ss of GL(n, F ) is a subquotient* * of ae... the multiset (ae1, . .,.aek) is called the support...

24

E-Print Network 3.0 - aes-2006 protective envelope Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: aes-2006 protective envelope Page: << < 1 2 3 4 5 > >> 1 Julius Smith AES-2006 Heyser Lecture 1 83 History and Practice of Digital Sound Synthesis...

25

Magnetic topologies of the Herbig Ae/Be stars  

E-Print Network [OSTI]

Our recent discoveries of magnetic fields in a small number of Herbig Ae/Be (HAeBe) stars, the evolutionary progenitors of main sequence A/B stars, raise new questions about the origin of magnetic fields in the intermediate mass stars. The favoured fossil field hypothesis suggests that a few percent of magnetic pre-main sequence A/B stars should exhibit similar magnetic strengths and topologies to the magnetic Ap/Bp stars. In this talk I will present the methods that we have used to characterise the magnetic fields of the Herbig Ae/Be stars, as well as our first conclusions on the origin of magnetism in intermediate-mass stars.

Alecian, E; Catala, C; Bagnulo, S; Bhm, T; Bouret, J -C; Donati, J -F; Folsom, C; Grunhut, J; Landstreet, J D; Petit, P; Silvester, J

2008-01-01T23:59:59.000Z

26

EA-248 AES NewEnergy Inc | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1 Closing American Electric Power80 NRG9BCD AES

27

Spanish Hydrogen Association AeH | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbelt WindAssociation AeH Jump to:

28

Greenhouse Gas Services AES GE EFS | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V Jump506384°,AES GE EFS Jump to: navigation,

29

E-Print Network 3.0 - ae aegypti mosquitoes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

needs to be exposed to Ae. aegypti AT before... was obtained from Zoecon Co (Palo Alto, CA). 2.2. ... Source: Noriega, Fernando Gabriel - Department of Biological Sciences,...

30

E-Print Network 3.0 - ae stars driving Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Herbig Ae stars HD 104237 (Grady et al. 2004) and HD 163296 (Devine et... degrees inclination from pole-on) for both ... Source: Schneider, Glenn - Department of Astronomy,...

31

Magnetism, rotation and accretion in Herbig Ae-Be stars  

E-Print Network [OSTI]

Studies of stellar magnetism at the pre-main sequence phase can provide important new insights into the detailed physics of the late stages of star formation, and into the observed properties of main sequence stars. This is especially true at intermediate stellar masses, where magnetic fields are strong and globally organised, and therefore most amenable to direct study. This talk reviews recent high-precision ESPaDOnS observations of pre-main sequence Herbig Ae-Be stars, which are yielding qualitatively new information about intermediate-mass stars: the origin and evolution of their magnetic fields, the role of magnetic fields in generating their spectroscopic activity and in mediating accretion in their late formative stages, and the factors influencing their rotational angular momentum.

Alecian, E; Catala, C; Folsom, C; Grunhut, J; Donati, J -F; Petit, P; Bagnulo, S; Bouret, T J -C; Landstreet, J D

2007-01-01T23:59:59.000Z

32

Synthesis and structural characterization of the ternary Zintl phases AE{sub 3}Al{sub 2}Pn{sub 4} and AE{sub 3}Ga{sub 2}Pn{sub 4} (AE=Ca, Sr, Ba, Eu; Pn=P, As)  

SciTech Connect (OSTI)

Ten new ternary phosphides and arsenides with empirical formulae AE{sub 3}Al{sub 2}Pn{sub 4} and AE{sub 3}Ga{sub 2}Pn{sub 4} (AE=Ca, Sr, Ba, Eu; Pn=P, As) have been synthesized using molten Ga, Al, and Pb fluxes. They have been structurally characterized by single-crystal and powder X-ray diffraction to form with two different structures-Ca{sub 3}Al{sub 2}P{sub 4}, Sr{sub 3}Al{sub 2}As{sub 4}, Eu{sub 3}Al{sub 2}P{sub 4}, Eu{sub 3}Al{sub 2}As{sub 4}, Ca{sub 3}Ga{sub 2}P{sub 4}, Sr{sub 3}Ga{sub 2}P{sub 4}, Sr{sub 3}Ga{sub 2}As{sub 4}, and Eu{sub 3}Ga{sub 2}As{sub 4} crystallize with the Ca{sub 3}Al{sub 2}As{sub 4} structure type (space group C2/c, Z=4); Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4} adopt the Na{sub 3}Fe{sub 2}S{sub 4} structure type (space group Pnma, Z=4). The polyanions in both structures are made up of TrPn{sub 4} tetrahedra, which share common corners and edges to form {sup 2}{sub {infinity}}[TrPn{sub 2}]{sub 3-} layers in the phases with the Ca{sub 3}Al{sub 2}As{sub 4} structure, and {sup 1}{sub {infinity}}[TrPn{sub 2}]{sub 3-} chains in Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4} with the Na{sub 3}Fe{sub 2}S{sub 4} structure type. The valence electron count for all of these compounds follows the Zintl-Klemm rules. Electronic band structure calculations confirm them to be semiconductors. - Graphical abstract: AE{sub 3}Al{sub 2}Pn{sub 4} and AE{sub 3}Ga{sub 2}Pn{sub 4} (AE=Ca, Sr, Ba, Eu; Pn=P, As) crystallize in two different structures-Ca{sub 3}Al{sub 2}P{sub 4}, Sr{sub 3}Al{sub 2}As{sub 4}, Eu{sub 3}Al{sub 2}P{sub 4}, Eu{sub 3}Al{sub 2}As{sub 4}, Ca{sub 3}Ga{sub 2}P{sub 4}, Sr{sub 3}Ga{sub 2}P{sub 4}, Sr{sub 3}Ga{sub 2}As{sub 4}, and Eu{sub 3}Ga{sub 2}As{sub 4}, are isotypic with the previously reported Ca{sub 3}Al{sub 2}As{sub 4} (space group C2/c (No. 15)), while Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4} adopt a different structure known for Na{sub 3}Fe{sub 2}S{sub 4} (space group Pnma (No. 62). The polyanions in both structures are made up of TrPn{sub 4} tetrahedra, which by sharing common corners and edges, form {sup 2}{sub {infinity}}[TrPn{sub 2}]{sub 3-}layers in the former and {sup 1}{sub {infinity}}[TrPn{sub 2}]{sub 3-} chains in Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4}. Highlights: Black-Right-Pointing-Pointer AE{sub 3}Ga{sub 2}Pn{sub 4} (AE=Ca, Sr, Ba, Eu; Pn=P, As) are new ternary pnictides. Black-Right-Pointing-Pointer Ba{sub 3}Al{sub 2}P{sub 4} and Ba{sub 3}Al{sub 2}As{sub 4} adopt the Na{sub 3}Fe{sub 2}S{sub 4} structure type. Black-Right-Pointing-Pointer The Sr- and Ca-compounds crystallize with the Ca{sub 3}Al{sub 2}As{sub 4} structure type. Black-Right-Pointing-Pointer The valence electron count for all title compounds follows the Zintl-Klemm rules.

He, Hua; Tyson, Chauntae; Saito, Maia [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States); Bobev, Svilen, E-mail: bobev@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

2012-04-15T23:59:59.000Z

33

Talking Points  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR TableE9.security Tag:ResidentialNewTakingPoints

34

Magnetism and rotation in Herbig Ae/Be stars  

E-Print Network [OSTI]

Among the main sequence intermediate mass A and B stars, around 5% host large-scale organized magnetic fields. Most of these stars are very slow rotators compared to their non-magnetic counterparts, and show photospheric abundance anomalies. They are referred to as the Ap/Bp stars. One of the greatest challenges, today is to understand the origin of their magnetic field and their slow rotation. The favoured hypothesis is a fossil origin of the magnetic field, in which the magnetic fields of Ap/Bp stars are relics of those which existed in the parental molecular clouds during the formation. This implies that the magnetic field must survive all the initial phases of the stellar evolution and especially the pre-main sequence (PMS) phase. This is consistent with the general belief that magnetic braking occurs during the PMS phase, which sheds angular momentum and slows the rotation of these stars. In this context, we proceeded with a survey of a sample of around 50 PMS Herbig Ae/Be stars, using the new spectropol...

Alecian, E; Catala, C; Folsom, C; Grunhut, J; Donati, J -F; Petit, P; Bagnulo, S; Bhm, T; Bouret, J -C; Landstreet, J D

2007-01-01T23:59:59.000Z

35

Chemistry and line emission from evolving Herbig Ae disks  

E-Print Network [OSTI]

Aims: To calculate chemistry and gas temperature of evolving protoplanetary disks with decreasing mass or dust settling, and to explore the sensitivity of gas-phase tracers. Methods: The density and dust temperature profiles for a range of models of flaring and self-shadowed disks around a typical Herbig Ae star are used together with 2-dimensional ultraviolet (UV) radiative transfer to calculate the chemistry and gas temperature. In each model the line profiles and intensities for the fine structure lines of [O I], [C II] and [C I] and the pure rotational lines of CO, CN, HCN and HCO+ are determined. Results: The chemistry shows a strong correlation with disk mass. Molecules that are easily dissociated, like HCN, require high densities and large extinctions before they can become abundant. The products of photodissociation, like CN and C2H, become abundant in models with lower masses. Dust settling mainly affects the gas temperature, and thus high temperature tracers like the O and C+ fine structure lines. The carbon chemistry is found to be very sensitive to the adopted PAH abundance. The line ratios CO/13CO, CO/HCO+ and [O I] 63 um/146 um can be used to distinguish between disks where dust growth and settling takes place, and disks that undergo overall mass loss.

B. Jonkheid; C. P. Dullemond; M. R. Hogerheijde; E. F. van Dishoeck

2006-11-07T23:59:59.000Z

36

THE FEEDTNOHABITS OF NEHU (Hlwertnn ANcHow) LARvAE  

E-Print Network [OSTI]

THE FEEDTNOHABITS OF NEHU (Hlwertnn ANcHow) LARvAE THESIS SUBMITTEDTO THE GRADUATEDIVTSION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFTLLMENT OF THE REQUIREMEI{TSFOR THE DEGREEOF MASTEROF SCIENCE

Luther, Douglas S.

37

E-Print Network 3.0 - aegypti ae albopictus Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Sample search results for: aegypti ae albopictus Page: << < 1 2 3 4 5 > >> 1 Ecology, 90(9), 2009, pp. 24052413 2009 by the Ecological Society of America Summary: ....

38

E-Print Network 3.0 - ae star hd Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

field measurements of the Herbig Ae stars HD 101412 (left panel) and HD 150193 (right panel) (FORS 2... cool stars and solar-like stars Instrumentation The most successful...

39

E-Print Network 3.0 - ae star hd101412 Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

field measurements of the Herbig Ae stars HD 101412 (left panel) and HD 150193 (right panel) (FORS 2... cool stars and solar-like stars Instrumentation The most successful...

40

Data:C915ea5f-b581-42ae-abc9-a85634ae0b63 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision617ab3133c91 No1-42ae-abc9-a85634ae0b63 No revision has been approved for

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Shady Shores, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaft River, IdahoServiciosEnablingOaks

42

Shady Cove, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren, NewShadow Flicker Jump to:

43

Shady Hollow, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren, NewShadow Flicker Jump to:Hollow,

44

Shady Side, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search|Sewaren, NewShadow Flicker Jump to:Hollow,Side,

45

Sri Shadi Lal Enterprise Ltd SSLE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland,0162112°, -72.1592444°Springwater, NewSriConnectSai

46

EXTRACTING INFORMATION FROM CONVENTIONAL AE FEATURES FOR ONSET DAMAGE DETECTION IN CARBON FIBER COMPOSITES  

E-Print Network [OSTI]

EXTRACTING INFORMATION FROM CONVENTIONAL AE FEATURES FOR ONSET DAMAGE DETECTION IN CARBON FIBER and preprocessing methods on Acoustic Emission measurements of prosthetic feets made of carbon fiber reinforced in carbon fiber composistes #12;When microstructural changes occur in composites, energy is released

47

Strain rate and temperature dependence of Omori law scaling constants of AE data: Implications for earthquake  

E-Print Network [OSTI]

-value decreases systematically with increasing deformation rate suggesting a greater proportion of small cracks: Fracture and flow; 5134 Physical Properties of Rocks: Thermal properties. Citation: Ojala, I. O., I. G] of AE events follows a power law, just as it is commonly observed for earthquakes [Frohlich and Davis

48

Combined Attacks on the AES Key Schedule Francois Dassance and Alexandre Venelli  

E-Print Network [OSTI]

of physical attack is the Fault Analysis (FA) that evaluates the faulty behavior of a cryptosystem to learn proposed to thwart physical attacks on di#erent cryptosystems. Recently, the principle of combined attacks#erent fault models. We report countermeasures against these attacks on AES in Section 5. We conclude

49

Combined Attacks on the AES Key Schedule Francois Dassance and Alexandre Venelli  

E-Print Network [OSTI]

of physical attack is the Fault Analysis (FA) that evaluates the faulty behavior of a cryptosystem to learn proposed to thwart physical attacks on different cryptosystems. Recently, the principle of combined attacks different fault models. We report countermeasures against these attacks on AES in Section 5. We conclude

50

Metastable high-pressure transformations of orthoferrosilite Fs82 Przemyslaw Dera a,e,  

E-Print Network [OSTI]

Metastable high-pressure transformations of orthoferrosilite Fs82 Przemyslaw Dera a,e, , Gregory J Institution of Washington, USA e Hawaii Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, USA a r t i c l e i n f o Article history: Received

Duffy, Thomas S.

51

Low-Cost Advanced Encryption Standard (AES) VLSI Architecture: A Minimalist Bit-Serial Approach  

E-Print Network [OSTI]

Low-Cost Advanced Encryption Standard (AES) VLSI Architecture: A Minimalist Bit-Serial Approach proposed both in software and hardware. This paper presents a low cost and low power hardware architecture. A focus on low power and cost allows for scaling of the architecture towards vulnerable portable

Hernandez, Orlando

52

AES Southland, Inc. and Williams Energy Marketing & Trading Company, 94 FERC 61,248 (2001).  

E-Print Network [OSTI]

is a wholesale seller of electric energy in California with authority to charge market based rates. Williams has1 AES Southland, Inc. and Williams Energy Marketing & Trading Company, 94 FERC ¶ 61,248 (2001-3-001 Williams Energy Marketing & Trading Company ORDER APPROVING STIPULATION AND CONSENT AGREEMENT (Issued April

Laughlin, Robert B.

53

Data:48a3e70a-fcfc-469d-b9c2-ae1add5b74ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 Nofa3d068c3333 No revisioneade6ae05440-5e6eeac88b8b Noe7f545d5

54

SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} - two new Ae-Zn-Sn polar intermetallic compounds (Ae: alkaline earth metal)  

SciTech Connect (OSTI)

SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}, two closely related new polar intermetallic compounds, were obtained by high temperature reactions of the elements. Their crystal structures were determined with single crystal XRD methods, and their electronic structures were analyzed by means of DFT calculations. The Zn-Sn structure part of SrZn{sub 2}Sn{sub 2} comprises (anti-)PbO-like {l_brace}ZnSn{sub 4/4}{r_brace} and {l_brace}SnZn{sub 4/4}{r_brace} layers. Ca{sub 2}Zn{sub 3}Sn{sub 6} shows similar {l_brace}ZnSn{sub 4/4}{r_brace} layers and {l_brace}Sn{sub 4}Zn{r_brace} slabs constructed of a covalently bonded Sn scaffold capped by Zn atoms. For both phases, the two types of layers are alternatingly stacked and interconnected via Zn-Sn bonds. SrZn{sub 2}Sn{sub 2} adopts the SrPd{sub 2}Bi{sub 2} structure type, and Ca{sub 2}Zn{sub 3}Sn{sub 6} is isotypic to the R{sub 2}Zn{sub 3}Ge{sub 6} compounds (R=La, Ce, Pr, Nd). Band structure calculations indicate that both SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6} are metallic. Analyses of the chemical bonding with the electron localization function (ELF) show lone pair like basins at Sn atoms and Zn-Sn bonding interactions between the layers for both title phases, and covalent Sn-Sn bonding within the {l_brace}Sn{sub 4}Zn{r_brace} layers of Ca{sub 2}Zn{sub 3}Sn{sub 6}. - Graphical abstract: Crystal structures of the new Ae-Zn-Sn polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Highlights: Black-Right-Pointing-Pointer New polar intermetallic phases SrZn{sub 2}Sn{sub 2} and Ca{sub 2}Zn{sub 3}Sn{sub 6}. Black-Right-Pointing-Pointer Obtained by high temperature reactions of the elements. Black-Right-Pointing-Pointer Single crystal XRD structure determination and DFT electronic structure calculations. Black-Right-Pointing-Pointer Closely related crystal and electronic structures. Black-Right-Pointing-Pointer Metallic conductivity coexisting with lone pairs and covalent bonding features.

Stegmaier, Saskia [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching (Germany); Faessler, Thomas F., E-mail: Thomas.Faessler@lrz.tum.de [Department Chemie, Technische Universitaet Muenchen, Lichtenbergstrasse 4, 85747 Garching (Germany)

2012-08-15T23:59:59.000Z

55

Density Diagnostics of the Hot Plasma in AE Aquarii with XMM-Newton  

E-Print Network [OSTI]

High resolution spectroscopy of AE Aquarii with the XMM-Newton RGS has enabled us to measure the electron number density of the X-ray-emitting hot plasma to be ~1E11/cm**-3 by means of intensity ratios of the He-like triplet of Nitrogen and Oxygen. Incorporating with the emission measure evaluated by the EPIC cameras, we have also found a linear scale of the plasma to be ~5E10 cm. Both these values, obtained model-independently, are incompatible with a standard post-shock accretion column of a magnetized white dwarf, but are naturally interpreted as the plasma being formed through interaction between an accretion flow and the magnetosphere of the white dwarf. Our results provide another piece of evidence of the magnetic propeller effect being at work in AE Aqr.

Kei Itoh; Manabu Ishida; Hideyo Kunieda

2004-12-21T23:59:59.000Z

56

Applications of high resolution ICP-AES in the nuclear industry  

SciTech Connect (OSTI)

Application of high resolution ICP-AES to selected problems of importance in the nuclear industry is a growing field. The advantages in sample preparation time, waste minimization and equipment cost are considerable. Two examples of these advantages are presented in this paper, burnup analysis of spent fuel and analysis of major uranium isotopes. The determination of burnup, an indicator of fuel cycle efficiency, has been accomplished by the determination of {sup 139}La by high resolution inductively coupled plasma atomic emission spectroscopy (HR-ICP-AES). Solutions of digested samples of reactor fuel rods were introduced into a shielded glovebox housing an inductively coupled plasma (ICP) and the resulting atomic emission transmitted to a high resolution spectrometer by a 31 meter fiber optic bundle. Total and isotopic U determination by thermal ionization mass spectrometry (TIMS) is presented to allow for the calculation of burnup for the samples. This method of burnup determination reduces the time, material, sample handling and waste generated associated with typical burnup determinations which require separation of lanthanum from the other fission products with high specific activities. Work concerning an alternative burnup indicator, {sup 236}U, is also presented for comparison. The determination of {sup 235}U:{sup 238}U isotope ratios in U-Zr fuel alloys is also presented to demonstrate the versatility of HR-ICP-AES.

Johnson, S.G.; Giglio, J.J.; Goodall, P.S.; Cummings, D.G.

1998-07-01T23:59:59.000Z

57

CRYSTALLOGRAPHIC POINT AND SPACE  

E-Print Network [OSTI]

CRYSTALLOGRAPHIC POINT AND SPACE GROUPS Andy Elvin June 10, 2013 #12;Contents Point and Space no reflection axes #12;Cube and Octahedron are dual Symmetries under Oh #12;Space Groups Subgroups of E(3) Point Group + Translation { R | 0 }{ E | t }a = { R | t }a = Ra + t 230 Space Groups 73 symmorphic space

California at Santa Cruz, University of

58

AE Locations (cont/ae)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07) (See4AJ01)59AJ76)74AJ01)BROWNE,8onSDTeams

59

AE Space Utilization Work Team Short Roster v 1.5 2012-02-21 dgk Project Member Team Role UW-Madison Role  

E-Print Network [OSTI]

AE Space Utilization Work Team Short Roster v 1.5 2012-02-21 dgk Project Member Team Role UW: Space Utilization - Classroom #12;

Sheridan, Jennifer

60

Stellar spectropolarimetry with HiVIS: Herbig Ae/Be stars, circumstellar environments and optical pumping  

E-Print Network [OSTI]

The polarization of light across spectral lines contains information about the circumstellar material on small spatial scales. Many models relate the circumstellar environment to observable polarization changes across spectral lines. However, measuring signals at the 0.1% level requires a very careful control of systematic effects. We have recently built a high-resolution spectropolarimeter for the HiVIS spectrograph on the 3.67m AEOS telescope and have obtained a large number of high precision spectropolarimetric observations of Herbig Ae/Be, Classical Be and other stars. The detected linear polarization varies from our typical detection threshold near 0.1% up to 2%. This polarization effect is generally not coincident with the H-alpha emission peak but is detected only in the absorptive part of the line profile and varies with the absorption. These detections are largely inconsistent with the traditional scattering models and inspired a new explanation of their polarization. We developed a new spectropolarimetric model and argue that polarization in absorption is evidence of optical pumping. We argue that, while scattering theory fits many Be and emission-line star observations, this new theory has much more potential to explain polarization-in-absorption as seen in Herbig Ae/Be and other stellar systems. This thesis presents a large spectropolarimetric study that combines new instrumentation, custom processing software, thorough calibrations, cross-instrument comparisons, a massive observing campaign on many targets, comparison of current theories on multiple objects and finally the creation of a new theory.

D. M. Harrington

2008-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - I. Observations and measurements  

E-Print Network [OSTI]

This is the first in a series of papers in which we describe and report the analysis of a large survey of Herbig Ae/Be stars in circular spectropolarimetry. Using the ESPaDOnS and Narval high-resolution spectropolarimeters at the Canada-France-Hawaii and Bernard Lyot Telescopes, respectively, we have acquired 132 circularly-polarised spectra of 70 Herbig Ae/Be stars and Herbig candidates. The large majority of these spectra are characterised by a resolving power of about 65,000, and a spectral coverage from about 3700 ang to 1 micron. The peak SNR per CCD pixel ranges from below 100 (for the faintest targets) to over 1000 (for the brightest). The observations were acquired with the primary aim of searching for magnetic fields in these objects. However, our spectra are suitable for a variety of other important measurements, including rotational properties, variability, binarity, chemical abundances, circumstellar environment conditions and structure, etc. In this first paper, we describe the sample selection, ...

Alecian, E; Catala, C; Grunhut, J H; Landstreet, J D; Bagnulo, S; Bhm, T; Folsom, C P; Marsden, S; Waite, I

2012-01-01T23:59:59.000Z

62

The magnetic field of the pre-main sequence Herbig Ae star HD 190073  

E-Print Network [OSTI]

The general context of this paper is the study of magnetic fields in the pre-main sequence intermediate mass Herbig Ae/Be stars. Magnetic fields are likely to play an important role in pre-main sequence evolution at these masses, in particular in controlling the gains and losses of stellar angular momentum. The particular aim of this paper is to announce the detection of a structured magnetic field in the Herbig Ae star HD 190073, and to discuss various scenarii for the geometry of the star, its environment and its magnetic field. We have used the ESPaDOnS spectropolarimeter at CFHT in 2005 and 2006 to obtain high-resolution and signal-to-noise circular polarization spectra which demonstrate unambiguously the presence of a magnetic field in the photosphere of this star. Nine circular polarization spectra were obtained, each one showing a clear Zeeman signature. This signature is suggestive of a magnetic field structured on large scales. The signature, which corresponds to a longitudinal magnetic field of 74+-...

Catala, C; Donati, J F; Wade, G A; Landstreet, J D; Bhm, T; Bouret, J C; Bagnulo, S; Folsom, C; Silvester, J

2006-01-01T23:59:59.000Z

63

Contemporary Trends power point  

E-Print Network [OSTI]

Power point slides guiding presentation on closing the gap between political acceptability and administrative sustainability as a prerequisite for effective governance. Leadership challenges are described

Nalbandian, John

2013-02-01T23:59:59.000Z

64

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for cancer and infectious disease biomarkers in human biological samples * Point-of-Care diagnostics amenable to health clinics and field sensing applications * Integrated...

65

Overview o floating point  

E-Print Network [OSTI]

condition codes and branches are same as for single-precision o absolute value and negation can Co-processor o Integer, BCD, and floating point representations o floating point have sign instructions) or even popped twice (FCOMPP) o tests set condition codes: - C0: less or unordered

Biagioni, Edoardo S.

66

Magnetic, Chemical and Rotational Properties of the Herbig Ae/Be Binary System HD 72106  

E-Print Network [OSTI]

Recently, strong, globally-ordered magnetic fields have been detected in some Herbig Ae and Be (HAeBe) stars, suggesting a possible evolutionary connection to main sequence magnetic chemically peculiar Ap and Bp stars. We have undertaken a detailed study of the binary system HD 72106, which contains a B9 magnetic primary and a HAeBe secondary, using the ESPaDOnS spectropolarimeter mounted on the CFHT. A careful analysis of the very young primary reveals that it has an approximately dipolar magnetic field geometry, strong chemical peculiarities, and strong surface chemical abundance inhomogeneities. Thus the primary is very similar to an Ap/Bp star despite having completed less then 1.5% of its main sequence life, and possibly still being on the pre-main sequence. In contrast, a similar analysis of the secondary reveals solar chemical abundances and no magnetic field.

Folsom, C P; Kochukhov, O; Alecian, E; Catala, C; Bagnulo, S; Landstreet, J D; Hanes, D A

2007-01-01T23:59:59.000Z

67

How non-magnetic are "non-magnetic" Herbig Ae/Be stars?  

E-Print Network [OSTI]

Our recent discovery of magnetic fields in a small number of Herbig Ae/Be stars has required that we survey a much larger sample of stars. From our FORS1 and ESPaDOnS surveys, we have acquired about 125 observations of some 70 stars in which no magnetic fields are detected. Using a Monte Carlo approach, we have performed statistical comparisons of the observed longitudinal fields and LSD Stokes V profiles of these apparently non-magnetic stars with a variety of field models. This has allowed us to derive general upper limits on the presence of dipolar fields in the sample, and to place realistic upper limits on undetected dipole fields which may be present in individual stars. This paper briefly reports the results of the statistical modeling, as well as field upper limits for individual stars of particular interest.

Wade, G A; Catala, C; Bagnulo, S; Landstreet, J D; Flood, J; Bhm, T; Bouret, J -C; Donati, J -F; Folsom, C P; Grunhut, J; Silvester, J

2007-01-01T23:59:59.000Z

68

Analysis of synthetic motor oils for additive elements by ICP-AES  

SciTech Connect (OSTI)

Standard motor oils are made by blending paraffinic or naphthenic mineral oil base stocks with additive packages containing anti-wear agents, dispersants, corrosion inhibitors, and viscosity index improvers. The blender can monitor the correct addition of the additives by determining the additive elements in samples dissolved in a solvent by ICP-AES. Internal standardization is required to control sample transport interferences due to differences in viscosity between samples and standards. Synthetic motor oils, made with poly-alpha-olefins and trimethylol propane esters, instead of mineral oils, pose an additional challenge since these compounds affect the plasma as well as having sample transport interference considerations. The synthetic lubricant base stocks add significant oxygen to the sample matrix, which makes the samples behave differently than standards prepared in mineral oil. Determination of additive elements in synthetic motor oils will be discussed.

Williams, M.C.; Salmon, S.G. [Texaco Inc., Beacon, NY (United States)

1995-12-31T23:59:59.000Z

69

Low-Power Side-Channel Attack-Resistant Asynchronous S-Box Design for AES Cryptosystems  

E-Print Network [OSTI]

function with an invertible affine transformation in order to avoid attacks based on mathematics. A block combinational S-Box (substitution box) design for AES (Advanced Encryption Standard) cryptosystems is proposed less in- formation against side-channel attacks such as differential power/noise analysis. Functional

Ayers, Joseph

70

Maher and Shaw Directional Aspects of Forensic Gunshot Recordings AES 39th International Conference, Hillerd, Denmark, 2010 June 1719 1  

E-Print Network [OSTI]

Maher and Shaw Directional Aspects of Forensic Gunshot Recordings AES 39th International Conference, Hillerød, Denmark, 2010 June 17­19 1 DIRECTIONALASPECTS OF FORENSIC GUNSHOT RECORDINGS ROBERT C. MAHER rob.maher@montana.edu Crime scene forensic evidence may include audio gunshot recordings obtained from

Maher, Robert C.

71

PowerPoint Presentation  

Energy Savers [EERE]

be formatted to fit on 8.5 x 11 inch paper with margins not less than one inch on every side. Use Times New Roman typeface, a black font color, and a font size of 12 point or...

72

Magnetism and binarity of the Herbig Ae star V380 Ori  

E-Print Network [OSTI]

In this paper we report the results of high-resolution circular spectropolarimetric monitoring of the Herbig Ae star V380 Ori, in which we discovered a magnetic field in 2005. A careful study of the intensity spectrum reveals the presence of a cool spectroscopic companion. By modelling the binary spectrum we infer the effective temperature of both stars: $10500\\pm 500$ K for the primary, and $5500\\pm500$ K for the secondary, and we argue that the high metallicity ($[M/H] = 0.5$), required to fit the lines may imply that the primary is a chemically peculiar star. We observe that the radial velocity of the secondary's lines varies with time, while that of the the primary does not. By fitting these variations we derive the orbital parameters of the system. We find an orbital period of $104\\pm5$ d, and a mass ratio ($M_{\\rm P}/M_{\\rm S}$) larger than 2.9. The intensity spectrum is heavily contaminated with strong, broad and variable emission. A simple analysis of these lines reveals that a disk might surround the...

Alecian, E; Catala, C; Bagnulo, S; Bhm, T; Bouret, J -C; Donati, J -F; Folsom, C P; Grunhut, J; Landstreet, J D

2009-01-01T23:59:59.000Z

73

A high-resolution spectropolarimetric survey of Herbig Ae/Be stars - II. Rotation  

E-Print Network [OSTI]

We report the analysis of the rotational properties of our sample of Herbig Ae/Be (HAeBe) and related stars for which we have obtained high-resolution spectropolarimetric observations. Using the projected rotational velocities measured at the surface of the stars, we have calculated the angular momentum of the sample and plotted it as a function of age. We have then compared the angular momentum and the vsini distributions of the magnetic to the non-magnetic HAeBe stars. Finally we have predicted the vsini of the non-magnetic, non-binary ("normal") stars in our sample when they reach the ZAMS, and compared them to various catalogues of the vsini of main-sequence stars. First, we observe that magnetic HAeBe stars are much slower rotators than normal stars, indicating that they have been more efficiently braked than the normal stars. In fact, the magnetic stars have already lost most of their angular momentum, despite their young ages (lower than 1 Myr for some of them). Secondly, our analysis suggests that the...

Alecian, E; Catala, C; Grunhut, J H; Landstreet, J D; Bhm, T; Folsom, C P; Marsden, S

2012-01-01T23:59:59.000Z

74

Magnetism in Herbig Ae/Be stars and the link to the Ap/Bp stars  

E-Print Network [OSTI]

Among the A/B stars, about 5% host large-scale organised magnetic fields. These magnetic stars show also abundance anomalies in their spectra, and are therefore called the magnetic Ap/Bp stars. Most of these stars are also slow rotators compared to the normal A and B stars. Today, one of the greatest challenges concerning the Ap/Bp stars is to understand the origin of their slow rotation and their magnetic fields. The favoured hypothesis for the latter is that the fields are fosils, which implies that the magnetic fields subsist throughout the different evolutionary phases, and in particular during the pre-main sequence phase. The existence of magnetic fields at the pre-main sequence phase is also required to explain the slow rotation of Ap/Bp stars. During the last 3 years we performed a spectropolarimetric survey of the Herbig Ae/Be stars in the field and in young clusters, in order to investigate their magnetism and rotation. These investigations have resulted in the detection and/or confirmation of magnet...

Alecian, E; Wade, G A; Bagnulo, S; Bhm, T; Bouret, J -C; Donati, J -F; Folsom, C; Grunhut, J; Landstreet, J D; Marsden, S C; Petit, P; Ramrez, J; Silvester, J

2008-01-01T23:59:59.000Z

75

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care

76

THE TEMPERATURE-DEPENDENT SURFACE STRUCTURE, COMPOSITION AND ELECTRONIC PROPERTIES OF THE CLEAN SrTiO3(111) CRYSTAL FACE: LEED, AES, ELS AND UPS STUDIES  

E-Print Network [OSTI]

CRYSTAL.FACE: LEED, AES, ELS AND UPS STUDIES Wei Jen Lo andtaken Fig. cont'd. Fig. 9. The UPS spectrum of the Ar ionclean SrTi03 surface Fig. 10. The UPS spectrum of the clean,

Lo, Wei Jen

2011-01-01T23:59:59.000Z

77

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drug delivery

78

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drug delivery8,

79

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drug delivery8,SWL

80

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drug

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark Dixson

82

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark

83

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/2006 1

84

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/2006 1

85

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/2006

86

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/200611

87

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and drugMark7/200611US

88

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics and

89

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision LITTLE

90

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision LITTLEDan

91

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision

92

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision72.5 $75.5

93

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision72.5

94

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision72.54

95

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics andDivision72.545

96

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnostics

97

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnosticsFuture

98

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of care diagnosticsFutureMiniBooNE

99

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated Oscillation Results from

100

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated Oscillation Results

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated Oscillation Resultsand

102

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated Oscillation

103

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFact 2007

104

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFact 2007Term

105

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFact

106

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFactEvent

107

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFactEventν μ

108

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated OscillationNuFactEventν

109

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated

110

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNAL Users' Meeting

111

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNAL Users'

112

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNAL Users'Oscillation

113

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNAL

114

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007 FNALThermo-Magnetic

115

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007

116

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007Supply Chain &

117

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007Supply Chain &th

118

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007Supply Chain &thpH

119

A point of order 8  

E-Print Network [OSTI]

A formula expressing a point of order 8 on an elliptic curve, in terms of the roots of the associated cubic polynomial, is given. Doubling such a point yields a point of order 4 distinct from the well-known points of order 4 given in standard references such as "A course of Modern Analysis" by Whittaker and Watson.

Semjon Adlaj

2011-10-03T23:59:59.000Z

120

A compact dusty disk around the Herbig Ae star HR 5999 resolved with VLTI / MIDI  

E-Print Network [OSTI]

We have used mid-infrared long-baseline interferometry with MIDI at the VLTI to resolve the circumstellar material around the Herbig Ae star HR 5999, providing the first direct measurement of its angular size, and to derive constraints on the spatial distribution of the dust. A set of ten spectrally dispersed (8-13 micron) interferometric measurements of HR 5999 was obtained. The characteristic size of the emission region depends on the projected baseline length and position angle, and it ranges between ~ 5-15 milliarcseconds (Gauss FWHM), corresponding to remarkably small physical sizes of ~ 1-3 AU. To derive constraints on the geometrical distribution of the dust, we compared our interferometric measurements to 2D, frequency-dependent radiation transfer simulations of circumstellar disks and envelopes. For disk models with radial power-law density distributions, the relatively weak but very extended emission from outer disk regions (>~ 3 AU) leads to model visibilities that are significantly lower than the observed visibilities, making these models inconsistent with the MIDI data. Disk models in which the density is truncated at outer radii of ~ 2-3 AU, on the other hand, provide good agreement with the data. A satisfactory fit to the observed MIDI visibilities of HR 5999 is found with a model of a geometrically thin disk that is truncated at 2.6 AU and seen under an inclination angle of 58 degr. Neither models of a geometrically thin disk seen nearly edge-on, nor models of spherical dust shells can achieve agreement between the observed and predicted visibilities. The reason why the disk is so compact remains unclear; we speculate that it has been truncated by a close binary companion.

Thomas Preibisch; Stefan Kraus; Thomas Driebe; Roy van Boekel; Gerd Weigelt

2006-07-21T23:59:59.000Z

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

St Andrews Recycling Points Recycling Points are situated locally to  

E-Print Network [OSTI]

St Andrews Recycling Points Recycling Points are situated locally to allow you to recycle the following materials: To find your nearest Recycling Point please visit www.fifedirect.org.uk/wasteaware or call the Recycling Helpline on 08451 55 00 22. R&A GOLF CLUB OLD COURSE HOTEL UNIVERSITY NORTH HAUGH

St Andrews, University of

122

EIS-0446: Department of Energy Loan Guarantee to AES for the Proposed Daggett Ridge Wind Farm, San Bernardino County, California  

Broader source: Energy.gov [DOE]

This EIS, prepared by the Department of the Interior (Bureau of Land Management [BLM], Barstow Field Office) evaluates the environmental impacts of a proposed 82.5-megawatt (MW) Daggett Ridge Wind Farm project on land managed by the BLM located 11 miles southwest of Barstow, California, and five miles southwest of Daggett, California. DOE, a cooperating agency, is considering the impacts of its proposal to issue a Federal loan guarantee to AES Wind Generation, Inc., to support the construction of the proposed wind project. This EIS has been cancelled.

123

Data:26897523-60e2-4797-9958-ae490df6e423 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved for this90d4-0346e2ab598d4ea9721cb3d47d9ae8 No

124

Data:Bf8b3288-d40e-444a-bdaa-ae218806f333 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has been approved for this page. It ise0a5f00d94-14c94282dbc7ae218806f333

125

Data:C1ad0bd9-aaac-493a-8947-6238ae398efb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has beena032db6d83 No revision has been approvedaaac-493a-8947-6238ae398efb

126

Data:0715ba34-f2ae-4452-bf7b-df4185eae462 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision1b85ad20b2cdf28ec1 No revision

127

Data:083b4964-9a31-43ae-9603-e253d71eaccb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fb No2aeb24eac2eb-72682a32af1b No revision

128

Data:4871c667-e09c-461e-9378-30eade6ae054 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revisione66e17fc7f7 Nofa3d068c3333 No revisioneade6ae054 No revision has been

129

Data:094c4550-afc5-4309-aca9-29158ae40a7b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fcaff6-e68f39aca97c No revision

130

Data:09ae14cd-015d-49b6-a00e-37274083f23f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fcaff6-e68f39aca97cf1f-bfce-cbaff37b6909 No revision has

131

Data:122e7cf9-425e-4730-9796-2fffee29ae64 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approvedffcd81-3241-484a-b7b3-bac27985d9fd Nofffee29ae64 No revision has

132

Data:9e905761-b99c-44ba-93ae-cfdbdc1e1310 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision78aebe5c6ae4bdfb-365e4b1f8c14

133

Data:96978b6f-491d-4592-b82d-4cc0881ae07b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf35248292f1 No789501c8a3b5 Noc60f0b1242e7ca4dccba98d7b82d-4cc0881ae07b No revision

134

Data:C8671a01-cfdb-4981-b45b-97e38ae20489 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision617ab3133c91 No revision has beene093200b0862cfdb-4981-b45b-97e38ae20489 No

135

Data:3dfe9516-886e-413a-baed-ae8390939e0b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved64ec514 No revision hasdfe9516-886e-413a-baed-ae8390939e0b

136

Group Response System Turning Point  

E-Print Network [OSTI]

. · But more often I do use it within a slide show. Somewhat more difficult to manage. But some great uses-Add-in for Power Point. · Some "Clicking" practice. #12;Make A Slide-Add to this file. · Esc, click on TurningPoint add-in · Pick Insert Slide in Turning Point bar and insert a Turning Point slide after this slide

137

Data:09411e26-39bd-4ea7-a0d3-b09e0913ae80 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fcaff6-e68f39aca97c No revision hasb09e0913ae80 No revision

138

Data:1242263f-ad03-4416-ab9d-2ae7c34dbc5d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approvedffcd81-3241-484a-b7b3-bac27985d9fd Nofffee29ae64ab9d-2ae7c34dbc5d No

139

Florida Nuclear Profile - Turkey Point  

U.S. Energy Information Administration (EIA) Indexed Site

Turkey Point" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

140

Data:39750348-a887-4ff8-8623-933ba8bd0ae6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97e No revision has7f7767f21828 No934aed79f5d No33f8-933ba8bd0ae6 No

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

FIRST KECK NULLING OBSERVATIONS OF A YOUNG STELLAR OBJECT: PROBING THE CIRCUMSTELLAR ENVIRONMENT OF THE HERBIG Ae STAR MWC 325  

SciTech Connect (OSTI)

We present the first N-band nulling plus K- and L-band V{sup 2} observations of a young stellar object, MWC 325, taken with the 85 m baseline Keck Interferometer. The Keck nuller was designed for the study of faint dust signatures associated with debris disks, but it also has a unique capability for studying the temperature and density distribution of denser disks found around young stellar objects. Interferometric observations of MWC 325 at K, L, and N encompass a factor of five in spectral range and thus, especially when spectrally dispersed within each band, enable characterization of the structure of the inner disk regions where planets form. Fitting our observations with geometric models such as a uniform disk or a Gaussian disk show that the apparent size increases monotonically with wavelength in the 2-12 {mu}m wavelength region, confirming the widely held assumption based on radiative transfer models, now with spatially resolved measurements over a broad wavelength range, that disks are extended with a temperature gradient. The effective size is a factor of about 1.4 and 2.2 larger in the L band and N band, respectively, compared to that in the K band. The existing interferometric measurements and the spectral energy distribution can be reproduced by a flat disk or a weakly shadowed nearly flat disk model, with only slight flaring in the outer regions of the disk, consisting of representative 'sub-micron' (0.1 {mu}m) and 'micron' (2 {mu}m) grains of a 50:50 ratio of silicate and graphite. This is in marked contrast to the disks previously found in other Herbig Ae/Be stars, suggesting a wide variety in the disk properties among Herbig Ae/Be stars.

Ragland, S.; Hrynevich, M. [W. M. Keck Observatory, Kamuela, HI 96743 (United States); Ohnaka, K. [Max-Planck-Institut fuer Radioastronomie, 53121 Bonn (Germany); Hillenbrand, L. [Astrophysics Department, California Institute of Technology, Pasadena, CA 91125 (United States); Ridgway, S. T. [National Optical Astronomy Observatories, Tucson, AZ 85726-6732 (United States); Colavita, M. M.; Traub, W. A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, 91109 (United States); Akeson, R. L.; Millan-Gabet, R. [NExScI, California Institute of Technology, Pasadena, CA 91125 (United States); Cotton, W. [National Radio Astronomy Observatory, Charlottesville, VA 22903-2475 (United States); Danchi, W. C., E-mail: sragland@keck.hawaii.edu [NASA Goddard Space Flight Center, Exoplanets and Stellar Astrophysics, Greenbelt, MD 20771 (United States)

2012-02-20T23:59:59.000Z

142

Strontium oxide segregation at SrLaAlO4 surfaces A.E. Becerra-Toledo , L.D. Marks  

E-Print Network [OSTI]

Strontium oxide segregation at SrLaAlO4 surfaces A.E. Becerra-Toledo , L.D. Marks Northwestern surfaces We report observable segregation of strontium oxide at the surface of strontium lanthanum-dispersive X-ray spectroscopy showed that Sr and O segregation occurs on strontium lanthanum aluminate surfaces

Marks, Laurence D.

143

AE Work Team Short Roster Strategic Purchasing-Office Supplies v 1.1 2012-01-06 dgk Project Member Team Role UW-Madison Role  

E-Print Network [OSTI]

AE Work Team Short Roster Strategic Purchasing- Office Supplies v 1.1 2012-01-06 dgk Project Member II Work Team Roster: Strategic Purchasing - Office Supplies #12; Team Role UW-Madison Role Tammy Starr Team Leader Office of Human Resources (OHR) Mike Marean Team

Sheridan, Jennifer

144

Water adsorption on SrTiO3(001): II. Water, water, everywhere A.E. Becerra-Toledo a,  

E-Print Network [OSTI]

Water adsorption on SrTiO3(001): II. Water, water, everywhere A.E. Becerra-Toledo a, , J January 2012 Available online 17 January 2012 Keywords: Strontium titanate Density functional theory Water adsorption Surface reconstruction X-ray photoelectron spectroscopy Oxide surfaces The role of water

Marks, Laurence D.

145

Points  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015 7:00AM to 10:30AMPlayPlug-inProject

146

Tycho 2 stars with infrared excess in the MSX Point Source Catalogue  

E-Print Network [OSTI]

Stars of all evolutionary phases have been found to have excess infrared emission due to the presence of circumstellar material. To identify such stars, we have positionally correlated the infrared MSX point source catalogue and the Tycho 2 optical catalogue. A near/mid infrared colour criteria has been developed to select infrared excess stars. The search yielded 1938 excess stars, over half (979) have never previously been detected by IRAS. The excess stars were found to be young objects such as Herbig Ae/Be and Be stars, and evolved objects such as OH/IR and carbon stars. A number of B type excess stars were also discovered whose infrared colours could not be readily explained by known catalogued objects.

A. J. Clarke; R. D. Oudmaijer; S. L Lumsden

2005-08-23T23:59:59.000Z

147

Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA,...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management Division Oak Ridge Office SharePoint( MicrosoftSHarePointServer) PIA, Information Resourses Management...

148

Temperatures and Natural Gamma-Ray Logs Obtained in 1986 from Shady Rest  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,Telluric Survey DetailsCassia

149

AE Polysilicon Corporation AE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Logo:Use LandsADOTAEAE

150

End points for facility deactivation  

SciTech Connect (OSTI)

DOE`s Office of Nuclear Material and Facility Stabilization mission includes deactivating surplus nuclear facilities. Each deactivation project requires a systematic and explicit specification of the conditions to be established. End Point methods for doing so have been field developed and implemented. These methods have worked well and are being made available throughout the DOE establishment.

Szilagyi, A.P. [Dept. of Energy, Germantown, MD (United States); Negin, C.A. [Oak Technologies, Washington Grove, MD (United States); Stefanski, L.D. [Westinghouse Hanford, Richland, WA (United States)

1996-12-31T23:59:59.000Z

151

Bar Mar field Point field  

E-Print Network [OSTI]

Bone Spring Seay Nance Regional Study (Cimarex Energy) West Texas (Various Counties) West Texas Yates Seay Nance Regional Study (Lynx Production) West Texas (Various Counties) #12;Bar Mar field Umbrella Point field Nuare field East Texas field Copano Bay Bar Mar field Umbrella

Texas at Austin, University of

152

CenterPoint November 2009  

E-Print Network [OSTI]

CenterPoint November 2009 The Center for Academic Enrichment & Outreach Newsletter ONLINE ARTICLES (which is housed in the Center for Academic Enrichment and Outreach (CAEO)) assisted parents is committed to working with families and students to provide challenging academic classes, as well as social

Hemmers, Oliver

153

Spectral Energy Distributions of T Tauri and Herbig Ae Disks: Grain Mineralogy, Parameter Dependences, and Comparison with ISO LWS Observations  

E-Print Network [OSTI]

We improve upon the radiative, hydrostatic equilibrium models of passive circumstellar disks constructed by Chiang & Goldreich (1997). New features include (1) account for a range of particle sizes, (2) employment of laboratory-based optical constants of representative grain materials, and (3) numerical solution of the equations of radiative and hydrostatic equilibrium within the original 2-layer (disk surface + disk interior) approximation. We explore how the spectral energy distribution (SED) of a face-on disk depends on grain size distributions, disk geometries and surface densities, and stellar photospheric temperatures. Observed SEDs of 3 Herbig Ae and 2 T Tauri stars, including spectra from the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO), are fitted with our models. Silicate emission bands from optically thin, superheated disk surface layers appear in nearly all systems. Water ice emission bands appear in LWS spectra of 2 of the coolest stars. Infrared excesses in several sources are consistent with vertical settling of photospheric grains. While this work furnishes further evidence that passive reprocessing of starlight by flared disks adequately explains the origin of infrared-to-millimeter wavelength excesses of young stars, we emphasize how the SED alone does not provide sufficient information to constrain particle sizes and disk masses uniquely.

E. I. Chiang; M. K. Joung; M. J. Creech-Eakman; C. Qi; J. E. Kessler; G. A. Blake; E. F. van Dishoeck

2000-09-26T23:59:59.000Z

154

Mid-InfraRed imaging of the circumstellar dust around three Herbig Ae stars : HD135344, CQTau, HD163296  

E-Print Network [OSTI]

Planet formation has been known for many years to be tied to the spatial distribution of gas and dust in disks around young stars. To constrain planet formation models, imaging observations of protoplanetary disks are required. In this framework, we have undertaken a mid-infrared imaging survey of Herbig Ae stars, which are pre-main sequence stars of intermediate mass still surrounded by a large amount of circumstellar material. The observations were made at a wavelength of 20.5 $\\mu$m with the CAMIRAS camera mounted at the Cassegrain focus of the Canada France Hawaii Telescope. We report the observations of three stars, HD135344, CQTau and HD163296. The circumstellar material around the three objects is spatially resolved. The extensions feature a disk like shape. The images provide direct information on two key parameters of the disk : its inclination and its outer radius. The outer radius is found to be quite different from the one deduced from disk models only constrained by fitting the Spectral Energy Distribution of the object. Other parameters of the disk, such as flaring, dust mass have been deduced from fitting both the observed extension and the spectral energy distribution with sophisticated disk models. Our results show how important imaging data are to tighten constraints on the disk model parameters.

C. Doucet; E. Pantin; P. O. Lagage; C. P. Dullemond

2006-08-29T23:59:59.000Z

155

Exploring the Physical, Chemical and Thermal Characteristics of a New Potentially Insensitive High Explosive: RX-55-AE-5  

SciTech Connect (OSTI)

Current work at the Energetic Materials Center, EMC, at Lawrence Livermore National Laboratory (LLNL) includes both understanding properties of old explosives and measuring properties of new ones [1]. The necessity to know and understand the properties of energetic materials is driven by the need to improve performance and enhance stability to various stimuli, such as thermal, friction and impact insult. This review will concentrate on the physical properties of RX-55-AE-5, which is formulated from heterocyclic explosive, 2,6-diamino-3,5-dinitropyrazine-1-oxide, LLM-105, and 2.5% Viton A. Differential scanning calorimetry (DSC) was used to measure a specific heat capacity, C{sub p}, of {approx} 0.950 J/g{center_dot} C and a thermal conductivity, {kappa}, of {approx} 0.475 W/m{center_dot} C. The LLNL kinetics modeling code Kinetics05 and the Advanced Kinetics and Technology Solutions (AKTS) code Thermokinetics were both used to calculate Arrhenius kinetics for decomposition of LLM-105. Both obtained an activation energy barrier E {approx} 180 kJ mol{sup -1} for mass loss in an open pan. Thermal mechanical analysis, TMA, was used to measure the coefficient of thermal expansion (CTE). The CTE for this formulation was calculated to be {approx} 61 {micro}m/m{center_dot} C. Impact, spark, friction are also reported.

Weese, R K; Burnham, A K; Turner, H C; Tran, T D

2006-06-05T23:59:59.000Z

156

Data:362188c7-399f-4484-a082-e530a4c79ae9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4ae-5b31d61e0d79193a29b0f90 No0a4c79ae9 No revision has been

157

Data:07514b67-8e01-4e88-b4e0-9425dec89ae3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No

158

Video Lessons, PowerPoints, and Outlines  

E-Print Network [OSTI]

POWERPOINT PRESENTATIONS, VIDEO LESSONS AND OUTLINES ... 6/11. Lesson 1 PowerPoint (Part A) Lesson 1 PowerPoint (Part B) Lesson 1 Video.

159

Field's Point Wastewater Treatment Facility (Narragansett Bay...  

Open Energy Info (EERE)

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) Jump to: navigation, search Name Field's Point Wastewater Treatment Facility (Narragansett Bay Commission)...

160

Starting Points | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

(M&O) Contract Competition Starting Points Starting Points Kansas City Plant Related Web Pages Summary Kansas City Plant Home Page Kansas City Plant Contracts DOE Directives...

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

PETROLOGIC CONSTRAINTS ON AMORPHOUS AND CRYSTALLINE MAGNESIUM SILICATES: DUST FORMATION AND EVOLUTION IN SELECTED HERBIG Ae/Be SYSTEMS  

SciTech Connect (OSTI)

The Infrared Space Observatory, Spitzer Space Telescope, and Herschel Space Observatory surveys provided a wealth of data on the Mg-silicate minerals (forsterite, enstatite), silica, and ''amorphous silicates with olivine and pyroxene stoichiometry'' around Herbig Ae/Be stars. These incredible findings do not resonate with the mainstream Earth Sciences because of (1) disconnecting ''astronomical nomenclature'' and the long existing mineralogical and petrologic terminology of minerals and amorphous materials, and (2) the fact that Earth scientists (formerly geologists) are bound by the ''Principle of Actualism'' that was put forward by James Hutton (1726-1797). This principle takes a process-oriented approach to understanding mineral and rock formation and evolution. This paper will (1) review and summarize the results of laboratory-based vapor phase condensation and thermal annealing experiments, (2) present the pathways of magnesiosilica condensates to Mg-silicate mineral (forsterite, enstatite) formation and processing, and (3) present mineralogical and petrologic implications of the properties and compositions of the infrared-observed crystalline and amorphous dust for the state of circumstellar disk evolution. That is, the IR-observation of smectite layer silicates in HD142527 suggests the break-up of asteroid-like parent bodies that had experienced aqueous alteration. We discuss the persistence of amorphous dust around some young stars and an ultrafast amorphous to crystalline dust transition in HD 163296 that leads to forsterite grains with numerous silica inclusions. These dust evolution processes to form forsterite, enstatite {+-} tridymite could occur due to amorphous magnesiosilica dust precursors with a serpentine- or smectite-dehydroxylate composition.

Rietmeijer, Frans J. M. [Department of Earth and Planetary Sciences, MSC 03 2040, 1-University of New Mexico, Albuquerque, NM 87131-001 (United States); Nuth, Joseph A., E-mail: fransjmr@unm.edu [Astrochemistry Laboratory, Solar System Exploration Division, Code 691, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2013-07-01T23:59:59.000Z

162

AES Appendix SFA-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3 Early

163

AES Appendix SFA-1  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3 EarlyRev. 8, 7/14/14)

164

Data:E811b95c-f87a-4636-b783-0cf4cb2eb8ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has beenace4-3e58210a501f Noc9-64f337dd0502 No revisioncf4cb2eb8ae No revision has

165

Data:E8ad088c-9a51-449c-8095-3f44ae6eb231 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has beenace4-3e58210a501f Noc9-64f337dd0502055ddf45 No revision has4ae6eb231 No

166

Data:Ebc2c2e2-ae45-4075-a5de-456c045b8029 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision hasa3e396ee3ebbed0-6678a6880d18 NoEbc2c2e2-ae45-4075-a5de-456c045b8029 No revision has

167

Data:F25f1c93-e114-4438-acf9-a03ae05a942d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It ise7c5ddfdbf9 No revision has been40e8b963729 Noacf9-a03ae05a942d No

168

Data:F5eea9ec-587c-45ed-90d1-f9e4ae399ca4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page. It6d-bcfb5222116ea91d395f7fdf Noc4fa49eacd83-7f2548977372 Nof9e4ae399ca4

169

Data:F7e9fd6c-7bb3-4770-ab78-555ae9774adc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page.b4-a4ba-cd54152b8724 Noc6b7edf0a23ae9774adc No revision has been approved

170

Data:F807bcdb-37ec-4414-a8ae-2d6fce4c750b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page.b4-a4ba-cd54152b8724 Noc6b7edf0a23ae9774adc No0da3a93c535d

171

Data:F83e831a-231f-40ae-8119-12b452f98456 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for this page.b4-a4ba-cd54152b87244538a159a88b No revision hasf-40ae-8119-12b452f98456

172

Data:F96430e3-20fd-472c-9d8a-c0fac0d8ae78 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approved for thisd785796ade47 No revision has beenfac0d8ae78 No revision has been approved for

173

Data:67083cb0-ba3c-45bf-a5d3-621aca26ae1b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3 No revision has beenb8d48daba661 No revision has621aca26ae1b No

174

Data:69d0b82c-6f7b-479c-be5f-69b8ae37de3b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3 Nob05268d8cd No revisionf1fe86ce5f9ae-1b5eba546306

175

Data:6f5a0feb-8a88-410e-85b0-6ae702137157 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has beenb-ff986065de63 No revision9-abd1-c3e1b33869bc No revision6ae702137157 No revision

176

Data:752ef00f-a406-4fb6-b0ed-b8e42816ae9e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b No revision has6dcc3af95b Noda29209151a4826c6b3d No revisionb8e42816ae9e No

177

Data:1d10e60d-694b-465b-ac4c-1632341ae6d8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision5af6d400c2d No revision has been-9b29bec4d26e No revision has been approved for1ae6d8

178

Data:2a2a2f2c-ce72-47c9-b145-24b3945ae11e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has beena2ac591a5e3 Nobcf-1b589b1c9a42 Noa9c4572a No revision4b3945ae11e

179

Data:2af1bb39-e2f7-4f70-a56d-974ae2c11b92 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has beena2ac591a5e3d617bf7be1a0b8-fbc19490afc04ae2c11b92 No revision has

180

Data:2b8e80a1-4f1e-470b-9e25-fb701c68ae32 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8 No revision has-fb701c68ae32 No revision has been

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Data:B20d2a2f-4ce1-403c-9481-eb63080ae500 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has been approvededdfdcc009c No-6f65bc929730b5206663 No-eb63080ae500

182

Data:B4925aa6-0194-4ae2-aa45-110457d20bf5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has-4ae2-aa45-110457d20bf5 No revision has been approved for this

183

Data:B4ae6341-52d7-407c-b47f-65c42db84058 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has-4ae2-aa45-110457d20bf5 No revision has

184

Data:B5195ae6-0a70-4928-b065-dbcb0cfb2dba | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revision has-4ae2-aa45-110457d20bf58328-b55aab9a4cae No revision

185

Data:B5ec11eb-ac00-4562-bc0a-73ae02bb23b9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08 No revisionb6dbbdc091c No revision hasacca-3a3ac8d9ad0224aadedbc0a-73ae02bb23b9

186

Data:Baf7195f-f419-4861-9c6a-e1ffda04c71b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08d442d74d244 NoBaf7195f-f419-4861-9c6a-e1ffda04c71b No revision has been approved

187

Data:Bafe598c-3f4e-4bdb-bce3-1cdd6afa53ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08d442d74d244 NoBaf7195f-f419-4861-9c6a-e1ffda04c71b No revision has been

188

Data:Bbcdc537-a4a3-41f0-87aa-531e5d84ae96 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has38865d08d442d74d244d9f062625d8 No revisionBbcdc537-a4a3-41f0-87aa-531e5d84ae96 No

189

Data:Bd46015e-2a48-495a-ac75-1687ae080745 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revision has been approved for5-1687ae080745 No revision has

190

Data:Bd967143-17e5-468b-839e-4ada02ae4134 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 NoBcfd1c1f-01b6-4a11-8667-d236d8565086 No revision has been4ada02ae4134 No revision has been approved

191

Data:5c8325eb-de3a-4553-84a0-0e9e9ae90245 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for this page. It is currently under6c602ca Noe9e9ae90245 No revision has

192

Data:5c95fdf3-ae8e-4784-9f9e-b84427631fd0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for this page. It is currently under6c602ca Noe9e9ae90245 Noc5c0190c5

193

Data:5c9b86bc-003a-4cd4-ae65-d613dcfd1bc6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for this page. It is currently under6c602ca Noe9e9ae90245d613dcfd1bc6 No

194

Data:5ca4002c-80d9-4f15-9a00-ae8fe9ba389b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved for this page. It is currently under6c602ca Noe9e9ae90245d613dcfd1bc6

195

Data:631c1d61-f8eb-4988-8af2-e672ae5f0cc3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved fore6e8eee44 No revision has been8efe6555aea3e672ae5f0cc3 No revision has

196

Data:0578929a-a855-49dc-b85f-3126ae4e73fc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision has been approved for this page. It is

197

Data:05e5ec6a-e3c9-4a76-a83f-341cc82d4290 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision has been2d4290 No revision has been approved

198

Data:05ef9398-9ca0-4f7e-8058-ae8742d8ba11 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision has been2d4290 No revision has

199

Data:0615c7e0-4eb7-425b-ae11-c8758ec78256 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision has been2d4290 Noafd4-2b69e167d228 No

200

Data:06a4767b-a31e-4ae4-9143-ecec2aa0a953 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision1b85ad20b No revision has

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Data:06ae4a4e-77ea-4e94-bf01-797bf16ff8ab | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision1b85ad20b No revision has4-bf01-797bf16ff8ab No

202

Data:06fb9214-a8db-469c-a7c1-e7a7ae202954 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision1b85ad20b Nodc7ed5fc006180caa9d No revision

203

Data:06fd098a-1a6c-4ae6-9ed1-ceef9ba6032a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision1b85ad20b Nodc7ed5fc006180caa9d No

204

Data:0712890b-d074-47a7-ae2f-5252cdf28ec1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc No revision1b85ad20b2cdf28ec1 No revision has been

205

Data:0796e74e-a48c-44ae-b0be-795f4f22c0de | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fb No revision has beenc4ed8cc76 Nof4f22c0de No

206

Data:0829ae19-295d-44e0-b314-c3f0d33c923c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fb No2aeb24eac2eb Nod2c7ac364 Noab6f0d33c923c No

207

Data:08632a5a-e008-45a5-a0db-f68ad1115427 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fbc9b253bedd No revision has been

208

Data:08958524-5f17-4ae9-bb15-0f2354c88e09 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fbc9b253bedd No revisionc872f0ec No revision

209

Data:41fa6451-d09d-4fc0-aa21-52b5ae90d03d | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1df4498 No9272891a285321e6989942 No revisionb5ae90d03d

210

Data:4cf95b1f-9439-41f1-9746-27684f016ae1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf7 No revision has beenb745-9ab1009e8428 No revision hasfb0797cbb No4f016ae1

211

Data:52f93134-c3d8-4874-b1e8-8ae20de2c9ad | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b Nobfef8fa58cf74865627f783eabb28-cd1d-43dd-80d2-219739044111 No8ae20de2c9ad No revision

212

Data:08bde90a-644a-443d-ae14-4d0d71831d07 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fc Nof7e0a4fbc9b253bedd No7-e86f2fd7b7e6

213

Data:09bb22ae-e097-4545-9a49-3a002d2fd7b1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions6ae4e73fcaff6-e68f39aca97cf1f-bfce-cbaff37b6909 No

214

Data:0db07cbe-4cd2-4d47-8472-0d1b894d50ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approved for this page. It isdac7c88-8327-41e3-884b-6f50205b7bcfd1b894d50ae

215

Data:0e2bb87d-cc63-49b6-afc5-5c95743324ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approved for this page.e-919055bdfc58 Noffbfc4e856 No revision has5743324ae

216

Data:17dc89f8-92d6-40a3-a263-d6698a2ae638 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has beenba5b1d371 Nob97eb4d202d0d9aabb1ca46d No revisionc4b993dd5af Nod6698a2ae638 No

217

Data:9e29a68a-e960-4561-8d98-05e026a36a2f | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision78aebe5c6ae4 No revision has been5e026a36a2f

218

Data:9e4e2523-7bd4-41df-ae05-4164a05d312e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision78aebe5c6ae4 No revisioncbb5e08906d

219

Data:9e5f17ae-6a2f-406b-928a-6990452ec505 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision78aebe5c6ae4 No928a-6990452ec505 No revision

220

Data:9e717de9-a031-49b2-ae12-3ff7faf6578e | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision78aebe5c6ae4 No928a-6990452ec5053ff7faf6578e

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Data:9edf4665-7879-4ae2-a522-1d8106901e7c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb Noaa-1a453d4653d0edf4665-7879-4ae2-a522-1d8106901e7c No

222

Data:A522585f-e0cb-4eba-a8bb-147660ae995b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 Noddefe0-db39-48c0-ac98-7941b3451e3c No revision has been2aadf750f No147660ae995b No

223

Data:A6fc396e-3ef4-46a8-ae07-5ab18084c579 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44f-4cd6-87d8-e9253aab8d9c No revision has been-46a8-ae07-5ab18084c579 No revision has been

224

Data:Ac5e1de8-2c5b-4350-ad34-9d14eb55ae24 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has been approved for this page. It is currently under reviewad34-9d14eb55ae24 No revision

225

Data:Add8ae53-e3ff-46da-992b-2df56a5053bb | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has been approved forcbd4-4dd6-a809-80e47b5e3b75Add8ae53-e3ff-46da-992b-2df56a5053bb No

226

Data:Ae821a53-ceae-49c0-b2e6-b1b7609fe4b6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has beenb2f1-0963489fea4e No revision has been approvedAe821a53-ceae-49c0-b2e6-b1b7609fe4b6

227

Data:Af639f2b-ec48-4602-87ed-873b3ae13d31 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has beenb2f1-0963489fea4e Nob3f1-01f301f150f6 No revision73b3ae13d31 No revision has been

228

Data:Fed0deb6-83af-4309-b6a2-a7ae9eacd4be | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has been approvedfeb8-46c4-a088-48299e29c2f6 No revision hasFed0deb6-83af-4309-b6a2-a7ae9eacd4be No

229

Data:Ffe2fb55-352f-473b-a2dd-50ae8b27f0a6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has been approved for this page. It is currently

230

Data:8bb186f5-3c77-45d0-8366-872069957ae1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No18fed1db5 No revision40a8-a6bf-0166ba6ac8c0 No3aeb83aa0 No revision2069957ae1

231

Data:9c956fdc-41dd-4775-98ef-d96d284e1ae9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has been approved095c1f504b No revisioneb70f2296 No revisionef-d96d284e1ae9

232

Data:9e14b5af-d9d8-418e-8dda-78aebe5c6ae4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision has beenfcf13f143bb No revision78aebe5c6ae4 No revision has been approved

233

Data:C5fb4943-64b9-4054-abd3-85968efe96ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has4dc5b1450a Noedea6e-082f-441d-a84e-c3c27119f58d No revision968efe96ae No

234

Data:C5fd413d-52fb-4021-87e0-ae203505e66b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision has4dc5b1450a Noedea6e-082f-441d-a84e-c3c27119f58d No revision968efe96ae

235

Data:C8be76ce-4dfd-480e-bd9a-f48ab3f9ae60 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision617ab3133c91 No revision has-f1dcce6c8fac Nof48ab3f9ae60 No revision has

236

Data:Ca8c219b-8776-4ddf-932e-d15ae7297b19 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision617ab3133c917-f9f8e1916066 Noba-037fd0673e7b No5ae7297b19 No revision has

237

Data:Ce82df4d-c557-42d2-a1f3-ce3b159222ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742e80b26cc4 Nodbb-44ce-80f8-79eb97a58f0a No revisionde0244033 No revisiona1f3-ce3b159222ae

238

Data:D09d25ff-8cd8-4401-91fd-23ae0d5180fd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved for this1e-67de4b817342 No revision has been approvedd-21f64d50a399ae0d5180fd

239

Data:D5096bac-26b2-4414-8796-ae81e3d25fea | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has been approved97069579d6 No revisionbac-26b2-4414-8796-ae81e3d25fea No revision has been

240

Data:D97fb563-feb6-4f10-ba64-8ae4207cfab0 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has beenadf9-4884-b0c1-529b3bb19f9c No revisionfeb6-4f10-ba64-8ae4207cfab0 No revision has been

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Data:D981065c-e054-4db7-ae9c-592b4a95875c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has beenadf9-4884-b0c1-529b3bb19f9c No revisionfeb6-4f10-ba64-8ae4207cfab0 No revision has

242

Data:D985eb8b-185a-4e87-8359-9b3ae98bf957 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has beenadf9-4884-b0c1-529b3bb19f9c No revisionfeb6-4f10-ba64-8ae4207cfab0 Nobf074d8181

243

Data:D9f1e6cb-9ad8-44fd-9fe5-04ae0f474270 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has beenadf9-4884-b0c1-529b3bb19f9c No2-d6f420785d1d No revision hasfe5-04ae0f474270 No revision

244

Data:Da128c76-17c3-47d4-b471-fe80a58da9ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has beenadf9-4884-b0c1-529b3bb19f9c No2-d6f420785d1d No revision1feddcbdd10 No1-fe80a58da9ae No

245

Data:Da12a36f-ae00-4cb4-a9dd-ed19ceba5550 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision has beenadf9-4884-b0c1-529b3bb19f9c No2-d6f420785d1d No revision1feddcbdd10 No1-fe80a58da9ae

246

Data:E00b1ed3-cca4-4bd1-890d-de895ba311ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approved for this page. It-4bd1-890d-de895ba311ae No revision has been

247

Data:E169fe3c-ed2b-46d7-9193-8a30a6a351ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approved for thisc4d368cd00 No revision has been approved193-8a30a6a351ae No

248

Data:E505a338-01aa-49d0-b285-28d8ae87cdee | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has been approved for-1837723ccd6b No3f21d72298d8ae87cdee No revision has been

249

Data:79356ac3-b011-4023-8a4a-e8790d361bd1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88 No revision has929d8dd1bb Noa4a-e8790d361bd1 No revision has

250

Data:7e8b2679-6bee-4f29-bfcd-61cf3e1ae19b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321bfd-b46c-2ea652fe29af No revisionbee-4f29-bfcd-61cf3e1ae19b No revision has

251

Data:88859492-7505-4e6c-9a0f-f978ae51c316 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No revisionb27d098eef61148ac7 No revisiond-297e3f8d5123debe5ed0ddc2 No8ae51c316

252

Data:8a5ab396-6e71-4598-9e16-55e6ae42c0e1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No18fed1db5 No revision has been approved for this page. Ite6ae42c0e1 No revision

253

Data:8afd9aa1-538e-409b-b702-95fd1ae300dd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No18fed1db5 No revision has been7a5-b5d93ded2d08 No revision95fd1ae300dd No

254

Data:35da78a7-27f4-4dde-a1ae-61d58e5eb917 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4ae-5b31d61e0d79193a29b0f90 No revision has been

255

Data:35e5a40c-bb21-475d-ae0e-20efd0bf13f8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4ae-5b31d61e0d79193a29b0f90 No revision has

256

Data:35f7dcd4-e6ec-486e-b8da-471ae2174ca4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4ae-5b31d61e0d79193a29b0f90 No revision

257

Data:3a9b7691-e6ba-4286-9cce-e755902ae9ba | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97e No revisionfb5101c21c4f No revision has beene755902ae9ba No revision

258

Data:3c97911d-298a-4add-8a74-cf800d392ae7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved for this page. It is1-966d48443822 No00d392ae7 No revision

259

Data:3ecf55b6-1020-4bb7-a123-24306f10c4ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has been approved64ec514 Noc707c3a4d4cdc3dd4086bc-36c3421918ca3-24306f10c4ae

260

Data:4052d46d-681f-479e-a5fa-265a8ae334a5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision has beend26-1acc36863a1d No8-b13b41761ee4 No revisioncebe577beaa8ae334a5 No

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Phase stability study of Bi{sub 0.15}Sr{sub 0.85-x}Ae{sub x}CoO{sub 3-{delta}} (x = 0 and Ae = Ba{sub 0.28}; Ca{sub 0.17}) perovskites by in-situ neutron diffraction  

SciTech Connect (OSTI)

The oxygen deficient perovskites, Bi{sub 0.15}Sr{sub 0.85-x}Ae{sub x}CoO{sub 3-{delta}}, x = 0 and Ae{sub x} = Ba{sub 0.28}, Ca{sub 0.17}, were studied with in-situ neutron powder diffraction and combined TGA/DSC in order to investigate their behaviour at elevated temperatures in oxidising conditions. The phase stability of the I4/mmm supercell structure adopted by Bi{sub 0.15}Sr{sub 0.85}CoO{sub 3-{delta}} is shown to be dependent on temperature and the oxygen content of the phase, with three structural events, at T {approx} 250, 590 and 880 {sup o}C, detected. The first transition occurs as the perovskite supercell vanishes due to oxygen absorption; the second transition is also associated with oxidation and involves the decomposition of the perovskite phase via an exothermic process to yield a dominant hexagonal phase. Finally, at T {approx} 900 {sup o}C the perovskite phase re-forms. For the Ba and Ca containing materials the decomposition to the hexagonal phase occurs at T {approx} 600 {sup o}C and {approx} 650 {sup o}C respectively. The presence of Ca at the A-site is found to stabilise the I4/mmm supercell structure in the range RT - 650 {sup o}C. The antiferromagnetic to paramagnetic transitions occur at T{sub N} {approx} 250 {sup o}C, T{sub N} {approx} 175 {sup o}C and T{sub N} {approx} 145 {sup o}C for the samples with Ae{sub x} = Ba{sub 0.28}, x = 0 and Ae{sub x} = Ca{sub 0.17}, respectively.

Eriksson, A.K.; Eriksson, S.G. [Department of Environmental Inorganic Chemistry, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)] [Department of Environmental Inorganic Chemistry, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Chapon, L.C. [STFC, Rutherford Appleton Lab, ISIS Facility, Didcot OX11 0 QX, Oxon (United Kingdom)] [STFC, Rutherford Appleton Lab, ISIS Facility, Didcot OX11 0 QX, Oxon (United Kingdom); Knee, C.S., E-mail: knee@chem.gu.se [Department of Chemistry, University of Gothenburg, SE-412 96 Goeteborg (Sweden)

2010-12-15T23:59:59.000Z

262

BROUWER'S FIXED POINT THEOREM JASPER DEANTONIO  

E-Print Network [OSTI]

BROUWER'S FIXED POINT THEOREM JASPER DEANTONIO Abstract. In this paper we prove Brouwer's Fixed be used to make three sequences which all have p as their limit point. Date: July 27, 2009. 1 #12;2 JASPER

May, J. Peter

263

Anticorrelation between Surface and Subsurface Point Defects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between Surface and Subsurface Point Defects and the Impact on the Redox Chemistry of TiO2(110). Anticorrelation between Surface and Subsurface Point Defects and the...

264

Other Purdue Web points of Interest  

E-Print Network [OSTI]

Other Purdue Web points of interest. Purdue University Home Page --- Schedule of Classes Graduate School Agronomy Computer Science --- CS & E...

265

Team Total Points Beta Theta Pi 2271  

E-Print Network [OSTI]

Bubbles 40 Upset City 30 Team Success 30 #12;Team Total Points Sly Tye 16 Barringer 15 Fire Stinespring 15

Buehrer, R. Michael

266

AN INTERIOR POINT METHOD FOR MATHEMATICAL PROGRAMS ...  

E-Print Network [OSTI]

Abstract. Interior point methods for nonlinear programs (NLP) are adapted for solution of mathematical programs with complementarity constraints (MPCCs).

267

Level Set Implementations on Unstructured Point Cloud  

E-Print Network [OSTI]

Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong A Thesis Submitted;Level Set Implementations on Unstructured Point Cloud by HO, Hon Pong This is to certify that I have implementations on unstructured point cloud 15 3.1 Level set initialization

Duncan, James S.

268

Differential Point Rendering Aravind Kalaiah Amitabh Varshney  

E-Print Network [OSTI]

Differential Point Rendering Aravind Kalaiah Amitabh Varshney University of Maryland1 Abstract. We present a novel point rendering primitive, called Differential Point (DP), that captures the local-based models. This information is used to efficiently render the surface as a collection of local neighborhoods

Varshney, Amitabh

269

Nesting points in the sphere Dan Archdeacon  

E-Print Network [OSTI]

Nesting points in the sphere Dan Archdeacon Dept. of Computer Science University of Vermont) Abstract Let G be a graph embedded in the sphere. A k-nest of a point x not in G is a collection C 1 nested if each point not on the graph has a k-nest. In this paper we

Archdeacon, Dan

270

Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars  

E-Print Network [OSTI]

We are investigating the magnetic characteristics of pre-main sequence Herbig Ae/Be stars, with the aim of (1) understanding the origin and evolution of magnetism in intermediate-mass stars, and (2) exploring the influence of magnetic fields on accretion, rotation and mass-loss at the early stages of evolution of A, B and O stars. We have begun by conducting 2 large surveys of Herbig Ae/Be stars, searching for direct evidence of photospheric magnetic fields via the longitudinal Zeeman effect. From observations obtained using FORS1 at the ESO-VLT and ESPaDOnS at the Canada-France-Hawaii Telescope, we report the confirmed detection of magnetic fields in 4 pre-main sequence A- and B-type stars, and the apparent (but as yet unconfirmed) detection of fields in 2 other such stars. We do not confirm the detection of magnetic fields in several stars reported by other authors to be magnetic: HD 139614, HD 144432 or HD 31649. One of the most evolved stars in the detected sample, HD 72106A, shows clear evidence of stron...

Wade, G A; Bagnulo, S; Landstreet, J D; Mason, E; Silvester, J; Alecian, E; Bhm, T; Bouret, J C; Catala, C; Donati, J F; Folsom, C; Bale, K

2006-01-01T23:59:59.000Z

271

Critical point analysis of phase envelope diagram  

SciTech Connect (OSTI)

Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

Soetikno, Darmadi; Siagian, Ucok W. R. [Department of Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia); Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id; Puspita, Dila, E-mail: rkusdiantara@s.itb.ac.id; Sidarto, Kuntjoro A., E-mail: rkusdiantara@s.itb.ac.id; Soewono, Edy; Gunawan, Agus Y. [Department of Mathematics, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

2014-03-24T23:59:59.000Z

272

Correlation for the Vapor Pressure of Heavy Water From the Triple Point to the Critical Point  

E-Print Network [OSTI]

Correlation for the Vapor Pressure of Heavy Water From the Triple Point to the Critical Point Allan the vapor pressure of heavy water (D2O) from its triple point to its critical point. This work takes Institute of Physics. Key words: D2O; heavy water; ITS-90; vapor pressure. Contents 1. Introduction

Magee, Joseph W.

273

GRADE NUMBER OF CREDITS FACTOR QUALITY POINTS HOW TO COMPUTE A GRADE POINT AVERAGE  

E-Print Network [OSTI]

.00 = __________ TOTALS: _________ __________ CREDITS QUALITY PTS. Divide total credits into total quality pointsGRADE NUMBER OF CREDITS FACTOR QUALITY POINTS HOW TO COMPUTE A GRADE POINT AVERAGE A _________ x 4 and the result is the grade point average (GPA). QUALITY PTS. = GPA ____________ = CREDITS

Massachusetts at Amherst, University of

274

[0268] First Galley Proofs MULTIPLICITIES, BOUNDARY POINTS,  

E-Print Network [OSTI]

, multiplicity, extreme point, sharp point, boundary point. c Ð , Zagreb Paper OaM-0268 1 #12;2 W.S. CHEUNG NUMERICAL RANGES WAI-SHUN CHEUNG, XUHUA LIU AND TIN-YAU TAM (Communicated by C.-K. Li) Abstract, XUHUA LIU AND T.Y. TAM Given W(A), Embry [8] introduced M = M (A) := {x Cn : x Ax = x x}. In general

Tam, Tin-Yau

275

Wisconsin Nuclear Profile - Point Beach Nuclear Plant  

U.S. Energy Information Administration (EIA) Indexed Site

Point Beach Nuclear Plant" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration...

276

Effective Immediately - OASIS Reservation Points Suspended -...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CommitteesTeams Customer Training Interconnection Notices Rates Standards of Conduct Tariff TF Web Based Training Notice: Effective Immediately - OASIS Reservation Points...

277

Josephson phase qubit with an optimal point  

SciTech Connect (OSTI)

Current fluctuations in a Josephson phase qubit are considered to be a source of decoherence, especially for pure dephasing. One possible way of evading such decoherence is to employ an optimal operation point as used in flux and charge qubits, where the qubit is insensitive to the bias fluctuations. However, there is no optimal point in a phase qubit since qubit energy splitting becomes monotonically smaller with increasing the bias current. Here we propose a phase qubit with an optimal point by introducing qubit energy splitting that depends nonmonotonically on the current bias realized in capacitively coupled Josephson junctions. The effect of junction asymmetry on the optimal point is also investigated.

Kosugi, Norihito; Fujii, Toshiyuki; Hatakenaka, Noriyuki [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Matsuo, Shigemasa [Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521 (Japan); Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555 (Japan)

2010-01-01T23:59:59.000Z

278

Building Green in Greensburg: Prairie Pointe Townhomes  

Office of Energy Efficiency and Renewable Energy (EERE)

This poster highlights energy efficiency, renewable energy, and sustainable features of the high-performing Prairie Pointe Townhomes in Greensburg, Kansas.

279

Homework/Program #1 Solutions a) ( 1 point for each Hello*.java files (3 points), 1 point for each Hello*.class file (3 points)  

E-Print Network [OSTI]

Homework/Program #1 Solutions 1. a) ( 1 point for each Hello*.java files (3 points), 1 point for each Hello*.class file (3 points) -rw-r--r--. 1 cs11xyz cs11sxyz 718 Oct 2 21:47 Hello2.class -rw-r--r--. 1 cs11xyz cs11sxyz 938 Oct 2 21:22 Hello2.java -rw-r--r--. 1 cs11xyz cs11sxyz 427 Oct 2 21:47 Hello

Papadopoulos, Philip M.

280

Inexact and accelerated proximal point algorithms  

E-Print Network [OSTI]

Aug 10, 2011 ... Abstract: We present inexact accelerated proximal point algorithms for minimizing a proper lower semicon- tinuous and convex function.

Saverio Salzo

2011-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Computing proximal points of nonconvex functions  

E-Print Network [OSTI]

This would provide a solid foundation on which future .... theoretical base for nonconvex proximal points has already begun in works such as [31], [32], [5], [6].

2006-01-18T23:59:59.000Z

282

Data:2cc018a7-8f64-409c-b966-e1ae8dc58c4b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision hase-119dde1f65f8d0bed8c2636b4a3-9fc56041cf03 Nobcda18f8327e1ae8dc58c4b

283

Data:57a7c6b5-bbc0-4a9c-b0ae-29f580053df1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b3da-78f7ef0b79f6 No446b-9fca-d407954a4b84 No revision has been-4a9c-b0ae-29f580053df1 No

284

Data:Adc3719d-6e76-44af-a63b-ae63e4d2f52c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has been approved forcbd4-4dd6-a809-80e47b5e3b75 NoAdc3719d-6e76-44af-a63b-ae63e4d2f52c No

285

Data:Cdf08225-b220-41ff-9b6a-b30f56c8ae49 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742e80b26cc4 No revision5d06fb2b0baCdf08225-b220-41ff-9b6a-b30f56c8ae49 No revision has

286

Data:324efb34-3f4e-4f65-ae02-64b16f834cb4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 Noddb932b8a3f1f38825451 Noada1f3290a No revisionf65-ae02-64b16f834cb4

287

Data:3512788a-e234-41cd-8a5c-ec9b603f9c70 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4ae-5b31d61e0d79 No revision hasfe10a1e3 No revisionb603f9c70

288

Data:366fe149-4b23-4b2f-9099-7ae60873293c | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4aa77f45ad4ae-5b31d61e0d79193a29b0f907010bfa1 No revision has

289

Data:3abcd6ae-fe4b-45f5-ba3b-ccdd7d99c893 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffef-15f046e6d97e No revisionfb5101c21c4f No revisionabcd6ae-fe4b-45f5-ba3b-ccdd7d99c893

290

Updated On: 11/7/2012 16:28 Teams: Off In The Gym points Bromuda Triangle Open points  

E-Print Network [OSTI]

Diamantides 0 #12;I Was Saying Boourns points Diesel points Faaantastic points Michael Chafetz - C 0 Steven Webber 0 Taylor Goudreau 0 Jared Lowe 0 #12;GREEDIANS points The Brown Bears points Wanna go Stetty West

Sridhar, Srinivas

291

Stagnation Point Analysis M. Fey and R. Jeltsch  

E-Print Network [OSTI]

a blunt body, a so­called bow shock (shown in Figure 1) is formed. The flow is composed of a subsonic is taken into consideration. On the other hand, the flow shall be in thermal equilibrium. We assume the mixture of gases composed of N components to be thermally perfect, i.e. p = ae R T N X i=1 Y i =W i

292

Investigation of the magnetic field characteristics of Herbig Ae/Be stars: Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars  

E-Print Network [OSTI]

We are investigating the magnetic characteristics of pre-main sequence Herbig Ae/Be stars, with the aim of (1) understanding the origin and evolution of magnetism in intermediate-mass stars, and (2) exploring the influence of magnetic fields on accretion, rotation and mass-loss at the early stages of evolution of A, B and O stars. We have begun by conducting 2 large surveys of Herbig Ae/Be stars, searching for direct evidence of photospheric magnetic fields via the longitudinal Zeeman effect. From observations obtained using FORS1 at the ESO-VLT and ESPaDOnS at the Canada-France-Hawaii Telescope, we report the confirmed detection of magnetic fields in 4 pre-main sequence A- and B-type stars, and the apparent (but as yet unconfirmed) detection of fields in 2 other such stars. We do not confirm the detection of magnetic fields in several stars reported by other authors to be magnetic: HD 139614, HD 144432 or HD 31649. One of the most evolved stars in the detected sample, HD 72106A, shows clear evidence of strong photospheric chemical peculiarity, whereas many of the other (less evolved) stars do not. The magnetic fields that we detect appear to have surface intensities of order 1 kG, seem to be structured on global scales, and appear in about 10% of the stars studied. Based on these properties, these magnetic stars appear to be pre-main sequence progenitors of the magnetic Ap/Bp stars.

G. A. Wade; D. Drouin; S. Bagnulo; J. D. Landstreet; E. Mason; J. Silvester; E. Alecian; T. Bohm; J. -C. Bouret; C. Catala; J. -F. Donati; C. Folsom; K. Bale

2006-01-30T23:59:59.000Z

293

Traveling water waves with point vortices  

E-Print Network [OSTI]

We construct small-amplitude solitary traveling gravity-capillary water waves with a finite number of point vortices along a vertical line, on finite depth. This is done using a local bifurcation argument. The properties of the resulting waves are also examined: We find that they depend significantly on the position of the point vortices in the water column.

Kristoffer Varholm

2015-03-20T23:59:59.000Z

294

The Control Point Policy Stanley B. Gershwin  

E-Print Network [OSTI]

://web.mit.edu/manuf-sys Massachusetts Institute of Technology Spring, 2012 The Control Point Policy 1/33 Copyright c 2012 Stanley B-time calculation. The purpose of real-time scheduling in a factory is to make decisions in response to random failures, change in demand, etc. The Control Point Policy 4/33 Copyright c 2012 Stanley B. Gershwin. All

Gershwin, Stanley B.

295

Form drag at Three Tree Point  

E-Print Network [OSTI]

form drag with bottom pressure sensors #12;Oscillatory dynamics tidal energy converted to internal waves, eddies and mixing no tidally averaged work done on system slack tide: background tilt flood & ebb Puget Sound, WA Point Three Tree Pressure sensors (PPODs) at Three Tree Point (TTP) PPODs #12;PPOD

Warner, Sally

296

Three-point spherical mirror mount  

DOE Patents [OSTI]

A three-point spherical mirror mount for use with lasers is disclosed. The improved mirror mount is adapted to provide a pivot ring having an outer surface with at least three spaced apart mating points to engage an inner spherical surface of a support housing.

Cutburth, R.W.

1984-01-23T23:59:59.000Z

297

Infrared fixed point in quantum Einstein gravity  

E-Print Network [OSTI]

We performed the renormalization group analysis of the quantum Einstein gravity in the deep infrared regime for different types of extensions of the model. It is shown that an attractive infrared point exists in the broken symmetric phase of the model. It is also shown that due to the Gaussian fixed point the IR critical exponent $\

S. Nagy; J. Krizsan; K. Sailer

2012-06-28T23:59:59.000Z

298

Interaction between Injection Points during Hydraulic Fracturing  

E-Print Network [OSTI]

We present a model of the hydraulic fracturing of heterogeneous poroelastic media. The formalism is an effective continuum model that captures the coupled dynamics of the fluid pressure and the fractured rock matrix and models both the tensile and shear failure of the rock. As an application of the formalism, we study the geomechanical stress interaction between two injection points during hydraulic fracturing (hydrofracking) and how this interaction influences the fracturing process. For injection points that are separated by less than a critical correlation length, we find that the fracturing process around each point is strongly correlated with the position of the neighboring point. The magnitude of the correlation length depends on the degree of heterogeneity of the rock and is on the order of 30-45 m for rocks with low permeabilities. In the strongly correlated regime, we predict a novel effective fracture-force that attracts the fractures toward the neighboring injection point.

Hals, Kjetil M D

2012-01-01T23:59:59.000Z

299

Speaking of Places - - A Tale of Two Points  

E-Print Network [OSTI]

patches of Queens. Hunters Point, facing midtown Manhattanshowing the locations of Hunters Point South and WilletsCurrent plans for Hunters Point South would extend this

Baldwin, Ian

2009-01-01T23:59:59.000Z

300

CenterPoint Comments | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4CenterPoint Comments CenterPoint Comments CenterPoint

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Bonus Point Exercise 3 Alessandro Abate  

E-Print Network [OSTI]

sc4026 Bonus Point Exercise 3 Alessandro Abate a.abate@tudelft.nl Solomon Zegeye s Exercise Session 3 ­ sc4026 #12;A. Abate, S.K. Zegeye Observability and Observer Design Consider an LTI

Abate, Alessandro

302

PowerPoints, Video Lessons and Outlines  

E-Print Network [OSTI]

Lesson 1 Video Lesson 1 Outline ... Lesson 2 Video Lesson 2 Outline. 9/1. Labor Day. No Classes. 9/2. 9/3. Lesson 3 PowerPoint Lesson 3 Video Lesson 3...

303

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR ...  

E-Print Network [OSTI]

We identify possible difficulties that could arise, such as unbounded faces of ..... not the first time this phenomenon has been noted. .... tables on the authors' website [1]. ... rank-deficient, which can create problems for an interior-point code

2002-08-06T23:59:59.000Z

304

City of Boulder- Green Points Building Program  

Broader source: Energy.gov [DOE]

The Boulder Green Points Building Program is a mandatory residential green building program that requires a builder or homeowner to include a variety of sustainable building components based on the...

305

Cumulative Undergraduate Grade Point Average (GPA) Potential Student Name: _____________________________  

E-Print Network [OSTI]

in the list from Step "a" and sum them: = ____________Total Quality Points Note: Quality Points assigned Total Quality Points (number from Step "b") by Total Credits (number from Step "a"). Cumulative GPA = Total Quality Points/Total Credits = _______________ #12;

Maxwell, Bruce D.

306

THE FERNALD DOSIMETRY RECONSTRUCTION Task 1: Identification of Release Points  

E-Print Network [OSTI]

fires, spills, and UF6 leaks and releases. The Stack Release Points and Other Release Points are located

307

Phase-shifting point diffraction interferometer  

DOE Patents [OSTI]

Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

Medecki, Hector (Berkeley, CA)

1998-01-01T23:59:59.000Z

308

Cosmological 3-point correlators from holography  

SciTech Connect (OSTI)

We investigate the non-Gaussianity of primordial cosmological perturbations using holographic methods. In particular, we derive holographic formulae that relate all cosmological 3-point correlation functions, including both scalar and tensor perturbations, to stress-energy correlation functions of a holographically dual three-dimensional quantum field theory. These results apply to general single scalar inflationary universes that at late times approach either de Sitter spacetime or accelerating power-law cosmologies. We further show that in Einstein gravity all 3-point functions involving tensors may be obtained from correlators containing only positive helicity gravitons, with the ratios of these to the correlators involving one negative helicity graviton being given by universal functions of momenta, irrespectively of the potential of the scalar field. As a by-product of this investigation, we obtain holographic formulae for the full 3-point function of the stress-energy tensor along general holographic RG flows. These results should have applications in a wider holographic context.

McFadden, Paul; Skenderis, Kostas, E-mail: P.L.McFadden@uva.nl, E-mail: K.Skenderis@uva.nl [Institute for Theoretical Physics, Science Park 904, 1090 GL Amsterdam (Netherlands)

2011-06-01T23:59:59.000Z

309

The ROSAT HRI Point Spread Function  

E-Print Network [OSTI]

A sample of the brightest point-like sources observed with the ROSAT-HRI were analysed to asses on the intrinsic shape of the ROSAT-HRI Point Spread Function (PSF). Almost all of the HRI observations collected during the ROSAT lifetime are found to be artificially broadened by factors up two ~2 due to residual errors in the ROSAT aspect solution. After correction by departing pointing positions, the width of the core of the PSF is found to be less than 5 arcsec (half energy width, HEW). On the basis of these results, an improved analytical representation of the ROSAT-HRI PSF is provided. However, for most of the new observations the source countrate is too weak to allow reliable recovering pf the ROSAT-HRI resolution. Therefore, a series of examples (data, correction, and theoretical PSF) are given in order to help the ROSAT user in determining whether "his/her source" is extended or not.

Peter Predehl; Almudena Prieto

2001-09-28T23:59:59.000Z

310

Symmetry and Dirac points in graphene spectrum  

E-Print Network [OSTI]

Existence and stability of Dirac points in the dispersion relation of operators periodic with respect to the hexagonal lattice is investigated for different sets of additional symmetries. The following symmetries are considered: rotation by $2\\pi/3$ and inversion, rotation by $2\\pi/3$ and horizontal reflection, inversion or reflection with weakly broken rotation symmetry, and the case where no Dirac points arise: rotation by $2\\pi/3$ and vertical reflection. All proofs are based on symmetry considerations and are elementary in nature. In particular, existence of degeneracies in the spectrum is proved by a transplantation argument (which is deduced from the (co)representation of the relevant symmetry group). The conical shape of the dispersion relation is obtained from its invariance under rotation by $2\\pi/3$. Persistence of conical points when the rotation symmetry is weakly broken is proved using a geometric phase in one case and parity of the eigenfunctions in the other.

Gregory Berkolaiko; Andrew Comech

2014-12-28T23:59:59.000Z

311

Phase-shifting point diffraction interferometer  

DOE Patents [OSTI]

Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

Medecki, H.

1998-11-10T23:59:59.000Z

312

AE AURIGAE: FIRST DETECTION OF NON-THERMAL X-RAY EMISSION FROM A BOW SHOCK PRODUCED BY A RUNAWAY STAR  

SciTech Connect (OSTI)

Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace due to the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30'' northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscattering of infrared photons from dust in the shock front.

Lopez-Santiago, J.; Pereira, V.; De Castro, E. [Dpto. de Astrofisica y CC. de la Atmosfera, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Miceli, M.; Bonito, R. [Dipartimento di Fisica, Universita di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy); Del Valle, M. V.; Romero, G. E. [Instituto Argentino de Radioastronomia (IAR), CCT La Plata (CONICET), C.C.5, 1894 Villa Elisa, Buenos Aires (Argentina); Albacete-Colombo, J. F. [Centro Universitario Regional Zona Atlantica (CURZA), Universidad Nacional del COMAHUE, Monsenor Esandi y Ayacucho, 8500 Viedma, Rio Negro (Argentina); Damiani, F. [INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134 Palermo (Italy)

2012-09-20T23:59:59.000Z

313

AE Aurigae: first detection of non-thermal X-ray emission from a bow shock produced by a runaway star  

E-Print Network [OSTI]

Runaway stars produce shocks when passing through interstellar medium at supersonic velocities. Bow shocks have been detected in the mid-infrared for several high-mass runaway stars and in radio waves for one star. Theoretical models predict the production of high-energy photons by non-thermal radiative processes in a number sufficiently large to be detected in X-rays. To date, no stellar bow shock has been detected at such energies. We present the first detection of X-ray emission from a bow shock produced by a runaway star. The star is AE Aur, which was likely expelled from its birthplace by the encounter of two massive binary systems and now is passing through the dense nebula IC 405. The X-ray emission from the bow shock is detected at 30" to the northeast of the star, coinciding with an enhancement in the density of the nebula. From the analysis of the observed X-ray spectrum of the source and our theoretical emission model, we confirm that the X-ray emission is produced mainly by inverse Compton upscatt...

Lopez-Santiago, J; del Valle, M V; Romero, G E; Bonito, R; Albacete-Colombo, J F; Pereira, V; de Castro, E; Damiani, F

2012-01-01T23:59:59.000Z

314

QCD Critical Point: The Race is On  

E-Print Network [OSTI]

A critical point in the phase diagram of Quantum Chromodynamics (QCD), if established either theoretically or experimentally, would be as profound a discovery as the good-old gas-liquid critical point. Unlike the latter, however, first-principles based approaches are being employed to locate it theoretically. Due to the short lived nature of the concerned phases, novel experimental techniques are needed to search for it. The Relativistic Heavy Ion Collider (RHIC) in USA has an experimental program to do so. This short review is an attempt to provide a glimpse of the race between the theorists and the experimentalists as well as that of the synergy between them.

Rajiv V. Gavai

2014-04-26T23:59:59.000Z

315

Non-lead hollow point bullet  

DOE Patents [OSTI]

The non-lead hollow point bullet of the instant invention comprises a mixed construction slug further comprising, a monolithic metal insert having a tapered (preferred conical) hollow point tip and a tapered (preferred conical) tail protrusion, and an unsintered powdered metal composite core in tandem alignment with the insert. The core has a hollow tapered (preferred conical) cavity tip portion coupled with the tapered (preferred conical) tail protrusion on the insert. An open tip jacket envelops at least a portion of the insert and the core. The jacket is swaged at the open tip.

Vaughn, Norman L. (Knoxville, TN); Lowden, Richard A. (Clinton, TN)

2003-04-15T23:59:59.000Z

316

p-points in iterated forcing extensions  

E-Print Network [OSTI]

Ma. By Fact 4, U apoints which are not selective. We show Theorem 2. Nonselective p-points exist in direct iterated ccc extensions whose length has uncountable cofinality. These theorems are proved in 3. In 4 we indicate how...

Roitman, Judith A.

1978-05-03T23:59:59.000Z

317

Field's Point Wastewater Treatment Facility (Narragansett Bay Commission) |  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy InformationInformationOpen Energy

318

Effective dynamics of a classical point charge  

SciTech Connect (OSTI)

The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The AbrahamLorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: Extension of the classical action principle for dissipative systems. New derivation of the AbrahamLorentz force for a point charge. Absence of a runaway solution of the AbrahamLorentz force. Acausality in classical electrodynamics. Renormalization of classical electrodynamics of point charges.

Polonyi, Janos, E-mail: polonyi@iphc.cnrs.fr

2014-03-15T23:59:59.000Z

319

INTERIOR-POINT METHODS FOR NONCONVEX NONLINEAR ...  

E-Print Network [OSTI]

Nov 4, 2005 ... where x ? Rn are the decision variables, f : Rn ? R is the objective function, ... problem is not convex, the algorithm will be searching for a local optimum. ..... the terms in the barrier objective of our infeasible interior-point method. ..... In order to enter dual feasibility restoration mode, we monitored the...

2005-11-04T23:59:59.000Z

320

CHANGE-POINT METHODS Douglas M. Hawkins  

E-Print Network [OSTI]

been proposed as tools for following up signals given by other charting methods, when their likelihood: Change-point, LRT, GLR, Phase I, Phase II, SPC. 1 #12;1 INTRODUCTION Statistical process control methods will assume is unknown. If both 0 and 1 are known, then the SPC diagnostic of choice is generally

Qiu, Peihua

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Automorphisms mapping a point into a subvariety  

E-Print Network [OSTI]

The problem of deciding, given a complex variety X, a point x \\in X, and a subvariety Z \\subseteq X, whether there is an automorphism of X mapping x into Z is proved undecidable. Along the way, we prove the undecidability ...

Poonen, Bjorn

322

Bonus Point Exercise 1 Alessandro Abate  

E-Print Network [OSTI]

sc4026 Bonus Point Exercise 1 Alessandro Abate a.abate@tudelft.nl Aleksandar Haber a ­ Exercise Session 1 ­ sc4026 #12;A. Abate, A. Haber Linearization Example In the following diagram, we have.Yr. 2009/10, 1e Sem. Q1 ­ Exercise Session 1 ­ sc4026 1 #12;A. Abate, A. Haber · x, horizontal position

Abate, Alessandro

323

Bonus Point Exercise 2 Alessandro Abate  

E-Print Network [OSTI]

sc4026 Bonus Point Exercise 2 Alessandro Abate a.abate@tudelft.nl Aleksandar Haber a ­ Exercise Session 2 ­ sc4026 #12;A. Abate, A. Haber Solution to state space models Find the output response Sem. Q1 ­ Exercise Session 2 ­ sc4026 1 #12;A. Abate, A. Haber Equilibria and Phase Portrait Determine

Abate, Alessandro

324

Language Production General Points about Speech Production  

E-Print Network [OSTI]

Language Production #12;General Points about Speech Production 15 speech sounds per second => 2, shall I say `t' or `d'' (Levelt) Production side has gotten less attention in Psycholinguistics than the comprehension side. Evidence for speech production behaviour has until recently relied heavily on speech errors

Coulson, Seana

325

ATS 351, Spring 2010 Satellite 50 points  

E-Print Network [OSTI]

sensor is a radar. Passive sensors do not emit any radiation, and only detect naturally occurring their own radiation, and measure the return signal that is sent back to them. A good example of an active radiation that is emitted. Most satellites are passive sensors. 3. (5 points). Label each of the following

Rutledge, Steven

326

Codes Over Non-Abelian Groups: Point-to-Point Communications and Computation Over MAC  

E-Print Network [OSTI]

Codes Over Non-Abelian Groups: Point-to-Point Communications and Computation Over MAC Aria G. We also show that for the problem of computation over MAC, these codes are superior to random codes channel. In [1], the capacity of group codes for certain classes of channels has been computed. Further

Pradhan, Sandeep

327

Updated On: 6/9/2014 16:21 Teams: Safe Sets points The Smuttynoses points  

E-Print Network [OSTI]

Kathryn Tomase 0 Alex Chao 0 Dan Reilly 0 Monica Eguia 0 Elizabeth Sczerzenie 0 James Kim 0 Conor Baker 0 Michael Palmeri 0 Patrick Mardula 0 Elizabeth Butler 0 James Ferrara 0 Molly Baum 0 Kate points Barkada Open points Rebecca Hansen - C 0 James Martin Tan - C 0 Shannon Coveney 0 Noel Llado

Sridhar, Srinivas

328

Energy Efficiency Analysis of Link Layer Backoff Schemes on Point-to-Point  

E-Print Network [OSTI]

416 Energy Efficiency Analysis of Link Layer Backoff Schemes on Point-to-Point Markov Fading Links schemes are shown to achieve better energy ef- ficiency without compromising much on the link layer throughput performance. Keywords - Backoff algorithms, fading channels, en- ergy eficiency. 1 Introduction

Chockalingam, A.

329

Updated On: 4/12/2013 15:34 Teams: Bung points Galactic Unicorns points  

E-Print Network [OSTI]

Matthew Sullivan 0 Joe Caggiano 12 Michael Biasella 5 Keith Klucznik 2 Benjamin Comeau 10 Ryan Kelley 23 Christopher Flood 12 #12;DaMonStahz points Tyler Mitchell points Craig Pille - C 9 Tyler Mitchell - C 24 Robert Jones 0 Christopher Tramontozzi 0 Kelsey Powers 0 Wellesley Broomfield 0 Ryan DeRosier 0 Brian

Sridhar, Srinivas

330

Remote temperature-set-point controller  

DOE Patents [OSTI]

An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

Burke, W.F.; Winiecki, A.L.

1984-10-17T23:59:59.000Z

331

Derivative-Free Optimization Proximal Point Methods Derivative-Free Proximal Point Conclusion Derivative-Free Optimization via Proximal  

E-Print Network [OSTI]

Derivative-Free Optimization Proximal Point Methods Derivative-Free Proximal Point Conclusion Derivative-Free Optimization via Proximal Point Methods Yves Lucet & Warren Hare July 24, 2013 1 / 26 #12;Derivative-Free Optimization Proximal Point Methods Derivative-Free Proximal Point Conclusion Outline 1

332

Redeveloping or preserving public housing : the future of Columbia Point  

E-Print Network [OSTI]

Columbia Point, Boston's largest and most stigmatized public housing project, has been a focal point for public and private. investment strategies to create a new mixed-income residential community. Columbia Point provided ...

Lee, Sharon Hsueh-Jen

1981-01-01T23:59:59.000Z

333

The Copper Creek Clovis Point from Hells Canyon, Northeastern Oregon  

E-Print Network [OSTI]

No. 1 (2008) | pp. 75-84 The Copper Creek Clovis Point fromside of the Snake River to the Copper Creek point discovery1 (2008) 5 cm Figure 4. The Copper Creek Clovis point (tick

Reid, Kenneth C.; Root, Matthew J.; Hughes, Richard E.

2008-01-01T23:59:59.000Z

334

EIS-0153: Niagara Import Point Project  

Broader source: Energy.gov [DOE]

The Federal Energy Regulatory Commission prepared this statement to assess the environmental impacts of the proposed Niagara Import Point project that would construct an interstate natural gas pipeline to transport gas from Canada and domestic sources to the Northeastern United States market. The U.S. Department of Energy's Office of Fossil Energy was a cooperating agency during statement development and adopted this statement on 6/15/1990.

335

IEEE Standard unifies arithmetic model Floating points  

E-Print Network [OSTI]

calls this quantity eps, which is short for machine epsilon. eps = 2^(­52) What is the output? a = 4/3 b of eps. The approximate decimal value of eps is 2.2204 · 10-16 . Either eps/2or eps can be called is rounded to the nearest floating-point number is eps/2. The maximum relative spacing between numbers is eps

Beron-Vera, Francisco Javier

336

Low-melting point heat transfer fluid  

DOE Patents [OSTI]

A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

Cordaro, Joseph Gabriel (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

2010-11-09T23:59:59.000Z

337

Radium issues at Hunters Point Annex  

SciTech Connect (OSTI)

Radium was a common source of illumination used in numerous instruments and gauges for military equipment prior to 1970. As a result of its many military applications radium 226 is now a principle radionuclide of concern at military base closures sites throughout the United States. This is an overview of the site characterization strategy employed and a potential site remediation technology being considered at a radium contaminated landfill at Hunters Point Annex, a former U.S. Navy shipyard in San Francisco, California.

Dean, S.M.

1994-12-31T23:59:59.000Z

338

GreatPoint Energy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslands Renewable Energy LLCGray,BoilingRiver, NewGreatPoint

339

The Molecular Gas Environment around Two Herbig Ae/Be Stars: Resolving the Outflows of LkHa 198 and LkHa 225S  

E-Print Network [OSTI]

Observations of outflows associated with pre-main-sequence stars reveal details about morphology, binarity and evolutionary states of young stellar objects. We present molecular line data from the Berkeley-Illinois-Maryland Association array and Five Colleges Radio Astronomical Observatory toward the regions containing the Herbig Ae/Be stars LkHa 198 and LkHa 225S. Single dish observations of 12CO 1-0, 13CO 1-0, N2H+ 1-0 and CS 2-1 were made over a field of 4.3' x 4.3' for each species. 12CO data from FCRAO were combined with high resolution BIMA array data to achieve a naturally-weighted synthesized beam of 6.75'' x 5.5'' toward LkHa 198 and 5.7'' x 3.95'' toward LkHa 225S, representing resolution improvements of factors of approximately 10 and 5 over existing data. By using uniform weighting, we achieved another factor of two improvement. The outflow around LkHa 198 resolves into at least four outflows, none of which are centered on LkHa 198-IR, but even at our resolution, we cannot exclude the possibility of an outflow associated with this source. In the LkHa 225S region, we find evidence for two outflows associated with LkHa 225S itself and a third outflow is likely driven by this source. Identification of the driving sources is still resolution-limited and is also complicated by the presence of three clouds along the line of sight toward the Cygnus molecular cloud. 13CO is present in the environments of both stars along with cold, dense gas as traced by CS and (in LkHa 225S) N2H+. No 2.6 mm continuum is detected in either region in relatively shallow maps compared to existing continuum observations.

Brenda C. Matthews; James R. Graham; Marshall D. Perrin; Paul Kalas

2007-08-13T23:59:59.000Z

340

High speed point derivative microseismic detector  

DOE Patents [OSTI]

A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves. 9 figs.

Uhl, J.E.; Warpinski, N.R.; Whetten, E.B.

1998-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High speed point derivative microseismic detector  

DOE Patents [OSTI]

A high speed microseismic event detector constructed in accordance with the present invention uses a point derivative comb to quickly and accurately detect microseismic events. Compressional and shear waves impinging upon microseismic receiver stations disposed to collect waves are converted into digital data and analyzed using a point derivative comb including assurance of quiet periods prior to declaration of microseismic events. If a sufficient number of quiet periods have passed, the square of a two point derivative of the incoming digital signal is compared to a trip level threshold exceeding the determined noise level to declare a valid trial event. The squaring of the derivative emphasizes the differences between noise and signal, and the valid event is preferably declared when the trip threshold has been exceeded over a temporal comb width to realize a comb over a given time period. Once a trial event has been declared, the event is verified through a spatial comb, which applies the temporal event comb to additional stations. The detector according to the present invention quickly and accurately detects initial compressional waves indicative of a microseismic event which typically exceed the ambient cultural noise level by a small amount, and distinguishes the waves from subsequent larger amplitude shear waves.

Uhl, James Eugene (Albuquerque, NM); Warpinski, Norman Raymond (Albuquerque, NM); Whetten, Ernest Blayne (Albuquerque, NM)

1998-01-01T23:59:59.000Z

342

Parallel Implementation of Gamma-Point Pseudopotential Plane...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parallel Implementation of Gamma-Point Pseudopotential Plane-Wave DFT with Exact Exchange. Parallel Implementation of Gamma-Point Pseudopotential Plane-Wave DFT with Exact...

343

adjacent point sources: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

extraction capabilities of MOPEX. Point source extraction is implemented as a two step process: point source detection and profile fitting. Non-linear matched filtering of input...

344

Energy Department Authorizes Dominion's Proposed Cove Point Facility...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dominion's Proposed Cove Point Facility to Export Liquefied Natural Gas Energy Department Authorizes Dominion's Proposed Cove Point Facility to Export Liquefied Natural Gas...

345

Updated On: 11/5/2012 16:40 Teams: Broomsday points Blood Sweat & Beers points  

E-Print Network [OSTI]

- C -*Ineligible* 0 Dean Porcello - C 0 Ben Hohlfelder - *Ineligible* 0 Garrett Gustafson 0 Max Brown Broom Broo points David O'Sullivan - C 0 Beatrice van den Heuvel - C 0 Zack Shaw 0 Corey Balint 0 Nick

Sridhar, Srinivas

346

Company Website AES Corporation, The http://www.aes.com  

E-Print Network [OSTI]

Gas http://www.eqt.com/ ExxonMobil http://www.exxonmobil.com Exelon Corporation http://www.fpl.com/ #12;GE Energy http://www.ge-energy.com/about/index.jsp Gulf Oil Limited Partnership http://www.horizonengineering.com/ Indian Mills Pump & Tank Company http://www.impumptank.com Integrys Energy Group, Inc. http

McGaughey, Alan

347

Wax Point Determinations Using Acoustic Resonance Spectroscopy  

SciTech Connect (OSTI)

The thermodynamic characterization of the wax point of a given crude is essential in order to maintain flow conditions that prevent plugging of undersea pipelines. This report summarizes the efforts made towards applying an Acoustic Cavity Resonance Spectrometer (ACRS) to the determination of pressures and temperatures at which wax precipitates from crude. Phillips Petroleum Company, Inc., the CRADA participant, supplied the ACRS. The instrumentation was shipped to Dr. Thomas Schmidt of ORNL, the CRADA contractor, in May 2000 after preliminary software development performed under the guidance of Dr. Samuel Colgate and Dr. Evan House of the University of Florida, Gainesville, Fl. Upon receipt it became apparent that a number of modifications still needed to be made before the ACRS could be precisely and safely used for wax point measurements. This report reviews the sequence of alterations made to the ACRS, as well as defines the possible applications of the instrumentation once the modifications have been completed. The purpose of this Cooperative Research and Development Agreement (CRADA) between Phillips Petroleum Company, Inc. (Participant) and Lockheed Martin Energy Research Corporation (Contractor) was the measurement of the formation of solids in crude oils and petroleum products that are commonly transported through pipelines. This information is essential in the proper design, operation and maintenance of the petroleum pipeline system in the United States. Recently, new petroleum discoveries in the Gulf of Mexico have shown that there is a potential for plugging of undersea pipeline because of the precipitation of wax. It is important that the wax points of the expected crude oils be well characterized so that the production facilities for these new wells are capable of properly transporting the expected production. The goal of this work is to perform measurements of solids formation in crude oils and petroleum products supplied by the Participant. It is anticipated that these data will be used in the design of new production facilities and in the development of thermodynamic models that describe the behavior of wax-saturated petroleum.

Bostick, D.T.; Jubin, R.T.; Schmidt, T.W.

2001-06-01T23:59:59.000Z

348

Silicon point contact concentrator solar cells  

SciTech Connect (OSTI)

Experimental results are presented for thin high resistivity concentrator silicon solar cells which use a back-side point-contact geometry. Cells of 130 and 233 micron thickness were fabricated and characterized. The thin cells were found to have efficiencies greater than 22 percent for incident solar intensities of 3 to 30 W/sq cm. Efficiency peaked at 23 percent at 11 W/sq cm measured at 22-25 C. Strategies for obtaining higher efficiencies with this solar cell design are discussed. 8 references.

Sinton, R.A.; Kwark, Y.; Swirhun, S.; Swanson, R.M.

1985-08-01T23:59:59.000Z

349

Nonperturbative infrared fixed point in sextet QCD  

E-Print Network [OSTI]

The SU(3) gauge theory with fermions in the sextet representation is one of several theories of interest for technicolor models. We have carried out a Schrodinger functional (SF) calculation for the lattice theory with two flavors of Wilson fermions. We find that the discrete beta function changes sign when the SF renormalized coupling is in the neighborhood of g^2 = 2.0, showing a breakdown of the perturbative picture even though the coupling is weak. The most straightforward interpretation is an infrared-stable fixed point.

Benjamin Svetitsky; Yigal Shamir; Thomas DeGrand

2008-09-18T23:59:59.000Z

350

Benchmarks for the point kinetics equations  

SciTech Connect (OSTI)

A new numerical algorithm is presented for the solution to the point kinetics equations (PKEs), whose accurate solution has been sought for over 60 years. The method couples the simplest of finite difference methods, a backward Euler, with Richardsons extrapolation, also called an acceleration. From this coupling, a series of benchmarks have emerged. These include cases from the literature as well as several new ones. The novelty of this presentation lies in the breadth of reactivity insertions considered, covering both prescribed and feedback reactivities, and the extreme 8- to 9- digit accuracy achievable. The benchmarks presented are to provide guidance to those who wish to develop further numerical improvements. (authors)

Ganapol, B. [Department of Aerospace and Mechanical Engineering (United States); Picca, P. [Department of Systems and Industrial Engineering, University of Arizona (United States); Previti, A.; Mostacci, D. [Laboratorio di Montecuccolino Alma Mater Studiorum, Universita di Bologna (Italy)

2013-07-01T23:59:59.000Z

351

ChargePoint America | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day withCharacterizationDiesel RetrofitChargePoint

352

VPP POINTS OF CONTACT | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear Guide Remote Access08:Energy3Growth inPOINTS OF

353

Analysis of Crossover Points for MVLT Superclass  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 DocumentationAnalysis of Crossover Points for MVLT

354

PowerPoint Presentation - No Slide Title  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007Supply Chain

355

PowerPoint-Präsentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007Supply Chain1

356

PowerPoint-Präsentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point of careUpdated2007Supply Chain1Mass

357

Cedar Point Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWindSyracuse, NYCedar Creek Wind FarmPoint Wind

358

Point380 LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job Corp Jump to:PismoPlatinaSmartPrairiePoint380

359

West Point Utility System | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save EnergyGlouster,Winside,WarrenWells RuralWest Fargo,West Point

360

Tribal Points of Contacts | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe SunMelissaStation-FountainOpportunities |Points of

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Points of Pride | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design Passive SolarCenterYou are here:andPoints of Pride Of

362

AE Photonics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitec doWinvestFlumeFinal Report |ADMMicro IncPhotonics

363

AES Microplanet | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple

364

AES Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,Information Of TheFixed Logo:UseAEE Solar

365

Power Services Account Executives (AE's)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities Are youMeetingRM'sContact

366

AES Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3 EarlyRev. 8,

367

AES Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3 EarlyRev. 8,2,

368

AES Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3 EarlyRev. 8,2,1,

369

AES Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3 EarlyRev. 8,2,1,4,

370

AES Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3 EarlyRev. 8,2,1,4,3,

371

AES Exhibit A General Conditions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3 EarlyRev. 8,2,1,4,3,2,

372

AES-UES Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01) (See95TI07)Operations During the months3 EarlyRev. 8,2,1,4,3,2,

373

Proximity Graphs for Defining Surfaces over Point Clouds  

E-Print Network [OSTI]

over Point Clouds Gabriel Zachmann University of Bonn Germany Jan Klein University of Paderborn Germany

Behnke, Sven

374

Data:6b80e423-02e3-4e8f-ad3a-e43c02476c5b | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approvedea02758d3 Nob05268d8cdd50af6aae37bbaa846018 Noad3a-e43c02476c5b No

375

Data:26822b5e-f7d4-41b9-af0c-4cb3d47d9ae8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No revision has been approved for this90d4-0346e2ab598d4ea9721cb3d47d9ae8 No revision

376

Data:640bc33c-9e25-4a9b-82e5-5dc05ae1e9f9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has been approved fore6e8eee44 No revision39b59bdb28238f1ec295 No revision has been5ae1e9f9

377

Data:02c3db94-dc82-47c7-8f9d-d4c57e9fc8ae | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrowd6-a5ed76e6de80bed2-4ca0-824f-0bc1544dd749 Noc57e9fc8ae

378

Data:11f510ef-b1b7-4c94-a02a-e8a93e12e2c3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 No revision has been approved for720c8ec90dbaf6-4962-b5dd-6741a324e875a-e8a93e12e2c3 No revision

379

Data:9fbd634e-80c2-4a3a-be2a-e5a62d2dbe5a | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision hasdb5-b05c-76b1be5a4007 No revision1a933fd4d Nobe2a-e5a62d2dbe5a No

380

Data:A0f3e452-3b15-4ad8-8e5c-a300c92ae7d1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 Nod2db5b31cb44 No revision hasdb5-b05c-76b1be5a4007ad8-8e5c-a300c92ae7d1 No revision has been approved

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Data:C868ef90-5bf8-40fb-b8ae-7f58a7f4c3da | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2bb71-d4159a938742 No revision617ab3133c91 No revision has beene093200b0862cfdb-4981-b45b-97e38ae20489

382

Data:Db98df4f-f52c-4ef5-8d56-516dc5d87ae8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744 No revision hasDafcf4ac-ca67-414f-9d31-84001343bbeb No revision hasff-e7bca1230a59-8d56-516dc5d87ae8 No

383

Data:E73f30cb-e583-4ab4-9afc-e5b5ae483e73 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Pagec-01b596aa1744b55997c1cc No revision has beenace4-3e58210a501f No revision has3-1f6ec21a066a Noe5b5ae483e73 No revision has

384

Data:7d0c03e1-5aad-4f9e-8a03-10ec72d2ae94 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revision has6a0216321b Nof667a9d7d88cc1e8c1443c No revisionec72d2ae94 No revision has been approved

385

Data:8a5c9c9f-ae57-4cfc-81e8-1b0d1026b8c1 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office695810186 No revisione0a2d50bdf No18fed1db5 No revision has been approved for this page. Ite6ae42c0e1 No

386

Data:2ed1d1b3-d3a6-44db-bed3-9c5cf19ae224 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 No revision has been approved forc86b06cea No revisionbed3-9c5cf19ae224

387

Data:30a1b3cf-4186-4d5e-a71d-3b852c9ae2a2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3 Noc7e1a8ffe No869d7ced0c4 Noddb932b8a3f1 No revisiond-3b852c9ae2a2 No revision has been approved

388

Low-melting point heat transfer fluid  

DOE Patents [OSTI]

A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

Cordaro, Joseph G. (Oakland, CA); Bradshaw, Robert W. (Livermore, CA)

2011-04-12T23:59:59.000Z

389

Global integrators based on equispaced points  

E-Print Network [OSTI]

+1 ( yl) (u-xl)(u-x2)---(u-xn) and f(u)-q(u) = f (8) (nil) '. Therefore x i(u-xl)(u-x2) ---(u-x )I fj Lf(u)-q(u)] du] & fx/f (8) 0 (n&1) ? When given the ini. tial condition that y(xl) = al, a solution for some differential equations may be found...(x)f(x. ) 0 j =1 for all x when f(u) is a polynomial of degree n or less. Axelsson (1) has used the term "global integration" to describe the above process. In the cases considered here, the set of points XI& x2 xn+1 will be equispaced and the functions...

Kirker, Martha Jane

2012-06-07T23:59:59.000Z

390

Chilled Mirror Dew Point Hygrometer (CM) Handbook  

SciTech Connect (OSTI)

The CM systems have been developed for the ARM Program to act as a moisture standard traceable to National Institute of Standards and Technology (NIST). There are three CM systems that are each fully portable, self-contained, and require only 110 V AC power. The systems include a CM sensor, air sampling and filtration system, a secondary reference (Rotronic HP043 temperature and relative humidity sensor) to detect system malfunctions, a data acquisition system, and data storage for more than one month of 1-minute data. The CM sensor directly measures dew point temperature at 1 m, air temperature at 2 m, and relative humidity at 2 m. These measurements are intended to represent self-standing data streams that can be used independently or in combinations.

Ritsche, MT

2005-01-01T23:59:59.000Z

391

Critical point anomalies include expansion shock waves  

SciTech Connect (OSTI)

From first-principle fluid dynamics, complemented by a rigorous state equation accounting for critical anomalies, we discovered that expansion shock waves may occur in the vicinity of the liquid-vapor critical point in the two-phase region. Due to universality of near-critical thermodynamics, the result is valid for any common pure fluid in which molecular interactions are only short-range, namely, for so-called 3-dimensional Ising-like systems, and under the assumption of thermodynamic equilibrium. In addition to rarefaction shock waves, diverse non-classical effects are admissible, including composite compressive shock-fan-shock waves, due to the change of sign of the fundamental derivative of gasdynamics.

Nannan, N. R., E-mail: ryan.nannan@uvs.edu [Mechanical Engineering Discipline, Anton de Kom University of Suriname, Leysweg 86, PO Box 9212, Paramaribo, Suriname and Process and Energy Department, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Guardone, A., E-mail: alberto.guardone@polimi.it [Department of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156 Milano (Italy); Colonna, P., E-mail: p.colonna@tudelft.nl [Propulsion and Power, Delft University of Technology, Kluyverweg 1, 2629 HS Delft (Netherlands)

2014-02-15T23:59:59.000Z

392

Native point defects in GaSb  

SciTech Connect (OSTI)

We have applied positron annihilation spectroscopy to study native point defects in Te-doped n-type and nominally undoped p-type GaSb single crystals. The results show that the dominant vacancy defect trapping positrons in bulk GaSb is the gallium monovacancy. The temperature dependence of the average positron lifetime in both p- and n-type GaSb indicates that negative ion type defects with no associated open volume compete with the Ga vacancies. Based on comparison with theoretical predictions, these negative ions are identified as Ga antisites. The concentrations of these negatively charged defects exceed the Ga vacancy concentrations nearly by an order of magnitude. We conclude that the Ga antisite is the native defect responsible for p-type conductivity in GaSb single crystals.

Kujala, J.; Segercrantz, N.; Tuomisto, F.; Slotte, J. [Department of Applied Physics, Aalto University School of Science, P.O. Box 14100, FI-00076 AALTO (Finland)

2014-10-14T23:59:59.000Z

393

A beta-type fully implicit reservoir simulator with variable bubble point and dew point  

E-Print Network [OSTI]

the following equation. V P 5. 617 m g 2 QT 1000 (56) And the R curve can be obtained from the same constant volume Sg depletion by summing up the GPM content of the propane through hep- tanes plus fractions. The B and the R can then be calculated 0 so...A BETA-TYPE FULLY IMPLICIT RESERVOIR SIMULATOR WITH VARIABLE BUBBLE POINT AND DEW POINT A Thesis by JARLE BOE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER...

Boe, Jarle

1980-01-01T23:59:59.000Z

394

Corrective Action Decision Document/Closure Report for Corrective Action Unit 482: Area 15 U15a/e Muckpiles and Ponds Nevada Test Site  

SciTech Connect (OSTI)

This Corrective Action Decision Document /Closure Report (CADD/CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 482 U15a/e Muckpiles and Ponds. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 482 is comprised of three Corrective Action Sites (CASs) and one adjacent area: CAS 15-06-01, U15e Muckpile; CAS 15-06-02, U15a Muckpile; CAS 15-38-01, Area 15 U15a/e Ponds; and Drainage below the U15a Muckpile. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure with no further corrective action, by placing use restrictions on the three CASs and the adjacent area of CAU 482. To support this recommendation, a corrective action investigation (CAI) was performed in September 2002. The purpose of the CAI was to fulfill the following data needs as defined during the Data Quality Objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to determine appropriate corrective actions. The CAU 482 dataset from the CAI was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Tier 2 FALS were determined for the hazardous constituents of total petroleum hydrocarbons (TPH)-diesel-range organics (DRO) and the radionuclides americium (Am)-241, cesium (Cs)-137, plutonium (Pu)-238, and Pu-239. The Tier 2 FALs were calculated for the radionuclides using site-specific information. The hazardous constituents of TPH-DRO were compared to the PALs defined in the CAIP, and because none of the preliminary action levels (PALs) were exceeded, the PALs became the FALs. The radionuclide FALs were calculated using the Residual Radioactive (RESRAD) code (version 6.21). The RESRAD calculation determined the activities of all radionuclides that together would sum to an exposure dose of 25 millirem per year to a site receptor (based on their relative abundances at each CAS). Based on the field investigation, the following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) CAS 15-06-01 - None. (2) CAS 15-06-02 - Cs-137 and Pu-239. (3) CAS 15-38-01 - Am-241, Cs-137, Pu-238, and Pu-239. (4) Drainage below CAS 15-06-02 - Cs-137 and Pu-239. Based on the data and risk evaluations, the DQO data needs presented in the Corrective Action Investigation Plan were met, and the data accurately represent the radiological and chemical risk present at CAU 482. Based on the results of the CAI data evaluation, it was determined that closure in place with use restrictions is the appropriate corrective action for CAU 482 and that use restrictions will effectively control exposure to future land users. This is based on the fact that even though the FALs were exceeded in a few samples, this remote, controlled access site poses only limited risk overall to public health and the environment. Given the relatively low levels of contamination present, it would create a greater hazard to worker safety, public health, and the environment to remove the contamination, transport it, and bury it at another location. Therefore, DTRA provides the following recommendations: (1) Close COCs in place at CAS 15-06-02, CAS 15-38-01, and the drainage below CAS 15-06-02 with use restrictions. (2) No further action for CAU 482. (3) A Notice of Completion be issued to DTRA by the Nevada Division of Environmental Protection for closure of CAU 482. (4) Move CAU 482 from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

NSTec Environmental Restoration

2009-09-30T23:59:59.000Z

395

Updated On: 4/9/2014 15:43 Teams: Team Eells points Killin Em points  

E-Print Network [OSTI]

Galus - C 0 Timothy Foley 0 Matthew Marks 0 Jacob Barlow 0 Bridget Bunda 0 Kevin Zheng 0 Rachel Anderson Benjamin Dunbar 0 Dorian Kersch James Watkins 0 Richard Jones Samuel Lechter 0 Benjamin Lacy 0 Alexa Kacin Bandhi 0 Sami Berrada 0 James Tan Kevin Liu 0 Ashley Peltier 0 Andrew Yi Jack Corriveau 0 #12;points

Sridhar, Srinivas

396

Practical Point-to-Point Free-Space Quantum Key Distribution over 1/2 KM  

SciTech Connect (OSTI)

We have demonstrated point-to-point single-photon quantum key distribution (QKD) over a free-space optical path of {approximately}475 m under daylight conditions. This represents an increase of >1,000 times farther than any reported point-to-point demonstration, and >6 times farther than the previous folded path daylight demonstration. We expect to extend the daylight range to 2 km or more within the next few months. A brief description of the system is given here. The QKD transmitter, a.k.a. ''Alice'' (Fig. 1), consists of three thermoelectrically cooled diode lasers, a single interference filter (IF), two optical attenuators, two linear polarizers, two non-polarization beam-splitters (BSs), and a 27x beam expander. The two data-lasers' (dim-lasers') wavelengths are temperature controlled and constrained by the IF to {approximately}773 {+-} 0.5 nm, while the transmitted wavelength of the bright-laser (timing-laser) is {approximately}768 nm; the data-lasers are configured to emit a weak pulse of approximately 1 ns duration. The transmitter incorporates no active polarization switching--a first in QKD.

Buttler, W.T.; Hughes, R.J.; Kwiat, P.G.; Lamoreaux, S.K.; Morgan, G.L.; Peterson, C.G.

1999-02-01T23:59:59.000Z

397

Two-point derivative dispersion relations  

E-Print Network [OSTI]

A new derivation is given for the representation, under certain conditions, of the integral dispersion relations of scattering theory through local forms. The resulting expressions have been obtained through an independent procedure to construct the real part, and consist of new mathematical structures of double infinite summations of derivatives. In this new form the derivatives are calculated at the generic value of the energy $E$ and separately at the reference point $E=m$ that is the lower limit of the integration. This new form may be more interesting in certain circumstances and directly shows the origin of the difficulties in convergence that were present in the old truncated forms called standard-DDR. For all cases in which the reductions of the double to single sums were obtained in our previous work, leading to explicit demonstration of convergence, these new expressions are seen to be identical to the previous ones. We present, as a glossary, the most simplified explicit results for the DDR's in the cases of imaginary amplitudes of forms $(E/m)^\\lambda[\\ln (E/m)]^n$, that cover the cases of practical interest in particle physics phenomenology at high energies. We explicitly study the expressions for the cases with $\\lambda$ negative odd integers, that require identification of cancelation of singularities, and provide the corresponding final results.

Erasmo Ferreira; Javier Sesma

2014-03-24T23:59:59.000Z

398

Improvements in floating point addition/subtraction operations  

DOE Patents [OSTI]

Apparatus is described for decreasing the latency time associated with floating point addition and subtraction in a computer, using a novel bifurcated, pre-normalization/post-normalization approach that distinguishes between differences of floating point exponents.

Farmwald, P.M.

1984-02-24T23:59:59.000Z

399

CenterPoint Energy- Business Gas Heating Rebates  

Broader source: Energy.gov [DOE]

The CenterPoint Energy programs are available to all commercial and industrial CenterPoint Energy customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the...

400

A global maximum power point tracking DC-DC converter  

E-Print Network [OSTI]

This thesis describes the design, and validation of a maximum power point tracking DC-DC converter capable of following the true global maximum power point in the presence of other local maximum. It does this without the ...

Duncan, Joseph, 1981-

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microsoft PowerPoint - Deepwater Horizon Containment - 30 JUN...  

Broader source: Energy.gov (indexed) [DOE]

Deepwater Horizon Containment - 30 JUN.ppt Microsoft PowerPoint - Deepwater Horizon Containment - 30 JUN.ppt Microsoft PowerPoint - Deepwater Horizon Containment - 30 JUN.ppt More...

402

GPA CALCULATION GPA = QUALITY POINTS DIVIDED BY QUALITY HOURS  

E-Print Network [OSTI]

. THIS IS THE TOTAL QUALITY POINTS THAT YOU THINK YOU WILL EARN THIS SEMESTER. TO PLAY WHAT IFGPA CALCULATION WORKSHEET GPA = QUALITY POINTS DIVIDED BY QUALITY HOURS #1 QUALITY HOURS (THROUGH LAST TERM) = __________ #2 QUALITY POINTS (THROUGH LAST TERM) = __________ #3 QUALTIY HOURS CURRENTLY

Lawrence, Rick L.

403

Updated On: 8/12/2013 15:12 Teams: Safe Sets points Rigor Mortus points  

E-Print Network [OSTI]

Rebecca Leslie 0 Mary Kathleen Steiner 0 James Lawlor 0 James Truckle 0 Vincent Couming 0 #12;Brown Bears Marks 0 Cari Fraley 0 Connor Mackinson 0 Mollye Lipton 0 Lauren Lodato 0 Celia Ryan 0 Dan Reilly 0 Notorious D.I.G. points 0 Nick DePorzio - C 0 0 Mitch White 0 0 Dan Polnerow 0 0 Mohit Bhardwaj 0 0 Nir

Sridhar, Srinivas

404

Redevelopment and the Politics of Place in Bayview-Hunters Point  

E-Print Network [OSTI]

2010-2011. 2011. Hunters Point Shipyard: A ShiftingConsulting. 2010. Bayview-Hunters Point Area B Survey:2008. Candlestick Point/Hunters Point Shipyard Phase II:

Dillon, Lindsey

2011-01-01T23:59:59.000Z

405

Multi-point functions of weighted cubic maps  

E-Print Network [OSTI]

We study the geodesic two- and three-point functions of random weighted cubic maps, which are obtained by assigning random edge lengths to random cubic planar maps. Explicit expressions are obtained by taking limits of recently established bivariate multi-point functions of general planar maps. We give an alternative interpretation of the two-point function in terms of an Eden model exploration process on a random planar triangulation. Finally, the scaling limits of the multi-point functions are studied, showing in particular that the two- and three-point functions of the Brownian map are recovered as the number of faces is taken to infinity.

Jan Ambjorn; Timothy Budd

2014-08-13T23:59:59.000Z

406

Strike Point Control for the National Spherical Torus Experiment (NSTX)  

SciTech Connect (OSTI)

This paper presents the first control algorithm for the inner and outer strike point position for a Spherical Torus (ST) fusion experiment and the performance analysis of the controller. A liquid lithium divertor (LLD) will be installed on NSTX which is believed to provide better pumping than lithium coatings on carbon PFCs. The shape of the plasma dictates the pumping rate of the lithium by channeling the plasma to LLD, where strike point location is the most important shape parameter. Simulations show that the density reduction depends on the proximity of strike point to LLD. Experiments were performed to study the dynamics of the strike point, design a new controller to change the location of the strike point to desired location and stabilize it. The most effective PF coils in changing inner and outer strike points were identified using equilibrium code. The PF coil inputs were changed in a step fashion between various set points and the step response of the strike point position was obtained. From the analysis of the step responses, PID controllers for the strike points were obtained and the controller was tuned experimentally for better performance. The strike controller was extended to include the outer-strike point on the inner plate to accommodate the desired low outer-strike points for the experiment with the aim of achieving "snowflake" divertor configuration in NSTX.

Kolemen, E.; Gates, D. A.; Rowley, C. W.; Kasdin, N. J.; Kallman, J.; Gerhardt, S.; Soukhanovskii, V.; Mueller, D.

2010-07-09T23:59:59.000Z

407

Expansion schemes for gravitational clustering: computing two-point and three-point functions  

E-Print Network [OSTI]

We describe various expansion schemes that can be used to study gravitational clustering. Obtained from the equations of motion or their path-integral formulation, they provide several perturbative expansions that are organized in different fashion or involve different partial resummations. We focus on the two-point and three-point correlation functions, but these methods also apply to all higher-order correlation and response functions. We present the general formalism, which holds for the gravitational dynamics as well as for similar models, such as the Zeldovich dynamics, that obey similar hydrodynamical equations of motion with a quadratic nonlinearity. We give our explicit analytical results up to one-loop order for the simpler Zeldovich dynamics. For the gravitational dynamics, we compare our one-loop numerical results with numerical simulations. We check that the standard perturbation theory is recovered from the path integral by expanding over Feynman's diagrams. However, the latter expansion is organized in a different fashion and it contains some UV divergences that cancel out as we sum all diagrams of a given order. Resummation schemes modify the scaling of tree and one-loop diagrams, which exhibit the same scaling over the linear power spectrum (contrary to the standard expansion). However, they do not significantly improve over standard perturbation theory for the bispectrum, unless one uses accurate two-point functions (e.g. a fit to the nonlinear power spectrum from simulations). Extending the range of validity to smaller scales, to reach the range described by phenomenological models, seems to require at least two-loop diagrams.

P. Valageas

2008-10-24T23:59:59.000Z

408

Data:43e415c0-c8e8-44f1-a765-4e0fc6f54ae3 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of48d9ff47edf3a87dcc95b No revision hasaab84-009f-4fb1-b666-ed5d43c9089f Noc3-fa495c01b9ac Noe0fc6f54ae3 No

409

Data:Af79f658-88ce-4ae6-87b6-4e9e7e10b9fd | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onb5-dcc1fcffd1f2 No revision has beenb2f1-0963489fea4e Nob3f1-01f301f150f6 No revision73b3ae13d3187b6-4e9e7e10b9fd No

410

Pointing control design for autonomous space vehicle applications  

SciTech Connect (OSTI)

This paper addresses the design of pointing control systems for autonomous space vehicles. The function of the pointing control system is to keep distant orbiting objects within the field-of-view of an on-board optical sensor. We outline the development of novel nonlinear control algorithms which exploit the availability of on- board sensors. Simulation results comparing the performance of the different pointing control implementations are presented.

Young, K.D.

1993-03-01T23:59:59.000Z

411

New York Nuclear Profile - Nine Mile Point Nuclear Station  

U.S. Energy Information Administration (EIA) Indexed Site

Nine Mile Point Nuclear Station" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License...

412

Microsoft Word - EchoPointCommunityWind_CX_2012.docx  

Broader source: Energy.gov (indexed) [DOE]

metering at the Echo Point generation site. BPA will calibrate, test, and energize the meter and commission, assume ownership of, and maintain the meter and associated equipment....

413

Web points of interest - Department of Mathematics, Purdue University  

E-Print Network [OSTI]

Web points of interest ... JUGGLING CLUB; The Lafayette Citizens Band Home Page; Harold Boas' incredible list of math and life resources on the WEB.

414

Update Invalid Reservation Points for Transmission Service Requests...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CommitteesTeams Customer Training Interconnection Notices Rates Standards of Conduct Tariff TF Web Based Training Update: Invalid Reservation Points for Transmission Service...

415

adapt point lepreau: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying...

416

acupuncture points technical: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying...

417

acupuncture points: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying...

418

acceptable yield point: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying...

419

acupuncture point liv: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying...

420

antique acupuncture points: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying...

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

aerodigestives superieures point: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the penumbral features. The bright points are not uniformly distributed over the umbra but preferentially located around the penumbral boundary and in the fast decaying...

422

Computing the Nondominated Nash Points of a Normal Form Game ...  

E-Print Network [OSTI]

points and we conduct a comprehensive computational study in which we investigate the ...... Mathematical Methods of Operations Research, 52(1):6577.

2014-11-24T23:59:59.000Z

423

CenterPoint Energy- Residential Gas Heating Rebates  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers gas heating and water heating equipment rebates to its residential customers. Eligible equipment includes furnaces, back-up furnace systems, hydronic heaters, storage...

424

CenterPoint Energy (Gas)- Residential Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in eligible homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial...

425

singularities, swallowtails and dirac points. an analysis for families of ...  

E-Print Network [OSTI]

Jul 5, 2012 ... HAMILTONIANS AND APPLICATIONS TO WIRE. NETWORKS, ESPECIALLY .... wellknown Dirac points of graphene [9]. Thus it can be hoped...

2012-07-05T23:59:59.000Z

426

Inexact Proximal Point Methods for Quasiconvex Minimization on ...  

E-Print Network [OSTI]

equilibrium include computer science, telecommunications, energy markets, and ...... such that we can find a point xk where a transition from xk?1 to xk on M is...

2015-03-15T23:59:59.000Z

427

CenterPoint Energy- Commercial and Industrial Standard Offer Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy's Commercial and Industrial Standard Offer Program pays incentives to service providers who install energy efficiency measures in commercial or industrial facilities that are...

428

area telescope points: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

it to tracking imagers and the science instrument, set up the oscillating secondary mirror, and aggregate pointings into relocatable nods and dithers. Gross, Michael A K; Moore,...

429

Optimization Online - Active-set prediction for interior point methods ...  

E-Print Network [OSTI]

May 18, 2014 ... Abstract: We propose the use of controlled perturbations to address the challenging question of optimal active-set prediction for interior point...

Coralia Cartis

2014-05-18T23:59:59.000Z

430

A Note on KKT Points of Homogeneous Programs 1'  

E-Print Network [OSTI]

A Note on KKT Points of Homogeneous Programs 1'. Y. B. Zhao 2 and D. Li 3. Abstract. Homogeneous programming is an important class of optimization...

2005-07-11T23:59:59.000Z

431

Bounded limit for the Monte Carlo point-flux-estimator  

SciTech Connect (OSTI)

In a Monte Carlo random walk the kernel K(R,E) is used as an expected value estimator at every collision for the collided flux phi/sub c/ r vector,E) at the detector point. A limiting value for the kernel is derived from a diffusion approximation for the probability current at a radius R/sub 1/ from the detector point. The variance of the collided flux at the detector point is thus bounded using this asymptotic form for K(R,E). The bounded point flux estimator is derived. (WHK)

Grimesey, R.A.

1981-01-01T23:59:59.000Z

432

air conditionne point: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the air quality. Trade off between high purchase price of refrigerated air dryer versus energy savings should also be evaluated. 2. Operational issues such as set point of...

433

EA-1942: Cove Point Liquefaction Project, Lusby, Maryland | Department...  

Broader source: Energy.gov (indexed) [DOE]

to add natural gas liquefaction and exportation capabilities to an existing Cove Point LNG Terminal located on the Chesapeake Bay in Lusby, Maryland. DOE, Office of Fossil...

434

CenterPoint Energy- Residential and Small Commercial Efficiency Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy's (CNP) Residential and Small Commercial Standard Offer Program (SOP) provides incentives to encourage contractors to install energy efficiency measures in homes and small...

435

Warmstarting the Homogeneous and Self-Dual Interior Point Method ...  

E-Print Network [OSTI]

generating the hsd-model is by construction a feasible point for the problem, so ...... employed is that of computing the efficient frontier in the Markowitz portfolio.

2012-03-29T23:59:59.000Z

436

Numerical experiments with an interior-exterior point method for ...  

E-Print Network [OSTI]

The latter converges due to the information car- ried by the vector of the Lagrange multipliers y. The interior point method, which has global convergence

2004-06-30T23:59:59.000Z

437

Information Geometry and Interior-Point Algorithms in SDP and ...  

E-Print Network [OSTI]

Sep 30, 2011 ... Page 1 ... Interplay between interior-point methods and differential geometry is an interesting topic studied by several authors. It was shown in...

Satoshi Kakihara, Atsumi Ohara, Takashi Tsuchiya

2011-10-11T23:59:59.000Z

438

Extreme point inequalities and geometry of the rank sparsity ball  

E-Print Network [OSTI]

ities balancing the various features of the optimization problem at hand, at the extreme points of the solution set. Keywords Nuclear norm compressed sensing

2014-01-19T23:59:59.000Z

439

Semantic Operators and Fixed-Point Theory in Logic Programming  

E-Print Network [OSTI]

valuations to (sets of) valuations in the con- text of the semantics of logic programming lan- guages- junction with order theory, to establish methods by which one can #12;nd the #12;xed points of the op an operator F which maps valuations to (sets of) valuations and to consider its #12;xed points. The latter may

Hitzler, Pascal

440

Standard Reference Material 1751: Gallium Melting-Point Standard  

E-Print Network [OSTI]

Standard Reference Material 1751: Gallium Melting-Point Standard Gregory F. Strouse NIST Special Publication 260-157 #12;#12;NIST Special Publication 260-157 XXXX Standard Reference Material 1751: Gallium Melting-Point Standard Gregory F. Strouse Chemical Science and Technology Laboratory Process Measurements

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

AN INTERIOR-POINT METHOD FOR NONLINEAR OPTIMIZATION ...  

E-Print Network [OSTI]

as possible from the algorithmic building blocks of standard interior-point ... the computation of the maximum step length and the usage of problem-tailored ..... the algorithm avoids to cross over points at which some problem data fails ...... This compression process requires energy that is taken from the gas of the network.

2014-10-23T23:59:59.000Z

442

Evaluating Energy Efficiency of Floating Point Matrix Multiplication on FPGAs  

E-Print Network [OSTI]

Evaluating Energy Efficiency of Floating Point Matrix Multiplication on FPGAs Kiran Kumar Matam, prasanna}@usc.edu Abstract--Energy efficiency has emerged as one of the key performance metrics in scientific computing. In this work, we evaluate the energy efficiency of floating point matrix multipli

Prasanna, Viktor K.

443

New block preconditioners for saddle point problems List of authors  

E-Print Network [OSTI]

New block preconditioners for saddle point problems List of authors: Michele Benzi 1 In this talk I will describe a class of block preconditioners for linear systems in saddle point form. The main focus with respect to problem parameters will be discussed, together with the effect of inexact solves. This is joint

Boyer, Edmond

444

PROPERTIES OF RESIDUALS FOR SPATIAL POINT PROCESSES A. BADDELEY,  

E-Print Network [OSTI]

PROPERTIES OF RESIDUALS FOR SPATIAL POINT PROCESSES A. BADDELEY, University of Western Australia J. MLLER, University of Aalborg A.G. PAKES, University of Western Australia Abstract For any point process & Statistics M019, University of Western Australia, 35 Stirling Highway, Nedlands WA 6009, Australia Postal

Baddeley, Adrian

445

Blind subpixel Point Spread Function estimation from scaled image pairs  

E-Print Network [OSTI]

Blind subpixel Point Spread Function estimation from scaled image pairs Mauricio Delbracio Andr, causing aliasing effects. This work introduces a blind algorithm for the subpixel estimation of the point shows that the proposed algorithm reaches the accuracy levels of the best non- blind state

Paris-Sud XI, Universit de

446

FRONTIER ADVANCING DELAUNAY TRIANGULATION OF UNORGANIZED 3D POINTS  

E-Print Network [OSTI]

FRONTIER ADVANCING DELAUNAY TRIANGULATION OF UNORGANIZED 3D POINTS INDRIYATI ATMOSUKARTO NATIONAL Science Thesis Title: Frontier Advancing Delaunay Triangulation of Unorga- nized 3D Points. Abstract Mesh the surface shapes of the objects. This thesis describes a novel frontier advancing polygonization algorithm

Leow, Wee Kheng

447

The energy spaces of the tangent point energies  

E-Print Network [OSTI]

The energy spaces of the tangent point energies Simon Blatt August 31, 2011 In this small note, we will give a necessary and sucient condition un- der which the tangent point energies introduced by Heiko von has bounded Eq-energy if and only if it is injective and locally agrees with the graph of functions

448

Extreme-Point Stability Tests for Discrete-Time Polynomials  

E-Print Network [OSTI]

TA9 -10:40 Extreme-Point Stability Tests for Discrete-Time Polynomials F. PCrez *, C been an increasinginterest in finding extreme- point results for the study of stability of uncertain in the coefficients space where Schur stability of the extremes im- plies the stability of the entire family 12). Our

449

Distributing many points on spheres: minimal energy and designs  

E-Print Network [OSTI]

This survey discusses recent developments in the context of spherical designs and minimal energy point configurations on spheres. The recent solution of the long standing problem of the existence of spherical $t$-designs on $\\mathbb{S}^d$ with $\\mathcal{O}(t^d)$ number of points by A. Bondarenko, D. Radchenko, and M. Viazovska attracted new interest to this subject. Secondly, D. P. Hardin and E. B. Saff proved that point sets minimising the discrete Riesz energy on $\\mathbb{S}^d$ in the hypersingular case are asymptotically uniformly distributed. Both results are of great relevance to the problem of describing the quality of point distributions on $\\mathbb{S}^d$, as well as finding point sets, which exhibit good distribution behaviour with respect to various quality measures.

Johann S. Brauchart; Peter J. Grabner

2014-11-07T23:59:59.000Z

450

Local prediction of turning points of oscillating time series  

E-Print Network [OSTI]

For oscillating time series, the prediction is often focused on the turning points. In order to predict the turning point magnitudes and times it is proposed to form the state space reconstruction only from the turning points and modify the local (nearest neighbor) model accordingly. The model on turning points gives optimal prediction at a lower dimensional state space than the optimal local model applied directly on the oscillating time series and is thus computationally more efficient. Monte Carlo simulations on different oscillating nonlinear systems showed that it gives better predictions of turning points and this is confirmed also for the time series of annual sunspots and total stress in a plastic deformation experiment.

D. Kugiumtzis

2008-08-06T23:59:59.000Z

451

191Department of Computer Science Undergraduate Catalogue 201415  

E-Print Network [OSTI]

, Shady; El-Hajj, Wassim M.; Jaber, Mohamad Senior Lecturer: Jureidini, Wadi' N. Instructors: Adhami

452

131Department of Computer Science Graduate Catalogue 201415  

E-Print Network [OSTI]

, Shady; El-Hajj, Wassim M.; Jaber, Mohamad Senior Lecturer: Jureidini, Wadi' N. Instructors: Adhami

453

The slopes determined by n points in the plane  

E-Print Network [OSTI]

field k,andletG be a graph with vertices V and edges E.Apicture P of G consists of a point P(v)for each vertex and a line P(e) for each edge, subject to the condition that P(v) ? P(e) whenever v is an endpoint of e.Thusthedataofn points and parenleftbig... n 2 parenrightbig lines described earlier is a picture of the complete graph K n on n vertices. The set of all pictures of G is called the picture space X(G). A picture is generic if the points P(v) are all different; the closure of the locus...

Martin, Jeremy L.

2006-01-01T23:59:59.000Z

454

Development of a nine spatial point, multipulse Thomson scattering diagnostic  

SciTech Connect (OSTI)

A Thomson scattering diagnostic has been developed for the C-2 field-reversed configuration device. Based on a multipulse ruby laser, the system measures the electron temperature at nine spatial points. These points are chosen from 22 selectable positions covering r{approx_equal}1-41 cm. Twin collection lenses couple the scattered photons to nine optical fiber pairs. Extra fiber lengths delay the signals from different spatial points relative to each other, allowing up to three points to be analyzed by a single polychromator. The polychromator, using compact photomultipliers as detectors, has six spectral channels covering the range of 685-725 nm and is able to estimate electron temperatures of {approx_equal}10-200 eV. The photomultiplier output signals are recorded by digital storage oscilloscopes integrated with the main MDSplus database, with temperature and error estimates generated automatically at the conclusion of each plasma discharge.

Glass, F.; Deng, B. H.; Garate, E.; Gornostaeva, O.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

2010-10-15T23:59:59.000Z

455

EIS-0349: Cherry Point Co-generation Project  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to support BP West Coast Products, LLC proposal to construct and operate a 720-megawatt, natural-gas-fired, combined-cycle cogeneration facility on land adjacent to its BP Cherry Point Refinery.

456

CenterPoint Energy (Gas)- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers residential high-efficiency heating system and water heater rebates to Minnesota customers. These systems can greatly enhance savings and performance in residences which...

457

Coarser connected topologies and non-normality points  

E-Print Network [OSTI]

We investigate two topics, coarser connected topologies and non-normality points. The motivating question in the first topic is: When does a space have a coarser connected topology with a nice topological property? We will ...

Yengulalp, Lynne Christine

2009-01-01T23:59:59.000Z

458

Microsoft PowerPoint - Upcoming NMMSS Training 2014 and 2015...  

National Nuclear Security Administration (NNSA)

I Germantown, MD December 2-4, 2014 NRC - NMMSS I* Germantown, MD *The NRC-NMMSS I training now includes a model on reconciliation Training Point of Contact: John Ballard,...

459

Experimental bond critical point and local energy density properties...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mn-O, Fe-O and Co-O bonded interactions for Abstract: Bond critical point, bcp, and local energy density properties for the electron density, ED, distributions, calculated with...

460

Active-set prediction for interior point methods  

E-Print Network [OSTI]

This research studies how to efficiently predict optimal active constraints of an inequality constrained optimization problem, in the context of Interior Point Methods (IPMs). We propose a framework based on shifting/perturbing ...

Yan, Yiming

2015-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CenterPoint Energy- SCORE and CitySmart Program  

Broader source: Energy.gov [DOE]

The SCORE Program is a market transformation program offered to K-12 school districts and higher education customers in the CenterPoint Energy, Inc. electric distribution service territory. The...

462

ON POINTED ENRICHMENTS AND ILLEGAL COMPOSITIONS MARK W. JOHNSON  

E-Print Network [OSTI]

ON POINTED ENRICHMENTS AND ILLEGAL COMPOSITIONS MARK W. JOHNSON Abstract. This note gives a brief consisting of both basepoints as the basepoint. However, the Date: April 1, 2003. 1 #12; 2 M. W. JOHNSON

Atkinson, Katie

463

Fast Change Point Detection for Electricity Market Analysis  

SciTech Connect (OSTI)

Electricity is a vital part of our daily life; therefore it is important to avoid irregularities such as the California Electricity Crisis of 2000 and 2001. In this work, we seek to predict anomalies using advanced machine learning algorithms. These algorithms are effective, but computationally expensive, especially if we plan to apply them on hourly electricity market data covering a number of years. To address this challenge, we significantly accelerate the computation of the Gaussian Process (GP) for time series data. In the context of a Change Point Detection (CPD) algorithm, we reduce its computational complexity from O($n^{5}$) to O($n^{2}$). Our efficient algorithm makes it possible to compute the Change Points using the hourly price data from the California Electricity Crisis. By comparing the detected Change Points with known events, we show that the Change Point Detection algorithm is indeed effective in detecting signals preceding major events.

UC Berkeley; Gu, William; Choi, Jaesik; Gu, Ming; Simon, Horst; Wu, Kesheng

2013-08-25T23:59:59.000Z

464

A Behavioral Analysis of Clovis Point Morphology Using Geometric Morphometrics  

E-Print Network [OSTI]

variability in 123 fluted projectile points from 23 archaeological sites in North America which met criteria meant to control for security of context in the archaeological record. Principle components describing the shape-variability inherent in this data...

Smith, Heather Lynn

2012-02-14T23:59:59.000Z

465

Rapid location of mount points JONATHAN M. SMITH  

E-Print Network [OSTI]

­­ ­­ Rapid location of mount points JONATHAN M. SMITH Computer Science Department, Columbia ``core'' is ``/u2/smith/core''. The current directory is a directory­valued variable. It is an implied

466

Nano Lect 1 Questions and Keypoints Key Points  

E-Print Network [OSTI]

Nano Lect 1 ­ Questions and Keypoints Key Points 1. What is nano technology: a. Very small technology with device in the 1nm to 100nm lots of useful properties Questions 1. Define nanotechnology. Is an nano

Smy, Tom

467

CenterPoint Energy (Gas)- Commercial Efficiency Rebates (Oklahoma)  

Broader source: Energy.gov [DOE]

To encourage customers to install high-efficiency natural gas equipment in their homes and businesses, CenterPoint Energy offers new construction and retrofit residential and commercial customers...

468

CenterPoint Energy (Gas)- Commercial Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

CenterPoint Energy offers rebates on a variety of energy efficient equipment to its business customers in Minnesota. This includes boilers, furnaces, tune-ups, system controls, infrared heaters,...

469

apache point observatory: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sky observatory's largest telescope is the versatile ARC 3.5-m, which Telescope, Dan LongAPO APOLLO and 3.5-m Observations One synoptic study is the APOLLO (Apache PointApache...

470

An Efficient Interior-Point Method for Convex Multicriteria ...  

E-Print Network [OSTI]

are recycling or reusing only the starting point to solve two different ... It will now be shown that we can recycle additional steps of the main stage, and how the.

2004-02-25T23:59:59.000Z

471

Mouse Pointing Endpoint Prediction Using Kinematic Template Matching  

E-Print Network [OSTI]

Mouse Pointing Endpoint Prediction Using Kinematic Template Matching Phillip T. Pasqual and Jacob O and that copies bear this notice and the full citation on the first page. Copyrights for components of this work

Wobbrock, Jacob O.

472

2011 Radioactive Materials Usage Survey for Unmonitored Point Sources  

SciTech Connect (OSTI)

This report provides the results of the 2011 Radioactive Materials Usage Survey for Unmonitored Point Sources (RMUS), which was updated by the Environmental Protection (ENV) Division's Environmental Stewardship (ES) at Los Alamos National Laboratory (LANL). ES classifies LANL emission sources into one of four Tiers, based on the potential effective dose equivalent (PEDE) calculated for each point source. Detailed descriptions of these tiers are provided in Section 3. The usage survey is conducted annually; in odd-numbered years the survey addresses all monitored and unmonitored point sources and in even-numbered years it addresses all Tier III and various selected other sources. This graded approach was designed to ensure that the appropriate emphasis is placed on point sources that have higher potential emissions to the environment. For calendar year (CY) 2011, ES has divided the usage survey into two distinct reports, one covering the monitored point sources (to be completed later this year) and this report covering all unmonitored point sources. This usage survey includes the following release points: (1) all unmonitored sources identified in the 2010 usage survey, (2) any new release points identified through the new project review (NPR) process, and (3) other release points as designated by the Rad-NESHAP Team Leader. Data for all unmonitored point sources at LANL is stored in the survey files at ES. LANL uses this survey data to help demonstrate compliance with Clean Air Act radioactive air emissions regulations (40 CFR 61, Subpart H). The remainder of this introduction provides a brief description of the information contained in each section. Section 2 of this report describes the methods that were employed for gathering usage survey data and for calculating usage, emissions, and dose for these point sources. It also references the appropriate ES procedures for further information. Section 3 describes the RMUS and explains how the survey results are organized. The RMUS Interview Form with the attached RMUS Process Form(s) provides the radioactive materials survey data by technical area (TA) and building number. The survey data for each release point includes information such as: exhaust stack identification number, room number, radioactive material source type (i.e., potential source or future potential source of air emissions), radionuclide, usage (in curies) and usage basis, physical state (gas, liquid, particulate, solid, or custom), release fraction (from Appendix D to 40 CFR 61, Subpart H), and process descriptions. In addition, the interview form also calculates emissions (in curies), lists mrem/Ci factors, calculates PEDEs, and states the location of the critical receptor for that release point. [The critical receptor is the maximum exposed off-site member of the public, specific to each individual facility.] Each of these data fields is described in this section. The Tier classification of release points, which was first introduced with the 1999 usage survey, is also described in detail in this section. Section 4 includes a brief discussion of the dose estimate methodology, and includes a discussion of several release points of particular interest in the CY 2011 usage survey report. It also includes a table of the calculated PEDEs for each release point at its critical receptor. Section 5 describes ES's approach to Quality Assurance (QA) for the usage survey. Satisfactory completion of the survey requires that team members responsible for Rad-NESHAP (National Emissions Standard for Hazardous Air Pollutants) compliance accurately collect and process several types of information, including radioactive materials usage data, process information, and supporting information. They must also perform and document the QA reviews outlined in Section 5.2.6 (Process Verification and Peer Review) of ES-RN, 'Quality Assurance Project Plan for the Rad-NESHAP Compliance Project' to verify that all information is complete and correct.

Sturgeon, Richard W. [Los Alamos National Laboratory

2012-06-27T23:59:59.000Z

473

Special points of inter-National Wetlands In-  

E-Print Network [OSTI]

Special points of inter- est National Wetlands In- daba 2011 18 to 21 October 2011 Didima Resort & Confer- ence Centre Central Drakensberg, KwaZulu-Natal, South Africa www.wetlands.za.net/indaba Welcome

Wagner, Stephan

474

A Naturally Arising Self-Correcting Point Process  

E-Print Network [OSTI]

a result on thinned point processes. Ann. Probab. 4, 89-90.parameters of a counting process. Proc. 45th Session Int.sities for sampled counting processes. J. Royal Stat. Soc. B

Frederic Schoenberg

2011-01-01T23:59:59.000Z

475

Radar antenna pointing for optimized signal to noise ratio.  

SciTech Connect (OSTI)

The Signal-to-Noise Ratio (SNR) of a radar echo signal will vary across a range swath, due to spherical wavefront spreading, atmospheric attenuation, and antenna beam illumination. The antenna beam illumination will depend on antenna pointing. Calculations of geometry are complicated by the curved earth, and atmospheric refraction. This report investigates optimizing antenna pointing to maximize the minimum SNR across the range swath.

Doerry, Armin Walter; Marquette, Brandeis [General Atomics Aeronautical Systems, Inc., San Diego, CA

2013-01-01T23:59:59.000Z

476

On the Solutions of Einstein Equations with Massive Point Source  

E-Print Network [OSTI]

We show that Einstein equations are compatible with the presence of massive point particles and find corresponding two parameter family of their solutions which depends on the bare mechanical mass $M_0>0$ and the Keplerian mass $Mpoint source of gravity. The global analytical properties of these solutions in the complex plane define a unique preferable radial variable of the problem.

P. P. Fiziev

2004-12-30T23:59:59.000Z

477

Seven-point finite difference simulation of waterfloods  

E-Print Network [OSTI]

SEVEN-POINT FINITE DIFFERENCE SIMULATION OF WATERFLOODS A Thesis by STEVEN ANTHONY WONG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degr ee of MASTER OF SCIENCE December 1985... Major Subject: Petr oleum Engineer ing SEVEN-POINT FINITE DIFFERENCE SIHULATION OF WATERFLOODS A Thesis by STEVEN ANTHONY WONG Approved as to style and content by: hing H. Wu (Chairman of Committee) Richard A. Startzman (member) David D. Van...

Wong, Steven Anthony

1985-01-01T23:59:59.000Z

478

Salmonella detection and critical control point determination during poultry processing  

E-Print Network [OSTI]

SALMONELLA DETECTION AND CRITICAL CONTROL POINT DETERMINATION DURING POULTRY PROCESSING A Thesis by SUZANNE D. Y O U N G Submitted to the Office of Graduate Studies of Texas A & M University in partial fulfillment of the requirements... for the degree of M A S T E R OF SCIENCE May 2000 Major Subject: Poultry Science SALMONELLA DETECTION AND CRITICAL CONTROL POINT DETERMINATION DURING POULTRY PROCESSING A Thesis by SUZANNE D. Y O U N G Submitted to the Office of Graduate Studies...

Young, Suzanne D.

2000-01-01T23:59:59.000Z

479

Complex saddle points in QCD at finite temperature and density  

E-Print Network [OSTI]

The sign problem in QCD at finite temperature and density leads naturally to the consideration of complex saddle points of the action or effective action. The global symmetry $\\mathcal{CK}$ of the finite-density action, where $\\mathcal{C}$ is charge conjugation and $\\mathcal{K}$ is complex conjugation, constrains the eigenvalues of the Polyakov loop operator $P$ at a saddle point in such a way that the action is real at a saddle point, and net color charge is zero. The values of $Tr_{F}P$ and $Tr_{F}P^{\\dagger}$ at the saddle point, are real but not identical, indicating the different free energy cost associated with inserting a heavy quark versus an antiquark into the system. At such complex saddle points, the mass matrix associated with Polyakov loops may have complex eigenvalues, reflecting oscillatory behavior in color-charge densities. We illustrate these properties with a simple model which includes the one-loop contribution of gluons and massless quarks moving in a constant Polyakov loop background. Confinement-deconfinement effects are modeled phenomenologically via an added potential term depending on the Polyakov loop eigenvalues. For sufficiently large $T$ and $\\mu$, the results obtained reduce to those of perturbation theory at the complex saddle point. These results may be experimentally relevant for the CBM experiment at FAIR.

Hiromichi Nishimura; Michael C. Ogilvie; Kamal Pangeni

2014-08-12T23:59:59.000Z

480

Stray thermal influences in zinc fixed-point cells  

SciTech Connect (OSTI)

The influence of thermal effects is a major uncertainty contribution to the calibration of Standard Platinum Resistance Thermometers (SPRTs) in fixed-point cells. Axial heat losses strongly depend on the fixed-point temperature, constructional details of cells and SPRTs and the resulting heat transfer between cell, thermometer, furnace and environment. At the zinc point contributions by heat conduction and thermal radiation must be considered. Although the measurement of temperature gradients in the re-entrant well of a fixed-point cell provides very important information about the influence of axial heat losses, further investigations are required for a reliable estimate of the resulting uncertainty contribution. It is shown that specific modifications of a zinc fixed-point cell, following generally accepted principles, may result in systematic deviations of the measured fixed-point temperatures larger than typically stated in the uncertainty budget of National Metrology Institutes (NMIs). The underlying heat transport processes are investigated and the consequences for the construction of zinc cells are discussed.

Rudtsch, S.; Aulich, A.; Monte, C. [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)] [Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin (Germany)

2013-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "aes shady point" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Optical lattices with exceptional points in the continuum  

E-Print Network [OSTI]

The spectral, dynamical and topological properties of physical systems described by non-Hermitian (including $\\mathcal{PT}$-symmetric) Hamiltonians are deeply modified by the appearance of exceptional points and spectral singularities. Here we show that exceptional points in the continuum can arise in non-Hermitian (yet admitting and entirely real-valued energy spectrum) optical lattices with engineered defects. At an exceptional point, the lattice sustains a bound state with an energy embedded in the spectrum of scattered states, similar to the von-Neumann Wigner bound states in the continuum of Hermitian lattices. However, the dynamical and scattering properties of the bound state at an exceptional point are deeply different from those of ordinary von-Neumann Wigner bound states in an Hermitian system. In particular, the bound state in the continuum at an exceptional point is an unstable state that can secularly grow by an infinitesimal perturbation. Such properties are discussed in details for transport of discretized light in a $\\mathcal{PT}$-symmetric array of coupled optical waveguides, which could provide an experimentally accessible system to observe exceptional points in the continuum.

S. Longhi; G. Della Valle

2014-05-30T23:59:59.000Z

482

Uncertainty Measurement for Trace Element Analysis of Uranium and Plutonium Samples by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)  

SciTech Connect (OSTI)

The measurement uncertainty estimatino associated with trace element analysis of impurities in U and Pu was evaluated using the Guide to the Expression of Uncertainty Measurement (GUM). I this evalution the uncertainty sources were identified and standard uncertainties for the components were categorized as either Type A or B. The combined standard uncertainty was calculated and a coverage factor k = 2 was applied to obtain the expanded uncertainty, U. The ICP-AES and ICP-MS methods used were deveoped for the multi-element analysis of U and Pu samples. A typical analytical run consists of standards, process blanks, samples, matrix spiked samples, post digestion spiked samples and independent calibration verification standards. The uncertainty estimation was performed on U and Pu samples that have been analyzed previously as part of the U and Pu Sample Exchange Programs. Control chart results and data from the U and Pu metal exchange programs were combined with the GUM into a concentration dependent estimate of the expanded uncertainty. Comparison of trace element uncertainties obtained using this model was compared to those obtained for trace element results as part of the Exchange programs. This process was completed for all trace elements that were determined to be above the detection limit for the U and Pu samples.

Gallimore, David L. [Los Alamos National Laboratory

2012-06-13T23:59:59.000Z

483

MHD Wave Propagation in the Neighbourhood of Two Null Points  

E-Print Network [OSTI]

The nature of fast magnetoacoustic and Alfv\\'en waves is investigated in a zero $\\beta$ plasma in the neighbourhood of a pair of two-dimensional null points. This gives an indication of wave propagation in the low $\\beta$ solar corona, for a more complicated magnetic configuration than that looked at by McLaughlin & Hood (2004). It is found that the fast wave is attracted to the null points and that the front of the wave slows down as it approaches the null point pair, with the wave splitting and part of the wave accumulating at one null and the rest at the other. Current density will then accumulate at these points and ohmic dissipation will then extract the energy in the wave at these points. This suggests locations where wave heating will occur in the corona. The Alfv\\'en wave behaves in a different manner in that the wave accumulates along the separatrices. Hence, the current density will accumulate at this part of the topology and this is where wave heating will occur. However, the phenomenon of wave accumulation at a specific place is a feature of both wave types, and illustrates the importance of studying the topology of the corona when considering MHD wave propagation.

J. A. McLaughlin; A. W. Hood

2007-12-11T23:59:59.000Z

484

Harmonic inversion analysis of exceptional points in resonance spectra  

E-Print Network [OSTI]

The spectra of, e.g. open quantum systems are typically given as the superposition of resonances with a Lorentzian line shape, where each resonance is related to a simple pole in the complex energy domain. However, at exceptional points two or more resonances are degenerate and the resulting non-Lorentzian line shapes are related to higher order poles in the complex energy domain. In the Fourier-transform time domain an $n$-th order exceptional point is characterised by a non-exponentially decaying time signal given as the product of an exponential function and a polynomial of degree $n-1$. The complex positions and amplitudes of the non-degenerate resonances can be determined with high accuracy by application of the nonlinear harmonic inversion method to the real-valued resonance spectra. We extend the harmonic inversion method to include the analysis of exceptional points. The technique yields, in the energy domain, the amplitudes of the higher order poles contributing to the spectra, and, in the time domain, the coefficients of the polynomial characterising the non-exponential decay of the time signal. The extended harmonic inversion method is demonstrated on two examples, viz. the analysis of exceptional points in resonance spectra of the hydrogen atom in crossed magnetic and electric fields, and an exceptional point occurring in the dynamics of a single particle in a time-dependent harmonic trap.

Jacob Fuchs; Jrg Main; Holger Cartarius; Gnter Wunner

2014-02-17T23:59:59.000Z

485

Methods for point source analysis in high energy neutrino telescopes  

E-Print Network [OSTI]

Neutrino telescopes are moving steadily toward the goal of detecting astrophysical neutrinos from the most powerful galactic and extragalactic sources. Here we describe analysis methods to search for high energy point-like neutrino sources using detectors deep in the ice or sea. We simulate an ideal cubic kilometer detector based on real world performance of existing detectors such as AMANDA, IceCube, and ANTARES. An unbinned likelihood ratio method is applied, making use of the point spread function and energy distribution of simulated neutrino signal events to separate them from the background of atmospheric neutrinos produced by cosmic ray showers. The unbinned point source analyses are shown to perform better than binned searches and, depending on the source spectral index, the use of energy information is shown to improve discovery potential by almost a factor of two.

Jim Braun; Jon Dumm; Francesco De Palma; Chad Finley; Albrecht Karle; Teresa Montaruli

2008-01-10T23:59:59.000Z

486

Engineering to Control Noise, Loading, and Optimal Operating Points  

SciTech Connect (OSTI)

Successful engineering of low-energy nuclear systems requires control of noise, loading, and optimum operating point (OOP) manifolds. The latter result from the biphasic system response of low-energy nuclear reaction (LENR)/cold fusion systems, and their ash production rate, to input electrical power. Knowledge of the optimal operating point manifold can improve the reproducibility and efficacy of these systems in several ways. Improved control of noise, loading, and peak production rates is available through the study, and use, of OOP manifolds. Engineering of systems toward the OOP-manifold drive-point peak may, with inclusion of geometric factors, permit more accurate uniform determinations of the calibrated activity of these materials/systems.

Mitchell R. Swartz

2000-11-12T23:59:59.000Z

487

Measurement of thermodynamic temperature of high temperature fixed points  

SciTech Connect (OSTI)

The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I. [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)] [All-Russian Research Institute for Optical and Physical Measurements (VNIIOFI), 46 Ozernaya St., Moscow 119361 (Russian Federation)

2013-09-11T23:59:59.000Z

488

Black Holes and Universality Classes of Critical Points  

SciTech Connect (OSTI)

We argue that there exists an infinite class of conformal field theories in diverse dimensions having a universal ratio of the central charge c to the normalized entropy density c-tilde. The universality class includes all conformal theories which possess a classical gravity dual according to the AdS/CFT correspondence. From the practical point of view, the universality of c/c-tilde provides an explicit test which can be applied to determine whether a given critical point may admit a dual description in terms of classical gravity.

Kovtun, Pavel; Ritz, Adam [Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2 (Canada)

2008-05-02T23:59:59.000Z

489

Computing Three-Point Functions for Short Operators  

E-Print Network [OSTI]

We compute the three-point structure constants for short primary operators of N=4 super Yang-Mills theory to leading order in the inverse coupling by mapping the problem to a flat-space string theory calculation. We check the validity of our procedure by comparing to known results for three chiral primaries. We then compute the three-point functions for any combination of chiral and non-chiral primaries, with the non-chiral primaries all dual to string states at the first massive level. Along the way we find many cancellations that leave us with simple expressions, suggesting that integrability is playing an important role.

Till Bargheer; Joseph A. Minahan; Raul Pereira

2014-04-14T23:59:59.000Z

490

File:Microsoft PowerPoint - FINAL How to capture data from Wind For Schools  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSanEnergy0).pdfLongValley Regional.pdf JumpCAES energy

491

Type-Based Termination, Inflationary Fixed-Points, and  

E-Print Network [OSTI]

Type-Based Termination, Inflationary Fixed-Points, and Mixed Inductive-Coinductive Types Andreas Science (FICS 2012) ETAPS 2012, Tallinn, Estonia 24 March 2012 Andreas Abel (LMU) Type-Based Termination AIM XV 1 / 1 #12;Introduction Aspects of Termination What the talk is about: foundational approach

Abel, Andreas

492

AN ANALYSIS OF FORECAST BASED REORDER POINT POLICIES : THE BENEFIT  

E-Print Network [OSTI]

AN ANALYSIS OF FORECAST BASED REORDER POINT POLICIES : THE BENEFIT OF USING FORECASTS Mohamed Zied Ch^atenay-Malabry Cedex, France Abstract: In this paper, we analyze forecast based inventory control policies for a non-stationary demand. We assume that forecasts and the associated uncertainties are given

Paris-Sud XI, Université de

493

CenterPoint The Center for Academic Enrichment & Outreach Newsletter  

E-Print Network [OSTI]

CenterPoint April 2011 The Center for Academic Enrichment & Outreach Newsletter ONLINE ARTICLES's Center for Academic Enrichment and Outreach (The Center) and funded by competitive grants from the U Ayim, Upward Bound Academic Counselor CAEO UNLV and UNR Upward Bound seniors and staff meet

Hemmers, Oliver

494

CenterPoint The Center for Academic Enrichment & Outreach Newsletter  

E-Print Network [OSTI]

CenterPoint July 2010 The Center for Academic Enrichment & Outreach Newsletter ONLINE ARTICLES Students' Encountered While in Washington D.C. By Dr. Emmanuel Ayim, Upward Bound Academic Counselor #12 disadvantaged backgrounds and have demonstrated strong academic potential. Program staff members work closely

Hemmers, Oliver

495

CenterPoint The Center for Academic Enrichment & Outreach Newsletter  

E-Print Network [OSTI]

CenterPoint March 2010 The Center for Academic Enrichment & Outreach Newsletter ONLINE ARTICLES and outreach and the executive director for The Center for Academic Enrichment and Outreach (The Center-generation college students, and individuals with disabilities to progress through the academic pipeline from middle

Hemmers, Oliver

496

Single-and Multi-Point Aerodynamic Shape Optimization  

E-Print Network [OSTI]

Single- and Multi-Point Aerodynamic Shape Optimization Using A Parallel Newton-Krylov Approach, Ontario, M3H 5T6, Canada A Newton-Krylov algorithm for aerodynamic shape optimization in three dimensions the capabilities and efficiency of the approach. I. Introduction In the aerodynamic design of aircraft, there have

Zingg, David W.

497

Progress and prospects for an FI relevant point design  

SciTech Connect (OSTI)

The physics issues involved in scaling from sub ignition to high gain fast ignition are discussed. Successful point designs must collimate the electrons and minimize the stand off distance to avoid multi mega-joule ignition energies. Collimating B field configurations are identified and some initial designs are explored.

Key, M; Amendt, P; Bellei, C; Clark, D; Cohen, B; Divol, L; Ho, D; Kemp, A; Larson, D; Marinak, M; Patel, P; Shay, H; Strozzi, D; Tabak, M

2011-11-02T23:59:59.000Z

498

Measuring Point Defect Density in Individual Carbon Nanotubes Using  

E-Print Network [OSTI]

based on defec- tive nanotubes also show improved sensitivity.7 Recently, high-energy electron and ionMeasuring Point Defect Density in Individual Carbon Nanotubes Using Polarization-Dependent X in carbon nanotubes (CNTs) dramatically alter their physical, mechani- cal, and electronic properties.1

Hitchcock, Adam P.

499

Gabor-based Feature Point Tracking with Automatically Learned Constraints  

E-Print Network [OSTI]

. W¨urtz2 , and Christoph von der Malsburg2,3 1 SIEMENS AG, CT SE 1, Otto-Hahn-Ring 6, D-81730 M¨unchen jan.wieghardt@mchp.siemens.de 2 Institut f¨ur Neuroinformatik, Ruhr-Universit¨at Bochum, D-44780 explicit user interaction. To this end typical transformations of point groups are learned from noisy

Würtz, Rolf P.

500

HealthPoint Employee Assistance Program Client Information  

E-Print Network [OSTI]

EID Date of birth (MM/DD/YYYY) Gender Male Female Home phone Work phone Cell phone E-mail Preferred methods to contact you Work phone Home phone Cell phone E-mail Ethnicity (optional) - check all that apply time. HealthPoint EAP Mail Code A9200 101 E. 27th Street, STOP A9200 Austin, TX 78712-1540 phone 512

Yang, Zong-Liang