Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Matt Rogers on AES Energy Storage  

SciTech Connect

The Department of Energy and AES Energy Storage recently agreed to a $17.1M conditional loan guarantee commitment. This project will develop the first battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission network. Matt Rogers is the Senior Advisor to the Secretary for Recovery Act Implementation.

Rogers, Matt

2010-01-01T23:59:59.000Z

2

AES Corporation | Open Energy Information  

Open Energy Info (EERE)

AES Corporation AES Corporation Jump to: navigation, search Name AES Corporation Place Arlington, Virginia Zip 22203 Sector Biomass, Carbon, Solar, Wind energy Product Virginia-based company that generates and distributes electrical power. The company has investments in various wind, biomass, carbon offset, solar and power storage projects. Coordinates 43.337585°, -89.379449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.337585,"lon":-89.379449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

3

AE Polysilicon Corporation AE | Open Energy Information  

Open Energy Info (EERE)

Polysilicon Corporation AE Polysilicon Corporation AE Jump to: navigation, search Name AE Polysilicon Corporation (AE) Place Chatham, New Jersey Zip 7928 Sector Solar Product New Jersey-based polysilicon manufacturer for solar and semiconductor sectors. Coordinates 36.825445°, -79.398279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.825445,"lon":-79.398279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

4

AE Photonics | Open Energy Information  

Open Energy Info (EERE)

Photonics Jump to: navigation, search Name: AE Photonics Place: Germany Product: Germany-based PV system and component supplier References: AE Photonics1 This article is a stub....

5

AES Eastern Energy LP | Open Energy Information  

Open Energy Info (EERE)

Eastern Energy LP Eastern Energy LP Jump to: navigation, search Name AES Eastern Energy LP Place New York Utility Id 134 Utility Location Yes Ownership W NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=AES_Eastern_Energy_LP&oldid=408926" Categories:

6

Energy Storage  

SciTech Connect

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

7

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

8

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

9

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

10

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

11

New York's Energy Storage System Gets Recharged | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York's Energy Storage System Gets Recharged York's Energy Storage System Gets Recharged New York's Energy Storage System Gets Recharged August 2, 2010 - 1:18pm Addthis Matt Rogers, Senior Advisor to Secretary Chu, explain why grid frequency regulation matters Jonathan Silver Jonathan Silver Executive Director of the Loan Programs Office What does this mean for me? AES Storage in New York got a $17.1M conditional loan guarantee to provide a more stable transmission grid. When thinking of clean technologies, energy storage might not be the first thing to come to mind, but with a $17.1 million conditional commitment for a loan guarantee from the Department of Energy AES Energy Storage will develop a battery-based energy storage system to provide a more stable and efficient electrical grid for New York State's high-voltage transmission

12

Spanish Hydrogen Association AeH | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Association AeH Hydrogen Association AeH Jump to: navigation, search Name Spanish Hydrogen Association (AeH) Place Madrid, Spain Zip 28760 Sector Hydro, Hydrogen Product Spanish conference organiser and industry association for the hydrogen and fuel cell sectors. References Spanish Hydrogen Association (AeH)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Spanish Hydrogen Association (AeH) is a company located in Madrid, Spain . References ↑ "Spanish Hydrogen Association (AeH)" Retrieved from "http://en.openei.org/w/index.php?title=Spanish_Hydrogen_Association_AeH&oldid=351599" Categories: Clean Energy Organizations Companies Organizations Stubs What links here

13

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

14

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

15

Seasonal thermal energy storage  

SciTech Connect

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

16

SunErgy AE | Open Energy Information  

Open Energy Info (EERE)

SunErgy AE SunErgy AE Jump to: navigation, search Name SunErgy AE Place Thessaloniki, Greece Zip 55133 Product Sunergy AE develops and manufactures installations for PV projects in Greece. References SunErgy AE[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SunErgy AE is a company located in Thessaloniki, Greece . http://www.rtl-hessen.de/videos.php?video=7202&kategorie=25 http://www.giessener-allgemeine.de/Home/Stadt/Uebersicht/Artikel,-Schimmel-in-den-Gemeinschaftswaschraeumen-_Schimmel-in-den-Gemeinschaftswaschraeumen-,_arid,128431_regid,1_puid,1_pageid,113.html The college dormitory A.n.n.e.r.ö.d.e.r W.e.g 58 is a financial source for the following project of Amang Aziz: http://www.sunergyweb.eu

17

Guohua AES Huanghua Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Huanghua Wind Power Co Ltd Huanghua Wind Power Co Ltd Jump to: navigation, search Name Guohua AES (Huanghua) Wind Power Co Ltd Place Huanghua, Hebei Province, China Sector Wind energy Product The developer of the 1GW Huanghua Wind Farm in Hebei Province in China. It is a joint venture of Guohua Energy Investment and AES. References Guohua AES (Huanghua) Wind Power Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Guohua AES (Huanghua) Wind Power Co Ltd is a company located in Huanghua, Hebei Province, China . References ↑ "Guohua AES (Huanghua) Wind Power Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Guohua_AES_Huanghua_Wind_Power_Co_Ltd&oldid=34630

18

Energy Storage | Department of Energy  

Energy Savers (EERE)

Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over...

19

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

20

Energy Storage  

Science Journals Connector (OSTI)

Any energy system includes at least two essential entities, namely, energy generators and energy consumers. Each of these elements has its associated characteristics, and it is not necessary that at all times ...

?brahim Diner; Calin Zamfirescu

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

22

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

23

NREL: Energy Storage - Energy Storage Thermal Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

24

NREL: Energy Storage - Energy Storage Systems Evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

25

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Payko; S. Kaka

1987-01-01T23:59:59.000Z

26

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

27

AES Mendota Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Mendota Biomass Facility Mendota Biomass Facility Jump to: navigation, search Name AES Mendota Biomass Facility Facility AES Mendota Sector Biomass Location Fresno County, California Coordinates 36.9858984°, -119.2320784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.9858984,"lon":-119.2320784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

29

Thermochemical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE))

This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013.

30

Energy Storage Systems  

SciTech Connect

Energy Storage Systems An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

31

STATEMENT OF CONSIDERATIONS REQUEST BY AE SOLAR ENERGY INC. ("AE SOLAR") FOR AN ADVANCE WAIVER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AE SOLAR ENERGY INC. ("AE SOLAR") FOR AN ADVANCE WAIVER AE SOLAR ENERGY INC. ("AE SOLAR") FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE AWARD NO . DE- EE0005340; W(A) 20 12-009 AE SOLAR has requested a waiver of domestic and foreign patent rights of the United States of America in all subject inventions arising from its participation under the above referenced cooperative agreement entitled "Transforming PV Installations Toward Dispatchable, Schedulable Energy Solutions." The cooperative agreement was made under the Solar Energy Grid Integration Systems - Advanced Concepts (SEGIS-AC) Funding Opportunity Announcement (DE-FOA-0000479). The objectives of SEGIS-AC are to support the development and demonstration of technologies in power electronics that reduce the overall PV system costs, allow high penetrations of solar

32

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

33

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

34

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

35

Energy Storage | Open Energy Information  

Open Energy Info (EERE)

Storage Storage Jump to: navigation, search TODO: Source information Contents 1 Introduction 2 Benefits 3 Technologies 4 References Introduction Energy storage is a tool that can be used by grid operators to help regulate the electrical grid and help meet demand. In its most basic form, energy storage "stores" excess energy that would otherwise be wasted so that it can be used later when demand is higher. Energy Storage can be used to balance microgrids, perform frequency regulation, and provide more reliable power for high tech industrial facilities.[1] Energy storage will also allow for the expansion of intermittent renewable energy, like wind and solar, to provide electricity around the clock. Some of the major issues concerning energy storage include cost, efficiency, and size.

36

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

37

Sandia National Laboratories: evaluate energy storage opportunity  

NLE Websites -- All DOE Office Websites (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

38

Sandia National Laboratories: implement energy storage projects  

NLE Websites -- All DOE Office Websites (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

39

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

40

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Data:7fce87ec-ae42-478a-9520-79ecd25245ae | Open Energy Information  

Open Energy Info (EERE)

7ec-ae42-478a-9520-79ecd25245ae 7ec-ae42-478a-9520-79ecd25245ae No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Baltimore Gas & Electric Co Effective date: 2013/02/23 End date if known: Rate name: 16000 lumen 173 watt SV (ptva) Sector: Lighting Description: Source or reference: http://www.bge.com/myaccount/billsrates/ratestariffs/electricservice/pages/electric-services-rates-and-tariffs.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

42

Large Scale Energy Storage  

Science Journals Connector (OSTI)

This work is mainly an experimental investigation on the storage of solar energy and/or the waste heat of a ... lake or a ground cavity. A model storage unit of (120.75)m3 size was designed and constructed. The...

F. mez; R. Oskay; A. ?. er

1987-01-01T23:59:59.000Z

43

NREL: Transportation Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

44

DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: Revision 2 DRAFT "Energy Advisory Committee" - Energy Storage Subcommittee Report: Revision 2 Energy storage plays a vital role in all forms of business and affects the...

45

Energy Storage | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over short periods of time, although demand for electricity fluctuates throughout the day. Developing technology to store electrical energy so it can be available to meet demand whenever needed would represent a major breakthrough in electricity distribution. Helping to try and meet this goal, electricity storage devices can manage the amount of power required to supply customers at times when need is greatest, which is during peak load. These devices can also help make renewable energy, whose power output cannot be controlled by grid operators, smooth and dispatchable. They can also balance microgrids to achieve a good match between generation

46

Solar Energy Storage Methods  

Science Journals Connector (OSTI)

Solar Energy Storage Methods ... Conducting polymers have superior specific energies to the carbon-based supercapacitors and have greater power capability, compared to inorganic battery material. ... The question of load redistribution for better energetic usage is of vital importance since these new renewable energy sources are often intermittent. ...

Yu Hou; Ruxandra Vidu; Pieter Stroeve

2011-06-09T23:59:59.000Z

47

AES NewEnergy, Inc. Order No. EA-248 I. BACKGROUND  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On July 13, 2001, AES NewEnergy, Inc. (AES NewEnergy) applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Canada as a power marketer. AES NewEnergy, a Delaware corporation and wholly- owned subsidiary of the AES Corporation, a public utility holding company, is a power marketer that does not own or control any electric generation or transmission facilities nor does it have any franchised service territory in the United States. AES NewEnergy proposes to purchase surplus electric energy from electric utilities and

48

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

49

AE Biofuels Inc formerly Marwich II Ltd | Open Energy Information  

Open Energy Info (EERE)

AE Biofuels Inc formerly Marwich II Ltd AE Biofuels Inc formerly Marwich II Ltd Jump to: navigation, search Name AE Biofuels Inc. (formerly Marwich II Ltd.) Place West Palm Beach, Florida Zip 33414 Sector Biofuels Product Marwich II, Ltd. (OTC.BB: MWII.OB) merged in December 2007 with AE Biofuels, Inc., formerly American Ethanol. Subsequently Marwich II, Ltd. has changed its name to AE Biofuels (OTC: AEBF). References AE Biofuels Inc. (formerly Marwich II Ltd.)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AE Biofuels Inc. (formerly Marwich II Ltd.) is a company located in West Palm Beach, Florida . References ↑ "[ AE Biofuels Inc. (formerly Marwich II Ltd.)]" Retrieved from "http://en.openei.org/w/index.php?title=AE_Biofuels_Inc_formerly_Marwich_II_Ltd&oldid=341812"

50

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Architectures for Solar Energy Production, Storage andArchitectures for Solar Energy Production, Storage and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

51

Energy Storage Computational Tool | Open Energy Information  

Open Energy Info (EERE)

Energy Storage Computational Tool Energy Storage Computational Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Storage Computational Tool Agency/Company /Organization: Navigant Consulting Sector: Energy Focus Area: Grid Assessment and Integration Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Country: United States Web Application Link: www.smartgrid.gov/recovery_act/program_impacts/energy_storage_computat Cost: Free Northern America Language: English Energy Storage Computational Tool Screenshot References: Energy Storage Computational Tool[1] SmartGrid.gov[2] Logo: Energy Storage Computational Tool This tool is used for identifying, quantifying, and monetizing the benefits

52

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

53

DOE Global Energy Storage Database  

DOE Data Explorer (OSTI)

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOEs Sandia National Laboratories, and has been operating since January 2012.

54

AE AE A AE A AE AE AE AE AE AE AE AE AE A AE AE AE AE AE  

NLE Websites -- All DOE Office Websites (Extended Search)

OF ENERGY WESTERN AREA POWER ADMINISTRATION CORPORATE SERVICES OFFICE - LAKEWOOD, COLORADO WAPA TRANSMISSION LINE LOCATION EXHIBIT RAPID CITY, SOUHT DAKOTA Legend WAPA...

55

Data:98819b42-ae88-4617-b46d-769332651ae1 | Open Energy Information  

Open Energy Info (EERE)

2-ae88-4617-b46d-769332651ae1 2-ae88-4617-b46d-769332651ae1 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Lakeland, Florida (Utility Company) Effective date: 2013/04/01 End date if known: Rate name: Private Area Lighting HPS 100 Watt - Granville (Decorative) - Service Option A Sector: Lighting Description: Service Options A. Fixture and Installation Only; B. Maintenance of Fixture Only; C. Energy, Excluding Fuel Charge, for Fixture Only; and D. Full Service: The sum of each of the above Discrete Private Area Lighting Charges (A+B+C), plus the monthly service charge Source or reference: http://www.lakelandelectric.com/Portals/0/docs/pdf/Rates%20&%20Pricing/Electric%20Rates%20Tariffs/html/files/assets/common/downloads/publication.pdf

56

Energy Storage: Current landscape for alternative energy  

E-Print Network (OSTI)

Energy Storage: Current landscape for alternative energy storage technologies and what the future may hold for multi-scale storage applications Presented by: Dave Lucero, Director Alternative Energy · Industry initiatives · Technology · Energy Storage Market · EaglePicher initiatives · Summary #12

57

Energy Department Releases Grid Energy Storage Report  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department released its Grid Energy Storage report to the members of the U.S. Senate Energy and Natural Resources Committee, identifying the benefits and challenges of grid energy storage that must be addressed to enable broader use.

58

AE E Lentjes GmbH | Open Energy Information  

Open Energy Info (EERE)

Lentjes GmbH Lentjes GmbH Jump to: navigation, search Name AE&E Lentjes GmbH Place Ratingen, Germany Zip 40880 Sector Biomass Product Process and turnkey plant engineering of fossil fuel, biomass and waste to energy plants. Coordinates 51.29715°, 6.848095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.29715,"lon":6.848095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

60

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various

2011-01-01T23:59:59.000Z

62

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withconcept of thermal energy storage in aquifers was suggestedAnnual Thermal Energy Storage Contractors' Information

Authors, Various

2011-01-01T23:59:59.000Z

63

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

64

Energy Storage - More Information | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage - More Information Energy Storage - More Information Energy Storage - More Information As energy storage technology may be applied to a number of areas that differ in power and energy requirements, DOE's Energy Storage Program performs research and development on a wide variety of storage technologies. This broad technology base includes batteries (both conventional and advanced), flywheels, electrochemical capacitors, superconducting magnetic energy storage (SMES), power electronics, and control systems. The Energy Storage Program works closely with industry partners, and many of its projects are highly cost-shared. The Program collaborates with utilities and State energy organizations such as the California Energy Commission and New York State Energy Research and Development Authority to field major pioneering storage installations that

65

Compressed Air Energy Storage System  

E-Print Network (OSTI)

/expanders are crucial for the economical viability of a Compressed Air Energy Storage (CAES) system such as the

Farzad A. Shirazi; Mohsen Saadat; Bo Yan; Perry Y. Li; Terry W. Simon

66

Energy Storage & Power Electronics 2008 Peer Review - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

& Power Electronics 2008 Peer Review - Energy & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations Energy Storage & Power Electronics 2008 Peer Review - Energy Storage Systems (ESS) Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Energy Storage Systems (ESS) presentations are available below. ESPE 2008 Peer Review - EAC Energy Storage Subcommittee - Brad Roberts, S&C

67

Superconducting magnetic energy storage  

SciTech Connect

Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office, issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high T/sub c/ materials on SMES is discussed. 69 refs., 3 figs., 3 tabs.

Hassenzahl, W.

1988-08-01T23:59:59.000Z

68

Grid Applications for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications for Energy Storage Applications for Energy Storage Flow Cells for Energy Storage Workshop Washington DC 7-8 March 2012 Joe Eto jheto@lbl.gov (510) 486-7284 Referencing a Recent Sandia Study,* This Talk Will: Describe and illustrate selected grid applications for energy storage Time-of-use energy cost management Demand charge management Load following Area Regulation Renewables energy time shift Renewables capacity firming Compare Sandia's estimates of the economic value of these applications to the Electricity Storage Association's estimates of the capital costs of energy storage technologies *Eyer, J. and G. Corey. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. February 2010. SAND2010-0815 A Recent Sandia Study Estimates the Economic

69

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

UNM On September 16, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Energy Storage, Facilities, Materials Science, News, News & Events, Partnership, Research...

70

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

71

DOE Completes $17 Million Loan Guarantee for New York Energy Storage System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Completes $17 Million Loan Guarantee for New York Energy DOE Completes $17 Million Loan Guarantee for New York Energy Storage System with Recovery Act Funds DOE Completes $17 Million Loan Guarantee for New York Energy Storage System with Recovery Act Funds December 23, 2010 - 12:00am Addthis Washington D.C. --- Energy Secretary Steven Chu today announced a $17.1 million loan guarantee has been finalized for the AES Westover facility. The loan guarantee will support the construction of a 20 megawatt (MW) energy storage system using advanced lithium-ion batteries. The AES project, located in Johnson City, New York, will help provide a more stable and efficient electrical grid for the state's high-voltage transmission network. "The AES project helps reduce carbon emissions and strengthens our energy infrastructure by allowing for more renewable energy sources like solar and

72

DOE Completes $17 Million Loan Guarantee for New York Energy Storage System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$17 Million Loan Guarantee for New York Energy $17 Million Loan Guarantee for New York Energy Storage System with Recovery Act Funds DOE Completes $17 Million Loan Guarantee for New York Energy Storage System with Recovery Act Funds December 23, 2010 - 12:00am Addthis Washington D.C. --- Energy Secretary Steven Chu today announced a $17.1 million loan guarantee has been finalized for the AES Westover facility. The loan guarantee will support the construction of a 20 megawatt (MW) energy storage system using advanced lithium-ion batteries. The AES project, located in Johnson City, New York, will help provide a more stable and efficient electrical grid for the state's high-voltage transmission network. "The AES project helps reduce carbon emissions and strengthens our energy infrastructure by allowing for more renewable energy sources like solar and

73

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

74

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Energy Surety, Facilities, Grid Integration,...

75

Sandia National Laboratories: solar thermal energy storage  

NLE Websites -- All DOE Office Websites (Extended Search)

thermal energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities,...

76

Sandia National Laboratories: DOE Energy Storage Systems program  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems program 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

77

CFES RESEARCH THRUSTS: Energy Storage  

E-Print Network (OSTI)

CFES RESEARCH THRUSTS: Energy Storage Wind Energy Solar Energy Smart Grids Smart Buildings For our on their progress and findings Along with the research advances, sponsors will benefit from the visibility

Lü, James Jian-Qiang

78

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulations Reveal Ion Dynamics in Polymer Electrolyte On November 13, 2012, in Energy Storage, News, News & Events Improving battery electrolytes is highly desirable, particularly...

79

Energy storage in carbon nanoparticles.  

E-Print Network (OSTI)

??Hydrogen (H2) and methane (CH4) are clean energy sources, and their storage in carbonaceous materials is a promising technology for safe and cost effective usage (more)

Guan, Cong.

2009-01-01T23:59:59.000Z

80

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Greenhouse Gas Services AES GE EFS | Open Energy Information  

Open Energy Info (EERE)

Greenhouse Gas Services AES GE EFS Greenhouse Gas Services AES GE EFS Jump to: navigation, search Name Greenhouse Gas Services (AES/GE EFS) Place Arlington, Virginia Zip 22203-4168 Product Develop and invest in a range of projects that reduce greenhouse gas emissions that produce verified GHG credits. Coordinates 43.337585°, -89.379449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.337585,"lon":-89.379449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

Superconducting energy storage  

SciTech Connect

This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

Giese, R.F.

1993-10-01T23:59:59.000Z

83

EIS-0446: Department of Energy Loan Guarantee to AES for the Proposed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0446: Department of Energy Loan Guarantee to AES for the EIS-0446: Department of Energy Loan Guarantee to AES for the Proposed Daggett Ridge Wind Farm, San Bernardino County, California EIS-0446: Department of Energy Loan Guarantee to AES for the Proposed Daggett Ridge Wind Farm, San Bernardino County, California Summary This EIS, prepared by the Department of the Interior (Bureau of Land Management [BLM], Barstow Field Office) evaluates the environmental impacts of a proposed 82.5-megawatt (MW) Daggett Ridge Wind Farm project on land managed by the BLM located 11 miles southwest of Barstow, California, and five miles southwest of Daggett, California. DOE, a cooperating agency, is considering the impacts of its proposal to issue a Federal loan guarantee to AES Wind Generation, Inc., to support the construction of the proposed

84

Solar energy storage: A demonstration experiment  

Science Journals Connector (OSTI)

Solar energy storage: A demonstration experiment ... A demonstration of a phase transition that can be used for heat storage. ...

Howard S. Kimmel; Reginald P. T. Tomkins

1979-01-01T23:59:59.000Z

85

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Systems New Liquid Salt Electrolytes Could Lead to Cost-Effective Flow Batteries On February 22, 2012, in Energy, Energy Storage Systems, Grid Integration, News,...

86

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Scale Thermal Energy Storage for Cogeneration and Solarsolar captors, thermal effluents, low cost energy duringSeale Thermal Energy Storage for Cogeneration and Solar

Authors, Various

2011-01-01T23:59:59.000Z

87

Data:2d407fa6-a781-4ae5-ae50-0c238004b8d7 | Open Energy Information  

Open Energy Info (EERE)

-a781-4ae5-ae50-0c238004b8d7 -a781-4ae5-ae50-0c238004b8d7 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Polk County Rural Pub Pwr Dist Effective date: 2012/01/01 End date if known: Rate name: Commercial Elec Space Heating - One Phase Sector: Commercial Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

88

Data:1d802f87-f886-45c4-b75a-e466ae4fc9ca | Open Energy Information  

Open Energy Info (EERE)

f87-f886-45c4-b75a-e466ae4fc9ca f87-f886-45c4-b75a-e466ae4fc9ca No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Sylvania, Georgia (Utility Company) Effective date: 2012/10/01 End date if known: Rate name: Industrial Electric DMD Sector: Industrial Description: Source or reference: Rate Binder #2 (Illinois State University) Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

89

Data:8ac54c54-708d-4174-ba51-8a3ae4c66ae3 | Open Energy Information  

Open Energy Info (EERE)

-708d-4174-ba51-8a3ae4c66ae3 -708d-4174-ba51-8a3ae4c66ae3 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Trico Electric Cooperative Inc Effective date: 2009/08/01 End date if known: Rate name: General Service TOU Single-Phase Primary Discount Sector: Commercial Description: *This rate is limited to the first 100 qualified customers. Subject to tax and power cost adjustment. Source or reference: http://www.trico.coop/images/TRICO_GSTOU.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months):

90

Data:7cd3764e-67ae-443e-b108-ae9430ba57f4 | Open Energy Information  

Open Energy Info (EERE)

4e-67ae-443e-b108-ae9430ba57f4 4e-67ae-443e-b108-ae9430ba57f4 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Mascoutah, Illinois (Utility Company) Effective date: 2011/05/01 End date if known: Rate name: Customer Area Lighting Service- Rate 7: Directional Lighting, Sodium Vapor, 22,000 Lumen, 250 Watt Sector: Lighting Description: Source or reference: Rates Binder 1, Illinois State University Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

91

Microsoft Word - Floodplain Assessment for AES  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Floodplain Statement of Findings Floodplain Statement of Findings Department of Energy Loan Guarantee to AES Energy Storage, LLC Project Dyno Electric Grid Stability Advanced Battery Systems in Johnson City, NY AGENCY: U.S. Department of Energy, Loan Programs Office ACTION: NEPA Categorical Exclusion SUMMARY: In accordance with U.S. Department of Energy (DOE) regulations contained at 10 CFR 1022, Compliance with Floodplain and Wetlands Environmental Review Requirements, DOE has conducted a floodplain assessment that analyzed the potential impacts associated with the AES Energy Storage, LLC (AES) Project Dyno, 20MW energy storage system (Project) to be located in the Village of Union Town and Johnson City, New York. DOE, through its Loan Guarantee Program Office (LGPO),

92

Energy Storage and Distributed Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

diagram of molecular structure, spectrocscopic data, low-swirl flame diagram of molecular structure, spectrocscopic data, low-swirl flame Energy Storage and Distributed Resources Energy Storage and Distributed Resources application/pdf icon esdr-org-chart-03-2013.pdf EETD researchers in the energy storage and distributed resources area conduct R&D and develops technologies that provide the electricity grid with significant storage capability for energy generated from renewable sources; real-time monitoring and response technologies for the "smart grid" to optimize energy use and communication between electricity providers and consumers; and technologies for improved electricity distribution reliability. Their goal is to identify and develop technologies, policies and strategies to enable a shift to renewable energy sources at $1 per watt for a

93

NREL: Energy Storage - Laboratory Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Capabilities Laboratory Capabilities Photo of NREL's Energy Storage Laboratory. NREL's Energy Storage Laboratory. Welcome to our Energy Storage Laboratory at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Much of our testing is conducted at this state-of-the-art laboratory, where researchers use cutting-edge modeling and analysis tools to focus on thermal management systems-from the cell level to the battery pack or ultracapacitor stack-for electric, hybrid electric, and fuel cell vehicles (EVs, HEVs, and FCVs). In 2010, we received $2 million in funding from the U.S. Department of Energy under the American Recovery and Reinvestment Act of 2009 (ARRA) to enhance and upgrade the NREL Battery Thermal and Life Test Facility. The Energy Storage Laboratory houses two unique calorimeters, along with

94

NREL: Learning - Energy Storage Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Basics Energy Storage Basics The demand for electricity is seldom constant over time. Excess generating capacity available during periods of low demand can be used to energize an energy storage device. The stored energy can then be used to provide electricity during periods of high demand, helping to reduce power system loads during these times. Energy storage can improve the efficiency and reliability of the electric utility system by reducing the requirements for spinning reserves to meet peak power demands, making better use of efficient baseload generation, and allowing greater use of renewable energy technologies. A "spinning reserve" is a generator that is spinning and synchronized with the grid, ready for immediate power generation - like a car engine running with the gearbox

95

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and J. Schwarz, Survey of Thermal Energy Storage in AquifersLow Temperature Thermal Energy Storage Program of Oak RidgeAquifers for Seasonal Thermal Energy Storage: An Overview of

Authors, Various

2011-01-01T23:59:59.000Z

96

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

and R.A. Zakhidov, "Storage of Solar Energy in a Sandy-Heat as Related to the Storage of Solar Energy. Sharing the1974. Geothermal Storage of Solar Energy, in "Governors

Authors, Various

2011-01-01T23:59:59.000Z

97

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

R. A. 8 1971, Storage of solar energy in a sandy-gravelthermal energy storage for cogeneration and solar systems,storage, solar captors for heat production 9 and heat pumps for energy

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

98

Data:21d6177a-e459-4aa5-ae49-5af6c880ca65 | Open Energy Information  

Open Energy Info (EERE)

d6177a-e459-4aa5-ae49-5af6c880ca65 d6177a-e459-4aa5-ae49-5af6c880ca65 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Southern Indiana Gas & Elec Co Effective date: 2011/05/03 End date if known: Rate name: OL - 400 watt MV Sector: Lighting Description: AVAILABILITY This Rate Schedule shall be available throughout Company's Service Area, subject to the availability of adequate facilities and power supplies, which determinations shall be within Company's reasonable discretion. APPLICABILITY This Rate Schedule shall be applicable for outdoor lighting to any Customer including Community Organizations or Real Estate Developers.

99

Data:3b00cdd8-030d-4261-aa09-9ae783ae3c15 | Open Energy Information  

Open Energy Info (EERE)

cdd8-030d-4261-aa09-9ae783ae3c15 cdd8-030d-4261-aa09-9ae783ae3c15 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Consumers Power, Inc Effective date: 2011/10/01 End date if known: Rate name: 250 W HPS Street Lighting, Metered Sector: Lighting Description: * Applicable to service furnished from the dusk to dawn for area lighting,lighting of public streets,highways,alleys and parks. Streetlights supported on distribution type wood poles from Cooperative-owned overhead or underground system. Rate when light is Metered through customer's service. Source or reference: Rate binder # 4(Illinios State University)

100

Data:E654ae67-bf21-40ed-ade6-6b5c37ae6b56 | Open Energy Information  

Open Energy Info (EERE)

ae67-bf21-40ed-ade6-6b5c37ae6b56 ae67-bf21-40ed-ade6-6b5c37ae6b56 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Newton, North Carolina (Utility Company) Effective date: 2013/01/01 End date if known: Rate name: Residential Service Sector: Residential Description: Available only to residential customers in residences, condominiums, mobile homes, or individually metered apartments which provide independent and permanent facilities complete for living, sleeping, eating, cooking, and sanitation. Source or reference: http://www.newtonnc.gov/departments/finance/docs/Approved_Fees___Charges_FY_2014.pdf

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Department of Energy Will Hold a Batteries and Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

102

Part II Energy Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

II. II. Energy Storage Technology Overview * Instructor - Haresh Kamath, EPRI PEAC * Short term - Flywheels, Cranking Batteries, Electrochemical Capacitors, SMES * Long term - Compressed Air, Pumped Hydro storage, Stationary, Flow Batteries 2 Overview * Technology Types - Batteries, flywheels, electrochemical capacitors, SMES, compressed air, and pumped hydro * Theory of Operation - Brief description of the technologies and the differences between them * State-of-the-art - Past demonstrations, existing hurdles and performance targets for commercialization * Cost and cost projections: - Prototype cost vs. fully commercialized targets Technology Choice for Discharge Time and Power Rating (From ESA) 4 Maturity Levels for Energy Storage Technologies * Mature Technologies - Conventional pumped hydro

103

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

Zakhidov, R. A. 8 1971, Storage of solar energy in a sandy-aquifers for heat storage, solar captors for heat productionthermal energy storage for cogeneration and solar systems,

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

104

Grid Storage and the Energy Frontier Research Centers | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Storage and the Energy Frontier Research Centers Grid Storage and the Energy Frontier Research Centers DOE: Grid Storage and the Energy Frontier Research Centers Grid Storage...

105

Thermal Energy Storage Technologies  

Science Journals Connector (OSTI)

Energy, the lifeline of all activities is highly ... a country. The gap present between the energy generation and the energy consumption keeps expanding with a precipitous increase in the demand for the energy, e...

R. Parameshwaran; S. Kalaiselvam

2013-01-01T23:59:59.000Z

106

Energy Programs | Advanced Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Storage Systems Advanced Storage Systems Tapping Into Fuel Cells and Batteries Page 1 of 2 Imagine being able to drive a forty-mile round-trip commute every day without ever going near a gas pump. As the United States moves towards an energy economy with reduced dependence on foreign oil and fewer carbon emissions, development of alternative fuel sources and transmission of the energy they provide is only part of the equation. An increase in energy generated from intermittent renewable sources and the growing need for mobile energy will require new, efficient means of storing it, and technological advancements will be necessary to support the nation's future energy storage needs. A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric

107

Addressing the Grand Challenges in Energy Storage  

SciTech Connect

The editorial summarizes the contents of the special issue for energy storage in Advanced Functional Materials.

Liu, Jun

2013-02-25T23:59:59.000Z

108

Importance of Energy Storage  

Science Journals Connector (OSTI)

The world is limited, and therefore the primary energy sources are limited. Some of the primary energy sources might even become quite scarce in our lifetime.

B. K?lk??; S. Kaka

1989-01-01T23:59:59.000Z

109

Hydrogen for Energy Storage Analysis Overview (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

competing technologies for utility- scale energy storage systems. Explore the cost and GHG emissions impacts of interaction of hydrogen storage and variable renewable resources...

110

Sandia National Laboratories: Batteries & Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioactive Waste Prioritized Safeguards and Security Issues for extended Storage of Used Nuclear Fuel Research to Improve Transportation Energy Storage Fact Sheet Sandia's Battery...

111

Storage Gas Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Gas Water Heaters Storage Gas Water Heaters The Department of Energy (DOE) develops standardized data templates for reporting the results of tests conducted in accordance...

112

Carbon Capture and Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Carbon Capture and Storage Through Office of Fossil Energy R&D the United States has become a world leader in carbon capture and storage science and technology. Fossil...

113

Photochemical conversion and storage of solar energy  

Science Journals Connector (OSTI)

Photochemical conversion and storage of solar energy ... In this article, the author considers the use of inorganic photochemical reactions for the conversion and storage of solar energy. ... HOMO?LUMO energy difference values compared ... ...

Charles Kutal

1983-01-01T23:59:59.000Z

114

Storage Related News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Related News Storage Related News Storage Related News November 1, 2013 November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. August 30, 2013 September 16 ESTAP Webinar: Optimizing the Benefits of a PV with Battery Storage System On Monday, September 16 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on optimizing the benefits of a photovoltaic (PV) storage system with a battery. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery

115

Data:Fda6ebc1-80b7-47b9-81ae-5f7ae77f39ed | Open Energy Information  

Open Energy Info (EERE)

Fda6ebc1-80b7-47b9-81ae-5f7ae77f39ed Fda6ebc1-80b7-47b9-81ae-5f7ae77f39ed No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Consumers Energy Effective date: End date if known: Rate name: Outdoor Lighting Nonmetered Coop Owns Memb Repairs HPS 250 W Sector: Lighting Description: Source or reference: http://www.consumersenergy.coop/programs.php?pn=Security%20Lights&pl=securitylights Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category:

116

Regenerative Fuel Cells for Energy Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regenerative Fuel Cells for Energy Storage Regenerative Fuel Cells for Energy Storage Presentation by Corky Mittelsteadt, Giner Electrochemical Systems, at the NREL Reversible Fuel...

117

Sandia National Laboratories: Energy Storage Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

the U.S. Army Collaborate on Operational Energy at Fort Devens On November 26, 2012, in Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure Security,...

118

Data:71f1ead5-f400-420e-ae4d-125b0ef129ae | Open Energy Information  

Open Energy Info (EERE)

f1ead5-f400-420e-ae4d-125b0ef129ae f1ead5-f400-420e-ae4d-125b0ef129ae No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Cuivre River Electric Coop Inc Effective date: End date if known: Rate name: Residential Green Power Sector: Residential Description: *Bought in 100 kWh blocks $0.025 than residential rate per block $2.50/month for 100 kWh block Source or reference: http://www.cuivreriverelectriccooperative.com.asp1-2.dfw1-1.websitetestlink.com/MemberServices/GreenPower/tabid/118/Default.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh)

119

Data:E5ae92fe-575d-447d-b034-08a1e03432ae | Open Energy Information  

Open Energy Info (EERE)

2fe-575d-447d-b034-08a1e03432ae 2fe-575d-447d-b034-08a1e03432ae No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jackson Electric Member Corp Effective date: 2006/06/01 End date if known: Rate name: AEA-06 Residential Energy Advantage Service Sector: Residential Description: Source or reference: http://www.jacksonemc.com/home-manage-my-account/residential-rates/residential-energy-advantage-service Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

120

Data:Ea3d03cf-254f-447f-b19a-e84b131649f5 | Open Energy Information  

Open Energy Info (EERE)

cf-254f-447f-b19a-e84b131649f5 cf-254f-447f-b19a-e84b131649f5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Franklin Rural Electric Cooperative Effective date: 2010/05/01 End date if known: Rate name: Storage Water Heating Sector: Residential Description: Source or reference: Rates Binder A Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >>

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Economic analysis of electric energy storage.  

E-Print Network (OSTI)

??This thesis presents a cost analysis of grid-connected electric energy storage. Various battery energy storage technologies are considered in the analysis. Life-cycle cost analysis is (more)

Poonpun, Piyasak

2006-01-01T23:59:59.000Z

122

Electrochemical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

has been has been actively involved in the development of advanced batteries since the late 1960s when it initiated R&D on high-temperature lithium sulfur batteries. In the early 1970s, the US Department of Energy (DOE) established its first independent battery test facility at Argonne and named it the National Battery Test Laboratory (NBTL), for the purpose of conducting independent evaluations on advanced battery technologies that were potential candidates for use in battery-powered electric vehicles. NBTL incorporated a well equipped post-test analysis laboratory that was instrumental in helping to identify life-limiting mechanisms with several candidate battery technologies. Even in these early days of the battery program, Argonne was internationally

123

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

electrochemical capacitor energy storage systems. 1.2 Energyto electrochemical energy storage in TiO 2 (anatase)3D nanoarchitec- tures for energy storage and conversion,

Wang, Hainan

2013-01-01T23:59:59.000Z

124

ENERGY STORAGE IN AQUIFERS - - A SURVEY OF RECENT THEORETICAL STUDIES  

E-Print Network (OSTI)

temperature underground thermal energy storage. In Proc. Th~al modeling of thermal energy storage in aquifers. In ~~-Mathematical modeling; thermal energy storage; aquifers;

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

125

Thermal Energy Storage for Cooling of Commercial Buildings  

E-Print Network (OSTI)

of Commercial Building Thermal Energy _Storage in ASEANGas Electric Company, "Thermal Energy Storage for Cooling,"LBL--25393 DE91 ,THERMAL ENERGY STORAGE FOR COOLING OF

Akbari, H.

2010-01-01T23:59:59.000Z

126

Rational Material Architecture Design for Better Energy Storage  

E-Print Network (OSTI)

energy and power storage systems, Renewable and Sustainable Energyeconomical and sustainable energy storage devices. Moreover,performance and sustainable energy storage systems. Figure.

Chen, Zheng

2012-01-01T23:59:59.000Z

127

PEDOT Nanowires for Energy Storage: Synthesis and Property  

E-Print Network (OSTI)

polymer and paper-based energy storage devices, Adv. Mater.PEDOT Nanowires for Energy Storage: Synthesis and Property Aand Carbon Materials for Energy Storage Synthesized PEDOT

Ying, Wu

2014-01-01T23:59:59.000Z

128

Data:Af991885-4e9b-40ae-81fd-12ae0df262d1 | Open Energy Information  

Open Energy Info (EERE)

85-4e9b-40ae-81fd-12ae0df262d1 85-4e9b-40ae-81fd-12ae0df262d1 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of New Lisbon, Wisconsin (Utility Company) Effective date: 2008/05/12 End date if known: Rate name: Ms-2 Athletic Field Lighting Service Sector: Lighting Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0523 per kilowatt-hour.

129

Data:398ae2c5-439c-418e-ae85-00705e649855 | Open Energy Information  

Open Energy Info (EERE)

ae2c5-439c-418e-ae85-00705e649855 ae2c5-439c-418e-ae85-00705e649855 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kosciusko County Rural E M C Effective date: 2011/02/01 End date if known: Rate name: Security Lights - Schedule SL (250 Watt HPS) Sector: Lighting Description: AVAILABILITY Available to any member of the Kosciusko Rural Electric Membership Corporation (KREMC) where 120 volt service exists ahead of the meter loop for the use of street lighting. CHARACTER OF SERVICE Dusk-to-dawn lighting service, using photo-electric controlled equipment, mast arm, street light type luminaire. Maintenance of the complete assembly and the cost of its electrical operation are included in this service. Any additional investment required by the extension of secondary lines or hanging of a transformer, for the sole purpose of this service, will require a contribution by the member.

130

Data:86bfaa0f-8db1-4ef0-ae2d-3ae68533add8 | Open Energy Information  

Open Energy Info (EERE)

bfaa0f-8db1-4ef0-ae2d-3ae68533add8 bfaa0f-8db1-4ef0-ae2d-3ae68533add8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Seattle, Washington (Utility Company) Effective date: 2012/01/01 End date if known: Rate name: SCHEDULE SMT-SMALL GENERAL SERVICE Sector: Commercial Description: SCHEDULE SMT is for small standard general service provided to Tukwila customers whose maximum demand is less than 50 kW. Minimum Charge: 28.00¢ per meter per day Discounts: Transformer losses in kWh - 1756 + .53285 x kW + .00002 x kW2+ .00527 x kWh Transformer investment - $0.26 per kW of monthly maximum demand

131

Data:37b04e32-89ae-4af3-9dc8-81abcc99ae02 | Open Energy Information  

Open Energy Info (EERE)

2-89ae-4af3-9dc8-81abcc99ae02 2-89ae-4af3-9dc8-81abcc99ae02 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Miami-Cass County Rural E M C Effective date: 2011/10/01 End date if known: Rate name: RATE SCHEDULE LP-2 Sector: Industrial Description: The Miami-Cass County Rural Electric Membership Corporation (REMC) shall charge and collect for large industrial electric service on the following bases of availability, application, character of service, monthly rate, minimum charge, purchased power cost adjustment clause, and tax adjustment. AVAILABILITY: This schedule is available to any member of the REMC located within the territory served by Miami-Cass County Rural Electric Membership Corporation.

132

Data:C915ea5f-b581-42ae-abc9-a85634ae0b63 | Open Energy Information  

Open Energy Info (EERE)

15ea5f-b581-42ae-abc9-a85634ae0b63 15ea5f-b581-42ae-abc9-a85634ae0b63 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Columbus Southern Power Co Effective date: 2012/03/09 End date if known: Rate name: General Service - Time-of-Day Sector: Commercial Description: Available for general service customers with maximum demands less than 500 KW. Availability is limited to secondary service and the first 1,000 customers applying for service under this schedule. For purpose of this provision, the on-peak billing period is defined as 7 a.m. to 9 p.m.local time for all weekdays, Monday through Friday. The off-peak billing period is defined as 9 p.m. to 7 a.m. for all weekdays, all hours of the day on Saturdays and Sundays, and the legal holidays of New Year's Day, Presidents Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day.

133

Data:71f715b5-6455-44ae-ae24-5b86a8b54cd8 | Open Energy Information  

Open Energy Info (EERE)

b5-6455-44ae-ae24-5b86a8b54cd8 b5-6455-44ae-ae24-5b86a8b54cd8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Mazomanie, Wisconsin (Utility Company) Effective date: 2006/06/15 End date if known: Rate name: Ms-1 Street Lighting Service Ornamental 175 W MV Sector: Lighting Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0574 per kilowatt-hour.

134

Data:9eec1762-5015-4f7d-a2ae-61001ae3e20b | Open Energy Information  

Open Energy Info (EERE)

eec1762-5015-4f7d-a2ae-61001ae3e20b eec1762-5015-4f7d-a2ae-61001ae3e20b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Loup River Public Power Dist Effective date: 2013/01/15 End date if known: Rate name: Interrupible Irrigation Service 5 Day Control Sector: Industrial Description: To year-round irrigation service customers who will contract for five (5 HP) horsepower or more, and agree to participate in Loup's peak reduction irrigation plan. This rate is not available for center pivot drive motors only. payable in three (3) equal installments; billing in the months of May, June and July Source or reference: http://www.loup.com/customersvc/rates.asp

135

Energy Storage Safety Strategic Plan- December 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Storage Safety Strategic Plan is a roadmap for grid energy storage safety that addresses the range of grid-scale, utility, community, and residential energy storage technologies being deployed across the Nation. The Plan highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations, and makes recommendations for near- and long-term actions.

136

Fuel cells and electrochemical energy storage  

Science Journals Connector (OSTI)

Fuel cells and electrochemical energy storage ... Fuel cells and electrochemical energy storage : types of fuel cells, batteries for electrical energy storage, major batteries presently being investigated, and a summary of present major materials problems in the sodium-sulfur and lithium-alloy metal sulfide battery. ...

Anthony F. Sammells

1983-01-01T23:59:59.000Z

137

Electrochemistry: Metal-free energy storage  

Science Journals Connector (OSTI)

... % of total energy capacity will require electric-energy storage systems to be deployed. For grid-scale applications and remote generation sites, cheap and flexible storage systems are needed, but ... level as a source of potential energy) or expensive (for example, conventional batteries, flywheels and superconductive electromagnetic storage). On page 195 of this issue, Huskinson et al. ...

Grigorii L. Soloveichik

2014-01-08T23:59:59.000Z

138

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Energy Storage Improving the batteries for electric drive vehicles, including hybrid electric (HEV) and plug-in electric (PEV) vehicles, is key to improving vehicles' economic, social, and environmental sustainability. In fact, transitioning to a light-duty fleet of HEVs and PEVs could reduce U.S. foreign oil dependence by 30-60% and greenhouse gas emissions by 30-45%, depending on the exact mix of technologies. For a general overview of electric drive vehicles, see the DOE's Alternative Fuel Data Center's pages on Hybrid and Plug-in Electric Vehicles and Vehicle Batteries. While a number of electric drive vehicles are available on the market, further improvements in batteries could make them more affordable and convenient to consumers. In addition to light-duty vehicles, some heavy-duty manufacturers are also pursuing hybridization of medium and heavy-duty vehicles to improve fuel economy and reduce idling.

139

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

Salyer, Ival O. (Dayton, OH)

1998-09-08T23:59:59.000Z

140

Microwavable thermal energy storage material  

DOE Patents (OSTI)

A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

Salyer, I.O.

1998-09-08T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module.

Prueitt, Melvin L. (Los Alamos, NM)

1994-01-01T23:59:59.000Z

142

Compact magnetic energy storage module  

DOE Patents (OSTI)

A superconducting compact magnetic energy storage module in which a plurality of superconducting toroids, each having a toroidally wound superconducting winding inside a poloidally wound superconducting winding, are stacked so that the flow of electricity in each toroidally wound superconducting winding is in a direction opposite from the direction of electrical flow in other contiguous superconducting toroids. This allows for minimal magnetic pollution outside of the module. 4 figures.

Prueitt, M.L.

1994-12-20T23:59:59.000Z

143

Data:E29fbf77-c81b-4afa-b1d6-13cefc1ae57d | Open Energy Information  

Open Energy Info (EERE)

9fbf77-c81b-4afa-b1d6-13cefc1ae57d 9fbf77-c81b-4afa-b1d6-13cefc1ae57d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Ocmulgee Electric Member Corp Effective date: 1999/05/01 End date if known: Rate name: SCHEDULE "SEA-13" SEASONAL SERVICE Sector: Commercial Description: Applicable to seasonal consumers where seventy-five percent (75%) or more of the consumer's annual kWh usage occurs within the usage months of June through November. Service under this rate includes but is not necessarily limited to bulk storage bins, corn dryers, peanut dryers, grain dryers, etc. and related equipment.

144

Data:D28b98b6-7997-4804-ae6c-351aa8f01384 | Open Energy Information  

Open Energy Info (EERE)

b98b6-7997-4804-ae6c-351aa8f01384 b98b6-7997-4804-ae6c-351aa8f01384 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Nebraska Public Power District Effective date: 2013/01/01 End date if known: Rate name: Area Lighting MV 175 W Metered Sector: Lighting Description: To area lighting of farmyards, backyards, patios, parking lots, storage yards, trailer courts, industrial sites, schools, churches, apartments, businesses, and many other applications where lighting is needed for identification, merchandising, environment, aesthetics, safety, protection, or convenience. Equipment Rental Charge is the district will install, own, operate, and maintain the lighting equipment.

145

Data:3172018d-f0d3-4e6c-b1f0-161ae34a343f | Open Energy Information  

Open Energy Info (EERE)

18d-f0d3-4e6c-b1f0-161ae34a343f 18d-f0d3-4e6c-b1f0-161ae34a343f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Davenport, Nebraska (Utility Company) Effective date: 2012/11/11 End date if known: Rate name: Directional Lighting MH 400 W Unmetered Sector: Lighting Description: Area/directional lighting of farmyards, backyards, patios, parking lots, storage yards, trailer courts, industrial sites, schools churches, apartments, businesses and many other applications where lighting is needed for identification, merchandising, environment, aesthetics, safety, security, protection or convenience.

146

Sandia National Laboratories: energy storage materials  

NLE Websites -- All DOE Office Websites (Extended Search)

materials Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

147

Nanophase Glass Ceramics for Capacitive Energy Storage.  

E-Print Network (OSTI)

??Glass ceramics are candidate dielectric materials for high energy storage capacitors. Since energy density depends primarily on dielectric permittivity and breakdown strength, glass ceramics with (more)

Rangarajan, Badri

2009-01-01T23:59:59.000Z

148

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost  

E-Print Network (OSTI)

Energy Harvesting Communications with Hybrid Energy Storage and Processing Cost Omur Ozel Khurram with an energy harvesting transmitter with non-negligible processing circuitry power and a hybrid energy storage for energy storage while the battery has unlimited space. The transmitter stores the harvested energy either

Ulukus, Sennur

149

Center for Electrical Energy Storage Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrical Energy Storage DOE Logo Electrical Energy Storage DOE Logo Focus Areas 3D Interface Architectures Dynamically Responsive Interfaces Control of Interfacial Processes Theory Search Argonne ... Search Argonne Home >Center for Electrical Energy Storage > Home Directorate & Principal Investigators Management Council Executive Committee Research Staff External Advisory Committee News Science Highlights Publications & Presentations CEES-Authored and Co-Authored Cover Stories Peer-Reviewed Publications Presentations Patents Frontiers in Energy Research Awards Jobs at CEES Energy Frontier Research Centers at Argonne Center for Electrical Energy Storage - an Energy Frontier Research Center Above: An artistic rendition showing a metal-fluoride stabilized surface structure at a lithium cobalt oxide

150

Charging Graphene for Energy Storage  

SciTech Connect

Since 2004, graphene, including single atomic layer graphite sheet, and chemically derived graphene sheets, has captured the imagination of researchers for energy storage because of the extremely high surface area (2630 m2/g) compared to traditional activated carbon (typically below 1500 m2/g), excellent electrical conductivity, high mechanical strength, and potential for low cost manufacturing. These properties are very desirable for achieving high activity, high capacity and energy density, and fast charge and discharge. Chemically derived graphene sheets are prepared by oxidation and reduction of graphite1 and are more suitable for energy storage because they can be made in large quantities. They still contain multiply stacked graphene sheets, structural defects such as vacancies, and oxygen containing functional groups. In the literature they are also called reduced graphene oxide, or functionalized graphene sheets, but in this article they are all referred to as graphene for easy of discussion. Two important applications, batteries and electrochemical capacitors, have been widely investigated. In a battery material, the redox reaction occurs at a constant potential (voltage) and the energy is stored in the bulk. Therefore, the energy density is high (more than 100 Wh/kg), but it is difficult to rapidly charge or discharge (low power, less than 1 kW/kg)2. In an electrochemical capacitor (also called supercapacitors or ultracapacitor in the literature), the energy is stored as absorbed ionic species at the interface between the high surface area carbon and the electrolyte, and the potential is a continuous function of the state-of-charge. The charge and discharge can happen rapidly (high power, up to 10 kW/kg) but the energy density is low, less than 10 Wh/kg2. A device that can have both high energy and high power would be ideal.

Liu, Jun

2014-10-06T23:59:59.000Z

151

Economic analysis of using above ground gas storage devices for compressed air energy storage system  

Science Journals Connector (OSTI)

Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on...

Jinchao Liu; Xinjing Zhang; Yujie Xu; Zongyan Chen

2014-12-01T23:59:59.000Z

152

Energy Storage Systems 2007 Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Peer Review 7 Peer Review Energy Storage Systems 2007 Peer Review The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. The agenda and ESS program overview presentation are below. Presentation categories Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Agenda.pdf ESS 2007 Peer Review - Program Overview - John Boyes, SNL.pdf More Documents & Publications Energy Storage Systems 2006 Peer Review Energy Storage & Power Electronics 2008 Peer Review - Agenda/Presentation List Energy Storage Systems 2007 Peer Review - International Energy Storage

153

Microsoft Word - Grid Energy Storage December 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Energy Storage Grid Energy Storage U.S. Department of Energy December 2013 Acknowledgements We would like to acknowledge the members of the core team dedicated to developing this report on grid energy storage: Imre Gyuk (OE), Mark Johnson (ARPA-E), John Vetrano (Office of Science), Kevin Lynn (EERE), William Parks (OE), Rachna Handa (OE), Landis Kannberg (PNNL), Sean Hearne & Karen Waldrip (SNL), Ralph Braccio (Booz Allen Hamilton). 2 Table of Contents Acknowledgements ....................................................................................................................................... 1 Executive Summary ....................................................................................................................................... 4

154

Test report : Milspray Scorpion energy storage device.  

SciTech Connect

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors have supplied their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and a subset of these systems were selected for performance evaluation at the BCIL. The technologies tested were electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. MILSPRAY Military Technologies has developed an energy storage system that utilizes lead acid batteries to save fuel on a military microgrid. This report contains the testing results and some limited assessment of the Milspray Scorpion Energy Storage Device.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

155

Energy storage inherent in large tidal turbine farms  

Science Journals Connector (OSTI)

...Research articles 1006 154 139 140 Energy storage inherent in large tidal turbine...in channels have short-term energy storage. This storage lies in the inertia...channels. inertia|renewable energy|storage|tidal|current|power| 1...

2014-01-01T23:59:59.000Z

156

Enabling Utility-Scale Electrical Energy Storage through Underground Hydrogen-Natural Gas Co-Storage.  

E-Print Network (OSTI)

??Energy storage technology is needed for the storage of surplus baseload generation and the storage of intermittent wind power, because it can increase the flexibility (more)

Peng, Dan

2013-01-01T23:59:59.000Z

157

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 13 ESTAP Webinar: Duke Energy's Energy Storage Projects November 1, 2013 - 5:00pm Addthis On Wednesday, November 13 from 1 - 2 p.m. ET, Clean Energy States Alliance will host a webinar on Duke Energy's battery energy storage systems. This webinar will be introduced by Dr. Imre Gyuk, Energy Storage Program Manager in the Office of Electricity Delivery and Energy Reliability. The webinar will discuss Duke Energy's six deployed battery systems, which cover a wide range of battery chemistries, sizes, locations on the grid, and applications. The deployments include the Notrees Wind Storage project, which OE supports under the Recovery Act-funded Smart Grid Energy Storage Demonstration Program. The other projects are the Rankin

158

Investigation of energy storage options for sustainable energy systems.  

E-Print Network (OSTI)

??Determination of the possible energy storage options for a specific source of energy requires a thorough analysis from the points of energy, exergy, and exergoeconomics. (more)

Hosseini, Mehdi

2013-01-01T23:59:59.000Z

159

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

160

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

III, "Man-made Geothermal Energy," presented at MiamiA.C.Meyers III; "Manmade Geothermal Energy", Proc. of Miamiin soils extraction of geothermal energy heat storage in the

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

efficiency of the thermoelectric energy generation and battery storageefficiency of the thermoelectric energy generation and battery storagebattery electrodes suggest that the use of nanostructured materials can substantially improve the thermal management of the batteries and their energy storage efficiency.

Khan, Javed Miller

2012-01-01T23:59:59.000Z

162

Data:A36c4073-55fc-46de-ae37-38ac1b8674b6 | Open Energy Information  

Open Energy Info (EERE)

c4073-55fc-46de-ae37-38ac1b8674b6 c4073-55fc-46de-ae37-38ac1b8674b6 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Central Maine Power Co Effective date: 2012/07/01 End date if known: Rate name: A-LM Load Management Service Fixed Price Two-Year Short Term Sector: Description: AVAILABILITY This rate is available only to residential customers and to non-residential customers with monthly demands below 20 kW who have thermal energy storage devices and/or thermal storage heating systems integrated with resistance electric heating units (Eligible Devices). Devices that do not store thermal energy and thus would be adversely affected by periodic interruption will not be served under this rate. Service will be available under this rate for the time period between 8 p.m. on a given day and 7 a.m. on the following day. CHARACTER OF SERVICE End use service will be single phase, alternating current, 60 hertz, at one standard secondary distribution voltage as described in the Company's Handbook of Requirements for Electric Service and Meter Installations and through one point of delivery. SHORT-TERM SERVICE CHARGE

163

Data:A40c333b-4ae4-4f04-bf93-19c2cb3cd996 | Open Energy Information  

Open Energy Info (EERE)

3b-4ae4-4f04-bf93-19c2cb3cd996 3b-4ae4-4f04-bf93-19c2cb3cd996 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Long Island Power Authority Effective date: 2012/03/05 End date if known: Rate name: 481 (Time of Use-Residential Off Peak Storage) Sector: Residential Description: Available to Rate 180 customers who use electricity to store energy during the offpeak hours of: * Midnight to 7:00 AM (Rate 480) * 10:00 PM to 10:00 AM (Rate 481) Customers are required to have separately metered, segregated circuits for this rate and cannot use the separately metered electricity for any other purpose except for energy storage and also at no other time except as specified above.

164

Storage Water Heaters | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Water Heaters Storage Water Heaters Storage Water Heaters June 15, 2012 - 6:00pm Addthis Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Consider energy efficiency when selecting a conventional storage water heater to avoid paying more over its lifetime. | Photo courtesy of ©iStockphoto/JulNichols. Conventional storage water heaters remain the most popular type of water heating system for the home. Here you'll find basic information about how storage water heaters work; what criteria to use when selecting the right model; and some installation, maintenance, and safety tips. How They Work A single-family storage water heater offers a ready reservoir -- from 20 to

165

Energy Storage Safety Strategic Plan Now Available  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan also makes recommendations for near- and long-term actions.

166

2014 Energy Storage Peer Review- Preliminary Agenda  

Energy.gov (U.S. Department of Energy (DOE))

The 2014 Energy Storage Peer Review will be held September 19-19, 2014, in Washington, DC. The preliminary agenda is available for downloading.

167

Chemical Storage and Pumping of Solar Energy  

Science Journals Connector (OSTI)

Chemical heat storage is familiar to us, in the form of carbon compounds, which are the basis of our present energy economy (wood - coal - natural gas - oil).

A. Vialaron

1981-01-01T23:59:59.000Z

168

Energy Storage for the Power Grid  

ScienceCinema (OSTI)

The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

Wang, Wei; Imhoff, Carl; Vaishnav, Dave

2014-06-12T23:59:59.000Z

169

NREL: Energy Storage - Battery Materials Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

power requirements and system integration demands of EDVs pose significant challenges to energy storage technologies. Making these materials durable enough that batteries last...

170

Sandia National Laboratories: Energy Storage Multimedia Gallery  

NLE Websites -- All DOE Office Websites (Extended Search)

Sparks Students' STEM Interest First-Ever Asian MELCOR User Group Meeting DOE OE Energy Storage Safety Strategic Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure...

171

Hydrogen for Energy Storage Analysis Overview (Presentation)  

SciTech Connect

Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

Steward, D. M.; Ramsden, T.; Harrison, K.

2010-06-01T23:59:59.000Z

172

Design methodologies for advanced flywheel energy storage.  

E-Print Network (OSTI)

??Higher penetration of volatile renewable sources and increasing load demand are putting a strain on the current utility grid structure. Energy storage solutions are required (more)

Hearn, Clay Stephen

2014-01-01T23:59:59.000Z

173

Energy storage in composite flywheel rotors.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: As the push continues for increased use of renewables on the electricity grid, the problem of energy storage is becoming more urgent than (more)

Janse van Rensburg, Petrus J.

2011-01-01T23:59:59.000Z

174

Data:Ae0a9942-39ae-4451-92de-f2e91d4dbeec | Open Energy Information  

Open Energy Info (EERE)

a9942-39ae-4451-92de-f2e91d4dbeec a9942-39ae-4451-92de-f2e91d4dbeec No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Gastonia, North Carolina (Utility Company) Effective date: 2012/07/01 End date if known: Rate name: RECR-1: WIND AND BIOMASS ENERGY CREDIT Sector: Commercial Description: On-Peak energy period is defined as non-holiday weekdays from 7:00 AM to 11:00 PM EPT. All Energy kWh VARIABLE = On-Peak = $0.0332 & Off-Peak = $0.0098 5 YEARS = On-Peak = $0.0343 & Off-Peak = $0.0103 10 YEARS = On-Peak = $0.0372 & Off-Peak = $0.0109 15 YEARS = On-Peak = $0.0396 & Off-Peak = $0.0113

175

Energy Cascading Combined with Thermal Energy Storage in Industry  

Science Journals Connector (OSTI)

The opportunities for energy conservation through the application of storage cascades has not previously been examined in...

R. J. Wood; D. T. Baldwin; P. W. OCallaghan

1983-01-01T23:59:59.000Z

176

Nuclear Hybrid Energy Systems: Molten Salt Energy Storage  

SciTech Connect

With growing concerns in the production of reliable energy sources, the next generation in reliable power generation, hybrid energy systems, are being developed to stabilize these growing energy needs. The hybrid energy system incorporates multiple inputs and multiple outputs. The vitality and efficiency of these systems resides in the energy storage application. Energy storage is necessary for grid stabilizing and storing the overproduction of energy to meet peak demands of energy at the time of need. With high thermal energy production of the primary nuclear heat generation source, molten salt energy storage is an intriguing option because of its distinct properties. This paper will discuss the different energy storage options with the criteria for efficient energy storage set forth, and will primarily focus on different molten salt energy storage system options through a thermodynamic analysis

P. Sabharwall; M. Green; S.J. Yoon; S.M. Bragg-Sitton; C. Stoots

2014-07-01T23:59:59.000Z

177

Energy Storage Valuation Methodology and Supporting Tool  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ben Kaun Ben Kaun Sr. Project Engineer Electricity Advisory Committee: Storage Valuation Panel 6-6-13 Energy Storage Valuation Methodology and Supporting Tool 2 © 2013 Electric Power Research Institute, Inc. All rights reserved. Electric Power Research Institute (EPRI) * Independent, non-profit, collaborative research institute, with full spectrum electric industry coverage * EPRI members represent ~90% of energy delivered in the U.S. * Energy Storage Research Program has over 30 funding utility members 3 © 2013 Electric Power Research Institute, Inc. All rights reserved. Storage Valuation Can be Confusing! Renewable Integration Frequency Regulation Spinning Reserve Resource Adequacy Asset Utilization Voltage Support Reduced GHG? Lower Production Costs

178

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

on-board automotive hydrogen storage. International JournalVehicular Hydrogen Storage http://www.hydrogen.energy.gov/et al. , Reversible hydrogen storage in calcium borohydride

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

179

Energy Department Releases Strategic Plan for Energy Storage Safety  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Electricity Delivery and Energy Reliability (OE) has worked with industry and other stakeholders to develop the Energy Storage Safety Strategic Plan, a roadmap for grid energy storage safety that highlights safety validation techniques, incident preparedness, safety codes, standards, and regulations. The Plan, which is now available for downloading, also makes recommendations for near- and long-term actions. The Energy Storage Safety Strategic Plan complements two reports released by OE earlier this year: the Overview of Development and Deployment of Codes, Standards and Regulations Affecting Energy Storage System Safety in the United States and the Inventory of Safety-related Codes and Standards for Energy Storage Systems.

180

NREL: Vehicles and Fuels Research - Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Research Search More Search Options Site Map NREL's Energy Storage Project is leading the charge on battery thermal management, modeling, and systems solutions to enhance the performance of fuel cell, hybrid electric, and electric vehicles (FCVs, HEVs, and EVs) for a cleaner, more secure transportation future. NREL's experts work closely with the U.S. Department of Energy (DOE), industry, and automotive manufacturers to improve energy storage devices, such as battery modules and ultracapacitors, by enhancing their thermal performance and life-cycle cost. Activities also involve modeling and simulation to evaluate technical targets and energy storage parameters, and investigating combinations of energy storage systems to increase vehicle efficiency. Much of this research is conducted at our state-of-the-art energy storage

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Energy Harvesting Broadcast Channel with Inefficient Energy Storage  

E-Print Network (OSTI)

Energy Harvesting Broadcast Channel with Inefficient Energy Storage Kaya Tutuncuoglu Aylin Yener with an energy harvesting transmitter equipped with an inefficient energy storage device. For this setting by the energy harvesting process. The convexity of the capacity region for the energy harvesting broadcast

Yener, Aylin

182

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

D. O. Energy, Energy Storage-A Key Enabler of the Smartof storage [electric energy storage], Power and EnergyJ. stergaard, Battery energy storage technology for power

Wang, Zuoqian

2013-01-01T23:59:59.000Z

183

Rational Material Architecture Design for Better Energy Storage  

E-Print Network (OSTI)

Webb, C. Nelson, Compressed Air Energy Storage in Hard RockEnergy Program: Compressed Air Energy Storage, United StatesOn the other hand, compressed air energy storage is based on

Chen, Zheng

2012-01-01T23:59:59.000Z

184

Sandia National Laboratories: thermochemical energy-storage systems  

NLE Websites -- All DOE Office Websites (Extended Search)

energy-storage systems Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage,...

185

Rational Material Architecture Design for Better Energy Storage  

E-Print Network (OSTI)

onto carbon nanotubes for energy-storage applications.and Carbon Nanotubes, Advanced Energy Materials, 2011, 1,Energy Storage Architectures from Carbon Nanotubes and

Chen, Zheng

2012-01-01T23:59:59.000Z

186

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

density of di?erent electrical energy stor- age systems (carbonate in electrical energy storage applications,challenges facing electrical energy storage, MRS Bulletin,

Wang, Hainan

2013-01-01T23:59:59.000Z

187

Sandia National Laboratories: Sandia, DOE Energy Storage Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integration, Energy, Energy Efficiency, Energy Storage Systems, Global Climate & Energy, Grid Integration, Infrastructure Security, Materials Science, Partnership, Research &...

188

Joint Center for Energy Storage Research  

SciTech Connect

The Joint Center for Energy Storage Research (JCESR) is a major public-private research partnership that integrates U.S. Department of Energy national laboratories, major research universities and leading industrial companies to overcome critical scientific challenges and technical barriers, leading to the creation of breakthrough energy storage technologies. JCESR, centered at Argonne National Laboratory, outside of Chicago, consolidates decades of basic research experience that forms the foundation of innovative advanced battery technologies. The partnership has access to some of the world's leading battery researchers as well as scientific research facilities that are needed to develop energy storage materials that will revolutionize the way the United States and the world use energy.

Eric Isaacs

2012-11-30T23:59:59.000Z

189

Batteries and Energy Storage | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

The Joint Center for Energy Storage Research (JCESR) is a major research The Joint Center for Energy Storage Research (JCESR) is a major research partnership that integrates government, academic and industrial researchers from many disciplines to overcome critical scientific and technical barriers and create new breakthrough energy storage technology. Batteries and Energy Storage Argonne's all- encompassing battery research program spans the continuum from basic materials research and diagnostics to scale-up processes and ultimate deployment by industry. At Argonne, our multidisciplinary team of world-renowned researchers are working in overdrive to develop advanced energy storage technologies to aid the growth of the U.S. battery manufacturing industry, transition the U.S. automotive fleet to plug-in hybrid and electric vehicles, and enable

190

Energy Storage Program Planning Document | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-008689: Categorical Exclusion Determination

191

Energy Storage Program Planning Document | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Program Planning Document Energy Storage Program Planning Document Energy Storage Program Planning Document Energy storage systems have the potential to extend and optimize the operating capabilities of the grid, since power can be stored and used at a later time. This allows for flexibility in generation and distribution, improving the economic efficiency and utilization of the entire system while making the grid more reliable and robust. Additionally, alternatives to traditional power generation, including variable wind and solar energy technologies, may require back-up power storage. Thus, modernizing the power grid may require a substantial volume of electrical energy storage (EES). Energy Storage Program Planning Document More Documents & Publications CX-010738: Categorical Exclusion Determination

192

J.M. Tarascon, et al. , Electrochemical energy storage  

E-Print Network (OSTI)

opportunities for Electrochemical Energy Storage (EES) Mass storage (MW): Which technology? Compressed air #12J.M. Tarascon, et al. , Electrochemical energy storage for renewable energies CNRS, Jeudi 3 Octobre 28 TW Renewable EnergiesRenewable EnergiesRenewable Energies WHY ENERGY STORAGE ? Billionsdebarils

Canet, Léonie

193

Data:Ae74357e-4e71-46ae-8875-1f09d23cbb20 | Open Energy Information  

Open Energy Info (EERE)

7e-4e71-46ae-8875-1f09d23cbb20 7e-4e71-46ae-8875-1f09d23cbb20 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Eagle River, Wisconsin (Utility Company) Effective date: 2009/08/04 End date if known: Rate name: Cp-1 TOD Small Power Optional Time-of-Day Service between 50kW and 200kW Demand Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base

194

High Speed Flywheels for Integrated Energy Storage and Attitude Control  

E-Print Network (OSTI)

High Speed Flywheels for Integrated Energy Storage and Attitude Control Christopher D. Hall. Decomposition of the space of internal torques separates the attitude control functionfrom the energy storage simultaneously performing energy storage and extraction operations. 1 Introduction The power engineering

Hall, Christopher D.

195

Vehicle Technologies Office: 2013 Energy Storage R&D Progress...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3 Energy Storage R&D Progress Report, Sections 4-6 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 4-6 The FY 2013 Progress Report for Energy Storage...

196

EXPERIMENTAL AND THEORETICAL STUDIES OF THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

In Proceed- ings of Thermal Energy Storage in Aquifers Work-Mathematical Modeling of Thermal Energy storage in Aquifers.In Proceed- ings of Thermal Energy Storage in Aquifers Work-

Tsang, Chin Fu

2011-01-01T23:59:59.000Z

197

Thermal Energy Storage for Vacuum Precoolers  

E-Print Network (OSTI)

radically creating high peak demands and low load factors. An ice bank thermal energy storage (TES) and ice water vapor condenser were installed. The existing equipment and TES system were computer monitored to determine energy consumption and potential... efficiency at night. The ice bank thermal energy storage system has a 4.4 year simple payback. While building ice, the refrigeration system operated at a 6.26 Coefficient of Performance (COP). The refrigeration system operated more efficiently at night...

Nugent, D. M.

198

Energy Department Releases Grid Energy Storage Report | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Grid Energy Storage Report Releases Grid Energy Storage Report Energy Department Releases Grid Energy Storage Report December 12, 2013 - 9:48am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to a cleaner, more secure energy future, Energy Secretary Ernest Moniz today released the Energy Department's Grid Energy Storage report to the members of the Senate Energy and Natural Resources Committee. The report was commissioned at the request of Senator Ron Wyden, Committee Chairman. The report identifies the benefits of grid energy storage, the challenges that must be addressed to enable broader use, and the efforts of the Energy Department, in conjunction with industry and other government organizations, to meet those challenges.

199

Energy Department Releases Grid Energy Storage Report | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Grid Energy Storage Report Releases Grid Energy Storage Report Energy Department Releases Grid Energy Storage Report December 12, 2013 - 9:48am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to a cleaner, more secure energy future, Energy Secretary Ernest Moniz today released the Energy Department's Grid Energy Storage report to the members of the Senate Energy and Natural Resources Committee. The report was commissioned at the request of Senator Ron Wyden, Committee Chairman. The report identifies the benefits of grid energy storage, the challenges that must be addressed to enable broader use, and the efforts of the Energy Department, in conjunction with industry and other government organizations, to meet those challenges.

200

Fact Sheet: Energy Storage Database (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sandia National Laboratories Sandia National Laboratories List of projects, including technology details and status Interactive map of search result project locations Multiple sort options (e.g., state, type, size) to ease navigation Energy storage projects and policies across the United States are rapidly evolving and expanding. A publicly accessible central archive is increasingly essential to document these developments; to facilitate future projects; and to ease cross-sector, national, and international coordination. The U.S. Department of Energy (DOE) and Sandia National Laboratories contracted Strategen Consulting LLC to develop a database of energy storage projects and policies. When completed, the database will present current information about energy storage projects worldwide and U.S. energy storage policy in an easy-to-use and intuitive format. The database will be research-grade, unbiased,

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Self-Assembled, Nanostructured Carbon for Energy Storage and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

202

Fact Sheet: Codes and Standards for Energy Storage System Performance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) The...

203

Thermal Energy Storage Technology for Transportation and Other...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Technology for Transportation and Other Applications D. Bank, M. Maurer, J. Penkala, K. Sehanobish, A. Soukhojak Thermal Energy Storage Technology for Transportation...

204

Project Profile: Innovative Thermal Energy Storage for Baseload...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

205

Fact Sheet Available: Codes and Standards for Energy Storage...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet Available: Codes and Standards for Energy Storage System Performance and Safety (June 2014) Fact Sheet Available: Codes and Standards for Energy Storage System...

206

Project Profile: Innovative Phase Change Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

207

Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams. Abstract: Sodium ion (Na+) batteries...

208

Sandia National Laboratories: molten salt energy storage demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

molten salt energy storage demonstration Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power,...

209

2014 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy Savers (EERE)

Energy Storage Technologies 2014 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies research activities 2014amr02.pdf More...

210

Sandia National Laboratories: New Mexico Renewable Energy Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mexico Renewable Energy Storage Task Force New Mexico Renewable Energy Storage Task Force Composite-Materials Fatigue Database Updated DOE-Sponsored Reference Model Project Results...

211

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies Download presentation...

212

Project Profile: Reducing the Cost of Thermal Energy Storage...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

213

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR...  

Office of Environmental Management (EM)

SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES) Funding Number:...

214

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

215

In-Situ Electron Microscopy of Electrical Energy Storage Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Electrical Energy Storage Materials In-Situ Electron Microscopy of Electrical Energy Storage Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

216

Project Profile: Novel Molten Salts Thermal Energy Storage for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power...

217

Fact Sheet: Isothermal Compressed Air Energy Storage (October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Isothermal Compressed Air Energy Storage (October 2012) Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) SustainX will demonstrate an isothermal compressed air...

218

Fact Sheet: Energy Storage Testing and Validation (October 2012...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Validation (October 2012) More Documents & Publications Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012) Energy Storage Systems 2012 Peer Review Presentations -...

219

2011 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 Annual Merit Review Results Report - Energy Storage Technologies 2011 Annual Merit Review Results Report - Energy Storage Technologies Merit review of DOE Vehicle Technologies...

220

2012 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2012 Annual Merit Review Results Report - Energy Storage Technologies...

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

222

Compressed air energy storage system  

DOE Patents (OSTI)

An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

Ahrens, Frederick W. (Naperville, IL); Kartsounes, George T. (Naperville, IL)

1981-01-01T23:59:59.000Z

223

University of Arizona Compressed Air Energy Storage  

SciTech Connect

Boiled down to its essentials, the grants purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

Simmons, Joseph; Muralidharan, Krishna

2012-12-31T23:59:59.000Z

224

Data:25528407-a10c-425a-81fb-47749b2360ae | Open Energy Information  

Open Energy Info (EERE)

8407-a10c-425a-81fb-47749b2360ae 8407-a10c-425a-81fb-47749b2360ae No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Roanoke Electric Member Corp Effective date: 2010/07/26 End date if known: Rate name: Rider for Small Renewable Generation Systems Sector: Description: AVAILABILITY Service under this Rider is available only to consumers located in the Cooperative's service territory who own a small renewable generator (wind, photovoltaic, biomass-fueled, hydro) that is interconnected directly with and operated in parallel with the Cooperative's distribution system with a capacity of 25 kW or less and contract with the Cooperative to sell all generating capacity and energy to the Cooperative. Service necessary for the delivery of the consumer's power into the Cooperative's system under this Rider shall be furnished solely to the individual contracting consumer in a single enterprise, located entirely on a single, contiguous premise, and owned by the consumer installing the small renewable generator. Service hereunder shall be restricted to the capacity of the consumer's generating facilities. Power delivered to the Cooperative under this Rider shall not offset or be substituted for power contracted for under any other schedule of the Cooperative. The obligations of the Cooperative in regards to service under this Rider are dependent upon its securing and retaining all necessary rights-of-way, privileges, franchises, and permits for such service. The Cooperative shall not be liable to any consumer or applicant for power in the event it is delayed in, or is prevented from purchasing power by its failure to secure and retain such rights-of-way, rights, privileges, franchises, and permits.

225

NREL: Energy Storage - Working with Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with Us Working with Us Partnering with industry, government, and universities is key to developing affordable energy storage technology and moving it into the marketplace and the U.S. economy. In collaboration with our diverse partners, we use thermal management and modeling and analysis from a vehicle systems perspective to improve energy storage devices. Much of our research is conducted at the state-of-the-art energy storage laboratory, in Golden, Colorado. There are a variety of ways to become involved with NREL's Energy Storage activities: NREL's Partnering Agreements Work collaboratively with NREL through a variety of Technology Partnership Agreements. We can help you select the most appropriate agreement for your research project. Gain access to NREL's expertise and specialized research facilities through

226

Energy Storage Systems 2005 Peer Review  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on October 20, 2005 in San Francisco, CA. The agenda and ESS program overview presentation are below.

227

Solar Energy Storage in Packed Beds  

Science Journals Connector (OSTI)

Solar heating of buildingsand grain drying for example, requires the accumulation and storage of solar energy to provide heating for the night ... available on clear and partly cloudy days. Solar heating is a pro...

Wen-Jei Yang

1989-01-01T23:59:59.000Z

228

NREL: Energy Storage - Isothermal Battery Calorimeters  

NLE Websites -- All DOE Office Websites (Extended Search)

100 Maximum Constant Heat Generation (W) 50 150 4,000 Working with Industry to Fine-Tune Energy Storage Designs The IBCs' capabilities make it possible for battery developers to...

229

Electrochemical Energy Storage Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company, ExxonMobil Corporation, and Shell Oil Products US; two utilities - Southern California Edison and DTE Energy; and the Electric Power Research Institute (EPRI). The Electrochemical Energy Storage Technical Team is one of 12 U.S. DRIVE technical teams ("tech teams") whose mission is to accelerate the development of pre-competitive and innovative technologies to

230

Using Alternative Energy Storage in UPS Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Data Management for Data Management for CEC/DOE Energy Storage Demonstration Project Work performed under contract with Sandia National Labs Garth Corey Project Manager Project funded by the US DOE ESS Program Dr. Imre Gyuk, Program Manager Presented by Doug Dorr ESI Project Manager ddorr@eprisolutions.com 2 Presentation Outline  Project Overview and Objectives  Data acquisition status for the demonstration projects  Updates to the Energy Storage Initiative Website  Examples of Website Data Analysis 3 Project Overview and Objectives  Promote New Energy Storage Technologies that can achieve California's long range energy goals:  Increased energy utilization efficiency  Reduced demand for out of state energy procurement  Reduced overall energy costs to consumers

231

Why Systems Analysis for Energy Storage?  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cost Effectiveness Evaluation, Cost Effectiveness Evaluation, DNV KEMA Modeling for CPUC Energy Storage Proceeding Energy Storage Panel, EAC Meeting June 6, 2013 Common Pitfalls  Using historical prices - Prices are likely to change due to rule modifications, changes in regulation supply resources over time, changes in regulation needs over time - Depending on the amount of storage added to the market, the introduction of storage can change market prices  Modeling deterministic behavior (perfect performance assuming knowledge of upcoming prices) - Future prices are unknown and actual revenues will likely not reflect strategy that gets maximum revenue 100% of the time  Ignoring system effects - In addition to affecting prices, certain amounts of storage can affect imports/exports

232

Acoustic Energy Storage in Single Bubble Sonoluminescence  

E-Print Network (OSTI)

Single bubble sonoluminescence is understood in terms of a shock focusing towards the bubble center. We present a mechanism for significantly enhancing the effect of shock focusing, arising from the storage of energy in the acoustic modes of the gas. The modes with strongest coupling are not spherically symmetric. The storage of acoustic energy gives a framework for understanding how light intensities depend so strongly on ambient gases and liquids and suggests that the light intensities of successive flashes are highly correlated.

Michael P. Brenner; Sascha Hilgenfeldt; Detlef Lohse; Rodolfo R. Rosales

1996-05-07T23:59:59.000Z

233

Solar energy thermalization and storage device  

DOE Patents (OSTI)

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

234

PNNL Solving the Energy Storage Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNNL Solving the Energy Storage Challenge PNNL Solving the Energy Storage Challenge PNNL Solving the Energy Storage Challenge January 14, 2011 - 12:41pm Addthis PNNL teamed up with Northwest Public Television to produce a video on their effort on energy storage, "Saving the Sun for a Rainy Day." Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? In order to maintain reliability from renewables, energy must be stored for when power cannot be generated -- a challenge that PNNL is working on. In conversations about renewable energy sources like solar and wind - whether here at the Energy Department or among industry leaders, scientists and students - energy storage is repeatedly identified as the tipping point between intermittency and reliability.

235

Integrated solar energy harvesting and storage  

Science Journals Connector (OSTI)

To explore integrated solar energy harvesting as a power source for low power systems, an array of energy scavenging photodiodes based on a passive-pixel architecture for CMOS imagers has been fabricated together with storage capacitors implemented using ... Keywords: energy harvesting, low-power design, photodiodes

Nathaniel J. Guilar; Travis J. Kleeburg; Albert Chen; Diego R. Yankelevich; Rajeevan Amirtharajah

2009-05-01T23:59:59.000Z

236

Project Profile: CSP Energy Storage Solutions Multiple Technologies Compared  

Energy.gov (U.S. Department of Energy (DOE))

US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial, utility-scale thermal energy storage technologies and provide a path to cost-effective energy storage for CSP plants >50 MW.

237

Data:Ae43a80e-7ae3-46a2-adf3-184f31165b32 | Open Energy Information  

Open Energy Info (EERE)

0e-7ae3-46a2-adf3-184f31165b32 0e-7ae3-46a2-adf3-184f31165b32 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Argyle, Wisconsin (Utility Company) Effective date: 2008/05/29 End date if known: Rate name: Cp-1 Small Power Service with Parallel Generation(20kW or less) Sector: Commercial Description: Application: This rate will be applied to customers for all types of service if their monthly Maximum Measured Demand is in excess of 40 kilowatts (kW) per month for three or more months in aconsecutive 12-month period, unless the customer exceeds the application conditions of the large power Cp-2 schedule. Customers billed on this rate shall continue to be billed on this rate until their monthly Maximum Measured Demand is less than 40 kW per month for 12 consecutive months. The utility shall offer customers billed on this rate a one-time option to continue to be billed on this rate for another 12 months if their monthly Maximum Measured Demand is less than 40 kW per month. However, this option shall be offered with the provision that the customer waives all rights to billing adjustments arising from a claim that the bill for service would be less on another rate schedule than under this rate schedule. Fixed Monthly Charge includes Commitment to Community Rider: $1.34 per customer per month

238

Flywheel energy storage using superconducting magnetic bearings  

SciTech Connect

Storage of electrical energy on a utility scale is currently not practicable for most utilities, preventing the full utilization of existing base-load capacity. A potential solution to this problem is Flywheel Energy Storage (FES), made possible by technological developments in high-temperature superconducting materials. Commonwealth Research Corporation (CRC), the research arm of Commonwealth Edison Company, and Argonne National Laboratory are implementing a demonstration project to advance the state of the art in high temperature superconductor (HTS) bearing performance and the overall demonstration of efficient Flywheel Energy Storage. Currently, electricity must be used simultaneously with its generation as electrical energy storage is not available for most utilities. Existing storage methods either are dependent on special geography, are too expensive, or are too inefficient. Without energy storage, electric utilities, such as Commonwealth Edison Company, are forced to cycle base load power plants to meet load swings in hourly customer demand. Demand can change by as much as 30% over a 12-hour period and result in significant costs to utilities as power plant output is adjusted to meet these changes. HTS FES systems can reduce demand-based power plant cycling by storing unused nighttime capacity until it is needed to meet daytime demand.

Abboud, R.G. [Commonwealth Research Corp., Chicago, IL (United States); Uherka, K.; Hull, J.; Mulcahy, T. [Argonne National Lab., IL (United States)

1994-04-01T23:59:59.000Z

239

Webinar Presentation: Energy Storage Solutions for Microgrids (November  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation: Energy Storage Solutions for Microgrids Presentation: Energy Storage Solutions for Microgrids (November 2012) Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) On November 7, 2012, Clean Energy States Aliance (CESA) hosted a webinar with Connecticut DEEP in conjuction with Sandia National Lab and DOE on State and Federal Energy Storage Technology Partnership (ESTAP). The four guest speakers were Veronica Szczerkowski (CT DEEP), Imre Gyuk (DOE), Matt Lazarewicz (CESA consultant), and Dan Borneo (Sandia). The combined presentations are available below. Webinar Presentation: Energy Storage Solutions for Microgrids (November 2012) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 1 Fact Sheet: Energy Storage Technology Advancement Partnership (October

240

Definition: Electricity Storage Technologies | Open Energy Information  

Open Energy Info (EERE)

Dictionary.png Dictionary.png Electricity Storage Technologies Technologies that can store electricity to be used at a later time. These devices require a mechanism to convert alternating current (AC) electricity into another form for storage, and then back to AC electricity. Common forms of electricity storage include batteries, flywheels, and pumped hydro. Electricity storage can provide backup power, peaking power, and ancillary services, and can store excess electricity produced by renewable energy resources when available.[1] Related Terms electricity generation References ↑ https://www.smartgrid.gov/category/technology/electricity_storage_technologies [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid,

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sorption thermal storage for solar energy  

Science Journals Connector (OSTI)

Abstract Sorption technologies, which are considered mainly for solar cooling and heat pumping before, have gained a lot of interests for heat storage of solar energy in recent years, due to their high energy densities and long-term preservation ability for thermal energy. The aim of this review is to provide an insight into the basic knowledge and the current state of the art of research on sorption thermal storage technologies. The first section is concerned with the terminology and classification for sorption processes to give a clear scope of discussion in this paper. Sorption thermal storage is suggested to cover four technologies: liquid absorption, solid adsorption, chemical reaction and composite materials. Then the storage mechanisms and descriptions of basic closed and open cycles are given. The progress of sorption materials, cycles, and systems are also reviewed. Besides the well-known sorbents like silica gels and zeolites, some new materials, including aluminophosphates (AlPOs), silico-aluminophosphates (SAPOs) and metal-organic frameworks (MOFs), are proposed for heat storage. As energy density is a key criterion, emphais is given to the comparison of storage densities and charging tempertures for different materials. Ongoing research and development studies show that the challenges of the technology focus on the aspects of different types of sorption materials, the configurations of absorption cycles and advanced adsorption reactors. Booming progress illustrates that sorption thermal storage is a realistic and sustainable option for storing solar energy, especially for long-term applications. To bring the sorption storage solution into market, more intensive studies in fields of evaluation of advanced materials and development of efficient and compact prototypes are still required.

N. Yu; R.Z. Wang; L.W. Wang

2013-01-01T23:59:59.000Z

242

Energy Storage Technologies: State of Development for Stationary and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Enhancing the Smart Grid: Integrating Clean Distributed and Renewable

243

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

for industriell og teknisk forskning) will now tackle energy challenges such as renewable-energy integration, grid modernization, gas technologies, and algae-based biofuels. SINTEF...

244

Data:4935cc6d-80d5-4723-b5ae-08a9d3e47ad1 | Open Energy Information  

Open Energy Info (EERE)

cc6d-80d5-4723-b5ae-08a9d3e47ad1 cc6d-80d5-4723-b5ae-08a9d3e47ad1 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kit Carson Electric Coop, Inc Effective date: 2011/09/22 End date if known: Rate name: Optional Time-Of-Use Residential Seasonal Service Sector: Residential Description: Available to all seasonal, residential consumers who require less than 50 kVA transformer capacity within the Utility's service area and who maintain residence in the same premises for less than nine months or more per year. In order to qualify for this rate one of the following applications are required: electric thermal storage, electric base board, electric radiant heating (excluding portable electric heaters), and electric water heating for normal domestic power use to individual residences, individual dwelling units, individual apartments.

245

Energy Storage | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sustainable Energy Technologies Department Sustainable Energy Technologies Department Energy Storage Group A change toward alternative transportation - hydrogen fuel-cell vehicles, hybrid electric vehicles, plug-in hybrid-electric vehicles and electric vehicles - is essential for reducing oil dependency. Brookhaven National Laboratory conducts leading-edge research into two of the most promising technologies to move us closer to making such vehicles feasible, affordable and safe: solid-state hydrogen storage and lithium batteries. Brookhaven scientists are conducting basic electrochemical research to significantly improve the efficiency and reliability of fuel cells and batteries. They have launched a concerted effort of basic and applied research for the development of improved energy-storage materials and

246

Data:57c555ae-4083-4441-9537-7390b005b301 | Open Energy Information  

Open Energy Info (EERE)

ae-4083-4441-9537-7390b005b301 ae-4083-4441-9537-7390b005b301 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Midwest Energy Inc Effective date: 2012/06/29 End date if known: Rate name: FSLS- HPS 360 Watt 138 kWh (2) Sector: Lighting Description: Source or reference: http://www.mwenergy.com/elecrate.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

247

Data:14cf1724-98aa-4624-a421-e9262ae6cf69 | Open Energy Information  

Open Energy Info (EERE)

-98aa-4624-a421-e9262ae6cf69 -98aa-4624-a421-e9262ae6cf69 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Cuivre River Electric Coop Inc Effective date: End date if known: Rate name: Residential Duel Fuel Rate Sector: Residential Description: *Used for electric heating on off-peak time Service charge from residential rate assumed to be paid ($25) Source or reference: http://www.cuivre.com/Residential/ResidentialEnergyRates/tabid/83/Default.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months):

248

Energy Storage Systems 2006 Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Peer Review 6 Peer Review Energy Storage Systems 2006 Peer Review The 2006 Peer Review Meeting for the DOE Energy Storage Systems (ESS) Program was held in Washington DC on November 2-3, 2006. Current and completed program projects were presented and reviewed by a group of industry professionals. The agenda and ESS program overview are available below. Day 1 morning session presentations Day 1 afternoon session presentations Day 2 morning session presentations Day 2 afternoon session presentations ESS 2006 Peer Review - Agenda.pdf ESS 2006 Peer Review - ESS Program Overview - John Boyes, SNL.pdf More Documents & Publications Energy Storage Systems 2007 Peer Review Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications

249

Magnetic Energy Storage System: Superconducting Magnet Energy Storage System with Direct Power Electronics Interface  

SciTech Connect

GRIDS Project: ABB is developing an advanced energy storage system using superconducting magnets that could store significantly more energy than todays best magnetic storage technologies at a fraction of the cost. This system could provide enough storage capacity to encourage more widespread use of renewable power like wind and solar. Superconducting magnetic energy storage systems have been in development for almost 3 decades; however, past devices were designed to supply power only for short durationsgenerally less than a few minutes. ABBs system would deliver the stored energy at very low cost, making it ideal for eventual use in the electricity grid as a costeffective competitor to batteries and other energy storage technologies. The device could potentially cost even less, on a per kilowatt basis, than traditional lead-acid batteries.

None

2010-10-01T23:59:59.000Z

250

Energy Hub Based on Nuclear Energy and Hydrogen Energy Storage  

Science Journals Connector (OSTI)

An energy hub comprises of the interactions of different energy loads and sources for power generation, storage, and conversion. ... In addition, where there are technical limitations in electricity distribution such as transmission congestion, the use of hydrogen as an energy carrier to increase the efficiency and reliability of the electric grid becomes an attractive option. ... It will be able to facilitate the intermittency of renewable resources such as solar, and wind, and be able to store energy in the form of hydrogen and convert hydrogen back to electricity when demand returns. ...

Yaser Maniyali; Ali Almansoori; Michael Fowler; Ali Elkamel

2013-05-13T23:59:59.000Z

251

Macroencapsulation of Phase Change Materials for Thermal Energy Storage.  

E-Print Network (OSTI)

??The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy. Latent heat storage enables (more)

Pendyala, Swetha

2012-01-01T23:59:59.000Z

252

Project Profile: CSP Energy Storage Solutions - Multiple Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial,...

253

Storage of Solar Thermal Energy  

Science Journals Connector (OSTI)

It is estimated that, at the present rate of consumption of (readily available stored energy in) fossil fuels, the worlds ... world are in search of new and renewable energy sources. Developing efficient and ine...

S. Kaka; E. Payko; Y. Yener

1989-01-01T23:59:59.000Z

254

NREL: Energy Storage - Awards and Successes  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards and Successes Awards and Successes Photo of Research and Development 100 Award In collaboration with DOE and industry, NREL's energy storage team has received numerous awards for innovative technologies that now benefit industry and consumers around the world. R&D 100 Awards Two prestigious R&D 100 awards were won by the energy storage team. These awards, which have been called "the Nobel Prizes of applied research," are presented annually by R&D Magazine and recognize the world's top 100 technologically significant products. Current-Interrupt Charging Algorithm Developed In 2001, NREL's energy storage team, Recombination Technologies, Optima Batteries, and the Advanced Lead Acid Battery Consortium were recognized with an R&D 100 Award for developing a current-interrupt charging algorithm

255

Stationary flywheel energy storage systems. Final report  

SciTech Connect

The aim of this system study is to find out industrial applications of Stationary Flywheel Energy Accumulators. The economic value for the consumer and the effects on the power supply grid should be investigated. As to overall economy, compensation of short time maximum power out-put seems to be more favorable at the power stations. An additional possibility for energy storage by flywheels is given where otherwise lost energy can be used effectively, according to the successful brake energy storage in vehicles. Under this aspect the future use of flywheels in wind-power-plants seems to be promising. Attractive savings of energy can be obtained by introducing modern flywheel technology for emergency power supply units which are employed for instance in telecommunication systems. Especially the application for emergency power supply, in power stations and in combination with wind energy converters needs further investigation.

Gilhaus, A.; Hau, E.; Gassner, G.; Huss, G.; Schauberger, H.

1982-01-01T23:59:59.000Z

256

Optimal Demand Response with Energy Storage Management  

E-Print Network (OSTI)

In this paper, we consider the problem of optimal demand response and energy storage management for a power consuming entity. The entity's objective is to find an optimal control policy for deciding how much load to consume, how much power to purchase from/sell to the power grid, and how to use the finite capacity energy storage device and renewable energy, to minimize his average cost, being the disutility due to load- shedding and cost for purchasing power. Due to the coupling effect of the finite size energy storage, such problems are challenging and are typically tackled using dynamic programming, which is often complex in computation and requires substantial statistical information of the system dynamics. We instead develop a low-complexity algorithm called Demand Response with Energy Storage Management (DR-ESM). DR-ESM does not require any statistical knowledge of the system dynamics, including the renewable energy and the power prices. It only requires the entity to solve a small convex optimization pr...

Huang, Longbo; Ramchandran, Kannan

2012-01-01T23:59:59.000Z

257

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

258

Compressed Air Storage Strategies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

259

Carbon Capture and Storage (CCS) Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture and Storage (CCS) Studies Carbon Capture and Storage (CCS) Studies Fossil Energy Studies for the next 6 months,December 2008-June 2009, Carbon Capture and Storage...

260

Chemical Hydrogen Storage R & D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Hydrogen Storage R & D Chemical Hydrogen Storage R & D DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient regeneration systems for...

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Data:3cfc7446-9351-40ae-9853-c44fadf9c5b2 | Open Energy Information  

Open Energy Info (EERE)

446-9351-40ae-9853-c44fadf9c5b2 446-9351-40ae-9853-c44fadf9c5b2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Albemarle, North Carolina (Utility Company) Effective date: 2012/07/01 End date if known: Rate name: LED 44 Watt - Overhead Sector: Lighting Description: Source or reference: www.ci.albemarle.nc.us/LinkClick.aspx?fileticket=0UFtg6kZVeM%3d&tabid=127&mid=1193 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category:

262

Data:4871c667-e09c-461e-9378-30eade6ae054 | Open Energy Information  

Open Energy Info (EERE)

7-e09c-461e-9378-30eade6ae054 7-e09c-461e-9378-30eade6ae054 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Jackson Electric Member Corp Effective date: End date if known: Rate name: GSSTOU-10 Small Commercial General Service Time- Of- Use Single Phase Sector: Commercial Description: Source or reference: Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1

263

Data:A938fe60-ae14-46bb-84ca-0a0908959960 | Open Energy Information  

Open Energy Info (EERE)

fe60-ae14-46bb-84ca-0a0908959960 fe60-ae14-46bb-84ca-0a0908959960 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kit Carson Electric Coop, Inc Effective date: 2011/09/22 End date if known: Rate name: Commercial Service Sector: Commercial Description: Available for commercial, industrial, schools, churches, public buildings, and three-phase farm service requiring less than 50 kVA of transformer capacity within the Utility's service area. Source or reference: www.kitcarson.com Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh):

264

Data:C8671a01-cfdb-4981-b45b-97e38ae20489 | Open Energy Information  

Open Energy Info (EERE)

a01-cfdb-4981-b45b-97e38ae20489 a01-cfdb-4981-b45b-97e38ae20489 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Wolverine Pwr Supply Coop, Inc Effective date: 2013/02/26 End date if known: Rate name: Schedule LP-1-C (Large Power Choice) Sector: Description: Source or reference: http://www.dleg.state.mi.us/mpsc/electric/ratebooks/ontonagon/ontonagonmemberregcur.pdf Source Parent: Comments there is a $140.03 cent surcharge Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

265

Data:3169e8ac-91ae-4900-bec0-78b73aacf2ca | Open Energy Information  

Open Energy Info (EERE)

ac-91ae-4900-bec0-78b73aacf2ca ac-91ae-4900-bec0-78b73aacf2ca No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Kirkwood, Missouri (Utility Company) Effective date: 1991/01/01 End date if known: Rate name: Large General Service- GS-B Sector: Commercial Description: Applicable to any customers non-residential that exceeds 100 kW during any summer month. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

266

Data:F7bc479c-609d-46f2-a6ae-258820806920 | Open Energy Information  

Open Energy Info (EERE)

609d-46f2-a6ae-258820806920 609d-46f2-a6ae-258820806920 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of New Bern, North Carolina (Utility Company) Effective date: 2008/07/01 End date if known: Rate name: Area Lighting Schedule - Mercury Vapor 60,000 Lumen 1000w Sector: Lighting Description: Source or reference: www.newbern-nc.org/Elec/ElectricRates.php Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring:

267

Data:9e905761-b99c-44ba-93ae-cfdbdc1e1310 | Open Energy Information  

Open Energy Info (EERE)

5761-b99c-44ba-93ae-cfdbdc1e1310 5761-b99c-44ba-93ae-cfdbdc1e1310 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: High-Pressure Sodium-50 watts Sector: Lighting Description: Service under this rate is available for street and area lighting service installations, maintenance and use of energy, and traffic control lighting service provided the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost. bundled TD&S monthly rate included

268

Data:86f74141-ebbd-4619-82ec-ae3bc2cdd191 | Open Energy Information  

Open Energy Info (EERE)

1-ebbd-4619-82ec-ae3bc2cdd191 1-ebbd-4619-82ec-ae3bc2cdd191 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Durant, Mississippi (Utility Company) Effective date: 2013/06/21 End date if known: Rate name: AL 3 Sector: Lighting Description: Source or reference: ISU Archive Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >> Seasonal/Monthly Demand Charge Structures

269

Data:0bbcdf67-e24c-4022-a79f-6cfb88782ae5 | Open Energy Information  

Open Energy Info (EERE)

bbcdf67-e24c-4022-a79f-6cfb88782ae5 bbcdf67-e24c-4022-a79f-6cfb88782ae5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Washington Elec Member Corp Effective date: End date if known: Rate name: Rate-09 (Irrigation Service) Sector: Description: Source or reference: To all single-phase or three-phase consumers who require electric service for irrigation purposes. Electric service of one standard voltage is delivered at one point and metered at or compensated to that voltage. Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

270

Data:12a700f2-b169-42ae-bcdf-25646587ea4b | Open Energy Information  

Open Energy Info (EERE)

-b169-42ae-bcdf-25646587ea4b -b169-42ae-bcdf-25646587ea4b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Loup River Public Power Dist Effective date: 2013/01/15 End date if known: Rate name: District Owned Lighting EMH 11000 Sector: Commercial Description: Source or reference: http://www.loup.com/customersvc/rates.asp Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

271

Data:383117c2-764d-4893-b91a-ccee9ae71877 | Open Energy Information  

Open Energy Info (EERE)

c2-764d-4893-b91a-ccee9ae71877 c2-764d-4893-b91a-ccee9ae71877 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Tecumseh, Nebraska (Utility Company) Effective date: 2013/05/01 End date if known: 2013/09/30 Rate name: Dusk-To-Dawn Lighting- Metered 250 W Luminaires Sector: Lighting Description: Applicable to any customer for private or public outdoor lighting service, whether unmetered and provided by the city, or metered. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

272

Data:827b8759-266d-48bb-ae41-95850840ed17 | Open Energy Information  

Open Energy Info (EERE)

59-266d-48bb-ae41-95850840ed17 59-266d-48bb-ae41-95850840ed17 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Alabama Power Co Effective date: 2011/01/01 End date if known: Rate name: 150W METALHALIDE CUTOFF COACH LANTERN Sector: Lighting Description: Source or reference: http://www.alabamapower.com/pricing/pdf/FPL.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

273

Data:3dfe9516-886e-413a-baed-ae8390939e0b | Open Energy Information  

Open Energy Info (EERE)

dfe9516-886e-413a-baed-ae8390939e0b dfe9516-886e-413a-baed-ae8390939e0b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Public Service Co of Oklahoma Effective date: 2011/12/28 End date if known: Rate name: LPLTOD (Large Power and Light Time-Of-Day Primary) Sector: Commercial Description: Source or reference: https://www.psoklahoma.com/global/utilities/lib/docs/ratesandtariffs/Oklahoma/LCandISchedules_01-27-2012.pdf Source Parent: Comments Applicable to 500kW-Infinity Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months):

274

Data:Fbc11b35-ae3f-4340-bbaa-236272810d7f | Open Energy Information  

Open Energy Info (EERE)

Fbc11b35-ae3f-4340-bbaa-236272810d7f Fbc11b35-ae3f-4340-bbaa-236272810d7f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Borough of Pitcairn, Pennsylvania (Utility Company) Effective date: End date if known: Rate name: General Service All-Electric Sector: Commercial Description: Available to any customer who desires total electric service and will be furnished subject to approval of the Utility provided the customer obtains all energy needs from the Utility. Source or reference: http://pitcairnborough.us/ordinances/Chapter%2022%20Electric%20Power%20Service.pdf Source Parent: Comments Applicability

275

Data:536fedbc-7ae4-4512-aa0b-67deecd87689 | Open Energy Information  

Open Energy Info (EERE)

fedbc-7ae4-4512-aa0b-67deecd87689 fedbc-7ae4-4512-aa0b-67deecd87689 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Sumter Electric Member Corp Effective date: 2012/01/01 End date if known: Rate name: Pole Aluminum/ Direct Burial 16 ft Sector: Lighting Description: Source or reference: http://www.sumteremc.com/pdfs/OL-9.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

276

Data:2027ba7a-f5bf-4540-b733-b3fe771817ae | Open Energy Information  

Open Energy Info (EERE)

a-f5bf-4540-b733-b3fe771817ae a-f5bf-4540-b733-b3fe771817ae No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Tri-County Elec Member Corp (Tennessee) Effective date: End date if known: Rate name: 200 Watt HPS Sector: Lighting Description: Source or reference: http://www.tcemc.org/index.php/residential-information/ Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

277

Data:B027120b-2daf-4490-90b3-ae35701c3244 | Open Energy Information  

Open Energy Info (EERE)

0b-2daf-4490-90b3-ae35701c3244 0b-2daf-4490-90b3-ae35701c3244 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: NSTAR Electric Company Effective date: 2012/06/01 End date if known: Rate name: ACTON General Service SB-G3(C6/C7)(F6/F7)Standby Service (Demand charge) Sector: Industrial Description: Source or reference: http://www.nstar.com/docs3/tariffs/190.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring:

278

Data:13034ae8-bd29-4612-a648-c295c51b311d | Open Energy Information  

Open Energy Info (EERE)

ae8-bd29-4612-a648-c295c51b311d ae8-bd29-4612-a648-c295c51b311d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Story City, Iowa (Utility Company) Effective date: 2004/01/01 End date if known: Rate name: Quartz - 1500 Watt Sector: Lighting Description: Source or reference: Ted binder 1 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3 Next >>

279

Data:122e7cf9-425e-4730-9796-2fffee29ae64 | Open Energy Information  

Open Energy Info (EERE)

e7cf9-425e-4730-9796-2fffee29ae64 e7cf9-425e-4730-9796-2fffee29ae64 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Washington Elec Member Corp Effective date: End date if known: Rate name: 1,000 Watt MH Flood Sector: Lighting Description: Source or reference: http://facts.psc.state.ga.us/Public/GetDocument.aspx?ID=129296 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

280

Data:8861091f-594c-4522-ae05-1f9a7207d993 | Open Energy Information  

Open Energy Info (EERE)

091f-594c-4522-ae05-1f9a7207d993 091f-594c-4522-ae05-1f9a7207d993 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Bangor Hydro-Electric Co Effective date: 2012/07/01 End date if known: Rate name: Municipal street lighting-High-Pressure Sodium 50 watts Sector: Lighting Description: Energy service only to municipalities owning, operating, and maintaining a street lighting system and limited to locations where secondary service is available. Traffic control lighting service may be rendered under this rate providing the customer furnishes the equipment. Customers taking service under this rate schedule are responsible for paying both Distribution Service and Stranded Cost.

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Data:B99bd530-ae5b-4295-beea-006cb91fcdf1 | Open Energy Information  

Open Energy Info (EERE)

bd530-ae5b-4295-beea-006cb91fcdf1 bd530-ae5b-4295-beea-006cb91fcdf1 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Sylvania, Georgia (Utility Company) Effective date: 2012/10/01 End date if known: Rate name: Agri SS Elec Sector: Commercial Description: Source or reference: Rate Binder #2 (Illinois State University) Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >>

282

Data:9938a3ae-39dd-4803-b189-4195441af5a9 | Open Energy Information  

Open Energy Info (EERE)

ae-39dd-4803-b189-4195441af5a9 ae-39dd-4803-b189-4195441af5a9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Wells Rural Electric Co Effective date: 2011/10/01 End date if known: Rate name: Security Light- 175 W Sector: Lighting Description: The Seller shall determine the Power Cost Adjustment subject to power supplier charges and credits. Source or reference: http://wrec.coop/info/rates_dyn.php Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service

283

Data:45336b19-797e-45fb-ae04-6814eb992795 | Open Energy Information  

Open Energy Info (EERE)

797e-45fb-ae04-6814eb992795 797e-45fb-ae04-6814eb992795 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Tecumseh, Nebraska (Utility Company) Effective date: 2013/05/01 End date if known: 2013/09/30 Rate name: Dusk-To-Dawn Lighting- UnMetered 250 W Luminaires Sector: Lighting Description: Applicable to any customer for private or public outdoor lighting service, whether unmetered and provided by the city, or metered. Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh):

284

Data:2a810647-c701-4743-ae9a-25db7fce5dbd | Open Energy Information  

Open Energy Info (EERE)

647-c701-4743-ae9a-25db7fce5dbd 647-c701-4743-ae9a-25db7fce5dbd No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Washington Elec Member Corp Effective date: End date if known: Rate name: 250 Watt HPS Cobra Head Sector: Lighting Description: Source or reference: http://facts.psc.state.ga.us/Public/GetDocument.aspx?ID=129296 Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

285

Data:238c150c-4117-4ae5-af40-54579540b808 | Open Energy Information  

Open Energy Info (EERE)

c-4117-4ae5-af40-54579540b808 c-4117-4ae5-af40-54579540b808 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Kingfisher, Oklahoma (Utility Company) Effective date: 2003/07/25 End date if known: Rate name: Security Light- With Existing Pole Sector: Lighting Description: Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

286

Data:073815e9-bde5-4de0-ae03-e98534411284 | Open Energy Information  

Open Energy Info (EERE)

bde5-4de0-ae03-e98534411284 bde5-4de0-ae03-e98534411284 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Monroe County Elec Coop, Inc Effective date: 2013/04/01 End date if known: Rate name: Schedule Large Power- Rate 0013 Sector: Commercial Description: This rate is available to members for commercial and industrial loads with Kw demand of 100 kW or greater. $1.00/kVA of installed transformer capacity. Source or reference: http://www.mcec.org/Documents/2013%20Rates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh):

287

Data:71b93648-4866-4663-9ae3-acb22a2ee0cf | Open Energy Information  

Open Energy Info (EERE)

8-4866-4663-9ae3-acb22a2ee0cf 8-4866-4663-9ae3-acb22a2ee0cf No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Stanton County Public Pwr Dist Effective date: 2012/01/01 End date if known: Rate name: Small Public Authority Services Single Phase Sector: Commercial Description: Source or reference: ISU Archives Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous

288

Data:A36013ae-e822-4246-84ac-4499c779c285 | Open Energy Information  

Open Energy Info (EERE)

ae-e822-4246-84ac-4499c779c285 ae-e822-4246-84ac-4499c779c285 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Maui Electric Co Ltd Effective date: 2013/07/01 End date if known: Rate name: Lanai-SCHEDULE "G" General Service Non-Demand - Single Phase Sector: Commercial Description: Availability: Applicable to general light and/or power loads less than or equal to 5000 kWh per month, and less than or equal to 25 kilowatts, and supplied through a single meter. Minimum Charge: $35.00 Source or reference: http://www.mauielectric.com/vcmcontent/FileScan/PDF/EnergyServices/Tarrifs/MECO/LanaiRatesSchG.pdf

289

Data:C1ad0bd9-aaac-493a-8947-6238ae398efb | Open Energy Information  

Open Energy Info (EERE)

bd9-aaac-493a-8947-6238ae398efb bd9-aaac-493a-8947-6238ae398efb No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Otter Tail Power Co Effective date: 2011/10/01 End date if known: Rate name: Outdoor Lighting 400 MV-FLOOD* Sector: Lighting Description: *Due to the U.S. Government Energy Act of 2005, after August 1, 2008, the Company will no longer install Mercury Vapor fixtures for new installations. RULES AND REGULATIONS: Terms and conditions of this electric rate schedule and the General Rules and Regulations govern use of this service. APPLICATION OF SCHEDULE: This schedule is applicable to any Customer for automatically operated dusk to dawn outdoor lighting supplied and operated by the Company

290

Data:8fa56be7-cd3c-4384-ae40-815057fb723b | Open Energy Information  

Open Energy Info (EERE)

be7-cd3c-4384-ae40-815057fb723b be7-cd3c-4384-ae40-815057fb723b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Prairie Land Electric Coop Inc Effective date: 2010/01/14 End date if known: Rate name: Monthly Unmetered Investment Facility(MULT GLOBE 70W HPS-Option E) Sector: Lighting Description: Customer-100% Cooperative-0% Source or reference: http://www.prairielandelectric.com/Rates_PDF/MKEC%20Rates.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

291

Data:5289eb16-08ae-4779-aef7-e948945f84ce | Open Energy Information  

Open Energy Info (EERE)

6-08ae-4779-aef7-e948945f84ce 6-08ae-4779-aef7-e948945f84ce No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: PUD No 3 of Mason County Effective date: 2009/04/01 End date if known: Rate name: 400 WATT Sector: Commercial Description: Source or reference: http://www.masonpud3.org/rates/outdoorLights.aspx Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous 1 2 3 Next >> << Previous 1 2 3

292

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Reference Model 5...

293

Sandia National Laboratories: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

294

Grid Energy Storage December 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Energy Storage December 2013 Grid Energy Storage December 2013 Grid Energy Storage December 2013 Modernizing the electric grid will help the nation meet the challenge of handling projected energy needs-including addressing climate change by relying on more energy from renewable sources-in the coming decades, while maintaining a robust and resilient electricity delivery system. By some estimates, the United States will need somewhere between 4 and 5 tera kilowatt-hours of electricity annually by 2050. Those planning and implementing grid expansion to meet this increased electric load face growing challenges in balancing economic and commercial viability, resiliency, cyber-security, and impacts to carbon emissions and environmental sustainability. Energy storage systems (ESS) will play a

295

Compressed Air Energy Storage (CAES) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Compressed Air Energy Storage (CAES) Jump to: navigation, search Contents 1 Introduction 2 Technology Description 3 Plants 4 References Introduction Compressed air energy storage (CAES) is a way to store energy that is generated at night and deliver the energy during the day to meet peak demand. This is performed by compressing air and storing it during periods of excess electricity and expanding the air through a turbine when electricity is needed. Technology Description Diabatic Diabatic compressed air energy storage is what the two existing compressed air energy storage facilities currently employ. This method is

296

Magnetic energy storage and conversion in the solar atmosphere  

Science Journals Connector (OSTI)

A review of the theoretical problems associated with preflare magnetic energy storage and conversion is presented. The review consists of three parts; preflare magnetic energy storage, magnetic energy conversion ...

D. S. Spicer

1982-01-01T23:59:59.000Z

297

Mass energy storage using off-river pumped hydro  

Science Journals Connector (OSTI)

Abstract: Energy storage assists very high penetration of variable renewable energy sources such as wind and solar. In many regions short-term off-river pumped hydro energy storage can...

Blakers, Andrew

298

The assessment of battery-ultracapacitor hybrid energy storage systems  

E-Print Network (OSTI)

Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

He, Yiou

2014-01-01T23:59:59.000Z

299

Control Algorithms for Grid-Scale Battery Energy Storage Systems  

E-Print Network (OSTI)

Control Algorithms for Grid-Scale Battery Energy Storage Systems This report describes development-connected battery energy storage system. The report was submitted by HNEI to the U.S. Department of Energy Office.2: Energy Storage Systems August 2014 HAWAI`I NATURAL ENERGY INSTITUTE School of Ocean & Earth Science

300

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network (OSTI)

potential materials for thermal energy storage in buildingcoupled with thermal energy storage," Applied Energy, vol.N. Fumo, "Benefits of thermal energy storage option combined

Steen, David

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Category:Smart Grid Projects - Energy Storage Demonstrations | Open Energy  

Open Energy Info (EERE)

Energy Storage Demonstrations Energy Storage Demonstrations Jump to: navigation, search Smart Grid Energy Storage Demonstration Projects category. Pages in category "Smart Grid Projects - Energy Storage Demonstrations" The following 16 pages are in this category, out of 16 total. 4 44 Tech Inc. Smart Grid Demonstration Project A Amber Kinetics, Inc. Smart Grid Demonstration Project B Beacon Power Corporation Smart Grid Demonstration Project C City of Painesville Smart Grid Demonstration Project D Duke Energy Business Services, LLC Smart Grid Demonstration Project E East Penn Manufacturing Co. Smart Grid Demonstration Project K Ktech Corporation Smart Grid Demonstration Project N New York State Electric & Gas Corporation Smart Grid Demonstration Project P Pacific Gas & Electric Company Smart Grid Demonstration Project

302

Energy Storage Systems 2007 Peer Review - Power Electronics Presentations |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Electronics Power Electronics Presentations Energy Storage Systems 2007 Peer Review - Power Electronics Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to power electronics are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Innovations in Energy Storage Systems ESS 2007 Peer Review - StatCom with Energy Storage to Smooth Intermittent Power Output of Wind Farms - Mesut Baran, NC State.pdf ESS 2007 Peer Review - Cyber-Physical Systems Distributed Control - Mariesa

303

MODELING OF HYDRO-PNEUMATIC ENERGY STORAGE USING PUMP TURBINES  

E-Print Network (OSTI)

of delivered power and energy capacities. Hydraulic storage or compressed air energy storage (CAES) can be used-turbine to displace a virtual liquid piston for air compression (Figure 1). A dynamic model of the storage system. It is based upon air compression storage using a hydraulic drive, which allows relatively high conversion

Paris-Sud XI, Université de

304

Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Presentation - Energy Storage in State RPS - Dec. 19, 2011 Presentation - Energy Storage in State RPS - Dec. 19, 2011 Webinar Presentation - Energy Storage in State RPS - Dec. 19, 2011 Dr. Imre Gyuk of the Office of Electricity Delivery and Energy Reliability presented "Grid Energy Storage: The Big Picture" as one of four guest speakers for a webinar on energy storage and renewable portfolio standards (RPS). The webinar was hosted by the State-Federal RPS Collaborative and the Clean Energy States Alliance (CESA) to explore the role of energy storage in state RPS, including the integration of an increasingly higher penetration of renewables and energy storage as a generation resource. The webinar presentation slides are available below; the recorded webinar may be downloaded from CESA's website. Webinar Presentation - December 19 RPS and Energy Storage.pdf

305

advanced energy storage | OpenEI  

Open Energy Info (EERE)

35 35 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280435 Varnish cache server advanced energy storage Dataset Summary Description The National Renewable Energy Laboratory (NREL) publishes a wide selection of data and statistics on renewable energy power technologies from a variety of sources (e.g. EIA, Oak Ridge National Laboratory, Sandia National Laboratory, EPRI and AWEA). In 2006, NREL published the 4th edition, presenting market and performance data for over a dozen technologies from publications from 1997 - 2004. Source NREL Date Released March 01st, 2006 (8 years ago) Date Updated Unknown Keywords advanced energy storage batteries biomass csp fuel cells geothermal

306

Flow Cells for Energy Storage Workshop Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Delivery Electricity Delivery & Energy Reliability Organized by: Energy Efficiency & Renewable Energy W i t h h e l p b y : Agenda Day/Time Speaker Subject Wednesday, March 07, 2012 8:45-9:00 Adam Weber, LBNL Welcome and workshop overview 9:00-9:30 Various, EERE, OFCT Background, approach, and reversible fuel cells 9:30-9:55 Michael Perry, UTRC Renaissance in flow cells: opportunities 9:55-10:20 Joe Eto, LBNL Energy storage requirements for the smart grid 10:20-10:35 AM Break 10:35-11:00 Robert Savinell, CWRU Revisiting flow-battery R&D 11:00-11:25 Stephen Clarke, Applied Intellectual Capital Lessons learned and yet to be learned from 20 years in RFB R&D 11:25-11:45 Imre Gyuk, DOE OE Research and deployment of stationary storage at DOE

307

Thermochemical energy storage systems: modelling, analysis and design.  

E-Print Network (OSTI)

??Thermal energy storage (TES) is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. (more)

Haji Abedin, Ali

2010-01-01T23:59:59.000Z

308

Hydrogen storage and supply system - Energy Innovation Portal  

NLE Websites -- All DOE Office Websites (Extended Search)

and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

309

Data:42231654-9dc2-4239-9249-e2a3ebca96ae | Open Energy Information  

Open Energy Info (EERE)

54-9dc2-4239-9249-e2a3ebca96ae 54-9dc2-4239-9249-e2a3ebca96ae No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Reading, Massachusetts (Utility Company) Effective date: 2011/08/01 End date if known: Rate name: 92 WATT INCANDESCENT Sector: Commercial Description: *Note: Incandescent and Mercury lamps will no longer be supplied for new installations. Fixed Monthly Charge= Annual Rate divided by 12 months. Extra Pole Cost When an extra pole is required, specifically for street lighting, there will be an extra cost based upon pole size, including up to 100 feet of secondary. 30 foot or 35 foot Class 4 pole is $44.00 per year

310

Data:B2356495-e1fc-4ae9-852f-3206095b59dc | Open Energy Information  

Open Energy Info (EERE)

-e1fc-4ae9-852f-3206095b59dc -e1fc-4ae9-852f-3206095b59dc No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Norris Public Power District Effective date: 2012/01/20 End date if known: Rate name: SCHEDULE 17 - SALES FOR RESALE - BLEND RATES Sector: Commercial Description: summer is defined jun 15th to Oct 15th. Available to a municipality for resale which has agreed to purchase 100% of firm requirements from Norris and has not exercised its right to purchase WAPA Class I Firm Power directly from WAPA. Source or reference: http://www.norrisppd.com/downloads/Schedule%2017%20-%20Sales%20and%20Resale%20-%20Blend%20Rates.pdf

311

Data:23094a41-b5ae-46fb-953a-8559db175625 | Open Energy Information  

Open Energy Info (EERE)

94a41-b5ae-46fb-953a-8559db175625 94a41-b5ae-46fb-953a-8559db175625 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Mt Carmel Public Utility Co Effective date: End date if known: Rate name: Rider F- Economic Development Sector: Description: Applicable to Large Light and Power service and Light and Power service AVAILABILITY Available upon application for any customer served under Large Light and Power Service or Light and Power service rate of this schedule who demonstrates an incremental load which meets the requirements *of this Rider. This Rider will be available to approved applicants prior to July 1, 2002.

312

Data:Aa9e5261-deab-4281-ae40-a23be465e226 | Open Energy Information  

Open Energy Info (EERE)

Aa9e5261-deab-4281-ae40-a23be465e226 Aa9e5261-deab-4281-ae40-a23be465e226 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Denton County Elec Coop, Inc Effective date: 2012/06/21 End date if known: Rate name: Public Building Rate (2) Sector: Residential Description: Applicable to public buildings (including schools, churches and community halls, but not municipal facilities) with a demand requirement of 35 kW or greater. (Billing demand is never less than 50 percent of the highest adjusted kW demand established in the preceding May-to-October billing period, or 35 kW, whichever is greater.)

313

Data:49e24204-ebc0-4831-ae34-a50aad4aa140 | Open Energy Information  

Open Energy Info (EERE)

ebc0-4831-ae34-a50aad4aa140 ebc0-4831-ae34-a50aad4aa140 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Mitchell Electric Member Corp Effective date: End date if known: Rate name: SCHEDULE I-14 IRRIGATION SERVICE Three Phase Sector: Description: AVAILABILITY Available to consumers for single-phase service in all territory served by the Cooperative. Multi-phase service is available only to consumers located on or near the Cooperative's multi-phase lines of adequate capacity. All service is made available subject to the Cooperative's established Service Rules and Regulations. APPLICABILITY

314

Data:38bce442-ae42-4b83-bc6e-35d846572213 | Open Energy Information  

Open Energy Info (EERE)

bce442-ae42-4b83-bc6e-35d846572213 bce442-ae42-4b83-bc6e-35d846572213 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Belmont, Wisconsin (Utility Company) Effective date: 2007/03/12 End date if known: Rate name: Ms-1 Street and Security Lighting Service: 400 W MV(Overhead) Sector: Lighting Description: This schedule will be applied to municipal street light lighting. The Utility will furnish, install, and maintain street lighting units. Power Cost Adjustment Clause: Charge per all kWh varies monthly Commitment to Community Program Rider: 2.0% of the total electric bill. Source or reference: http://psc.wi.gov/apps40/tariffs/viewfile.aspx?type=electric&id=440

315

Data:2697ec01-0705-4652-ae17-8618df1b5a08 | Open Energy Information  

Open Energy Info (EERE)

ec01-0705-4652-ae17-8618df1b5a08 ec01-0705-4652-ae17-8618df1b5a08 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Lubbock, Texas (Utility Company) Effective date: 2010/10/29 End date if known: Rate name: FLOOD LIGHT SERVICE, 175 w, metal halide Sector: Lighting Description: Additional charge per month for each additional light per pole (metal halide)=$7.06, furthermore The following Additional charge per month per pole apply based on type and height of Pole: heig. OVh wood Undergr Wo Ovd Steel Under Stee; 30` 0 $3.03 $ 5.05 $8.09 35` $1.49 $4.52 $ 6.54 $9.58

316

Data:712dec8d-65a7-4dfe-9060-457ae517804a | Open Energy Information  

Open Energy Info (EERE)

dec8d-65a7-4dfe-9060-457ae517804a dec8d-65a7-4dfe-9060-457ae517804a No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Maui Electric Co Ltd Effective date: 2012/05/04 End date if known: Rate name: Lanai-SCHEDULE "R" Residential Service-Three Phase Sector: Residential Description: Availability: Applicable to residential lighting, heating, cooking, air conditioning and power in a single family dwelling unit metered and billed separately by the Company. This schedule does not apply where a residence and business are combined. Service will be delivered at secondary voltages as specified by the Company. Minimum Charge: $23.00

317

Data:B1edf565-9734-46fa-8177-9f7294ae0587 | Open Energy Information  

Open Energy Info (EERE)

edf565-9734-46fa-8177-9f7294ae0587 edf565-9734-46fa-8177-9f7294ae0587 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Norcross, Georgia (Utility Company) Effective date: 2008/04/01 End date if known: Rate name: Security Lighting Service (Mercury Vapor 400W Lamp) Sector: Lighting Description: To property owners and tenants in the proximity of low voltage distribution lines of the City of Norcross. Service may be used to illuminate public thoroughfares and/or private outdoor areas, including, but not limited to, roadways, parking lots and yards. Fixture type: Mercury Vapor Lamp Wattage: 400 Monthly Rate: $16.00 per fixture

318

Data:E30994ae-83c1-4dec-8150-376135517396 | Open Energy Information  

Open Energy Info (EERE)

994ae-83c1-4dec-8150-376135517396 994ae-83c1-4dec-8150-376135517396 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Painesville, Ohio (Utility Company) Effective date: 1990/07/01 End date if known: Rate name: Industrial (demand charge)- outside corporate limits Sector: Industrial Description: tiered demand charge Standby power installation per kilovolt-ampere per month of installed capacity. This charge shall replace any minimum charge in a designated rate schedule Within Corporate Limits is 0.30 ,outside corporate limits is 0.035 Source or reference: http://www.amlegal.com/nxt/gateway.dll/Ohio/painesville_oh/codifiedordinancesofthecityofpainesville?f=templates$fn=default.htm$3.0$vid=amlegal:painesville_oh

319

Data:882231ae-1029-4932-897f-742b26148c5f | Open Energy Information  

Open Energy Info (EERE)

ae-1029-4932-897f-742b26148c5f ae-1029-4932-897f-742b26148c5f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Central Electric Membership Corporation Effective date: 2009/07/01 End date if known: Rate name: OUTDOOR LIGHTING SERVICE Sodium Vapor, Shoebox w/pole 250 W Sector: Lighting Description: 25,000 Lumens 250 W Availability - Available to individual consumers, in all territory served by the Cooperative, for purposes of lighting private outdoor areas or residential subdivision streets from dusk to dawn. Service under this schedule is subject to the Cooperative's established Service Rules and Regulations.

320

Data:F3644162-6817-4908-bf52-461f0d024ae2 | Open Energy Information  

Open Energy Info (EERE)

F3644162-6817-4908-bf52-461f0d024ae2 F3644162-6817-4908-bf52-461f0d024ae2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: New York State Elec & Gas Corp Effective date: 2013/11/01 End date if known: Rate name: GS-7 (Large General Service ESS) Sector: Industrial Description: APPLICABLE TO THE USE OF SERVICE FOR: Large General Service (Primary and Secondary) with Time-of-Use Metering for any customer with a billing demand equal to or greater than 500 KW during any two of the previous twelve months and for continuing service thereafter. Flat rate Adjustments = Transition Charge. Reactive Charge: 0.00078

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Data:5288a05b-d71a-4661-ae85-9afaacea0971 | Open Energy Information  

Open Energy Info (EERE)

b-d71a-4661-ae85-9afaacea0971 b-d71a-4661-ae85-9afaacea0971 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Hustisford Utilities Effective date: 2008/09/30 End date if known: Rate name: Ms-1 Street and Yard lighting Service Street (only) Ornamental 100 W HPS Sector: Lighting Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0720 per kilowatt-hour.

322

Data:A50646ee-88ae-4cb6-9336-a212aadf750f | Open Energy Information  

Open Energy Info (EERE)

646ee-88ae-4cb6-9336-a212aadf750f 646ee-88ae-4cb6-9336-a212aadf750f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Parke County Rural E M C Effective date: 2012/04/01 End date if known: Rate name: Yard Light Service: Mercury Vapor, 400W Sector: Lighting Description: Parke County REMC shall charge and collect for Yard and/or Street lighting service based on availability, character of service, monthly rate, and tax adjustment. AVAILABILITY: Available to any member of Parke County REMC for continuous, year-round service for out- door lighting where120 volt service exists ahead of the meter loop.

323

Data:4aaf2dfa-3677-4ae1-951e-37755bca0008 | Open Energy Information  

Open Energy Info (EERE)

aaf2dfa-3677-4ae1-951e-37755bca0008 aaf2dfa-3677-4ae1-951e-37755bca0008 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: UNS Electric, Inc Effective date: 2011/07/01 End date if known: Rate name: C.A.R.E.S - M 601kWh - 1200 Sector: Residential Description: This C.A.R.E.S. pricing plan is available to those residential customers presently taking service under the Company's residential service pricing plan whose gross annual income is not more than one hundred fifty percent (150%) of the federal poverty level guideline effective at the time qualification and annual certification is sought. Customer Charge = Meter Services + Meter Reading + Billing & Collection + Customer Delivery

324

Data:7524e476-b496-4376-870c-3df0e7157ae6 | Open Energy Information  

Open Energy Info (EERE)

e476-b496-4376-870c-3df0e7157ae6 e476-b496-4376-870c-3df0e7157ae6 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Lubbock, Texas (Utility Company) Effective date: 2010/10/29 End date if known: Rate name: FLOOD LIGHT SERVICE, 250 w, metal halide Sector: Lighting Description: Additional charge per month for each additional light per pole (metal halide)=$8.06, furthermore The following Additional charge per month per pole apply based on type and height of Pole: heig. OVh wood Undergr Wo Ovd Steel Under Stee; 30` 0 $3.03 $ 5.05 $8.09 35` $1.49 $4.52 $ 6.54 $9.58

325

Data:083b4964-9a31-43ae-9603-e253d71eaccb | Open Energy Information  

Open Energy Info (EERE)

-9a31-43ae-9603-e253d71eaccb -9a31-43ae-9603-e253d71eaccb No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Entergy Gulf States Louisiana LLC Effective date: 2011/10/28 End date if known: Rate name: 2 Area Lighting - Flood light MH - 320W Sector: Lighting Description: This rate is applicable under the regular terms and conditions of the company in areas designated by company where facilities of adequate capacity and suitable voltage are available. Source or reference: http://www.entergy-louisiana.com/content/price/tariffs/egsi/egsila_als.pdf Source Parent: Comments Applicability Demand (kW)

326

Data:799912ef-cdaa-4889-ac46-9b26517ae68c | Open Energy Information  

Open Energy Info (EERE)

12ef-cdaa-4889-ac46-9b26517ae68c 12ef-cdaa-4889-ac46-9b26517ae68c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Tillamook Peoples Utility Dist Effective date: 2010/11/01 End date if known: Rate name: AREA LIGHTING SPECIAL RATE FOR LIGHTS - Area Lights 400w Sector: Lighting Description: "SPECIAL RATE FOR LIGHTS CONNECTED BEHIND CUSTOMER'S METER" Available to all customers for dusk to dawn outdoor area lighting not served under street lighting contract. Service under this schedule is also available for television amplifiers for cable systems, and other flat rate services. Special Poles $ 1.00 per month

327

Data:93daaacb-08fd-46b7-ba52-f032134ae9b8 | Open Energy Information  

Open Energy Info (EERE)

daaacb-08fd-46b7-ba52-f032134ae9b8 daaacb-08fd-46b7-ba52-f032134ae9b8 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Oahe Electric Coop Inc Effective date: 2012/01/01 End date if known: Rate name: Large Power - Industrial Sector: Industrial Description: *Availability Available for single and three phase commercial, industrial, and non-residential farm services for lighting, heating, and power subject to the established rules and regulations. Subject to Power Cost Adjustment Clause Flat rate Adjustment = Power Cost Adjustment Source or reference: Rate Binder 5, Illinois State University Source Parent:

328

Data:7a81bc93-2683-4320-84ae-2fea1840591e | Open Energy Information  

Open Energy Info (EERE)

bc93-2683-4320-84ae-2fea1840591e bc93-2683-4320-84ae-2fea1840591e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Lebanon, Indiana (Utility Company) Effective date: 2013/04/01 End date if known: Rate name: OL - Outdoor Lighting 400 watt sodium vapor Sector: Lighting Description: Availability Available only for continuous year-round service for outdoor lighting to any residential, farm, commercial or industrial customer located adjacent to an electric distribution line of Utility. Character of Service Outdoor Lighting Service using lamps available under this schedule. Source or reference: http://www.lebanon-utilities.com/e_rates.html

329

Optimal Control of Residential Energy Storage Under Price Fluctuations  

E-Print Network (OSTI)

Optimal Control of Residential Energy Storage Under Price Fluctuations Peter van de ven Department habits. We formulate the problem of minimizing the cost of energy storage purchases subject to both user- gramming, energy storage, threshold policy. I. INTRODUCTION Wholesale energy prices exhibit significant

330

The Economic Case for Bulk Energy Storage in Transmission Systems  

E-Print Network (OSTI)

The Economic Case for Bulk Energy Storage in Transmission Systems with High Percentages to Engineer the Future Electric Energy System #12;#12;The Economic Case for Bulk Energy Storage Economic Case for Bulk Energy Storage in Transmission Sys- tems with High Percentages of Renewable

331

Southern company energy storage study : a study for the DOE energy storage systems program.  

SciTech Connect

This study evaluates the business case for additional bulk electric energy storage in the Southern Company service territory for the year 2020. The model was used to examine how system operations are likely to change as additional storage is added. The storage resources were allowed to provide energy time shift, regulation reserve, and spinning reserve services. Several storage facilities, including pumped hydroelectric systems, flywheels, and bulk-scale batteries, were considered. These scenarios were tested against a range of sensitivities: three different natural gas price assumptions, a 15% decrease in coal-fired generation capacity, and a high renewable penetration (10% of total generation from wind energy). Only in the elevated natural gas price sensitivities did some of the additional bulk-scale storage projects appear justifiable on the basis of projected production cost savings. Enabling existing peak shaving hydroelectric plants to provide regulation and spinning reserve, however, is likely to provide savings that justify the project cost even at anticipated natural gas price levels. Transmission and distribution applications of storage were not examined in this study. Allowing new storage facilities to serve both bulk grid and transmission/distribution-level needs may provide for increased benefit streams, and thus make a stronger business case for additional storage.

Ellison, James; Bhatnagar, Dhruv; Black, Clifton [Southern Company Services, Inc., Birmingham, AL; Jenkins, Kip [Southern Company Services, Inc., Birmingham, AL

2013-03-01T23:59:59.000Z

332

Ridge Energy Storage and Grid Services LP | Open Energy Information  

Open Energy Info (EERE)

Energy Storage and Grid Services LP Energy Storage and Grid Services LP Jump to: navigation, search Name Ridge Energy Storage and Grid Services LP Place Houston, Texas Zip 77027 Product Developer of compressed air energy storage projects in the US and England. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

Energy Storage R&D Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D Overview Energy Storage R&D Overview 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington...

334

DOE Hydrogen Analysis Repository: Hydrogen for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen for Energy Storage Hydrogen for Energy Storage Project Summary Full Title: Cost and GHG Implications of Hydrogen for Energy Storage Project ID: 260 Principal Investigator: Darlene Steward Brief Description: The levelized cost of energy (LCOE) of the most promising and/or mature energy storage technologies was compared with the LCOE of several hydrogen energy storage configurations. In addition, the cost of using the hydrogen energy storage system to produce excess hydrogen was evaluated. The use of hydrogen energy storage in conjunction with an isolated wind power plant-and its effect on electricity curtailment, credit for avoided GHG emissions, and LCOE-was explored. Keywords: Energy storage; Hydrogen; Electricity Performer Principal Investigator: Darlene Steward

335

Energy Storage Research and Development 2006 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

EnErgy StoragE rESEarch EnErgy StoragE rESEarch and dEvElopmEnt U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, D.C. 20585-0121 FY 2006 Progress Report for Energy Storage Research and Development Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Approved by: David Howell Manager, Energy Storage R&D January 2007 Energy Storage Research and Development FY 2006 Annual Progress Report TABLE OF CONTENTS I. INTRODUCTION ............................................................................................................... 1 I.A FreedomCAR and Vehicle Technologies Program Overview .................................. 1 I.B Energy Storage Research & Development Overview ............................................... 1

336

Test profiles for stationary energy storage applications  

SciTech Connect

Evaluation of battery and other energy storage technologies for stationary uses is progressing rapidly toward application-specific testing that uses computer-based data acquisition and control equipment, active electronic loads and power supplies, and customized software, to enable sophisticated test regimes that simulate actual use conditions. These simulated-use tests provide more accurate performance and life evaluations than simple constant resistance or current testing regimes. Some of the tests use stepped constant-power charge and discharge regimes to simulate conditions created by electric utility applications such as frequency regulation and spinning reserve. Other test profiles under development simulate conditions for the energy storage component of Remote Area Power Supplies (RAPS) that include renewable and/or fossil-fueled generators. Various RAPS applications have unique sets of service conditions that require specialized test profiles. However, almost all RAPS tests and many tests that represent other stationary applications need to simulate significant time periods during which storage devices operate at low-to-medium states-of-charge without full recharge. Consideration of these and similar issues in simulated-use test regimes is necessary to effectively predict the responses of the various types of batteries in specific stationary applications. This paper describes existing and evolving stationary applications for energy storage technologies and test regimes that are designed to simulate them. The paper also discusses efforts to develop international testing standards.

Butler, P.C. [Sandia National Labs., Albuquerque, NM (United States); Cole, J.F. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Taylor, P.A. [Energetics, Inc., Columbia, MD (United States)

1998-09-01T23:59:59.000Z

337

AE 400-level (choose 2): AE 410 Computational Aerodynamics  

E-Print Network (OSTI)

AE 400-level (choose 2): AE 410 Computational Aerodynamics AE 412 Viscous flow & Heat Transfer AE 416 Applied Aerodynamics AE 419 Aircraft Flight Mechanics AE 433 Aerospace Propulsion AE 434 Rocket

Gilbert, Matthew

338

Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovations in ESS Innovations in ESS Presentations Energy Storage Systems 2007 Peer Review - Innovations in ESS Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to innovations in energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems International Energy Storage Programs Power Electronics ESS 2007 Peer Review - Evaluation of Lead-Carbon Storage Devices for Utility Applications - Enders Dickinson, MeadWestvaco.pdf ESS 2007 Peer Review - High Voltage Electrochemical Capacitor - David

339

A National Grid Energy Storage Strategy - Electricity Advisory Committee -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Energy Storage Strategy - Electricity Advisory Grid Energy Storage Strategy - Electricity Advisory Committee - December 2013 A National Grid Energy Storage Strategy - Electricity Advisory Committee - December 2013 The Electricity Advisory Committee (EAC) represents a wide cross section of electricity industry stakeholders. This document presents the EAC's vision for a national energy storage strategic plan. It provides an outline for guidance, alignment, coordination, and inspiration for governments, businesses, advocacy groups, academics, and others who share a similar vision for energy storage. The strategy addresses applications of electric storage technologies that optimize the performance of the power grid once electric power has been generated and delivered to the network. It aims to provide a framework of

340

Data:Eef7990a-140e-42ae-843b-c89105fa9bce | Open Energy Information  

Open Energy Info (EERE)

990a-140e-42ae-843b-c89105fa9bce 990a-140e-42ae-843b-c89105fa9bce No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Reliant Energy Retail Services LLC Effective date: 2012/02/15 End date if known: Rate name: 12 (e-sense Time-Of with 20% Wind) Sector: Residential Description: This is an indexed product - your average price per kWh each month is determined by using the monthly customer charge and energy charges above and the predetermined formula below based on your actual kWh usage in each pricing tier. Price per kWh =(Monthly Customer Charge + (Monthly Billed kWh Usage for Off-Peak Hours x Energy Charge per kWh for Off-Peak Hours) + (Monthly Billed kWh Usage for Standard Hours x Energy Charge per kWh for Standard Hours) + (Monthly Billed kWh for Summer Peak Hours x Energy Charge per kWh for Summer Peak Hours) + (Monthly Billed kWh for Non-Time-of-Use Hours x Energy Charge per kWh for Non-Time-of-Use Hours)) / Total Monthly Billed kWh Usage

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Storage Technologies: State of Development for Stationary and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies: State of Development for Stationary Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and Environment Subcommittee October 3, 2007 Energy Storage Technologies: State of Development for Stationary and Vehicular Applications More Documents & Publications DOE/EPRI 2013 Electricity Storage Handbook in Collaboration with NRECA (July 2013) Grid Energy Storage December 2013 Energy Storage Systems 2012 Peer Review Presentations - Day 3, Session 3

342

Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tehachapi Wind Energy Storage Project (October 2012) Tehachapi Wind Energy Storage Project (October 2012) Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) The Tehachapi Wind Energy Storage Project (TSP) Battery Energy Storage System (BESS) consists of an 8 MW-4 hour (32 MWh) lithium-ion battery and a smart inverter system that is cutting-edge in scale and application. Southern California Edison (SCE) will test the BESS for 24 months to determine its capability and effectiveness to support 13 operational users. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2 (Day 2): ARRA Projects Energy Storage Systems 2010 Update Conference Presentations - Day 2,

343

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant | Department...  

Office of Environmental Management (EM)

Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Fact Sheet: Grid-Scale Flywheel Energy Storage Plant Beacon Power will design, build, and operate a utility-scale 20 MW...

344

Sandia National Laboratories: DOE OE Energy Storage Safety Strategic...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyDOE OE Energy Storage Safety Strategic Plan Webinar Wednesday, Jan. 14 DOE OE Energy Storage Safety Strategic Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV...

345

Vehicle Technologies Office: 2013 Energy Storage R&D Progress...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-3 Vehicle Technologies Office: 2013 Energy Storage R&D Progress Report, Sections 1-3 The FY 2013 Progress Report for Energy Storage R&D focuses on advancing the development of...

346

Energy Storage Systems 2014 Peer Review and Update Meeting |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Systems 2014 Peer Review and Update Meeting OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. 17-19,...

347

Functionalization of Graphene for Efficient Energy Conversion and Storage  

Science Journals Connector (OSTI)

Functionalization of Graphene for Efficient Energy Conversion and Storage ... Although the efficiency of energy conversion and storage devices depends on a variety of factors, their overall performance strongly relies on the structure and properties of the component materials. ...

Liming Dai

2012-10-03T23:59:59.000Z

348

Electrical Energy Storage for the Grid: A Battery of Choices  

Science Journals Connector (OSTI)

...represent an excellent energy storage technology for the integration of renewable resources. Their...available for grid applications, with...issues facing the integration of energy storage into the...identify their challenges, and provide...

Bruce Dunn; Haresh Kamath; Jean-Marie Tarascon

2011-11-18T23:59:59.000Z

349

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, LawrenceF.P. "Thermal Energy Storage in a Confined Aquifer- Second

Tsang, C.F.

2013-01-01T23:59:59.000Z

350

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network (OSTI)

of Aquifer Thermal Energy Storage." Lawrence BerkeleyP, Andersen, "'rhermal Energy Storage in a Confined Aquifer~University Thermal Energy Storage Experiment." Lawrence

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

351

A COMPARISON OF THE CONDUCTOR REQUIREMENTS FOR ENERGY STORAGE DEVICES MADE WITH IDEAL COIL GEOMETRIES  

E-Print Network (OSTI)

Superconducting Magnetic Energy Storage Program," Los AlamosWisconsin Superconductive Energy Storage Project. Y2!.l,J. J. Stekly, "Magnetic Energy Storage Using Superconducting

Hassenzahl, W.

2011-01-01T23:59:59.000Z

352

AQUIFER THERMAL ENERGY STORAGE. A NUMERICAL SIMULATION OF AUBURN UNIVERSITY FIELD EXPERIMENTS  

E-Print Network (OSTI)

Auburn University Thermal Energy Storage , LBL No. 10194.Mathematical modeling of thermal energy storage in aquifers,of Current Aquifer Thermal Energy Storage Programs (in

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

353

Optimal Deployment of Thermal Energy Storage under Diverse Economic and Climate Conditions  

E-Print Network (OSTI)

Deployment of Thermal Energy Storage under Diverse Dincer I. On thermal energy storage systems and applicationsin research on cold thermal energy storage, International

DeForest, Nicolas

2014-01-01T23:59:59.000Z

354

THEORETICAL STUDIES IN LONG-TERM THERMAL ENERGY STORAGE IN AQUIFERS  

E-Print Network (OSTI)

Mathematical Modeling of Thermal Energy Storage in Aquifers.of Aquifer Thermal Energy Storage Workshop, Lawrencewithin the Seasonal Thermal Energy Storage program managed

Tsang, C.F.

2013-01-01T23:59:59.000Z

355

SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS-MATHEMATICAL MODELING STUDIES IN 1979  

E-Print Network (OSTI)

of Aquifer Thermal Energy Storage." Lawrence Berkeleythe Auburn University Thermal Energy Storage Experiment."LBL~l0208 SEASONAL THERMAL ENERGY STORAGE IN AQUIFERS~

Tsang, Chin Fu

2013-01-01T23:59:59.000Z

356

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

357

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

358

Solar energy storage through the homogeneous electrocatalytic reduction of carbon dioxide : photoelectrochemical and photovoltaic approaches  

E-Print Network (OSTI)

D ISSERTATION Solar Energy Storage through the Homogeneousthe development of solar energy storage via liquid fuels isis an attractive solar energy storage solution. The great

Sathrum, Aaron John

2011-01-01T23:59:59.000Z

359

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

360

Boosting CSP Production with Thermal Energy Storage  

SciTech Connect

Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PV electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.

Denholm, P.; Mehos, M.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Storage/Handling | Department of Energy  

Energy Savers (EERE)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

362

Hydrogen Storage Challenges | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Current Technology Hydrogen Storage Challenges Hydrogen Storage Challenges For transportation, the overarching technical challenge for hydrogen storage is how to store the...

363

BAdvanced adiabatic compressed air energy storage for the article has been accepted for inclusion  

E-Print Network (OSTI)

advantages, only compressed air energy storage (CAES) has the storage capacity of pumped hydro, but with

Chris Bullough; Christoph Gatzen; Christoph Jakiel; Martin Koller; Andreas Nowi; Stefan Zunft; Alstom Power; Technology Centre; Leicester Le Lh

2004-01-01T23:59:59.000Z

364

US DRIVE Electrochemical Energy Storage Technical Team Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

This U.S. DRIVE electrochemical energy storage roadmap describes ongoing and planned efforts to develop electrochemical energy storage technologies for plug-in electric vehicles (PEVs). The Energy Storage activity comprises a number of research areas (including advanced materials research, cell level research, battery development, and enabling R&D which includes analysis, testing and other activities) for advanced energy storage technologies (batteries and ultra-capacitors).

365

Federal Energy Management Program: Covered Product Category: Gas Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Storage Water Heaters to someone by E-mail Gas Storage Water Heaters to someone by E-mail Share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Facebook Tweet about Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Twitter Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Google Bookmark Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Delicious Rank Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on Digg Find More places to share Federal Energy Management Program: Covered Product Category: Gas Storage Water Heaters on AddThis.com... Energy-Efficient Products Federal Requirements Covered Product Categories

366

Innovative Energy Storage Technologies Enabling More Renewable Power |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Technologies Enabling More Renewable Energy Storage Technologies Enabling More Renewable Power Innovative Energy Storage Technologies Enabling More Renewable Power November 15, 2011 - 3:45pm Addthis The PNM Prosperity Energy Storage Project is the nation’s first combined solar generation and storage facility to be fully integrated into a utility’s power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM The PNM Prosperity Energy Storage Project is the nation's first combined solar generation and storage facility to be fully integrated into a utility's power grid. Pictured above are the facility's solar panels, including an aerial view in the upper left. | Image courtesy of PNM Dr. Imre Gyuk Dr. Imre Gyuk Energy Storage Program Manager, Office of Electricity Delivery and Energy

367

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics  

E-Print Network (OSTI)

Modeling of Field Distribution and Energy Storage in Diphasic Dielectrics S. K. Patil, M. Y, USA Modeling of electrostatic field distribution and energy storage in diphasic dielectrics containing to the increased energy storage density. For composites with lower volume fractions of high-permittivity inclusions

Koledintseva, Marina Y.

368

SRCMap: Energy Proportional Storage using Dynamic Consolidation Akshat Verma  

E-Print Network (OSTI)

SRCMap: Energy Proportional Storage using Dynamic Consolidation Akshat Verma Ricardo Koller Luis-Replicate- Consolidate Mapping (SRCMap), is a storage virtual- ization layer optimization that enables energy propor of SRCMap in minimizing the power con- sumption of enterprise storage systems. 1 Introduction Energy

Rangaswami, Raju

369

SINGLE STAGE GRID CONVERTERS FOR BATTERY ENERGY STORAGE  

E-Print Network (OSTI)

in the power system network such as wind and solar is still a challenge in our days. Energy storage systemsSINGLE STAGE GRID CONVERTERS FOR BATTERY ENERGY STORAGE I. Trintis*, S. Munk-Nielsen*, R presents power converters for battery energy storage systems (BESS) which can interface medium- voltage

Munk-Nielsen, Stig

370

Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility & Commercial Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to utility, commercial, and rail applications of advanced energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Application of Large-Scale ESS in AEP - Ali Nourai, AEP.pdf ESS 2007 Peer Review - Iowa Stored Energy Park - Kent Holst, ISEP.pdf

371

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

372

Storage of Energy in Beryllium Oxide  

Science Journals Connector (OSTI)

The photostimulated ultraviolet emission of x-ray excited BeO has been measured as a function of the wavelength of the incident light. A maximum of emission occurs for a stimulating wavelength of ?4100 A. Experiments are described which are interpreted as showing the presence of doubly occupied traps in BeO which are analogous to the F-centers of the alkali halides. Some discussion concerning energy storage in NaCl(Ag) is included.

H. O. Albrecht and C. E. Mandeville

1956-02-15T23:59:59.000Z

373

Data:A240f2a1-8abc-48ae-810a-e36f2a2b86e9 | Open Energy Information  

Open Energy Info (EERE)

0f2a1-8abc-48ae-810a-e36f2a2b86e9 0f2a1-8abc-48ae-810a-e36f2a2b86e9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Johnson County Rural E M C Effective date: 2010/04/01 End date if known: Rate name: Outdoor Lighting: STN, Cobra Head, High Pressure Sodium, 400W Sector: Lighting Description: Availability Available to any member of the Corporation entering into a contract for said service where 120 volt service exists for the use of street and security lighting. All lights must exist in a truck accessible location. Maintenance of Lighting System The Corporation will repair and/or replace and maintain all equipment owned by the Corporation, including lamps and glassware, which may be necessary to provide continuous operation of the street and security lighting.

374

Data:05f8a9ae-7fa1-466b-ae08-6f91d31b69d9 | Open Energy Information  

Open Energy Info (EERE)

a9ae-7fa1-466b-ae08-6f91d31b69d9 a9ae-7fa1-466b-ae08-6f91d31b69d9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Eastern Illinois Elec Coop Effective date: 2009/01/01 End date if known: Rate name: RATE OL-1 OUTDOOR LIGHTING SERVICE 175-watt Mercury Vapor Sector: Lighting Description: Available to all member/owners for dusk-to-dawn outdoor lighting in close proximity to existing overhead secondary circuits. Should the member/owner request a light at a location where a transformer must be provided for just the light, i.e. where there is not a metered service off of the transformer serving the light, there will be an additional charge of $6.00 per month for this transformer. This charge will be dropped if a metered service is added to the transformer or this charge will be added if a metered service is disconnected and the security light is left in service.

375

Electrical energy storage systems: A comparative life cycle cost analysis  

Science Journals Connector (OSTI)

Abstract Large-scale deployment of intermittent renewable energy (namely wind energy and solar PV) may entail new challenges in power systems and more volatility in power prices in liberalized electricity markets. Energy storage can diminish this imbalance, relieving the grid congestion, and promoting distributed generation. The economic implications of grid-scale electrical energy storage technologies are however obscure for the experts, power grid operators, regulators, and power producers. A meticulous techno-economic or cost-benefit analysis of electricity storage systems requires consistent, updated cost data and a holistic cost analysis framework. To this end, this study critically examines the existing literature in the analysis of life cycle costs of utility-scale electricity storage systems, providing an updated database for the cost elements (capital costs, operational and maintenance costs, and replacement costs). Moreover, life cycle costs and levelized cost of electricity delivered by electrical energy storage is analyzed, employing Monte Carlo method to consider uncertainties. The examined energy storage technologies include pumped hydropower storage, compressed air energy storage (CAES), flywheel, electrochemical batteries (e.g. leadacid, NaS, Li-ion, and NiCd), flow batteries (e.g. vanadium-redox), superconducting magnetic energy storage, supercapacitors, and hydrogen energy storage (power to gas technologies). The results illustrate the economy of different storage systems for three main applications: bulk energy storage, T&D support services, and frequency regulation.

Behnam Zakeri; Sanna Syri

2015-01-01T23:59:59.000Z

376

Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Flow Cells for Energy Flow Cells for Energy Storage Workshop to someone by E-mail Share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Facebook Tweet about Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Twitter Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Google Bookmark Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Delicious Rank Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on Digg Find More places to share Fuel Cell Technologies Office: Flow Cells for Energy Storage Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings

377

Concrete as a thermal energy storage medium for thermocline solar energy storage systems  

Science Journals Connector (OSTI)

Abstract Rising energy costs and the adverse effect on the environment caused by the burning of fossil fuels have triggered extensive research into alternative sources of energy. Harnessing the abundance of solar energy has been one of the most attractive energy alternatives. However, the development of an efficient and economical solar energy storage system is of major concern. According to the Department of Energy (DOE), the cost per kilowatt hour electric from current technologies which utilize solar energy is high, estimated at approximately $0.15$0.20/kWhelectric, while the unit cost to store the thermal energy is approximately $30.00/kWhthermal. Based on traditional means of producing electricity (through burning fossil fuels), the unit cost of electricity is $0.05$0.06/kWh. Clearly, current solar energy technologies cannot compete with traditional forms of electricity generation. In response, the DOE has established a goal of reducing the cost of solar generated electricity to $0.05$0.07/kWhelectric and achieving thermal storage costs below $15.00/kWhthermal. Reduction in the cost of the storage medium is one step in achieving the stated goal. In this research program economical concrete mixtures were developed that resisted temperatures up to 600C. This temperature level represents a 50% increase over the operating temperature of current systems, which is approximately 400C. However, long-term testing of concrete is required to validate its use. At this temperature, the unit cost of energy stored in concrete (the thermal energy storage medium) is estimated at $0.88$1.00/kWhthermal. These concrete mixtures, used as a thermal energy storage medium, can potentially change solar electric power output allowing production through periods of low to no insolation at lower unit costs.

Emerson John; Micah Hale; Panneer Selvam

2013-01-01T23:59:59.000Z

378

Data:76840274-f735-4ae0-98e0-ef071211323b | Open Energy Information  

Open Energy Info (EERE)

40274-f735-4ae0-98e0-ef071211323b 40274-f735-4ae0-98e0-ef071211323b No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Town of Waynesville, North Carolina (Utility Company) Effective date: 2010/07/01 End date if known: Rate name: Renewable Energy and Efficiency Portfolio Standards- Commercial Sector: Commercial Description: In 2007, the North Carolina General Assembly passed legislation that requires utility companies to develop an increasing supply of alternative energy resources, with 3% of their total supply coming from renewable by 2013 and 12% by 2021. Utility companies are charging their customers to recover the cost of the renewable energy they produce. In turn the Town is passing along these costs to its customers. These charges are set each December.

379

Leading experts to speak at battery & energy storage technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading experts to speak at battery & energy storage technology conference adipex for sale Speakers from US Department of Energy, academia and industry to meet November 5th in...

380

Modeling and simulations of electrical energy storage in electrochemical capacitors  

E-Print Network (OSTI)

energy storage systems (EES) have been the subject of intense study as they constitute an essential element in the development of sustainable energy

Wang, Hainan

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Value of Energy Storage for Grid Applications  

Office of Scientific and Technical Information (OSTI)

The Value of Energy Storage for Grid Applications Paul Denholm, Jennie Jorgenson, Marissa Hummon, Thomas Jenkin, and David Palchak National Renewable Energy Laboratory Brendan...

382

Nanostructures for Electrical Energy Storage (NEES) | U.S. DOE...  

Office of Science (SC) Website

Nanostructures for Electrical Energy Storage (NEES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events...

383

2012 Annual Merit Review Results Report - Energy Storage Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More Documents & Publications 2011 Annual Merit Review Results Report - Energy Storage Technologies 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy...

384

Energy Storage: The Key to a Reliable, Clean Electricity Supply |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage: The Key to a Reliable, Clean Electricity Supply Storage: The Key to a Reliable, Clean Electricity Supply Energy Storage: The Key to a Reliable, Clean Electricity Supply February 22, 2012 - 4:52pm Addthis Improved energy storage technology offers a number of economic and environmental benefits. Improved energy storage technology offers a number of economic and environmental benefits. Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? ARPA-E's GRIDS program is investing in new technologies that make storing energy cheaper and more efficient. Energy storage isn't just for AA batteries any more. Thanks to investments from the Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity

385

Chapter 12 - Assessment of Thermal Energy Storage Systems  

Science Journals Connector (OSTI)

Abstract The foremost challenges of energy supply in meeting the energy demand apply to the development of energy efficient technologies to achieve energy security and environmental emissions. In the spectrum of energy-efficient technologies, thermal energy storage systems offer huge potential to bridge the mismatch between energy supply and energy demand. The overall operational performance of thermal storage systems depends on the quality of energy content and the energy degradation effects exhibited during the cyclic charging and discharging processes. The assessment pertaining to the exergy efficiency in addition to energy efficiency can have a pivotal role to enable thermal storage systems to outperform on a long-term basis.

S. Kalaiselvam; R. Parameshwaran

2014-01-01T23:59:59.000Z

386

Eurotherm Seminar #99 Advances in Thermal Energy Storage  

E-Print Network (OSTI)

Eurotherm Seminar #99 Advances in Thermal Energy Storage 1 EUROTHERM99-01-103 Convection Energy Storage 2 Nussel number. This study shows that an increase in the convection coefficient leads in this paper consists in horizontal PCM plates separated by an air flow. This is a storage system dedicated

Boyer, Edmond

387

Study on Smart Energy Storage Technology and Control Strategy in Micro-Grid  

Science Journals Connector (OSTI)

Energy storage technology is an indispensable support for reliable operation of micro-grid (MG). Various forms of energy storage...

Xing-guo Tan; Shan Lu

2012-01-01T23:59:59.000Z

388

Energy Storage Systems 2009 Peer Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 Peer Review 09 Peer Review Energy Storage Systems 2009 Peer Review The DOE Energy Storage Systems Program (ESS) conducted an annual peer review in Seattle, WA on October 8, 2009. The 1-day conference included welcoming remarks from OE's Imre Gyuk as well as a program overview from John Boyes of Sandia National Laboratories and 11 presentations on individual projects. The agenda, program overview, and project presentations are available below. ESS 2009 Peer Review - Agenda.pdf ESS 2009 Peer Review - DOE-ESS Overview - John Boyes, SNL.pdf ESS 2009 Peer Review - Long Island Bus NaS Battery Energy Storage Project - Steve Eckroad, EPRI.pdf ESS 2009 Peer Review - Development of an Integrated Power Controller Based on HT SOI and SiC - Joseph Henfling, SNL.pdf ESS 2009 Peer Review - Large Format Carbon Enhanced VRLA Battery Test

389

Energy Storage Systems 2010 Update Conference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Update Conference 10 Update Conference Energy Storage Systems 2010 Update Conference The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations are available through the individual session links. The agenda and list of attendees are available below. Presentations Day 1 Session 1: Chaired by Imre Gyuk, DOE Session 2: Chaired by Terry Aselage, SNL Session 3: Chaired by Jun Lui, PNNL Session 4: Chaired by John Boyes, SNL Day 2 Session 1: Chaired by Imre Gyuk, DOE Session 2: Chaired by Bill Ayres, NETL

390

Heat pumps and energy storage The challenges of implementation  

Science Journals Connector (OSTI)

The wider implementation of variable renewable energy sources such as wind across the UK and Ireland will demand interconnection, energy storage and more dynamic energy systems to maintain a stable energy system that makes full use of one of our best renewable energy resources. However large scale energy storage e.g. pumped storage may be economically challenging. Therefore can thermal energy storage deployed domestically fulfil an element of such an energy storage role? Current electricity pricing is based on a hourly timeframe which will be demonstrated to have some benefits for hot water heating from electrical water heaters in the first instance. However heat pumps linked to energy storage can displace fossil fuel heating systems and therefore the question is whether a renewable tariff based on excess wind for example is sufficient to operate heat pumps. An initial analysis of this scenario will be presented and its potential role in challenging aspects of fuel poverty.

Neil J Hewitt

2012-01-01T23:59:59.000Z

391

NV energy electricity storage valuation : a study for the DOE Energy Storage Systems program.  

SciTech Connect

This study examines how grid-level electricity storage may benefit the operations of NV Energy, and assesses whether those benefits are likely to justify the cost of the storage system. To determine the impact of grid-level storage, an hourly production cost model of the Nevada Balancing Authority (%22BA%22) as projected for 2020 was created. Storage was found to add value primarily through the provision of regulating reserve. Certain storage resources were found likely to be cost-effective even without considering their capacity value, as long as their effectiveness in providing regulating reserve was taken into account. Giving fast resources credit for their ability to provide regulating reserve is reasonable, given the adoption of FERC Order 755 (%22Pay-for-performance%22). Using a traditional five-minute test to determine how much a resource can contribute to regulating reserve does not adequately value fast-ramping resources, as the regulating reserve these resources can provide is constrained by their installed capacity. While an approximation was made to consider the additional value provided by a fast-ramping resource, a more precise valuation requires an alternate regulating reserve methodology. Developing and modeling a new regulating reserve methodology for NV Energy was beyond the scope of this study, as was assessing the incremental value of distributed storage.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader [Pacific Northwest National Laboratory, Richland, WA; Jin, Chunlian [Pacific Northwest National Laboratory, Richland, WA

2013-06-01T23:59:59.000Z

392

Energy Storage Systems 2014 Peer Review Presentations - Session...  

Energy Savers (EERE)

Storage Systems 2014 Peer Review Presentations - Session 9 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. 17-19,...

393

Energy Storage Systems 2014 Peer Review Presentations - Session...  

Office of Environmental Management (EM)

Storage Systems 2014 Peer Review Presentations - Session 1 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. 17-19,...

394

Energy Storage Systems 2014 Peer Review Presentations - Session...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Systems 2014 Peer Review Presentations - Session 5 OE's Energy Storage Systems (ESS) Program conducted a peer review and update meeting in Washington, DC on Sept. 17-19,...

395

Latent Heat or Phase Change Thermal Energy Storage  

Science Journals Connector (OSTI)

It has been explained in sections 1.6 and 1.6.2 how phase change materials (PCM) have considerably higher thermal energy storage densities compared to sensible heat storage materials and are able to absorb or rel...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

396

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage  

E-Print Network (OSTI)

Basic Energy SciencesBasic Energy Sciences DOE/EERE Hydrogen Storage Pre-Solicitation Meeting, June 19, 2003 Report on Hydrogen Storage Panel Findings inReport on Hydrogen Storage Panel Findings,Basic Research for Hydrogen Production, Storage and UseStorage and Use A follow-on workshop to BESAC

397

Data:28430969-c005-40ae-b536-3803ebcf4fb0 | Open Energy Information  

Open Energy Info (EERE)

c005-40ae-b536-3803ebcf4fb0 c005-40ae-b536-3803ebcf4fb0 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Weiser, Idaho (Utility Company) Effective date: End date if known: Rate name: Industrial Sector: Industrial Description: Industrial Source or reference: http://weiser.govoffice.com/index.asp?Type=B_BASIC&SEC={87ED382C-E2A0-45BB-8A46-E7EE24EC0A9E}&DE={0C4DDA24-4664-4D82-9C26-A271718C9810} Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V):

398

Data:B2169558-4301-4e82-ae67-55aff2551457 | Open Energy Information  

Open Energy Info (EERE)

9558-4301-4e82-ae67-55aff2551457 9558-4301-4e82-ae67-55aff2551457 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Eagle River, Wisconsin (Utility Company) Effective date: 2009/08/04 End date if known: Rate name: Rg-2 Residential Service Three Phase - Optional Time-of-Day 7am-7pm with Parallel Generation(20kW or less)-Net Energy Billing Sector: Residential Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base

399

Data:9e38896a-0ea3-4398-9264-ae9e17351333 | Open Energy Information  

Open Energy Info (EERE)

896a-0ea3-4398-9264-ae9e17351333 896a-0ea3-4398-9264-ae9e17351333 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Cuba City, Wisconsin (Utility Company) Effective date: 2009/10/14 End date if known: Rate name: Cp-2 Large Power Time-of-Day Service between 200kW and 1,000kW Demand Primary Metering and Transformer Ownership Discount- with Parallel Generation(20 kW or less)-Net Energy Billing Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0765 per kilowatt-hour.

400

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect

Compressed Air Energy Storage (CAES) is a hybrid energy storage and generation concept that has many potential benefits especially in a location with increasing percentages of intermittent wind energy generation. The objectives of the NYSEG Seneca CAES Project included: for Phase 1, development of a Front End Engineering Design for a 130MW to 210 MW utility-owned facility including capital costs; project financials based on the engineering design and forecasts of energy market revenues; design of the salt cavern to be used for air storage; draft environmental permit filings; and draft NYISO interconnection filing; for Phase 2, objectives included plant construction with a target in-service date of mid-2016; and for Phase 3, objectives included commercial demonstration, testing, and two-years of performance reporting. This Final Report is presented now at the end of Phase 1 because NYSEG has concluded that the economics of the project are not favorable for development in the current economic environment in New York State. The proposed site is located in NYSEGs service territory in the Town of Reading, New York, at the southern end of Seneca Lake, in New York States Finger Lakes region. The landowner of the proposed site is Inergy, a company that owns the salt solution mining facility at this property. Inergy would have developed a new air storage cavern facility to be designed for NYSEG specifically for the Seneca CAES project. A large volume, natural gas storage facility owned and operated by Inergy is also located near this site and would have provided a source of high pressure pipeline quality natural gas for use in the CAES plant. The site has an electrical take-away capability of 210 MW via two NYSEG 115 kV circuits located approximately one half mile from the plant site. Cooling tower make-up water would have been supplied from Seneca Lake. NYSEGs engineering consultant WorleyParsons Group thoroughly evaluated three CAES designs and concluded that any of the designs would perform acceptably. Their general scope of work included development of detailed project construction schedules, capital cost and cash flow estimates for both CAES cycles, and development of detailed operational data, including fuel and compression energy requirements, to support dispatch modeling for the CAES cycles. The Dispatch Modeling Consultant selected for this project was Customized Energy Solutions (CES). Their general scope of work included development of wholesale electric and gas market price forecasts and development of a dispatch model specific to CAES technologies. Parsons Brinkerhoff Energy Storage Services (PBESS) was retained to develop an air storage cavern and well system design for the CAES project. Their general scope of work included development of a cavern design, solution mining plan, and air production well design, cost, and schedule estimates for the project. Detailed Front End Engineering Design (FEED) during Phase 1 of the project determined that CAES plant capital equipment costs were much greater than the $125.6- million originally estimated by EPRI for the project. The initial air storage cavern Design Basis was increased from a single five million cubic foot capacity cavern to three, five million cubic foot caverns with associated air production wells and piping. The result of this change in storage cavern Design Basis increased project capital costs significantly. In addition, the development time required to complete the three cavern system was estimated at approximately six years. This meant that the CAES plant would initially go into service with only one third of the required storage capacity and would not achieve full capability until after approximately five years of commercial operation. The market price forecasting and dispatch modeling completed by CES indicated that the CAES technologies would operate at only 10 to 20% capacity factors and the resulting overall project economics were not favorable for further development. As a result of all of these factors, the Phase 1 FEED developed an installe

None

2012-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Hydrogen Storage Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storing hydrogen include: Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar) Physical storage of cryogenic liquid hydrogen (cooled to -253C, at...

402

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Systems 2010 Update Conference Presentations - Day Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 1 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the first session of Day 2, chaired by DOE's Imre Gyuk, are below. ESS 2010 Update Conference - UltraBattery Grid Storage - John Wood, Ecoult.pdf ESS 2010 Update Conference - PV Plus Storage for Simultaneous Voltage Smoothing and Peak Shifting - Steve Willard, PNM.pdf

403

Data:3805ae9e-aff3-4262-9dcb-448410ce66a1 | Open Energy Information  

Open Energy Info (EERE)

ae9e-aff3-4262-9dcb-448410ce66a1 ae9e-aff3-4262-9dcb-448410ce66a1 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kenergy Corp Effective date: 2011/09/01 End date if known: Rate name: Renewable Resource Energy Service Rider - Schedule 33 Sector: Industrial Description: APPLICABLE In all territory served. AVAILABILITY OF SERVICE Renewable Resource Energy service is available in accordance with the terms of this tariff rider to any customer purchasing retail electric service under a rate schedule listed on Sheet No. 23A of this rider subject to Kenergy's general rules and regulations on file with the Public Service Comrnission of Kentucky. For purposes of this renewable resource energy service tariff rider, (i) the term "Renewable Resource Energy" means electric energy produced from solar, wind, ocean, geothermal energy, biomass, or landfill gas, and (ii) the term "biomass" means any organic material that is available on a renewable or recurring basis, including dedicated energy crops, trees grown for energy production, wood waste and wood residues, plants (including aquatic plants, grasses, and agricultural crops), residues, fibers, animal wastes and other organic waste materials (but not including unsegregated municipal solid waste (garbage)), and fats and oils. CONDITIONS OF SERVICE (1) Renewable Resource Energy service availability is contingent upon the availability from ' Kenergy's wholesale power supplier of a wholesale supply of Renewable Resource Energy in the quantity and at the quality requested by a customer. (2) Subject to the other requirements of this tariff rider, Kenergy will make Renewable Resource Energy service available to a customer if the customer signs a Renewable Resource Energy service contract in the form attached to this tariff rider agreeing to purchase a specified number of 100 KWH blocks of Renewable Resource Energy per month for a period of not less than one year, and that contract is accepted by Kenergy's wholesale power supplier. Kenergy will have the right, but not the obligation, to terminate a Renewable Resource Energy service contract at the request of the customer before the end of the contract term.

404

January EAC Teleconference to Discuss National Energy Storage Strategy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January EAC Teleconference to Discuss National Energy Storage January EAC Teleconference to Discuss National Energy Storage Strategy January EAC Teleconference to Discuss National Energy Storage Strategy January 10, 2014 - 3:18pm Addthis The Electricity Advisory Committee (EAC) will hold a teleconference meeting on January 24, 2014 at 2 p.m. ET to discuss the National Grid Energy Storage Strategy document drafted by the EAC's Energy Storage subcommittee. The public may attend using the following access information: Attendee Link: https://iser.webex.com/iser/onstage/g.php?d=667952835&t=a Event password: energy Call-in Number: Call-in toll number (US/Canada): 1-650-479-3208 Access code: 667 952 835 Addthis Related Articles January EAC Teleconference to Discuss National Energy Storage Strategy Conference Call and Web Chat on Small Businesses and Government Contracting

405

Argonne Chemical Sciences & Engineering - Electrochemical Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Energy Storage Electrochemical Energy Storage * Basic Research * Applied R&D * Engineering * Battery Testing Electrochemical Energy Storage The Energy Storage Theme The electrochemical Energy Storage (EES) Theme is internationally recognized as a world-class center for lithium battery R&D. It effectively integrates basic research, applied R&D, engineering, and battery testing, as shown in the diagram below. ees chart Its current focus is on developing improved materials and cell chemistries that will enable lithium-ion (Li-Ion) batteries for commercial light-duty vehicle applications, e.g. hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), and electric vehicle (EV) applications. Basic Research EES recently won a new Office of Science Energy Frontier Research Center (EFRC) denoted the "Center for Electrical Energy Storage: Tailored Interfaces." This new EFRC will focus on the science of stabilizing electrode/electrolyte interfaces in lithium batteries to achieve longer life and enhanced abuse tolerance.

406

Test report : Raytheon / KTech RK30 energy storage system.  

SciTech Connect

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratories (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprising of lead acid, lithium-ion or zinc-bromide. Raytheon/KTech has developed an energy storage system that utilizes zinc-bromide flow batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Raytheon/KTech Zinc-Bromide Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-10-01T23:59:59.000Z

407

Test report : Princeton power systems prototype energy storage system.  

SciTech Connect

The Department of Energy Office of Electricity (DOE/OE), Sandia National Laboratory (SNL) and the Base Camp Integration Lab (BCIL) partnered together to incorporate an energy storage system into a microgrid configured Forward Operating Base to reduce the fossil fuel consumption and to ultimately save lives. Energy storage vendors will be sending their systems to SNL Energy Storage Test Pad (ESTP) for functional testing and then to the BCIL for performance evaluation. The technologies that will be tested are electro-chemical energy storage systems comprised of lead acid, lithium-ion or zinc-bromide. Princeton Power Systems has developed an energy storage system that utilizes lithium ion phosphate batteries to save fuel on a military microgrid. This report contains the testing results and some limited analysis of performance of the Princeton Power Systems Prototype Energy Storage System.

Rose, David Martin; Schenkman, Benjamin L.; Borneo, Daniel R.

2013-08-01T23:59:59.000Z

408

Electric utility applications of hydrogen energy storage systems  

SciTech Connect

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

409

Argonne Chemical Sciences & Engineering -Electrochemical Energy Storage -  

NLE Websites -- All DOE Office Websites (Extended Search)

Basic Research Basic Research * Members * Contact * Publications * Overview * CEES EES Home Electrochemical Energy Storage - Basic Research Electrochemical Energy Storage Chemistry co-op student Sara Busking loads a lithium-ion battery cell in a pouch into a test oven to evaluate its electrochemical performance. EES conducts basic research to support its applied electrochemical energy storage R&D initiatives. EES also leads an Energy Frontier Research Center (EFRC), recently awarded by DOE's Office of Science, with partners at Northwestern University and the University of Illinois (Urbana Champaign). The EFRC, the Center for Electrical Energy Storage: Tailored Interfaces (CEES), focuses on understanding electrochemical phenomena at electrode/electrolyte interfaces

410

Energy Storage Management for VG Integration (Presentation)  

SciTech Connect

This presentation describes how you economically manage integration costs of storage and variable generation.

Kirby, B.

2011-10-01T23:59:59.000Z

411

Flywheel energy and power storage systems  

Science Journals Connector (OSTI)

For ages flywheels have been used to achieve smooth operation of machines. The early models where purely mechanical consisting of only a stone wheel attached to an axle. Nowadays flywheels are complex constructions where energy is stored mechanically and transferred to and from the flywheel by an integrated motor/generator. The stone wheel has been replaced by a steel or composite rotor and magnetic bearings have been introduced. Today flywheels are used as supplementary UPS storage at several industries world over. Future applications span a wide range including electric vehicles, intermediate storage for renewable energy generation and direct grid applications from power quality issues to offering an alternative to strengthening transmission. One of the key issues for viable flywheel construction is a high overall efficiency, hence a reduction of the total losses. By increasing the voltage, current losses are decreased and otherwise necessary transformer steps become redundant. So far flywheels over 10kV have not been constructed, mainly due to isolation problems associated with high voltage, but also because of limitations in the power electronics. Recent progress in semi-conductor technology enables faster switching and lower costs. The predominant part of prior studies have been directed towards optimising mechanical issues whereas the electro technical part now seem to show great potential for improvement. An overview of flywheel technology and previous projects are presented and moreover a 200kW flywheel using high voltage technology is simulated.

Bjrn Bolund; Hans Bernhoff; Mats Leijon

2007-01-01T23:59:59.000Z

412

Data:Bb850dec-62ae-48ef-9705-a7c013e0220d | Open Energy Information  

Open Energy Info (EERE)

50dec-62ae-48ef-9705-a7c013e0220d 50dec-62ae-48ef-9705-a7c013e0220d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Vernon Electric Coop Effective date: 2012/05/01 End date if known: Rate name: Peak Alert Rate - Over 50 kW Demand-Primary Metered Sector: Industrial Description: Available for all users requiring more than 50 kVA of connected transformer capacity. All subject to the established rules and regulations of the Cooperative and execution of Electric Service Agreement between the Cooperative and Consumer. Additional Facility Charge over 50 kVA: 50 cents/kVA Seasonal Peak Demand Charge (based on seasonal average demand measured during system-wide peak alerts): Winter $29.00/kW/yr. Summer $63.80/kW/yr. Reactive Demand Charge (at the option of the Cooperative): 25 cents/kVAR/month

413

Data:01f16663-5074-40ab-b538-ae63426478ad | Open Energy Information  

Open Energy Info (EERE)

3-5074-40ab-b538-ae63426478ad 3-5074-40ab-b538-ae63426478ad No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Evansville, Wisconsin (Utility Company) Effective date: 2012/09/01 End date if known: Rate name: Cp-3 Industrial Power TOD Service above 1,000kW Primary Metering and Transformer Ownership Discount Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0762 per kilowatt-hour.

414

Data:0293c77e-0521-418c-89ae-86817d2acbf6 | Open Energy Information  

Open Energy Info (EERE)

c77e-0521-418c-89ae-86817d2acbf6 c77e-0521-418c-89ae-86817d2acbf6 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kenergy Corp Effective date: 2011/09/01 End date if known: Rate name: Schedule 35 - Large hdustrial Customers Served Under Special Coakact (Dedicated Delivery Points) - (Class C) Sector: Industrial Description: APPLICABLE In all territory served. AVAILABILITY OF SERVICE This rate shall apply to existing large customers where service is provided through a dedicated delivery point connected to the transmission system of Big Rivers or other accessible system classified as Class C customers, or new customers executing special contracts approved by the Kentucky Public Service Commission. TYPE OF SERVICE The electric service furnished under this schedule will be three-phase sixty cycle, alternating current at available nominal voltage.

415

Data:02551a65-8222-46a6-bfcd-5ae90778a2b6 | Open Energy Information  

Open Energy Info (EERE)

a65-8222-46a6-bfcd-5ae90778a2b6 a65-8222-46a6-bfcd-5ae90778a2b6 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Western Massachusetts Elec Co Effective date: 2013/06/01 End date if known: Rate name: Rate G-0 Small General Service-customer with meter Sector: Industrial Description: This rate is applicable to all uses of electricity at a single location. Such service shall not exceed 349 kW. All electricity delivered hereunder shall be measured through one metering equipment, except that, where the Company deems it impractical to deliver electricity through one service, or where more than one meter has been installed, then the measurement of the amount of electricity consumed may be by two or more meters. All electricity supplied shall be for the exclusive use of the customer and shall not be resold. With the approval of the Company the customer may furnish electricity to persons or concerns who occupy space in the building to which service is supplied hereunder, but on the express condition that the customer shall not resell, make a specific charge for, or remeter (or submeter) or measure or control the use of, any of the electricity so furnished.

416

Data:44ffaf06-971c-4732-ae1f-248ec212ce33 | Open Energy Information  

Open Energy Info (EERE)

ffaf06-971c-4732-ae1f-248ec212ce33 ffaf06-971c-4732-ae1f-248ec212ce33 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Kiwash Electric Coop, Inc Effective date: 2010/01/01 End date if known: Rate name: Distributed Generation Rider 25 kW and smaller Remote Access Unavailable Sector: Description: Applicable to Distributed Generation smaller than 3 MW of connected generation connected in parallel operation to the Cooperative's lines in accordance with the Cooperative's service rules and regulations and the Cooperative's Distributed Generation Procedures and Guidelines Manual for members. This rate is not applicable to temporary, shared, or resale service. This rate is applicable to service supplied at one point of delivery and measured through one meter.

417

Data:40578972-846a-4cdf-8321-8b488ae9cadf | Open Energy Information  

Open Energy Info (EERE)

846a-4cdf-8321-8b488ae9cadf 846a-4cdf-8321-8b488ae9cadf No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Village of Mt Horeb, Wisconsin (Utility Company) Effective date: 2009/04/01 End date if known: Rate name: Cp-2 Large Power Time-of-Day Service Transformer Ownership Discount with Parallel Generation(20kW or less) Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0753 per kilowatt-hour.

418

Data:5293078a-2a3d-4e05-a383-ada08086ae33 | Open Energy Information  

Open Energy Info (EERE)

2a3d-4e05-a383-ada08086ae33 2a3d-4e05-a383-ada08086ae33 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Emerson, Nebraska (Utility Company) Effective date: 2013/01/01 End date if known: Rate name: Irrigation-Time of Use Sector: Commercial Description: Available for service to irrigation pumps, subject to District's established rules and regulations. Rural Residential $ 13.70 per month Town Residential $ 12.25 per month Farm Single Ph. $ 13.70 per month Rural 3 Phase $ 23.85 per month Gen. Service Sing. Ph. $ 15.60 per month Gen. Service 3 Phase $ 21.20 per month Source or reference: http://www.nnppd.com/billing/rates/files/SCHEDULE_I-T-O-U_2012.pdf

419

Data:75aad9ca-387e-4916-b3ae-666b10125529 | Open Energy Information  

Open Energy Info (EERE)

aad9ca-387e-4916-b3ae-666b10125529 aad9ca-387e-4916-b3ae-666b10125529 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Hart Electric Member Corp Effective date: 2006/10/01 End date if known: Rate name: Schedule A-10 Farm and Home Service Sector: Residential Description: AVAILABILITY Available in all territory served by the Corporation in accordance with the Corporation's Service Rules and Regulations. Service under this rate is not available to any entity for resale to ultimate consumers. APPLICABILITY Applicable to Farm and Home consumers including part-time residential consumers, for all farm and home uses on a year-round basis subject to the Service Rules and Regulations of the Corporation. Service under this rate shall not be periodically connected and disconnected to avoid payment of the minimum monthly charge. The capacity of individual motors served under this schedule shall not exceed 10 h.p. A separate meter must be installed for each individual residence, apartment, or mobile home.

420

Data:A1e36612-a1ba-45d2-ae09-f9326518952f | Open Energy Information  

Open Energy Info (EERE)

12-a1ba-45d2-ae09-f9326518952f 12-a1ba-45d2-ae09-f9326518952f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Marshfield, Wisconsin (Utility Company) Effective date: 2012/02/01 End date if known: Rate name: Cp-3 Industrial Power Time-of-Day Service above 500kW Demand Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0515 per kilowatt-hour.

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Data:878c3277-ebfe-473f-9bec-0ae5670d74e5 | Open Energy Information  

Open Energy Info (EERE)

c3277-ebfe-473f-9bec-0ae5670d74e5 c3277-ebfe-473f-9bec-0ae5670d74e5 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of New Richmond, Wisconsin (Utility Company) Effective date: 2010/02/01 End date if known: Rate name: Cp-1 Small Power Service Primary Metering Discount Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0710 per kilowatt-hour.

422

Data:143e5618-59ae-493f-aefb-32973f6277b1 | Open Energy Information  

Open Energy Info (EERE)

18-59ae-493f-aefb-32973f6277b1 18-59ae-493f-aefb-32973f6277b1 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Columbus, Wisconsin (Utility Company) Effective date: 2006/02/01 End date if known: Rate name: Cp-3 Industrial Power Time-of-Day Service with Parallel Generation(20kW or less) Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kWh of sales) is greater or lesser than the base cost of power purchased (per kWh of sales). The base cost of power is $0.0549 per kWh. See schedule PCAC.

423

Data:26294481-9861-4820-9ae6-7ed8c5ab55bf | Open Energy Information  

Open Energy Info (EERE)

-9861-4820-9ae6-7ed8c5ab55bf -9861-4820-9ae6-7ed8c5ab55bf No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Clintonville, Wisconsin (Utility Company) Effective date: 2006/05/05 End date if known: Rate name: Cp-1 Small Power Service Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kWh of sales) is greater or lesser than the base cost of power purchased (per kWh of sales). The base cost of power is $0.0680 per kWh. See schedule PCAC.

424

Data:8b928327-fe3b-4518-ae74-dabbd8e510d2 | Open Energy Information  

Open Energy Info (EERE)

fe3b-4518-ae74-dabbd8e510d2 fe3b-4518-ae74-dabbd8e510d2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Medford, Wisconsin (Utility Company) Effective date: 1997/06/27 End date if known: Rate name: Cp-3 Industrial Power Time-of-Day Service above 1,000kW Demand 9am-9pm Transformer Ownership Discount Sector: Industrial Description: This rate will be applied to customers for all types of service if their monthly maximum demand is in excess of 1,000kW for 3 months in a consecutive 12-month period. Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0351 per kilowatt-hour.

425

Data:0b9b776f-4449-4859-a213-d438066ae6ba | Open Energy Information  

Open Energy Info (EERE)

b776f-4449-4859-a213-d438066ae6ba b776f-4449-4859-a213-d438066ae6ba No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Kiel, Wisconsin (Utility Company) Effective date: 2011/05/06 End date if known: Rate name: Ms-1 Street Lighting Service Overhead 150 W HPS On Wall Sector: Lighting Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0754 per kilowatt-hour.

426

Data:657c3d0e-52cc-4593-ae95-ab9fabf3756e | Open Energy Information  

Open Energy Info (EERE)

e-52cc-4593-ae95-ab9fabf3756e e-52cc-4593-ae95-ab9fabf3756e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: PUD No 1 of Franklin County Effective date: 2008/05/01 End date if known: Rate name: STREET LIGHTING SERVICE RATE SCHEDULE NO. 5 CUSTOMER OWNED 200w HPS Sector: Lighting Description: AVAILABILITY: Service under this schedule shall be available to cities, towns, Franklin County and State of Washington installations located in District's service area upon receipt of an authorized application for lighting under this schedule or under contracts based thereon. APPLICABLE: To the service of lighting systems for public streets, alleys and thoroughfares. Public grounds service existing prior to July 27, 1977, may be provided under this schedule. SPECIFICATIONS: Lighting systems, installed and owned by the District, shall consist of overhead construction with mast arms and luminaries mounted on wood poles. Other types of street lighting systems will be supplied under special contract or other agreement. Customer owned systems will be supplied at voltages and locations approved by the District.

427

Data:90a66ee8-eadc-41fd-ae53-bccff1717478 | Open Energy Information  

Open Energy Info (EERE)

ee8-eadc-41fd-ae53-bccff1717478 ee8-eadc-41fd-ae53-bccff1717478 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Flint Electric Membership Corp Effective date: 2007/04/01 End date if known: Rate name: Outdoor Lighting NGOS Cobrahead HPS 150 W Sector: Lighting Description: If on a leased pole, add a $3.10 monthly charge. POLE CHARGES Type, Charge 30' Wood $205.00 35' Wood $220.00 16' Aluminum (Brushed) $250.00 16' Fiberglass (Black) $300.00 16' Fiberglass (Acorn, Black) $800.00 30' Steel & Sub Base $1325.00 30' Fiberglass with 6' Arm $625.00 30' Fiberglass with 2 - 6' Arm $725.00 Source or reference: http://www.flintenergies.com/myHome/residentialRates/covenantStreetLighting.aspx

428

Data:1c0a6301-7775-48ae-9879-22eb60aeb184 | Open Energy Information  

Open Energy Info (EERE)

a6301-7775-48ae-9879-22eb60aeb184 a6301-7775-48ae-9879-22eb60aeb184 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Evansville, Wisconsin (Utility Company) Effective date: 2010/02/01 End date if known: Rate name: Cp-3 Industrial Power TOD Service above 1,000kW with Parallel Generation(20 kW or less) Sector: Industrial Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0762 per kilowatt-hour.

429

Data:2bdffc72-5caf-4a24-ae72-4cfbef40743f | Open Energy Information  

Open Energy Info (EERE)

Data Data Edit with form History Facebook icon Twitter icon » Data:2bdffc72-5caf-4a24-ae72-4cfbef40743f No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Southwest Texas Elec Coop, Inc Effective date: End date if known: Rate name: General Service Single Phase Sector: Residential Description: Monthly Fuel Charge Surcharge to range from +/- $.02-$.04/kWh Source or reference: ISU Documentation Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V):

430

Fact Sheet: Community Energy Storage for Grid Support (October 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fact Sheet: Community Energy Storage for Grid Support (October Fact Sheet: Community Energy Storage for Grid Support (October 2012) Fact Sheet: Community Energy Storage for Grid Support (October 2012) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to customers whose circuits are often heavily loaded and would benefit from the power conditioning advantages provided from a CES. The performance data of the CES units and control systems will be analyzed under real-world operating conditions to standardize design, installation, and use across the U.S. Fact Sheet: Community Energy Storage for Grid Support (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2

431

Fact Sheet: Community Energy Storage for Grid Support (October 2012) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Energy Storage for Grid Support (October Community Energy Storage for Grid Support (October 2012) Fact Sheet: Community Energy Storage for Grid Support (October 2012) Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory. The CES is designed to improve electricity service to customers whose circuits are often heavily loaded and would benefit from the power conditioning advantages provided from a CES. The performance data of the CES units and control systems will be analyzed under real-world operating conditions to standardize design, installation, and use across the U.S. Fact Sheet: Community Energy Storage for Grid Support (October 2012) More Documents & Publications New Reports and Other Materials Energy Storage Systems 2012 Peer Review Presentations - Poster Session 2

432

Energy Storage Systems 2010 Update Conference Presentations - Day 3,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the first session of Day 3, chaired by SNL's Ross Guttromson, are below. ESS 2010 Update Conference - NYSERDA-DOE Joint Energy Storage Initiative - Georgianne Huff, SNL.pdf ESS 2010 Update Conference - Testing and Evaluation of Energy Storage Devices - Tom Hund, SNL.pdf ESS 2010 Update Conference - SNL Energy Storage Test Pad (ESTP) - Dan

433

Fact Sheet: Community Energy Storage for Grid Support (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Detroit Edison Detroit Edison American Recovery and Reinvestment Act (ARRA) Community Energy Storage for Grid Support Demonstrating advanced implementation of community energy storage technologies for grid support Detroit Edison (DTE) will design, build, and demonstrate Community Energy Storage (CES) systems in their service territory, and two of the CES units will utilize secondary- use electric vehicle batteries. The CES system will use a number of battery energy storage units utilizing lithium batteries with the required electronics and energy conditioning devices to locate backup power near to the customer. The energy storage system consists of 20 separate 25 kW (50 kWh) CES units and a 500 kW lithium battery storage device integrated with a photovoltaic solar module. At just under 1 MW the CES units, coupled

434

FY06 DOE Energy Storage Program PEER Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 DOE Energy Storage Program 7 DOE Energy Storage Program PEER Review FY07 DOE Energy Storage Program PEER Review John D. Boyes Sandia National Laboratories Mission Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Make energy storage ubiquitous ESS Program Makeup ESS Program Makeup ESS Base Program - CEC/DOE Data Acquisition and Project Support - NYSERDA/DOE Data Acquisition and Project Support - BPA ETO based STATCOM Project - ETO Development Project - Boeing Superconducting Flywheel - ACONF Coast Guard Project - Iowa Stored Energy Project - Electrolyte Research

435

Biomass energy with carbon capture and storage (BECCS): a review  

E-Print Network (OSTI)

Biomass energy with carbon capture and storage (BECCS): a review Claire Gough, Paul Upham December are alternative terms for the coupling of bioenergy with carbon capture and storage (CCS). The paper follows from a workshop held in December 2009, hosted by the Scottish Centre for Carbon Capture and Storage

Matthews, Adrian

436

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage  

Science Journals Connector (OSTI)

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Ground-state energy barriers along the NN torsional coordinates were also computed, along with excitation energies and intensities for the species that can contribute to the photostationary state. ...

E. Durgun; Jeffrey C. Grossman

2013-03-04T23:59:59.000Z

437

300kW Energy Storage Demonstration Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kW Energy Storage Demonstration kW Energy Storage Demonstration Project Technical Overview Presented at: Annual Doe Peer Review Meeting ─ 2008 DOE Energy Storage & Power Electronics Research Programs By Ib I. Olsen September 29, 2008 116 John Street - Suite 2320 New York, New York 10038 (p) 1.212.732.5507 (f) 1.212.732.5597 www.gaiapowertech.com This project is part of the Joint Energy Storage Initiative between the New York State Energy Research and Development Authority (NYSERDA) and the Energy Storage Systems Program of the U.S. Department of Energy (DOE/ESS), and managed by Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000

438

2012 Transmission and Energy Storage Peer Review Presentations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by DOE at the Lawrence Berkeley National Lab. DOE's Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on September 26 - 28,...

439

Fact Sheet: Energy Storage Technology Advancement Partnership (October 2012)  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Storage Technology Advancement Partnership (ESTAP) is acooperative funding and information-sharing partnership between DOE and interested states that aims to accelerate the...

440

Carbon Foam Infused with Pentaglycerine for Thermal Energy Storage Applications.  

E-Print Network (OSTI)

??A thermal energy storage device that uses pentaglycerine as a phase change material was developed. This solid-state phase change material was embedded in a carbon (more)

Johnson, Douglas James

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Performance investigation of various cold thermal energy storages.  

E-Print Network (OSTI)

??This study deals with solidification and melting of some typical encapsulated ice thermal energy storage geometries. Using ANSYS GAMBIT and FLUENT 6.0 software, HTF fluid (more)

MacPhee, David

2008-01-01T23:59:59.000Z

442

Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides from the DOE Fuel Cell Technologies Office webinar Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies held on August 19, 2014.

443

Solar energy storage: A possible use of inclusion compounds  

Science Journals Connector (OSTI)

Valence isomerization of norbornadiene to quadricyclene has been studied under different experimental conditions in order to develop a suitable system for solar energy storage.

A. Guarino; E. Possagno; R. Bassanelli

1987-10-01T23:59:59.000Z

444

Energy Storage System Safety Reports - August 2014 and September...  

Energy Savers (EERE)

Sheet: Codes and Standards for Energy Storage System Performance and Safety (June 2014) DOE-TSPP-3-2013, Using Voluntary Consensus Standards and Interacting With Standards...

445

Project Profile: Novel Thermal Energy Storage Systems for Concentratin...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The University of Connecticut, under the Thermal...

446

Chapter 9 - Large-Scale Hydrogen Energy Storage  

Science Journals Connector (OSTI)

Abstract Storage technologies are essential for the integration of fluctuating renewable energies. Large scale storage provides grid stability, which are fundamental for a reliable energy systems and the energy balancing in hours to weeks time ranges to match demand and supply. Our system analysis showed that storage needs are in the two-digit terawatt hour and gigawatt range. Other reports confirm that assessment by stating that by 2040, 40TWh would be required for this application. The present chapter outlines the general components and functions as well as the economics of a large-scale hydrogen energy storage system.

Erik Wolf

2015-01-01T23:59:59.000Z

447

Carbon cryogel based nanomaterials for efficient energy storage.  

E-Print Network (OSTI)

??As demand for fossil fuel alternatives intensifies, energy storage will be a growing concern especially for portable power needs such as automobiles and portable electronic (more)

Feaver, Aaron

2007-01-01T23:59:59.000Z

448

NREL: Energy Storage - Innovative Way to Test Batteries Fills...  

NLE Websites -- All DOE Office Websites (Extended Search)

prototypes to a commercial product," said Ahmad Pesaran, manager of NREL's Battery and Energy Storage Research Group. "NETZSCH has a proven track record of developing and...

449

Project Profile: High-Efficiency Thermal Energy Storage System...  

Office of Environmental Management (EM)

the National Laboratory R&D competitive funding opportunity, will design, develop, and test a prototype high-temperature and high-efficiency thermal energy storage (TES) system...

450

Overview on Energy Storage Projects at ARPA-E  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dane Boysen - Program Director (BEEST, SBIR) Ilan Gur - Program Director (AMPED) Mark Johnson, Dane Boysen, John Lemmon (SBIR) EV Everywhere Energy Storage Workshop Chicago, IL...

451

Energy Storage Monitoring System and In-Situ Impedance Measurement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Monitoring System and In-Situ Impedance Measurement Modeling Energy Storage Monitoring System and In-Situ Impedance Measurement Modeling 2012 DOE Hydrogen and Fuel Cells Program...

452

Record-Setting Microscopy Illuminates Energy Storage Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

The results yielded important new insights into a material of high interest for electrochemical energy storage. Lithium iron phosphate is widely studied for its use as a...

453

IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy storage curriculum including vehicle configurations, advanced combustion, fuel cells, power electronics, controls, alternative fuels and vehicle fuel efficiency to prepare...

454

Two New Energy Storage Safety Reports Now Available | Department...  

Office of Environmental Management (EM)

increases. The issue of safety affects all aspects of a storage system, from battery chemistry, to devices, installation, and operation. Addthis Related Articles Energy Department...

455

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 4 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 4 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the fourth session of Day 2, chaired by NETL's Kim Nuhfer, are below. ESS 2010 Update Conference - Low Cost Energy Storage - Ted Wiley, Aquion.pdf Ess 2010 Update Conference - Solid State Li Metal Batteries for Grid-Scale Storage - Mohit Singh, Seeo.pdf ESS 2010 Update Conference - Utility Scale Flywheel Energy Storage Demonstration - Edward Chiao, Amber Kinetics.pdf

456

Integration of Electric Energy Storage into Power Systems with Renewable Energy Resources  

E-Print Network (OSTI)

strategy is proposed to optimally manage the charging and discharging operation of energy storage in order to minimize the energy purchasing cost for a distribution system load aggregator in power markets. Different operation strategies of energy storage...

Xu, Yixing 1985-

2012-10-26T23:59:59.000Z

457

Composite materials for thermal energy storage  

DOE Patents (OSTI)

The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

1986-01-01T23:59:59.000Z

458

Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SustainX SustainX American Recovery and Reinvestment Act (ARRA) Isothermal Compressed Air Energy Storage Demonstrating a modular, market-ready energy storage system that uses compressed air as a storage medium SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. Energy can be stored in compressed air, with minimal energy losses, and released when the air is later allowed to expand. Many traditional compressed air energy storage (CAES) projects store energy in underground geological formations such as salt caverns. However, in these systems, the air warms when it is compressed and cools when it is expanded. CAES systems generally use gas combustion turbines to reheat the cooled air before expansion. This process creates inefficiencies and emissions.

459

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

HAUSZ, W. , 1977. "Seasonal Storage in District Heating,"District Heating, July-August-September, 1977, pp. 5-11.aquifer storage for district heating and cooling. C. W.

Authors, Various

2011-01-01T23:59:59.000Z

460

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

FUTURE CONSIDERATIONS FOR CAVERN STORAGE Some of the topicsgravel or sand into the cavern in order to reduce the volumeAbove ground equipment for cavern storage opera- tions.

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NREL: Energy Storage - Modeling and Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling and Simulation Modeling and Simulation Two NREL researchers are silhouetted in front of computer screens displaying thermal model images. NREL modeling and simulation experts use an extensive portfolio of validated tools to assess ES solutions for advanced vehicles. Photo by Dennis Schroeder, NREL/PIX 22009 Multi-physics simulation of energy storage (ES) devices provides a less expensive, faster, and more controlled alternative to in-lab testing in the early stages of research and development (R&D)-which eventually leads to longer lasting, dependable and powerful batteries. NREL is a recognized leader in systems-level thermal design, performance, lifespan, reliability, and safety modeling and simulation. The lab's 1-D and 3-D steady-state and transient multi-physics models are used to examine heat transfer,

462

Seneca Compressed Air Energy Storage (CAES) Project  

SciTech Connect

This report provides a review and an analysis of potential environmental justice areas that could be affected by the New York State Electric & Gas (NYSEG) compress air energy storage (CAES) project and identifies existing environmental burden conditions on the area and evaluates additional burden of any significant adverse environmental impact. The review assesses the socioeconomic and demographic conditions of the area surrounding the proposed CAES facility in Schuyler County, New York. Schuyler County is one of 62 counties in New York. Schuyler Countys 2010 population of 18,343 makes it one of the least populated counties in the State (U.S. Census Bureau, 2010). This report was prepared for WorleyParsons by ERM and describes the study area investigated, methods and criteria used to evaluate this area, and the findings and conclusions from the evaluation.

None

2012-11-30T23:59:59.000Z

463

Energy Storage Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Power conversion equipment for energy storage Power conversion equipment for energy storage * Ultra- and super-capacitor systems * DC systems, such as commercial microgrids Partner with Us Work with NREL experts and take advantage of the state-of-the-art capabilities at the ESIF to make progress on your projects, which may range from fundamental research to applications engineering. Partners at the ESIF's Energy Storage Laboratory

464

Porous media compressed air energy storage (PM-CAES): Theory and simulation of the coupled wellbore-reservoir system  

E-Print Network (OSTI)

of selected compressed air energy storage studes, Pacificaspects of compressed-air energy storage in aquifers, J. ofresources and compressed air energy storage (CAES), Energy,

Oldenburg, C.M.

2014-01-01T23:59:59.000Z

465

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

seasonal storage in phase change material, by collecting andof incorporating phase-change materials (PCM) in con- crete

Authors, Various

2011-01-01T23:59:59.000Z

466

Hydrogen Storage - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal hydrides,...

467

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 1 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the first session of Day 2, chaired by DOE's Imre Gyuk, are below. ESS 2010 Update Conference - UltraBattery Grid Storage - John Wood, Ecoult.pdf ESS 2010 Update Conference - PV Plus Storage for Simultaneous Voltage Smoothing and Peak Shifting - Steve Willard, PNM.pdf ESS 2010 Update Conference - Tehachapi Wind Energy Storage - Loic Gaillac,

468

Molten Oxide Glass Materials for Thermal Energy Storage  

Science Journals Connector (OSTI)

Abstract Halotechnics, Inc. is developing an energy storage system utilizing a low melting point molten glass as the heat transfer and thermal storage material. This work is supported under a grant from the Department of Energy's Advanced Research Projects Agency-Energy (ARPA-E). Advanced oxide glasses promise a potential breakthrough as a low cost, earth abundant, and stable thermal storage material. The system and new glass material will enable grid scale electricity storage at a fraction of the cost of batteries by integrating the thermal storage with a large heat pump device. Halotechnics is combining its proven expertise in combinatorial chemistry with advanced techniques for handling molten glass to design and build a two-tank thermal energy storage system. This system, operating at a high temperature of 1200C and a low temperature of 400C, will demonstrate sensible heat thermal energy storage using a uniquely formulated oxide glass. Our molten glass thermal storage material has the potential to significantly reduce thermal storage costs once developed and deployed at commercial scale. Thermal storage at the target temperature can be integrated with existing high temperature gas turbines that significantly increase efficiencies over today's steam turbine technology. This paper describes the development and selection of Halotechnics molten glass heat transfer fluids with some additional systems considerations.

B. Elkin; L. Finkelstein; T. Dyer; J. Raade

2014-01-01T23:59:59.000Z

469

Solar energy in the context of energy use, energy transportation and energy storage  

Science Journals Connector (OSTI)

...average primary energy consumption per unit area, which for...as a national unit of energy storage. (Dinorwig...4], and area measurements using Google maps...Average powers per unit area are sometimes...meteorology and Solar Energy (eosweb.larc...

2013-01-01T23:59:59.000Z

470

Modeling of Thermal Storage Systems in MILP Distributed Energy Resource Models  

E-Print Network (OSTI)

storage with phase change materials and applications,"sensible vs phase change material (PCM) heat storage,"energy storage with phase change: materials, heat transfer

Steen, David

2014-01-01T23:59:59.000Z

471

Advanced Materials and Devices for Stationary Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Materials and Devices for Stationary Electrical Energy Materials and Devices for Stationary Electrical Energy Storage Applications Advanced Materials and Devices for Stationary Electrical Energy Storage Applications Reliable access to cost-effective electricity is the backbone of the U.S. economy, and electrical energy storage is an integral element in this system. Without significant investments in stationary electrical energy storage, the current electric grid infrastructure will increasingly struggle to provide reliable, affordable electricity, jeopardizing the transformational changes envisioned for a modernized grid. Investment in energy storage is essential for keeping pace with the increasing demands for electricity arising from continued growth in U.S. productivity, shifts in and continued expansion of national cultural imperatives (e.g., the distributed

472

Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

: Poster Session : Poster Session Energy Storage Systems 2010 Update Conference Presentations - Day 3: Poster Session The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from Day 3's poster session are below. ESS 2010 Update Conference - Fuel-Free, Ubiquitous, Compressed Air Energy Storage and Power Conditioning - David Marcus, General Compression.pdf ESS 2010 Update Conference - Transformative Renewable Energy Storage Devices Based on Neutral Water Input - Luke Dalton, Proton Energy.pdf

473

Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Peer Review - Utility & Commercial 7 Peer Review - Utility & Commercial Applications Presentations Energy Storage Systems 2007 Peer Review - Utility & Commercial Applications Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to utility, commercial, and rail applications of advanced energy storage systems are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies International Energy Storage Programs Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - Application of Large-Scale ESS in AEP - Ali Nourai, AEP.pdf ESS 2007 Peer Review - Iowa Stored Energy Park - Kent Holst, ISEP.pdf

474

The Application of Flywheels in Short-term Energy Storage  

Science Journals Connector (OSTI)

ABSTRACT In many alternative energy systems there is a requirement for energy storage over periods of up to 20 seconds in order to match supply and demand at times when these are changing rapidly and independently. The flywheel forms an ideal basis for such storage because of its relatively high cycle life and potential power and energy density. Wind energy conversion is taken as an example and the requirement for energy storage in WTG systems is assessed. Flywheel energy storage is compared with other forms of storage and is shown to be potentially suitable for this requirement. Power transmission between the flywheel and the WTG grid system requires a variable speed regenerative drive and associated frequency conversion. Such a scheme might permit variable speed WTG operation. A DC link converter is described.

C.M. Jefferson; N. Larsen

1984-01-01T23:59:59.000Z

475

Electromagnetic energy storage and power dissipation in nanostructures  

E-Print Network (OSTI)

The processes of storage and dissipation of electromagnetic energy in nanostructures depend on both the material properties and the geometry. In this paper, the distributions of local energy density and power dissipation in nanogratings are investigated using the rigorous coupled-wave analysis. It is demonstrated that the enhancement of absorption is accompanied by the enhancement of energy storage both for material at the resonance of its dielectric function described by the classical Lorentz oscillator and for nanostructures at the resonance induced by its geometric arrangement. The appearance of strong local electric field in nanogratings at the geometry-induced resonance is directly related to the maximum electric energy storage. Analysis of the local energy storage and dissipation can also help gain a better understanding of the global energy storage and dissipation in nanostructures for photovoltaic and heat transfer applications.

Zhao, J M

2014-01-01T23:59:59.000Z

476

Chongqing Wanli Storage Battery Co | Open Energy Information  

Open Energy Info (EERE)

Wanli Storage Battery Co Wanli Storage Battery Co Jump to: navigation, search Name Chongqing Wanli Storage Battery Co. Place Chongqing Municipality, China Sector Solar, Vehicles, Wind energy Product The scope of Wanli's power storage business includes batteries made for electric motorcycles and industrial vehicles, boats, and cars. It also includes batteries to store power from solar or wind power plants. References Chongqing Wanli Storage Battery Co.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Chongqing Wanli Storage Battery Co. is a company located in Chongqing Municipality, China . References ↑ "Chongqing Wanli Storage Battery Co." Retrieved from "http://en.openei.org/w/index.php?title=Chongqing_Wanli_Storage_Battery_Co&oldid=34358

477

Preliminary survey and evaluation of nonaquifer thermal energy storage concepts for seasonal storage  

SciTech Connect

Thermal energy storage enables the capture and retention of heat energy (or cold) during one time period for use during another. Seasonal thermal energy storage (STES) involves a period of months between the input and recovery of energy. The purpose of this study was to make a preliminary investigation and evaluation of potential nonaquifer STES systems. Current literature was surveyed to determine the state of the art of thermal energy storage (TES) systems such as hot water pond storage, hot rock storage, cool ice storage, and other more sophisticated concepts which might have potential for future STES programs. The main energy sources for TES principally waste heat, and the main uses of the stored thermal energy, i.e., heating, cooling, and steam generation are described. This report reviews the development of sensible, latent, and thermochemical TES technologies, presents a preliminary evaluation of the TES methods most applicable to seasonal storage uses, outlines preliminary conclusions drawn from the review of current TES literature, and recommends further research based on these conclusions. A bibliography of the nonaquifer STES literature review, and examples of 53 different TES concepts drawn from the literature are provided. (LCL)

Blahnik, D.E.

1980-11-01T23:59:59.000Z

478

Characterization Studies of Materials and Devices used for Electrochemical Energy Storage  

E-Print Network (OSTI)

solar and wind energy requires some form of energy storage,solar cells, fuel cells, redox flow batteries and electrochemical energy storage.energy generation and storage technologies. Dye Sensitized Solar

Membreno, Daniel Eduardo

2014-01-01T23:59:59.000Z

479

Energy Department Announces First-of-its-Kind, High-Temperature, Downhole Rechargeable Energy Storage Device  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department today announced commercialization of a rechargeable energy storage device capable of operating in the extreme temperatures necessary for geothermal energy production. Industry...

480

Storage Tanks (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

Note: This page contains sample records for the topic "aes energy storage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network (OSTI)

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

482

Modeling the Performance and Energy of Storage Arrays  

E-Print Network (OSTI)

, it is desirable that techniques provide their energy savings while minimizing their impact on performance. DespiteModeling the Performance and Energy of Storage Arrays Sankaran Sivathanu Georgia Institute techniques for power optimization in storage. Given an ar- bitrary trace of disk requests, we split

Liu, Ling

483

Alkaline regenerative fuel cell systems for energy storage  

SciTech Connect

This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

Schubert, F.H.; Reid, M.A.; Martin, R.E.

1981-01-01T23:59:59.000Z

484

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Investment in Nuclear Fuel Storage Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

485

Energy Department Announces New Investment in Nuclear Fuel Storage Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces New Investment in Nuclear Fuel Storage Announces New Investment in Nuclear Fuel Storage Research Energy Department Announces New Investment in Nuclear Fuel Storage Research April 16, 2013 - 12:19pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of its commitment to developing an effective strategy for the safe and secure storage and management of used nuclear fuel, the Energy Department today announced a new dry storage research and development project led by the Electric Power Research Institute (EPRI). The project will design and demonstrate dry storage cask technology for high burn-up spent nuclear fuels that have been removed from commercial nuclear power plants. "The Energy Department is committed to advancing clean, reliable and safe nuclear power - which provides the largest source of low-carbon

486

Hydrogen Energy Storage for Grid and Transportation Services Workshop  

Energy.gov (U.S. Department of Energy (DOE))

View presentations from the U.S. Department of Energy (DOE) and Industry Canada Hydrogen Energy Storage for Grid and Transportation Services Workshop, held on May 1415, 2014, in Sacramento, California.

487

Energy storage in carbon nanotube super-springs  

E-Print Network (OSTI)

A new technology is proposed for lightweight, high density energy storage. The objective of this thesis is to study the potential of storing energy in the elastic deformation of carbon nanotubes (CNTs). Prior experimental ...

Hill, Frances Ann

2008-01-01T23:59:59.000Z

488

COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 30, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Compressed Air Energy Storage: The Bridge to Our Renewable Energy Future Mr. Al Cavallo Consultant Compressed...

489

May 20 ESTAP Webinar: Commissioning Energy Storage | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2014 - 1:31pm Addthis On Tuesday, May 20 from 1 - 2 p.m. ET, Clean Energy State Alliance will host a webinar on the process of commissioning an energy storage system....

490

Data:3fbb07ae-6dba-4cc1-a8f8-633247684142 | Open Energy Information  

Open Energy Info (EERE)

7ae-6dba-4cc1-a8f8-633247684142 7ae-6dba-4cc1-a8f8-633247684142 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Barron, Wisconsin (Utility Company) Effective date: 2009/07/15 End date if known: Rate name: Cp-1 Small Power Service with Parallel Generation(20kW or less) Sector: Commercial Description: Application: This rate will be applied to customers for all types of service if their monthly Maximum Measured Demand is in excess of 40 kilowatts (kW) per month for three or more months in a consecutive 12-month period, unless the customer exceeds the application conditions of the Cp-2 schedule. Customers billed on this rate shall continue to be billed on this rate until their monthly Maximum Measured Demand is less than 40 kW per month for 12 consecutive months. The utility shall offer customers billed on this rate a one time option to continue to be billed on this rate for another 12 months if their monthly Maximum Measured Demand is less than 40 kW per month. However, this option shall be offered with the provision that the customer waives all rights to billing adjustments arising from a claim that the bill for service would be less on another rate schedule than under this rate schedule Fixed Monthly Charge includes Commitment to Community Rider: $7.00 per customer per month

491

FY06 DOE Energy Storage Program PEER Review  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 DOE Energy Storage 8 DOE Energy Storage and Power Electronics Program (ESPE) PEER Review FY08 DOE Energy Storage and Power Electronics Program (ESPE) PEER Review John D. Boyes Sandia National Laboratories Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000 Mission Mission Develop advanced electricity storage and PE technologies, in partnership with industry, for modernizing and expanding the electric supply. This will improve the quality, reliability, flexibility and cost effectiveness of the existing system. Help create an energy storage industry Develop advanced power electronics for the grid of the future

492

General Compression Looks at Energy Storage from a Different Angle |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle February 3, 2011 - 3:36pm Addthis Image of the General Compression CAES system | courtesy of General Compression, Inc. Image of the General Compression CAES system | courtesy of General Compression, Inc. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier this week, we told you about a new company that's developing battery technology that will allow energy storage for multiple hours on the power grid. General Compression is another innovative company that's developing a different way to store electricity by using compressed air energy storage, or CAES. The technology uses cheap power to pump air into

493

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the third session of Day 2, chaired by NETL's Ron Staubly, are below. ESS 2010 Update Conference - Detroit Edison's Advanced Implementatin of A123's Community ESS for Grid Support - Hawk Asgeirsson, DTE.pdf ESS 2010 Update Conference - Compressed Air Energy Storage (CAES) - Hal LaFlash, PG&E.pdf ESS 2010 Update Conference - Isothermal Compressed Air Energy Storage - Dax

494

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the third session of Day 2, chaired by NETL's Ron Staubly, are below. ESS 2010 Update Conference - Detroit Edison's Advanced Implementatin of A123's Community ESS for Grid Support - Hawk Asgeirsson, DTE.pdf ESS 2010 Update Conference - Compressed Air Energy Storage (CAES) - Hal LaFlash, PG&E.pdf ESS 2010 Update Conference - Isothermal Compressed Air Energy Storage - Dax

495

Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Systems 2012 Peer Review Presentations - Poster Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects The U.S. DOE Energy Storage Systems Program (ESS) conducted a peer review and update meeting in Washington, DC on Sept. 26 - 28, 2012. The 3-day conference included 9 sessions plus two poster sessions. ARPA-E project presentations from the first poster session on Day 1, chaired by DOE's Mark Johnson, are below. ESS 2012 Peer Review - Dispatchable Wind--Wind Power on Demand - Ian Lawson, General Compression ESS 2012 Peer Review - Novel Regenerative Fuel Cells based on Anion Exchange Membranes - Katherine Ayers, Proton Onsite ESS 2012 Peer Review - Low Cost, High-Energy Density Flywheel Storage Grid

496

Energy Storage Systems 2010 Update Conference Presentations - Day 3,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 Energy Storage Systems 2010 Update Conference Presentations - Day 3, Session 3 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the third session of Day 3, chaired by ARPA-E's Mark Johnson, are below. ESS 2010 Update Conference - Electrochemical Energy Storage for the Grid - Yet-Ming Chiang, MIT.pdf ESS 2010 Update Conference - DOE Loan Guarantee Program - Dan Tobin, DOE.pdf More Documents & Publications Electrochemical Energy Storage for the Grid

497

Energy Storage Systems 2010 Update Conference Presentations - Day 2,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Energy Storage Systems 2010 Update Conference Presentations - Day 2, Session 2 The U.S. DOE Energy Storage Systems Program (ESS) conducted a record-breaking Update Conference at the Washington DC Marriott Hotel on Nov. 2 - 4, 2010, with more than 500 attendees. The 2010 agenda reflected increased national interest in energy storage issues. The 3-day conference included 11 sessions plus a poster session on the final day. Presentations from the second session of Day 2, chaired by NETL's Bill Ayres, are below. ESS 2010 Update Conference - EnergyPod Smart Grid Storage - Rick Winter, Primus Power.pdf ESS 2010 Update Conference - Painesville Municipal Power Vanadium Redox Battery Demonstration Project - Joseph Startari, Ashlawn Energy.pdf ESS 2010 Update Conference - Notrees Wind Storage Project - Jeff Gates,

498

General Compression Looks at Energy Storage from a Different Angle |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle General Compression Looks at Energy Storage from a Different Angle February 3, 2011 - 3:36pm Addthis Image of the General Compression CAES system | courtesy of General Compression, Inc. Image of the General Compression CAES system | courtesy of General Compression, Inc. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs Earlier this week, we told you about a new company that's developing battery technology that will allow energy storage for multiple hours on the power grid. General Compression is another innovative company that's developing a different way to store electricity by using compressed air energy storage, or CAES. The technology uses cheap power to pump air into

499

Data:98ae74e1-9213-4013-8931-b28c094aff8d | Open Energy Information  

Open Energy Info (EERE)

ae74e1-9213-4013-8931-b28c094aff8d ae74e1-9213-4013-8931-b28c094aff8d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Florence Utility Comm Effective date: 2009/11/30 End date if known: Rate name: Rg-2 Residential Service Optional Time-of-Day Single Phase 7am-7pm Sector: Residential Description: Power Cost Adjustment Clause - All metered rates shall be subject to a positive or negative power cost adjustment charge equivalent to the amount by which the current cost of power (per kilowatt-hour of sales) is greater or lesser than the base cost of power purchased (per kilowatt-hour of sales). The base cost of power (U) is $0.0791 per kilowatt-hour. Parallel Generation (20 kW or less) Net Energy Billing - Available for single-phase and three-phase customers where a part or all of the electrical requirements of the customer are supplied by the customer's generating facilities, where such facilities have a total generating capability of 20 kW or less, where such facilities are connected in parallel with the utility and where such facilities are approved by the utility. Rate: The customer shall be billed monthly on a net energy basis and shall pay the fixed charge and energy charge specified in the rate schedule under which he is served. If, in any month, the customer's bill has a credit balance of $25 or less, the amount shall be credited to subsequent bills until a debit balance is reestablished. If the credit balance is more than $25, the utility shall reimburse the customer by check upon request. Monthly credits shall be computed by taking the net excess kilowatt-hours produced times the sum of the applicable energy charge plus monthly power cost adjustment clause (PCAC). This rate will be applied to residential single-phase and three-phase customers for ordinary household purposes. Single-phase motors may not exceed 5 horsepower individual-rated capacity without utility permission.

500