National Library of Energy BETA

Sample records for aerospace vehicle-suitable cloud

  1. Unmanned Aerospace Vehicle Workshop

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments were focused around the following sets of parameters: Clear sky, daylight; Clear-sky, night-to-day transition; Clear sky - improve/validate the accuracy of radiative fluxes derived from satellite-based measurements; Daylight, clouds of opportunity; and, Daylight, broken clouds.

  2. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    SciTech Connect (OSTI)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-03-18

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring.

  3. Nevada Science of Aerospace

    SciTech Connect (OSTI)

    Jason Marcks

    2004-07-01

    Funding was used to operate the educational program entitled the Nevada Science of Aerospace Project.

  4. Career Map: Aerospace Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Aerospace Engineer positions.

  5. Working Group Reports Unmanned Aerospace Vehicle Workshop J. Vitko, Jr.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Group Reports Unmanned Aerospace Vehicle Workshop J. Vitko, Jr. Sandia National Laboratories Livermore, California The Unmanned Aerospace Vehicle (UAV) Workshop concentrated on reviewing and refining the science experiments planned for the UAV Demonstration Flights (UDF) scheduled at the Oklahoma Cloud and Radiation Testbed (CART) in April 1994. These experiments are summarized below. UDF Experiments 1. Clear sky, daylight Scientific questions: Do models and observations agree? Under

  6. The ARM Unmanned Aerospace Vehicle Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ARM Unmanned Aerospace Vehicle Program The ARM Program's focus is on climate research, specifi- cally research related to solar radiation and its interaction with clouds. The SGP CART site contains highly sophisti- cated surface instrumentation, but even these instruments cannot gather some crucial climate data from high in our atmosphere. The lowest layer of our atmosphere, known as the "troposphere," is where our weather events take place. The troposphere contains virtually all

  7. THE AEROSPACE CORPORATION \\

    Office of Legacy Management (LM)

    I, .* THE AEROSPACE CORPORATION Suite 4000, 955 L'Enfant Plaza, S. W., Washington, D.C. 20024, Telephone: (202) 488.6000 7117-01.87.sej.16 28 July 1987 Mr. Andrew Wallo, III,...

  8. THE AEROSPACE CORPORATION '

    Office of Legacy Management (LM)

    q 3 THE AEROSPACE CORPORATION ' Suite 4000, 955 L' Enant Plaza, S. W., Warhington, D.C. 20024, Telephone: (202) 488-6000 7117-01.87.sej.16 28 July 1987 . Mr. Andrew Wallo, III,...

  9. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    . . s ,-- :; 2 5 Y THE AEROSPACE CORPORATION . Suite 4000, 955 L' EnJant Flax. S. Iv., Wah' gt cn on, D.C. 20024-2174, Telephone: (202) 488-6000 7117-03.87.cdy.27 27 May 1987 Mr. Andrew Wallo, III, NE:23 Division of Facility,& Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIONS - FUSRAP SITE LIST Aerospace recently completed a comprehensive review of sites listed fin the FUSRAP Site Investigation and Remedial Action Summary

  10. THE AEROSPACE CORPORATION '

    Office of Legacy Management (LM)

    q 3 THE AEROSPACE CORPORATION ' \ Suite 4000, 955 L' En/ant Plaza, S. W., Warhington, D.C. 20024, Telephone: (202) 488-6000 7117-01.87.sej.16 28 July 1987 . Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: FINAL ELIMINATION REPORTS AND SITE SUMMARIES Aerospace has completed its review and is forwarding the final elimination reports and site summaries for the following sites: l University of

  11. The ARM unpiloted aerospace vehicle (UAV) program

    SciTech Connect (OSTI)

    Sowle, D.

    1995-09-01

    Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

  12. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    53 L' Enfant Plwn. S. W.. W w tn h. go on. D.C. 20024-2174. Telephone: (202) 488.6000 7117-03.87.cdy.27 27 May 1987 Mr. 'Andrew Wallo, III, NE:23 Division of Facility & Site Decommissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: STATUS OF ACTIOiVS - FUSRAP SITE LIST Aerospace recently completed a comprehensive review of sites listed in the FUSRAP Site Investigation and Remedial Action Summary Report, dated Uecerober 31, 1986. The primary objectives of

  13. German Aerospace Center (DLR) | Open Energy Information

    Open Energy Info (EERE)

    German Aerospace Center (DLR) Name: German Aerospace Center (DLR) Place: Cologne, Germany Number of Employees: 5001-10,000 Website: www.dlr.deendesktopdefault.a Coordinates:...

  14. German Aerospace Center DLR | Open Energy Information

    Open Energy Info (EERE)

    Aerospace Center DLR Jump to: navigation, search Name: German Aerospace Center (DLR) Place: Stuttgart, Germany Zip: 70569 Product: Stuttgart-based, agency that manages the...

  15. Sandia National Laboratories: Careers: Aerospace Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerospace Engineering Aerospace imagery Sandia's aerospace engineers have provided critical data for the design and analysis of flight vehicles since the 1950s. Aerospace engineers at Sandia support atmospheric and space flight vehicles across the speed regimes, from subsonic to hypersonic, through their collaborative work on multidisciplinary teams. Our aerodynamics and astronautics specialists integrate the results from experiments, analysis, and simulation to solve complex problems of

  16. Shanghai Aerospace Industrial General Corporation aka Shanghai...

    Open Energy Info (EERE)

    Industrial General Corporation aka Shanghai Academy of Spaceflight Technology Jump to: navigation, search Name: Shanghai Aerospace Industrial General Corporation (aka Shanghai...

  17. Mr. Andrew Wallo The Aerospace'Corporaticn

    Office of Legacy Management (LM)

    . Department of Energy Washington, D.C. 20545 OCT 28 1985 Mr. Andrew Wallo The Aerospace'Corporaticn Suite 4000 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Dear Andy: The...

  18. Anisotropy in Broken Cloud Fields Over Oklahoma from Ladsat Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anisotropy in Broken Cloud Fields Over Oklahoma from Landsat Data L. M. Hinkelman National Institute of Aerospace Hampton, Virginia K. F. Evans University of Colorado Boulder, Colorado Introduction Previously, it was shown (Hinkelman et al. 2002) that anisotropy, or the existence of a preferred direction, in cumulus fields significantly affects solar radiative transfer through these fields. In this poster, we investigate the occurrence of anisotropy in broken cloud fields near the Atmospheric

  19. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1996-11-01

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

  20. ARM - Measurement - Cloud size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements as cloud thickness, cloud area, and cloud aspect ratio. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  1. Cloud Properties Working Group Low Clouds Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Properties Working Group Low Clouds Update Low Clouds Update Jennifer Comstock Jennifer Comstock Dave Turner Dave Turner Andy Andy Vogelmann Vogelmann Instruments Instruments ...

  2. Precipitating clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes, especially related ice. * Very large differences between observed IN number concentration and ice concentration in a given clouds. * Many ice nucleation modes are...

  3. ARM - Measurement - Cloud type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Cloud type Cloud type such as cirrus, stratus, cumulus etc Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  4. Mr. Andy Wall0 The Aerospace Corporation

    Office of Legacy Management (LM)

    'k.f' :, , j '"; ,,' DEC 5 1984 Mr. Andy Wall0 The Aerospace Corporation suite 4000 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Dear Mr. Wallo: The Divisfon of Remedial Action Projects staff has reviewed the authority review documents for Gardinler, Inc., Tampa, Florida; Conserv (formerly Virginia-Carolina Chemical Co.), Nichols, Florida; and Blockson Chemical co., Joliet, Illinois. Based on the content therein and in consultation with Mr. Steve Miller, Office of General Counsel

  5. Dispelling Clouds of Uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  6. Stirling engines. (Latest citations from the Aerospace database). Published

    Office of Scientific and Technical Information (OSTI)

    Search (Technical Report) | SciTech Connect Technical Report: Stirling engines. (Latest citations from the Aerospace database). Published Search Citation Details In-Document Search Title: Stirling engines. (Latest citations from the Aerospace database). Published Search The bibliography contains citations concerning fuel consumption, engine design and testing, computerized simulation, and lubrication systems relative to the Stirling cycle engine. Solar energy conversion research,

  7. Bringing Clouds into Focus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    clouds. Instead, global climate models must rely on parameterizations, which are statistical representations of phenomena, such as cloud cover or precipitation rates, that...

  8. ARM - Measurement - Cloud location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point in space and time, typically expressed as a binary cloud mask. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  9. Dispelling Clouds of Uncertainty

    SciTech Connect (OSTI)

    Lewis, Ernie; Teixeira, João

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  10. Atmospheric Radiation Measurement Program - unmanned aerospace vehicle: The follow-on phase

    SciTech Connect (OSTI)

    Vitko, J. Jr.

    1995-04-01

    Unmanned Aerospace Vehicle (UAV) demonstration flights (UDF) are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments to measure broadband radiative flux profiles under clear sky conditions. UDF is but the first of three phases of ARM-UAV. The second phase significantly extends both the UAV measurement techniques and the available instrumentation to allow both multi-UAV measurements in cloudy skies and extended duration measurements in the tropopause. These activities build naturally to the third and final phase, that of full operational capability, i.e., UAVs capable of autonomous operations at 20-km altitudes for multiple days with a full suite of instrumentation for measuring radiative flux, cloud properties, and water vapor profiles.

  11. ARM - Field Campaign - Unmanned Aerospace Vehicle (UAV) IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsUnmanned Aerospace Vehicle (UAV) IOP Campaign Links ARM UAV Program Science Plan ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note...

  12. First observations of tracking clouds using scanning ARM cloud...

    Office of Scientific and Technical Information (OSTI)

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of ... Following CITA, the temporal evolution of cloud element properties (number, size, and ...

  13. First observations of tracking clouds using scanning ARM cloud radars

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: First observations of tracking clouds using scanning ARM cloud radars Citation Details In-Document Search Title: First observations of tracking clouds using scanning ARM cloud radars Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (''first echo''). These measurements complement cloud and precipitation tracking using geostationary satellites and

  14. ARM - Measurement - Cloud extinction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud extinction The removal of radiant energy from an incident beam by the process of cloud absorption andor ...

  15. ARM - Measurement - Cloud phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that involves property descriptors such as stratus, cumulus, and cirrus. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  16. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  17. Boundary Layer Cloud Turbulence Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Cloud Turbulence Characteristics Virendra Ghate Bruce Albrecht Parameter Observational Readiness (/10) Modeling Need (/10) Cloud Boundaries 9 9 Cloud Fraction Variance Skewness Up/Downdraft coverage Dominant Freq. signal Dissipation rate ??? Observation-Modeling Interface

  18. ARM - Measurement - Cloud droplet size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    droplet size Linear size (e.g. radius or diameter) of a cloud particle Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  19. ARM - Measurement - Cloud effective radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the number size distribution of cloud particles, whether liquid or ice. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the...

  20. TC_CLOUD_REGIME.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intensity (e.g. May and Ballinger, 2007) Resulting Cloud Properties Examine rain DSD using polarimetric radar Examine ice cloud properties using MMCR and MPL Expect...

  1. Cloud computing security.

    SciTech Connect (OSTI)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  2. Magellan: A Cloud Computing Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magellan News & Announcements Archive Petascale Initiative Exascale Computing APEX Home » R & D » Archive » Magellan: A Cloud Computing Testbed Magellan: A Cloud Computing Testbed Cloud computing is gaining a foothold in the business world, but can clouds meet the specialized needs of scientists? That was one of the questions NERSC's Magellan cloud computing testbed explored between 2009 and 2011. The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Oce

  3. Recent developments in graphite. [Use in HTGR and aerospace

    SciTech Connect (OSTI)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications.

  4. UAVs in climate research: The ARM Unmanned Aerospace Vehicle Program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1994-05-01

    In the last year, a Department of Energy/Strategic Environmental Research and Development Program project known as ``ARM-UAV`` has made important progress in developing and demonstrating the utility of unmanned aerospace vehicles as platforms for scientific measurements. Recent accomplishments include a series of flights using an atmospheric research payload carried by a General Atomics Gnat UAV at Edwards AFB, California, and over ground instruments located in north-central Oklahoma. The reminder of this discussion will provide background on the program and describe the recent flights.

  5. I I THE AEROSPACE CORPORATION I I,W. I

    Office of Legacy Management (LM)

    s I I THE AEROSPACE CORPORATION I I,W. I .%tc 7900,955 L%nfam Plaza. S. W., Wahingron. D.C. 20024-2174, T~kpdnc: (202) 488-6@~ 7117~03.87.cdy.43 23 September 1987 CR CA*03 Mr. Andrew Wallo, III, NE-23 Division of Facility & Site Deconnnissioning Projects U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Wallo: ELIMINATION RECOMMENDATION -- COLLEGES AND "NIVERSITIiS M/&b-s pl p.o- The attached elimination recommendation was prepared in accordance ML.05 with your

  6. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (first echo). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  7. Multi Spectral Pushbroom Imaging Radiometer (MPIR) for remote sensing cloud studies

    SciTech Connect (OSTI)

    Phipps, G.S.; Grotbeck, C.L.

    1995-10-01

    A Multi Spectral Pushbroom Imaging Radiometer (MPIR) has been developed as are relatively inexpensive ({approximately}$IM/copy), well-calibrated,imaging radiometer for aircraft studies of cloud properties. The instrument is designed to fly on an Unmanned Aerospace Vehicle (UAV) platform at altitudes from the surface up to 20 km. MPIR is being developed to support the Unmanned Aerospace Vehicle portion of the Department of Energy`s Atmospheric Radiation Measurements program (ARM/UAV). Radiation-cloud interactions are the dominant uncertainty in the current General Circulation Models used for atmospheric climate studies. Reduction of this uncertainty is a top scientific priority of the US Global Change Research Program and the ARM program. While the DOE`s ARM program measures a num-ber of parameters from the ground-based Clouds and Radiation Testbed sites, it was recognized from the outset that other key parameters are best measured by sustained airborne data taking. These measurements are critical in our understanding of global change issues as well as for improved atmospheric and near space weather forecasting applications.

  8. A novel approach for introducing cloud spatial structure into cloud

    Office of Scientific and Technical Information (OSTI)

    radiative transfer parameterizations (Journal Article) | SciTech Connect A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations Citation Details In-Document Search Title: A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations Authors: Huang, Dong ; Liu, Yangang Publication Date: 2014-12-18 OSTI Identifier: 1222378 Grant/Contract Number: ASR; FASTER Type: Published Article Journal Name:

  9. Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth

    Office of Scientific and Technical Information (OSTI)

    (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report (Technical Report) | SciTech Connect Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report Citation Details In-Document Search Title: Biogenic Aerosols - Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report This report describes

  10. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  11. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K.

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  12. ARM - Measurement - Images of Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Images of Clouds Digital images of cloud scenes (various formats) from satellite, aircraft, and ground-based...

  13. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The...

  14. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore » and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  15. Assessing Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Spatial and Vertical Distribution with Infrared Cloud Analyzer I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington T. Besnard ATMOS SARL Le Mans, France D. Gillotay Institute d'Aeronomie Spatiale de Belgique Brussels, Belgium Introduction In the effort to resolve uncertainties about global climate change, the Atmospheric Radiation Measurement (ARM) Program (www.arm.gov) is improving the treatment of cloud radiative forcing and feedbacks in general

  16. May 12, 2011, Visiting Speakers Program Events - Aerospace Industry: Challenges and Combating Counterfeit Parts

    Energy Savers [EERE]

    Aerospace Industry: Challenges and Combating Counterfeit Parts Kirsten M. Koepsel Director of Legal Affairs & Tax, AIA May 12, 2011 Unpublished work © (2011) Aerospace Industries Association of America, Inc. Definition from AIA white paper ■ Definition: - Counterfeit product or part: A product produced or altered to resemble a product without authority or right to do so, with the intent to mislead or defraud by passing the imitation as original or genuine. (as defined in the AIA

  17. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    SciTech Connect (OSTI)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-02-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation.

  18. Compliance with the Aerospace MACT Standard at Lockheed Martin

    SciTech Connect (OSTI)

    Kurucz, K.L.; Vicars, S.; Fetter, S.; Mueller, T.

    1997-12-31

    Actions taken and planned at four Lockheed Martin Corporation (LMC) facilities to comply with the Aerospace MACT Standard are reviewed. Many LMC sites have taken proactive steps to reduce emissions and implement low VOC coating technology. Significant administrative, facility, and material challenges remain to achieve compliance with the upcoming NESHAP and Control Technology Guideline (CTG) standards. The facilities discussed herein set up programs to develop and implement compliance strategies. These facilities manufacture military aircraft, missiles, satellites, rockets, and electronic guidance and communications systems. Some of the facilities are gearing up for new production lines subject to new source MACT standards. At this time the facilities are reviewing compliance status of all primers, topcoats, maskants and solvents subject to the standard. Facility personnel are searching for the most efficient methods of satisfying the recordkeeping, reporting and monitoring, sections of the standards while simultaneously preparing or reviewing their Title V permit applications. Facility decisions on paint booths are the next highest priority. Existing dry filter paint booths will be subject to the filtration standard for existing paint booths which requires the use of two-stage filters. Planned paint booths for the F-22 program, and other new booths must comply with the standard for new and rebuilt booths which requires three stage or HEPA filters. Facilities looking to replace existing water wash paint booths, and those required to retrofit the air handling equipment to accommodate the two-stage filters, are reviewing issues surrounding the rebuilt source definition.

  19. Holistic Interactions of Shallow Clouds,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems Research Instrumentation HI-SCALE will utilize the ARM Aerial Facility's Gulfstream-159 (G-1), as well as ground instrumentation located at the SGP megasite. 7e G-1 will complete transects over the site at multiple altitudes within the boundary layer, within clouds, and above clouds. 7e payload on the G-1 includes: * high frequency meteorological and radiation (both up and downwelling) measurements that also permit computing

  20. ARM - Measurement - Cloud top height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RUC : Rapid Update Cycle Model Data Field Campaign Instruments CO2LIDAR : Carbon Dioxide Doppler Lidar MPLCMASK : Cloud mask from Micropulse Lidar VARANAL : Constrained...

  1. TWP Island Cloud Trail Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a key to understanding boundary layer cloud formation in the tropics. Except during El Nio periods, Nauru represents a divergent region of the ocean upwind from the...

  2. ARM - Measurement - Cloud optical depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TWST : Three Waveband Spectrally-agile Technique Sensor WRF-CHEM : Weather Research and Forecasting (WRF) Model Output Value-Added Products LBTM-MINNIS : Minnis Cloud Products...

  3. ARM - Measurement - Cloud condensation nuclei

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS : Aerosol Observing System CCN : Cloud Condensation Nuclei Particle Counter TDMA : Tandem Differential Mobility Analyzer Field Campaign Instruments AMT : Aerosol Modeling...

  4. Widget:LogoCloud | Open Energy Information

    Open Energy Info (EERE)

    LogoCloud Jump to: navigation, search This widget adds css selectors and javascript for the Template:LogoCloud. For example: Widget:LogoCloud Retrieved from "http:...

  5. Zenith Radiance Retrieval of Cloud Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retrievals of cloud properties from the AMF/COPS campaign Preliminary retrievals of cloud properties from the AMF/COPS campaign Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC Christine Chiu, UMBC/JCET Alexander Marshak, GSFC Yuri Knyazikhin, Boston University Warren Wiscombe, GSFC The cloud optical properties of interest are: The cloud optical properties of interest are: * Cloud optical depth τ - the great unknown * Radiative cloud

  6. Clouds Environmental Ltd | Open Energy Information

    Open Energy Info (EERE)

    Clouds Environmental Ltd Jump to: navigation, search Name: Clouds Environmental Ltd Place: Portsmouth, United Kingdom Zip: PO3 5EG Product: Independent consultancy specialising in...

  7. Satellite determination of stratus cloud microphysical properties...

    Office of Scientific and Technical Information (OSTI)

    of liquid water path from SSMI, broadband albedo from ERBE, and cloud characteristics from ISCCP are used to study stratus regions. An average cloud liquid water path of ...

  8. Cloud Properties Working Group Break Out Session

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relation to fall speeds, implications for previous measurements. (Mitchell) Q8: Geoengineering of cirrus clouds (Mitchell) Q9: Cold cloud phase partitioning: Roles of...

  9. Evaluation of high-level clouds in cloud resolving model simulations with

    Office of Scientific and Technical Information (OSTI)

    ARM and KWAJEX observations (Journal Article) | SciTech Connect Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations Citation Details In-Document Search Title: Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar

  10. cloud | OpenEI Community

    Open Energy Info (EERE)

    - 13:42 How cleantech-as-a-service will drive renewable energy adoption 2015 adoption Big Data clean tech clean-tech cleantech cleantech forum cleantech-as-a-service cloud...

  11. ARM - Measurement - Cloud ice particle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ice particle ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud ice particle...

  12. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect (OSTI)

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  13. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations: HIGH CLOUD IN CRM Citation Details In-Document Search This content will ...

  14. Evaluation of Mixed-Phase Cloud Microphysics Parameterizations...

    Office of Scientific and Technical Information (OSTI)

    the partitioning of condensed water into liquid droplets and ice crystals in these Arctic clouds, which affect modeled cloud phase, cloud lifetime and radiative properties. ...

  15. Evaluation of high-level clouds in cloud resolving model simulations...

    Office of Scientific and Technical Information (OSTI)

    The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. ...

  16. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based...

    Office of Scientific and Technical Information (OSTI)

    Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements Citation Details In-Document Search Title: ...

  17. Evaluating the MMF Using CloudSat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its cloud Evaluate the MMF and improve its cloud simulations simulations Borrowed from Dave Randall, CSU The big picture The big picture ... ... . . Data ARM A-Train, MISR etc. ...

  18. ARM - Measurement - Cloud particle size distribution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle size distribution The number of cloud particles present in any given volume of air...

  19. ARM - Measurement - Cloud particle number concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Cloud particle number concentration The total number of cloud particles present in any given volume...

  20. Tropical Cloud Life Cycle and Overlap Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Cloud Life Cycle and Overlap Structure Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory Luke, Edward Brookhaven National Laboratory Boer, Erwin LUEBEC Category: Cloud Properties The profile of cloud microphysical properties and how the clouds are overlapped within a vertical column have a profound impact on the radiative transfer and subsequent general circulation model simulations. We will

  1. Radiative Effects of Cloud Inhomogeneity and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Effects of Cloud Inhomogeneity and Geometric Association Over the Tropical Western Pacific Warm Pool X. Wu National Center for Atmospheric Research (a) Boulder, Colorado X. -Z. Liang Illinois State Water Survey Champaign, Illinois Introduction The representation of cloud systems and cloud-radiation interaction is considered to be one of major uncertainties in general circulation models (GCMs). This arises because (1) complete observations of cloud systems are impossible and available

  2. What Makes Clouds Form, Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Makes Clouds Form, Grow and Die? What Makes Clouds Form, Grow and Die? Simulations Show Raindrops Physics May Affect Climate Model Accuracy February 19, 2015 thunderstorm Brazil shuttle NASA 1984 540 PNNL scientists used real-world observations to simulate how small clouds are likely to stay shallow, while larger clouds grow deeper because they mix with less dry air. Pictured are small and large thunderstorms growing over southern Brazil, taken from the space shuttle. Image: NASA Johnson Space

  3. Unlocking the Secrets of Clouds

    Broader source: Energy.gov [DOE]

    Clouds may look soft, fluffy and harmless to the untrained eye, but to an expert climate model scientist they represent great challenges. Fortunately the Atmospheric Radiation Measurement (ARM) Climate and Research Facility is kicking off a five-month study which should significantly clear the air.

  4. ARM Data for Cloud Parameterization

    SciTech Connect (OSTI)

    Xu, Kuan-Man

    2006-10-02

    The PI's ARM investigation (DE-IA02-02ER633 18) developed a physically-based subgrid-scale saturation representation that fully considers the direct interactions of the parameterized subgrid-scale motions with subgrid-scale cloud microphysical and radiative processes. Major accomplishments under the support of that interagency agreement are summarized in this paper.

  5. Fractional order PID controller for improvement of PMSM speed control in aerospace applications

    SciTech Connect (OSTI)

    Saraji, Ali Motalebi; Ghanbari, Mahmood

    2014-12-10

    Because of the benefits reduced size, cost and maintenance, noise, CO2 emissions and increased control flexibility and precision, to meet these expectations, electrical equipment increasingly utilize in modern aircraft systems and aerospace industry rather than conventional mechanic, hydraulic, and pneumatic power systems. Electric motor drives are capable of converting electrical power to drive actuators, pumps, compressors, and other subsystems at variable speeds. In the past decades, permanent magnet synchronous motor (PMSM) and brushless dc (BLDC) motor were investigated for aerospace applications such as aircraft actuators. In this paper, the fractional-order PID controller is used in the design of speed loop of PMSM speed control system. Having more parameters for tuning fractional order PID controller lead to good performance ratio to integer order. This good performance is shown by comparison fractional order PID controller with the conventional PI and tuned PID controller by Genetic algorithm in MATLAB soft wear.

  6. Joint retrievals of cloud and drizzle in marine boundary layer clouds using

    Office of Scientific and Technical Information (OSTI)

    ground-based radar, lidar and zenith radiances (Journal Article) | DOE PAGES Published Article: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances « Prev Next » Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar

  7. Joint retrievals of cloud and drizzle in marine boundary layer clouds using

    Office of Scientific and Technical Information (OSTI)

    ground-based radar, lidar and zenith radiances (Journal Article) | SciTech Connect Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Citation Details In-Document Search Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar

  8. Joint retrievals of cloud and drizzle in marine boundary layer clouds using

    Office of Scientific and Technical Information (OSTI)

    ground-based radar, lidar and zenith radiances (Journal Article) | SciTech Connect Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Citation Details In-Document Search Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar

  9. Joint retrievals of cloud and drizzle in marine boundary layer clouds using

    Office of Scientific and Technical Information (OSTI)

    ground-based radar, lidar and zenith radiances (Journal Article) | DOE PAGES Published Article: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Title: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a

  10. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    SciTech Connect (OSTI)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  11. Vertical microphysical profiles of convective clouds as a tool for

    Office of Scientific and Technical Information (OSTI)

    obtaining aerosol cloud-mediated climate forcings (Technical Report) | SciTech Connect Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings Citation Details In-Document Search Title: Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud

  12. ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Precipitation Experiment a NOAA ship in the Pacific Ocean and on a DOE- sponsored plane over land and sea. These researchers will study: (1) water sources, evolution and structure of atmospheric rivers over the Pacific Ocean (2) long range transport of aerosols over the Pacific Ocean between Hawaii and the U.S. West Coast, and how aerosols interact with atmospheric rivers (3) the point where atmospheric rivers make landfall on the U.S. West Coast, especially how clouds form where

  13. Testing a New Cirrus Cloud Parameterizaton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing a New Cirrus Cloud Parameterization in NCAR CCM3 D. Zurovac-Jevtic, G. J. Zhang, and V. Ramanathan Center for Atmospheric Sciences Scripps Institute of Oceanography La Jolla, California Introduction Cirrus cloud cover and ice water content (IWC) are the two most important properties of cirrus clouds. However, in general circulation models (GCMs), their treatment is very crude. For example, in the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3), IWC is

  14. The LANL Cloud-Aerosol Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The K-25 Story The K-25 Story Addthis Description The K-25 Story

    The LANL Cloud-Aerosol Model Reisner, Jon Los Alamos National Laboratory Category: Modeling Additional Authors: Dubey Manvendra, Chris Jeffery, Miroslaw Andrejczuk, and Dave Moulton A cloud-aerosol modeling framework is being developed at Los Alamos National Laboratory that incorporates two unique aspects in its formulation. First, the model employs a nonlinear solver that requires cloud-aerosol parameterizations be smooth or

  15. Midlatitude Continental Convective Clouds Experiment Science Objective

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Midlatitude Continental Convective Clouds Experiment Science Objective Despite improvements in computing power, current weather and climate models are unable to accurately reproduce the formation, growth, and decay of clouds and precipitation associated with storm systems. Not only is this due to a lack of data about precipitation, but also about the 3-dimensional environment of the surrounding clouds, winds, and moisture, and how that affects the transfer of energy between the sun and Earth. To

  16. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave

    Office of Scientific and Technical Information (OSTI)

    Radiation Measurements: A Comparison of 16 Year Measurements (Journal Article) | SciTech Connect Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements Citation Details In-Document Search Title: Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements Ground-based radiation measurements have been widely conducted to gain information

  17. Mountain-induced Dynamics Influence Cloud Phase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2010-2011 via coordinated projects targeting clouds, precipitation, and dynamics in the Park Range of Colorado. The National Science Foundation sponsored aircraft measurements as...

  18. DOE Research and Development Accomplishments Tag Cloud

    Office of Scientific and Technical Information (OSTI)

    Database Tag Cloud This tag cloud is a specific type of weighted list that provides a quick look at the content of the DOE R&D Accomplishments database. It can be easily browsed because terms are in alphabetical order. With this tag cloud, there is a direct correlation between font size and quantity. The more times a term appears in the bibliographic citations, the larger the font size. This tag cloud is also interactive. Clicking on a term will activate a search for that term. Search

  19. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments You are ...

  20. What Makes Clouds Form, Grow and Die?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were born and grew. Those formulas did not always reflect reality. With more advanced computers came the ability to explicitly simulate large-cloud systems instead of approximating...

  1. Characterizing Arctic Mixed-phase Cloud Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have two distinguished cloud base heights (CBHs) that can be defined by both ceilometer (black dots) and micropulse lidar (MPL; pink dots) measurements (Figure 1). For a...

  2. Fragmentation in rotating isothermal protostellar clouds

    SciTech Connect (OSTI)

    Bodenheimer, P.; Tohline, J.E.; Black, D.C.

    1980-01-01

    Results of an extensive set of 3-D hydrodynamic calculations that have been performed to investigate the susceptibility of rotating clouds to gravitational fragmentation are presented. (GHT)

  3. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment (MC3E) Campaign Links Science Plan MC3E Website Field Campaign Report ARM Data Discovery Browse Data Related Campaigns Midlatitude Continental Convective Clouds...

  4. ARM - Evaluation Product - Cloud Classification VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties includes cloud boundaries, thickness, phase, type, and precipitation information, and hence provides a useful tool for evaluation of model simulations and...

  5. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of aerosol properties during clear-sky conditions. The ETL Radar Meteorology and Oceanography Division will field their NOAAK scanning cloud radar near the new ARM millimeter...

  6. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  7. Ground-based Microwave Cloud Tomography

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microwave Cloud Tomography Experiment, SGP, May 15-June 15, 2009 Lead Scientist Dong Huang, BNL Co-Investigators Al Gasiewski, UC Boulder Maria Cadeddu, ANL Warren Wiscombe, BNL Radiation Processes Working Group March 30, 2009 multiple radiometers All good cloud radiation modelers should close their airplane window shades so as not to be corrupted by the spectacle of real 3D clouds. - Roger Davies In case you forget to do this, you see 3/30/2009 ARM RPWG 2 Effects of cloud structure on radiation

  8. Dynamics of Molecular Clouds: Observations, Simulations, and...

    Office of Scientific and Technical Information (OSTI)

    Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J ...

  9. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  10. THE AEROSPACE

    Office of Legacy Management (LM)

    ... (Perkins Avenue) Cleveland, OH Clecon Metals, Inc. (Horizons, Inc.1 Cleveland, OH DuPont Grasselle Plant Cleveland, Oh Harshaw Chemical Company Cleveland, OH Brush Beryllium ...

  11. THE AEROSPACE

    Office of Legacy Management (LM)

    ... Cincinnati, OH R.K. Le Blond Machine Tool Company Cincinnati, OH, Robbins.and Myers Company Springfield, OH Tocco Heat Testing Cleveland, OH Oregon Metalurgical Corporation Albany, ...

  12. Clouds, aerosol, and precipitation in the Marine Boundary Layer...

    Office of Scientific and Technical Information (OSTI)

    Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km ...

  13. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogramme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the form of the Point Cloud of Cloud Points Product (PCCPP). The PCCPP will: provide context on life-cycle stage and cloud position for vertically pointing radars, lidars, and...

  14. Intercomparison of model simulations of mixed-phase clouds observed...

    Office of Scientific and Technical Information (OSTI)

    Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud Citation Details In-Document ...

  15. ARM - PI Product - Cloud Property Retrieval Products for Graciosa...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LWP43*pi*r3*N*dZ with the uncertainty of 30%, sigma0.38 cloud optical thickness taudong: Dong98 calculated cloud optical depth from tau1.575LWPreDong cloud particle...

  16. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study () | Data...

    Office of Scientific and Technical Information (OSTI)

    VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study Title: VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international ...

  17. ARM - Publications: Science Team Meeting Documents: Tropical Cloud Overlap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure and Cloud Area Tropical Cloud Overlap Structure and Cloud Area Vogelmann, Andrew Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Boer, Erwin LUEBEC The Tropical Western Pacific (TWP), with its vigorous cloud activity, is an excellent location to investigate the relationships between cloud properties and radiative fluxes. To unlock such issues first requires a better understanding of what the observed structures of clouds are and how they affect the

  18. Vertical microphysical profiles of convective clouds as a tool...

    Office of Scientific and Technical Information (OSTI)

    at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei ... of boundary layer convective clouds from an operational polar orbiting weather satellite. ...

  19. Towards a Characterization of Arctic Mixed-Phase Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manual classification of cloud phase. Using collocated cloud radar and depolarization lidar observations, it is shown that mixed-phase conditions have a high correlation with a...

  20. Cloud Optical Properties from the Multi-Filter Shadowband Radiometer...

    Office of Scientific and Technical Information (OSTI)

    Cloud Optical Properties from the Multi-Filter Shadowband Radiometer (MFRSRCLDOD): An ARM ... 7. The retrieval assumes a single cloud layer consisting solely of liquid water drops. ...

  1. Tropical Cloud Properties and Radiative Heating Profiles (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Tropical Cloud Properties and Radiative Heating Profiles Title: Tropical Cloud Properties ... in that it uses the microwave radiometer to scale the radiosonde column water vapor. ...

  2. ARM - Evaluation Product - CMWG Data - SCM-Forcing Data, Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data. Cloud microphysical properties derived from Mace's data of atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates are regridded to a...

  3. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency ... (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). ...

  4. Cloud microphysical relationships and their implication on entrainment...

    Office of Scientific and Technical Information (OSTI)

    Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project Citation Details ...

  5. ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaigns Azores: Above-Cloud Radiation Budget near Graciosa Island 2010.04.15, Miller, AMF Azores: Extension to Clouds, Aerosol and Precipitation in the Marine Boundary...

  6. Simulations of the electron cloud buildups and suppressions in...

    Office of Scientific and Technical Information (OSTI)

    Simulations of the electron cloud buildups and suppressions in Tevatron and main injector Citation Details In-Document Search Title: Simulations of the electron cloud buildups and ...

  7. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems...

    Office of Scientific and Technical Information (OSTI)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science ... Current convective cloud parameterizations contain uncertainties resulting in part from ...

  8. STORMVEX: Ice Nuclei and Cloud Condensation Nuclei Characterization...

    Office of Scientific and Technical Information (OSTI)

    Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report D Cziczo March ... warm clouds, require precise separation techniques and accurate identification of phase. ...

  9. STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization...

    Office of Scientific and Technical Information (OSTI)

    Title: STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign ... warm clouds, require precise separation techniques and accurate identification of phase. ...

  10. ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF...

    Office of Scientific and Technical Information (OSTI)

    transmitted RF power Title: ARM: Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Millimeter Wavelength Cloud Radar (MMCR): transmitted RF power Authors: Karen ...

  11. ARM - Publications: Science Team Meeting Documents: Cloud Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. ... Documentation with data of the effects of clouds on the radiant energy balance of the ...

  12. Distribution and Validation of Cloud Cover Derived from AVHRR...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... maps developed for the Cloud's and the Earth's Radiant Energy System (CERES) Project. ... for the Cloud's and the Earth's Radiant Energy System (CERES) Experiment. J. Appl. ...

  13. Humidity trends imply increased sensitivity to clouds in a warming...

    Office of Scientific and Technical Information (OSTI)

    is modulated by cloud properties; however, CRE also depends on humidity because clouds emit at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. ...

  14. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relevant to DOE's goals in understanding the impact of clouds and aerosols on climate change. TWST contributes significantly to the body of data used for extracting cloud...

  15. Stratus Cloud Structure from MM-Radar Transects and Satellite...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modeling: * cloud-radiation interaction where correlations can trigger three-dimensional (3D) radiative transfer effects; and * dynamical cloud modeling where the goal is to...

  16. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Related Campaigns Meetings Cloud Life Cycle Working Group Contacts Michael Jensen, Lead Scientist Midlatitude Continental Convective Clouds Experiment (MC3E) Thanks to...

  17. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMarine ARM GPCI Investigation of Clouds (MAGIC) Campaign Links MAGIC Website ARM Data Discovery Browse Data Related Campaigns Marine ARM GPCI Investigation of Clouds...

  18. ARM: Aerosol Observing System (AOS): cloud condensation nuclei...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Aerosol Observing System (AOS): cloud condensation nuclei data Aerosol Observing System (AOS): cloud condensation nuclei data Authors: Scott Smith ; Cynthia Salwen ; ...

  19. The relationship between interannual and long-term cloud feedbacks...

    Office of Scientific and Technical Information (OSTI)

    climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. ...

  20. City of Red Cloud, Nebraska (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Red Cloud, Nebraska (Utility Company) Jump to: navigation, search Name: Red Cloud Municipal Power Place: Nebraska Phone Number: 402-746-2215 Website: www.redcloudnebraska.comgover...

  1. Determining Cloud Ice Water Path from High-Frequency Microwave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determining Cloud Ice Water Path from High-Frequency Microwave Measurements G. Liu ... A better understanding of cloud water content and its large-scale distribution ...

  2. Determination of Large-Scale Cloud Ice Water Concentration by...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Determination of Large-Scale Cloud Ice Water Concentration by Combining ... Title: Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface ...

  3. Direct Numerical Simulations and Robust Predictions of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud. Credit: Computational Science and Engineering Laboratory, ETH Zurich, Switzerland Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name:...

  4. ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid...

    Office of Scientific and Technical Information (OSTI)

    Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and Precipitable Water Vapor Title: ARM: Microwave Radiometer Retrievals (MWRRET) of Cloud Liquid Water and ...

  5. Evolution in Cloud Population Statistics of the MJO. From AMIE...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Evolution in Cloud Population Statistics of the MJO. From AMIE Field ... Citation Details In-Document Search Title: Evolution in Cloud Population Statistics of the ...

  6. Evolution in Cloud Population Statistics of the MJO. From AMIE...

    Office of Scientific and Technical Information (OSTI)

    Evolution in Cloud Population Statistics of the MJO. From AMIE Field Observations to ... Citation Details In-Document Search Title: Evolution in Cloud Population Statistics of the ...

  7. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  8. Modeling Incoherent Electron Cloud Effects

    SciTech Connect (OSTI)

    Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.

    2007-06-18

    Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed.

  9. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  10. ARM - Midlatitude Continental Convective Clouds

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Mike; Bartholomew, Mary Jane; Genio, Anthony Del; Giangrande, Scott; Kollias, Pavlos

    2012-01-19

    Convective processes play a critical role in the Earth's energy balance through the redistribution of heat and moisture in the atmosphere and their link to the hydrological cycle. Accurate representation of convective processes in numerical models is vital towards improving current and future simulations of Earths climate system. Despite improvements in computing power, current operational weather and global climate models are unable to resolve the natural temporal and spatial scales important to convective processes and therefore must turn to parameterization schemes to represent these processes. In turn, parameterization schemes in cloud-resolving models need to be evaluated for their generality and application to a variety of atmospheric conditions. Data from field campaigns with appropriate forcing descriptors have been traditionally used by modelers for evaluating and improving parameterization schemes.

  11. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3c

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prather, M. J.

    2015-08-14

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and is implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observations of the vertical correlation of cloud layers, Cloud-J 7.3c provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations by four quadrature atmospheres produces mean J values in an atmospheric column with root mean square (rms) errors of 4 % or less compared with 10–20 % errorsmore » using simpler approximations. Cloud-J is practical for chemistry–climate models, requiring only an average of 2.8 Fast-J calls per atmosphere vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections, is also incorporated into Cloud-J.« less

  12. Photolysis rates in correlated overlapping cloud fields: Cloud-J 7.3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prather, M. J.

    2015-05-27

    A new approach for modeling photolysis rates (J values) in atmospheres with fractional cloud cover has been developed and implemented as Cloud-J – a multi-scattering eight-stream radiative transfer model for solar radiation based on Fast-J. Using observed statistics for the vertical correlation of cloud layers, Cloud-J 7.3 provides a practical and accurate method for modeling atmospheric chemistry. The combination of the new maximum-correlated cloud groups with the integration over all cloud combinations represented by four quadrature atmospheres produces mean J values in an atmospheric column with root-mean-square errors of 4% or less compared with 10–20% errors using simpler approximations. Cloud-Jmore » is practical for chemistry-climate models, requiring only an average of 2.8 Fast-J calls per atmosphere, vs. hundreds of calls with the correlated cloud groups, or 1 call with the simplest cloud approximations. Another improvement in modeling J values, the treatment of volatile organic compounds with pressure-dependent cross sections is also incorporated into Cloud-J.« less

  13. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-11-05

    In this paper, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitivemore » to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful ‘‘tuning’’ parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.« less

  14. Final Report: Global Change Research with Unmanned Aerospace Vehicles UAV Applications for Studying the Radiation and Optical Properties of Upper Tropospheric Clouds, February 1, 1995 - March 31, 1998

    SciTech Connect (OSTI)

    Stephens, Graeme L.

    1998-01-31

    This paper describes the design and characteristics of a scanning spectral polarimeter which is capable of measuring spectral radiances and fluxes in the range between 0.4 rm to 4.0 pm. The instrument characteristics are described and a discussion of the procedures to calibrate the unpolarized radiances and fluxes are prescribed along the detailed error analyses of this calibration.

  15. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 m) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 m), known as the small mode. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 m wavelength relative to 11 m wavelength due to the process of wave resonance or photon tunneling more active at 12 m. This makes the 12/11 m absorption optical depth ratio (or equivalently the 12/11 m Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  16. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Rmillard, J.; Szyrmer, W.

    2011-07-02

    Several aspects of spectral broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloud-scale observations of microphysics and dynamics are essential to guide and evaluate corresponding modeling efforts. Profiling, millimeter-wavelength (cloud) radars can provide such observations. In particular, the first three moments of the recorded cloud radar Doppler spectra, the radar reflectivity, mean Doppler velocity, and spectrum width, are often used to retrieve cloud microphysical and dynamical properties. Such retrievals are subject to errors introduced by the assumptions made in the inversion process. Here, we introduce two additional morphological parameters of the radar Doppler spectrum, the skewness and kurtosis, in an effort to reduce the retrieval uncertainties. A forward model that emulates observed radar Doppler spectra is constructed and used to investigate these relationships. General, analytical relationships that relate the five radar observables to cloud and drizzle microphysical parameters and cloud turbulence are presented. The relationships are valid for cloud-only, cloud mixed with drizzle, and drizzle-only particles in the radar sampling volume and provide a seamless link between observations and cloud microphysics and dynamics. The sensitivity of the five observed parameters to the radar operational parameters such as signal-to-noise ratio and Doppler spectra velocity resolution are presented. The predicted values of the five observed radar parameters agree well with the output of the forward model. The novel use of the skewness of the radar Doppler spectrum as an early qualitative predictor of drizzle onset in clouds is introduced. It is found that skewness is a parameter very sensitive to early drizzle generation. In addition, the significance of the five parameters of the cloud radar Doppler spectrum for constraining drizzle microphysical retrievals is discussed.

  17. HPC CLOUD APPLIED TO LATTICE OPTIMIZATION

    SciTech Connect (OSTI)

    Sun, Changchun; Nishimura, Hiroshi; James, Susan; Song, Kai; Muriki, Krishna; Qin, Yong

    2011-03-18

    As Cloud services gain in popularity for enterprise use, vendors are now turning their focus towards providing cloud services suitable for scientific computing. Recently, Amazon Elastic Compute Cloud (EC2) introduced the new Cluster Compute Instances (CCI), a new instance type specifically designed for High Performance Computing (HPC) applications. At Berkeley Lab, the physicists at the Advanced Light Source (ALS) have been running Lattice Optimization on a local cluster, but the queue wait time and the flexibility to request compute resources when needed are not ideal for rapid development work. To explore alternatives, for the first time we investigate running the Lattice Optimization application on Amazon's new CCI to demonstrate the feasibility and trade-offs of using public cloud services for science.

  18. Posters Sensitivity of Cirrus Cloud Radiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Takahashi, T., and K. Kuhara. 1993. Precipitation mechanisms of cumulonimbus clouds at Pohnpei, Micronesia. Meteor. Soc. Japan 71:21-31. Takano, Y., and K. N. Liou. 1989. Radiative ...

  19. Layered Atlantic Smoke Interactions with Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and atmospheric proIling, researchers will measure clouds, aerosol particles, and radiant energy. 7e ARM Facility, a national scientiIc user facility managed by the U.S. ...

  20. Developing and Evaluating Ice Cloud Parameterizations by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by remote sensing is that the transfer functions which relate the observables (e. g., radar Doppler spectrum) to cloud properties (e. g., ice water content, or IWC) are not...

  1. ARM - Field Campaign - Midlatitude Continental Convective Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency...

  2. ARM - Field Campaign - Boundary Layer Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsBoundary Layer Cloud IOP Campaign Links Campaign Images ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at...

  3. ARM - Field Campaign - Arctic Cloud Infrared Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Arctic Cloud Infrared Imaging 2012.07.16 - 2014.07.31 Lead Scientist : Joseph Shaw...

  4. QER- Comment of Cloud Peak Energy Inc

    Broader source: Energy.gov [DOE]

    Dear Ms Pickett Please find attached comments from Cloud Peak Energy as input to the Department of Energy’s Quadrennial Energy Review. If possible I would appreciate a confirmation that this email has been received Thank you.

  5. Building a private cloud with Open Nebula

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Short Ryan Glenn Ross Nordeen Mentors: Andree Jacobson ISTI-OFF David Kennel DCS-1 LA-UR 10-05197 Why use Virtualized Cloud Computing for HPC? * Support Legacy Software Stacks *...

  6. Retrievals of Cloud Fraction and Cloud Albedo from Surface-based Shortwave Radiation Measurements: A Comparison of 16 Year Measurements

    SciTech Connect (OSTI)

    Xie, Yu; Liu, Yangang; Long, Charles N.; Min, Qilong

    2014-07-27

    Ground-based radiation measurements have been widely conducted to gain information on clouds and the surface radiation budget; here several different techniques for retrieving cloud fraction (Long2006, Min2008 and XL2013) and cloud albedo (Min2008, Liu2011 and XL2013) from ground-based shortwave broadband and spectral radiation measurements are examined, and sixteen years of retrievals collected at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are compared. The comparison shows overall good agreement between the retrievals of both cloud fraction and cloud albedo, with noted differences however. The Long2006 and Min2008 cloud fractions are greater on average than the XL2013 values. Compared to Min2008 and Liu2011, the XL2013 retrieval of cloud albedo tends to be greater for thin clouds but smaller for thick clouds, with the differences decreasing with increasing cloud fraction. Further analysis reveals that the approaches that retrieve cloud fraction and cloud albedo separately may suffer from mutual contamination of errors in retrieved cloud fraction and cloud albedo. Potential influences of cloud absorption, land-surface albedo, cloud structure, and measurement instruments are explored.

  7. RACORO continental boundary layer cloud investigations. 2. Large-eddy

    Office of Scientific and Technical Information (OSTI)

    simulations of cumulus clouds and evaluation with in-situ and ground-based observations (Journal Article) | SciTech Connect RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations Citation Details In-Document Search This content will become publicly available on June 19, 2016 Title: RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and

  8. Cloud Property Retrieval Products for Graciosa Island, Azores (Dataset) |

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Data Explorer Search Results Cloud Property Retrieval Products for Graciosa Island, Azores Title: Cloud Property Retrieval Products for Graciosa Island, Azores The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the

  9. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer Data Explorer Search Results Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Title: Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of

  10. ARM - Publications: Science Team Meeting Documents: Day and Night cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fraction - Cloud Inter-Compariosn IOP results Day and Night cloud fraction - Cloud Inter-Compariosn IOP results Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Turner, David Pacific Northwest National Laboratory We present results from the CIC IOP from March-may, 2003. Day time and night time cloud fraction retrieval algorithms have been presented and intercompared. Amount of low, middle and high cloud have been estimated and compared to

  11. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  12. Ignition of Aluminum Particles and Clouds

    SciTech Connect (OSTI)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  13. Electron-Cloud Build-Up: Summary

    SciTech Connect (OSTI)

    Furman, M.A.

    2007-06-18

    I present a summary of topics relevant to the electron-cloud build-up and dissipation that were presented at the International Workshop on Electron-Cloud Effects 'ECLOUD 07' (Daegu, S. Korea, April 9-12, 2007). This summary is not meant to be a comprehensive review of the talks. Rather, I focus on those developments that I found, in my personal opinion, especially interesting. The contributions, all excellent, are posted in http://chep.knu.ac.kr/ecloud07/.

  14. ARM Cloud Properties Working Group: Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Properties WG Breakout Session 2008 ARM Science Team Meeting Mar. 10, 2008, Norfolk, VA Monday March 10, 2008 1500 to 1515: R. Hogan - A Proposal for ARM support of Cloudnet Activities 1515 to 1530: M. Jensen - Cloud Properties Value- Added Product Development 1530 to 1545: C. Long - Instrument Group Report 1545 to 1600: S. Matrosov - WSR-88D data for ARM science 1600 to 1615: Y. Zhao - A BimodalParticle Distribution Assumption in Cirrus: Comparison of retrieval results with in situ

  15. Science on the Hill: Methane cloud hunting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methane cloud hunting Science on the Hill: Methane cloud hunting Los Alamos researchers go hunting for methane gas over the Four Corners area of northwest New Mexico and find a strange daily pattern. July 12, 2015 methane map Methane, the primary component of natural gas, is also a potent greenhouse gas, trapping energy in the atmosphere. Last year NASA released satellite images showing a hot spot in the area where New Mexico, Colorado, Utah and Arizona meet, prompting scientists to go in search

  16. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  17. Star formation relations in nearby molecular clouds

    SciTech Connect (OSTI)

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  18. Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this paper, the operational Clouds and the Earth's Radiant Energy System (CERES) cloud ... In Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis ...

  19. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    SciTech Connect (OSTI)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.

  20. Magellan: experiences from a Science Cloud

    SciTech Connect (OSTI)

    Ramakrishnan, Lavanya; Zbiegel, Piotr; Campbell, Scott; Bradshaw, Rick; Canon, Richard; Coghlan, Susan; Sakrejda, Iwona; Desai, Narayan; Declerck, Tina; Liu, Anping

    2011-02-02

    Cloud resources promise to be an avenue to address new categories of scientific applications including data-intensive science applications, on-demand/surge computing, and applications that require customized software environments. However, there is a limited understanding on how to operate and use clouds for scientific applications. Magellan, a project funded through the Department of Energy?s (DOE) Advanced Scientific Computing Research (ASCR) program, is investigating the use of cloud computing for science at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Facility (NERSC). In this paper, we detail the experiences to date at both sites and identify the gaps and open challenges from both a resource provider as well as application perspective.

  1. Cloud-based Architecture Capabilities Summary Report

    SciTech Connect (OSTI)

    Vang, Leng; Prescott, Steven R; Smith, Curtis

    2014-09-01

    In collaborating scientific research arena it is important to have an environment where analysts have access to a shared of information documents, software tools and be able to accurately maintain and track historical changes in models. A new cloud-based environment would be accessible remotely from anywhere regardless of computing platforms given that the platform has available of Internet access and proper browser capabilities. Information stored at this environment would be restricted based on user assigned credentials. This report reviews development of a Cloud-based Architecture Capabilities (CAC) as a web portal for PRA tools.

  2. Temperature, Water Vapor, and Clouds"

    Office of Scientific and Technical Information (OSTI)

    on "Microwave and Millimeter-Wave Radiometric Studies of Temperature, Water Vapor, and Clouds" Project ID: 0011106 Program Managers: Kirankumar V. Alapaty Phone: 301-903-3175 Division: SC-23.3 and Wanda R. Ferrell Phone: 301-903-0043 Division: SC-23.3 PI: Edgeworth R. Westwater Award Register#: ER640150011106 Overview of Project The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric

  3. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Cloud Rotating Shadowband Radiometer 2008.01.08 - 2008.07.18 Lead Scientist : Mary Jane Bartholomew For data sets, see below. Abstract The Thin-Cloud Rotating Shadowband...

  4. Analysis of In situ Observations of Cloud Microphysics from M...

    Office of Scientific and Technical Information (OSTI)

    Cloud Microphysics from M-PACE Final Report, DOE Grant Agreement No. DE-FG02-06ER64168 Citation Details In-Document Search Title: Analysis of In situ Observations of Cloud ...

  5. A TWP-ICE High-Level Cloud Case Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A TWP-ICE High-Level Cloud Case Study Mace, Gerald University of Utah Category: Field Campaigns The Tropical Warm Pool International Cloud Experiment (TWP ICE) was conducted near...

  6. Microsoft Word - Group3Cloud Properties(RS).docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... for (a) column clouds and (b) circle clouds. 2.0 References Clothiaux, EE, TP Ackerman, GG Mace, KP Moran, RT Marchand, MA Miller, and BE Martner. 2000. "Objective determination ...

  7. ARM - Evaluation Product - ARM Cloud Retrieval Ensemble Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : ARM Cloud Retrieval Ensemble Data The ARM Cloud Retrieval Ensemble Data (ACRED) set...

  8. ARM - PI Product - Cloud Properties and Radiative Heating Rates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud Properties and Radiative Heating Rates for TWP A cloud properties and...

  9. E-Cloud Build-up in Grooved Chambers

    SciTech Connect (OSTI)

    Venturini, Marco

    2007-05-01

    We simulate electron cloud build-up in a grooved vacuumchamber including the effect of space charge from the electrons. Weidentify conditions for e-cloud suppression and make contact withprevious estimates of an effective secondary electron yield for groovedsurfaces.

  10. Biogenic Aerosols„Effects on Clouds and Climate (BAECC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign Summary T Petj ... DOESC-ARM-15-051 Biogenic Aerosols-Effects on Clouds and Climate (BAECC) Final Campaign ...

  11. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Marine ARM GPCI Investigations of Clouds (MAGIC): Cloud Properties from Zenith...

  12. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Campaign Links BAECC Website ARM Data Discovery Browse Data Related Campaigns Biogenic Aerosols - Effects on Clouds and Climate: Cloud OD Sensor TWST 2014.06.15, Scott, AMF...

  13. Simulation of E-Cloud Driven Instability And Its Attenuation...

    Office of Scientific and Technical Information (OSTI)

    Simulation of E-Cloud Driven Instability And Its Attenuation Using a Feedback System in the CERN SPS Citation Details In-Document Search Title: Simulation of E-Cloud Driven ...

  14. The relationship between interannual and long-term cloud feedbacks

    SciTech Connect (OSTI)

    Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; Klein, Stephen A.

    2015-12-11

    The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual and long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.

  15. Comparison of Cloud Top Height and Optical Depth Histograms from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and is not sensitive to the sensor calibration. The technique does, however, require finding the same cloud-top features in multiple views of the same cloud scene. The MODIS...

  16. Simulation of E-Cloud Driven Instability And Its Attenuation...

    Office of Scientific and Technical Information (OSTI)

    of E-Cloud Driven Instability And Its Attenuation Using a Feedback System in the CERN SPS Citation Details In-Document Search Title: Simulation of E-Cloud Driven Instability...

  17. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  18. Technical Sessions Parameterization of Convective Clouds, Mesoscale Convective Systems,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parameterization of Convective Clouds, Mesoscale Convective Systems, and Convective-Generated Clouds W. R. Cotton Department of Atmospheric Science Colorado State University Fort Collins, CO 80523 This presentation is a summary of research progress supported under the Atmospheric Radiation Measurement (ARM) project entitled "Parameterization of Convective Clouds, Mesoscale Convective Systems, and Con'o'ective-Generated Clouds." The approach used in this research is to perform explicit

  19. To the Cloud! Apidae Helps Modelers Turn Information into Knowledge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy To the Cloud! Apidae Helps Modelers Turn Information into Knowledge To the Cloud! Apidae Helps Modelers Turn Information into Knowledge October 26, 2015 - 2:41pm Addthis Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae is a collection of cloud-based simulation and data analysis tools that help modelers better understand their models. Image credit: BUILDlab. Apidae

  20. Understanding the Effect of Aerosol Properties on Cloud Droplet Formation

    Office of Scientific and Technical Information (OSTI)

    during TCAP Field Campaign Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report Citation Details In-Document Search Title: Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report The formation of clouds is an essential element in understanding the Earth's radiative budget. Liquid water clouds

  1. LES Modeling of High Resolution Satellite Cloud Spatial and Thermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Structure at ARM-SGP site: How well can we Simulate Clouds from Space? LES Modeling of High Resolution Satellite Cloud Spatial and Thermal Structure at ARM-SGP site: How well can we Simulate Clouds from Space? Dubey, Manvendra DOE/Los Alamos National Laboratory Chylek, Petr DOE/Los Alamos National Laboratory Reisner, Jon Los Alamos National Laboratory Porch, William Los Alamos National Laboratory Category: Cloud Properties We report high fidelity observations of the spatial and thermal

  2. Direct Numerical Simulations and Robust Predictions of Cloud Cavitation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collapse | Argonne Leadership Computing Facility Initiation of cloud cavitation collapse for 50,000 bubbles Initiation of cloud cavitation collapse for 50,000 bubbles. Jonas Sukys, ETH Zurich Direct Numerical Simulations and Robust Predictions of Cloud Cavitation Collapse PI Name: Petros Koumoutsakos PI Email: petros@ethz.ch Institution: ETH Zurich Allocation Program: INCITE Allocation Hours at ALCF: 72 Million Year: 2016 Research Domain: Engineering Cloud cavitation collapse-the evolution

  3. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Parameterizations of Cloud Microphysics and Indirect Aerosol Effects Citation Details In-Document Search Title: Parameterizations of Cloud Microphysics and Indirect Aerosol Effects 1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A

  4. MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary Citation Details In-Document Search Title: MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary Cloud droplet size and optical depth are the most fundamental properties for understanding cloud formation, dissipation and interactions with aerosol and drizzle. They are also a crucial determinant of Earth's radiative and water-energy balances. However, these properties

  5. STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field

    Office of Scientific and Technical Information (OSTI)

    Campaign Report (Technical Report) | SciTech Connect STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report Citation Details In-Document Search Title: STORMVEX. Ice Nuclei and Cloud Condensation Nuclei Characterization Field Campaign Report The relationship between aerosol particles and the formation of clouds is among the most uncertain aspects in our current understanding of climate change. Warm clouds have been the most extensively studied, in large part

  6. Model of E-Cloud Instability in the Fermilab Recycler

    SciTech Connect (OSTI)

    Balbekov, V.

    2015-06-24

    Simple model of electron cloud is developed in the paper to explain e-cloud instability of bunched proton beam in the Fermilab Recycler. The cloud is presented as an immobile snake in strong vertical magnetic field. The instability is treated as an amplification of the bunch injection errors from the batch head to its tail. Nonlinearity of the e-cloud field is taken into account. Results of calculations are compared with experimental data demonstrating good correlation.

  7. Satellite determination of stratus cloud microphysical properties (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Satellite determination of stratus cloud microphysical properties Citation Details In-Document Search Title: Satellite determination of stratus cloud microphysical properties Satellite measurements of liquid water path from SSM/I, broadband albedo from ERBE, and cloud characteristics from ISCCP are used to study stratus regions. An average cloud liquid water path of 0.120{+-}0.032 kg m{sup {minus}2} is derived by dividing the average liquid water path for stratus

  8. Determining Best Estimates and Uncertainties in Cloud Microphysical

    Office of Scientific and Technical Information (OSTI)

    Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions (Technical Report) | SciTech Connect Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions Citation Details In-Document Search Title: Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for

  9. Vertical Velocities in Continental Boundary Layer Stratocumulus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary Layer Stratocumulus Clouds Virendra Ghate Bruce Albrecht and Pavlos Kollias Why BL Stratocumulus?? * Extensive Coverage - Cover ~24% of earth's surface - Persist of long time-scales * Impact on radiation budget - High SW albedo compared to land or ocean Klein and Hartmann 1993 But Why Continental Clouds? * They do exist - Monthly cloud fraction can vary from 10% to 23% * Impact on pollution & Diurnal Cycle - Affect pollutant venting out of BL & Aerosol processing by clouds *

  10. ARSCL Cloud Statistics - A Value-Added Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARSCL Cloud Statistics - A Value-Added Product Y. Shi Pacific Northwest National Laboratory Richland, Washington M. A. Miller Brookhaven National Laboratory Upton, New York Introduction The active remote sensing of cloud layers (ARSCLs) value-added product (VAP) combines data from active remote sensors to produce an objective determination of cloud location, radar reflectivity, vertical velocity, and Doppler spectral width. Information about the liquid water path (LWP) in these clouds and the

  11. Toward Understanding of Differences in Current Cloud Retrievals of ARM

    Office of Scientific and Technical Information (OSTI)

    Ground-based Measurements (Journal Article) | SciTech Connect Toward Understanding of Differences in Current Cloud Retrievals of ARM Ground-based Measurements Citation Details In-Document Search Title: Toward Understanding of Differences in Current Cloud Retrievals of ARM Ground-based Measurements Accurate observations of cloud microphysical properties are needed for evaluating and improving the representation of cloud processes in climate models. However, large differences are found in

  12. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  13. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    2014-05-05

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  14. The Magellan Final Report on Cloud Computing

    SciTech Connect (OSTI)

    ,; Coghlan, Susan; Yelick, Katherine

    2011-12-21

    The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid- range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost. To address these questions, a distributed testbed infrastructure was deployed at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC). The testbed was designed to be flexible and capable enough to explore a variety of computing models and hardware design points in order to understand the impact for various scientific applications. During the project, the testbed also served as a valuable resource to application scientists. Applications from a diverse set of projects such as MG-RAST (a metagenomics analysis server), the Joint Genome Institute, the STAR experiment at the Relativistic Heavy Ion Collider, and the Laser Interferometer Gravitational Wave Observatory (LIGO), were used by the Magellan project for benchmarking within the cloud, but the project teams were also able to accomplish important production science utilizing the Magellan cloud resources.

  15. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  16. Argonne's Magellan Cloud Computing Research Project

    ScienceCinema (OSTI)

    Beckman, Pete

    2013-04-19

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  17. Evaluation of high&#8208;level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    Office of Scientific and Technical Information (OSTI)

    fflAGUPUBLICATIONS Journal of Advances in Modeling Earth Systems RESEARCH ARTICLE Evaluation of high-level clouds in cloud resolving model 10.1002/2015MS000478 simulations with ARM and KWAJEX observations Key Points: * Two-moment microphysics improves simulated radar reflectivity histograms * Simulated high cloud amount is not sensitive to uncertainties in tested ice microphysics * Forcing uncertainties and periodic lateral BC lead to bias in high cloud amount Correspondence to: Z. Liu,

  18. Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Cloud Imager Measurements of Cloud Statistics from the 2003 Cloudiness Intercomparison Campaign B. Thurairajah and J. A. Shaw Department of Electrical and Computer Engineering Montana State University Bozeman, Montana Introduction The Cloudiness Inter-Comparison Intensive Operational Period (CIC IOP) occurred at the Atmospheric Radiation Measurement (ARM), Southern Great Plains (SGP) central facility site in Lamont, Oklahoma from mid-February to mid-April 2003 (Kassianov et al. 2004).

  19. Biogenic Aerosols Effects on Climate and Clouds Cloud OD Sensor TWST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Biogenic Aerosols - Effects on Climate and Clouds: Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report ER Niple HE Scott April 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any

  20. Water clouds in Y dwarfs and exoplanets

    SciTech Connect (OSTI)

    Morley, Caroline V.; Fortney, Jonathan J.; Marley, Mark S.; Lupu, Roxana; Greene, Tom; Saumon, Didier; Lodders, Katharina

    2014-05-20

    The formation of clouds affects brown dwarf and planetary atmospheres of nearly all effective temperatures. Iron and silicate condense in L dwarf atmospheres and dissipate at the L/T transition. Minor species such as sulfides and salts condense in mid- to late T dwarfs. For brown dwarfs below T {sub eff} ? 450 K, water condenses in the upper atmosphere to form ice clouds. Currently, over a dozen objects in this temperature range have been discovered, and few previous theoretical studies have addressed the effect of water clouds on brown dwarf or exoplanetary spectra. Here we present a new grid of models that include the effect of water cloud opacity. We find that they become optically thick in objects below T {sub eff} ? 350-375 K. Unlike refractory cloud materials, water-ice particles are significantly nongray absorbers; they predominantly scatter at optical wavelengths through the J band and absorb in the infrared with prominent features, the strongest of which is at 2.8 ?m. H{sub 2}O, NH{sub 3}, CH{sub 4}, and H{sub 2} CIA are dominant opacity sources; less abundant species may also be detectable, including the alkalis, H{sub 2}S, and PH{sub 3}. PH{sub 3}, which has been detected in Jupiter, is expected to have a strong signature in the mid-infrared at 4.3 ?m in Y dwarfs around T {sub eff} = 450 K; if disequilibrium chemistry increases the abundance of PH{sub 3}, it may be detectable over a wider effective temperature range than models predict. We show results incorporating disequilibrium nitrogen and carbon chemistry and predict signatures of low gravity in planetary mass objects. Finally, we make predictions for the observability of Y dwarfs and planets with existing and future instruments, including the James Webb Space Telescope and Gemini Planet Imager.

  1. CloudSat as a Global Radar Calibrator

    SciTech Connect (OSTI)

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  2. pCloud: A Cloud-based Power Market Simulation Environment

    SciTech Connect (OSTI)

    Rudkevich, Aleksandr; Goldis, Evgeniy

    2012-12-02

    This research conducted by the Newton Energy Group, LLC (NEG) is dedicated to the development of pCloud: a Cloud-based Power Market Simulation Environment. pCloud is offering power industry stakeholders the capability to model electricity markets and is organized around the Software as a Service (SaaS) concept -- a software application delivery model in which software is centrally hosted and provided to many users via the internet. During the Phase I of this project NEG developed a prototype design for pCloud as a SaaS-based commercial service offering, system architecture supporting that design, ensured feasibility of key architecture's elements, formed technological partnerships and negotiated commercial agreements with partners, conducted market research and other related activities and secured funding for continue development of pCloud between the end of Phase I and beginning of Phase II, if awarded. Based on the results of Phase I activities, NEG has established that the development of a cloud-based power market simulation environment within the Windows Azure platform is technologically feasible, can be accomplished within the budget and timeframe available through the Phase II SBIR award with additional external funding. NEG believes that pCloud has the potential to become a game-changing technology for the modeling and analysis of electricity markets. This potential is due to the following critical advantages of pCloud over its competition: - Standardized access to advanced and proven power market simulators offered by third parties. - Automated parallelization of simulations and dynamic provisioning of computing resources on the cloud. This combination of automation and scalability dramatically reduces turn-around time while offering the capability to increase the number of analyzed scenarios by a factor of 10, 100 or even 1000. - Access to ready-to-use data and to cloud-based resources leading to a reduction in software, hardware, and IT costs. - Competitive pricing structure, which will make high-volume usage of simulation services affordable. - Availability and affordability of high quality power simulators, which presently only large corporate clients can afford, will level the playing field in developing regional energy policies, determining prudent cost recovery mechanisms and assuring just and reasonable rates to consumers. - Users that presently do not have the resources to internally maintain modeling capabilities will now be able to run simulations. This will invite more players into the industry, ultimately leading to more transparent and liquid power markets.

  3. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 4. 1. Cloud studies. Part 1. Cloud physics. Part 2. Development of the atomic cloud. Part 3. Cloud-tracking photography

    SciTech Connect (OSTI)

    Anderson, C.E.; Gustafson, P.E.; Kellogg, W.W.; McKown, R.E.; McPherson, D.E.

    1985-09-01

    The cloud-physics project was primarily intended to fulfill a requirements for detailed information on the meteorological microstructure of atomic clouds. By means of a tracking and photographic network extending halfway around Eniwetok Atoll, the behavior of the first three clouds of Operation Greenhouse were observed and recorded. The rise of the fourth cloud was observed visually from only one site. The analysis of these observations, combined with information about the local weather conditions, gives a fairly complete picture of the development of each of the clouds. Particular emphasis was placed on the earlier phases of development, and the heights and sizes of the cloud parts have been determined as functions of time. A summary of important features of some previous atomic clouds are included for comparison.

  4. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Penner, Joyce E.

    2010-06-21

    A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  5. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  6. Experiment to Characterize Tropical Cloud Systems

    SciTech Connect (OSTI)

    May, Peter T.; Mather, Jim H.; Jakob, Christian

    2005-08-02

    A major experiment to study tropical convective cloud systems and their impacts will take place around Darwin, Northern Australia in early 2006. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) is a collaboration including the DOE ARM (Atmospheric Radiation Measurement) and ARM-UAV programs, NASA centers, the Australian Bureau of Meteorology, CSIRO, and universities in the USA, Australia, Japan, the UK, and Canada. TWP-ICE will be preceded in November/December 2004 by a collaborating European aircraft campaign involving the EU SCOUT-O3 and UK NERC ACTIVE projects. Detailed atmospheric measurements will be made in the Darwin area through the whole Austral summer, giving unprecedented coverage through the pre-monsoon and monsoon periods.

  7. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  8. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the development of 3D cloud products from all new SACRs that the program will deploy at all fixed and mobile sites by the end of 2010.

  9. Arctic Clouds Infrared Imaging Field Campaign Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Arctic Clouds Infrared Imaging Field Campaign Report JA Shaw March 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately

  10. MAGIC Cloud Properties from Zenith Radiance Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 MAGIC Cloud Properties from Zenith Radiance Data Final Campaign Summary J-YC Chiu L Gregory R Wagener January 2016 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

  11. Filaments in simulations of molecular cloud formation

    SciTech Connect (OSTI)

    Gmez, Gilberto C.; Vzquez-Semadeni, Enrique

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ?15 pc and masses ?600 M {sub ?} above density n ? 10{sup 3} cm{sup 3} (?2 10{sup 3} M {sub ?} at n > 50 cm{sup 3}). The density profile exhibits a central flattened core of size ?0.3 pc and an envelope that decays as r {sup 2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ?30 M {sub ?} Myr{sup 1} pc{sup 1}.

  12. An Analysis of Cloud Absorption During

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Cloud Absorption During ARESE II (Spring 2000) D. M. Powell, R. T. Marchand, and T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction In early spring 2000, Atmospheric Radiation Measurement (ARM) Program researchers held an intensive operational period (IOP) at the ARM Southern Great Plains (SGP) site. This IOP had several objectives, one of which was to was to re-evaluate (with redundant measurements wherever possible) absorption by low-level

  13. Embracing the Cloud for Better Cyber Security

    SciTech Connect (OSTI)

    Shue, Craig A; Lagesse, Brent J

    2011-01-01

    The future of cyber security is inextricably tied to the future of computing. Organizational needs and economic factors will drive computing outcomes. Cyber security researchers and practitioners must recognize the path of computing evolution and position themselves to influence the process to incorporate security as an inherent property. The best way to predict future computing trends is to look at recent developments and their motivations. Organizations are moving towards outsourcing their data storage, computation, and even user desktop environments. This trend toward cloud computing has a direct impact on cyber security: rather than securing user machines, preventing malware access, and managing removable media, a cloud-based security scheme must focus on enabling secure communication with remote systems. This change in approach will have profound implications for cyber security research efforts. In this work, we highlight existing and emerging technologies and the limitations of cloud computing systems. We then discuss the cyber security efforts that would support these applications. Finally, we discuss the implications of these computing architecture changes, in particular with respect to malware and social engineering.

  14. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earths atmosphere and influence the Earths energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  15. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    SciTech Connect (OSTI)

    Kollias, P.; Luke, E.; Szyrmer, W.; Rmillard, J.

    2011-07-02

    In part I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended to include skewness and kurtosis as additional descriptors of the Doppler spectrum. Here, a short climatology of observed Doppler spectra moments as a function of the radar reflectivity at continental and maritime ARM sites is presented. The evolution of the Doppler spectra moments is consistent with the onset and growth of drizzle particles and can be used to assist modeling studies of drizzle onset and growth. Time-height radar observations are used to exhibit the coherency of the Doppler spectra shape parameters and demonstrate their potential to improve the interpretation and use of radar observations. In addition, a simplified microphysical approach to modeling the vertical evolution of the drizzle particle size distribution in warm stratiform clouds is described and used to analyze the observations. The formation rate of embryonic drizzle droplets due to the autoconversion process is not calculated explicitly; however, accretion and evaporation processes are explicitly modeled. The microphysical model is used as input to a radar Doppler spectrum forward model, and synthetic radar Doppler spectra moments are generated. Three areas of interest are studied in detail: early drizzle growth near the cloud top, growth by accretion of the well-developed drizzle, and drizzle depletion below the cloud base due to evaporation. The modeling results are in good agreement with the continental and maritime observations. This demonstrates that steady state one-dimensional explicit microphysical models coupled with a forward model and comprehensive radar Doppler spectra observations offer a powerful method to explore the vertical evolution of the drizzle particle size distribution.

  16. Evaluation of tropical cloud and precipitation statistics of CAM3 using CloudSat and CALIPSO data

    SciTech Connect (OSTI)

    Zhang, Y; Klein, S; Boyle, J; Mace, G G

    2008-11-20

    The combined CloudSat and CALIPSO satellite observations provide the first simultaneous measurements of cloud and precipitation vertical structure, and are used to examine the representation of tropical clouds and precipitation in the Community Atmosphere Model Version 3 (CAM3). A simulator package utilizing a model-to-satellite approach facilitates comparison of model simulations to observations, and a revised clustering method is used to sort the subgrid-scale patterns of clouds and precipitation into principal cloud regimes. Results from weather forecasts performed with CAM3 suggest that the model underestimates the horizontal extent of low and mid-level clouds in subsidence regions, but overestimates that of high clouds in ascending regions. CAM3 strongly overestimates the frequency of occurrence of the deep convection with heavy precipitation regime, but underestimates the horizontal extent of clouds and precipitation at low and middle levels when this regime occurs. This suggests that the model overestimates convective precipitation and underestimates stratiform precipitation consistent with a previous study that used only precipitation observations. Tropical cloud regimes are also evaluated in a different version of the model, CAM3.5, which uses a highly entraining plume in the parameterization of deep convection. While the frequency of occurrence of the deep convection with heavy precipitation regime from CAM3.5 forecasts decreases, the incidence of the low clouds with precipitation and congestus regimes increases. As a result, the parameterization change does not reduce the frequency of precipitating convection that is far too high relative to observations. For both versions of CAM, clouds and precipitation are overly reflective at the frequency of the CloudSat radar and thin clouds that could be detected by the lidar only are underestimated.

  17. Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the

    Office of Scientific and Technical Information (OSTI)

    NCAR Single Column Climate Model (SCAM) and ARM Observations (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations Citation Details In-Document Search Title: Evaluation of Mixed-Phase Cloud Microphysics Parameterizations with the NCAR Single Column Climate Model (SCAM) and ARM Observations Mixed-phase stratus clouds are

  18. The Tropical Warm Pool International Cloud Experiment: Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool International Cloud Experiment: Overview May, Peter Bureau or Meteorology Research Centre Mather, James Pacific Northwest National Laboratory Jakob, Christian BMRC Category: Field Campaigns The Tropical Warm Pool International Cloud Experiment (TWPICE) has just been completed betwenn January 21 and February 13, 2006. The expriment has collected one of the most complete data sets ever describing tropical convectiove cloud development through its lifecycle as well as the

  19. Enhanced Cloud-based Control System for Small Commercial Buildings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Enhanced Cloud-based Control System for Small Commercial Buildings Enhanced Cloud-based Control System for Small Commercial Buildings Lead Performer: Pacific Northwest National Laboratory - Richland, WA Partner: NorthWrite Inc. - Portland, OR DOE Total Funding: $300,000 Project Term: June 1, 2016 - November 30, 2017 Funding Type: Small Business Vouchers Pilot PROJECT OBJECTIVE NorthWrite Inc. delivers services to owners of small commercial buildings, using a cloud-based

  20. Observations of the Madden Julian Oscillation for Cloud Modeling Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Madden Julian Oscillation for Cloud Modeling Studies Chuck Long, Sally McFarlane, Courtney Schumacher, Peter May, Bill Gustafson, Yi Wang, Xiaohong Liu Cluster analysis of ISCCP cloud regimes (red = deep convective, orange = anvil, yellow = congestus, green = thin cirrus, blue = trade Cu, violet = marine Sc) Left: TWP Hovmöller diagram of regime occurrence Right: Composite regime occurrence vs. MJO phase (peak = 0) (Chen and Del Genio, 2008, Clim. Dyn.) Manus MJO composites Of ARSCL cloud

  1. Studies of Emissions and Atmospheric Composition, Clouds, and Climate

    Office of Scientific and Technical Information (OSTI)

    Coupling by Regional Surveys (SEAC4RS) Field Campaign Report (Technical Report) | SciTech Connect Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) Field Campaign Report Citation Details In-Document Search Title: Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) Field Campaign Report Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional

  2. Polluting of Winter Convective Clouds upon Transition from Ocean Inland

    Office of Scientific and Technical Information (OSTI)

    Over Central California: Contrasting Case Studies (Journal Article) | SciTech Connect Polluting of Winter Convective Clouds upon Transition from Ocean Inland Over Central California: Contrasting Case Studies Citation Details In-Document Search Title: Polluting of Winter Convective Clouds upon Transition from Ocean Inland Over Central California: Contrasting Case Studies In-situ aircraft measurements of aerosol chemical and cloud microphysical properties were conducted during the CalWater

  3. Cloud Optical Properties from the Multifilter Shadowband Radiometer

    Office of Scientific and Technical Information (OSTI)

    (MFRSRCLDOD). An ARM Value-Added Product (Technical Report) | SciTech Connect Cloud Optical Properties from the Multifilter Shadowband Radiometer (MFRSRCLDOD). An ARM Value-Added Product Citation Details In-Document Search Title: Cloud Optical Properties from the Multifilter Shadowband Radiometer (MFRSRCLDOD). An ARM Value-Added Product The microphysical properties of clouds play an important role in studies of global climate change. Observations from satellites and surface-based systems

  4. Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC

    Office of Scientific and Technical Information (OSTI)

    Field Campaign (Journal Article) | SciTech Connect Journal Article: Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign Citation Details In-Document Search Title: Clouds, Precipitation, and Marine Boundary Layer Structure during the MAGIC Field Campaign The recent ship-based MAGIC (Marine ARM GCSS Pacific Cross-Section Intercomparison (GPCI) Investigation of Clouds) field campaign with the marine-capable Second ARM Mobile Facility (AMF2) deployed on the

  5. Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory

    Office of Scientific and Technical Information (OSTI)

    (BNL) Field Campaign Report (Technical Report) | SciTech Connect SciTech Connect Search Results Technical Report: Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report Citation Details In-Document Search Title: Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) Field Campaign Report The Radar Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory (BNL) [http://www.arm.gov/campaigns/osc2013rwpcf]

  6. Can Cloud Computing Address the Scientific Computing Requirements for DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers? Well, Yes, No and Maybe Can Cloud Computing Address the Scientific Computing Requirements for DOE Researchers? Well, Yes, No and Maybe Can Cloud Computing Address the Scientific Computing Requirements for DOE Researchers? Well, Yes, No and Maybe January 30, 2012 Jon Bashor, Jbashor@lbl.gov, +1 510-486-5849 Magellan1.jpg Magellan at NERSC After a two-year study of the feasibility of cloud computing systems for meeting the ever-increasing computational needs of scientists,

  7. Radiative Importance of ThinŽ Liquid Water Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Accomplishments of the Cloud Properties Working Group (CPWG) August 2006 Cloud Radiative Forcing at the ARM Climate Research Facility: Using ARM Data to Establish Testable Metrics for GCM Predictions of Cloud Feedback Gerald Mace University of Utah, Salt Lake City, Utah The scientific underpinning of the Atmospheric Radiation Measurement (ARM) Program is largely based on the premise that long term ground-based measurements of certain quantities provide information sufficient to test the

  8. ARM - Publications: Science Team Meeting Documents: Cirrus Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurements by the UAF Polarization Diversity Lidar during M-PACE Cirrus Cloud Measurements by the UAF Polarization Diversity Lidar during M-PACE Sassen, Kenneth University of Alaska Fairbanks Zhu, Jiang UAF During the final week of the September-October 2004 Mixed-Phase Cloud Experiment (M-PACE) conducted in and around the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) site in Barrow, Alaska, cirrus clouds were unexpectedly prevalent. Overcoming earlier adversity, the

  9. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (MICRE) govCampaignsMacquarie Island Cloud and Radiation Experiment (MICRE) Campaign Links Science Plan Backgrounder Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Macquarie Island Cloud and Radiation Experiment (MICRE) 2016.03.01 - 2018.03.31 Lead Scientist : Roger Marchand Abstract Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in

  10. 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National

    Office of Scientific and Technical Information (OSTI)

    Laboratory (Technical Report) | SciTech Connect 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory Citation Details In-Document Search Title: 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory When considering the amount of shortwave radiation incident on a photovoltaic solar array and, therefore, the amount and stability of the energy output from the system, clouds represent the greatest source of short-term (i.e., scale of minutes to

  11. ARM - Midlatitude Continental Convective Clouds - Single Column Model

    Office of Scientific and Technical Information (OSTI)

    Forcing (xie-scm_forcing) (Dataset) | Data Explorer - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing) Title: ARM - Midlatitude Continental Convective Clouds - Single Column Model Forcing (xie-scm_forcing) The constrained variational objective analysis approach described in Zhang and Lin [1997] and Zhang et al. [2001]was used to derive the large-scale single-column/cloud resolving model forcing and evaluation data set from the observational data

  12. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect SciTech Connect Search Results Program Document: ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report Citation Details In-Document Search Title: ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report The U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility's ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency

  13. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan Citation Details In-Document Search Title: Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both

  14. The Midlatitude Continental Convective Clouds Experiment (MC3E) (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect The Midlatitude Continental Convective Clouds Experiment (MC3E) Citation Details In-Document Search This content will become publicly available on December 18, 2016 Title: The Midlatitude Continental Convective Clouds Experiment (MC3E) The Midlatitude Continental Convective Clouds Experiment (MC3E), a field program jointly led by the U.S. Department of Energy's Atmospheric Radiation Measurement program and the NASA Global Precipitation Measurement (GPM) Mission,

  15. Assessing the Radiative Impact of Clouds of Low Optical Depth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Radiative Impact of Clouds of Low Optical Depth W. O'Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California Santa Barbara, California C. Gautier Department of Geography and Institute for Computational Earth System Science University of California Santa Barbara, California Introduction Analysis from the International Satellite Cloud Climatology Project (ISCCP) reveals that the global mean cloud optical depth is surprisingly low (i.e., τ = 3.8).

  16. A Comparison of Cirrus Cloud Visible Optical Depth Derived from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Cirrus Cloud Visible Optical Depth Derived from Lidar Lo, Chaomei Pacific Northwest National Laboratory Comstock, Jennifer Pacific Northwest National Laboratory...

  17. Macquarie Island Cloud and Radiation Experiment (MICRE) Science...

    Office of Scientific and Technical Information (OSTI)

    These assessments of model performance, as well as our knowledge of cloud and aerosol properties over the Southern Ocean, rely heavily on satellite data sets. Satellite data sets ...

  18. Cloud Property Retrieval Products for Graciosa Island, Azores...

    Office of Scientific and Technical Information (OSTI)

    These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud ...

  19. Preliminary Studies on the Variational Assimilation of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for both cloud properties and surface radiative fluxes have been used in our feasibility studies. The assimilation of those observations has shown the capability of the...

  20. Cloud Lake, Florida: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cloud Lake, Florida: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 26.6761772, -80.0739308 Show Map Loading map... "minzoom":false,"mappingse...

  1. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  2. Radiative Importance of ThinŽ Liquid Water Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Radiative Transfer Models Turner et al., JAS, 2004 * AERI observations ... Long et al., JGR, 2006 Radiative Importance of "Thin" Liquid Water Clouds Shortwave Turner ...

  3. Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COPS Aerosol and Cloud Microphysics (ACM) Subgroup Activities Dave Turner Space Science ... (ACM) - Chairs: Susanne Crewell, Dave Turner, Stephen Mobbs ACM Scientific Questions * ...

  4. Atmospheric Rivers Coming to a Cloud Near You

    ScienceCinema (OSTI)

    Leung, Ruby

    2014-06-12

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  5. Cloud-Resolving Model Simulation and Mosaic Treatment of Subgrid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The development of cloud-resolving models (CRMs) and the extensive Atmospheric Radiation Measurements (ARMs) provide a unique opportunity for shading some lights on this problem. ...

  6. Detecting Drizzle in Marine Warm Clouds Using Visible, Infrared...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drizzle in Marine Warm Clouds Using Visible, Infrared, and Microwave Satellite Data H. Shao and G. Liu Florida State University Tallahassee, Florida Introduction Determining the ...

  7. Separating Cloud and Drizzle Radar Moments during Precipitation...

    Office of Scientific and Technical Information (OSTI)

    Onset using Doppler Spectra Citation Details In-Document Search Title: Separating Cloud and Drizzle Radar Moments during Precipitation Onset using Doppler Spectra Authors: ...

  8. Surface based remote sensing of aerosol-cloud interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a range of proxies for cloud condensation nuclei, ranging from surface measurements of light scattering and accumulation mode number concentration, to lidar-measured extinction...

  9. Assessment of Uncertainty in Cloud Radiative Effects and Heating...

    Office of Scientific and Technical Information (OSTI)

    functions of effective radius (Re), ice water content (IWC), extinction, ice number ... quantities on the cloud radiative effect and radiative heating rates are presented. ...

  10. Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensitivity of Radiative Fluxes and Heating Rates to Cloud Microphysics S. F. Iacobellis and R. C. J. Somerville Scripps Institution of Oceanography University of California, San...

  11. Posters Diagnostic Analysis of Cloud Radiative Properties R.C...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are extremely sensitive to parameterizations of certain poorly understood physical processes, most notably cloud-radiation interactions. As a result, models with different...

  12. 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    Title: 915-MHz Wind Profiler for Cloud Forecasting at Brookhaven National Laboratory When considering the amount of shortwave radiation incident on a photovoltaic solar array and, ...

  13. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer...

    Office of Scientific and Technical Information (OSTI)

    In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future ...

  14. Comparison of Cloud Fraction and Liquid Water Path between ECMWF...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fraction LidarRadar Liquid Water Path Microwave Radiometer Outputs of the ECMWF forecast model Introduction Comparison Strategy Observed-Modeled Cloud Fraction Comparison of...

  15. Cluster Analysis of Cloud Regimes and Characteristic Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster Analysis of Cloud Regimes and Characteristic Dynamics of Mid-Latitude Synoptic Systems N. D. Gordon and J. R. Norris Scripps Institution of Oceanography University of ...

  16. ARM: AOS: Dual Column Cloud Condensation Nuclei Counter (Dataset...

    Office of Scientific and Technical Information (OSTI)

    AOS: Dual Column Cloud Condensation Nuclei Counter Authors: Derek Hageman ; Bill Behrens ; Scott Smith ; Janek Uin ; Janek Uin ; Cynthia Salwen ; Cynthia Salwen ; Annette Koontz ; ...

  17. Stereo Photogrammetry Reveals Substantial Drag on Cloud Thermals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sciencehighlights Research Highlight Fast updrafts within clouds can generate hail, lightning, and tornadoes at the surface, as well as clear-air turbulence that pose...

  18. Chameleon: A Computer Science Testbed as Application of Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chameleon: A Computer Science Testbed as Application of Cloud Computing Event Sponsor: Mathematics and Computing Science Brownbag Lunch Start Date: Dec 15 2015 - 12:00pm Building...

  19. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mace cloud retrieval icegsolar liquidomegasolar liquidgIR iceomegasolar icetauIR liquidtausolar iceomegaIR lwcbestestimate liquidtauIR reliquidbestestimat...

  20. Sensitivity of Boundary-layer and Deep Convective Cloud Simulations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Simulations to Vertical Resolution Cheng, Anning Langley Research Center Xu, Kuan-Man NASA Langley Research Center Category: Modeling This study investigates the effects of...

  1. Detecting Cirrus-Overlapping-Water Clouds and Retrieving their...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds and Retrieving their Optical Properties Using MODIS Data F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College...

  2. ARM - Field Campaign - Cloud, Aerosol, and Complex Terrain Interaction...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This range of environmental conditions and cloud properties coupled with a high frequency of events makes this an ideal location for improving our understanding of...

  3. MG-RAST in "the cloud" | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MG-RAST in "the cloud" Event Sponsor: Mathematics and Computer Science Division Seminar ... data uploaded and analyzed in the past few years posing numerous computational challenges. ...

  4. CLOUD BASE SIGNATURE IN TRANSMISSION SPECTRA OF EXOPLANET ATMOSPHERES

    SciTech Connect (OSTI)

    Vahidinia, Sanaz; Cuzzi, Jeffrey N.; Marley, Mark; Fortney, Jonathan

    2014-07-01

    We present an analytical model for the transmission spectrum of a transiting exoplanet, showing that a cloud base can produce an observable inflection point in the spectrum. The wavelength and magnitude of the inflection can be used to break the degeneracy between the atmospheric pressure and the abundance of the main cloud material, however, the abundance still depends on cloud particle size. An observed inflection also provides a specific point on the atmospheric P-T profile, giving us a ''thermometer'' to directly validate or rule out postulated cloud species. We apply the model to the transit spectrum of HD 189733b.

  5. A Lidar View of Clouds in Southeastern China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lidar View of Clouds in Southeastern China For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight From May 2008...

  6. ARM - Publications: Science Team Meeting Documents: Cloud Property...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Property Retrievals using AIRS data during MPACE Huang, Allen University of Wisconsin Li, Jun University of Wisconsin-Madison Baggett, Kevin University of Wisconsin-Madison...

  7. Liquid Water the Key to Arctic Cloud Radiative Closure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water the Key to Arctic Cloud Radiative Closure For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight...

  8. Posters Ship-Based Measurements of Cloud Optical Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the optical properties of MBL clouds using measurements taken on the NOAA research vessel Malcom Baldrige. We seek the relationship between optical depth and liquid water because...

  9. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with...

    Office of Scientific and Technical Information (OSTI)

    ... Language: English Subject: 58 GEOSCIENCES; AEROSOLS; BOUNDARY LAYERS; CLOUDS; FREEZING; NUCLEATION; RADIATIONS; RAIN; SEASONS; SLOWING-DOWN; SNOW; SPATIAL DISTRIBUTION; TESTING ...

  10. Simulations of Midlatitude Frontal Clouds by Single-Column and...

    Office of Scientific and Technical Information (OSTI)

    condensates due to differences in parameterizations, however, the differences among inter-compared models are smaller in the CRMs than the SCMs. While the CRM-produced clouds...

  11. Atmospheric Rivers Coming to a Cloud Near You

    SciTech Connect (OSTI)

    Leung, Ruby

    2014-03-29

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  12. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  13. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  14. ARM - Publications: Science Team Meeting Documents: Clouds and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clouds and radiation in the Arctic coastal system - effects of local heterogeneity Key, Erica University of Miami, RSMAS Minnett, Peter University of Miami Improving our...

  15. Posters Radar/Radiometer Retrievals of Cloud Liquid Water and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for retrieving cloud liquid water content and drizzle characteristics using a K -band Doppler radar (Kropfli et al. 1990) and microwave radiometer (Hogg et al. 1983). The...

  16. ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Condensate Nuclei Chemistry Measurements Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation Aerosol and Drizzle...

  17. ARM - Field Campaign - MASRAD: Pt. Reyes Stratus Cloud and Drizzle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMASRAD: Pt. Reyes Stratus Cloud and Drizzle Study Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation...

  18. ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Storm Peak Lab Cloud Property Validation Experiment (STORMVEX) Campaign Links STORMVEX Website ARM Data Discovery Browse Data Related Campaigns Colorado: CFHCMH Deployment to...

  19. ARM - Publications: Science Team Meeting Documents: Clouds in the Darwin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area and their relation to large-scale conditions Clouds in the Darwin area and their relation to large-scale conditions Jakob, Christian BMRC Hoeglund, Sofia Lulea University of Technology This poster shows a climatological overview of the cloud cover in the Darwin region (location of a TWP ARM site) in the very north of Australia. Information on optical thickness and cloud top pressure from the ISCCP Stage D1 product over the time period 1985 to 2000 has been used to examine how the cloud

  20. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon...

    Office of Scientific and Technical Information (OSTI)

    microphysical properties of the aerosol." The Observations and Modeling of the Green Ocean Amazon (GoAmazon 201415) study seeks to understand how aerosol and cloud life cycles ...

  1. Intersecting Cold Pools: Convective Cloud Organization by Cold...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intersecting Cold Pools: Convective Cloud Organization by Cold Pools over Tropical Ocean For original submission and image(s), see ARM Research Highlights http:www.arm.gov...

  2. Single-Column Modeling A Stratiform Cloud Parameterization for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    parameterization originally developed for mesoscale cloud models (Tripoli and Cotton 1980, Cotton et al. 1982 and 1986, Meyers et al. 1992). These approximations are...

  3. Scanning ARM Cloud Radars. Part II: Data Quality Control and...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE SC OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text ...

  4. Scanning ARM Cloud Radars. Part I: Operational Sampling Strategies...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE SC OFFICE OF SCIENCE (SC) Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES Word Cloud More Like This Full Text ...

  5. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  6. The Radiative Properties of Small Clouds: Multi-Scale Observations...

    Office of Scientific and Technical Information (OSTI)

    characterize shallow clouds and the role of aerosol in modifying their radiative effects. ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 54 ...

  7. BAECC Biogenic Aerosols - Effects on Clouds and Climate (Technical...

    Office of Scientific and Technical Information (OSTI)

    The main research goal was to understand the role of biogenic aerosols in cloud formation. ... Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES ...

  8. ARM - Field Campaign - Holistic Interactions of Shallow Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE); National Geospatial-Intelligence Agency Calibration Target Placements 2016.04.24, Kalukin, SGP ...

  9. Determining Best Estimates and Uncertainties in Cloud Microphysical...

    Office of Scientific and Technical Information (OSTI)

    Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, ...

  10. Cloud Computing Manufacturing Efforts Take Off | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud computing capabilities. Last year, we demonstrated an innovative crowdsourcing platform with DARPA and are now exploring the use of this technology for GE and its partners. ...

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    Vertical Air Motion (williams-vertair) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair) ...

  12. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  13. MBL Drizzle Properties and Their Impact on Cloud Property Retrieval

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    layer drizzle properties and their impact on cloud property retrieval." Atmospheric Measurement Techniques, 8, doi:10.5194amt-8-3555-2015. Contributors Xiquan Dong,...

  14. Clouds, Aerosols and Precipitation in the Marine Boundary Layer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Framework, extend to investigation of aerosol-cloud interactions in models - Ensemble Kalman Filter (DART) Satellite activities with CAP-MBL Minnis: CAP-MBL subset MBL depth,...

  15. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  16. Evaluate the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Effect of Upper-Level Cirrus Clouds on Satellite Retrievals of Low-Level Cloud Droplet Effective Radius F.-L. Chang and Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Z. Li Department of Meteorology University of Maryland College Park, Maryland Introduction The earth's radiation budget is sensitive to changes in the microphysical properties of low-level stratiform clouds. Their extensive coverage can significantly reduce the solar energy

  17. SUPERGIANT SHELLS AND MOLECULAR CLOUD FORMATION IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Dawson, J. R.; Dickey, John M.; McClure-Griffiths, N. M.; Wong, T.; Hughes, A.; Fukui, Y.; Kawamura, A.

    2013-01-20

    We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between H I and {sup 12}CO(J = 1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects ({approx}70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that {approx}12%-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to {approx}4%-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.

  18. Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100% Figure 4. Monthly cloud statistics. (March data limited to the last two weeks) Acknowledgment The ICI system was...

  19. Cloud feedback studies with a physics grid

    SciTech Connect (OSTI)

    Dipankar, Anurag; Stevens, Bjorn

    2013-02-07

    During this project the investigators implemented a fully parallel version of dual-grid approach in main frame code ICON, implemented a fully conservative first-order interpolation scheme for horizontal remapping, integrated UCLA-LES micro-scale model into ICON to run parallely in selected columns, and did cloud feedback studies on aqua-planet setup to evaluate the classical parameterization on a small domain. The micro-scale model may be run in parallel with the classical parameterization, or it may be run on a "physics grid" independent of the dynamics grid.

  20. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yum, Seong Soo; Wang, Jian; Liu, Yangang; Senum, Gunnar; Springston, Stephen; McGraw, Robert; Yeom, Jae Min

    2015-05-27

    Cloud microphysical data obtained from G-1 aircraft flights over the southeastern pacific during the VOCALS-Rex field campaign were analyzed for evidence of entrainment mixing of dry air from above cloud top. Mixing diagram analysis was made for the horizontal flight data recorded at 1 Hz and 40 Hz. The dominant observed feature, a positive relationship between cloud droplet mean volume (V) and liquid water content (L), suggested occurrence of homogeneous mixing. On the other hand, estimation of the relevant scale parameters (i.e., transition length scale and transition scale number) consistently indicated inhomogeneous mixing. Importantly, the flight altitudes of the measurementsmore » were significantly below cloud top. We speculate that mixing of the entrained air near the cloud top may have indeed been inhomogeneous; but due to vertical circulation mixing, the correlation between V and L became positive at the measurement altitudes in mid-level of clouds, because during their descent, cloud droplets evaporate, faster in more diluted cloud parcels, leading to a positive correlation between V and L regardless of the mixing mechanism near the cloud top.« less

  1. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A cloud surveillance scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  2. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazil, J.; Feingold, G.; Yamaguchi, T.

    2015-10-21

    Observed and projected trends in large scale wind speed over the oceans prompt the question: how might marine stratocumulus clouds and their radiative properties respond to future changes in large scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum, and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamicalmoredriver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m?2, long wave emissions are very insensitive to LWP. This leads to the more general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find furthermore that large scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment, and in part because circulation driven by shear from large scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base, and thereby reduces decoupling and helps maintain LWP. The cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged CRE. However, the sensitivity of the diurnally averaged CRE to wind speed decreases with increasing wind speed.less

  3. INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE

    SciTech Connect (OSTI)

    Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara; Fortney, Jonathan; Knutson, Heather; Desert, Jean-Michel; Heng, Kevin; Madhusudhan, Nikku; Gillon, Michael; Barclay, Thomas; Cowan, Nicolas B.

    2013-10-20

    We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

  4. The relationship between interannual and long-term cloud feedbacks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Chen; Zelinka, Mark D.; Dessler, Andrew E.; Klein, Stephen A.

    2015-12-11

    The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in response to long-term global warming. Ensemble mean vertical profiles of cloud change in response to interannual and long-term surface warming are similar, and the ensemble mean cloud feedback is positive on both timescales. However, the average long-term cloud feedback is smaller than the interannual cloud feedback, likely due to differences in surface warming pattern on the two timescales. Low cloud cover (LCC) change in response to interannual andmore » long-term global surface warming is found to be well correlated across models and explains over half of the covariance between interannual and long-term cloud feedback. In conclusion, the intermodel correlation of LCC across timescales likely results from model-specific sensitivities of LCC to sea surface warming.« less

  5. The Roles of Cloud Drop Effective Radius and LWP in Determining...

    Office of Scientific and Technical Information (OSTI)

    Furthermore, satellite global observations of cloud depth (from base to top), and cloud top re can be used to derive and validate this parameterization. less Authors: Rosenfeld, ...

  6. Intercomparison of model simulations of mixed-phase clouds observed during

    Office of Scientific and Technical Information (OSTI)

    the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud (Journal Article) | SciTech Connect Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud Citation Details In-Document Search Title: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I: Single layer cloud Results are presented from an intercomparison of single-column and

  7. Department of Energy National Laboratories and Plants: Leadership in Cloud Computing (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    A status report on the cloud computing strategy for each Department of Energy laboratory and plant, showing the movement toward a cloud first IT strategy.

  8. Posters Climate Zones for Maritime Clouds A. B. White and D....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Posters Climate Zones for Maritime Clouds A. B. White and D. Ruffieux Cooperative ... of marine boundary-layer clouds varies for four different marine climate regimes. ...

  9. The Mid-latitude Continental Convective Clouds (MC3E) Experiment...

    Office of Scientific and Technical Information (OSTI)

    The Mid-latitude Continental Convective Clouds (MC3E) Experiment Final Campaign Report Citation Details In-Document Search Title: The Mid-latitude Continental Convective Clouds ...

  10. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector Calibration Authors: Dan Nelson ; ...

  11. The Role of Shallow Cloud Moistening in MJO and Non-MJO Convective...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to quantify bulk shallow cloud moistening through evaporation of condensed water using a simple method based on observations of liquid water path, cloud depth and temporal...

  12. W-band ARM Cloud Radar (WACR) Handbook

    SciTech Connect (OSTI)

    Widener, KB; Johnson, K

    2005-01-05

    The W-band Atmospheric Radiation Measurement (ARM) Program Cloud Radar (WACR) systems are zenith pointing Doppler radars that probe the extent and composition of clouds at 95.04 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar reports estimates for the first three spectra moments for each range gate up to 15 km. The 0th moment is reflectivity, the 1st moment is radial velocity, and the 2nd moment is spectral width. Also available are the raw spectra files. Unlike the millimeter wavelength cloud radar (MMCR), the WACR does not use pulse coding and operates in only copolarization and cross-polarization modes.

  13. Mixing between high velocity clouds and the galactic halo

    SciTech Connect (OSTI)

    Gritton, Jeffrey A.; Shelton, Robin L.; Kwak, Kyujin E-mail: rls@physast.uga.edu

    2014-11-01

    In the Galactic halo, metal-bearing Galactic halo material mixes into high velocity clouds (HVCs) as they hydrodynamically interact. This interaction begins long before the clouds completely dissipate and long before they slow to the velocity of the Galactic material. In order to make quantitative estimates of the mixing efficiency and resulting metal enrichment of HVCs, we made detailed two- and three-dimensional simulations of cloud-interstellar medium interactions. Our simulations track the hydrodynamics and time-dependent ionization levels. They assume that the cloud originally has a warm temperature and extremely low metallicity while the surrounding medium has a high temperature, low density, and substantial metallicity, but our simulations can be generalized to other choices of initial metallicities. In our simulations, mixing between cloud and halo gas noticeably raises the metallicity of the high velocity material. We present plots of the mixing efficiency and metal enrichment as a function of time.

  14. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    SciTech Connect (OSTI)

    Klein, S A; McCoy, R B; Morrison, H; Ackerman, A; Avramov, A; deBoer, G; Chen, M; Cole, J; DelGenio, A; Golaz, J; Hashino, T; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; Luo, Y; McFarquhar, G; Menon, S; Neggers, R; Park, S; Poellot, M; von Salzen, K; Schmidt, J; Sednev, I; Shipway, B; Shupe, M; Spangenberg, D; Sud, Y; Turner, D; Veron, D; Falk, M; Foster, M; Fridlind, A; Walker, G; Wang, Z; Wolf, A; Xie, S; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud top temperature of -15 C. The observed liquid water path of around 160 g m{sup -2} was about two-thirds of the adiabatic value and much greater than the mass of ice crystal precipitation which when integrated from the surface to cloud top was around 15 g m{sup -2}. The simulations were performed by seventeen single-column models (SCMs) and nine cloud-resolving models (CRMs). While the simulated ice water path is generally consistent with the observed values, the median SCM and CRM liquid water path is a factor of three smaller than observed. Results from a sensitivity study in which models removed ice microphysics indicate that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path. Despite this general underestimate, the simulated liquid and ice water paths of several models are consistent with the observed values. Furthermore, there is some evidence that models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter is also present. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics. This case study, which has been well observed from both aircraft and ground-based remote sensors, could be a benchmark for model simulations of mixed-phase clouds.

  15. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  16. Molecular clouds toward the super star cluster NGC 3603; possible evidence for a cloud-cloud collision in triggering the cluster formation

    SciTech Connect (OSTI)

    Fukui, Y.; Ohama, A.; Hanaoka, N.; Furukawa, N.; Torii, K.; Hasegawa, K.; Fukuda, T.; Soga, S.; Moribe, N.; Kuroda, Y.; Hayakawa, T.; Kuwahara, T.; Yamamoto, H.; Okuda, T.; Dawson, J. R.; Mizuno, N.; Kawamura, A.; Onishi, T.; Maezawa, H.; Mizuno, A.

    2014-01-01

    We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC 3603 in the transitions {sup 12}CO(J = 2-1, J = 1-0) and {sup 13}CO(J = 2-1, J = 1-0). We suggest that two molecular clouds at 13 km s{sup 1} and 28 km s{sup 1} are associated with NGC 3603 as evidenced by higher temperatures toward the H II region, as well as morphological correspondence. The mass of the clouds is too small to gravitationally bind them, given their relative motion of ?20 km s{sup 1}. We suggest that the two clouds collided with each other 1 Myr ago to trigger the formation of the super star cluster. This scenario is able to explain the origin of the highest mass stellar population in the cluster, which is as young as 1 Myr and is segregated within the central sub-pc of the cluster. This is the second super star cluster along with Westerlund 2 where formation may have been triggered by a cloud-cloud collision.

  17. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    SciTech Connect (OSTI)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost, allowing for more realistic representation of cloud radiation interactions in large-scale models.

  18. A novel approach for introducing cloud spatial structure into cloud radiative transfer parameterizations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Dong; Liu, Yangang

    2014-12-18

    Subgrid-scale variability is one of the main reasons why parameterizations are needed in large-scale models. Although some parameterizations started to address the issue of subgrid variability by introducing a subgrid probability distribution function for relevant quantities, the spatial structure has been typically ignored and thus the subgrid-scale interactions cannot be accounted for physically. Here we present a new statistical-physics-like approach whereby the spatial autocorrelation function can be used to physically capture the net effects of subgrid cloud interaction with radiation. The new approach is able to faithfully reproduce the Monte Carlo 3D simulation results with several orders less computational cost,moreallowing for more realistic representation of cloud radiation interactions in large-scale models.less

  19. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect (OSTI)

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models donâ??t consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and found that local effects were often much larger than the overall values mentioned above, and were especially large for high sun and near convective clouds such as cumulus. The study also found that statistical methods such as neural networks appear promising for enabling cloud models to consider radiative interactions between nearby atmospheric columns. Finally, through collaboration with German scientists, the project found that new methods (especially one called â??stepwise krigingâ?) show great promise in filling gaps between cloud radar scans. If applied to data from the new DOE scanning cloud radars, these methods can yield large, continuous three-dimensional cloud structures for future radiative simulations.

  20. Cloud Droplet Spectral Shape Sheds New Light on Aerosol- Cloud-Interaction Regimes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Droplet Spectral Shape Sheds New Light on Aerosol- Cloud-Interaction Regimes For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Despite decades of research, aerosol indirect effects remain among the most uncertain climate forcings according to the latest Intergovernmental Panel on Climate Change report. Furthermore, climate models tend to overestimate the cooling of aerosol indirect effects and are more susceptible than

  1. EA-1852: Cloud County Community College Wind Energy Project, Cloud County, Kansas

    Broader source: Energy.gov [DOE]

    This EA was to evaluate the environmental impacts of a proposal to authorize the expenditure of federal funds by Cloud County Community College (CCCC) for a wind energy project. CCCC has installed three wind turbines and proposed to install a fourth turbine on their campus in Concordia, Kansas, for use in their wind energy training curriculum and to provide electricity for their campus. This EA has been canceled.

  2. Cyber in the Cloud -- Lessons Learned from INL's Cloud E-Mail Acquisition

    SciTech Connect (OSTI)

    Troy Hiltbrand; Daniel Jones

    2012-12-01

    As we look at the cyber security ecosystem, are we planning to fight the battle as we did yesterday, with firewalls and intrusion detection systems (IDS), or are we sensing a change in how security is evolving and planning accordingly? With the technology enablement and possible financial benefits of cloud computing, the traditional tools for establishing and maintaining our cyber security ecosystems are being dramatically altered.

  3. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  4. W-Band ARM Cloud Radar - Specifications and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-88

    W-Band ARM Cloud Radar - Specifications and Design K. B. Widener Pacific Northwest National Laboratory Richland, Washington J. B. Mead ProSensing, Inc. Amherst, Massachusetts Abstract The Atmospheric Radiation Measurement (ARM) Program and ProSensing, Inc. have teamed to develop and deploy the W-band ARM Cloud Radar (WACR) at the SGP central facility. The WACR will be co- located with the ARM millimeter wave cloud radar (MMCR) with planned operation to begin in early 2005. This radar

  5. Propulsion and Power Generation Capabilities of a Dense Plasma Focus (DPF) Fusion System for Future Military Aerospace Vehicles

    SciTech Connect (OSTI)

    Knecht, Sean D.; Mead, Franklin B.; Miley, George H.; Froning, David

    2006-01-20

    The objective of this study was to perform a parametric evaluation of the performance and interface characteristics of a dense plasma focus (DPF) fusion system in support of a USAF advanced military aerospace vehicle concept study. This vehicle is an aerospace plane that combines clean 'aneutronic' dense plasma focus (DPF) fusion power and propulsion technology, with advanced 'lifting body'-like airframe configurations utilizing air-breathing MHD propulsion and power technology within a reusable single-stage-to-orbit (SSTO) vehicle. The applied approach was to evaluate the fusion system details (geometry, power, T/W, system mass, etc.) of a baseline p-11B DPF propulsion device with Q = 3.0 and thruster efficiency, {eta}prop = 90% for a range of thrust, Isp and capacitor specific energy values. The baseline details were then kept constant and the values of Q and {eta}prop were varied to evaluate excess power generation for communication systems, pulsed-train plasmoid weapons, ultrahigh-power lasers, and gravity devices. Thrust values were varied between 100 kN and 1,000 kN with Isp of 1,500 s and 2,000 s, while capacitor specific energy was varied from 1 - 15 kJ/kg. Q was varied from 3.0 to 6.0, resulting in gigawatts of excess power. Thruster efficiency was varied from 0.9 to 1.0, resulting in hundreds of megawatts of excess power. Resulting system masses were on the order of 10's to 100's of metric tons with thrust-to-weight ratios ranging from 2.1 to 44.1, depending on capacitor specific energy. Such a high thrust/high Isp system with a high power generation capability would allow military versatility in sub-orbital space, as early as 2025, and beyond as early as 2050. This paper presents the results that coincide with a total system mass between 15 and 20 metric tons.

  6. Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  7. Thermodynamic phase profiles of optically thin midlatitude cloud and their relation to temperature

    SciTech Connect (OSTI)

    Naud, C. M.; Del Genio, Anthony D.; Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, Jean-Charles; Turner, David D.; Lo, Chaomei; Comstock, Jennifer M.

    2010-06-03

    Winter cloud phase and temperature profiles derived from ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the United States Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site and the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) in France. Because lidars are attenuated in optically thick clouds, the dataset only includes optically thin clouds (optical thickness < 3). At SGP, 57% of the clouds observed with the lidar in the temperature range 233-273 K are either completely liquid or completely glaciated, while at SIRTA only 42% of the observed clouds are single phase, based on a depolarization ratio threshold of 11% for differentiating liquid from ice. Most optically thin mixed phase clouds show an ice layer at cloud top, and clouds with liquid at cloud top are less frequent. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites liquid is more prevalent at colder temperatures than has been found previously in aircraft flights through frontal clouds of greater optical thicknesses. Liquid in clouds persists to colder temperatures at SGP than SIRTA. This information on the average temperatures of mixed phase clouds at both locations complements earlier passive satellite remote sensing measurements that sample cloud phase near cloud top and for a wider range of cloud optical thicknesses.

  8. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  9. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  10. Automated detection of cloud and cloud-shadow in single-date Landsat imagery using neural networks and spatial post-processing

    SciTech Connect (OSTI)

    Hughes, Michael J. [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Hayes, Daniel J [ORNL] [ORNL

    2014-01-01

    Use of Landsat data to answer ecological questions is contingent on the effective removal of cloud and cloud shadow from satellite images. We develop a novel algorithm to identify and classify clouds and cloud shadow, \\textsc{sparcs}: Spacial Procedures for Automated Removal of Cloud and Shadow. The method uses neural networks to determine cloud, cloud-shadow, water, snow/ice, and clear-sky membership of each pixel in a Landsat scene, and then applies a set of procedures to enforce spatial rules. In a comparison to FMask, a high-quality cloud and cloud-shadow classification algorithm currently available, \\textsc{sparcs} performs favorably, with similar omission errors for clouds (0.8% and 0.9%, respectively), substantially lower omission error for cloud-shadow (8.3% and 1.1%), and fewer errors of commission (7.8% and 5.0%). Additionally, textsc{sparcs} provides a measure of uncertainty in its classification that can be exploited by other processes that use the cloud and cloud-shadow detection. To illustrate this, we present an application that constructs obstruction-free composites of images acquired on different dates in support of algorithms detecting vegetation change.

  11. Marine Boundary Layer Cloud Observations in the Azores (Journal...

    Office of Scientific and Technical Information (OSTI)

    Marine Boundary Layer Cloud Observations in the Azores Citation Details ... Publication Date: 2012-11-01 OSTI Identifier: 1059795 Report Number(s): BNL--98829-2012-JA Journal ID: ISSN ...

  12. A Novel Approach for Introducing 3D Cloud Spatial Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Novel Approach for Introducing 3D Cloud Spatial Structure Into 1D Radiative Transfer For original submission and image(s), see ARM Research Highlights http:www.arm.govscience...

  13. ARM - Field Campaign - IR Cloud Camera Feasibility Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsIR Cloud Camera Feasibility Study ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  14. A Simple Empirical Equation to Calculate Cloud Optical Thickness...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and high values of this quantity. With the above evidence in mind, we conclude that the empirical method described here is a useful tool for estimating cloud optical thickness at...

  15. Electron Cloud at Low Emittance in CesrTA

    SciTech Connect (OSTI)

    Palmer, Mark; Alexander, James; Billing, Michael; Calvey, Joseph; Conolly, Christopher; Crittenden, James; Dobbins, John; Dugan, Gerald; Eggert, Nicholas; Fontes, Ernest; Forster, Michael; Gallagher, Richard; Gray, Steven; Greenwald, Shlomo; Hartill, Donald; Hopkins, Walter; Kreinick, David; Kreis, Benjamin; Leong, Zhidong; Li, Yulin; Liu, Xianghong; /more authors..

    2012-07-06

    The Cornell Electron Storage Ring (CESR) has been reconfigured as a test accelerator (CesrTA) for a program of electron cloud (EC) research at ultra low emittance. The instrumentation in the ring has been upgraded with local diagnostics for measurement of cloud density and with improved beam diagnostics for the characterization of both the low emittance performance and the beam dynamics of high intensity bunch trains interacting with the cloud. A range of EC mitigation methods have been deployed and tested and their effectiveness is discussed. Measurements of the electron cloud's effect on the beam under a range of conditions are discussed along with the simulations being used to quantitatively understand these results.

  16. Scientists Look to the Clouds to Solve Complex Questions | U...

    Office of Science (SC) Website

    ... This initiative received more than 30 million from American Recovery and Reinvestment Act funds to set up and test the cloud computer-related hardware and software, as well as ...

  17. Limiting Factors for Convective Cloud Top Height in the Tropics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    characteristics for all mid-level and deep convective cases during the Nauru-99 IOP. JD-HH (GMT) (nearest sounding) ARSCL Cloud-Top Height (m) LNB (m) Entrainment Rate (%km)...

  18. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsRemote Cloud Sensing (RCS) Field Evaluation ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

  19. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E...

    Office of Scientific and Technical Information (OSTI)

    This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud ...

  20. 2011 CLOuDS Campaign | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CLOuDS Campaign (photo credits: NASA Johnson Space Center) View larger image 11 PR 0706 29 View larger image 11 PR 0706 31 View larger image 11 PR 0706 32 View larger image Jsc ...

  1. ARM - Tropical Warm Pool - International Cloud Experiment (TWP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Warm Pool - International Cloud Experiment (TWP-ICE) twp-ice-big One of the most complete data sets of tropical cirrus and convection observations ever collected will ...

  2. ARM - PI Product - Tropical Cloud Properties and Radiative Heating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Tropical Cloud Properties and Radiative Heating Profiles We have generated a suite...

  3. ARM - Evaluation Product - ISCCP Cloud Data Around the ARM Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : ISCCP Cloud Data Around the ARM Sites ISCCP data (Rossow and Schiffer, 1999 and...

  4. ARM - Evaluation Product - Cloud Microbase-kazr Profiles (ka...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Cloud Microbase-kazr Profiles (ka) VAP The KAZR radars have recently replaced the...

  5. ARM - PI Product - Cloud-Scale Vertical Velocity and Turbulent...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals Time-height...

  6. ARM - Evaluation Product - MWR Retrievals of Cloud Liquid Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsMWR Retrievals of Cloud Liquid Water and Water Vapor ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file...

  7. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for MC3E Lamont X-band site (I6) ARM research The...

  8. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2012 ARM research The...

  9. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2013 ARM research The...

  10. MAGIC Cloud Properties from Zenith Radiance Data Final Campaign...

    Office of Scientific and Technical Information (OSTI)

    As a result, the response of clouds to climate change is one of the major sources of uncertainty in climate prediction. Authors: Chiu, J. -Y.C. 1 ; Gregory, L. 2 ; Wagener, R. ...

  11. Comparison of Parameterized Cloud Variability to ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 2000 IOP of the ARM Program, we use a battery of observations to assess whether the ... (35 GHz) cloud radar (MMCR), a Belfort laser ceilometer, and a MWR. Aircraft sampling ...

  12. Enhanced toxic cloud knockdown spray system for decontamination applications

    DOE Patents [OSTI]

    Betty, Rita G.; Tucker, Mark D.; Brockmann, John E.; Lucero, Daniel A.; Levin, Bruce L.; Leonard, Jonathan

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  13. ARM - Field Campaign - Whole Sky Imager Cloud Fraction Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsWhole Sky Imager Cloud Fraction Data ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  14. Characterization of 3D Cirrus Cloud and Radiation Fields Using...

    Office of Scientific and Technical Information (OSTI)

    First, we performed analysis for a number of MODIS scenes comprising of heavy dust events and ice clouds, covering regions of frequent dust outbreaks in East Asia, Middle East, and ...

  15. Posters Treatment of Cloud Radiative Effects in General Circulation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Posters Treatment of Cloud Radiative Effects in General Circulation Models W.-C. Wang, M. P. Dudek, X.-Z. Liang, M. Ding, L. Zhu, E. Joseph, and S. Cox Atmospheric Sciences...

  16. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsDeep Convective Clouds and Chemistry Campaign Links DC3 Experiment Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  17. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX) 2015.01.14 - 2015.02.12 Lead...

  18. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMixed-Phase Arctic Cloud Experiment Campaign Links Science Document M-PACE Website Final Summary Report ARM Data Discovery Browse Data Comments? We would love to hear...

  19. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Marine ARM GPCI Investigations of Clouds (MAGIC): Parsivel Disdrometer support for...

  20. ARM - Field Campaign - Tropical Warm Pool - International Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsTropical Warm Pool - International Cloud Experiment (TWP-ICE) Campaign Links TWP-ICE Website ARM Data Discovery Browse Data Comments? We would love to hear from you...

  1. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Cloud Aerosol Precipitation Experiment (ACAPEX): Aerial Observations 2015.01.14...

  2. Polluting of Winter Convective Clouds upon Transition from Ocean...

    Office of Scientific and Technical Information (OSTI)

    air, up to the -21C isotherm level. A contrasting situation was documented in the afternoon over the foothills of the Sierra Nevada, when the clouds ingested high pollution ...

  3. ARM - Field Campaign - Azores: Above-Cloud Radiation Budget near...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaigns Azores: Clouds, Aerosol and Precipitation in the Marine Boundary Layer (CAP-MBL) 2009.05.01, Wood, AMF Comments? We would love to hear from you Send us a note...

  4. Humidity trends imply increased sensitivity to clouds in a warming...

    Office of Scientific and Technical Information (OSTI)

    at wavelengths that are semi-transparent to greenhouse gases, most notably water vapour. ... and variability in clouds14, water vapour15,16 and surface emission16,17 all ...

  5. Radar Wind Profiler for Cloud Forecasting at Brookhaven National...

    Office of Scientific and Technical Information (OSTI)

    1) To provide profiles of the horizontal wind to be used to test and validate short-term cloud advection forecasts for solar-energy applications and 2) to provide vertical ...

  6. Arctic Clouds Infrared Imaging Field Campaign Report (Technical...

    Office of Scientific and Technical Information (OSTI)

    a passive thermal imaging system, was deployed at the North Slope of Alaska site in Barrow, Alaska, from July 2012 to July 2014 for measuring spatial-temporal cloud statistics. ...

  7. Understanding and Improving CRM and GCM Simulations of Cloud...

    Office of Scientific and Technical Information (OSTI)

    We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM ...

  8. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect (OSTI)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  9. Posters Parameterization of Thin Mid-Level Stratiform Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thickness or its tendency within a GCM layer from the large-scale fields. 5. Develop and test a parameterization of altocumulus cloud layer optical properties (liquid water path...

  10. Observed and Simulated Cirrus Cloud Properties at the SGP CART...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. Three-minute mean retrievals are available at 8-minute intervals for isolated cirrus (i.e., no...

  11. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse Data Related Campaigns Marine ARM GPCI Investigation of Clouds (MAGIC) 2012.10.01, Lewis, AMF Comments? We would love to hear from you Send us a note below or call us at...

  12. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    SciTech Connect (OSTI)

    Mlawer,E.; Dunn,M.; Mlawer, E.; Shippert, T.; Troyan, D.; Johnson, K. L.; Miller, M. A.; Delamere, J.; Turner, D. D.; Jensen, M. P.; Flynn, C.; Shupe, M.; Comstock, J.; Long, C. N.; Clough, S. T.; Sivaraman, C.; Khaiyer, M.; Xie, S.; Rutan, D.; Minnis, P.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analyses has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.

  13. ARM Cloud Retrieval Ensemble Data Set (ACRED) (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Technical Report: ARM Cloud Retrieval Ensemble Data Set (ACRED) Citation Details In-Document Search Title: ARM Cloud Retrieval Ensemble Data Set (ACRED) This document describes a new Atmospheric Radiation Measurement (ARM) data set, the ARM Cloud Retrieval Ensemble Data Set (ACRED), which is created by assembling nine existing ground-based cloud retrievals of ARM measurements from different cloud retrieval algorithms. The current version of ACRED includes an hourly average of nine

  14. RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds Citation Details In-Document Search Title: RACORO Extended-Term Aircraft Observations of Boundary-Layer Clouds A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in-situ statistical characterization of boundary-layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM)

  15. Marine ARM GPCI Investigation of Clouds (MAGIC) Science Objectives and Significance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM GPCI Investigation of Clouds (MAGIC) Science Objectives and Significance Every cloud in the sky begins as a tiny droplet, which forms around an even smaller particle called an aerosol particle. Some clouds produce precipitation, and some don't. The relationship between clouds, precipitation, and aerosols is very complex and very important. Scientists use data about clouds, precipitation, and aerosols to develop computer codes, or models, that simulate what's happening in the atmosphere and

  16. Evolution in Cloud Population Statistics of the MJO. From AMIE Field

    Office of Scientific and Technical Information (OSTI)

    Observations to Global-Cloud Permitting Models final report Version 1 (Technical Report) | SciTech Connect Evolution in Cloud Population Statistics of the MJO. From AMIE Field Observations to Global-Cloud Permitting Models final report Version 1 Citation Details In-Document Search Title: Evolution in Cloud Population Statistics of the MJO. From AMIE Field Observations to Global-Cloud Permitting Models final report Version 1 Methods of convective/stratiform precipitation classification and

  17. Evaluation of Cloud-resolving and Limited Area Model Intercomparison

    Office of Scientific and Technical Information (OSTI)

    Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties (Journal Article) | SciTech Connect 1: Deep Convective Updraft Properties Citation Details In-Document Search Title: Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system

  18. Evaluation of Cloud-resolving and Limited Area Model Intercomparison

    Office of Scientific and Technical Information (OSTI)

    Simulations using TWP-ICE Observations. Part 2: Rain Microphysics (Journal Article) | SciTech Connect 2: Rain Microphysics Citation Details In-Document Search Title: Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm

  19. It's MAGIC A Floating Laboratory A Focus on Clouds Definitions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    issue It's MAGIC A Floating Laboratory A Focus on Clouds Definitions Activity About ARM The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a U.S. Department of Energy scientific user facility for the study of global climate change. As part of its outreach program, ARM provides education resources for students, teachers,and communities. www.arm.gov EDUCATION NEWS An Ocean of Data-About Clouds With contributions from Steve Linn, 4 th grade teacher at Cottonwood Elementary,

  20. Impact of cloud microphysics on squall line organization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Observations to Validate and Improve Cloud Micrfophysical Schemes Wojciech Grabowski (PI) Hugh Morrison, Sally McFarlane (Co-PIs) Hanna Pawlowska (Co-I) CMWG Breakout, ARM STM 2008 Two major efforts of project * Warm clouds. We will use microphysical retrievals from Nauru and SGP (including CLASIC), together with aircraft observations (RICO) to assess model simulations of shallow cumulus. * Focus is on treatment of turbulent- microphysical interactions and impact on optical properties. *

  1. LASIC Layered Atlantic Smoke Interaction with Clouds ARM Mobile Facility

    Office of Scientific and Technical Information (OSTI)

    (AMF) Overview (Conference) | SciTech Connect LASIC Layered Atlantic Smoke Interaction with Clouds ARM Mobile Facility (AMF) Overview Citation Details In-Document Search Title: LASIC Layered Atlantic Smoke Interaction with Clouds ARM Mobile Facility (AMF) Overview Authors: Nitschke, Kim Leonard [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-01-16 OSTI Identifier: 1167489 Report Number(s): LA-UR-15-20285 DOE Contract Number: AC52-06NA25396 Resource Type:

  2. Testing a Cloud Condensation Nuclei Remote Sensing Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cloud Condensation Nuclei Remote Sensing Method S. J. Ghan Climate Dynamics Group Pacific Northwest National Laboratory Richland, Washington Introduction Under certain conditions vertical profiles of cloud condensation nuclei (CCN) spectra can be retrieved from ground-based measurements. Surface measurements of the CCN spectrum are scaled by the ratio of the backscatter (or extinction) profile to the surface backscatter (or extinction). The backscatter (or extinction) profile is measured by

  3. Testing a Cloud Condensation Nuclei Remote Sensing Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Cloud Condensation Nuclei Remote Sensing Method S. J. Ghan Climate Physics Pacific Northwest National Laboratory Richland, Washington D. R. Collin Department of Atmospheric Sciences Texas A&M University College Station, Texas Introduction Under certain conditions vertical profiles of cloud condensation nuclei (CCN) spectra can be retrieved from ground-based measurements (Ghan and Collins 2003). Surface measurements of the CCN spectrum are scaled by the ratio of the 180 backscatter (or

  4. The Effect of Surface Heterogeneity on Cloud Absorption Estimates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effect of Surface Heterogeneity on Cloud Absorption Estimates W. J. Wiscombe and A. Marshak National Aeronautics and Space Administration - Goddard Space Flight Center Climate and Radiation Branch Greenbelt, Maryland J.-Y. C. Chiu Joint Center for Earth Systems Technology University of Maryland Baltimore, Maryland Introduction "Enhanced shortwave cloud absorption" (the difference between measured and model-calculated absorptions) has been a major concern in the climate community. The

  5. Time Correlations in Backscattering Radar Reflectivity Measurements from Cirrus Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Correlations in Backscattering Radar Reflectivity Measurements from Cirrus Clouds K. Ivanova, H. N. Shirer, and E. E. Clothiaux Pennsylvania State University University Park, Pennsylvania T. P. Ackerman Pacific Northwest National Laboratory Richland, Washington Introduction The state variables of the atmosphere exhibit correlations at various spatial and temporal scales. These correlations are crucial for understanding short- and long-term trends in climate. Cirrus clouds are important

  6. Statistical characteristics of cloud variability. Part 2: Implication for

    Office of Scientific and Technical Information (OSTI)

    parameterizations of microphysical and radiative transfer processes in climate models (Journal Article) | SciTech Connect Statistical characteristics of cloud variability. Part 2: Implication for parameterizations of microphysical and radiative transfer processes in climate models Citation Details In-Document Search Title: Statistical characteristics of cloud variability. Part 2: Implication for parameterizations of microphysical and radiative transfer processes in climate models The effects

  7. ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan (Program

    Office of Scientific and Technical Information (OSTI)

    Document) | SciTech Connect ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan Citation Details In-Document Search Title: ARM Cloud Aerosol Precipitation Experiment (ACAPEX) Science Plan The western U.S. receives precipitation predominantly during the cold season when storms approach from the Pacific Ocean. The snowpack that accumulates during winter storms provides about 70-90% of water supply for the region. Understanding and modeling the fundamental processes that govern the

  8. RACORO continental boundary layer cloud investigations. 3. Separation of

    Office of Scientific and Technical Information (OSTI)

    parameterization biases in single-column model CAM5 simulations of shallow cumulus (Journal Article) | SciTech Connect RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column model CAM5 simulations of shallow cumulus Citation Details In-Document Search This content will become publicly available on June 19, 2016 Title: RACORO continental boundary layer cloud investigations. 3. Separation of parameterization biases in single-column

  9. RACORO continental boundary layer cloud investigations. Part I: Case study

    Office of Scientific and Technical Information (OSTI)

    development and ensemble large-scale forcings (Journal Article) | SciTech Connect RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings Citation Details In-Document Search This content will become publicly available on June 19, 2016 Title: RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings Observation-based modeling case studies of continental boundary

  10. Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates

    Office of Scientific and Technical Information (OSTI)

    through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia (Journal Article) | SciTech Connect Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at Darwin, Australia Citation Details In-Document Search Title: Assessment of Uncertainty in Cloud Radiative Effects and Heating Rates through Retrieval Algorithm Differences: Analysis using 3-years of ARM data at

  11. Chemical Characterization of Individual Particles and Residuals of Cloud

    Office of Scientific and Technical Information (OSTI)

    Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study (Journal Article) | SciTech Connect Journal Article: Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study Citation Details In-Document Search Title: Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008

  12. Dynamics of Molecular Clouds: Observations, Simulations, and NIF

    Office of Scientific and Technical Information (OSTI)

    Experiments (Conference) | SciTech Connect Conference: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Citation Details In-Document Search Title: Dynamics of Molecular Clouds: Observations, Simulations, and NIF Experiments Authors: Kane, J O ; Martinez, D A ; Pound, M W ; Heeter, R F ; Casner, A ; Mancini, R C Publication Date: 2015-01-16 OSTI Identifier: 1179389 Report Number(s): LLNL-CONF-666498 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference

  13. Cloud and Precipitation Fields Around Darwin in the Transition Season

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Precipitation Fields Around Darwin in the Transition Season P. T. May Bureau of Meteorology Research Centre Melbourne, 3001, Victoria, Australia Introduction An interesting, and very relevant question, for the Atmospheric Radiation Measurement (ARM) Program is how cloud characteristics and their seasonal and diurnal variation changes across the tropics. In particular, how does he cloud field around the new SRCS site compare with nearby regions. Thus, the aim of this study is to look at the

  14. Radiosonde observations at Pt. Reyes and cloud properties retrieved from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GOES-WEST Radiosonde observations at Pt. Reyes and cloud properties retrieved from GOES-WEST Inoue, Toshiro MRI/JMA Category: Field Campaigns Low-level cloud formed off the west coast of continents plays an important role in general circulation and climate. Marine Stratus Radiation Aerosol and Drizzle (MASRAD) was conducted at the ARM mobile site deployed at Pt Reyes, California during April to September. Here, we studied the relationship between meteorological parameters observed by GPS

  15. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro) (Dataset) | Data Explorer Parcivel Disdrometer (williams-disdro) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Parcivel Disdrometer (williams-disdro) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed

  16. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, Surface Meteorology (williams-surfmet) (Dataset) | Data Explorer Surface Meteorology (williams-surfmet) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Surface Meteorology (williams-surfmet) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed

  17. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, Vertical Air Motion (williams-vertair) (Dataset) | Data Explorer Vertical Air Motion (williams-vertair) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, Vertical Air Motion (williams-vertair) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed

  18. Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment

    Office of Scientific and Technical Information (OSTI)

    Field Campaign Report (Program Document) | SciTech Connect SciTech Connect Search Results Program Document: Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment Field Campaign Report Citation Details In-Document Search Title: Biogenic Aerosols-Effects on Clouds and Climate: Snowfall Experiment Field Campaign Report The snowfall measurement campaign took place during deployment of the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research

  19. Layered Atlantic Smoke Interactions with Clouds (LASIC) Science Plan

    Office of Scientific and Technical Information (OSTI)

    (Program Document) | SciTech Connect Layered Atlantic Smoke Interactions with Clouds (LASIC) Science Plan Citation Details In-Document Search Title: Layered Atlantic Smoke Interactions with Clouds (LASIC) Science Plan Southern Africa is the world's largest emitter of biomass-burning (BB) aerosols. Their westward transport over the remote southeast Atlantic Ocean colocates some of the largest atmospheric loadings of absorbing aerosol with the least examined of the Earth's major subtropical

  20. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems

    Office of Scientific and Technical Information (OSTI)

    (HI-SCALE) Science Plan (Program Document) | SciTech Connect Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan Citation Details In-Document Search Title: Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the

  1. Atmospheric Radiation Measurement Tropical Warm Pool International Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tropical Warm Pool International Cloud Experiment General Description The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program and the Australian Bureau of Meteorology. Beginning January 21 and ending February 14, 2006, the experiment was conducted in the region near the ARM Climate Research Facility in Darwin, Northern Australia. This permanent facility is fully equipped

  2. Electron cloud experiments at Fermilab: Formation and mitigation

    SciTech Connect (OSTI)

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  3. A SEARCH FOR EXOZODIACAL CLOUDS WITH KEPLER

    SciTech Connect (OSTI)

    Stark, Christopher C.; Boss, Alan P.; Weinberger, Alycia J.; Jackson, Brian K.; Endl, Michael; Cochran, William D.; Johnson, Marshall; Caldwell, Caroline; Agol, Eric; Ford, Eric B.; Hall, Jennifer R.; Ibrahim, Khadeejah A.

    2013-02-20

    Planets embedded within dust disks may drive the formation of large scale clumpy dust structures by trapping dust into resonant orbits. Detection and subsequent modeling of the dust structures would help constrain the mass and orbit of the planet and the disk architecture, give clues to the history of the planetary system, and provide a statistical estimate of disk asymmetry for future exoEarth-imaging missions. Here, we present the first search for these resonant structures in the inner regions of planetary systems by analyzing the light curves of hot Jupiter planetary candidates identified by the Kepler mission. We detect only one candidate disk structure associated with KOI 838.01 at the 3{sigma} confidence level, but subsequent radial velocity measurements reveal that KOI 838.01 is a grazing eclipsing binary and the candidate disk structure is a false positive. Using our null result, we place an upper limit on the frequency of dense exozodi structures created by hot Jupiters. We find that at the 90% confidence level, less than 21% of Kepler hot Jupiters create resonant dust clumps that lead and trail the planet by {approx}90 Degree-Sign with optical depths {approx}> 5 Multiplication-Sign 10{sup -6}, which corresponds to the resonant structure expected for a lone hot Jupiter perturbing a dynamically cold dust disk 50 times as dense as the zodiacal cloud.

  4. Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parmaterizations in Large-Scale Models

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Cloud-Resolving Model Simulations of Deep Convection to Inform Cloud Parameterizations in Large-Scale Models S. A. Klein National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Laboratory Princeton, New Jersey R. Pincus National Oceanic and Atmospheric Administration Cooperative Institute for Research in Environmental Science Climate Diagnostics Center Boulder, Colorado K. -M. Xu National Aeronautics and Space Administration Langley Research Center Hampton, Virginia

  5. Analysis of global radiation budgets and cloud forcing using three-dimensional cloud nephanalysis data base. Master's thesis

    SciTech Connect (OSTI)

    Mitchell, B.

    1990-12-01

    A one-dimensional radiative transfer model was used to compute the global radiative budget at the top of the atmosphere (TOA) and the surface for January and July. 1979. The model was also used to determine the global cloud radiative forcing for all clouds and for high and low cloud layers. In the computations. the authors used the monthly cloud data derived from the Air Force Three-Dimensional Cloud Nephanalysis (3DNEPH). These data were used in conjunction with conventional temperature and humidity profiles analyzed during the 1979 First GARP (Global Atmospheric Research Program) Global Experiment (FGGE) year. Global surface albedos were computed from available data and were included in the radiative transfer analysis. Comparisons of the model-produced outgoing solar and infrared fluxes with those derived from Nimbus 7 Earth Radiation Budget (ERS) data were made to validate the radiative model and cloud cover. For reflected solar and emitted infrared (IR) flux, differences within 20 w/sq m meters were shown.

  6. CHEMICAL EVOLUTION OF THE LARGE MAGELLANIC CLOUD

    SciTech Connect (OSTI)

    Bekki, Kenji [ICRAR, M468, University of Western Australia, 35 Stirling Highway, Crawley Western Australia 6009 (Australia); Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan)

    2012-12-20

    We adopt a new chemical evolution model for the Large Magellanic Cloud (LMC) and thereby investigate its past star formation and chemical enrichment histories. The delay time distribution of Type Ia supernovae recently revealed by Type Ia supernova surveys is incorporated self-consistently into the new model. The principle results are summarized as follows. The present gas mass fraction and stellar metallicity as well as the higher [Ba/Fe] in metal-poor stars at [Fe/H] < -1.5 can be more self-consistently explained by models with steeper initial mass functions. The observed higher [Mg/Fe] ({>=}0.3) at [Fe/H] {approx} -0.6 and higher [Ba/Fe] (>0.5) at [Fe/H] {approx} -0.3 could be due to significantly enhanced star formation about 2 Gyr ago. The observed overall [Ca/Fe]-[Fe/H] relation and remarkably low [Ca/Fe] (< - 0.2) at [Fe/H] > -0.6 are consistent with models with short-delay supernova Ia and with the more efficient loss of Ca possibly caused by an explosion mechanism of Type II supernovae. Although the metallicity distribution functions do not show double peaks in the models with a starburst about 2 Gyr ago, they show characteristic double peaks in the models with double starbursts {approx}200 Myr and {approx}2 Gyr ago. The observed apparent dip of [Fe/H] around {approx}1.5 Gyr ago in the age-metallicity relation can be reproduced by models in which a large amount ({approx}10{sup 9} M{sub Sun }) of metal-poor ([Fe/H] < -1) gas can be accreted onto the LMC.

  7. V-033: ownCloud Cross-Site Scripting and File Upload Vulnerabilities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 3: ownCloud Cross-Site Scripting and File Upload Vulnerabilities V-033: ownCloud Cross-Site Scripting and File Upload Vulnerabilities November 26, 2012 - 2:00am Addthis PROBLEM: ownCloud Cross-Site Scripting and File Upload Vulnerabilities PLATFORM: ownCloud 4.5.2, 4.5.1, 4.0.9 ABSTRACT: Multiple vulnerabilities have been reported in ownCloud REFERENCE LINKS: ownCloud Server Advisories Secunia Advisory SA51357 IMPACT ASSESSMENT: Medium DISCUSSION: 1) Input passed via the

  8. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S. Satyanarayana, Malladi Dhaman, Reji K. Motty, G. S.

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  9. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using smore » atellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between − 0.2 and − 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previous studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550 nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds.« less

  10. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    ScienceCinema (OSTI)

    Norris, Joe [Scripps Institution of Oceanography, University of California, San Diego, California, USA

    2010-09-01

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  11. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect (OSTI)

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  12. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    SciTech Connect (OSTI)

    Norris, Joel

    2010-05-10

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  13. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    SciTech Connect (OSTI)

    Norris, Joe

    2010-05-12

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  14. A BARE MOLECULAR CLOUD AT z {approx} 0.45

    SciTech Connect (OSTI)

    Jones, Therese M.; Misawa, Toru; Charlton, Jane C.; Mshar, Andrew C.; Ferland, Gary J. E-mail: misawatr@shinshu-u.ac.j E-mail: acmshar@gmail.co

    2010-06-01

    Several neutral species (Mg I, Si I, Ca I, Fe I) have been detected in a weak Mg II absorption line system (W{sub r} (2796) {approx} 0.15 A) at z {approx} 0.45 along the sightline toward HE0001-2340. These observations require extreme physical conditions, as noted in D'Odorico. We place further constraints on the properties of this system by running a wide grid of photoionization models, determining that the absorbing cloud that produces the neutral absorption is extremely dense ({approx}100-1000 cm{sup -3}), cold (<100 K), and has significant molecular content ({approx}72%-94%). Structures of this size and temperature have been detected in Milky Way CO surveys and have been predicted in hydrodynamic simulations of turbulent gas. In order to explain the observed line profiles in all neutral and singly ionized chemical transitions, the lines must suffer from unresolved saturation and/or the absorber must partially cover the broad emission line region of the background quasar. In addition to this highly unusual cloud, three other ordinary weak Mg II clouds (within densities of {approx}0.005 cm{sup -3} and temperatures of {approx}10, 000 K) lie within 500 km s{sup -1} along the same sightline. We suggest that the 'bare molecular cloud', which appears to reside outside of a galaxy disk, may have had in situ star formation and may evolve into an ordinary weak Mg II absorbing cloud.

  15. Interaction between Cassiopeia A and nearby molecular clouds

    SciTech Connect (OSTI)

    Kilpatrick, C. D.; Bieging, J. H.; Rieke, G. H.

    2014-12-01

    We present spectroscopy of the supernova remnant Cassiopeia A (Cas A) observed at infrared wavelengths from 10 to 40 ?m with the Spitzer Space Telescope and at millimeter wavelengths in {sup 12}CO and {sup 13}CO J =2-1 (230 and 220 GHz) with the Heinrich Hertz Submillimeter Telescope. The IR spectra demonstrate high-velocity features toward a molecular cloud coincident with a region of bright radio continuum emission along the northern shock front of Cas A. The millimeter observations indicate that CO emission is broadened by a factor of two in some clouds toward Cas A, particularly to the south and west. We believe that these features trace interactions between the Cas A shock front and nearby molecular clouds. In addition, some of the molecular clouds that exhibit broadening in CO lie 1'-2' away from the furthest extent of the supernova remnant shock front. We propose that this material may be accelerated by ejecta with velocity significantly larger than the observed free-expansion velocity of the Cas A shock front. These observations may trace cloud interactions with fast-moving outflows such as the bipolar outflow along the southwest to northeast axis of the Cas A supernova remnant, as well as fast-moving knots seen emerging in other directions.

  16. Influence of Arctic cloud thermodynamic phase on surface shortwave flux

    SciTech Connect (OSTI)

    Lubin, D.; Vogelmann, A.

    2010-03-15

    As part of the Indirect and Semi-Direct Aerosol Campaign (ISDAC) an Analytical Spectral Devices (ASD, Inc.) spectroradiometer was deployed at the Barrow NSA site during April and May of 2008, and in April-October of 2009. This instrument recorded one-minute averages of surface downwelling spectral flux in the wavelength interval 350-2200 nm, thus sampling the two major near infrared windows (1.6 and 2.2 microns) in which the flux is influenced by cloud microphysical properties including thermodynamic phase and effective particle size. Aircraft in situ measurements of cloud properties show mostly mixed-phase clouds over Barrow during the campaign, but with wide variability in relative liquid versus ice water content. At fixed total optical depth, this variability in phase composition can yield of order 5-10 Watts per square meter in surface flux variability, with greater cloud attenuation of the surface flux usually occurring under higher ice water content. Thus our data show that changes in cloud phase properties, even within the 'mixed-phase' category, can affect the surface energy balance at the same order of magnitude as greenhouse gas increases. Analysis of this spectral radiometric data provides suggestions for testing new mixed-phase parameterizations in climate models.

  17. Tropical Warm Pool International Cloud Experiment (TWP-ICE): Cloud and Rain Characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    PT May; C Jakob; JH Mather

    2004-05-30

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them. The experiment is a collaboration between the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program, the Bureau of Meteorology (BoM), the National Aeronautics and Space Administration (NASA), the European Commission DG RTD-1.2, and several United States, Australian, Canadian, and European Universities. This experiment will be undertaken over a 4-week period in early 2006. January and February corresponds to the wet phase of the Australia monsoon. This season has been selected because, despite Darwin’s coastal location, the convection that occurs over and near Darwin at this time is largely of maritime origin with a large fetch over water. Based on previous experiments, the convection appears typical of maritime convection with widespread convection that has complex organization, but is not as deep or as intense as continental or coastal convection. Therefore, it is expected that the convection and cloud characteristics will be representative of conditions typical for wide areas of the tropics.

  18. Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.; Morrison, H.; Solomon, Amy

    2014-11-17

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.

  19. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-06-30

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in short-wave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation. Also presented are estimations of computational expense and investigation of sensitivity to number of subcolumns.« less

  20. A unified parameterization of clouds and turbulence using CLUBB and subcolumns in the Community Atmosphere Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thayer-Calder, K.; Gettelman, A.; Craig, C.; Goldhaber, S.; Bogenschutz, P. A.; Chen, C.-C.; Morrison, H.; Höft, J.; Raut, E.; Griffin, B. M.; et al

    2015-12-01

    Most global climate models parameterize separate cloud types using separate parameterizations. This approach has several disadvantages, including obscure interactions between parameterizations and inaccurate triggering of cumulus parameterizations. Alternatively, a unified cloud parameterization uses one equation set to represent all cloud types. Such cloud types include stratiform liquid and ice cloud, shallow convective cloud, and deep convective cloud. Vital to the success of a unified parameterization is a general interface between clouds and microphysics. One such interface involves drawing Monte Carlo samples of subgrid variability of temperature, water vapor, cloud liquid, and cloud ice, and feeding the sample points into amore » microphysics scheme. This study evaluates a unified cloud parameterization and a Monte Carlo microphysics interface that has been implemented in the Community Atmosphere Model (CAM) version 5.3. Model computational expense is estimated, and sensitivity to the number of subcolumns is investigated. Results describing the mean climate and tropical variability from global simulations are presented. The new model shows a degradation in precipitation skill but improvements in shortwave cloud forcing, liquid water path, long-wave cloud forcing, precipitable water, and tropical wave simulation.« less

  1. Emergent Constraints for Cloud Feedbacks and Climate Sensitivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klein, Stephen A.; Hall, Alex

    2015-10-26

    Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model errormore » that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.« less

  2. Emergent Constraints for Cloud Feedbacks and Climate Sensitivity

    SciTech Connect (OSTI)

    Klein, Stephen A.; Hall, Alex

    2015-10-26

    Emergent constraints are physically explainable empirical relationships between characteristics of the current climate and long-term climate prediction that emerge in collections of climate model simulations. With the prospect of constraining long-term climate prediction, scientists have recently uncovered several emergent constraints related to long-term cloud feedbacks. We review these proposed emergent constraints, many of which involve the behavior of low-level clouds, and discuss criteria to assess their credibility. With further research, some of the cases we review may eventually become confirmed emergent constraints, provided they are accompanied by credible physical explanations. Because confirmed emergent constraints identify a source of model error that projects onto climate predictions, they deserve extra attention from those developing climate models and climate observations. While a systematic bias cannot be ruled out, it is noteworthy that the promising emergent constraints suggest larger cloud feedback and hence climate sensitivity.

  3. Computer tomography of large dust clouds in complex plasmas

    SciTech Connect (OSTI)

    Killer, Carsten; Himpel, Michael; Melzer, Andr

    2014-10-15

    The dust density is a central parameter of a dusty plasma. Here, a tomography setup for the determination of the three-dimensionally resolved density distribution of spatially extended dust clouds is presented. The dust clouds consist of micron-sized particles confined in a radio frequency argon plasma, where they fill almost the entire discharge volume. First, a line-of-sight integrated dust density is obtained from extinction measurements, where the incident light from an LED panel is scattered and absorbed by the dust. Performing these extinction measurements from many different angles allows the reconstruction of the 3D dust density distribution, analogous to a computer tomography in medical applications.

  4. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  5. Separating Cloud and Drizzle Radar Moments during Precipitation Onset using

    Office of Scientific and Technical Information (OSTI)

    Doppler Spectra (Journal Article) | SciTech Connect Separating Cloud and Drizzle Radar Moments during Precipitation Onset using Doppler Spectra Citation Details In-Document Search Title: Separating Cloud and Drizzle Radar Moments during Precipitation Onset using Doppler Spectra Authors: Luke E. P. ; Kollias, P. Publication Date: 2013-08-01 OSTI Identifier: 1093813 Report Number(s): BNL--101647-2013-JA Journal ID: ISSN 0739--0572; R&D Project: 2015-BNL-EE630EECA-Budg; KP1701000 DOE

  6. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  7. Cloud Optical Properties from the Multi-Filter Shadowband Radiometer

    Office of Scientific and Technical Information (OSTI)

    (MFRSRCLDOD): An ARM Value-Added Product (Technical Report) | SciTech Connect Cloud Optical Properties from the Multi-Filter Shadowband Radiometer (MFRSRCLDOD): An ARM Value-Added Product Citation Details In-Document Search Title: Cloud Optical Properties from the Multi-Filter Shadowband Radiometer (MFRSRCLDOD): An ARM Value-Added Product The Min and Harrison algorithm has been incorporated into an ARM Value-Added Product (VAP) called MFRSR CLDOD. This version of the VAP (1Min) uses the

  8. Cloud Optical Properties from the Multi-Filter Shadowband Radiometer

    Office of Scientific and Technical Information (OSTI)

    (MFRSRCLDOD): An ARM Value-Added Product (Technical Report) | SciTech Connect Cloud Optical Properties from the Multi-Filter Shadowband Radiometer (MFRSRCLDOD): An ARM Value-Added Product Citation Details In-Document Search Title: Cloud Optical Properties from the Multi-Filter Shadowband Radiometer (MFRSRCLDOD): An ARM Value-Added Product × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical

  9. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsFIRE-Arctic Cloud Experiment/SHEBA ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : FIRE-Arctic Cloud Experiment/SHEBA 1998.05.19 - 1998.06.24 Lead Scientist : Peter Hobbs Data Availability Data from the UW Convair-580 measurements in FIRE-ACE/SHEBA have been archived at the Langley DAAC. For data sets, see below. Abstract Based in Barrow, Alaska, from May 15 through June 24, 1998, the Univ. of

  10. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof) (Dataset) | Data Explorer Data Explorer Search Results ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE)

  11. ARM - Midlatitude Continental Convective Clouds Experiment (MC3E):

    Office of Scientific and Technical Information (OSTI)

    Multi-Frequency Profilers, S-band Radar (williams-s_band) (Dataset) | Data Explorer Data Explorer Search Results ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band) Title: ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, S-band Radar (williams-s_band) This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA

  12. Characterization of 3D Cirrus Cloud and Radiation Fields Using

    Office of Scientific and Technical Information (OSTI)

    ARS/AIRS/MODIS data and its Application to Climate Model (Technical Report) | SciTech Connect Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model Citation Details In-Document Search Title: Characterization of 3D Cirrus Cloud and Radiation Fields Using ARS/AIRS/MODIS data and its Application to Climate Model During the report period, we have made the following research accomplishments. First, we performed analysis for a

  13. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, James ProSensing Inc. Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM Cloud Radars (WACR) have been developed for the SGP and the ARM Mobile Facility (AMF) by ProSensing. The SGP WACR was successfully deployed in the same shelter as the MMCR in 2005. It is currently collecting co-polarization and cross-polarization spectral moments (reflectivity, Doppler velocity,

  14. Cloud-Based Air Traffic Management Announcement | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Works to Bring Air Traffic Management Into "The Cloud" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE Works to Bring Air Traffic Management Into "The Cloud" A global leader in avionics and software development, the General Electric Company (NYSE: GE) has embarked on an 18-month project with the

  15. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Land-Ecosystems (HI-SCALE): Nano-Particle Number Concentrations Nano-Particle Number Concentrations Related Campaigns Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) 2016.04.24, Fast, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE): Nano-Particle Number Concentrations 2016.08.28 - 2016.09.26 Lead Scientist :

  16. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Land-Ecosystems (HI-SCALE): Nanoparticle Composition and Precursors Nanoparticle Composition and Precursors Related Campaigns Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) 2016.04.24, Fast, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE): Nanoparticle Composition and Precursors 2016.08.21 - 2016.09.27 Lead

  17. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect (OSTI)

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  18. A study of cloud and drizzle properties in the Azores using Doppler...

    Office of Scientific and Technical Information (OSTI)

    A study of cloud and drizzle properties in the Azores using Doppler Radar spectra Citation Details In-Document Search Title: A study of cloud and drizzle properties in the Azores using ...

  19. V-071: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote Users Deny Service V-071: Cisco ASA 1000V Cloud Firewall H.323 Inspection Bug Lets Remote Users Deny Service ...

  20. Field Evaluation of Real-time Cloud OD Sensor TWST during the...

    Office of Scientific and Technical Information (OSTI)

    ...l-time Cloud OD Sensor TWST during the DOE ARM TCAP Campaign 2013 Final Campaign Report Citation Details In-Document Search Title: Field Evaluation of Real-time Cloud OD Sensor ...

  1. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Boundary Layer RHI Scan Authors: Dan Nelson ; Joseph Hardin ; ...

  2. A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    state, and did the same for the model output. - By profiles of cloud occurrence, we mean (at given altitude above ground level) the relative frequency that a cloud was...

  3. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan...

    Office of Scientific and Technical Information (OSTI)

    Cross-Wind RHI Scan Title: ARM: X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan X-Band Scanning ARM Cloud Radar (XSACR) Cross-Wind RHI Scan Authors: Dan Nelson ; Joseph ...

  4. Pion cloud and sea quark flavor asymmetry in the impact parameter...

    Office of Scientific and Technical Information (OSTI)

    Pion cloud and sea quark flavor asymmetry in the impact parameter representation Citation Details In-Document Search Title: Pion cloud and sea quark flavor asymmetry in the impact ...

  5. Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis

    SciTech Connect (OSTI)

    Zahn, S.G.

    1993-12-01

    Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

  6. Constructing a Merged Cloud-Precipitation Radar Dataset for Tropical Convective Clouds during the DYNAMO/AMIE Experiment at Addu Atoll

    SciTech Connect (OSTI)

    Feng, Zhe; McFarlane, Sally A.; Schumacher, Courtney; Ellis, Scott; Comstock, Jennifer M.; Bharadwaj, Nitin

    2014-05-16

    To improve understanding of the convective processes key to the Madden-Julian-Oscillation (MJO) initiation, the Dynamics of the MJO (DYNAMO) and Atmospheric Radiation Measurement MJO Investigation Experiment (AMIE) collected four months of observations from three radars, the S-band Polarization Radar (S-Pol), the C-band Shared Mobile Atmospheric Research & Teaching Radar (SMART-R), and Ka-band Zenith Radar (KAZR) on Addu Atoll in the tropical Indian Ocean. This study compares the measurements from the S-Pol and SMART-R to those from the more sensitive KAZR in order to characterize the hydrometeor detection capabilities of the two scanning precipitation radars. Frequency comparisons for precipitating convective clouds and non-precipitating high clouds agree much better than non-precipitating low clouds for both scanning radars due to issues in ground clutter. On average, SMART-R underestimates convective and high cloud tops by 0.3 to 1.1 km, while S-Pol underestimates cloud tops by less than 0.4 km for these cloud types. S-Pol shows excellent dynamic range in detecting various types of clouds and therefore its data are well suited for characterizing the evolution of the 3D cloud structures, complementing the profiling KAZR measurements. For detecting non-precipitating low clouds and thin cirrus clouds, KAZR remains the most reliable instrument. However, KAZR is attenuated in heavy precipitation and underestimates cloud top height due to rainfall attenuation 4.3% of the time during DYNAMO/AMIE. An empirical method to correct the KAZR cloud top heights is described, and a merged radar dataset is produced to provide improved cloud boundary estimates, microphysics and radiative heating retrievals.

  7. Simulations of the electron cloud buildups and suppressions in Tevatron and

    Office of Scientific and Technical Information (OSTI)

    main injector (Conference) | SciTech Connect Simulations of the electron cloud buildups and suppressions in Tevatron and main injector Citation Details In-Document Search Title: Simulations of the electron cloud buildups and suppressions in Tevatron and main injector To assess the effects of the electron cloud on Main Injector intensity upgrades, simulations of the cloud buildup were carried out using POSINST and compared with ECLOUD. Results indicate that even assuming an optimistic 1.3

  8. A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud

    Office of Scientific and Technical Information (OSTI)

    Radar Doppler Spectra. (Conference) | SciTech Connect High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra. Citation Details In-Document Search Title: A High Resolution Hydrometer Phase Classifier Based on Analysis of Cloud Radar Doppler Spectra. The lifecycle and radiative properties of clouds are highly sensitive to the phase of their hydrometeors (i.e., liquid or ice). Knowledge of cloud phase is essential for specifying the optical properties of

  9. A study of cloud and drizzle properties in the Azores using Doppler Radar

    Office of Scientific and Technical Information (OSTI)

    spectra (Conference) | SciTech Connect study of cloud and drizzle properties in the Azores using Doppler Radar spectra Citation Details In-Document Search Title: A study of cloud and drizzle properties in the Azores using Doppler Radar spectra Understanding the onset of coalescence in warm clouds is key in our effort to improve cloud representation in numerical models. Coalescence acts at small scales, and its study requires detailed high-resolution dynamical and microphysical measurements

  10. Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry

    SciTech Connect (OSTI)

    Akyol, Bora A.

    2012-09-01

    This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

  11. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL)

    Office of Scientific and Technical Information (OSTI)

    Final Campaign Report (Technical Report) | SciTech Connect Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report Citation Details In-Document Search Title: Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and

  12. Radiative Influences on Glaciation Time-Scales of Mixed-Phase Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Influences on Glaciation Time-Scales of Mixed-Phase Clouds Harrington, Jerry The Pennsylvania State University Category: Modeling Mixed-phase stratus clouds are dominant in the Arctic during much of the year. These clouds typically have liquid tops that precipitate ice. Time scales for the complete glaciation of such clouds (the Bergeron process) are typically computed using the classical mass growth equations for crystals and liquid drops. However, mixed phase arctic stratus have

  13. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Zenith Pointing...

    Office of Scientific and Technical Information (OSTI)

    (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences Atmospheric turbulence; Cloud particle size distribution; ...

  14. ARM: X-Band Scanning ARM Cloud Radar (XSACR) Zenith Pointing...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences Cloud particle size distribution; Hydrometeor fall velocity; ...

  15. ARM: Ka-Band Scanning ARM Cloud Radar (KASACR) Corner Reflector...

    Office of Scientific and Technical Information (OSTI)

    (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences Atmospheric turbulence; Cloud particle size distribution; ...

  16. Summary of workshop session F on electron-cloud instabilities (Conference)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Conference: Summary of workshop session F on electron-cloud instabilities Citation Details In-Document Search Title: Summary of workshop session F on electron-cloud instabilities We summarize Session F of the ECLOUD 04 workshop. This session was dedicated to beam instabilities driven by electron cloud. Specifically, we discuss the principal observations of electron-cloud instabilities, analytical models, simulation codes and the next steps that need to be taken to arrive at

  17. The relationship between interannual and long-term cloud feedbacks (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect The relationship between interannual and long-term cloud feedbacks Citation Details In-Document Search This content will become publicly available on December 11, 2016 Title: The relationship between interannual and long-term cloud feedbacks The analyses of Coupled Model Intercomparison Project phase 5 simulations suggest that climate models with more positive cloud feedback in response to interannual climate fluctuations also have more positive cloud feedback in

  18. An Improved Cloud Classification Algorithm Based on the SGP CART Site Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Cloud Classification Algorithm Based on the SGP CART Site Observations Z. Wang Goddard Earth Sciences and Technology Center University of Maryland Greenbelt, Maryland K. Sassen University of Alaska Fairbanks, Alaska Introduction Different types of clouds are usually governed by different cloud dynamics processes and have different microphysical properties, which results in different cloud radiative forcings (Hartmann et al. 1992; Chen et al. 2000). Climate changes can result in changing

  19. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    the University of Chicago (Metallurgical Laboratory) andor DuPont during this period. ... on the Metallur- gical ,Laboratory and DuPont, as agents of the government, to provide ...

  20. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Queen City Barrel Company Ohmart Brush Beryllium (Chester Street) Brush Berylliunl (Perkins Avenue) Clecon Metals, Inc. (Horizons, Inc.1 DuPont Grasselle Plant Harshaw Chemical ...

  1. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Street) Brush Beryllium (Perkins Avenue) Clecon Eletals, Inc. (Horizons, Inc.) DuPont Grasselle Plant Harshaw Chemical Company Brush Beryllium Company Brush Beryllium ...

  2. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Inc.) DuPont Grasselle Plant Harshaw Chemical Company Brush Beryllium Company Brush Beryllium Company Clifton Products Company Superior Steel Company Rohm & Haas Company ...

  3. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Barrel-..Company.,...- e i- Ohmart Brush Beryllium (Chester Street) Brush Beryllium (Perkins Avenue) Clecon Metals, Inc. (Horizons, Inc.1 DuPont Grasselle Plant Harshaw Chemical ...

  4. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    District. (MED) and.Atomic Energy Commission (AEC) activities ... also identified and included on the FUSRAP site list. ... Louis University Washington University .mo.o-02 North ...

  5. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    District (MED) and Atomic Energy Commission (AEC) activities ... also identified and included on the FUSRAP site list. ... Louis University Washington University, North Carolina ...

  6. THE AEROSPACE CORPORATION /

    Office of Legacy Management (LM)

    District (MED) and Atomic Energy Commission (AEC) activities ... also identified and included on the FUSRAP site list. ... Michigan St. Louis University Washington University. ...

  7. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    District, (MED) and.Atomic Energy Commission (AEC) activities ... also identified and included on the FUSRAP site list. ... NAME (Continued) University of Michigan St. Louis ...

  8. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    District (MED) and Atomic Energy Commission (AEC) activities ... also identified and included on the FUSRAP site list. ... Louis University Washington University. North Carolina ...

  9. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... BE INCLUDED IN FUSRAP. CONTRACT STANARD OIL OF IIANA IN B-10 PLANT DEVELOPMENT (BOlRN) ... WABASH RIVER ORDNANCE WORKS NEWF9T IN HEAVY WATER PLANT INFORMATION COLLECTED INDICATE ...

  10. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Research and Development (OSRD), the Army arranged through the State Department to ... W-7405-eng-4, 19 October 1942. (Secret) 0 Contract No. W-7405-eng-24, 16 October 1942. ...

  11. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    CORPORATION Sut e 4000, 955 L En/ant Plaa,. S W.. Walshngton, D C (0024, I'eicphone 1202) 488-6000 7117-03.85.aw.44 6 August 1985 Mr. Arthur Whitman Division of Remedial Action Projects, NE-24 U.S. Department of Energy Germantown, Maryland 20545 Dear Mr. Whitman: VANADIUM CORPORATION OF AMERICA PLANT NEAR 3RIDGEVILLE,PENNSYLVANIA Enclosed please find a brief summary on the Former VCA vanadium plant in Bridgeville, Pennsylvania. This site was used under contract, during the MED era, to support

  12. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... ,i+,6?ec 02 *;"f zzr2 -L.. :., Lz saJ;y y:.; be incyecse:i, r&s r- . p"CGP,.Cld ... Lt.7 7-c >:...:i c+;-,k;ri TX r 7 7 s::L.:r. ...

  13. THE AEROSPACE CORPORATION 1

    Office of Legacy Management (LM)

    ... ENCLOSURE II Page 4 of 9 . ' . . . * PulnFR . : ' . Sas:n?ior 1349 1 ' . : *. I&. J. n ... oi' oparcrtioal rud dust loading* All dutt saplos collootsd wore counted on o i'lat ...

  14. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    In addition, some office space was used for the administration of the Metallurgical ... GROUP The Physics Group was assigned space in the West and North Stands of Stagg ...

  15. THE AEROSPACE CORPORATION ,'

    Office of Legacy Management (LM)

    ... lands reputedly owned by the United States Air Force; and on the west by certain lands now ... Buffalo, N. Y. CHEI-TROL POLLUTION SERVICES, INC. (Reputed Tenant) 1 Niagara Square ...

  16. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    ... Work was conducted under MEDAEC constant supervision, and scraps and ash generated were retained by tlEDAEC personnel for uranium accountability. Small furnaces were used to heat ...

  17. THE AEROSPACE CORPORATION

    Office of Legacy Management (LM)

    4000, 955 L' Enfant Plaza, S. W., Washington, D. C. 20024, Telephone: (202) 488-6000 7117-01.85.brf.52 20 November 1985 Mr. Arthur Whitman, NE-23 Division of Facility & Site...

  18. Parametric Behaviors of CLUBB in Simulations of Low Clouds in the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Guo, Zhun; Wang, Minghuai; Qian, Yun; Larson, Vincent E.; Ghan, Steven J.; Ovchinnikov, Mikhail; Bogenschutz, Peter; Gettelman, A.; Zhou, Tianjun

    2015-07-03

    In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher order closure (HOC) scheme, and 4 parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained by the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussians closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. This study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.

  19. Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization

    SciTech Connect (OSTI)

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; Zhang, Yuying

    2013-08-01

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model version 5 to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN number concentrations at all latitudes while changes in cloud amount and cloud properties are mainly seen in high latitudes and middle latitude storm tracks. In the Arctic, there is a considerable increase in mid-level clouds and a decrease in low clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and the large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path due to the slow-down of the Bergeron-Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low cloud simulations over most of the Arctic, but produces too many mid-level clouds. Considerable improvements are seen in the simulated low clouds and their properties when compared to Arctic ground-based measurements. Issues with the observations and the model-observation comparison in the Arctic region are discussed.

  20. THE PROPER MOTION OF THE MAGELLANIC CLOUDS. II. NEW RESULTS FOR FIVE SMALL MAGELLANIC CLOUD FIELDS

    SciTech Connect (OSTI)

    Costa, Edgardo; Mendez, Rene A.; Moyano, Maximiliano; Pedreros, Mario H.; Gallart, Carme; Noel, Noelia E-mail: rmendez@das.uchile.cl E-mail: mmoyano@mpia-hd.mpg.de E-mail: carme@iac.es

    2011-04-15

    We present new results from a ground-based program to determine the proper motion of the Magellanic Clouds (MCs) relative to background quasars (QSOs), being carried out with the Irenee du Pont 2.5 m telescope at Las Campanas Observatory, Chile. The data were secured over a time base of seven years and with eight epochs of observation 'As measured' (field) proper motions were obtained for five QSO fields in the Small Magellanic Cloud (SMC): QJ0033-7028, QJ0035-7201, QJ0047-7530, QJ0102-7546, and QJ0111-7249. Assuming that the SMC has a disklike central structure, but that it does not rotate, we determined a center-of-mass (CM) proper motion for the SMC from two of these fields, QJ0033-7028 and QJ0035-7201, located to the northwest and west of the main body of the SMC, respectively. Combining these latter proper motions with the CM proper motion presented by Costa et al. (hereafter CMP09) for the SMC (from the field QJ0036-7227, located to the west of the main body of the SMC), we obtain a weighted mean of {mu}{sub {alpha}} cos {delta} = +0.93 {+-} 0.14 mas yr{sup -1} and {mu}{sub {delta}} = -1.25 {+-} 0.11 mas yr{sup -1}. This CM proper motion is in good agreement with recent results by Piatek et al. and Vieira et al., and we are confident that it is a good representation of the 'bulk' transverse motion of the SMC. On the contrary, the results we obtain from the fields QJ0047-7530 and QJ0102-7546, located to the south of the main body of the SMC, and the field QJ0111-7249, located to the east of its main body, seem to be affected by streaming motions. For this reason, we have not used the latter to determine the SMC CM proper motion. These streaming motions could be evidence that the SMC was tidally disrupted in a close encounter with the Large Magellanic Cloud (LMC). Complementing the SMC CM proper motions given here and in CMP09, with the currently accepted radial velocity of its center, we have derived its galactocentric (gc) velocity components, obtaining a weighted mean of V{sub gc,t} = +289 {+-} 25 km s{sup -1} and V{sub gc,r} = +14 {+-} 24 km s{sup -1}. These velocities, together with the galactocentric velocity components given for the LMC in CMP09, imply a relative velocity between the LMC and SMC of 67 {+-} 42 km s{sup -1} for V{sub rot,LMC} = 50 km s{sup -1} and of 98 {+-} 48 km s{sup -1} for V{sub rot,LMC} = 120 km s{sup -1}. Despite our large errors, these values are consistent with the standard assumption that the MCs are gravitationally bound to each other.