National Library of Energy BETA

Sample records for aerosols cloud properties

  1. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect (OSTI)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  2. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  3. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  4. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect (OSTI)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  5. Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies 

    E-Print Network [OSTI]

    Yi, Bingqi

    2013-07-09

    This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape...

  6. CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES

    E-Print Network [OSTI]

    influence the earth's radiation balance and climate directly, by scanering shortwave (solar) radiation in the earth radiation budget over the industrial period. exerting a radiative forcing that is of comparable. Keywords - Climate. aerosols. clouds, radiation INTRODUcnON In recent years awareness has increased

  7. Aircraft Observations of Sub-cloud Aerosol and Convective Cloud Physical Properties 

    E-Print Network [OSTI]

    Axisa, Duncan

    2011-02-22

    This research focuses on aircraft observational studies of aerosol-cloud interactions in cumulus clouds. The data were collected in the summer of 2004, the spring of 2007 and the mid-winter and spring of 2008 in Texas, ...

  8. Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols 

    E-Print Network [OSTI]

    Lee, Yong Seob

    2006-08-16

    that were observed during this period. The predicted cloud condensation nuclei concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction...

  9. ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,Microphysical Properties ofgovCampaignsCirrus Clouds

  10. Inverse modelling of cloud-aerosol interactions - Part 2: Sensitivity tests on liquid phase clouds using a Markov chain Monte Carlo based simulation approach

    E-Print Network [OSTI]

    Partridge, D. G; Vrugt, J. A; Tunved, P.; Ekman, A. M. L; Struthers, H.; Sorooshian, A.

    2012-01-01

    Seinfeld, J. H. : Aerosol, cloud drop concentration closureof aerosol composition on cloud droplet size distribution –aerosol properties on warm cloud droplet activation, At-

  11. Challenge the future 1 Observations of aerosol-cloud-radiation

    E-Print Network [OSTI]

    Graaf, Martin de

    -road Industrial coal Residential solid fuel Biofuel cooking Biofuel heating Coal Open Burning Agricultural fields causes Differences in: · cloud properties · cloud fraction and location · aerosol properties · smoke

  12. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect (OSTI)

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  13. Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds

    E-Print Network [OSTI]

    Altaratz, O

    The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols' physical and hence optical properties. Observational studies of aerosol–cloud interactions evaluate the aerosol ...

  14. Shortwave aerosol radiative forcing over cloud-free oceans from Terra: 1. Angular models for aerosols

    E-Print Network [OSTI]

    Christopher, Sundar A.

    Sensor Microwave Imager (SSM/I) data to obtain near surface wind speed. The new aerosol ADMs are built to obtain aerosol properties within a Clouds and Earth Radiant Energy System (CERES) footprint and Special as functions of near-surface ocean wind speed and MODIS aerosol optical depth at 0.55 mm (t0.55). Among the new

  15. Effects of aerosols on deep convective cumulus clouds 

    E-Print Network [OSTI]

    Fan, Jiwen

    2009-05-15

    in the droplet size. Ice processes are more sensitive to the changes of aerosol chemical properties than the warm rain processes. The most noticeable effect of increasing aerosol number concentrations is an increase of CDNC and cloud water content but a decrease...

  16. Aerosol properties and their influences on marine boundary layer cloud condensation nuclei

    E-Print Network [OSTI]

    Dong, Xiquan

    and early spring months had the highest mean surface wind speed (> 5 m sŔ1 ) and greatest contribution of aerosols found in the atmosphere such as mineral dust, urban/industrial pollution, biomass burning, and sea by using observations and model simulations [Rosenfeld et al., 2008; Li et al., 2011; Feingold et al., 2006

  17. CLouds and Aerosol Radiative Interaction and Forcing Investigation

    E-Print Network [OSTI]

    Graaf, Martin de

    Radiative Interaction and Forcing Investigation Version 1.0 Date March 2012 Status Final #12;#12;CLARIFI, by absorbing and scattering solar radiation, and more importantly, by modifying cloud propertiesCLARIFI CLouds and Aerosol Radiative Interaction and Forcing Investigation M. de Graaf, L

  18. Long-term impacts of aerosols on vertical development of cloud and precipitation

    SciTech Connect (OSTI)

    Li Z.; Liu Y.; Niu, F.; Fan, J.; Rosenfeld, D.; Ding, Y.

    2011-11-13

    Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term impact of aerosols on the vertical development of clouds and rainfall frequencies, using a 10-year dataset of aerosol, cloud and meteorological variables collected in the Southern Great Plains in the United States. We show that cloud-top height and thickness increase with aerosol concentration measured near the ground in mixed-phase clouds-which contain both liquid water and ice-that have a warm, low base. We attribute the effect, which is most significant in summer, to an aerosol-induced invigoration of upward winds. In contrast, we find no change in cloud-top height and precipitation with aerosol concentration in clouds with no ice or cool bases. We further show that precipitation frequency and rain rate are altered by aerosols. Rain increases with aerosol concentration in deep clouds that have a high liquid-water content, but declines in clouds that have a low liquid-water content. Simulations using a cloud-resolving model confirm these observations. Our findings provide unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation.

  19. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  20. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect (OSTI)

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

  1. Effects of Ocean Ecosystem on Marine Aerosol-Cloud Interaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Meskhidze, Nicholas; Nenes, Athanasios

    2010-01-01

    Using satellite data for the surface ocean, aerosol optical depth (AOD), and cloud microphysical parameters, we show that statistically significant positive correlations exist between ocean ecosystem productivity, the abundance of submicron aerosols, and cloud microphysical properties over different parts of the remote oceans. The correlation coefficient for remotely sensed surface chlorophyll a concentration ([Chl- a ]) and liquid cloud effective radii over productive areas of the oceans varies between ? 0.2 and ? 0.6 . Special attention is given to identifying (and addressing) problems from correlation analysis used in the previousmore »studies that can lead to erroneous conclusions. A new approach (using the difference between retrieved AOD and predicted sea salt aerosol optical depth, AOD diff ) is developed to explore causal links between ocean physical and biological systems and the abundance of cloud condensation nuclei (CCN) in the remote marine atmosphere. We have found that over multiple time periods, 550?nm AOD diff (sensitive to accumulation mode aerosol, which is the prime contributor to CCN) correlates well with [Chl- a ] over the productive waters of the Southern Ocean. Since [Chl- a ] can be used as a proxy of ocean biological productivity, our analysis demonstrates the role of ocean ecology in contributing CCN, thus shaping the microphysical properties of low-level marine clouds. « less

  2. DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL AS SEEN FROM SPACE Fire plumes from southern Mexico transported north into Gulf of Mexico. #12;CLOUD

  3. Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey components

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Decomposing aerosol cloud radiative effects into cloud cover, liquid water path and Twomey December 2013 A method for separating the three components of the marine stratocumulus (MSC) aerosol cloud interactions radiative effects, i.e., the cloud cover, liquid water path (LWP) and cloud drop radius (Twomey

  4. A five year global aerosol and cloud properties database from ATSR-2 data1 1 1 1 2 3

    E-Print Network [OSTI]

    Oxford, University of

    angle !Satellite zenith angle !Relative (satellite to Sun) azimuth angle !Value of the cost function !Cloud optical depth 1 !Cloud droplet effective radius 1 !Cloud top temperature 1 !Cloud top pressure 1 provides uncertainty estimates, and level 3 data provides variances, for all relevant parameters. Contact

  5. ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM6Aerosol

  6. Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus

    E-Print Network [OSTI]

    Miami, University of

    Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus hygroscopic aerosols were introduced into a solid marine stratocumulus cloud (200 m thick) by burning hygroscopic flares mounted on an aircraft. The cloud microphysical response in two parallel seeding plumes

  7. Aerosol-cloud radiative effects from passive satellite instruments Mar%n de Graaf

    E-Print Network [OSTI]

    Graaf, Martin de

    Satellite measurements of absorbing aerosols Reflectance Difference Method Cloud modelling Results Outlook Aerosol-Radiation Interac. Aerosol-Cloud Interac. Total anthropogenic Solar irradiance #12;Absorbing aerosols: SCIAMACHY Results Outlook #12;SCIAMACHY on ESA's Environmetal Satellite: ENVISAT Polar orbi

  8. Clouds, Aerosols and Precipitation in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j eCommitteeCloud-Resolving3

  9. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic Citation Details In-Document Search Title: The Radiative Role...

  10. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds"Ă?Âť (DOE/SC00002354)

    SciTech Connect (OSTI)

    Paul J. DeMott, Anthony J. Prenni; Sonia M. Kreidenweis

    2012-09-28

    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional cloud-resolving model to compare predictions of ice crystal concentrations and other cloud properties to those observed in two intensive case studies of Arctic stratus during ISDAC. Our implementation included development of a prognostic scheme of ice activation using the IN parameterization so that the most realistic treatment of ice nuclei, including their budget (gains and losses), was achieved. Many cloud microphysical properties and cloud persistence were faithfully reproduced, despite a tendency to under-predict (by a few to several times) ice crystal number concentrations and cloud ice mass, in agreement with some other studies. This work serves generally as the basis for improving predictive schemes for cloud ice crystal activation in cloud and climate models, and more specifically as the basis for such a scheme to be used in a Multi-scale Modeling Format (MMF) that utilizes a connected system of cloud-resolving models on a global grid in an effort to better resolve cloud processes and their influence on climate.

  11. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    SciTech Connect (OSTI)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

  12. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; et al

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore »and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  13. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect (OSTI)

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  14. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    SciTech Connect (OSTI)

    Menon, Surabi; Del Genio, Anthony D.

    2007-09-03

    Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other models as well (cf. Jacobson, 2002) but the relative impacts on convective and stratiform processes were not separated. Other changes to atmospheric stability and thermodynamical quantities due to aerosol absorption are also known to be important in modifying cloud macro/micro properties. Linkages between convection and boreal biomass burning can also impact the upper troposphere and lower stratosphere, radiation and cloud microphysical properties via transport of tropospheric aerosols to the lower stratosphere during extreme convection (Fromm and Servranckx 2003). Relevant questions regarding the impact of biomass aerosols on convective cloud properties include the effects of vertical transport of aerosols, spatial and temporal distribution of rainfall, vertical shift in latent heat release, phase shift of precipitation, circulation and their impacts on radiation. Over land surfaces, a decrease in surface shortwave radiation ({approx} 3-6 W m{sup -2} per decade) has been observed between 1960 to 1990, whereas, increases of 0.4 K in land temperature during the same period that occurred have resulted in speculations that evaporation and precipitation should also have decreased (Wild et al. 2004). However, precipitation records for the same period over land do not indicate any significant trend (Beck et al. 2005). The changes in precipitation are thought to be related to increased moisture advection from the oceans (Wild et al. 2004), which may well have some contributions from aerosol-radiation-convection coupling that could modify circulation patterns and hence moisture advection in specific regions. Other important aspects of aerosol effects, besides the direct, semi-direct, microphysical and thermodynamical impacts include alteration of surface albedos, especially snow and ice covered surfaces, due to absorbing aerosols. These effects are uncertain (Jacobson, 2004) but may produce as much as 0.3 W m{sup -2} forcing in the Northern hemisphere that could contribute to melting of ice and permafrost and change in the length of the season (e.g. early arrival of Spring

  15. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect (OSTI)

    2013-10-18

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

  16. AEROSOLS AND CLOUDS IN CHEMICAL TRANSPORT MODELS AND CLIMATE MODELS

    E-Print Network [OSTI]

    of Earth's climate system. Clouds are highly reflective in the solar spectrum, yet strongly absorbingAEROSOLS AND CLOUDS IN CHEMICAL TRANSPORT MODELS AND CLIMATE MODELS Ulrike Lohmann1 and Stephen E Forum: Perturbed Clouds in the Climate System, Frankfurt, Germany March 2-7, 2008 Environmental Sciences

  17. IMPACT OF AEROSOLS ON CONVECTIVE CLOUDS AND PRECIPITATION

    E-Print Network [OSTI]

    Zeng, Ning

    IMPACT OF AEROSOLS ON CONVECTIVE CLOUDS AND PRECIPITATION Wei-Kuo Tao,1 Jen-Ping Chen,2 Zhanqing Li effects on clouds could further extend to precipitation, both through the formation of cloud particles mechan- isms behind these effects, in particular, the ones connected to precipitation, are not yet well

  18. CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

    E-Print Network [OSTI]

    Rosenfeld, Daniel

    The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. ...

  19. Aerosol-Cloud interactions : a new perspective in precipitation enhancement

    E-Print Network [OSTI]

    Gunturu, Udaya Bhaskar

    2010-01-01

    Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation ...

  20. Impact of anthropogenic absorbing aerosols on clouds and precipitation

    E-Print Network [OSTI]

    Impact of anthropogenic absorbing aerosols on clouds and precipitation: A review of recent and precipitation: A review of recent progresses Chien Wang Massachusetts Institute of Technology, E19-439K, 77 atmospheric circulation, and hence clouds and precipitation. Recent studies have suggested that the changes

  1. AEROSOL-CLOUD INTERACTIONS CONTROL OF EARTH RADIATION AND LATENT HEAT RELEASE BUDGETS

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    AEROSOL-CLOUD INTERACTIONS CONTROL OF EARTH RADIATION AND LATENT HEAT RELEASE BUDGETS D. ROSENFELD simulations show that cloud development is strongly mod- ulated by the impact of cloud-aerosol interactions on precipitation forming processes. New insights into the mechanisms by which aerosols dominate the cloud cover

  2. Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations

    SciTech Connect (OSTI)

    Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

    2014-09-23

    Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N – tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

  3. Model analysis of the anthropogenic aerosol effect on clouds over East Asia

    SciTech Connect (OSTI)

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Zhao, Chun

    2012-01-16

    A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (PI) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm{sup -3} over the ocean and East China, 400 cm{sup -3} over Central and Southwest China, and less than 200 cm{sup -3} over North China. The cloud liquid water path (LWP) increased by 40-60 g m{sup -2} over the ocean and Southeast China and 30 g m{sup -2} over Central China; the LWP increased less than 5 g m{sup -2} or decreased by 5 g m{sup -2} over North China. The effective radius (Re) decreased by more than 4 {mu}m over Southwest, Central, and Southeast China and 2 {mu}m over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250-400 cm{sup -3}, the LWP increased by approximately 30-50 g m{sup -2}, and Re decreased by approximately 3 {mu}m over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative forcing strengthened by 30 W m{sup -2} over the ocean and 10 W m{sup -2} over Southeast China, and it weakened slightly by approximately 2-10 W m{sup -2} over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m{sup -2} over Southeast and North China and weakened by 10 W m{sup -2} over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.

  4. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: â?˘ Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. â?˘ Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. â?˘ Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  5. Aerosol Condensational Growth in Cloud Formation 

    E-Print Network [OSTI]

    Geng, Jun

    2010-10-12

    A code for the quasi-stationary solution of the coupled heat and mass transport equations for aerosols in a finite volume was developed. Both mass and heat are conserved effectively in the volume, which results in a ...

  6. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  7. Aerosols and Clouds: In Cahoots to Change Climate

    ScienceCinema (OSTI)

    Berg, Larry

    2014-06-02

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  8. Aerosols and Clouds: In Cahoots to Change Climate

    SciTech Connect (OSTI)

    Berg, Larry

    2014-03-29

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  9. Investigation of the aerosol-cloud interaction using the WRF framework 

    E-Print Network [OSTI]

    Li, Guohui

    2009-05-15

    In this dissertation, a two-moment bulk microphysical scheme with aerosol effects is developed and implemented into the Weather Research and Forecasting (WRF) model to investigate the aerosol-cloud interaction. Sensitivities ...

  10. Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models

    SciTech Connect (OSTI)

    Penner, Joyce

    2012-06-30

    One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

  11. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels

    E-Print Network [OSTI]

    Hartmann, Dennis

    Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative 2011) ABSTRACT This study proposes a novel technique for computing cloud feedbacks using histograms integrated cloud feedbacks computed in this manner agree remarkably well with the adjusted change in cloud

  12. Effects on precipitation, clouds, and temperature from long-range transport of idealized aerosol plumes in WRF-Chem simulations

    E-Print Network [OSTI]

    Zhao, Zhan; Pritchard, Michael S; Russell, Lynn M

    2012-01-01

    on intense convective precipitation in the northeastern US,aerosols on regional precipitation over East Asia, J.of aerosols on surface precipitation from clouds: An attempt

  13. Modeling aerosol growth by aqueous chemistry in nonprecipitating stratiform cloud

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Easter, Richard C.

    2010-07-29

    A new microphysics module based on a two-dimensional (2D) joint size distribution function representing both interstitial and cloud particles is developed and applied to studying aerosol processing in non-precipitating stratocumulus clouds. The module is implemented in a three-dimensional dynamical framework of a large-eddy simulation (LES) model and in a trajectory ensemble model (TEM). Both models are used to study the modification of sulfate aerosol by the activation - aqueous chemistry - resuspension cycle in shallow marine stratocumulus clouds. The effect of particle mixing and different size-distribution representations on modeled aerosol processing are studied in a comparison of the LES and TEM simulations with the identical microphysics treatment exposes and a comparison of TEM simulations with a 2D fixed and moving bin microphysics. Particle mixing which is represented in LES and neglected in the TEM leads to the mean relative per particle dry mass change in the TEM simulations being about 30% lower than in analogous subsample of LES domain. Particles in the final LES spectrum are mixed in from different “parcels”, some of which have experienced longer in-cloud residence times than the TEM parcels, all of which originated in the subcloud layer, have. The mean relative per particle dry mass change differs by 14% between TEM simulations with fixed and moving bin microphysics. Finally, the TEM model with the moving bin microphysics is used to evaluate assumptions about liquid water mass partitioning among activated cloud condensation nuclei (CCN) of different dry sizes. These assumptions are used in large-scale models to map the bulk aqueous chemistry sulfate production, which is largely proportional to the liquid water mass, to the changes in aerosol size distribution. It is shown that the commonly used assumptions that the droplet mass is independent of CCN size or that the droplet mass is proportional to the CCN size to the third power do not perform well in the considered case. The explicitly predicted water partitioning indicates that the mean mass of droplets participating in the models aqueous chemistry calculations is proportional to the dry CCN size.

  14. Investigations of cloud altering effects of atmospheric aerosols using a new mixed Eulerian-Lagrangian aerosol model

    E-Print Network [OSTI]

    Steele, Henry Donnan, 1974-

    2004-01-01

    Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud ...

  15. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    SciTech Connect (OSTI)

    Mazzoleni, Claudio; Kumar, Sumit; Wright, Kendra; Kramer, Louisa; Mazzoleni, Lynn; Owen, Robert; Helmig, Detlev

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron microscope – were often very compacted, suggesting cloud processing and exhibiting different optical properties from fresh emissions. In addition, black carbon was found to be sometimes mixed with mineral dust, affecting its optical properties and potential forcing. c) Some aerosols collected at PMO acted as ice nuclei, potentially contributing to cirrus cloud formation during their transport in the upper free troposphere. Identified good ice nuclei were often mineral dust particles. d) The free tropospheric aerosols studied at PMO have relevance to low level marine clouds due, for example, to synoptic subsidence entraining free tropospheric aerosols into the marine boundary layer. This has potentially large consequences on cloud condensation nuclei concentrations and compositions in the marine boundary layer; therefore, having an effect on the marine stratus clouds, with potentially important repercussions on the radiative forcing. The scientific products of this project currently include contributions to two papers published in the Nature Publishing group (Nature Communications and Scientific Reports), one paper under revision for Atmospheric Chemistry and Physics, one in review in Geophysical Research Letters and one recently submitted to Atmospheric Chemistry and Physics Discussion. In addition, four manuscripts are in advanced state of preparation. Finally, twenty-eight presentations were given at international conferences, workshops and seminars.

  16. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  17. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  18. Aerosol control on depth of warm rain in convective clouds Mahen Konwar,1

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Aerosol control on depth of warm rain in convective clouds Mahen Konwar,1 R. S. Maheskumar,1 J. R effective radius (re) increased with distance above cloud base (D). Warm rain became detectable, i.e., rain water content >0.01 g/Kg, at the tops of growing convective clouds when re exceeded 12 mm. The re

  19. The seasonality of aerosol properties in Big Bend National Park 

    E-Print Network [OSTI]

    Allen, Christopher Lee

    2007-04-25

    ), to characterize the seasonal variability of the Big Bend regions aerosol optical properties. Mass extinction efficiencies and relative humidity scattering enhancement factors were calculated for both externally and internally mixed aerosol populations for all size...

  20. Investigating the Impacts of Atmospheric Aerosols on Cloud Formation Relevant to Weather and Climate 

    E-Print Network [OSTI]

    Mckeown, Megan Alexandra

    2014-12-10

    on weather, climate, visibility, air quality, and human health. In this project, the impacts of aerosols on cloud formation potential in the atmosphere have been assessed using several laboratory experimental approaches. To study the effects of atmospheric...

  1. Clouds of short-circuited thermionic nanobatteries and promising prospects for development of nanobattery-based aerosol fusion reactors. The preliminary report

    E-Print Network [OSTI]

    Oleg Meshcheryakov

    2012-04-13

    The physical mechanisms of periodic separation and relaxation of electric charges within aerosol particles possessing the properties the short-circuited batteries can be extremely diverse. With use of appropriate materials and dispersing methods, the electrochemical, thermoelectric, thermionic, pyroelectric, photoelectric, photo electronic emission, or even radionuclide-based emission micro and nano-batteries can be synthesized and be dispersed in the air as clouds self-assembed of the short-circuited aerosol batteries due to the inter-particle electromagnetic dipole-dipole attraction. Intense thermionic emission from ionized hot spots migrating on the relatively cold surface of charged explosive particles, can convert these particles into short-circuited thermionic batteries, turning an aerosol cloud consisting of such unipolar charged, gradually decomposing explosive particles into ball lightning. The slow exothermic decomposition of the highly sensitive explosive aerosol particles, catalyzed by excess ions on their surface, and also ion-catalyzed reactions of slow water vapor induced oxidation of charged combustible aerosol particles underlie two main classes of natural ball lightning. At the same time, the artificially generated clouds consisting of such unipolar charged aerosol nanobatteries, probably, can have some useful applications, not only military ones. In particular, it seems that high-performance pyroelectric fusion reactors could be created on the basis of such ball-shaped aerosol clouds self-assembled of pyroelectric nanocrystals - short-circuited pyroelectric nanobatteries.

  2. Simulation of Aerosol-Cloud Interactions in the WRF Model at the Southern Great Plains Site 

    E-Print Network [OSTI]

    Vogel, Jonathan 1988-

    2012-08-21

    for the aerosol indirect effect and a modified Goddard shortwave radiation scheme for the aerosol direct effect. The three cases studied include a developing low pressure system, a low precipitation event of mainly cirrus clouds, and a cold frontal passage. Three...

  3. Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis

    SciTech Connect (OSTI)

    Zahn, S.G.

    1993-12-01

    Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

  4. A Study of Cloud Processing of Organic Aerosols Using Models and CHAPS Data

    SciTech Connect (OSTI)

    Ervens, Barbara

    2012-01-17

    The main theme of our work has been the identification of parameters that mostly affect the formation and modification of aerosol particles and their interaction with water vapor. Our detailed process model studies led to simplifications/parameterizations of these effects that bridge detailed aerosol information from laboratory and field studies and the need for computationally efficient expressions in complex atmospheric models. One focus of our studies has been organic aerosol mass that is formed in the atmosphere by physical and/or chemical processes (secondary organic aerosol, SOA) and represents a large fraction of atmospheric particulate matter. Most current models only describe SOA formation by condensation of low volatility (or semivolatile) gas phase products and neglect processes in the aqueous phase of particles or cloud droplets that differently affect aerosol size and vertical distribution and chemical composition (hygroscopicity). We developed and applied models of aqueous phase SOA formation in cloud droplets and aerosol particles (aqSOA). Placing our model results into the context of laboratory, model and field studies suggests a potentially significant contribution of aqSOA to the global organic mass loading. The second focus of our work has been the analysis of ambient data of particles that might act as cloud condensation nuclei (CCN) at different locations and emission scenarios. Our model studies showed that the description of particle chemical composition and mixing state can often be greatly simplified, in particular in aged aerosol. While over the past years many CCN studies have been successful performed by using such simplified composition/mixing state assumptions, much more uncertainty exists in aerosol-cloud interactions in cold clouds (ice or mixed-phase). Therefore we extended our parcel model that describes warm cloud formation by ice microphysics and explored microphysical parameters that determine the phase state and lifetime of Arctic mixed-phase clouds.

  5. A new cloud and aerosol layer detection method based on micropulse lidar measurements

    E-Print Network [OSTI]

    Zeng, Ning

    aerosols and clouds are subject to more uncertainties depending on the thresholds selected. Compared. Introduction Clouds play an essential role in the Earth's climate by modulating the energy budget and water cycle. They can change the Earth's energy balance by reflecting solar radiation and by trapping longwave

  6. Long-term impacts of aerosols on the vertical development of clouds and precipitation

    SciTech Connect (OSTI)

    Li, Zhanqing; Niu, F.; Fan, Jiwen; Liu, Yangang; Rosenfeld, Daniel; Ding, Yanni

    2011-12-01

    Aerosol has complex effects on clouds and precipitation that may augment or offset each other contingent upon a variety of variables. As a result, its long-term impact on climate is largely unknown. Using 10 years of the US Atmospheric Radiation Measurement (ARM) measurements, strong aerosol effects of climatologically significance are detected. With increasing total aerosol number concentration (condensation nucleus, CN) measured near the ground, both cloud top height and precipitation change systematically for mix-phase clouds of warm-base (cloud base <1km) and cold-top (above the freezing level), but not for pure liquid and ice clouds. Cloud thickness can increase systematically with the CN concentration by up to a factor of 2. The response of precipitation to CN depends on cloud liquid water path (LWP). As CN increases, rain occurs more frequently for high LWP but less frequently for low LWP. Such strong signals of aerosol long-term impact on cloud and precipitation have not been reported and have significant implications for climate change studies, especially concerning regional and global climate change induced by pollution.

  7. Clouds of short-circuited thermionic nanobatteries and promising prospects for development of nanobattery-based aerosol fusion reactors. The preliminary report

    E-Print Network [OSTI]

    Meshcheryakov, Oleg

    2012-01-01

    The physical mechanisms of periodic separation and relaxation of electric charges within aerosol particles possessing the properties the short-circuited batteries can be extremely diverse. With use of appropriate materials and dispersing methods, the electrochemical, thermoelectric, thermionic, pyroelectric, photoelectric, photo electronic emission, or even radionuclide-based emission micro and nano-batteries can be synthesized and be dispersed in the air as clouds self-assembed of the short-circuited aerosol batteries due to the inter-particle electromagnetic dipole-dipole attraction. Intense thermionic emission from ionized hot spots migrating on the relatively cold surface of charged explosive particles, can convert these particles into short-circuited thermionic batteries, turning an aerosol cloud consisting of such unipolar charged, gradually decomposing explosive particles into ball lightning. The slow exothermic decomposition of the highly sensitive explosive aerosol particles, catalyzed by excess ions...

  8. Analysis of the aerosol-cloud interactions from aircraft, surface measurements, and cloud parcel model during the March 2000 IOP at the ARM SGP site

    E-Print Network [OSTI]

    Delene, David J.

    model during the March 2000 IOP at the ARM SGP site Delene, D. J. (a), Dong, X. (a), Chen, Y. (b (ARM) Southern Great Plains (SGP) site. Data Aerosol MeasurementsAerosol Measurements years of continuous surface aerosol measurements from the Department of Energy's ARM SGP Cloud

  9. CLOUD CLASSIFICATION AND CLOUD PROPERTY RETRIEVAL FROM MODIS , W. Paul Menzel

    E-Print Network [OSTI]

    Li, Jun

    6.4 CLOUD CLASSIFICATION AND CLOUD PROPERTY RETRIEVAL FROM MODIS AND AIRS Jun Li * , W. Paul Menzel Observing System's (EOS) Aqua satellite enable global monitoring of the distribution of clouds. The MODIS is able to provide at high spatial resolution (1 ~ 5km) a cloud mask, surface and cloud types, cloud phase

  10. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect (OSTI)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they will be included in a future public release of WRF-Chem.

  11. Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity

    E-Print Network [OSTI]

    Tang, Xiaochen

    2013-01-01

    by V and Ni from heavy oil combustion: Anthropogenic sourcesgeneration from heavy fuel oil (HFO) as an alternative toengines operating with heavy fuel oils. Journal of Aerosol

  12. Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.; Morrison, H.; Solomon, Amy

    2014-11-17

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.

  13. Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust

    SciTech Connect (OSTI)

    Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, Allen B.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

    2014-01-03

    Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.

  14. Optimal Estimation Retrieval Aerosol Microphysical Properties

    E-Print Network [OSTI]

    Oxford, University of

    ) the validation of this algorithm on the basis of synthetic extinction data, and (3) application of the new algorithm to SAGE II measurements of stratospheric background aerosol. The validation results indicate that the new method is able to retrieve the particle size of typical background aerosols reasonably well

  15. Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and

    E-Print Network [OSTI]

    Dufresne, Jean-Louis

    Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation/C.N.R.S., Villeneuve d'Ascq, France Among anthropogenic perturbations of the Earth's atmosphere, greenhouse gases the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate

  16. A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform Clouds

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform these mixed particles may initially nucleate liquid droplets that contain insoluble mass, immersion freezing freezing in a mixed-phase stratiform cloud. Immersion freez- ing is represented using a parameterization

  17. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    SciTech Connect (OSTI)

    Unger, N.; Menon, S.; Shindell, D. T.; Koch, D. M.

    2009-02-02

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  18. Group Report: Connections between Aerosol Properties

    E-Print Network [OSTI]

    effect and causes surface warming. Absorption of solar or thermal radiation within the atmospheric column-influencing constituents (such as green- house gases) by this process, anthropogenic aerosols can contribute to climate

  19. Sources and properties of Amazonian aerosol particles

    E-Print Network [OSTI]

    2010-01-01

    of Emissions of Gases and Aero- sols from Nature), Atmos.nonprecipitating clouds on the aero- sol size distribution,2000), Development of an aero- sol mass spectrometer for

  20. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-11-06

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice numbermore »is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.« less

  1. Investigating ice nucleation in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework

    SciTech Connect (OSTI)

    Zhang, Chengzhu; Wang, Minghuai; Morrison, H.; Somerville, Richard C.; Zhang, Kai; Liu, Xiaohong; Li, J-L F.

    2014-12-01

    In this study, an aerosol-dependent ice nucleation scheme [Liu and Penner, 2005] has been implemented in an aerosol-enabled multi-scale modeling framework (PNNL MMF) to study ice formation in upper troposphere cirrus clouds through both homogeneous and heterogeneous nucleation. The MMF model represents cloud scale processes by embedding a cloud-resolving model (CRM) within each vertical column of a GCM grid. By explicitly linking ice nucleation to aerosol number concentration, CRM-scale temperature, relative humidity and vertical velocity, the new MMF model simulates the persistent high ice supersaturation and low ice number concentration (10 to 100/L) at cirrus temperatures. The low ice number is attributed to the dominance of heterogeneous nucleation in ice formation. The new model simulates the observed shift of the ice supersaturation PDF towards higher values at low temperatures following homogeneous nucleation threshold. The MMF models predict a higher frequency of midlatitude supersaturation in the Southern hemisphere and winter hemisphere, which is consistent with previous satellite and in-situ observations. It is shown that compared to a conventional GCM, the MMF is a more powerful model to emulate parameters that evolve over short time scales such as supersaturation. Sensitivity tests suggest that the simulated global distribution of ice clouds is sensitive to the ice nucleation schemes and the distribution of sulfate and dust aerosols. Simulations are also performed to test empirical parameters related to auto-conversion of ice crystals to snow. Results show that with a value of 250 ?m for the critical diameter, Dcs, that distinguishes ice crystals from snow, the model can produce good agreement to the satellite retrieved products in terms of cloud ice water path and ice water content, while the total ice water is not sensitive to the specification of Dcs value.

  2. Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    D. Jui-Yuan Chiu

    2010-10-19

    Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the �¢����solar-background�¢��� mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM�¢����s zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS�¢���� 1 Hz sampling to study the �¢����twilight zone�¢��� around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM�¢����s 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM�¢����s operational data processing.

  3. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect (OSTI)

    Chiu, Jui-Yuan Christine [University of Reading] [University of Reading

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  4. Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations

    SciTech Connect (OSTI)

    Turner, David D.

    2003-06-01

    A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

  5. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; et al

    2015-01-09

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar tomore »observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.« less

  6. Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: the VOCA intercomparison

    SciTech Connect (OSTI)

    Wyant, M. C.; Bretherton, Christopher S.; Wood, Robert; Carmichael, Gregory; Clarke, A. D.; Fast, Jerome D.; George, R.; Gustafson, William I.; Hannay, Cecile; Lauer, Axel; Lin, Yanluan; Morcrette, J. -J.; Mulcahay, Jane; Saide, Pablo; Spak, S. N.; Yang, Qing

    2015-01-01

    A diverse collection of models are used to simulate the marine boundary layer in the southeast Pacific region during the period of the October–November 2008 VOCALS REx (VAMOS Ocean Cloud Atmosphere Land Study Regional Experiment) field campaign. Regional models simulate the period continuously in boundary-forced free-running mode, while global forecast models and GCMs (general circulation models) are run in forecast mode. The models are compared to extensive observations along a line at 20° S extending westward from the South American coast. Most of the models simulate cloud and aerosol characteristics and gradients across the region that are recognizably similar to observations, despite the complex interaction of processes involved in the problem, many of which are parameterized or poorly resolved. Some models simulate the regional low cloud cover well, though many models underestimate MBL (marine boundary layer) depth near the coast. Most models qualitatively simulate the observed offshore gradients of SO2, sulfate aerosol, CCN (cloud condensation nuclei) concentration in the MBL as well as differences in concentration between the MBL and the free troposphere. Most models also qualitatively capture the decrease in cloud droplet number away from the coast. However, there are large quantitative intermodel differences in both means and gradients of these quantities. Many models are able to represent episodic offshore increases in cloud droplet number and aerosol concentrations associated with periods of offshore flow. Most models underestimate CCN (at 0.1% supersaturation) in the MBL and free troposphere. The GCMs also have difficulty simulating coastal gradients in CCN and cloud droplet number concentration near the coast. The overall performance of the models demonstrates their potential utility in simulating aerosol–cloud interactions in the MBL, though quantitative estimation of aerosol–cloud interactions and aerosol indirect effects of MBL clouds with these models remains uncertain.

  7. Aerosol Observing System (AOS) Handbook

    SciTech Connect (OSTI)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  8. Clouds 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

  9. ARM - Field Campaign - Cloud, Aerosol, and Complex Terrain Interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,Microphysical PropertiesgovCampaignsCloud Radar IOP

  10. ARM - Field Campaign - Holistic Interactions of Shallow Clouds, Aerosols,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic CloudShortwaveand Land-Ecosystems

  11. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? WeDatastreamstps DocumentationAtlanticENA ContactsProductsSACR26, 2015 [FacilityJanuary10,24,Cloud

  12. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: Implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thalman, R.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-01-01

    Multiphase OH and O? oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O? can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore »O? is evaluated by determining the hygroscopicity parameter, ?, as a function of particle type, mixing state, and OH/O? exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O? exposure. Following exposure to OH, ? of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in ? was observed for pure LEV particles following OH exposure. ? of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1:1 by mass MNC: KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient amount of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide-range of solubilities.« less

  13. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-09-14

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate particles exposed tomore »OH and O3 is evaluated by determining the hygroscopicity parameter, ?, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, ? of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in ? was observed for pure LEV particles following OH exposure. ? of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient number of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and is not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide range of solubilities.« less

  14. Chemical aging of single and multicomponent biomass burning aerosol surrogate-particles by OH: implications for cloud condensation nucleus activity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Slade, J. H.; Thalman, R.; Wang, J.; Knopf, D. A.

    2015-03-06

    Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA) can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low soluble single-component OA by OH and O3 can increase their water-solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN) and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water-solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA) surrogate-particles exposed to OH andmore »O3 is evaluated by determining the hygroscopicity parameter, ?, as a function of particle type, mixing state, and OH/O3 exposure applying a CCN counter (CCNc) coupled to an aerosol flow reactor (AFR). Levoglucosan (LEV), 4-methyl-5-nitrocatechol (MNC), and potassium sulfate (KS) serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, ? of MNC was enhanced by an order of magnitude, from 0.009 to ~0.1, indicating that chemically-aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in ? was observed for pure LEV particles following OH exposure. ? of the internally-mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC) or inorganic ions, chemical aging has no significant impact on OA hygroscopicity. The organic compounds exhibiting low solubility behave as if they are infinitely soluble when mixed with a sufficient amount of water-soluble compounds. At and beyond this point, the particles' CCN activity is governed entirely by the water-soluble fraction and not influenced by the oxidized organic fraction. Our results have important implications for heterogeneous oxidation and its impact on cloud formation given that atmospheric aerosol is a complex mixture of organic and inorganic compounds exhibiting a wide-range of solubilities.« less

  15. Three Different Behaviors of Liquid Water Path of Water Clouds in Aerosol-Cloud Interactions

    E-Print Network [OSTI]

    Han, Quingyuan

    third of the cases, a minus one third (-1/3) power law relation between effective droplet radius droplet size and enhance evaporation just below cloud base, which decouples the cloud from the boundary explanation for the observed decrease of the diurnal temperature cycle (Hansen et al., 1997). Significant

  16. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    2014-05-05

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  17. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  18. A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS

    E-Print Network [OSTI]

    Hogan, Robin

    A 3D STOCHASTIC CLOUD MODEL FOR INVESTIGATING THE RADIATIVE PROPERTIES OF INHOMOGENEOUS CIRRUS CLOUDS Robin J. Hogan and Sarah F. Kew ˇ Department of Meteorology, University of Reading, Reading, Berkshire, United Kingdom 1 INTRODUCTION The importance of ice clouds on the earth's radiation budget

  19. Aerosol, Cloud, and Climate: From Observation to Model (457th Brookhaven Lecture)

    ScienceCinema (OSTI)

    Wang, Jian [Ph.D., Environmental Sciences Department

    2010-09-01

    In the last 100 years, the Earth has warmed by about 1şF, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of ?global warming,? which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO2.

  20. Aerosol, Cloud, and Climate: From Observation to Model (457th Brookhaven Lecture)

    SciTech Connect (OSTI)

    Wang, Jian (Ph.D., Environmental Sciences Department) [Ph.D., Environmental Sciences Department

    2010-05-12

    In the last 100 years, the Earth has warmed by about 1şF, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of “global warming,” which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO2.

  1. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

  2. Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010

    E-Print Network [OSTI]

    Zeng, Ning

    Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010 al., 2004). However, the spatial and temporal contributions of aerosol optical properties and aerosol of this growth is driven by new industry that consumes substantially more coal and fossil fuel in the region

  3. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect (OSTI)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  4. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  5. Cloud Properties and Radiative Heating Rates for TWP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Comstock, Jennifer

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  6. Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties

    E-Print Network [OSTI]

    was dominated by marine, polluted, volcanic, and dust aerosols. Average total light scattering coefficients (sspMixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties). Aerosol hygroscopicity ranged from deliquescent with hysteresis (marine frequently and polluted variably

  7. Urban aerosols and their variations with clouds and rainfall: A case study for New York and Houston

    E-Print Network [OSTI]

    Jin, Menglin

    warming (urban heat island effect (UHI)) and urban pollution impacts on surface energy budget have raisedUrban aerosols and their variations with clouds and rainfall: A case study for New York and Houston Shepherd Laboratory for Atmospheres, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA Michael D

  8. Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth

    E-Print Network [OSTI]

    Hartmann, Dennis

    Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth MARK D. ZELINKA Department of Atmospheric Sciences received 12 May 2011, in final form 15 November 2011) ABSTRACT Cloud radiative kernels and histograms

  9. Saharan dust as a causal factor of hemispheric asymmetry in aerosols and cloud cover over the tropical Atlantic Ocean

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kishcha, Pavel; Da Sliva, Arlindo; Starobinets, Boris; Long, Charles N.; Kalashnikova, Olga; Alpert, Pinhas

    2015-07-09

    Meridional distribution of aerosol optical thickness (AOT) over the tropical Atlantic Ocean (30°N – 30°S) was analyzed to assess seasonal variations of meridional AOT asymmetry. Ten-year MERRA Aerosol Reanalysis (MERRAero) data (July 2002 – June 2012) confirms that the Sahara desert emits a significant amount of dust into the atmosphere over the Atlantic Ocean. Only over the Atlantic Ocean did MERRAero show that desert dust dominates other aerosol species and is responsible for meridional aerosol asymmetry between the tropical North and South Atlantic. Over the 10-year period under consideration, both MISR measurements and MERRAero data showed a pronounced meridional AOTmore »asymmetry. The meridional AOT asymmetry, characterized by the hemispheric ratio (RAOT) of AOT averaged separately over the North and over the South Atlantic, was about 1.7. Seasonally, meridional AOT asymmetry over the Atlantic was the most pronounced between March and July, when dust presence is maximal (RAOT ranged from 2 to 2.4). There was no noticeable meridional aerosol asymmetry in total AOT from September to October. During this period the contribution of carbonaceous aerosols to total AOT in the South Atlantic was comparable to the contribution of dust aerosols to total AOT in the North Atlantic. During the same 10-year period, MODIS cloud fraction (CF) data showed that there was no noticeable asymmetry in meridional CF distribution in different seasons (the hemispheric ratio of CF ranged from 1.0 to 1.2). MODIS CF data illustrated significant cloud cover (CF of 0.7 – 0.9) with limited precipitation ability along the Saharan Air Layer.« less

  10. Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Paulson, S E

    2012-05-30

    Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

  11. Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa

    E-Print Network [OSTI]

    Highwood, Ellie

    Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa Steven Met Office C-130 within a distinct biomass burning plume during the Southern AFricAn Regional science, and P. R. Buseck, Evolution of biomass burning aerosol properties from an agricultural fire in southern

  12. ARM - Publications: Science Team Meeting Documents: Cloud Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparison

  13. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore »cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated that they will be included in a future public release of WRF-Chem.« less

  14. Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study

    SciTech Connect (OSTI)

    Shrivastava, ManishKumar B.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Laskin, Alexander; Chapman, Elaine G.; Gustafson, William I.; Liu, Ying; Berkowitz, Carl M.

    2013-02-07

    The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to simulate relationships between aerosols and clouds in the vicinity of Oklahoma City during the June 2007 Cumulus Humilis Aerosol Processing Study (CHAPS). The regional scale simulation completed using 2 km horizontal grid spacing evaluates four important relationships between aerosols and shallow cumulus clouds observed during CHAPS. First, the model reproduces the trends of higher nitrate volume fractions in cloud droplet residuals compared to interstitial non-activated aerosols, as measured using the Aerosol Mass Spectrometer. Comparing simulations with cloud chemistry turned on and off, we show that nitric acid vapor uptake by cloud droplets explains the higher nitrate content of cloud droplet residuals. Second, as documented using an offline code, both aerosol water and other inorganics (OIN), which are related to dust and crustal emissions, significantly affect predicted aerosol optical properties. Reducing the OIN content of wet aerosols by 50% significantly improves agreement of model predictions with measurements of aerosol optical properties. Third, the simulated hygroscopicity of aerosols is too high as compared to their hygroscopicity derived from cloud condensation nuclei and particle size distribution measurements, indicating uncertainties associated with simulating size-dependent chemical composition and treatment of aerosol mixing state within the model. Fourth, the model reasonably represents the observations of the first aerosol indirect effect where pollutants in the vicinity of Oklahoma City increase cloud droplet number concentrations and decrease the droplet effective radius. While previous studies have often focused on cloud-aerosol interactions in stratiform and deep convective clouds, this study highlights the ability of regional-scale models to represent some of the important aspects of cloud-aerosol interactions associated with fields of short-lived shallow cumuli.

  15. Cloud activating properties of aerosol observed during CELTIC

    E-Print Network [OSTI]

    2007-01-01

    the secondary organic aero- sol contribution to PM2.5 usingthe EC tracer method. Aero- sol Sci. Technol. , 38 (S1),to represent 15% of submicron aero- sol mass. The large

  16. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    2008-01-15

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  17. Tropical Cloud Properties and Radiative Heating Profiles

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mather, James

    We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

  18. The Radiative Properties of Small Clouds: Multi-Scale Observations and Modeling

    SciTech Connect (OSTI)

    Feingold, Graham; McComiskey, Allison

    2013-09-25

    Warm, liquid clouds and their representation in climate models continue to represent one of the most significant unknowns in climate sensitivity and climate change. Our project combines ARM observations, LES modeling, and satellite imagery to characterize shallow clouds and the role of aerosol in modifying their radiative effects.

  19. Multi-grid-cell validation of satellite aerosol property retrievals in INTEX/ITCT/ICARTT 2004

    E-Print Network [OSTI]

    Multi-grid-cell validation of satellite aerosol property retrievals in INTEX/ITCT/ICARTT 2004 P. B 5 December 2006; published 8 May 2007. [1] Aerosol transport off the US Northeast coast during) provided comparisons of AATS AOD spectra to retrievals for 90 grid cells of the satellite radiometers MODIS

  20. Cirrus cloud formation and the role of heterogeneous ice nuclei

    E-Print Network [OSTI]

    Froyd, Karl D.

    2013-01-01

    Composition, size, and phase are key properties that define the ability of an aerosol particle to initiate ice in cirrus clouds. Properties of cirrus ice nuclei (IN) have not been well constrained due to a lack of systematic ...

  1. Chemical and Physical Properties of Atmospheric Aerosols (a) A Case Study in the Unique Properties of Agricultural Aerosols (b) The Role of Chemical Composition in Ice Nucleation during the Arctic Spring 

    E-Print Network [OSTI]

    Moon, Seong-Gi

    2011-08-08

    dataset is reported for these physical and chemical properties of agricultural aerosols appropriate for use in a site-specific emission inventory. The emission rate and transport of the aerosols are also discussed. In addition, mixing ratios of total...

  2. Intercomparison and Evaluation of Global Aerosol Microphysical Properties among AeroCom Models of a Range of Complexity

    SciTech Connect (OSTI)

    Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, Kai; Ghan, Steven J.; Easter, Richard C.; Liu, Xiaohong; Stier, P.; Lee, Y. H.; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S.; Tsigaridis, Kostas; van Noije, T.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C. E.; Bergman, T.; Kokkola, H.; Von Salzen, Knut; Yu, Fangqun; Luo, Gan; Petzold, A.; Heintzenberg, J.; Clarke, A. D.; Ogren, J. A.; Gras, J.; Baltensperger, Urs; Kaminski, U.; Jennings, S. G.; O'Dowd, C. D.; Harrison, R. M.; Beddows, D. C.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, Nikos; Zdimal, V.; Fiebig, M.; Hansson, H. C.; Swietlicki, E.; Henzing, J. S.

    2014-05-13

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by twelve global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the results suggest that most global aerosol microphysics models simulate the global variation of the particle size distribution with a good degree of skill, but some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

  3. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    SciTech Connect (OSTI)

    SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

    2007-11-01

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary conditions are likely to be very different because of the much more extensive ocean water during M-PACE. The uniformity of the surface conditions during ISDAC greatly simplifies the objective analysis (surface fluxes and precipitation are very weak), so that it can largely rely on the European Centre for Medium-Range Weather Forecasts analysis. The aerosol measurements can also be used as input to the cloud models and to evaluate the aerosol retrievals. By running the cloud models with and without solar absorption by the aerosols, we can determine the semidirect effect of the aerosol on the clouds.

  4. The influence of meteorology on the organic and inorganic properties of aerosols in Hong Kong

    E-Print Network [OSTI]

    Zheng, Mei

    The influence of meteorology on the organic and inorganic properties of aerosols in Hong Kong Mei, Fe) could be from coal flyash, the estimate of crustal material in the Dry-N period may include some

  5. Measurements of aerosol vertical profiles and optical properties during INDOEX

    E-Print Network [OSTI]

    , and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sun photometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical

  6. The Structure of the Local Interstellar Medium IV: Dynamics, Morphology, Physical Properties, and Implications of Cloud-Cloud Interactions

    E-Print Network [OSTI]

    Seth Redfield; Jeffrey L. Linsky

    2007-09-27

    We present an empirical dynamical model of the local interstellar medium based on 270 radial-velocity measurements for 157 sight lines toward nearby stars. Physical-parameter measurements (i.e., temperature, turbulent velocity, depletions) are available for 90 components, or one-third of the sample, enabling initial characterizations of the physical properties of LISM clouds. The model includes 15 warm clouds located within 15 pc of the Sun, each with a different velocity vector. We derive projected morphologies of all clouds and estimate the volume filling factor of warm partially ionized material in the LISM to be between ~5.5% and 19%. Relative velocities of potentially interacting clouds are often supersonic, consistent with heating, turbulent, and metal-depletion properties. Cloud-cloud collisions may be responsible for the filamentary morphologies found in ~1/3 of LISM clouds, the distribution of clouds along the boundaries of the two nearest clouds (LIC and G), the detailed shape and heating of the Mic Cloud, the location of nearby radio scintillation screens, and the location of a LISM cold cloud. Contrary to previous claims, the Sun appears to be located in the transition zone between the LIC and G Clouds.

  7. Properties of the Molecular Clouds in NGC 205

    E-Print Network [OSTI]

    L. M. Young

    2000-07-12

    The nearby dwarf elliptical galaxy NGC 205 offers a unique opportunity for high resolution studies of the interstellar medium in an elliptical galaxy. This paper investigates the distribution of molecular gas, molecular line ratios, and the relationships between atomic gas, molecular gas, and dust in NGC 205. The line ratios 12CO(2-1)/(1-0) and 12CO(1-0)/13CO(1-0) in one of the molecular clouds in NGC 205 are consistent with the ratios found in other elliptical galaxies and in Galactic giant molecular clouds; they suggest that the CO in this cloud is probably subthermally excited. Atomic gas, molecular gas, and dust are very closely associated on scales of 100 pc; the atomic gas can be understood as photodissociated envelopes around the molecular clouds. The atomic column densities in this galaxy are quite low (10^20 cm^-2) because the interstellar UV field is relatively low. The total gas-to-dust column density ratios are consistent with Galactic gas-to-dust ratios. In short, the molecular gas in NGC 205 seems to have very similar properties to the familiar molecular clouds in our own Galaxy, except for the low atomic column densities.

  8. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01

    Zhang (2004), Comparing clouds and their seasonal variationstropical greenhouse effect and cloud radiative forcing. J.thermodynamic components of cloud changes. Clim. Dyn. , 22,

  9. The roles of cloud drop effective radius and LWP in determining rain properties in marine stratocumulus

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    The roles of cloud drop effective radius and LWP in determining rain properties in marine that adding cloud condensation nuclei to marine stratocumulus can prevent their breakup from closed into open in terms of cloud drop effective radius (re). Rain is initiated when re near cloud top is around 12­14 mm

  10. Effect of coarse marine aerosols on stratocumulus clouds Yoav Lehahn,1,2

    E-Print Network [OSTI]

    Kostinski, Alex

    an important role not only over land for windpower estimation but also over the oceans by changing clouds

  11. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tomlinson, Jason; Jensen, Mike

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  12. ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tomlinson, Jason; Jensen, Mike

    2012-02-28

    Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

  13. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    SciTech Connect (OSTI)

    Yang Q.; Lee Y.; Gustafson Jr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

    2011-12-02

    This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.

  14. On the Microphysical Properties of Ice Clouds as Inferred from the Polarization of Electromagnetic Waves 

    E-Print Network [OSTI]

    Cole, Benjamin

    2012-10-19

    Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

  15. Study of cloud properties from single-scattering, radiative forcing, and retrieval perspectives 

    E-Print Network [OSTI]

    Lee, Yong-Keun

    2009-06-02

    This dissertation reports on three different yet related topics in light scattering computation, radiative transfer simulation, and remote sensing implementation, regarding the cloud properties and the retrieval of cloud ...

  16. On the Feasibility of Precisely Measuring the Properties of a Precipitating Cloud with a Weather Radar 

    E-Print Network [OSTI]

    Runnels, R.C.

    1967-01-01

    In this paper the results of an investigation are presented that are concerned with the feasibility of employing a weather radar to make precise measurements of the properties of a precipitating cloud. A schematic cloud ...

  17. DISSERTATION THE OPTICAL, CHEMICAL, AND PHYSICAL PROPERTIES OF AEROSOLS AND

    E-Print Network [OSTI]

    Pierce, Jeffrey

    AND GASES EMITTED BY THE LABORATORY COMBUSTION OF WILDLAND FUELS Biomass burning is a major source of trace Laboratory at Missoula Experiment. Emission factors are presented as a function of modified combustion efficiency (MCE), a measure of the fire combustion conditions. The emissions of many trace gas and aerosol

  18. Variability of Aerosol Optical Properties from Long-term

    E-Print Network [OSTI]

    Delene, David J.

    aerosols and overestimates absorption due to suspended particles by about 20-30%. Green L E D Opal Glas s O Photometer · Principle of operation is to measure the change in light transmission through a filter on which light extinction and light scattering. · Instrument exhibits a significant response to nonabsorbing

  19. Atmospheric aerosol optical property retrieval with scanning polarimeters

    E-Print Network [OSTI]

    scatter and absorb incident solar radiation and emitted infra-red radiation. Climate models simulate Mexico suspended over low altitude marine stratocumulus clouds in the Gulf of Mexico. These studies

  20. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    E-Print Network [OSTI]

    Friedman, Beth

    Measurements of cloud condensation nuclei (CCN) concentrations, single particle composition and size distributions at a high-elevation research site from March 2011 are presented.

  1. Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions

    SciTech Connect (OSTI)

    Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

    2013-01-14

    The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

  2. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: Analysis of Results from the ARM Mobile Facility Deployment to the Azores (2009/2010)

    SciTech Connect (OSTI)

    Wood, Robert

    2013-05-31

    The project focuses upon dataset analysis and synthesis of datasets from the AMF deployment entitled “Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP?MBL)” at Graciosa Island in the Azores. Wood is serving a PI for this AMF deployment.

  3. Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012

    SciTech Connect (OSTI)

    Meskhidze, Nicholas [NCSU] [NCSU

    2013-10-21

    The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

  4. ARM - PI Product - Cloud Property Retrieval Products for Graciosa Island,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA Related LinksOxidesProductsCloud Properties

  5. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

  6. Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties

    E-Print Network [OSTI]

    Shupe, Matthew

    distributions, temperature, mi- crophysical properties, thickness, and phase composition. Arctic cloud to derive estimates of cloud occurrence fraction, vertical distribution, persistence in time, diurnal cycle seasons for which the sun is above the horizon for at least part of the day. 1. Introduction Clouds play

  7. Impacts of aerosols and clouds on photolysis frequencies and photochemistry during TRACE-P

    E-Print Network [OSTI]

    Clarke, Antony

    with the polluted air masses. The accumulated aerosol impact generally is to reduce O3 concentrations by about 6 Atmospheric Composition and Structure: Pollution--urban and regional (0305); 0365 Atmospheric Composition and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii, USA. 7 Department

  8. Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter Relationships 

    E-Print Network [OSTI]

    Cho, Hyoun-Myoung

    2012-02-14

    . The three possible misclassifications of MODIS IR cloud phasealgorithm, which are studied by Nasiri and Kahn (2008) with radiative transfer modeling, are tested by comparing between MODIS IR phase and CALIOP observations. The current results support...

  9. EVALUATING TREATMENTS OF AEROSOL OPTICAL PROPERTIES AND THEIR EFFECT ON RADIATIVE FORCING USING MILAGRO MEASUREMENTS

    E-Print Network [OSTI]

    at the American Geophysical Union Fall Meeting San Francisco, CA December 10-14, 2007 Environmental Sciences-chemistry-aerosol model, WRF-chem, to evaluate the predicted optical properties and downwind of Mexico City using both-averaging", "shell-core" and other approaches that employ Mie theory. The impact of the various approaches

  10. The Two-Column Aerosol Project (TCAP) Science Plan

    SciTech Connect (OSTI)

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  11. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012IIIAtlantic (ACE-ENA) govCampaignsAerosol and

  12. INTRODUCTION Atmospheric aerosol particles influence the Earth's

    E-Print Network [OSTI]

    Wunderle, Stefan

    , scattering, and absorbing solar electromagnetic radiation and by modifying cloud properties due to their roleINTRODUCTION Atmospheric aerosol particles influence the Earth's radiation budget by reflecting to maximum cover a region once in the daytime. In contrary, up-to-date geostationary instruments like

  13. FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties

    SciTech Connect (OSTI)

    Lin, W; McGraw, R; Liu, Y; Wang, J; Vogelmann, A; Daum, PH

    2010-10-01

    Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

  14. A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility: Part I: Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties

    E-Print Network [OSTI]

    Dong, Xiquan

    A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility: Part I: Low Measurement (ARM) Southern Great Plains Central Facility (SCF). The cloud properties include liquid- phase.563 for daytime (nighttime). A new conceptual model of midlatitude continental low clouds at the ARM SGP site has

  15. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM 2.5 and PM 10 mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regionalmore »sources are characterized by pollution transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ĺngström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ĺngström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing. « less

  16. How do A-train Sensors Intercompare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study-based Assessment

    SciTech Connect (OSTI)

    Jethva, H. T.; Torres, O.; Waquet, F.; Chand, Duli; Hu, Yong X.

    2014-01-16

    We inter-compare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from different A-train sensors, i.e., MODIS, CALIOP, POLDER, and OMI. These sensors have shown independent capabilities to detect and retrieve aerosol loading above marine boundary layer clouds--a kind of situation often found over the Southeast Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532-nm ACAOD retrieved by CALIOP operational algorithm is largely underestimated; however, it’s 1064-nm AOD when converted to 500 nm shows closer agreement to the passive sensors. Given the different types of sensor measurements processed with different algorithms, the close agreement between them is encouraging. Due to lack of adequate direct measurements above cloud, the validation of satellite-based ACAOD retrievals remains an open challenge. The inter-satellite comparison, however, can be useful for the relative evaluation and consistency check.

  17. ARM - Field Campaign - Measurement of Aerosols, Radiation and CloUds over

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design togovCampaignsMASRAD: Pt. Reyes Stratus CloudAtmospheric Opticalthe Southern

  18. Cloud properties and associated radiative heating rates in the tropical western Pacific

    E-Print Network [OSTI]

    Cloud properties and associated radiative heating rates in the tropical western Pacific James H radiative fluxes and heating rates. Maxima in cloud occurrence are found in the boundary layer and the upper radiative heating rates in the tropical western Pacific, J. Geophys. Res., 112, D05201, doi:10.1029/2006JD

  19. Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the radiative influence of mixed-phase clouds. Further, its impact on the development and evaluation of retrieval schemes from ground- and satellite-based remote sensors is...

  20. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    SciTech Connect (OSTI)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  1. High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics

    E-Print Network [OSTI]

    Baum, Bryan A.

    High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics) ABSTRACT This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging

  2. Retrieval of Cloud Microphysical Properties from MODIS and AIRS JUN LI,* HUNG-LUNG HUANG,* CHIAN-YI LIU,* PING YANG, TIMOTHY J. SCHMIT,# HELI WEI,

    E-Print Network [OSTI]

    Li, Jun

    Retrieval of Cloud Microphysical Properties from MODIS and AIRS JUN LI,* HUNG-LUNG HUANG,* CHIAN monitoring of the distribution of clouds during day and night. The MODIS is able to provide a high-spatial-resolution (1­5 km) cloud mask, cloud classification mask, cloud-phase mask, cloud-top pressure (CTP

  3. The application of size- resolved hygroscopicity measurements to understand the physical and chemical properties of ambient aerosol 

    E-Print Network [OSTI]

    Santarpia, Joshua Lee

    2005-08-29

    -1 THE APPLICATION OF SIZE-RESOLVED HYGROSCOPICITY MEASUREMENTS TO UNDERSTANDING THE PHYSICAL AND CHEMICAL PROPERTIES OF AMBIENT AEROSOL A Dissertation by JOSHUA L. SANTARPIA Submitted to the Office of Graduate Studies of Texas A&M University in partial... OF AMBIENT AEROSOL A Dissertation by JOSHUA L. SANTARPIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved as to style and content...

  4. Retrieving Properties of Thin Clouds from Solar Aureole Measurements

    E-Print Network [OSTI]

    Joss, Paul C.

    This paper describes a newly designed Sun and Aureole Measurement (SAM) aureolegraph and the first results obtained with this instrument. SAM measurements of solar aureoles produced by cirrus and cumulus clouds were taken ...

  5. Aerosol Indirect Effect on the Grid-scale Clouds in the Two-way Coupled WRF-CMAQ: Model Description, Development, Evaluation and Regional Analysis

    SciTech Connect (OSTI)

    Yu, Shaocai; Mathur, Rohit; Pleim, Jonathan; Wong, David; Gilliam, R.; Alapaty, Kiran; Zhao, Chun; Liu, Xiaohong

    2014-10-24

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQpredicted aerosol distributions and WRF meteorological conditions. The performance of the newly-developed WRF-CMAQ model, with alternate CAM and RRTMG radiation schemes, was evaluated with the observations from the CERES satellite and surface monitoring networks (AQS, IMPROVE, CASTNet, STN, and PRISM) over the continental U.S. (CONUS) (12-km resolution) and eastern Texas (4-km resolution) during August and September of 2006. The results at the AQS surface sites show that in August, the NMB values for PM2.5 over the eastern/western U.S (EUS/WUS) and western U.S. (WUS) are 5.3% (?0.1%) and 0.4% (-5.2%) for WRF-CMAQ/CAM (WRF-CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF-CMAQ/CAM (WRF-CMAQ/RRTMG) consistently underestimated the observed SO4 2? by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the CASTNet, IMPROVE and STN sites, respectively. Both models (WRF-CMAQ/CAM, WRF-CMAQ/RRTMG) overestimated the observed mean OC, EC and TC concentrations over the EUS in August at the IMPROVE sites. Both models generally underestimated the cloud field (SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model simulations were run at the 12 km resolution. This is in agreement with the fact that both models captured SWCF and LWCF very well for the 4-km simulation over the eastern Texas when all clouds were resolved by the finer domain. Both models generally overestimated the observed precipitation by more than 40% mainly because of significant overestimation in the southern part of the CONUS in August. The simulations of WRF-CMAQ/CAM and WRF-CMAQ/RRTMG show dramatic improvements for SWCF, LWCF, COD, cloud fractions and precipitation over the ocean relative to those of WRF default cases in August. The model performance in September is similar to that in August except for greater overestimation of PM2.5 due to the overestimations of SO4 2-, NH4 +, NO3 -, and TC over the EUS, less underestimation of clouds (SWCF) over the land areas due to about 10% lower SWCF values and less convective clouds in September.

  6. Properties of a Molecular Cloud in NGC 185

    E-Print Network [OSTI]

    L. M. Young

    2001-07-10

    The dwarf elliptical galaxy NGC 185- the closest early-type galaxy with detectable molecular gas- offers a unique opportunity for high angular resolution studies of the interstellar medium in early-type galaxies. I present interferometric images (17 pc $\\times$ 14 pc resolution) of CO emission from NGC 185. The majority of the molecular gas in NGC 185 is in one resolved cloud, closely associated with dust and an HI structure which may be a photodissociated envelope. The high spatial resolution also reveals a velocity gradient across the cloud, which allows a dynamical mass estimate independent of the H2/CO conversion factor or the virial theorem. The linear sizes, velocity gradients, and dynamical masses of the molecular clouds in NGC 185 and NGC 205, a similar dwarf elliptical, are comparable to those of the largest Galactic giant molecular clouds (GMCs). If the dynamical masses of the clouds are assumed to be good estimates of their true masses, the inferred H2/CO conversion factor in NGC 185 is at least eight times larger than a standard Galactic conversion factor, and the reasons for this difference are not yet understood. In any case, it seems clear that structures similar to Galactic GMCs can form in small elliptical or early type galaxies, even in the absence of spiral density waves.

  7. The Indirect and Semi-Direct Aerosol Campaign

    SciTech Connect (OSTI)

    Ghan, Steve

    2014-03-24

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  8. The Indirect and Semi-Direct Aerosol Campaign

    ScienceCinema (OSTI)

    Ghan, Steve

    2014-06-12

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  9. The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances

    E-Print Network [OSTI]

    Stephens, Graeme L.

    from infrared radiances Steven J. Cooper, Tristan S. L'Ecuyer, and Graeme L. Stephens Department inclusion of explicit cloud boundary information from complementary sensors as well as providing a suite of diagnostic tools for evaluating the dominant sources of uncertainty in all retrieved quantities. Errors

  10. Observations of the first aerosol indirect effect in shallow cumuli

    SciTech Connect (OSTI)

    Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

    2011-02-08

    Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

  11. Aerosol Properties from Multi-spectral and Multi-angular Aircraft 4STAR Observations: Expected Advantages and Challenges

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Redemann, Jens; Schmid, Beat; Russell, P. B.; Sinyuk, Alexander

    2012-11-01

    The airborne Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) is developed to retrieve aerosol microphysical and optical properties from multi-angular and multi-spectral measurements of sky radiance and direct-beam sun transmittance. The necessarily compact design of the 4STAR may cause noticeable apparent enhancement of sky radiance at small scattering angles. We assess the sensitivity of expected 4STAR-based aerosol retrieval to such enhancement by applying the operational AERONET retrieval code and constructed synthetic 4STARlike data. Also, we assess the sensitivity of the broadband fluxes and the direct aerosol radiative forcing to uncertainties in aerosol retrievals associated with the sky radiance enhancement. Our sensitivity study results suggest that the 4STARbased aerosol retrieval has limitations in obtaining detailed information on particle size distribution and scattering phase function. However, these limitations have small impact on the retrieved bulk optical parameters, such as the asymmetry factor (up to 4%, or ±0.02) and single-scattering albedo (up to 2%, or ±0.02), and the calculated direct aerosol radiative forcing (up to 6%, or 2 Wm-2).

  12. Cluster analysis of cloud properties : a method for diagnosing cloud-climate feedbacks

    E-Print Network [OSTI]

    Gordon, Neil D.

    2008-01-01

    on computer models to understand the changes to cloudcloud properties with surface temperature from observations rather than from computer

  13. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    SciTech Connect (OSTI)

    Saide P. E.; Springston S.; Spak, S. N.; Carmichael, G. R.; Mena-Carrasco, M. A.; Yang, Q.; Howell, S.; Leon, D. C.; Snider, J. R.; Bandy, A. R.; Collett, J. L.; Benedict, K. B.; de Szoeke, S. P.; Hawkins, L. N.; Allen, G.; Crawford, I.; Crosier, J.

    2012-03-29

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.

  14. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    SciTech Connect (OSTI)

    Saide, Pablo; Spak, S. N.; Carmichael, Gregory; Mena-Carrasco, M. A.; Yang, Qing; Howell, S. G.; Leon, Dolislager; Snider, Jefferson R.; Bandy, Alan R.; Collett, Jeffrey L.; Benedict, K. B.; de Szoeke, S.; Hawkins, Lisa; Allen, Grant; Crawford, I.; Crosier, J.; Springston, S. R.

    2012-03-30

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

  15. Optical Properties of Saharan Dust and Asian Dust: Application to Radiative Transfer Simulations 

    E-Print Network [OSTI]

    Fang, Guangyang

    2012-07-16

    an important role in climate change, the majorities of aerosols are natural ones and can impact cloud properties, convective cloud dynamics, and the development of tropical storms (Jones et al. 2004). The optical properties of mineral dust aerosols... dusts from the Rayleigh regime to the geometric optics regime. A database of the optical properties of randomly oriented spheroids has been developed. 4.1 Geometry of the dust particle model The geometry of the spheroidal model used is shown...

  16. ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22,Microphysical PropertiesgovCampaignsCloudSP2

  17. Solar differential rotation and properties of magnetic clouds

    E-Print Network [OSTI]

    K. Georgieva; B. Kirov; E. Gavruseva; J. Javaraiah

    2005-11-09

    The most geoeffective solar drivers are magnetic clouds - a subclass of coronal mass ejections (CME's) distinguished by the smooth rotation of the magnetic field inside the structure. The portion of CME's that are magnetic clouds is maximum at sunspot minimum and mimimum at sunspot maximum. This portion is determined by the amount of helicity carried away by CME's which in turn depends on the amount of helicity transferred from the solar interior to the surface, and on the surface differential rotation. The latter can increase or reduce, or even reverse the twist of emerging magnetic flux tubes, thus increasing or reducing the helicity in the corona, or leading to the violation of the hemispheric helicity rule, respectively. We investigate the CME's associated with the major geomagnetic storms in the last solar cycle whose solar sources have been identified, and find that in 10 out of 12 cases of violation of the hemispheric helicity rule or of highly geoeffective CME's with no magnetic field rotation, they originate from regions with "anti-solar" type of surface differential rotation.

  18. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect (OSTI)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  19. Comparison of marine boundary layer cloud properties from CERES-MODIS Edition 4 and DOE ARM

    E-Print Network [OSTI]

    Dong, Xiquan

    Comparison of marine boundary layer cloud properties from CERES-MODIS Edition 4 and DOE ARM AMF are compared with observations taken at the Department of Energy Atmospheric Radiation Measurement (ARM) Mobile from ARM ground-based observations were averaged over a 1h interval centered at the satellite overpass

  20. Study of Ice Cloud Properties from Synergetic Use of Satellite Observations and Modeling Capabilities 

    E-Print Network [OSTI]

    Xie, Yu

    2011-02-22

    Shaima Nasiri Gerald North Head of Department, Kenneth Bowman December 2010 Major Subject: Atmospheric Sciences iii ABSTRACT Study of Ice Cloud Properties from Synergetic Use of Satellite..., Shaima Nasiri, and Gerald North. Their detailed and constructive comments have been most helpful in shaping this dissertation. I also wish to acknowledge Drs. Patrick Minnis and Bryan Baum who gave me important guidance throughout this work...

  1. Polluting of Winter Convective Clouds upon Transition from Ocean Inland Over Central California: Contrasting Case Studies

    SciTech Connect (OSTI)

    Rosenfeld, Daniel; Chemke, Rei; Prather, Kimberly; Suski, Kaitlyn; Comstock, Jennifer M.; Schmid, Beat; Tomlinson, Jason M.; Jonsson, Haf

    2014-01-01

    In-situ aircraft measurements of aerosol chemical and cloud microphysical properties were conducted during the CalWater campaign in February and March 2011 over the Sierra Nevada Mountains and the coastal waters of central California. The main objective was to elucidate the impacts of aerosol properties on clouds and precipitation forming processes. In order to accomplish this, we compared contrasting cases of clouds that ingested aerosols from different sources. The results showed that clouds containing pristine oceanic air had low cloud drop concentrations and started to develop rain 500 m above their base. This occurred both over the ocean and over the Sierra Nevada, mainly in the early morning when the radiatively cooled stable continental boundary layer was decoupled from the cloud base. Supercooled rain dominated the precipitation that formed in growing convective clouds in the pristine air, up to the -21°C isotherm level. A contrasting situation was documented in the afternoon over the foothills of the Sierra Nevada, when the clouds ingested high pollution aerosol concentrations produced in the Central Valley. This led to slow growth of the cloud drop effective radius with height and suppressed and even prevented the initiation of warm rain while contributing to the development of ice hydrometeors in the form of graupel. Our results show that cloud condensation and ice nuclei were the limiting factors that controlled warm rain and ice processes, respectively, while the unpolluted clouds in the same air mass produced precipitation quite efficiently. These findings provide the motivation for deeper investigations into the nature of the aerosols seeding clouds.

  2. Retrieval of Non-Spherical Dust Aerosol Properties from Satellite Observations 

    E-Print Network [OSTI]

    Huang, Xin

    2013-08-01

    of the refractive index, which may lead to misinterpretation of the measurements and substantial errors in the retrieved aerosol parameters; (e) Depending signi cantly on the selection of the limited num- ber of xed dust aerosol models, the retrieval quality may...

  3. Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core

    E-Print Network [OSTI]

    Dong, Xiquan

    effects: (a) a direct effect in which aerosol particles scatter and absorb the solar and thermal radiation Atmospheric aerosols greatly impact the Earth's climate in many ways, and to date, not all of them are well

  4. Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties

    E-Print Network [OSTI]

    Moore, Meagan Julia Kerry

    2011-01-01

    detection efficiency, Analytical Chemistry, 76, 712-719,Portable ATOFMS, Analytical Chemistry, 69, 4083-4091, 1997.Network, ART-2A, Analytical Chemistry, 71 (4), 860-865,

  5. Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties

    E-Print Network [OSTI]

    Moore, Meagan Julia Kerry

    2011-01-01

    for CCN activation, Atmospheric Chemistry and Physics, 10,and precipitation, Atmospheric Chemistry and Physics, 9,dust particles. Atmospheric Chemistry and Physics, 2009, 9,

  6. Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties

    E-Print Network [OSTI]

    Moore, Meagan Julia Kerry

    2011-01-01

    CCN activation, Atmospheric Chemistry and Physics, 10, 5241-precipitation, Atmospheric Chemistry and Physics, 9, 3223-particles. Atmospheric Chemistry and Physics, 2009, 9, A. P.

  7. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J. -D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; et al

    2015-03-16

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in Central Siberia (61° N; 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical composition of aerosol particles were analyzed by X-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38% of PM in the accumulation mode and coarse mode, respectively. The water solublemore »fraction of organic matter was estimated to be 52 and 8% of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34% in the accumulation vs. ~ 47% in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5–99.4% RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same RH, starting at ~ 70%, while efflorescence occurred at different humidities, i.e., at ~ 35% RH for submicron particles vs. ~ 50% RH for supermicron particles. This ~ 15% RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5–99.4% RH range. Based on KIM, the volume-based hygroscopicity parameter, ?v, was calculated. The ?v, ws value related to the water soluble (ws) fraction was estimated to be ~ 0.15 for the accumulation mode and ~ 0.36 for the coarse mode, respectively. The obtained ?v, ws for the accumulation mode is in good agreement with earlier data reported for remote sites in the Amazon rain forest (?v ≈ 0.15) and a Colorado boreal forest (?v ≈ 0.16). We used the Zdanovskii–Stokes–Robinson (ZSR) mixing rule to predict the chemical composition dependent hygroscopicity, ?v, p. The obtained ?v, p values overestimate the experimental FDHA-KIM-derived ?v, ws by factors of 1.8 and 1.5 for the accumulation and coarse modes, respectively. This divergence can be partly explained by incomplete dissolution of the hygroscopic inorganic compounds resulting from kinetic limitations due to a sparingly soluble organic coating. The TEM and STXM-NEXAFS results indicate that aged submicron (>300 nm) and supermicron aerosol particles possess core-shell structures with an inorganic core, and are enriched in organic carbon at the mixed particle surface. The direct FDHA kinetic studies provide a bulk diffusion coefficient of water of ~ 10?12 cm2 s?1 indicating a semi-solid state of the organic-rich phase leading to kinetic limitations of water uptake and release during hydration and dehydration cycles. Overall the present ZOTTO data set, obtained in the growing season, has revealed a strong influence of organic carbon on the hygroscopic properties of the ambient aerosols. The sparingly soluble organic coating controls hygroscopic growth, phase transitions, and microstructural rearrangement processes. The observed kinetic limitations can strongly influence the outcome of experiments performed on multi-second time scales, such as the commonly applied HTDMA (Hygroscopicity Tandem Differential Mobility Analyzer) and CCNC (Cloud Condensation Nuclei Counter) measurements.« less

  8. RACORO continental boundary layer cloud investigations. 2. Large-eddy simulations of cumulus clouds and evaluation with in-situ and ground-based observations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Endo, Satoshi; Fridlind, Ann M.; Lin, Wuyin; Vogelmann, Andrew M.; Toto, Tami; Ackerman, Andrew S.; McFarquhar, Greg M.; Jackson, Robert C.; Jonsson, Haflidi H.; Liu, Yangang

    2015-06-19

    A 60-hour case study of continental boundary layer cumulus clouds is examined using two large-eddy simulation (LES) models. The case is based on observations obtained during the RACORO Campaign (Routine Atmospheric Radiation Measurement [ARM] Aerial Facility [AAF] Clouds with Low Optical Water Depths [CLOWD] Optical Radiative Observations) at the ARM Climate Research Facility's Southern Great Plains site. The LES models are driven by continuous large-scale and surface forcings, and are constrained by multi-modal and temporally varying aerosol number size distribution profiles derived from aircraft observations. We compare simulated cloud macrophysical and microphysical properties with ground-based remote sensing and aircraft observations.more »The LES simulations capture the observed transitions of the evolving cumulus-topped boundary layers during the three daytime periods, and generally reproduce variations of droplet number concentration with liquid water content (LWC), corresponding to the gradient between the cloud centers and cloud edges at given heights. The observed LWC values fall within the range of simulated values; the observed droplet number concentrations are commonly higher than simulated, but differences remain on par with potential estimation errors in the aircraft measurements. Sensitivity studies examine the influences of bin microphysics versus bulk microphysics, aerosol advection, supersaturation treatment, and aerosol hygroscopicity. Simulated macrophysical cloud properties are found to be insensitive in this non-precipitating case, but microphysical properties are especially sensitive to bulk microphysics supersaturation treatment and aerosol hygroscopicity.« less

  9. Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol 

    E-Print Network [OSTI]

    Benoit, Mark David

    2013-02-06

    of this research is to examine sea salt aerosols and their impact on polluted environments. Sea salt aerosols act as Cloud Condensation Nuclei (CCN) as well as providing a surface for heterogeneous reactions. Such reactions have implications for trace gases...

  10. Atmospheric Aerosols Aging Involving Organic Compounds and Impacts on Particle Properties 

    E-Print Network [OSTI]

    Qiu, Chong

    2013-02-01

    In the first part of this dissertation, we study the aging of soot, a representative type of primary aerosols, in the presence of OH-initiated oxidation products of toluene. Monodisperse soot particles are introduced into an environmental chamber...

  11. Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation

    E-Print Network [OSTI]

    Cappa, Christopher D.

    Measurements of the evolution of organic aerosol extinction cross sections (?[subscript ext]) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated ...

  12. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem

    SciTech Connect (OSTI)

    Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

    2012-09-28

    Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 Oct–Nov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

  13. STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan

    SciTech Connect (OSTI)

    Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

    2010-09-29

    During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

  14. Using MSG-SEVIRI Cloud Physical Properties and Weather Radar Observations for the Detection of Cb/TCu Clouds

    E-Print Network [OSTI]

    Schmeits, Maurice

    , but the former shows a false-alarm ratio that is about 8% lower. Moreover, a big advantage of the newly developed, the energy supply industry, the construction industry, and farmers. The Cb and TCu clouds may pose a serious Society #12;wind shear, heavy precipitation, and lightning, that is associated with these clouds. Also

  15. A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5

    SciTech Connect (OSTI)

    Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

    2013-11-08

    In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

  16. RACORO aerosol data processing

    SciTech Connect (OSTI)

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  17. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  18. Implementing marine organic aerosols into the GEOS-Chem model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore »predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  19. Implementing marine organic aerosols into the GEOS-Chem model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2014-09-09

    Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in goodmore »agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  20. Observed and Simulated Cirrus Cloud Properties at the SGP CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access to scienceSpeedingLightweightand Simulated Cirrus Cloud Properties

  1. ARM - PI Product - Cloud Properties and Radiative Heating Rates for TWP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska OutreachCalendar NSA Related LinksOxidesProductsCloud Properties and

  2. Global ice cloud observations: radiative properties and statistics from moderate-resolution imaging spectroradiometer measurements 

    E-Print Network [OSTI]

    Meyer, Kerry Glynne

    2009-05-15

    Ice clouds occur quite frequently, yet so much about these clouds is unknown. In recent years, numerous investigations and field campaigns have been focused on the study of ice clouds, all with the ultimate goal of gaining a better understanding...

  3. Physical properties of ambient and laboratory-generated secondary organic aerosol

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    the rebound energy, then the particle will remain on the surface. The viscosity, including both elastic of viscosity values appropriate for SOA models. When an aerosol particle impacts a surface, some kinetic energy is dissipated in deformation. If the kinetic energy loss is large enough that the adhesion energy exceeds

  4. Laboratory investigation of chemical and physical properties of soot-containing aerosols 

    E-Print Network [OSTI]

    Zhang, Dan

    2006-08-16

    are conducted using a threewavelength Nephelometer and a multi-path extinction cell. Coating of H2SO4 is found to increase the single scattering albedo (SSA) of soot particles which has impact on the aerosol direct radiative effect. Other laboratory techniques...

  5. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  6. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  7. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single layer cloud

    E-Print Network [OSTI]

    Klein, Stephen A.

    2009-01-01

    humidity above stratiform clouds on indirect aerosol climateOverview of Arctic cloud and radiation characteristics. J.of Arctic low-level clouds observed during the FIRE Arctic

  8. AEROSOL ABSORPTION IN CLOUDY SCENES USING PASSIVE SATELLITE INSTRUMENTS

    E-Print Network [OSTI]

    Graaf, Martin de

    AEROSOL ABSORPTION IN CLOUDY SCENES USING PASSIVE SATELLITE INSTRUMENTS M. de Graaf, L.G. Tilstra information has become available from active space-based sensors and some dedicated field campaigns on aerosol-absorption, is the Absorbing Aerosol Index (AAI), which can indicate absorbing aerosols overlying clouds. The AAI is available

  9. AERONET: The Aerosol Robotic Network

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  10. Sensitivity of CAM5-Simulated Arctic Clouds and Radiation to Ice Nucleation Parameterization

    SciTech Connect (OSTI)

    Xie, Shaocheng; Liu, Xiaohong; Zhao, Chuanfeng; Zhang, Yuying

    2013-08-01

    Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model version 5 to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN number concentrations at all latitudes while changes in cloud amount and cloud properties are mainly seen in high latitudes and middle latitude storm tracks. In the Arctic, there is a considerable increase in mid-level clouds and a decrease in low clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and the large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path due to the slow-down of the Bergeron-Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low cloud simulations over most of the Arctic, but produces too many mid-level clouds. Considerable improvements are seen in the simulated low clouds and their properties when compared to Arctic ground-based measurements. Issues with the observations and the model-observation comparison in the Arctic region are discussed.

  11. The Mass Distribution and Assembly of the Milky Way from the Properties of the Magellanic Clouds

    SciTech Connect (OSTI)

    Busha, Michael T.; Marshall, Philip J.; Wechsler, Risa H.; Klypin, Anatoly; Primack, Joel; /UC, Santa Cruz, Phys. Dept.

    2012-02-29

    We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {Lambda}CDM universe. The large, high-resolution Bolshoi cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior probability distribution function (PDF) for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2{sup +0.7} - {sub 0.4}(stat.){sup +0.3} - {sub 0.3}(sys.) x 10{sup 12} M {circle_dot} (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 10{sup 12} M {circle_dot} halos are accreted over a wide range of epochs over the last 10 Gyr, we find a {approx}72% probability that the MCs were accreted within the last Gyr, and a 50% probability that they were accreted together.

  12. Project Overview: Cumulus Humilis Aerosol Processing Study (CHAPS): Proposed Summer 2007 ASP Field Campaign

    SciTech Connect (OSTI)

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.; Hostetler, Chris A.; Ferrare, Richard

    2006-05-18

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Center’s High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by these observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.

  13. The Roles of Cloud Drop Effective Radius and LWP in Determining Rain Properties in Marine Stratocumulus

    SciTech Connect (OSTI)

    Rosenfeld, Daniel; Wang, Hailong; Rasch, Philip J.

    2012-07-04

    Numerical simulations described in previous studies showed that adding cloud condensation nuclei to marine stratocumulus can prevent their breakup from closed into open cells. Additional analyses of the same simulations show that the suppression of rain is well described in terms of cloud drop effective radius (re). Rain is initiated when re near cloud top is around 12-14 um. Cloud water starts to get depleted when column-maximum rain intensity (Rmax) exceeds 0.1 mm h-1. This happens when cloud-top re reaches 14 um. Rmax is mostly less than 0.1 mm h-1 at re<14 um, regardless of the cloud water path, but increases rapidly when re exceeds 14 um. This is in agreement with recent aircraft observations and theoretical observations in convective clouds so that the mechanism is not limited to describing marine stratocumulus. These results support the hypothesis that the onset of significant precipitation is determined by the number of nucleated cloud drops and the height (H) above cloud base within the cloud that is required for cloud drops to reach re of 14 um. In turn, this can explain the conditions for initiation of significant drizzle and opening of closed cells providing the basis for a simple parameterization for GCMs that unifies the representation of both precipitating and non-precipitating clouds as well as the transition between them. Furthermore, satellite global observations of cloud depth (from base to top), and cloud top re can be used to derive and validate this parameterization.

  14. The Evolution of the Physicochemical Properties of Aerosols in the Atmosphere 

    E-Print Network [OSTI]

    Tomlinson, Jason

    2011-02-22

    with an average kappa?between 0.01 and 0.05 for all dry particle diameters. Cloud condensation nuclei closure was attained at a supersaturation of 0.2 percent for all particles within the free troposphere by either assuming a pure ammonium bisulfate composition...

  15. Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

    E-Print Network [OSTI]

    Ridley, David Andrew

    Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical ...

  16. Table S1: (a) Aircraft, ground and satellite based instruments, the aerosol properties used from these instruments and their availability on the two case study days.

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    properties used from these instruments and their availability on the two case studyTable S1: (a) Aircraft, ground and satellite based instruments, the aerosol de Monterrey + Y/N=> Yes/No => AOD observation is/is not available

  17. Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust

    E-Print Network [OSTI]

    2014-01-01

    California winter clouds and precipitation during CalWater 2011 mountain barrier. Together with the weak vertical transport,

  18. Intercomparison of the Cloud Water Phase among Global Climate Models

    SciTech Connect (OSTI)

    Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

    2014-03-27

    Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earth’s atmosphere and influence the Earth’s energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

  19. Retrieval of optical and microphysical properties of ice clouds using Atmospheric Radiation Measurement (ARM) data 

    E-Print Network [OSTI]

    Kinney, Jacqueline Anne

    2005-11-01

    The research presented here retrieves the cloud optical thickness and particle effective size of cirrus clouds using surface radiation measurements obtained during the Atmospheric Radiation Measurement (ARM) field campaign. ...

  20. ESTABLISHMENT OF CLOUD REGIMES FOR SYSTEMATIC EVALUATION OF CLOUD MODELING

    E-Print Network [OSTI]

    ESTABLISHMENT OF CLOUD REGIMES FOR SYSTEMATIC EVALUATION OF CLOUD MODELING Wuyin Lin1 , Yangang Liu Distinct cloud regimes can exist locally and globally. Such cloud regimes usually have close association, the classification of cloud regimes may be based on cloud properties and/or meteorological conditions. This study

  1. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect (OSTI)

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

  2. Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia

    E-Print Network [OSTI]

    Rizzo, LV; Artaxo, P; Karl, T; Guenther, AB; Greenberg, J

    2010-01-01

    wet season. Atmospheric Chemistry and Physics Discussions 9,carbonaceous aerosols. Atmospheric Chemistry and Physics 6,of the EU project OSOA. Atmospheric Chemistry and Physics 4,

  3. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global survey of the fundamental physical entity linking them

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal cloud solar reflectance for a constant liquid water path (Twomey 1977) if the clouds are not optically thick. Albrecht (1989) suggested that because the coalescence efficiency of small droplets is lower than

  4. At this meeting: Oral presentation: Cloud Properties From (A)ATSR (Caroline Poulsen)

    E-Print Network [OSTI]

    Oxford, University of

    sensors including radars, an infrared and microwave sounder unit, and microwave radiometer integrated vertically over each layer separated by cloud base. This strategy makes it possible to evaluate. Recent progress in satellite sensor technology, exempli- fied by hyperspectral sounders and cloud

  5. Biomass burning and pollution aerosol over North America: Organic components and their influence on spectral optical properties and

    E-Print Network [OSTI]

    Clarke, Antony

    Biomass burning and pollution aerosol over North America: Organic components and their influence Received 11 July 2006; revised 5 April 2007; accepted 19 April 2007; published 9 June 2007. [1] Thermal and pollution plumes identified from trace gas measurements were evaluated for their aerosol physiochemical

  6. Final Report for �¢����Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)�¢��� (DE-SC0002003) for 8/15/2009 through 8/14/2012

    SciTech Connect (OSTI)

    Lynn M. Russell; Richard C.J. Somerville

    2012-11-05

    Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by �¢����nudging�¢��� to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

  7. ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2013, VOL. 6, NO. 1, 39-43 Effects of Clouds and Aerosols on Surface Radiation Budget Inferred from

    E-Print Network [OSTI]

    Dong, Xiquan

    of Atmospheric Physics, NUIST, Nanjing 210044, China 3 Global Change and Earth System Science (GCESS), Beijing Radiative Effects (AREs) are 12.7, ­37.6, and ­24.9 W m­2 , indicating that aerosols have LW warming impact have much stronger LW warming effect and SW cooling effect on the surface radiation budget than AREs

  8. Atmospheric Rivers Coming to a Cloud Near You

    SciTech Connect (OSTI)

    Leung, Ruby

    2014-03-29

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  9. Atmospheric Rivers Coming to a Cloud Near You

    ScienceCinema (OSTI)

    Leung, Ruby

    2014-06-12

    Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

  10. New insights to cloud seeding for enhancing precipitation and hail suppression

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    that seeding of thin super-cooled layer clouds could glaciate the cloud and so create light snow. This has been (Rosenfeld, 2000) particulate air pollution. We "seed" the clouds negatively by pollution aerosols on a much

  11. UNDERSTANDING THE INFLUENCES OF ATMOSPHERIC AEROSOLS ON CLIMATE AND CLIMATE CHANGE

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    remarks #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS AS SEEN FROM SPACE Fire plumes from southern Mexico transported north into Gulf of Mexico. #12;CLOUD BRIGHTENING BY SHIP TRACKS Satellite photo off

  12. Phase Transformations of the Ternary System (NH4)2SO4-H2SO4-H2O and the Implications for Cirrus Cloud Formation

    E-Print Network [OSTI]

    the presence of NH4 + ions in the aerosol of the upper troposphere. Low-temperature ternary phase diagrams distribution alters the cloud's radiative properties, persistence, and surface area available for heterogeneous radiation, which insulates or warms Earth, and scattering the sun's visible radiation upward, thus cooling

  13. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site During the May 2003 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter By SarahMODELING CLOUD1 H( 7 Be, 8Measurement and

  14. A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID

    E-Print Network [OSTI]

    Hohaus, T.

    In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

  15. Clouds and Chemistry: Ultracool Dwarf Atmospheric Properties from Optical and Infrared Colors

    E-Print Network [OSTI]

    M. S. Marley; S. Seager; D. Saumon; K. Lodders; A. S. Ackerman; R. Freedman; X Fan

    2001-11-16

    The optical and infrared colors of L and T dwarfs are sensitive to cloud sedimentation and chemical equilibrium processes in their atmospheres. The i'-z' vs. J-K color-color diagram provides a window into diverse atmospheric processes mainly because different chemical processes govern each color, and cloud opacity largely affects J-K but not i'-z'. Using theoretical atmosphere models that include for the first time a self-consistent treatment of cloud formation, we present an interpretation of the i'-z' vs. J-K color trends of known L and T dwarfs. We find that the i'-z' color is extremely sensitive to chemical equilibrium assumptions: chemical equilibrium models accounting for cloud sedimentation predict redder i'-z' colors--by up to 2 magnitudes--than models that neglect sedimentation. We explore the previously known J-K color trends where objects first become redder, then bluer with decreasing effective temperature. Only models that include sedimentation of condensates are able to reproduce these trends. We find that the exact track of a cooling brown in J-K (and i'-z') is very sensitive to the details of clouds, in particular to the efficiency of sedimentation of condensates in its atmosphere. We also find that clouds still affect the strength of the J, H, and K band fluxes of even the coolest T dwarfs. In addition, we predict the locus in the i'-z' vs. J-K color-color diagram of brown dwarfs cooler than yet discovered.

  16. MAGIC: Marine ARM GPCI Investigation of Clouds

    SciTech Connect (OSTI)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  17. Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia

    SciTech Connect (OSTI)

    Kanniah, K. D.; Beringer, J.; Tapper, N. J.; Long, Charles N.

    2010-05-01

    We investigated the effect of aerosols and clouds on the Net Ecosystem Productivity (NEP) of savannas in northern Australia using aerosol optical depth, clouds and radiation data from the Atmospheric Radiation Measurement (ARM) site in Darwin and carbon flux data measured from eddy covariance techniques from a site at Howard Springs, 35km southeast of Darwin. Generally we found that the concentration of aerosols in this region was relatively low than observed at other sites, therefore the proportion of diffuse radiation reaching the earths surface was only ~ 30%. As a result, we observed only a modest change in carbon uptake under aerosol laden skies and there was no significant difference for dry season Radiation Use Efficiency (RUE) between clear sky, aerosols or thin clouds. On the other hand thick clouds in the wet season produce much more diffuse radiation than aerosols or thin clouds and therefore the initial canopy quantum efficiency was seen to increase 45 and 2.5 times more than under thin clouds and aerosols respectively. The normalized carbon uptake under thick clouds is 57% and 50% higher than under aerosols and thin clouds respectively even though the total irradiance received under thick clouds was reduced 59% and 50% than under aerosols and thin clouds respectively. However, reduction in total irradiance decreases the mean absolute carbon uptake as much as 22% under heavy cloud cover compared to thin clouds or aerosols. Thus, any increase in aerosol concentration or cloud cover that can enhance the diffuse component may have large impacts on productivity in this region.

  18. Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment

    E-Print Network [OSTI]

    September 2007; published 20 December 2007. [1] Measurements from the US Department of Energy Atmospheric or activation through cloud-phase chemistry could provide alternative explanations for M-PACE observations in general cir- culation models, the US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM

  19. IMPLICATIONS OF INFALLING Fe II-EMITTING CLOUDS IN ACTIVE GALACTIC NUCLEI: ANISOTROPIC PROPERTIES

    SciTech Connect (OSTI)

    Ferland, Gary J. [Department of Physics, University of Kentucky, Lexington, KY 40506 (United States); Hu Chen; Wang Jianmin [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Baldwin, Jack A. [Department of Physics and Astronomy, Michigan State University, Lansing, MI (United States); Porter, Ryan L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Van Hoof, Peter A. M. [Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels (Belgium); Williams, R. J. R. [AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom)

    2009-12-10

    We investigate consequences of the discovery that Fe II emission in quasars, one of the spectroscopic signatures of 'Eigenvector 1', may originate in infalling clouds. Eigenvector 1 correlates with the Eddington ratio L/L {sub Edd} so that Fe II/Hbeta increases as L/L {sub Edd} increases. We show that the 'force multiplier', the ratio of gas opacity to electron scattering opacity, is approx10{sup 3}-10{sup 4} in Fe II-emitting gas. Such gas would be accelerated away from the central object if the radiation force is able to act on the entire cloud. As had previously been deduced, infall requires that the clouds have large column densities so that a substantial amount of shielded gas is present. The critical column density required for infall to occur depends on L/L {sub Edd}, establishing a link between Eigenvector 1 and the Fe II/Hbeta ratio. We see predominantly the shielded face of the infalling clouds rather than the symmetric distribution of emitters that has been assumed. The Fe II spectrum emitted by the shielded face is in good agreement with observations thus solving several long-standing mysteries in quasar emission lines.

  20. Marine aerosols

    E-Print Network [OSTI]

    Saltzman, ES

    2009-01-01

    proper- ties found in the marine boundary layer over theand R. E. Larson (1994), Marine boundary layer measurementsand T. Hoffmann (2002), Marine aerosol formation from

  1. THE HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). VI. THE DISTRIBUTION AND PROPERTIES OF MOLECULAR CLOUD ASSOCIATIONS IN M31

    SciTech Connect (OSTI)

    Kirk, J. M. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gear, W. K.; Smith, M. W. L.; Ford, G.; Eales, S. A.; Gomez, H. L. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Fritz, J.; Baes, M.; De Looze, I.; Gentile, G.; Gordon, K.; Verstappen, J.; Viaene, S. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, G. J. [UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); O'Halloran, B. [Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Madden, S. C.; Lebouteiller, V. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service, Paris, F-91190 Gif-sur-Yvette (France); Roman-Duval, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boselli, A. [Laboratoire d'Astrophysique de Marseille, UMR 7326 CNRS, 38 rue F. Joliot-Curie, F-13388 Marseille (France); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); and others

    2015-01-01

    In this paper we present a catalog of giant molecular clouds (GMCs) in the Andromeda (M31) galaxy extracted from the Herschel Exploitation of Local Galaxy Andromeda (HELGA) data set. GMCs are identified from the Herschel maps using a hierarchical source extraction algorithm. We present the results of this new catalog and characterize the spatial distribution and spectral energy properties of its clouds based on the radial dust/gas properties found by Smith et al. A total of 326 GMCs in the mass range 10{sup 4}-10{sup 7} M {sub ?} are identified; their cumulative mass distribution is found to be proportional to M {sup –2.34}, in agreement with earlier studies. The GMCs appear to follow the same correlation of cloud mass to L {sub CO} observed in the Milky Way. However, comparison between this catalog and interferometry studies also shows that the GMCs are substructured below the Herschel resolution limit, suggesting that we are observing associations of GMCs. Following Gordon et al., we study the spatial structure of M31 by splitting the observed structure into a set of spiral arms and offset rings. We fit radii of 10.3 and 15.5 kpc to the two most prominent rings. We then fit a logarithmic spiral with a pitch angle of 8.°9 to the GMCs not associated with either ring. Last, we comment on the effects of deprojection on our results and investigate the effect different models for M31's inclination will have on the projection of an unperturbed spiral arm system.

  2. Direct and semidirect aerosol effects of Southern African biomass burning aerosol

    SciTech Connect (OSTI)

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-21

    The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

  3. Thermal and Fragmentation Properties of Star-forming Clouds in Low-metallicity Environments

    E-Print Network [OSTI]

    K. Omukai; T. Tsuribe; R. Schneider; A. Ferrara

    2005-03-01

    The thermal and chemical evolution of star-forming clouds is studied for different gas metallicities, Z, using the model of Omukai (2000), updated to include deuterium chemistry and the effects of cosmic microwave background (CMB) radiation. HD-line cooling dominates the thermal balance of clouds when Z \\~ 10^{-5}-10^{-3} Z_sun and density ~10^{5} cm^{-3}. Early on, CMB radiation prevents the gas temperature to fall below T_CMB, although this hardly alters the cloud thermal evolution in low-metallicity gas. From the derived temperature evolution, we assess cloud/core fragmentation as a function of metallicity from linear perturbation theory, which requires that the core elongation E := (b-a)/a > E_NL ~ 1, where a (b) is the short (long) core axis length. The fragment mass is given by the thermal Jeans mass at E = E_NL. Given these assumptions and the initial (gaussian) distribution of E we compute the fragment mass distribution as a function of metallicity. We find that: (i) For Z=0, all fragments are very massive, > 10^{3}M_sun, consistently with previous studies; (ii) for Z>10^{-6} Z_sun a few clumps go through an additional high density (> 10^{10} cm^{-3}) fragmentation phase driven by dust-cooling, leading to low-mass fragments; (iii) The mass fraction in low-mass fragments is initially very small, but at Z ~ 10^{-5}Z_sun it becomes dominant and continues to grow as Z is increased; (iv) as a result of the two fragmentation modes, a bimodal mass distribution emerges in 0.01 0.1Z_sun, the two peaks merge into a singly-peaked mass function which might be regarded as the precursor of the ordinary Salpeter-like IMF.

  4. Perturbed Physics Ensemble Simulations of Cirrus on the Cloud System-resolving Scale

    SciTech Connect (OSTI)

    Muhlbauer, Andreas; Berry, Elizabeth; Comstock, Jennifer M.; Mace, Gerald G.

    2014-04-16

    In this study, the effect of uncertainties in the parameterization of ice microphysical processes and initial conditions on the variability of cirrus microphysical and radiative properties are investigated in a series of cloud system-resolving perturbed physics ensemble (PPE) and initial condition ensemble (ICE) simulations. Three cirrus cases representative of mid-latitude, subtropical and tropical cirrus are examined. It is found that the variability in cirrus properties induced by perturbing uncertain parameters in ice microphysics parameterizations outweighs the variability induced by perturbing the initial conditions in midlatitude and subtropical cirrus. However, in tropical anvil cirrus the variability in the PPE and ICE simulations is about the same order of magnitude. The cirrus properties showing the largest sensitivity are ice water content (IWC) and cloud thickness whereas the averaged high cloud cover is only marginally affected. Changes in cirrus ice water path and outgoing longwave radiation are controlled primarily by changes in IWC and cloud thickness but not by changes is the averaged high cloud cover. The change in the vertical distribution of cloud fraction and cloud thickness is caused by changes in cirrus cloud base whereas cloud top is not sensitive to either perturbed physics or perturbed initial conditions. In all cirrus cases, the top three parameters controlling the microphysical variability and radiative impact of cirrus clouds are ice fall speeds, ice autoconversion size thresholds and heterogeneous ice nucleation. Changes in the ice deposition coefficient do not affect the ice water path and outgoing longwave radiation. Similarly, changes in the number concentration of aerosols available for homogeneous freezing have virtually no effect on the microphysical and radiative properties of midlatitude and subtropical cirrus but only little impact on tropical anvil cirrus. Overall, the sensitivity of cirrus microphysical and radiative properties to uncertainties in ice microphysics is largest for midlatitude cirrus and smallest for tropical anvil cirrus.

  5. New insights to cloud seeding for enhancing precipitation and for hail suppression Daniel Rosenfeld

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    New insights to cloud seeding for enhancing precipitation and for hail suppression Daniel Rosenfeld microphysical observations of the impacts of aerosols on cloud microstructure and precipitation forming- forming processes to the role of aerosols in the rate of conversion of cloud droplets into precipitation

  6. Clouds, Aerosols and Precipitation in the Marine Boundary Layer (CAP-MBL) AMF Deployment Graciosa Island, Azores, NE Atlantic Ocean May 2009-December 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j eCommitteeCloud-Resolving3

  7. The contribution of fungal spores and bacteria to regional and global aerosol number and ice nucleation immersion freezing rates

    E-Print Network [OSTI]

    Spracklen, D. V.

    Primary biological aerosol particles (PBAPs) may play an important role in aerosol–climate interactions, in particular by affecting ice formation in mixed phase clouds. However, the role of PBAPs is poorly understood because ...

  8. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect (OSTI)

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  9. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    SciTech Connect (OSTI)

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)���¢��������s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9�������°��������2.5�������° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1�������° x 1�������°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 �������µm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4�������º by 5�������º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between ���¢��������clean marine���¢������� aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses

  10. The effect of ice crystal surface roughness on the retrieval of ice cloud microphysical and optical properties 

    E-Print Network [OSTI]

    Xie, Yu

    2007-09-17

    ?µm). The discrete ordinates radiative transfer (DISORT) model is used to compute the radiances for a set of optical thicknesses, particle effective sizes, viewing and illumination angles, and cloud temperatures. A parameterization of cloud bi...

  11. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  12. Final Report - Satellite Calibration and Verification of Remotely Sensed Cloud and Radiation Properties Using ARM UAV Data (February 28, 1995 - February 28, 1998)

    SciTech Connect (OSTI)

    Minnis, Patrick

    1998-02-28

    The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.

  13. Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site

    E-Print Network [OSTI]

    Dong, Xiquan

    Comparison of CERES-MODIS stratus cloud properties with ground- based measurements at the DOE ARM are compared with observations taken at the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data

  14. Development of Cloud Microphysical Property Retrievals Using the University of Wisconsin Arctic High Spectral Resolution Lidar

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    .6 2.8 1/(m str) 1e-14 1e-13 1e-12 1e-11 1e-10 1e-9 1e-8 1e-7 October 9,2004 Time (UT) Altitude:50 21:55 22:00 22:05 22:10 22:15 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1/(m str) 1e-14 1e-13 1e-12 1e-11 1- eterization and Modeling Workgroup to increase our ability to simu- late mixed-phase boundary layer clouds

  15. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect (OSTI)

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  16. Mass Spectral Evidence That Small Changes in Composition Caused by Oxidative Aging Processes Alter Aerosol CCN Properties

    E-Print Network [OSTI]

    Mass Spectral Evidence That Small Changes in Composition Caused by Oxidative Aging Processes Alter that small changes in particle chemical composition caused by oxidation could increase the CCN activity increased cloud condensation nuclei (CCN) activity compared to their hydro- phobic counterparts. At present

  17. Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing

    E-Print Network [OSTI]

    Leibensperger, Eric Michael

    We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 ...

  18. Electron-Cloud Build-Up: Summary

    E-Print Network [OSTI]

    Furman, M.A.

    2007-01-01

    Properties In?uencing Electron Cloud Phenomena,” Appl. Surf.Dissipation of the Electron Cloud,” Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

  19. A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS

    E-Print Network [OSTI]

    A SYNERGY OF MICROWAVE CLOUD TOMOGRAPHY AND SCANNING RADAR: MOVING TOWARD A 3D VIEW OF CLOUDS D complementary techniques, i.e., cloud microwave tomography and scanning radar, to retrieve 3D cloud properties the sixth moment of cloud droplets, while cloud tomography, by remotely probing cloud microwave emission

  20. Non-intrusive characterization of heat transfer fluid aerosol formation 

    E-Print Network [OSTI]

    Krishna, Kiran

    2001-01-01

    in process equipment. Predictive models relating the aerosol formation distances, aerosol droplet size, and volume concentrations to bulk liquid pressure, temperature, fluid properties, leak size and ambient conditions are developed. These models will be used...

  1. Flood or Drought: How Do Aerosols Affect Precipitation?

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Flood or Drought: How Do Aerosols Affect Precipitation? Daniel Rosenfeld,1 * Ulrike Lohmann,2 and the initiation of precipitation. Large concentrations of human-made aerosols have been reported to both decrease hand, heavily polluted clouds evaporate much of their water before precipitation can occur, if they can

  2. BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL AND SURFACE PROPERTIES FROM THE ORAC-AATSR RETRIEVAL

    E-Print Network [OSTI]

    Oxford, University of

    BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL@atm.ox.ac.uk AEROSOL AND GAS PROPERTIESSEASONALITY OF BURNING Biomass burning in the Amazon shows strong seasonal in aerosol optical depth (AOD) and effective radius, linked to biomass burning through detected fires. Use

  3. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; et al

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore »for concise representation in models. Values of the aerosol hygroscopicity parameter, ?, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  4. The close binary properties of massive stars in the Milky Way and low-metallicity Magellanic Clouds

    SciTech Connect (OSTI)

    Moe, Maxwell; Di Stefano, Rosanne, E-mail: mmoe@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-10, Cambridge, MA 02138 (United States)

    2013-12-01

    In order to understand the rates and properties of Type Ia and Type Ib/c supernovae, X-ray binaries, gravitational wave sources, and gamma-ray bursts as a function of galactic environment and cosmic age, it is imperative that we measure how the close binary properties of O- and B-type stars vary with metallicity. We have studied eclipsing binaries with early B main-sequence primaries in three galaxies with different metallicities: the Large and Small Magellanic Clouds (LMC and SMC, respectively) and the Milky Way (MW). The observed fractions of early B stars that exhibit deep eclipses 0.25 < ?m (mag) < 0.65 and orbital periods 2 < P (days) < 20 in the MW, LMC, and SMC span a narrow range of (0.7-1.0)%, which is a model-independent result. After correcting for geometrical selection effects and incompleteness toward low-mass companions, we find for early B stars in all three environments (1) a close binary fraction of (22 ± 5)% across orbital periods 2 < P (days) < 20 and mass ratios q = M {sub 2}/M {sub 1} > 0.1, (2) an intrinsic orbital period distribution slightly skewed toward shorter periods relative to a distribution that is uniform in log P, (3) a mass-ratio distribution weighted toward low-mass companions, and (4) a small, nearly negligible excess fraction of twins with q > 0.9. Our fitted parameters derived for the MW eclipsing binaries match the properties inferred from nearby, early-type spectroscopic binaries, which further validates our results. There are no statistically significant trends with metallicity, demonstrating that the close binary properties of massive stars do not vary across metallicities –0.7 < log(Z/Z {sub ?}) < 0.0 beyond the measured uncertainties.

  5. A13B-0215: Case study of the 9 April 2009 `brown' cloud: Observations of unusually high cloud droplet concentrations in Saudi Arabia, David J Delene, University of North Dakota (delene@aero.und.edu; http://aerosol.atmos.und.edu)

    E-Print Network [OSTI]

    Delene, David J.

    , University of North Dakota (delene@aero.und.edu; http://aerosol.atmos.und.edu) ` Objective Photographs of ice

  6. The role of precipitation size distributions in km-scale NWP simulations of intense precipitation: Evaluation of cloud properties and surface precipitation

    SciTech Connect (OSTI)

    Van Weverberg K.; Vogelmann A.; van Lipzig, N. P. M.; Delobbec, L.

    2012-04-01

    We investigate the sensitivity of simulated cloud properties and surface precipitation to assumptions regarding the size distributions of the precipitating hydrometeors in a one-moment bulk microphysics scheme. Three sensitivity experiments were applied to two composites of 15 convective and 15 frontal stratiform intense precipitation events observed in a coastal midlatitude region (Belgium), which were evaluated against satellite-retrieved cloud properties and radar-rain-gauge derived surface precipitation. It is found that the cloud optical thickness distribution was well captured by all experiments, although a significant underestimation of cloudiness occurred in the convective composite. The cloud-top-pressure distribution was improved most by more realistic snow size distributions (including a temperature-dependent intercept parameter and non-spherical snow for the calculation of the slope parameter), due to increased snow depositional growth at high altitudes. Surface precipitation was far less sensitive to whether graupel or hail was chosen as the rimed ice species, as compared to previous idealized experiments. This smaller difference in sensitivity could be explained by the stronger updraught velocities and higher freezing levels in the idealized experiments compared to typical coastal midlatitude environmental conditions.

  7. Ice Nucleation of Bare and Sulfuric Acid-coated Mineral Dust Particles and Implication for Cloud Properties

    SciTech Connect (OSTI)

    Kulkarni, Gourihar R.; Sanders, Cassandra N.; Zhang, Kai; Liu, Xiaohong; Zhao, Chun

    2014-08-27

    Ice nucleation properties of different dust species coated with soluble material are not well understood. We determined the ice nucleation ability of bare and sulfuric acid coated mineral dust particles as a function of temperature (-25 to -35 deg C) and relative humidity with respect to water (RHw). Five different mineral dust species: Arizona test dust (ATD), illite, montmorillonite, quartz and kaolinite were dry dispersed and size-selected at 150 nm and exposed to sulfuric acid vapors in the coating apparatus. The condensed sulfuric acid soluble mass fraction per particle was estimated from the cloud condensation nuclei activated fraction measurements. The fraction of dust particles nucleating ice at various temperatures and RHw was determined using a compact ice chamber. In water-subsaturated conditions, compared to bare dust particles, we found that only coated ATD particles showed suppression of ice nucleation ability while other four dust species did not showed the effect of coating on the fraction of particles nucleating ice. The results suggest that interactions between the dust surface and sulfuric acid vapor are important, such that interactions may or may not modify the surface via chemical reactions with sulfuric acid. At water-supersaturated conditions we did not observed the effect of coating, i.e. the bare and coated dust particles had similar ice nucleation behavior.

  8. First observations of tracking clouds using scanning ARM cloud radars

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud fieldmore »and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.« less

  9. First observations of tracking clouds using scanning ARM cloud radars

    SciTech Connect (OSTI)

    Borque, Paloma; Giangrande, Scott; Kollias, Pavlos

    2014-12-01

    Tracking clouds using scanning cloud radars can help to document the temporal evolution of cloud properties well before large drop formation (‘‘first echo’’). These measurements complement cloud and precipitation tracking using geostationary satellites and weather radars. Here, two-dimensional (2-D) Along-Wind Range Height Indicator (AW-RHI) observations of a population of shallow cumuli (with and without precipitation) from the 35-GHz scanning ARM cloud radar (SACR) at the DOE Atmospheric Radiation Measurements (ARM) program Southern Great Plains (SGP) site are presented. Observations from the ARM SGP network of scanning precipitation radars are used to provide the larger scale context of the cloud field and to highlight the advantages of the SACR to detect the numerous, small, non-precipitating cloud elements. A new Cloud Identification and Tracking Algorithm (CITA) is developed to track cloud elements. In CITA, a cloud element is identified as a region having a contiguous set of pixels exceeding a preset reflectivity and size threshold. The high temporal resolution of the SACR 2-D observations (30 sec) allows for an area superposition criteria algorithm to match cloud elements at consecutive times. Following CITA, the temporal evolution of cloud element properties (number, size, and maximum reflectivity) is presented. The vast majority of the designated elements during this cumulus event were short-lived non-precipitating clouds having an apparent life cycle shorter than 15 minutes. The advantages and disadvantages of cloud tracking using an SACR are discussed.

  10. Reply to Comments on ``Seasonal Variation of the Physical Properties of Marine Boundary Layer Clouds off the California Coast''

    E-Print Network [OSTI]

    Clouds off the California Coast'' WUYIN LIN* AND MINGHUA ZHANG School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York NORMAN G. LOEB NASA Langley Research Center, Hampton the Moderate Resolution Imaging Spectroradi- ometer­Clouds and the Earth's Radiant Energy System (MODIS

  11. Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process

    SciTech Connect (OSTI)

    Shaw, Raymond A.

    2014-10-28

    This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

  12. In-Situ Characterization of Cloud Condensation Nuclei, Interstitial, and background Particles using Single Particle Mass Spectrometer, SPLAT II

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Imre, D.; Earle, Michael; Easter, Richard C.; Korolev, Alexei; Leaitch, W. R.; Liu, Peter; Macdonald, A. M.; Ovchinnikov, Mikhail; Strapp, Walter

    2010-10-01

    Aerosol indirect effect remains the most uncertain aspect of climate change modeling because proper test requires knowledge of individual particles sizes and compositions with high spatial and temporal resolution. We present the first deployment of a single particle mass spectrometer (SPLAT II) that is operated in a dual data acquisition mode to measure all the required individual particle properties with sufficient temporal resolution to definitively resolve the aerosol-cloud interaction in this exemplary case. We measured particle number concentrations, asphericity, and individual particle size, composition, and density with better than 60 seconds resolution. SPLAT II measured particle number concentrations between 70 particles cm-3and 300 particles cm-3, an average particle density of 1.4 g cm-3. Found that most particles are composed of oxygenated organics, many of which are mixed with sulfates. Biomass burn particles some with sulfates were prevalent, particularly at higher altitudes, and processed sea-salt was observed over the ocean. Analysis of cloud residuals shows that with time cloud droplets acquire sulfate by the reaction of peroxide with SO2. Based on the particle mass spectra and densities we find that the compositions of cloud condensation nuclei are similar to those of background aerosol but, contain on average ~7% more sulfate, and do not include dust and metallic particles. A comparison between the size distributions of background, activated, and interstitial particles shows that while nearly none of the activated particles is smaller than 115 nm, more than 80% of interstitial particles are smaller than 115 nm. We conclude that for this cloud the most important difference between CCN and background aerosol is particle size although having more sulfate also helps.

  13. Developing models of aerosol representation to investigate composition, evolution, optical properties, and CCN spectra using measurements of size-resolved hygroscopicity 

    E-Print Network [OSTI]

    Gasparini, Roberto

    2006-08-16

    , size and hygroscopicity information were combined to model the aerosol as a population of multi-component particles. With this model, the aerosol hygroscopic growth factor f(RH), relating the submicron scattering at high RH to that at low RH...

  14. TOWARDS A CLOUD CEILOMETER NETWORK REPORTING MIXING LAYER HEIGHT Wiel M.F. Wauben

    E-Print Network [OSTI]

    Wauben, Wiel

    profiles if the aerosol concentrations are not too low. Since aerosol is well mixed in the atmospheric in the backscatter profile (cf. Wauben et al., 2006). Sometimes, medium and low clouds can also be missed or falsely1 TOWARDS A CLOUD CEILOMETER NETWORK REPORTING MIXING LAYER HEIGHT Wiel M.F. Wauben 1 , Marijn de

  15. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect (OSTI)

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

  16. Enhanced toxic cloud knockdown spray system for decontamination applications

    DOE Patents [OSTI]

    Betty, Rita G. (Rio Rancho, NM); Tucker, Mark D. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM); Lucero, Daniel A. (Albuquerque, NM); Levin, Bruce L. (Tijeras, NM); Leonard, Jonathan (Albuquerque, NM)

    2011-09-06

    Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

  17. Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation

    E-Print Network [OSTI]

    Cziczo, Daniel James

    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the ...

  18. Investigation of the Dynamical, Macrophysical and Radiative Properties of High Clouds Combining Satellite Observations and Climate Model Simulations 

    E-Print Network [OSTI]

    Li, Yue

    2012-02-14

    of the physical mechanism governing the fixed anvil temperature (FAT) hypothesis and test of FAT hypothesis with CTT measurements; and 3) the intercomparison of cloud fraction and radiative effects between satellite-based observations and reanalysis product...

  19. Atmospheric Aerosols and Cloud Condensation Nuclei

    E-Print Network [OSTI]

    Delene, David J.

    Vapor Pressure Ambient Vapor Pressure Top Plate Temperature = 297 K Bottom Plate Temperature = 292 K Maximum Supersautration = 1.0% Vapor Pressure ­ Ambient vapor pressure is linear from top to bottom. ­ Saturation vapor pressure is a curve from top to bottom. ­ A supersaturation exists between top and bottom

  20. The LANL Cloud-Aerosol Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S.Week Day Year(activeInforum LIFT ModelThe IronThe LANL

  1. Aerosol Science and Technology, 48:803812, 2014 Copyright C American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 48:803­812, 2014 Copyright C American Association for Aerosol of particle growth in the atmosphere, and many properties of the resulting mixed particles depend on organic. In this article, analytic equations are derived p(;d) for condensational growth in a continuously mixed flow

  2. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  3. On the relationship between stratospheric aerosols and nitrogen dioxide

    SciTech Connect (OSTI)

    Mills, M.J.; Langford, A.O.; O'Leary, T.J.; Arpag, K.; Miller, H.L.; Proffitt, M.H.; Sanders, R.W.; Solomon, S. (Aeronomy Laboratory, NOAA, Boulder, CO (United States) Univ. of Colorado, Boulder (United States))

    1993-06-18

    The authors report measurements of stratospheric column abundances of nitrogen dioxide above the Colorado mountains during Jan, Feb, and Mar 1992, following the arrival of the aerosol loading injected by Mt. Pinatubo. The column abundance data was correlated with concurrent lidar measurements which provided vertical aerosol profiles at the same site. Chemical reactions within polar stratospheric clouds have been shown to play a major role in ozone chemistry in the polar regions, and one could ask whether such clouds at mid latitudes could play a similar role. The sulfur dioxide loading due to the volcanic eruption provides an abrupt increase in sulfuric acid aerosol surface area in mid latitude areas, providing a convenient test of this question. Column NO[sub 2] densities are observed to fall, but also found to saturate at a certain stratospheric aerosol density.

  4. Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection

    E-Print Network [OSTI]

    . The Antarctic shows less ozone loss due to reduction of polar stratospheric clouds, but strong circumpolar winds would enhance the Arctic ozone hole. Using diesel fuel to produce the aerosols is likely prohibitively

  5. Summertime Clouds over the Chukchi Sea Paquita Zuidema

    E-Print Network [OSTI]

    Zuidema, Paquita

    the cloud structure be modified by aerosols ? #12;Strategy: 1. Evaluate SHEBA cloud/radiation data from July optical depth estimates made from the surface-based remote sensors (e.g., Zuidema et al., 2005). · SHEBA, and are effective infrared emitters. The infrared emission is at temperatures greater than 0, thus warming

  6. A Herschel study of the properties of starless cores in the Polaris Flare dark cloud region using PACS and SPIRE

    E-Print Network [OSTI]

    Ward-Thompson, D; André, P; Saraceno, P; Didelon, P; Könyves, V; Schneider, N; Abergel, A; Baluteau, J -P; Bernard, J -Ph; Bontemps, S; Cambrésy, L; Cox, P; Di Francesco, J; Di Giorgio, A M; Griffin, M; Hargrave, P; Huang, M; Li, J Z; Martin, P; Men'shchikov, A; Minier, V; Molinari, S; Motte, F; Olofsson, G; Pezzuto, S; Russeil, D; Sauvage, M; Sibthorpe, B; Spinoglio, L; Testi, L; White, G; Wilson, C; Woodcraft, A; Zavagno, A

    2010-01-01

    The Polaris Flare cloud region contains a great deal of extended emission. It is at high declination and high Galactic latitude. It was previously seen strongly in IRAS Cirrus emission at 100 microns. We have detected it with both PACS and SPIRE on Herschel. We see filamentary and low-level structure. We identify the five densest cores within this structure. We present the results of a temperature, mass and density analysis of these cores. We compare their observed masses to their virial masses, and see that in all cases the observed masses lie close to the lower end of the range of estimated virial masses. Therefore, we cannot say whether they are gravitationally bound prestellar cores. Nevertheless, these are the best candidates to be potentialprestellar cores in the Polaris cloud region.

  7. The GCM Oriented Calipso Cloud Product (CALIPSO-GOCCP) H. Chepfer(1)

    E-Print Network [OSTI]

    Dufresne, Jean-Louis

    ;2 Abstract. This paper presents the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) Cloud Product (CALIPSO-GOCCP) designed to evaluate the cloudiness simulated by General the effects of viewing geometry, sensors' sensitivity and vertical overlap of cloud layers. For this purpose

  8. A MISR cloud-type classifier using reduced Support Vector Machines

    E-Print Network [OSTI]

    A MISR cloud-type classifier using reduced Support Vector Machines Dominic Mazzoni1 , ´Akos Horv-level cloud-type classifier for the Multi-angle Imaging SpectroRadiometer (MISR), an in- strument used to study clouds and aerosols from NASA's Terra satellite. To augment MISR's existing high-level products

  9. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    E-Print Network [OSTI]

    Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations October 2011; accepted 26 October 2011; published 24 December 2011. [1] Arctic clouds simulated-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its

  10. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Third Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; DA Randall; CJ Flynn

    2008-06-30

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. This report describes the aerosol optical depth (AOD) product.

  11. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian (Port Jefferson, NY); Kulkarni, Pramod (Port Jefferson Station, NY)

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  12. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model - First Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; D Randall

    2007-12-30

    In 2008, the Atmospheric Radiation Measurement (ARM) program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone is ‘initial formulation of the algorithm to produce and make available, new continuous time series of retrieved cloud , aerosol and dust properties, based on results from the ARM Mobile Facility deployment in Niger, Africa. The first quarter milestone has been achieved.

  13. ARM - Measurement - Aerosol optical properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Room NewsgovMeasurementsAdvectiveeffectiveproperties

  14. ARM - AOS Aerosol Properties Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 NewsUsers'Organization and Contact

  15. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  16. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  17. Preface: Crowds and Clouds

    E-Print Network [OSTI]

    2012-01-01

    crowdsourcing, cloud computing, big data, and Internetdata include “cloud computing,” “algorithms,” “filters,” “cloud of claims about cloud computing and big data settle

  18. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model

    SciTech Connect (OSTI)

    Jensen, M; Johnson, K; Mather, J; Randall, D

    2008-03-01

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties.

  19. Analysis of Cloud-resolving Simulations of a Tropical Mesoscale Convective System Observed during TWP-ICE: Vertical Fluxes and Draft Properties in Convective and Stratiform Regions

    SciTech Connect (OSTI)

    Mrowiec, Agnieszka A.; Rio, Catherine; Fridlind, Ann; Ackerman, Andrew; Del Genio, Anthony D.; Pauluis, Olivier; Varble, Adam; Fan, Jiwen

    2012-10-02

    We analyze three cloud-resolving model simulations of a strong convective event observed during the TWP-ICE campaign, differing in dynamical core, microphysical scheme or both. Based on simulated and observed radar reflectivity, simulations roughly reproduce observed convective and stratiform precipitating areas. To identify the characteristics of convective and stratiform drafts that are difficult to observe but relevant to climate model parameterization, independent vertical wind speed thresholds are calculated to capture 90% of total convective and stratiform updraft and downdraft mass fluxes. Convective updrafts are fairly consistent across simulations (likely owing to fixed large-scale forcings and surface conditions), except that hydrometeor loadings differ substantially. Convective downdraft and stratiform updraft and downdraft mass fluxes vary notably below the melting level, but share similar vertically uniform draft velocities despite differing hydrometeor loadings. All identified convective and stratiform downdrafts contain precipitation below ~10 km and nearly all updrafts are cloudy above the melting level. Cold pool properties diverge substantially in a manner that is consistent with convective downdraft mass flux differences below the melting level. Despite differences in hydrometeor loadings and cold pool properties, convective updraft and downdraft mass fluxes are linearly correlated with convective area, the ratio of ice in downdrafts to that in updrafts is ~0.5 independent of species, and the ratio of downdraft to updraft mass flux is ~0.5-0.6, which may represent a minimum evaporation efficiency under moist conditions. Hydrometeor loading in stratiform regions is found to be a fraction of hydrometeor loading in convective regions that ranges from ~10% (graupel) to ~90% (cloud ice). These findings may lead to improved convection parameterizations.

  20. Cloud Properties Working Group Low Clouds Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j eCommittee of

  1. Aerosol absorp+on from space M. de Graaf IMAU, 19 April 2013 Frasca+ 20111020T18:15:41

    E-Print Network [OSTI]

    Graaf, Martin de

    IMAU, 19 April 2013 Global annual mean Earth's energy budget for March 2000 ­ May 2004 (Wm2(radio)metry Cloud modelling Results Outlook #12; Aerosol absorp+on from

  2. Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

  3. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  4. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    SciTech Connect (OSTI)

    Shupe, Matthew

    2013-05-22

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  5. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  6. Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data

    SciTech Connect (OSTI)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2009-04-10

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5+-0.5 Wm-2. An alternative estimate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic Ta and satellite-retrieved Nd - Ta regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) estimate of -0.4+-0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7+-0.5 Wm-2, with a total estimate of -1.2+-0.4 Wm-2.

  7. Aerosol specification in single-column CAM5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lebassi-Habtezion, B.; Caldwell, P.

    2014-11-17

    The ability to run a global climate model in single-column mode is very useful for testing model improvements because single-column models (SCMs) are inexpensive to run and easy to interpret. A major breakthrough in Version 5 of the Community Atmosphere Model (CAM5) is the inclusion of prognostic aerosol. Unfortunately, this improvement was not coordinated with the SCM version of CAM5 and as a result CAM5-SCM initializes aerosols to zero. In this study we explore the impact of running CAM5-SCM with aerosol initialized to zero (hereafter named Default) and test three potential fixes. The first fix is to use CAM5'smore »prescribed aerosol capability, which specifies aerosols at monthly climatological values. The second method is to prescribe aerosols at observed values. The third approach is to fix droplet and ice crystal numbers at prescribed values. We test our fixes in four different cloud regimes to ensure representativeness: subtropical drizzling stratocumulus (based on the DYCOMS RF02 case study), mixed-phase Arctic stratocumulus (using the MPACE-B case study), tropical shallow convection (using the RICO case study), and summertime mid-latitude continental convection (using the ARM95 case study). Stratiform cloud cases (DYCOMS RF02 and MPACE-B) were found to have a strong dependence on aerosol concentration, while convective cases (RICO and ARM95) were relatively insensitive to aerosol specification. This is perhaps expected because convective schemes in CAM5 do not currently use aerosol information. Adequate liquid water content in the MPACE-B case was only maintained when ice crystal number concentration was specified because the Meyers et al. (1992) deposition/condensation ice nucleation scheme used by CAM5 greatly overpredicts ice nucleation rates, causing clouds to rapidly glaciate. Surprisingly, predicted droplet concentrations for the ARM95 region in both SCM and global runs were around 25 cm?3, which is much lower than observed. This finding suggests that CAM5 has problems capturing aerosol effects in this climate regime.« less

  8. On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, S.; Wang, M.; Ghan, S. J.; Ding, A.; Wang, H.; Zhang, K.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Takeamura, T.; et al

    2015-09-02

    Aerosol-cloud interactions continue to constitute a major source of uncertainty for the estimate of climate radiative forcing. The variation of aerosol indirect effects (AIE) in climate models is investigated across different dynamical regimes, determined by monthly mean 500 hPa vertical pressure velocity (?500), lower-tropospheric stability (LTS) and large-scale surface precipitation rate derived from several global climate models (GCMs), with a focus on liquid water path (LWP) response to cloud condensation nuclei (CCN) concentrations. The LWP sensitivity to aerosol perturbation within dynamic regimes is found to exhibit a large spread among these GCMs. It is in regimes of strong large-scale ascendmore »(?500 ?1) and low clouds (stratocumulus and trade wind cumulus) where the models differ most. Shortwave aerosol indirect forcing is also found to differ significantly among different regimes. Shortwave aerosol indirect forcing in ascending regimes is as large as that in stratocumulus regimes, which indicates that regimes with strong large-scale ascend are as important as stratocumulus regimes in studying AIE. It is further shown that shortwave aerosol indirect forcing over regions with high monthly large-scale surface precipitation rate (> 0.1 mm d?1) contributes the most to the total aerosol indirect forcing (from 64 to nearly 100 %). Results show that the uncertainty in AIE is even larger within specific dynamical regimes than that globally, pointing to the need to reduce the uncertainty in AIE in different dynamical regimes.« less

  9. Aerosol specification in single-column Community Atmosphere Model version 5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lebassi-Habtezion, B.; Caldwell, P. M.

    2015-03-27

    Single-column model (SCM) capability is an important tool for general circulation model development. In this study, the SCM mode of version 5 of the Community Atmosphere Model (CAM5) is shown to handle aerosol initialization and advection improperly, resulting in aerosol, cloud-droplet, and ice crystal concentrations which are typically much lower than observed or simulated by CAM5 in global mode. This deficiency has a major impact on stratiform cloud simulations but has little impact on convective case studies because aerosol is currently not used by CAM5 convective schemes and convective cases are typically longer in duration (so initialization is less important).more »By imposing fixed aerosol or cloud-droplet and crystal number concentrations, the aerosol issues described above can be avoided. Sensitivity studies using these idealizations suggest that the Meyers et al. (1992) ice nucleation scheme prevents mixed-phase cloud from existing by producing too many ice crystals. Microphysics is shown to strongly deplete cloud water in stratiform cases, indicating problems with sequential splitting in CAM5 and the need for careful interpretation of output from sequentially split climate models. Droplet concentration in the general circulation model (GCM) version of CAM5 is also shown to be far too low (~ 25 cm?3) at the southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site.« less

  10. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect (OSTI)

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

  11. Distinguishing Aerosol Impacts on Climate Over the Past Century

    SciTech Connect (OSTI)

    Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

    2008-08-22

    Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

  12. Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

  13. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Fourth Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; DA Randall; CJ Flynn

    2008-09-30

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone was the initial formulation of the algorithm for retrieval of these properties. The second quarter milestone included the time series of ARM-retrieved cloud properties and a year-long CCPP control simulation. The third quarter milestone included the time series of ARM-retrieved aerosol optical depth and a three-year CCPP control simulation. This final fourth quarter milestone includes the time-series of aerosol and dust properties and a decade-long CCPP control simulation.

  14. Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol

    SciTech Connect (OSTI)

    John A. Ogren

    2010-04-05

    The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.

  15. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. I. DUST PROPERTIES AND INSIGHTS INTO THE ORIGIN OF THE SUBMILLIMETER EXCESS EMISSION

    SciTech Connect (OSTI)

    Gordon, Karl D.; Roman-Duval, Julia; Meixner, Margaret; Bot, Caroline; Babler, Brian; Bernard, Jean-Philippe; Bolatto, Alberto; Jameson, Katherine; Boyer, Martha L.; Clayton, Geoffrey C.; Engelbracht, Charles; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Hony, Sacha; Lebouteiller, Vianney; Indebetouw, Remy; Israel, Frank P.; Kawamura, Akiko; and others

    2014-12-20

    The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 ?m. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 ?m. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 ?m submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 ± 1.7) × 10{sup 5} and (8.3 ± 2.1) × 10{sup 4} M {sub ?} for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

  16. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  17. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  18. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  19. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  20. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect (OSTI)

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 ?m is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large discrepancies in predicting cloud water in the SC case, suggesting that an explicit calculation of diffusion growth with predicted supersaturation is necessary for further improvements of the bulk microphysics scheme. Lastly, a larger rain evaporation rate below cloud is found in the bulk scheme in comparison to the SBM simulation, which could contribute to a lower surface precipitation in the bulk scheme.

  1. The BLAST Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D

    E-Print Network [OSTI]

    Olmi, Luca; Angles-Alcazar, Daniel; Bock, James J; Chapin, Edward L; De Luca, Massimo; Devlin, Mark J; Dicker, Simon; Elia, Davide; Fazio, Giovanni G; Giannini, Teresa; Griffin, Matthew; Gundersen, Joshua O; Halpern, Mark; Hargrave, Peter C; Hughes, David H; Klein, Jeff; Lorenzetti, Dario; Marengo, Massimo; Marsden, Gaelen; Martin, Peter G; Massi, Fabrizio; Mauskopf, Philip; Netterfield, Calvin B; Patanchon, Guillaume; Rex, Marie; Salama, Alberto; Scott, Douglas; Semisch, Christopher; Smith, Howard A; Strafella, Francesco; Thomas, Nicholas; Truch, Matthew D P; Tucker, Carole; Tucker, Gregory S; Viero, Marco P; Wiebe, Donald V

    2009-01-01

    The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest, dense cores possibly associated with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appe...

  2. A numerical model of aerosol scavenging: Part 1, Microphysics parameterization

    SciTech Connect (OSTI)

    Molenkamp, C.R.; Bradley, M.M.

    1991-09-01

    We have developed a three-dimensional numerical model (OCTET) to simulate the dynamics and microphysics of clouds and the transport, diffusion and precipitation scavenging of aerosol particles. In this paper we describe the cloud microphysics and scavenging parameterizations. The representation of cloud microphysics is a bulk- water parameterization which includes water vapor and five types of hydrometeors (cloud droplets, rain drops, ice crystals, snow, and graupel). A parallel parameterization represents the scavenging interactions between pollutant particles and hydrometeors including collection of particles because of condensation nucleation, Brownian and phoretic attachment, and inertial capture, resuspension because of evaporation and sublimation; and transfer interactions where particles collected by one type of hydrometeor are transferred to another type of freezing, melting, accretion, riming and autoconversion.

  3. A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria

    SciTech Connect (OSTI)

    Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda; Russell, Lynn M.; Rasch, Philip J.; Elliott, S.

    2014-12-19

    The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical parameterizations, but can vary between biologically productive and non-productive regions, and seasonally within a given region. Major uncertainties include the bubble film thickness at bursting and the variability of organic surfactant activity in the ocean, which is poorly constrained. In addition, marine colloids and cooperative adsorption of polysaccharides may make important contributions to the aerosol, but are not included here. This organic fractionation framework is an initial step towards a closer linking of ocean biogeochemistry and aerosol chemical composition in Earth system models. Future work should focus on improving constraints on model parameters through new laboratory experiments or through empirical fitting to observed relationships in the real ocean and atmosphere, as well as on atmospheric implications of the variable composition of organic matter in sea spray.

  4. Dispelling Clouds of Uncertainty

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Ernie; Teixeira, Joăo

    2015-06-15

    How do you build a climate model that accounts for cloud physics and the transitions between cloud regimes? Use MAGIC.

  5. Cloud Computing Adam Barker

    E-Print Network [OSTI]

    St Andrews, University of

    Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

  6. SPATIO-TEMPORAL CHARACTERIZATION OF AEROSOLS THROUGH ACTIVE USE OF DATA FROM MULTIPLE SENSORS

    E-Print Network [OSTI]

    Obradovic, Zoran

    climate change related studies. In recent years remote sensing instruments of various properties have been. Aerosol concentration and chemical properties are important parameters in climate change modelsSPATIO-TEMPORAL CHARACTERIZATION OF AEROSOLS THROUGH ACTIVE USE OF DATA FROM MULTIPLE SENSORS Z

  7. MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results

    E-Print Network [OSTI]

    Baum, Bryan A.

    MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results W. PAUL measurements for deriving global and regional cloud properties. MODIS has spectral coverage combined the capability for global cloud property retrievals. MODIS operational cloud products are derived globally

  8. ARM - Publications: Science Team Meeting Documents: A decade long aerosol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparison of Cloud-RadiativeMidlatitudeandModel

  9. Rapid Scan Humidified Growth Cloud Condensation Nuclei Counter

    SciTech Connect (OSTI)

    Gregory L. Kok; Athanasios Nenes

    2013-03-13

    This research focused on enhancements to the streamwise thermal gradient cloud condensation nuclei counter to support the rapid scan mode and to enhance the capability for aerosol humidified growth measurements. The research identified the needs for flow system modifications and range of capability for operating the conventional instrument in the rapid scan and humidified growth modes.

  10. Clean Air and Environmental Quality Volume 40 No.2. May 2006 43 POTENTIAL IMPACTS OF AIR POLLUTION AEROSOLS ON PRECIPITATION IN AUSTRALIA

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Clean Air and Environmental Quality Volume 40 No.2. May 2006 43 POTENTIAL IMPACTS OF AIR POLLUTION AEROSOLS ON PRECIPITATION IN AUSTRALIA Potential impacts of air pollution aerosols on precipitation that anthropogenic air pollution downwind of urban and industrial developments affects clouds microphysics

  11. Aerosol Science and Technology, 39:6883, 2005 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    . Coffman5 1 Finnish Meteorological Institute, Air Quality Research, Sahaajankatu, Helsinki, Finland 2¨ais¨al¨a Foundation (Finland), and the 100th Anniversary Foundation of Helsingin Sanomat (Finland). Address, 00880 Helsinki, Finland. E-mail: aki.virkkula@fmi.fi properties of aerosols depend on the wavelength

  12. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect (OSTI)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  13. THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

    SciTech Connect (OSTI)

    Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Srinivasan, S. [Institut d'Astrophysique de Paris, 98 bis, Boulevard Arago, Paris 75014 (France); Kemper, F.; Woods, Paul M. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Speck, A. K. [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States); Matsuura, M. [Institute of Origins, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Bernard, J.-Ph. [Centre d'Etude Spatiale des Rayonnements, 9 Av. du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4 (France); Hony, S. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot DAPNIA/Service d'Astrophysique Bat. 709, CEA-Saclay F-91191 Gif-sur-Yvette Cedex (France); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Marengo, M. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Sloan, G. C., E-mail: sargent@stsci.ed [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

    2010-06-10

    We model multi-wavelength broadband UBVIJHK{sub s} and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with {gamma} of -3.5, a {sub min} of 0.01 {mu}m, and a {sub 0} of 0.1 {mu}m to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be {approx}5100 L {sub sun} and {approx}36,000 L {sub sun}, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of {approx}3 M {sub sun} and {approx}7 M {sub sun}. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius {approx}17 and {approx}52 times the stellar radius, respectively, with dust temperatures there of 900 K and 430 K, respectively, and with optical depths at 10 {mu}m through the shells of 0.095 and 0.012, respectively. The models compute the dust mass-loss rates for the two stars to be 2.0 x 10{sup -9} M{sub sun} yr{sup -1} and 2.3 x 10{sup -9} M{sub sun} yr{sup -1}, respectively. When a dust-to-gas mass ratio of 0.002 is assumed for SSTSAGE052206 and HV 5715, the dust mass-loss rates imply total mass-loss rates of 1.0 x 10{sup -6} M{sub sun} yr{sup -1} and 1.2 x 10{sup -6} M{sub sun} yr{sup -1}, respectively. These properties of the dust shells and stars, as inferred from our models of the two stars, are found to be consistent with properties observed or assumed by detailed studies of other O-rich AGB stars in the LMC and elsewhere.

  14. Cloud Tracking in Cloud-Resolving Models

    E-Print Network [OSTI]

    Plant, Robert

    Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

  15. Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

    SciTech Connect (OSTI)

    Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Grandey, Benjamin; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

    2010-03-12

    Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong f{sub cld} - {tau}{sub a} relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between {tau}{sub a} and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - {tau}{sub a} relationship show a strong positive correlation between {tau}{sub a} and f{sub cld} The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of {tau}{sub a}, and parameterization assumptions such as a lower bound on N{sub d}. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5 {+-} 0.5 Wm{sup -2}. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clear- and cloudy-sky forcings with estimates of anthropogenic {tau}{sub a} and satellite-retrieved Nd - {tau}{sub a} regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of -0.4 {+-} 0.2 Wm{sup -2} and a cloudy-sky (aerosol indirect effect) estimate of -0.7 {+-} 0.5 Wm{sup -2}, with a total estimate of -1.2 {+-} 0.4 Wm{sup -2}.

  16. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect (OSTI)

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  17. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  18. Modelling the local and global cloud formation on HD 189733b

    E-Print Network [OSTI]

    Lee, G; Dobbs-Dixon, I; Juncher, D

    2015-01-01

    Context. Observations suggest that exoplanets such as HD 189733b form clouds in their atmospheres which have a strong feedback onto their thermodynamical and chemical structure, and overall appearance. Aims. Inspired by mineral cloud modelling efforts for Brown Dwarf atmospheres, we present the first spatially varying kinetic cloud model structures for HD 189733b. Methods. We apply a 2-model approach using results from a 3D global radiation-hydrodynamic simulation of the atmosphere as input for a detailed, kinetic cloud formation model. Sampling the 3D global atmosphere structure with 1D trajectories allows us to model the spatially varying cloud structure on HD 189733b. The resulting cloud properties enable the calculation of the scattering and absorption properties of the clouds. Results. We present local and global cloud structure and property maps for HD 189733b. The calculated cloud properties show variations in composition, size and number density of cloud particles which are strongest between the daysi...

  19. Toward Securing Sensor Clouds

    E-Print Network [OSTI]

    Router Cloud Computing Cloud Computing Cloud Computing Tower-mount Antenna Tower-mount Antenna Wireless-Features-1GHz-Tegra-2-HigherRes-Screen/ #12;Router Router Router Router Mini Computer Mini Computer Mini Computer Mini Computer External Storage External Storage Router Router Router Router Cloud Computing Cloud

  20. Cirrus clouds in a global climate model with a statistical cirrus cloud scheme

    SciTech Connect (OSTI)

    Wang, Minghuai; Penner, Joyce E.

    2010-06-21

    A statistical cirrus cloud scheme that accounts for mesoscale temperature perturbations is implemented in a coupled aerosol and atmospheric circulation model to better represent both subgrid-scale supersaturation and cloud formation. This new scheme treats the effects of aerosol on cloud formation and ice freezing in an improved manner, and both homogeneous freezing and heterogeneous freezing are included. The scheme is able to better simulate the observed probability distribution of relative humidity compared to the scheme that was implemented in an older version of the model. Heterogeneous ice nuclei (IN) are shown to decrease the frequency of occurrence of supersaturation, and improve the comparison with observations at 192 hPa. Homogeneous freezing alone can not reproduce observed ice crystal number concentrations at low temperatures (<205 K), but the addition of heterogeneous IN improves the comparison somewhat. Increases in heterogeneous IN affect both high level cirrus clouds and low level liquid clouds. Increases in cirrus clouds lead to a more cloudy and moist lower troposphere with less precipitation, effects which we associate with the decreased convective activity. The change in the net cloud forcing is not very sensitive to the change in ice crystal concentrations, but the change in the net radiative flux at the top of the atmosphere is still large because of changes in water vapor. Changes in the magnitude of the assumed mesoscale temperature perturbations by 25% alter the ice crystal number concentrations and the net radiative fluxes by an amount that is comparable to that from a factor of 10 change in the heterogeneous IN number concentrations. Further improvements on the representation of mesoscale temperature perturbations, heterogeneous IN and the competition between homogeneous freezing and heterogeneous freezing are needed.

  1. Aerosol collection characteristics of ambient aerosol samplers 

    E-Print Network [OSTI]

    Ortiz, Carlos A

    1978-01-01

    when the sampler is not in operation, both as functions of particle size and wind speed. Wind velocity was a major cause of bias for the four samplers when collecting aerosol particles & 10 um. Characteristic curves were very similar for the 0. 38 m... x 0. 38 m ( 15" x 15") Hi-Vol and the 0. 29 m x 0. 36 m (11&" x 14") Hi-Vol. At 28 um and wind speeds of 2, 8, and 24 km/hr, sampling effectiveness values respectively were 70, 43, and 43 percent for the 0. 38 m x 0. 38 m Hi-Vol and 81, 56, and 43...

  2. Effects of Aerosols on Autumn Precipitation over Mid-Eastern China

    SciTech Connect (OSTI)

    Chen, Siyu; Huang, J.; Qian, Yun; Ge, Jinming; Su, Jing

    2014-09-20

    Long-term observational data indicated a decreasing trend for the amount of autumn precipitation (i.e. 54.3 mm per decade) over Mid-Eastern China, especially after 1980s (~ 5.6% per decade). To examine the cause of the decreasing trend, the mechanisms associated with the change of autumn precipitation were investigated from the perspective of water vapor transportation, atmospheric stability and cloud microphysics. Results show that the decrease of convective available potential energy (i.e. 12.81 J kg-1/ decade) and change of cloud microphysics, which were closely related to the increase of aerosol loading during the past twenty years, were the two primary factors responsible for the decrease of autumn precipitation. Ours results showed that increased aerosol could enhance the atmospheric stability thus weaken the convection. Meanwhile, more aerosols also led to a significant decline of raindrop concentration and to a delay of raindrop formation because of smaller size of cloud droplets. Thus, increased aerosols produced by air pollution could be one of the major reasons for the decrease of autumn precipitation. Furthermore, we found that the aerosol effects on precipitation in autumn was more significant than in other seasons, partly due to the relatively more stable synoptic system in autumn. The impact of large-scale circulation dominated in autumn and the dynamic influence on precipitation was more important than the thermodynamic activity.

  3. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  4. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  5. Ad hoc cloud computing 

    E-Print Network [OSTI]

    McGilvary, Gary Andrew

    2014-11-27

    Commercial and private cloud providers offer virtualized resources via a set of co-located and dedicated hosts that are exclusively reserved for the purpose of offering a cloud service. While both cloud models appeal to ...

  6. Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 19-23, 2001 Radar-based Retrievals of Cloud Properties in the Arctic

    E-Print Network [OSTI]

    Shupe, Matthew

    Eleventh ARM Science Team Meeting Proceedings, Atlanta, Georgia, March 19-23, 2001 1 Radar Radiation Measurement (ARM) program Cloud and Radiation Testbed (CART) sites, all techniques discussed here can be applied to measurements taken at the different ARM sites. Briefly summarized here

  7. Modeling aerosol activation in a tropical, orographic, island setting: Sensitivity tests and comparison with observations

    E-Print Network [OSTI]

    The aerosol, updraft and cloud droplet observations from the 2011 Dominica Experiment (DOMEX) field campaign to shortwave radiation (Twomey, 1974) and their lifetime (Albrecht, 1989), affecting Earth's radiation budget are among the most uncertain components of the human impact on Earth's climate (Forster et al., 2007

  8. CALIPSO-Derived Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent Continents

    E-Print Network [OSTI]

    Zhang, Chidong

    - sorbing solar and longwave radiation (Forster et al. 2007). Aerosols indirectly affect climate in two ways nuclei (IN), in effecting changes in cloud lifetime due to decreased precipitation efficiency (Albrecht 1989). Based on the 2007 In- tergovernmental Panel on Climate Change (IPCC) re- port, estimates

  9. YEAR PROGRESS REPORT TITLE: Global Modeling of Tropospheric Aerosols and Their Contribution to Climate Variation

    E-Print Network [OSTI]

    ) Lawrence Livermore National Laboratory Livermore, CA 94550 GOALS The goals of this project are (1) to study is about 0.23×10-4 cm3 in stratus off the west coast of southern Africa to about 20×10-3 cm3 in thin susceptibility, cloud frequency as well as the incoming solar radiation. We found that biomass aerosols acting

  10. 1. Introduction The aerosol DRE at the top-of-atmosphere

    E-Print Network [OSTI]

    Graaf, Martin de

    is the incident solar irradiance spectrum. The anisotropy factor , a measure for the angular distribution observed aerosol DRE in a case of smoke over clouds off the west coast of Africa was 69±7 Wm-2 (ESA) within the Support to Science Element, project number 22403. µ0E0 Figure 2. CALIOP 1064 nm

  11. CloudTransport: Using Cloud Storage for

    E-Print Network [OSTI]

    Houmansadr, Amir

    users' network traffic by tunneling it through a cloud storage ser- vice such as Amazon S3. The goal the bridge or identify other connections. CloudTransport can be used as a standalone service, a gateway

  12. TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E. Luke

    E-Print Network [OSTI]

    TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E.bnl.gov ABSTRACT The profile of cloud microphysical properties and how the clouds are overlapped within a vertical simulations. We will present how cloud microphysical properties and overlap structure retrieved at the ARM

  13. Measurement of the Optical Proper-ties of Volcanic Ash

    E-Print Network [OSTI]

    Oxford, University of

    Measurement of the Optical Proper- ties of Volcanic Ash Daniel M. Peters and R. G. Grainger of Volcanic Ash". This project will measure vol- canic ash aerosol extinction spectra and the aerosol particle is required in the analysis of IR satellite observations of ash clouds. Dry, water ice and sulphuric acid

  14. A study of the link between cosmic rays and clouds with a cloud chamber at the CERN PS

    E-Print Network [OSTI]

    The Cloud Collaboration

    2001-04-16

    Recent satellite data have revealed a surprising correlation between galactic cosmic ray (GCR) intensity and the fraction of the Earth covered by clouds. If this correlation were to be established by a causal mechanism, it could provide a crucial step in understanding the long-sought mechanism connecting solar and climate variability. The Earth's climate seems to be remarkably sensitive to solar activity, but variations of the Sun's electromagnetic radiation appear to be too small to account for the observed climate variability. However, since the GCR intensity is strongly modulated by the solar wind, a GCR-cloud link may provide a sufficient amplifying mechanism. Moreover if this connection were to be confirmed, it could have profound consequences for our understanding of the solar contributions to the current global warming. The CLOUD (Cosmics Leaving OUtdoor Droplets) project proposes to test experimentally the existence a link between cosmic rays and cloud formation, and to understand the microphysical mechanism. CLOUD plans to perform detailed laboratory measurements in a particle beam at CERN, where all the parameters can be precisely controlled and measured. The beam will pass through an expansion cloud chamber and a reactor chamber where the atmosphere is to be duplicated by moist air charged with selected aerosols and trace condensable vapours. An array of external detectors and mass spectrometers is used to analyse the physical and chemical characteristics of the aerosols and trace gases during beam exposure. Where beam effects are found, the experiment will seek to evaluate their significance in the atmosphere by incorporating them into aerosol and cloud models.

  15. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sedlacek, Art

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  16. Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle

    E-Print Network [OSTI]

    Whitney, Barbara A.

    aerosol properties to date. TES solar band and infrared (IR) spectral EPF sequences are analyzed to obtain and scattering of radiation; 6225 Planetology: Solar System Objects: Mars; KEYWORDS: Martian atmosphere, aerosols, radiative forcing from atmo- spheric dust solar absorption and thermal emission was recognized as a primary

  17. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sedlacek, Art

    2011-08-30

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  18. Sensitivity Study of the Effects of Mineral Dust Particle Nonsphericity and Thin Cirrus Clouds on MODIS Dust Optical Depth Retrievals and Direct Radiative Forcing Calculations 

    E-Print Network [OSTI]

    Feng, Qian

    2011-10-21

    A special challenge posed by mineral dust aerosols is associated with their predominantly nonspherical particle shapes. In the present study, the scattering and radiative properties for nonspherical mineral dust aerosols at violet-to-blue (0.412, 0...

  19. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01

    Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

  20. Maritime Aerosol Network as a component of Aerosol Robotic A. Smirnov,1,2

    E-Print Network [OSTI]

    Maritime Aerosol Network as a component of Aerosol Robotic Network A. Smirnov,1,2 B. N. Holben,2 I of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network), Maritime Aerosol Network as a component of Aerosol Robotic Network, J. Geophys. Res., 114, D06204, doi:10

  1. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    SciTech Connect (OSTI)

    Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

    2011-12-24

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  2. Intercomparison of Large-eddy Simulations of Arctic Mixed-phase Clouds: Importance of Ice Size Distribution Assumptions

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex; Cheng, Anning; Fan, Jiwen; Fridlind, Ann; Ghan, Steven J.; Harrington, Jerry Y.; Hoose, Corinna; Korolev, Alexei; McFarquhar, Greg; Morrison, H.; Paukert, Marco; Savre, Julien; Shipway, Ben; Shupe, Matthew D.; Solomon, Amy; Sulia, Kara

    2014-03-14

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to different microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.

  3. METHANE GAS STABILIZES SUPERCOOLED ETHANE DROPLETS IN TITAN'S CLOUDS

    SciTech Connect (OSTI)

    Wang, Chia C.; Lang, E. Kathrin; Signorell, Ruth

    2010-03-20

    Strong evidence for ethane clouds in various regions of Titan's atmosphere has recently been found. Ethane is usually assumed to exist as ice particles in these clouds, although the possible role of liquid and supercooled liquid ethane droplets has been recognized. Here, we report on infrared spectroscopic measurements of ethane aerosols performed in the laboratory under conditions mimicking Titan's lower atmosphere. The results clearly show that liquid ethane droplets are significantly stabilized by methane gas which is ubiquitous in Titan's nitrogen atmosphere-a phenomenon that does not have a counterpart for water droplets in Earth's atmosphere. Our data imply that supercooled ethane droplets are much more abundant in Titan's clouds than previously anticipated. Possibly, these liquid droplets are even more important for cloud processes and the formation of lakes than ethane ice particles.

  4. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  5. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  6. Beyond single particle mass spectrometry: multidimensional characterisation of individual aerosol particles

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Imre, D.

    2009-09-10

    The behavior of small aerosol particles depends on a number of their physical and chemical properties, many of which are strongly coupled. The size, internal composition, density, shape, morphology, hygroscopicity, index of refraction, activity as cloud condensation nuclei and ice nuclei, and other attributes of individual particles - all play a role in determining particle properties and their impacts. The traditional particle characterization approaches rely on separate parallel measurements that average over an ensemble of particles of different sizes and/or compositions and later attempt to draw correlations between them. As a result such studies overlook critical differences between particles and bulk and miss the fact that individual particles often exhibit major differences. Here we review the recently developed methods to simultaneously measure in-situ and in real time several of the attributes for individual particles using single particle mass spectrometer, SPLAT or its second generation SPLAT II. We also discuss novel approaches developed for classification, visualization and mining of large datasets produced by the multidimensional single particle characterization.

  7. On Demand Surveillance Service in Vehicular Cloud

    E-Print Network [OSTI]

    Weng, Jui-Ting

    2013-01-01

    1.2 Cloud computing to Vehicular CloudM. Gerla. Vehicular Cloud Computing, VCA 2012 Proceedings,single vehicle cannot. Cloud computing to Vehicular Cloud

  8. Cloud Security by Max Garvey

    E-Print Network [OSTI]

    Tolmach, Andrew

    Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service, performance SECaaS - Cloud hosted security measures Certifications - measurements for cloud security. #12;Cloud Questions If you have $0 security budget, could cloud be a security improvement? Who owns the data

  9. Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity

    E-Print Network [OSTI]

    Tang, Xiaochen

    2013-01-01

    J. : SAMPLING AND ANALYSIS OF AIR IN PIG HOUSES, AgricultureJ. : SAMPLING AND ANALYSIS OF AIR IN PIG HOUSES, AgricultureJ. : SAMPLING AND ANALYSIS OF AIR IN PIG HOUSES, Agriculture

  10. Synoptic Sensitivities of Subtropical Clouds : Separating Aerosol Effects from Meteorology

    E-Print Network [OSTI]

    Mauger, Guillaume

    2008-01-01

    meteorological quantities G. Subsidence and EntrainmentEntrainment rate (cm s ?1 ) Subsidence rate (cm s ?1 ) Bulkuxes, entrainment and subsidence rates, and temperature and

  11. Synoptic sensitivities of subtropical clouds separating aerosol effects from meteorology

    E-Print Network [OSTI]

    Mauger, Guillaume S.

    2008-01-01

    meteorological quantities G. Subsidence and EntrainmentEntrainment rate (cm s ?1 ) Subsidence rate (cm s ?1 ) Bulkuxes, entrainment and subsidence rates, and temperature and

  12. Research Unit on Biosphere -Aerosol -Cloud -Climate Interactions

    E-Print Network [OSTI]

    for tube effects. A constant flow is maintained through the tubes by a diaphragm compressor. PTFE coated valves are installed on the individual tubes to allow the air intake to the monitors to be shifted infrared gas analyzer, O3 with a TEI-49C UV photometry analyzer and NO/NOx with a TEI 49C chemiluminescence

  13. Chemical Composition and Cloud Nucleation Ability of Marine Aerosol 

    E-Print Network [OSTI]

    Deng, Chunhua

    2013-12-12

    ) concentration, particle size distribution, as well as surface seawater and atmospheric DMS concentrations were performed simultaneously during the cruise. HYSPLIT back trajectories were used to classify air mass origins. Even though continental sources increased...

  14. Aerosol-cloud Interactions from Urban, Regional, to Global Scales 

    E-Print Network [OSTI]

    Wang, Yuan

    2013-07-30

    &M University help me tackle several technical problems. Special thanks go to Jiwen Fan from Pacific Northwest National Laboratory, who offered me substantial helps during my visit to PNNL. I also benefits a lot from the collaboration with Minghuai Wang from... PNNL to analyze the results from the super-parameterized climate model. I also want to extend my gratitude to the National Aeronautics and Space Administration fellowship program, which provided me a three-year funding support. vii TABLE...

  15. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012III ARM Data DiscoveryIV (ARM-ACME IV) ARM

  16. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012III ARM Data DiscoveryIV (ARM-ACME IV) ARMAerosols

  17. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012III ARM Data DiscoveryIV (ARM-ACME IV)

  18. ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012IIIAtlanticMarine Boundary Layer (CAP-MBL)

  19. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012IIIAtlanticMarine Boundary LayerClimate Campaign

  20. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012IIIAtlanticMarine Boundary LayerClimate

  1. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See22, 2012IIIAtlanticMarine Boundary LayerClimateExtended

  2. Surface based remote sensing of aerosol-cloud interactions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With Livermore National LabSupplierNSTPhoton SourceSurfaceSurface

  3. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  4. ARM - Publications: Science Team Meeting Documents: A Climatology of Clouds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparison of Cloud-RadiativeMidlatitudeand Radiative

  5. ARM - Publications: Science Team Meeting Documents: Day and Night cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARM Climatefraction - Cloud

  6. ARM - Publications: Science Team Meeting Documents: Interpretation of cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARMCarloDeriving ThinClouds

  7. Program Analyses for Cloud Computations

    E-Print Network [OSTI]

    Tetali, Sai Deep

    2015-01-01

    search. ” In CCSW 09: Cloud Computing Security Workshop, pp.ACM workshop on Cloud computing security workshop, CCSW ’11,aspects of cloud computing, including security, performance

  8. Aerodynamic focusing of high-density aerosols D.E. Ruiz a,n

    E-Print Network [OSTI]

    be modeled by a simple drag force within a prescribed background flowing gas. The particle-to-gas feedback to study the properties of high-density aerosol focusing for 1 m silica spheres. Preliminary results

  9. Light Scattering by Ice Crystals and Mineral Dust Aerosols in the Atmosphere 

    E-Print Network [OSTI]

    Bi, Lei

    2012-07-16

    Modeling the single-scattering properties of nonspherical particles in the atmo¬sphere (in particular, ice crystals and dust aerosols) has important applications to climate and remote sensing studies. The ?rst part of the dissertation (Chapters II...

  10. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect (OSTI)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  11. Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I

    SciTech Connect (OSTI)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2012-04-20

    While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

  12. Clouds and climate: Unraveling a key piece of global warming

    SciTech Connect (OSTI)

    Seinfeld, J.H.

    2000-02-01

    Federal policy decisions relating to mitigation of greenhouse gas and other emissions have the potential to exert an enormous impact on industries in which chemical engineers play a prominent role. Many in these industries keep close watch on the development of scientific understanding associated with predictions of global climate change. The authors review one of the most critical, and most uncertain, pieces of the climate puzzle, the role of aerosols and clouds in the global energy balance.

  13. Characterizing synoptic and cloud variability in the Northern Atlantic using self-organizing maps

    E-Print Network [OSTI]

    Fish, Carly Sue

    2014-08-31

    Low ? level clouds have a significant influence on the Earth's radiation budget and it is thus imperative to understand their behavior within the marine boundary layer (MBL). The cloud properties in the Northeast ...

  14. ARM - Publications: Science Team Meeting Documents: Aerosol Research at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparison ofTropicalState BestDecomposition inArctic

  15. ARM - Publications: Science Team Meeting Documents: Effects of Aerosol Size

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARM Climatefraction

  16. ARM - Publications: Science Team Meeting Documents: Impacts of aerosols and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARMCarlo IndependentMomentsthe

  17. ARM - Publications: Science Team Meeting Documents: The SGP Aerosol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonatvariability:Best-Estimate Value-Added

  18. Optical Properties of Secondary Organic Aerosols

    E-Print Network [OSTI]

    Kim, Hwajin

    2012-01-01

    J. H. Journal of Atmospheric Chemistry 1997 , 26, 189-193. (induced ageing, Atmospheric Chemistry and Physics, 11(21),emerging issues, Atmospheric Chemistry and Physics, 9(14),

  19. Optical Properties of Secondary Organic Aerosols

    E-Print Network [OSTI]

    Kim, Hwajin

    2012-01-01

    two SOA precursor hydrocarbon measurements within 2% of onetwo SOA precursor hydrocarbon measurements within 2% of onetwo SOA precursor hydrocarbon measurements within 2% of one

  20. Sources and properties of Amazonian aerosol particles

    E-Print Network [OSTI]

    2010-01-01

    using autonomous unmanned aerial vehicles, Atmos. Chem.derived. Autonomous, unmanned aerial vehicles have recently

  1. ARM - Field Campaign - MASRAD - Aerosol Optical Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01)govCampaignsFIRE-Arctic-govCampaignsLower

  2. ARM - Field Campaign - MASRAD: Marine Aerosol Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to

  3. Emerging Technology for Measuring Atmospheric Aerosol Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas NuclearElectronic StructureEly M. Gelbard,SevenEconomic Methodologyfor

  4. Aerosol Observing System Upgraded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E R N A NA LY S IDOE Office2 Aerosol

  5. PC Windows Adobe Creative Cloud PC Windows Adobe Creative Cloud

    E-Print Network [OSTI]

    PC Windows Adobe Creative Cloud 1 PC Windows Adobe Creative Cloud 2015-05-25 1 Web Windows Adobe Creative Cloud PC | Creative Cloud https://helpx.adobe.com/jp/creative-cloud Adobe Creative Cloud 5.1 Web TTInstaller(Windows )() http://www.officesoft.gsic.titech.ac

  6. 660 VOLUME 21J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y Deriving Mixed-Phase Cloud Properties from Doppler Radar Spectra

    E-Print Network [OSTI]

    Shupe, Matthew

    the vertical air motion and to correct estimates of ice particle fall speeds. A mixed-phase cloud case study properties are such that they produce a bimodal Doppler velocity spectrum. Under these conditions, the Doppler spectrum moments of the distinct liquid and ice spectral modes may be computed independently

  7. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    SciTech Connect (OSTI)

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Collis, Scott M.; Fan, Jiwen; Hill, Adrian; Shipway, Ben

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.

  8. Chemical Composition and Sources of Coastal Marine Aerosol Particles during the 2008 VOCALS-REx Campaign

    SciTech Connect (OSTI)

    Lee, Y.- N.; Springston, S.; Jayne, John T.; Wang, Jian; Hubbe, John M.; Senum, Gunnar I.; Kleinman, Lawrence I.; Daum, Peter H.

    2014-05-23

    The chemical composition of aerosol particles (Dp 1.5 ?m) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO2?4, followed by Na+, Cl?, Org (total organics), NH+4 , and NO?3 , in decreasing order of importance; CH3SO?3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH+4 to SO2?4 equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl? deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO2?4. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol concentrations were negligible. The very low levels of CH3SO?3 observed as well as the correlation between SO2?4 and NO?3 (which is thought primarily anthropogenic) suggest a limited contribution of DMS to SO2?4 aerosol production during VOCALS.

  9. Hyperscale Cloud Technical White Paper

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    Hyperscale Cloud Technical White Paper Published: May 2015 Applies to: SQL Server 2016 CTP2, SQL in the cloud with greater scale and flexibility. Microsoft SQL Server is built for cloud integration--your organization can easily deploy SQL Server in a private cloud, hybrid cloud, or public cloud, and can use

  10. Spatial distribution and size evolution of particles in Asian outflow: Significance of primary and secondary aerosols during ACE-Asia

    E-Print Network [OSTI]

    Clarke, Antony

    in the presence of pollution and mineral dust aerosol surface areas as high as 1200 mm2 cmŔ3 . Concentrations­13 nm % 5000 cmŔ3 ) in postfrontal air masses associated with offshore flow during cloud-free conditions Composition and Structure: Pollution--urban and regional (0305); 0368 Atmospheric Composition and Structure

  11. XSEDE Cloud Survey Report

    E-Print Network [OSTI]

    Chen, Tsuhan

    XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

  12. Research Cloud Computing Recommendations

    E-Print Network [OSTI]

    Qian, Ning

    Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

  13. FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations

    SciTech Connect (OSTI)

    Koch, D

    2011-03-20

    The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled “Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models” to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (10–20 km) until 5–10 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

  14. Development of Aerosol Models for Radiative Flux Calculations at ARM Sites

    SciTech Connect (OSTI)

    Ogren, John A.; Dutton, Ellsworth G.; McComiskey, Allison C.

    2006-09-30

    The direct radiative forcing (DRF) of aerosols, the change in net radiative flux due to aerosols in non-cloudy conditions, is an essential quantity for understanding the human impact on climate change. Our work has addressed several key issues that determine the accuracy, and identify the uncertainty, with which aerosol DRF can be modeled. These issues include the accuracy of several radiative transfer models when compared to measurements and to each other in a highly controlled closure study using data from the ARM 2003 Aerosol IOP. The primary focus of our work has been to determine an accurate approach to assigning aerosol properties appropriate for modeling over averaged periods of time and space that represent the observed regional variability of these properties. We have also undertaken a comprehensive analysis of the aerosol properties that contribute most to uncertainty in modeling aerosol DRF, and under what conditions they contribute the most uncertainty. Quantification of these issues enables the community to better state accuracies of radiative forcing calculations and to concentrate efforts in areas that will decrease uncertainties in these calculations in the future.

  15. Optical properties of boreal forest fire smoke derived from Sun photometry

    E-Print Network [OSTI]

    Zeng, Ning

    Optical properties of boreal forest fire smoke derived from Sun photometry N. T. O'Neill,1 T. F 2001; published 13 June 2002. [1] Aerosol optical properties derived from Sun photometry were: Aerosols (0305); KEYWORDS: aerosols, forest fire smoke, Sun photometry, optics 1. Introduction [2] Smoke

  16. Taiwan UniCloud: A Cloud Testbed with Collaborative Cloud Services Wu-Chun Chung*

    E-Print Network [OSTI]

    Chung, Yeh-Ching

    Taiwan UniCloud: A Cloud Testbed with Collaborative Cloud Services Wu-Chun Chung* , Po-Chi Shih}@cs.nthu.edu.tw Abstract--This paper introduces a prototype of Taiwan UniCloud, a community-driven hybrid cloud platform for academics in Taiwan. The goal is to leverage resources in multiple clouds among different organizations

  17. JUNE 2002 835F R I S C H E T A L . The Retrieval of Stratus Cloud Droplet Effective Radius with Cloud Radars

    E-Print Network [OSTI]

    Shupe, Matthew

    . (1999). Another retrieval for stratocumulus cloud properties using solar radiation, microwave ra obtained from a microwave radiometer; the second uses the radar reflectivity and an assumption

  18. Aerosol Science 41 (2010) 143 --158 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    West, Matthew

    2010-01-01

    - cal reactivity, cloud condensation nuclei activity, radiative properties and health impacts). Other important sources for black carbon include biomass burning and the combustion of coal (Furutani, Dallosto, Roberts, & Prather, 2008). This impacts the particles' physico-chemical properties

  19. eDPS Aerosol Collection

    SciTech Connect (OSTI)

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  20. Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet Effective Radius

    E-Print Network [OSTI]

    Delene, David J.

    ` Relationship between Cloud Condensation Nuclei and Satellite Retrievals of Cloud Droplet is the relationship between below cloud base cloud condensation nuclei (CCN) and satellite retrievals of cloud droplet cloud effective radius; however, satellites can not measure cloud condensation nuclei (CCN

  1. Community Cloud Computing

    E-Print Network [OSTI]

    Marinos, Alexandros

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenge...

  2. Aerosol penetration through transport lines 

    E-Print Network [OSTI]

    Dileep, V.R.

    1996-01-01

    It is very important to minimize the losses in aerosol transport systems for the Continuous Air Monitors (CAM) to have a prompt and a meaningful alarm and the U.S. Environmental Protection Agency (EPA) also Currently mandates continuous emissions...

  3. Detection of Cb and TCu clouds Master Thesis

    E-Print Network [OSTI]

    Schmeits, Maurice

    : Meteosat HRV satellite image (edited) taken on 16 September 2009 at 18.00 UTC. c 2009 by lutz reflectances in the Visible (HRV) as well as weather radar data are used to de- velop a new Cb/TCu cloud regression model. Predictors for the mo- del have been derived from the cloud physical properties, HRV

  4. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect (OSTI)

    Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

    2012-08-22

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes in climate models.

  5. Dispersion of Cloud Droplet Size Distributions, Cloud Parameterizations and Indirect Aerosol Effects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory | National(Technical Report)Disorder-Induced

  6. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    SciTech Connect (OSTI)

    Lee, Jae-Min; Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K.; Heng, Kevin

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 ?m. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 ?m that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 ?m and an optical depth in the range 0.002-0.02 at 1 ?m provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 ?m, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 ?m as well as longward of 8 ?m, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  7. Federated Cloud Security Architecture for Secure and Agile Clouds

    E-Print Network [OSTI]

    Xu, Shouhuai

    Federated Cloud Security Architecture for Secure and Agile Clouds Weiliang Luo, Li Xu, Zhenxin Zhan. This chapter introduces the novel federated cloud security architecture that includes proactive cloud defense technologies for secure and agile cloud development. The federated security architecture consists of a set

  8. The proposed connection between clouds and cosmic rays: Cloud

    E-Print Network [OSTI]

    The proposed connection between clouds and cosmic rays: Cloud behaviour during the past 50 of cloud factors using both satellite and ground­based data. In particular, we search for evidence for the low cloud decrease predicted by the rising levels of solar activity and the low cloud­cosmic ray flux

  9. Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon

    SciTech Connect (OSTI)

    May, P.T., Jakob, C., and Mather, J.H.

    2004-05-31

    The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

  10. Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles

    E-Print Network [OSTI]

    Beaucage, Gregory

    changes which are evidenced by changes in the temperature of the oceans and rapid melting of the polar and glacial ice packs. Of pollution sources, aerosols represent the least understood and could potentially

  11. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

    2011-12-24

    Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

  12. Parameterizing Size Distribution in Ice Clouds

    SciTech Connect (OSTI)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  13. Chemical and Physical Characteristics of Diesel Aerosol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Physical Characteristics of Diesel Aerosol Chemical and Physical Characteristics of Diesel Aerosol 2002 DEER Conference Presentation: University of Minnesota...

  14. AN ARSCL-BASED CLOUD TYPE CLIMATOLOGY FROM RETRIEVALS AND IT'S USE IN MODEL EVALUATION STUDIES

    E-Print Network [OSTI]

    AN ARSCL-BASED CLOUD TYPE CLIMATOLOGY FROM RETRIEVALS AND IT'S USE IN MODEL EVALUATION STUDIES Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT A climatology of cloud types is developed using long in tandem with satellite observations for model cloud layering and property evaluation. Therefore, satellite

  15. An Autonomous Reliabilit Cloud Comput

    E-Print Network [OSTI]

    Buyya, Rajkumar

    An Autonomous Reliabilit Ami Cloud Comput Department of Computing and Informa Abstract--Cloud computing paradigm allo based access to computing and storages s Internet. Since with advances of Cloud. Keywords- Cloud computing; SLA negotiat I. INTRODUCTION Cloud computing has transferred the services

  16. Seasonal and optical characterisation of cirrus clouds over Indian sub-continent using LIDAR

    SciTech Connect (OSTI)

    Jayeshlal, G. S., E-mail: drssatyanarayana.malladi@gmail.com; Satyanarayana, Malladi, E-mail: drssatyanarayana.malladi@gmail.com; Dhaman, Reji K., E-mail: drssatyanarayana.malladi@gmail.com; Motty, G. S., E-mail: drssatyanarayana.malladi@gmail.com [Department of Optoelectronics, University of Kerala, Karyavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15

    Light Detection and Ranging (LIDAR) is an important remote sensing technique to study about the cirrus clouds. The subject of cirrus clouds and related climate is challenging one. The received scattered signal from Lidar contains information on the physical and optical properties of cirrus clouds. The Lidar profile of the cirrus cloud provides information on the optical characteristics like depolarisation ratio, lidar ratio and optical depth, which give knowledge about possible phase, structure and orientation of cloud particle that affect the radiative budgeting of cirrus clouds. The findings from the study are subjected to generate inputs for better climatic modelling.

  17. A Comparison of TWP-ICE Observational Data with Cloud-Resolving Model Results

    SciTech Connect (OSTI)

    Fridlind, A. M.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Grabowski, Wojciech W.; Hill, A.; Jones, T. R.; Khaiyer, M. M.; Liu, G.; Minnis, Patrick; Morrison, H.; Nguyen, L.; Park, S.; Petch, Jon C.; Pinty, Jean-Pierre; Schumacher, Courtney; Shipway, Ben; Varble, A. C.; Wu, Xiaoqing; Xie, Shaocheng; Zhang, Minghua

    2012-03-13

    Observations made during the TWP-ICE campaign are used to drive and evaluate thirteen cloud-resolving model simulations with periodic lateral boundary conditions. The simulations employ 2D and 3D dynamics, one- and two-moment microphysics, several variations on large-scale forcing, and the use of observationally derived aerosol properties to prognose droplet numbers. When domain means are averaged over a 6-day active monsoon period, all simulations reproduce observed surface precipitation rate but not its structural distribution. Simulated fractional areas covered by convective and stratiform rain are uncorrelated with one another, and are both variably overpredicted by up to a factor of {approx}2. Stratiform area fractions are strongly anticorrelated with outgoing longwave radiation (OLR) but are negligibly correlated with ice water path (IWP), indicating that ice spatial distribution controls OLR more than mean IWP. Overpredictions of OLR tend to be accompanied by underpredictions of reflected shortwave radiation (RSR). When there are two simulations differing only in microphysics scheme or large-scale forcing, the one with smaller stratiform area tends to exhibit greater OLR and lesser RSR by similar amounts. After {approx}10 days, simulations reach a suppressed monsoon period with a wide range of mean precipitable water vapor, attributable in part to varying overprediction of cloud-modulated radiative flux divergence compared with observationally derived values. Differences across the simulation ensemble arise from multiple sources, including dynamics, microphysics, and radiation treatments. Close agreement of spatial and temporal averages with observations may not be expected, but the wide spreads of predicted stratiform fraction and anticorrelated OLR indicate a need for more rigorous observation-based evaluation of the underlying micro- and macrophysical properties of convective and stratiform structures.

  18. Fig 2 -Cloud energy collect infrastructure Energy Efficient (Green) Cloud !

    E-Print Network [OSTI]

    Lefčvre, Laurent

    Fig 2 - Cloud energy collect infrastructure Energy Efficient (Green) Cloud ! The Compatible software components Energy Monitoring of physical and virtual resources Energy usage exposing for users and clouds managers Energy monitoring streams for upper layers software Design Energy aware software

  19. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    SciTech Connect (OSTI)

    Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2011-11-23

    Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

  20. Linearity of Climate Response to Increases in Black Carbon Aerosols

    SciTech Connect (OSTI)

    Mahajan, Salil [ORNL; Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR)

    2013-01-01

    The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $\\textnormal W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $\\textnormal W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $\\textnormal W^{-1} \\textnormal m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $\\textnormal PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

  1. Finance Idol Word Cloud

    Broader source: Energy.gov [DOE]

    This word cloud represents the topics discussed during the Big and Small Ideas: How to Lower Solar Financing Costs breakout session at the SunShot Grand Challenge.

  2. Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior

    SciTech Connect (OSTI)

    UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

    2010-10-28

    Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

  3. Smoke over haze: Comparative analysis of satellite, surface radiometer, and airborne in situ measurements of aerosol optical

    E-Print Network [OSTI]

    Zeng, Ning

    measurements of aerosol optical properties and radiative forcing over the eastern United States Brian Vant column closure between narrow and broadband measurements and calculations. Citation: Vant-Hull, B., Z. Li

  4. Program Analyses for Cloud Computations

    E-Print Network [OSTI]

    Tetali, Sai Deep

    2015-01-01

    search. ” In CCSW 09: Cloud Computing Security Workshop, pp.and M. Walfish. “Depot: Cloud storage with minimal trust. ”the 3rd ACM workshop on Cloud computing security workshop,

  5. Toxicity of atmospheric aerosols on marine phytoplankton

    E-Print Network [OSTI]

    2009-01-01

    address: Center for Atmospheric Chemistry Study, Departmenttween phytoplankton, atmospheric chemistry, and climate areno. 12 ? 4601– 4605 CHEMISTRY Atmospheric aerosol deposition

  6. 4, 20552088, 2004 Aerosol-ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 4, 2055­2088, 2004 Aerosol-ozone correlations during dust transport episodes P. Bonasoni et al and Physics Discussions Aerosol-ozone correlations during dust transport episodes P. Bonasoni1 , P.bonasoni@isac.cnr.it) 2055 #12;ACPD 4, 2055­2088, 2004 Aerosol-ozone correlations during dust transport episodes P. Bonasoni

  7. Sandia Energy - Cloud Computing Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure Cloud Computing Services Cloud...

  8. CONTRIBUTED Green Cloud Computing

    E-Print Network [OSTI]

    Tucker, Rod

    as well as data processing and data storage. We show that energy consumption in transport and switching | Cloud computing; core networks; data centers; energy consumption I. INTRODUCTION The increasing to energy consumption and cloud computing seems to be an alternative to office-based computing. By Jayant

  9. RELATIONSHIP BETWEEN CLOUD FRACTION AND CLOUD ALBEDO: COMBINED OBSERVATIONAL-MODELING-THEORETICAL INVESTIGATION

    E-Print Network [OSTI]

    RELATIONSHIP BETWEEN CLOUD FRACTION AND CLOUD ALBEDO: COMBINED OBSERVATIONAL of Energy Office of Science ABSTRACT Cloud fraction and cloud albedo have long occupied the central stage as key cloud quantities in studying cloud-climate interaction; however their quantitative relationship

  10. Cloud computing security.

    SciTech Connect (OSTI)

    Shin, Dongwan; Claycomb, William R.; Urias, Vincent E.

    2010-10-01

    Cloud computing is a paradigm rapidly being embraced by government and industry as a solution for cost-savings, scalability, and collaboration. While a multitude of applications and services are available commercially for cloud-based solutions, research in this area has yet to fully embrace the full spectrum of potential challenges facing cloud computing. This tutorial aims to provide researchers with a fundamental understanding of cloud computing, with the goals of identifying a broad range of potential research topics, and inspiring a new surge in research to address current issues. We will also discuss real implementations of research-oriented cloud computing systems for both academia and government, including configuration options, hardware issues, challenges, and solutions.

  11. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  12. INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE

    SciTech Connect (OSTI)

    Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara; Fortney, Jonathan; Knutson, Heather; Desert, Jean-Michel; Heng, Kevin; Madhusudhan, Nikku; Gillon, Michael; Barclay, Thomas; Cowan, Nicolas B.

    2013-10-20

    We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

  13. Predicting and validating the tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano

    SciTech Connect (OSTI)

    Webley, Peter W.; Atkinson, D.; Collins, Richard L.; Dean, K.; Fochesatto, J.; Sassen, Kenneth; Cahill, Catherine F.; Prata, A.; Flynn, Connor J.; Mizutani, K.

    2008-11-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any future predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft within the atmosphere.

  14. Stratospheric Albedo Modification by Aerosol Injection

    E-Print Network [OSTI]

    Katz, J I

    2009-01-01

    This paper reviews and develops the proposal, widely discussed but not examined in detail, to use stratospheric aerosols to increase the Earth's albedo to Solar radiation in order to control climate change. The potential of this method has been demonstrated by the "natural experiments" of volcanic injection of sulfate aerosols into the stratosphere that led to subsequent observed global cooling. I consider several hygroscopic oxides as possible aerosol materials in addition to oxides of sulfur. Aerosol chemistry, dispersion and transport have been the subject of little study and are not understood, representing a significant scientific risk. Even the optimal altitude of injection and aerosol size distribution are poorly known. Past attention focused on guns and airplanes as means of lofting aerosols or their chemical precursors, but large sounding rockets are cheap, energetically efficient, can be designed to inject aerosols at any required altitude, and involve little technical risk. Sophisticated, mass-opti...

  15. Stratospheric Aerosol Geoengineering ALAN ROBOCK

    E-Print Network [OSTI]

    Robock, Alan

    hydrologic responses, whitening of the skies, reduction of solar power, and impacts of diffuse radiation Project, conducting climate model experiments with standard stratospheric aerosol in- jection scenarios, which stated that ``It is extremely likely that human in- fluence has been the dominant cause

  16. Convective Cloud Lifecycles Lunchtime seminar

    E-Print Network [OSTI]

    Plant, Robert

    Convective Cloud Lifecycles Lunchtime seminar 19th May 2009 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations Why Conclusions Convective Cloud Lifecycles ­ p.1/3 #12;Why bother? Convective Cloud Lifecycles ­ p.2/3 #12;Some

  17. ARM - Publications: Science Team Meeting Documents: Cirrus Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparison ofTropicalStateAnalysisofMeasurements by

  18. ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARM Climate Research Facility: Part

  19. ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARM Climate Research Facility:

  20. ARM - Publications: Science Team Meeting Documents: Clouds and radiation in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARM Climate Research Facility:the

  1. ARM - Publications: Science Team Meeting Documents: Clouds in the Darwin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARM Climate Research

  2. ARM - Publications: Science Team Meeting Documents: Increasing Cloud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better AnodeThe Influence of Clouds, Aerosols,Comparisonat the ARMCarloDeriving Thin CirrusDroplet

  3. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kazil, J.; Feingold, G.; Yamaguchi, T.

    2015-10-21

    Observed and projected trends in large scale wind speed over the oceans prompt the question: how might marine stratocumulus clouds and their radiative properties respond to future changes in large scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum, and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamicalmore »driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning – afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m?2, long wave emissions are very insensitive to LWP. This leads to the more general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find furthermore that large scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment, and in part because circulation driven by shear from large scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large scale wind takes over from buoyancy-driven circulation in transporting moisture from the surface to cloud base, and thereby reduces decoupling and helps maintain LWP. The cloud radiative effect (CRE) responds to changes in LWP and cloud fraction, and higher wind speed translates to a stronger diurnally averaged CRE. However, the sensitivity of the diurnally averaged CRE to wind speed decreases with increasing wind speed.« less

  4. Aerosol climate effects and air quality impacts from 1980 to 2030

    SciTech Connect (OSTI)

    Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim; Sednev, Igor; Shindell, Drew; Streets, David

    2007-11-26

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggest that future climate projections warrant particular scrutiny.

  5. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    SciTech Connect (OSTI)

    Huang, Xin [Peking Univ., Beijing (China); Song, Yu [Peking Univ., Beijing (China); Zhao, Chun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Mengmeng [Peking Univ., Beijing (China); Zhu, Tong [Peking Univ., Beijing (China); Zhang, Qiang [Tsinghua Univ., Beijing (China); Zhang, Xiaoye [Chinese Academy of Meteorological Sciences, CMA, Beijing (China)

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO?) per year. SO? is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 ?g m?ł in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 ?g m?ł and 7.3 ?g m?ł, respectively. Mineral aerosols led to faster SO? oxidation through three pathways. First, more SO? was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO? reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.

  6. A developer's survey on different cloud platforms

    E-Print Network [OSTI]

    Doan, Dzung

    2009-01-01

    1 Introduction Cloud computing is a computing paradigm inFor this reason, cloud computing has also been describedparallel processing. Cloud computing can be contrasted with

  7. The Magellan Final Report on Cloud Computing

    E-Print Network [OSTI]

    Coghlan, Susan

    2013-01-01

    their research efforts in cloud security. Experiences andinvolving cloud resources and security guidance is thedynamic nature of cloud systems, the security controls must

  8. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    outsourcing to the cloud and data security. Depending onconcerned about data security in the cloud. Data stored inrun in the cloud, while protecting data security guarantees.

  9. Migrating enterprise storage applications to the cloud

    E-Print Network [OSTI]

    Vrable, Michael Daniel

    2011-01-01

    2.1 Cloud Providers . . . . . . . . . . . .2.1.1 Cloud Storage . . . . . . . . .2.1.2 Cloud Computation . . . . . . 2.2 Enterprise Storage

  10. Towards a Data-centric View of Cloud Security Wenchao Zhou Micah Sherr William R. Marczak Zhuoyao Zhang

    E-Print Network [OSTI]

    Ives, Zachary G.

    Towards a Data-centric View of Cloud Security Wenchao Zhou Micah Sherr William R. Marczak Zhuoyao@berkeley.edu ABSTRACT Cloud security issues have recently gained traction in the research community, with much of cloud security. In particular, we explore the secu- rity properties of secure data sharing between

  11. Scanning ARM Cloud Radars Part I: Operational Sampling Strategies

    SciTech Connect (OSTI)

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2014-03-01

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A “cloud surveillance” scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  12. Cloud Properties Working Group Break Out Session

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j eCommittee of thePresence

  13. ARM Cloud Properties Working Group: Meeting Logistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38

  14. Storm Peak Lab Cloud Property Validation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect Photovoltaics -7541C.3X-rays3 Prepared

  15. Posters Cloud Microphysical and Radiative Properties Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines This document outlines the majorL.Posters Posters513911

  16. Zenith Radiance Retrieval of Cloud Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largestnamed Electrochemical Society

  17. Lovelock black hole thermodynamics in a string cloud model

    E-Print Network [OSTI]

    Lee, Tae-Hun; Maharaj, Sunil D; Baboolal, Dharmanand

    2015-01-01

    The Lovelock theory is an extension of general relativity to higher dimensions. We study the Lovelock black hole for a string cloud model in arbitrary dimensional spacetime, and in turn also analyze its thermodynamical properties. Indeed, we compute the mass, temperature and entropy of the black hole and also perform a thermodynamical stability analysis. The phase structure suggests that the Hawking-Page phase transition is achievable. It turns out that the presence of the Lovelock terms and/or background string cloud completely changes the black hole thermodynamics. Interestingly, the entropy of a black hole is unaffected due to a background string cloud, but has a correction term due to Lovelock gravity.

  18. Is the Sun Embedded in a Typical Interstellar Cloud?

    E-Print Network [OSTI]

    P. C. Frisch

    2008-06-17

    The physical properties and kinematics of the partially ionized interstellar material near the Sun are typical of warm diffuse clouds in the solar vicinity. The interstellar magnetic field at the heliosphere and the kinematics of nearby clouds are naturally explained in terms of the S1 superbubble shell. The interstellar radiation field at the Sun appears to be harder than the field ionizing ambient diffuse gas, which may be a consequence of the low opacity of the tiny cloud surrounding the heliosphere. The spatial context of the Local Bubble is consistent with our location in the Orion spur.

  19. THE INFLUENCE OF BENZENE AS A TRACE REACTANT IN TITAN AEROSOL ANALOGS

    SciTech Connect (OSTI)

    Trainer, Melissa G.; Sebree, Joshua A.; Heidi Yoon, Y.; Tolbert, Margaret A.

    2013-03-20

    Benzene has been detected in Titan's atmosphere by Cassini instruments, with concentrations ranging from sub-ppb in the stratosphere to ppm in the ionosphere. Sustained levels of benzene in the haze formation region could signify that it is an important reactant in the formation of Titan's organic aerosol. To date, there have not been laboratory investigations to assess the influence of benzene on aerosol properties. We report a laboratory study on the chemical composition of organic aerosol formed from C{sub 6}H{sub 6}/CH{sub 4}/N{sub 2} via far ultraviolet irradiation (120-200 nm). The compositional results are compared to those from aerosol generated by a more ''traditional Titan'' mixture of CH{sub 4}/N{sub 2}. Our results show that even a trace amount of C{sub 6}H{sub 6} (10 ppm) has significant impact on the chemical composition and production rates of organic aerosol. There are several pathways by which photolyzed benzene may react to form larger molecules, both with and without the presence of CH{sub 4}, but many of these reaction mechanisms are only beginning to be explored for the conditions at Titan. Continued work investigating the influence of benzene in aerosol growth will advance understanding of this previously unstudied reaction system.

  20. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect (OSTI)

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

  1. CloudSafe: Securing Data Processing within Vulnerable Virtualization Environments in the Cloud

    E-Print Network [OSTI]

    Ryder, Barbara G.

    CloudSafe: Securing Data Processing within Vulnerable Virtualization Environments in the Cloud large-scale cloud applications. Index Terms--cloud security, outsourced computation, side- channel, newly discovered vulnerabilities in cloud virtualization envi- ronment have threatened the security

  2. Aerosol Science and Technology, 43:641652, 2009 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 43:641­652, 2009 Copyright © American Association for Aerosol Differential Mobility Analyzer for Measurement of the Irreversibility of the Hygroscopic Growth Factor T is the irreversibility of the hygroscopic growth fac- tor of aerosol particles. The instrument uses the hysteresis

  3. Researchers Model Impact of Aerosols Over California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu,...

  4. Aerosol Retrieval Using Remote-sensed Observations

    E-Print Network [OSTI]

    Wang, Yueqing

    2012-01-01

    4.1.2 Baltimore and the DRAGONaround Baltimore . . . . . . . . . . . . . . . . . . . 4.1.4component aerosol 1 for Baltimore-Washington region on June

  5. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    they can have either cooling or warming effects. Lighter-colored organic carbon particles cool regions of the planet by scattering sunlight back into space. Other aerosol particles...

  6. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth...

  7. Extending the physicochemical characterization of aerosol particles in California

    E-Print Network [OSTI]

    Zauscher, Melanie Dorothy

    2012-01-01

    Combustion Aerosol, Atmospheric Chemistry and Physics, 11 (Based Receptor Modeling, Atmospheric Chemistry and Physics,Aerosols, Journal of Atmospheric Chemistry, 22 (1-2), 19-39.

  8. Building America Webinar: Sealing of Home Enclosures with Aerosol...

    Energy Savers [EERE]

    Sealing of Home Enclosures with Aerosol Particles Building America Webinar: Sealing of Home Enclosures with Aerosol Particles This webinar was presented by research team Building...

  9. GFDL ARM Project Technical Report: Using ARM Observations to Evaluate Cloud and Convection Parameterizations & Cloud-Convection-Radiation Interactions in the GFDL Atmospheric General Circulation Model

    SciTech Connect (OSTI)

    V. Ramaswamy; L. J. Donner; J-C. Golaz; S. A. Klein

    2010-06-17

    This report briefly summarizes the progress made by ARM postdoctoral fellow, Yanluan Lin, at GFDL during the period from October 2008 to present. Several ARM datasets have been used for GFDL model evaluation, understanding, and improvement. This includes a new ice fall speed parameterization with riming impact and its test in GFDL AM3, evaluation of model cloud and radiation diurnal and seasonal variation using ARM CMBE data, model ice water content evaluation using ARM cirrus data, and coordination of the TWPICE global model intercomparison. The work illustrates the potential and importance of ARM data for GCM evaluation, understanding, and ultimately, improvement of GCM cloud and radiation parameterizations. Future work includes evaluation and improvement of the new dynamicsPDF cloud scheme and aerosol activation in the GFDL model.

  10. Cloud Based Applications and Platforms (Presentation)

    SciTech Connect (OSTI)

    Brodt-Giles, D.

    2014-05-15

    Presentation to the Cloud Computing East 2014 Conference, where we are highlighting our cloud computing strategy, describing the platforms on the cloud (including Smartgrid.gov), and defining our process for implementing cloud based applications.

  11. CloudMan: A Platform for Portable Cloud Manufacturing Services

    E-Print Network [OSTI]

    Dustdar, Schahram

    CloudMan: A Platform for Portable Cloud Manufacturing Services Soheil Qanbari, Samira Mahdi Zadeh Education (BIHE), Iran soroush.vedaeei@bihe.org Abstract--Cloud manufacturing refers to "as a Service" pro- duction model that exploits an on-demand access to a distributed pool of diversified manufacturing

  12. Attribution Analysis of Cloud Feedback 

    E-Print Network [OSTI]

    Zhou, Chen

    2014-07-15

    Uncertainty on cloud feedback is the primary contributor to the large spread of equilibrium climate sensitivity (ECS) in climate models. In this study, we compare the short-term cloud feedback in climate models with observations, and evaluate...

  13. Software-Defined Mobile Cloud

    E-Print Network [OSTI]

    Ku, Ian

    2014-01-01

    M. Gerla. “Towards Software- Defined VANETs: ArchitectureI. Ku, Y. Lu, and M. Gerla. “Software-Defined Mobile Cloud:C. Peylo, “CloudMAC: towards software defined WLANs,” ACM

  14. Opaque cloud detection

    DOE Patents [OSTI]

    Roskovensky, John K. (Albuquerque, NM)

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  15. The Tropical Warm Pool International Cloud Experiment

    SciTech Connect (OSTI)

    May, Peter T.; Mather, James H.; Vaughan, Geraint; Jakob, Christian; McFarquhar, Greg; Bower, Keith; Mace, Gerald G.

    2008-05-01

    One of the most complete data sets describing tropical convection ever collected will result from the upcoming Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the area around Darwin, Northern Australia in January and February 2006. The aims of the experiment, which will be operated in conjunction with the DOE Atmospheric Radiation Measurement (ARM) site in Darwin, will be to examine convective cloud systems from their initial stages through to the decay of the cirrus generated and to measure their impact on the environment. The experiment will include an unprecedented network of ground-based observations (soundings, active and passive remote sensors) combined with low, mid and high altitude aircraft for in-situ and remote sensing measurements. A crucial outcome of the experiment will be a data set suitable to provide the forcing and evaluation data required by cloud resolving and single column models as well as global climate models (GCMs) with the aim to contribute to parameterization development. This data set will provide the necessary link between the observed cloud properties and the models that are attempting to simulate them. The experiment is a large multi-agency experiment including substantial contributions from the United States DOE ARM program, ARM-UAV program, NASA, the Australian Bureau of Meteorology, CSIRO, EU programs and many universities.

  16. CLOUD CHEMISTRY STEPHEN E. SCHWARTZ

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    is considered bere to comprise both cloud composition and reactions that take place in clouds. Clouds are a very special subset of tbe atmosphere because they present substantial amounts of condensed-phase water (liquid, the examples developed bere focus on these chemical systems. However, much of the resulting undetstanding

  17. Cloud Formation, Evolution and Destruction

    E-Print Network [OSTI]

    Estalella, Robert

    Chapter 4 Cloud Formation, Evolution and Destruction We now begin to trace the journey towards a star. How long does this take? The answer is surprisingly short: a good many clouds already contain new stars and these stars tend to be young. The typical cloud cannot spend long, if any time at all

  18. Carbonaceous Aerosol Study Using Advanced Particle Instrumentation

    E-Print Network [OSTI]

    Qi, Li

    2010-01-01

    6 6.1 Introduction Biomass combustion emissions contributeEmissions of trace gases and aerosols during the open combustion of biomassbiomass burning work explored the evolution of organic aerosol emissions as a function of modified combustion efficiency with correlations drawn between levoglucosan emissions

  19. Atmospheric aerosol light scattering and polarization peculiarities

    E-Print Network [OSTI]

    Patlashenko, Zh I

    2015-01-01

    This paper considers environmental problems of natural and anthropogenic atmospheric aerosol pollution and its global and regional monitoring. Efficient aerosol investigations may be achieved by spectropolarimetric measurements. Specifically second and fourth Stokes parameters spectral dependencies carry information on averaged refraction and absorption indexes and on particles size distribution functions characteristics.

  20. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect (OSTI)

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the relevant physical properties projected for actual WTP process streams.