Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES  

E-Print Network [OSTI]

CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES STEPHEN E. SCHWARTZ Environmental in cloud-free conditions and indirectly, by increasing concentratiol1S of cloud droplets thereby enhancing cloud shortwave reflectivity. These effecls are thought to be significant in the context of changes

2

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

SciTech Connect (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

3

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network [OSTI]

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

4

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect (OSTI)

Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

Richard A. Ferrare; David D. Turner

2011-09-01T23:59:59.000Z

5

Aircraft Observations of Sub-cloud Aerosol and Convective Cloud Physical Properties  

E-Print Network [OSTI]

of Department, Kenneth Bowman December 2009 Major Subject: Atmospheric Sciences iii iii ABSTRACT Aircraft Observations of Sub-Cloud Aerosol and Convective Cloud Physical Properties. (December 2009) Duncan Axisa, B.Ed., University of Malta; B... but for vertical velocity (ms-1). Negative values are updraft and positive values are downdraft ........................................... 30 18 Cloud droplet size distribution (dN/dlogD, cm-3) for 1Hz cloud penetration data...

Axisa, Duncan

2011-02-22T23:59:59.000Z

6

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect (OSTI)

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06T23:59:59.000Z

7

Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report  

SciTech Connect (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2007-09-30T23:59:59.000Z

8

Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies  

E-Print Network [OSTI]

This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape...

Yi, Bingqi

2013-07-09T23:59:59.000Z

9

Coupling Between Oceanic Upwelling and Cloud-aerosol Properties at the AMF Point Reyes Site  

SciTech Connect (OSTI)

Cloud microphysical properties measured at the ARM Mobile Facility site located on the northern coast of California near Point Reyes, during the 2005 Marine Stratus Radiation, Aerosol and Drizzle experiment, were analyzed to determine their relationship to the coastal sea surface temperature (SST) which was characterized using measurements acquired from a National Oceanic and Atmospheric Administration offshore buoy. An increase in SST resulting from a relaxation of upwelling, occurring in the eastern Pacific Ocean off the coast of California in summer is observed to strongly correlate with nearby ground measured cloud microphysical properties and cloud condensation nuclei (CCN) concentrations. Correlations between these atmospheric and oceanic features provide insight into the interplay between the ocean and cloud radiative properties. We present evidence of this robust correlation and examine the factors controlling these features. The marine boundary layer is in direct contact with the sea surface and is strongly influenced by SST. Moisture and vertical motion are crucial ingredients for cloud development and so we examine the role of SST in providing these key components to the atmosphere. Although upwelling of cold subsurface waters is conventionally thought to increase aerosols in the region, thus increasing clouds, here we observed a relaxation of upwelling associated with changes in the structure of marine stratus clouds. As upwelling relaxes, the SST get warmer, thick clouds with high liquid water paths are observed and persist for a few days. This cycle is repeated throughout the summer upwelling season. A concomitant cyclic increase and decrease of CCN concentration is also observed. Forcing mechanisms and large-scale atmospheric features are discussed. Marine stratocumulus clouds are a critical component of the earth's radiation budget and this site provides an excellent opportunity to study the influence of SST on these clouds.

Dunn, M.; Jensen, M.; Miller, M.; Kollias, P.; Bartholomew, M. J.; Turner, D.; Andrews, E.; Jefferson, A.; Daum, P.

2008-03-10T23:59:59.000Z

10

Aerosol-Cloud-Precipitation Interactions in the Trade Wind Boundary Layer.  

E-Print Network [OSTI]

??This dissertation includes an overview of aerosol, cloud, and precipitation properties associated with shallow marine cumulus clouds observed during the Barbados Aerosol Cloud Experiment (BACEX,… (more)

Jung, Eunsil

2012-01-01T23:59:59.000Z

11

Separating Cloud Forming Nuclei from Interstitial Aerosol  

SciTech Connect (OSTI)

It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

Kulkarni, Gourihar R.

2012-09-12T23:59:59.000Z

12

ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWSTCampaign 2

13

Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: insight from observations of aerosol and clouds during ISDAC  

SciTech Connect (OSTI)

Aircraft measurements during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 are used to investigate aerosol indirect effects in Arctic clouds. Two aerosol-cloud regimes are considered in this analysis: single-layer stratocumulus cloud with below-cloud aerosol concentrations (N{sub a}) below 300 cm{sup -3} on April 8 and April 26-27 (clean cases); and inhomogeneous layered cloud with N{sub a} > 500 cm{sup -3} below cloud base on April 19-20, concurrent with a biomass burning episode (polluted cases). Vertical profiles through cloud in each regime are used to determine average cloud microphysical and optical properties. Positive correlations between the cloud droplet effective radius (Re) and cloud optical depth ({tau}) are observed for both clean and polluted cases, which are characteristic of optically-thin, non-precipitating clouds. Average Re values for each case are {approx} 6.2 {mu}m, despite significantly higher droplet number concentrations (Nd) in the polluted cases. The apparent independence of Re and Nd simplifies the description of indirect effects, such that {tau} and the cloud albedo (A) can be described by relatively simple functions of the cloud liquid water path. Adiabatic cloud parcel model simulations show that the marked differences in Na between the regimes account largely for differences in droplet activation, but that the properties of precursor aerosol also play a role, particularly for polluted cases where competition for vapour amongst the more numerous particles limits activation to larger and/or more hygroscopic particles. The similarity of Re for clean and polluted cases is attributed to compensating droplet growth processes for different initial droplet size distributions.

Earle, Michael; Liu, Peter S.; Strapp, J. Walter; Zelenyuk, Alla; Imre, D.; McFarquhar, Greg; Shantz, Nicole C.; Leaitch, W. R.

2011-11-04T23:59:59.000Z

14

Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing  

SciTech Connect (OSTI)

A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2012-07-25T23:59:59.000Z

15

AEROSOL, CLOUDS, AND CLIMATE CHANGE  

SciTech Connect (OSTI)

Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

SCHWARTZ, S.E.

2005-09-01T23:59:59.000Z

16

3D EFFECTS ON SPECTRALLY INVARIANT BEHAVIOR NEAR CLOUD EDGES: IMPLICATIONS FOR RETRIEVING AEROSOL AND CLOUD PROPERTIES IN  

E-Print Network [OSTI]

3D EFFECTS ON SPECTRALLY INVARIANT BEHAVIOR NEAR CLOUD EDGES: IMPLICATIONS FOR RETRIEVING AEROSOL between cloudy and clear air is always ambiguous, and because effects of the 3D nature of clouds will demonstrate how 3D effects may modulate the spectrally invariant relationships. We will also show the extent

17

Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols  

E-Print Network [OSTI]

properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types...

Lee, Yong Seob

2006-08-16T23:59:59.000Z

18

6, 93519388, 2006 Aerosol-cloud  

E-Print Network [OSTI]

ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

Paris-Sud XI, Université de

19

Using multi-angle, multispectral photo-polarimetry of the NASA Glory mission to constrain optical properties of aerosols and clouds: Results from  

E-Print Network [OSTI]

Using multi-angle, multispectral photo-polarimetry of the NASA Glory mission to constrain optical Sensor (APS) for the determination of aerosol and cloud properties and a Total Irradiance Monitor (TIM (IFOV)instrument. The APS sensor will provide high-precision measurements of the total and polarized

20

Aerosols and clouds in chemical transport models and climate models.  

SciTech Connect (OSTI)

Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

Lohmann,U.; Schwartz, S. E.

2008-03-02T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Parameterizations of Cloud Microphysics and Indirect Aerosol Effects  

SciTech Connect (OSTI)

1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

2014-05-19T23:59:59.000Z

22

Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds  

SciTech Connect (OSTI)

Deep convective clouds (DCCs) play a crucial role in the general circulation and energy and hydrological cycle of our climate system. Anthropogenic and natural aerosol particles can influence DCCs through changes in cloud properties, precipitation regimes, and radiation balance. Modeling studies have reported both invigoration and suppression of DCCs by aerosols, but none has fully quantified aerosol impacts on convection life cycle and radiative forcing. By conducting multiple month-long cloud-resolving simulations with spectral-bin cloud microphysics that capture the observed macro- and micro-physical properties of summer convective clouds in the tropics and mid-latitudes, this study provides the first comprehensive look at how aerosols affect cloud cover, cloud top height (CTH), and radiative forcing. Observations validate these simulation results. We find that microphysical aerosol effects contribute predominantly to increased cloud cover and CTH by inducing larger amount of smaller but longer lasting ice particles in the stratiform/anvils of DCCs with dynamical aerosol effects contributing at most ~ 1/4 of the total increase of cloud cover. The overall effect is a radiative warming in the atmosphere (3 to 5 W m-2) with strong surface cooling (-5 to -8 W m-2). Herein we clearly identified mechanisms more important than and additional to the invigoration effects hypothesized previously that explain the consistent signatures of increased cloud tops area and height by aerosols in DCCs revealed by observations.

Fan, Jiwen; Leung, Lai-Yung R.; Rosenfeld, Daniel; Chen, Qian; Li, Zhanqing; Zhang, Jinqiang; Yan, Hongru

2013-11-26T23:59:59.000Z

23

CLOUD PHYSICS From aerosol-limited to invigoration  

E-Print Network [OSTI]

CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

Napp, Nils

24

Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol  

E-Print Network [OSTI]

Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

Collins, Gary S.

25

Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus  

E-Print Network [OSTI]

Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus hygroscopic aerosols were introduced into a solid marine stratocumulus cloud (200 m thick) by burning hygroscopic flares mounted on an aircraft. The cloud microphysical response in two parallel seeding plumes

Miami, University of

26

Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing  

SciTech Connect (OSTI)

Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

Ghan, Steven J.

2013-10-09T23:59:59.000Z

27

Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds"Ă?Âť (DOE/SC00002354)  

SciTech Connect (OSTI)

Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional cloud-resolving model to compare predictions of ice crystal concentrations and other cloud properties to those observed in two intensive case studies of Arctic stratus during ISDAC. Our implementation included development of a prognostic scheme of ice activation using the IN parameterization so that the most realistic treatment of ice nuclei, including their budget (gains and losses), was achieved. Many cloud microphysical properties and cloud persistence were faithfully reproduced, despite a tendency to under-predict (by a few to several times) ice crystal number concentrations and cloud ice mass, in agreement with some other studies. This work serves generally as the basis for improving predictive schemes for cloud ice crystal activation in cloud and climate models, and more specifically as the basis for such a scheme to be used in a Multi-scale Modeling Format (MMF) that utilizes a connected system of cloud-resolving models on a global grid in an effort to better resolve cloud processes and their influence on climate.

Paul J. DeMott, Anthony J. Prenni; Sonia M. Kreidenweis

2012-09-28T23:59:59.000Z

28

Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report  

SciTech Connect (OSTI)

In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

2011-08-31T23:59:59.000Z

29

Indian Summer Monsoon Drought 2009: Role of Aerosol and Cloud Microphysics  

SciTech Connect (OSTI)

Cloud dynamics played a fundamental role in defining Indian summer monsoon (ISM) rainfall during drought in 2009. The anomalously negative precipitation was consistent with cloud properties. Although, aerosols inhibited the growth of cloud effective radius in the background of sparse water vapor, their role is secondary. The primary role, however, is played by the interactive feedback between cloud microphysics and dynamics owing to reduced efficient cloud droplet growth, lesser latent heating release and shortage of water content. Cloud microphysical processes were instrumental for the occurrence of ISM drought 2009.

Hazra, Anupam; Taraphdar, Sourav; Halder, Madhuparna; Pokhrel, S.; Chaudhari, H. S.; Salunke, K.; Mukhopadhyay, P.; Rao, S. A.

2013-07-01T23:59:59.000Z

30

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract: A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic...

31

Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report  

SciTech Connect (OSTI)

This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

None

2013-10-18T23:59:59.000Z

32

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate  

SciTech Connect (OSTI)

Any attempt to reconcile observed surface temperature changes within the last 150 years to changes simulated by climate models that include various atmospheric forcings is sensitive to the changes attributed to aerosols and aerosol-cloud-climate interactions, which are the main contributors that may well balance the positive forcings associated with greenhouse gases, absorbing aerosols, ozone related changes, etc. These aerosol effects on climate, from various modeling studies discussed in Menon (2004), range from +0.8 to -2.4 W m{sup -2}, with an implied value of -1.0 W m{sup -2} (range from -0.5 to -4.5 W m{sup -2}) for the aerosol indirect effects. Quantifying the contribution of aerosols and aerosol-cloud interactions remain complicated for several reasons some of which are related to aerosol distributions and some to the processes used to represent their effects on clouds. Aerosol effects on low lying marine stratocumulus clouds that cover much of the Earth's surface (about 70%) have been the focus of most of prior aerosol-cloud interaction effect simulations. Since cumulus clouds (shallow and deep convective) are short lived and cover about 15 to 20% of the Earth's surface, they are not usually considered as radiatively important. However, the large amount of latent heat released from convective towers, and corresponding changes in precipitation, especially in biomass regions due to convective heating effects (Graf et al. 2004), suggest that these cloud systems and aerosol effects on them, must be examined more closely. The radiative heating effects for mature deep convective systems can account for 10-30% of maximum latent heating effects and thus cannot be ignored (Jensen and Del Genio 2003). The first study that isolated the sensitivity of cumulus clouds to aerosols was from Nober et al. (2003) who found a reduction in precipitation in biomass burning regions and shifts in circulation patterns. Aerosol effects on convection have been included in other models as well (cf. Jacobson, 2002) but the relative impacts on convective and stratiform processes were not separated. Other changes to atmospheric stability and thermodynamical quantities due to aerosol absorption are also known to be important in modifying cloud macro/micro properties. Linkages between convection and boreal biomass burning can also impact the upper troposphere and lower stratosphere, radiation and cloud microphysical properties via transport of tropospheric aerosols to the lower stratosphere during extreme convection (Fromm and Servranckx 2003). Relevant questions regarding the impact of biomass aerosols on convective cloud properties include the effects of vertical transport of aerosols, spatial and temporal distribution of rainfall, vertical shift in latent heat release, phase shift of precipitation, circulation and their impacts on radiation. Over land surfaces, a decrease in surface shortwave radiation ({approx} 3-6 W m{sup -2} per decade) has been observed between 1960 to 1990, whereas, increases of 0.4 K in land temperature during the same period that occurred have resulted in speculations that evaporation and precipitation should also have decreased (Wild et al. 2004). However, precipitation records for the same period over land do not indicate any significant trend (Beck et al. 2005). The changes in precipitation are thought to be related to increased moisture advection from the oceans (Wild et al. 2004), which may well have some contributions from aerosol-radiation-convection coupling that could modify circulation patterns and hence moisture advection in specific regions. Other important aspects of aerosol effects, besides the direct, semi-direct, microphysical and thermodynamical impacts include alteration of surface albedos, especially snow and ice covered surfaces, due to absorbing aerosols. These effects are uncertain (Jacobson, 2004) but may produce as much as 0.3 W m{sup -2} forcing in the Northern hemisphere that could contribute to melting of ice and permafrost and change in the length of the season (e.g. early arrival of Spring

Menon, Surabi; Del Genio, Anthony D.

2007-09-03T23:59:59.000Z

33

Representing Cloud Processing of Aerosol in Numerical Models  

SciTech Connect (OSTI)

The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

Mechem, D.B.; Kogan, Y.L.

2005-03-18T23:59:59.000Z

34

CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate  

E-Print Network [OSTI]

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. ...

Rosenfeld, Daniel

35

Effects of aerosols on deep convective cumulus clouds  

E-Print Network [OSTI]

This work investigates the effects of anthropogenic aerosols on deep convective clouds and the associated radiative forcing in the Houston area. The Goddard Cumulus Ensemble model (GCE) coupled with a spectral-bin microphysics is employed...

Fan, Jiwen

2009-05-15T23:59:59.000Z

36

Aerosol-Cloud interactions : a new perspective in precipitation enhancement  

E-Print Network [OSTI]

Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation ...

Gunturu, Udaya Bhaskar

2010-01-01T23:59:59.000Z

37

Development of advanced cloud parameterizations to examine air quality, cloud properties, and cloud-radiation feedback in mesoscale models  

SciTech Connect (OSTI)

The distribution of atmospheric pollutants is governed by dynamic processes that create the general conditions for transport and mixing, by microphysical processes that control the evolution of aerosol and cloud particles, and by chemical processes that transform chemical species and form aerosols. Pollutants emitted into the air can undergo homogeneous gas reactions to create a suitable environment for the production by heterogeneous nucleation of embryos composed of a few molecules. The physicochemical properties of preexisting aerosols interact with newly produced embryos to evolve by heteromolecular diffusion and coagulation. Hygroscopic particles wig serve as effective cloud condensation nuclei (CCN), while hydrophobic particles will serve as effective ice-forming nuclei. Clouds form initially by condensation of water vapor on CCN and evolve in a vapor-liquid-solid system by deposition, sublimation, freezing, melting, coagulation, and breakup. Gases and aerosols that enter the clouds undergo aqueous chemical processes and may acidity hydrometer particles. Calculations for solar and longwave radiation fluxes depend on how the respective spectra are modified by absorbers such as H{sub 2}O, CO{sub 2}, O{sub 3}, CH{sub 4}, N{sub 2}O, chlorofruorocarbons, and aerosols. However, the flux calculations are more complicated for cloudy skies, because the cloud optical properties are not well defined. In this paper, key processes such as tropospheric chemistry, cloud microphysics parameterizations, and radiation schemes are reviewed in terms of physicochemical processes occurring, and recommendations are made for the development of advanced modules applicable to mesoscale models.

Lee, In Young

1993-09-01T23:59:59.000Z

38

Evaluating Clouds, Aerosols, and their Interactions in Three Global Climate Models using COSP and Satellite Observations  

SciTech Connect (OSTI)

Accurately representing aerosol-cloud interactions in global climate models is challenging. As parameterizations evolve, it is important to evaluate their performance with appropriate use of observations. In this work we compare aerosols, clouds, and their interactions in three climate models (AM3, CAM5, ModelE) to MODIS satellite observations. Modeled cloud properties were diagnosed using the CFMIP Observations Simulator Package (COSP). Cloud droplet number concentrations (N) were derived using the same algorithm for both satellite-simulated model values and observations. We find that aerosol optical depth tau simulated by models is similar to observations. For N, AM3 and CAM5 capture the observed spatial pattern of higher values in near-coast versus remote ocean regions, though modeled values in general are higher than observed. In contrast, ModelE simulates lower N in most near-coast versus remote regions. Aerosol- cloud interactions were computed as the sensitivity of N to tau for marine liquid clouds off the coasts of South Africa and Eastern Asia where aerosol pollution varies in time. AM3 and CAM5 are in most cases more sensitive than observations, while the sensitivity for ModelE is statistically insignificant. This widely used sensitivity could be subject to misinterpretation due to the confounding influence of meteorology on both aerosols and clouds. A simple framework for assessing the N – tau sensitivity at constant meteorology illustrates that observed sensitivity can change from positive to statistically insignificant when including the confounding influence of relative humidity. Satellite simulated values of N were compared to standard model output and found to be higher with a bias of 83 cm-3.

Ban-Weiss, George; Jin, Ling; Bauer, S.; Bennartz, Ralph; Liu, Xiaohong; Zhang, Kai; Ming, Yi; Guo, Huan; Jiang, Jonathan

2014-09-23T23:59:59.000Z

39

Model analysis of the anthropogenic aerosol effect on clouds over East Asia  

SciTech Connect (OSTI)

A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (PI) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm{sup -3} over the ocean and East China, 400 cm{sup -3} over Central and Southwest China, and less than 200 cm{sup -3} over North China. The cloud liquid water path (LWP) increased by 40-60 g m{sup -2} over the ocean and Southeast China and 30 g m{sup -2} over Central China; the LWP increased less than 5 g m{sup -2} or decreased by 5 g m{sup -2} over North China. The effective radius (Re) decreased by more than 4 {mu}m over Southwest, Central, and Southeast China and 2 {mu}m over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250-400 cm{sup -3}, the LWP increased by approximately 30-50 g m{sup -2}, and Re decreased by approximately 3 {mu}m over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative forcing strengthened by 30 W m{sup -2} over the ocean and 10 W m{sup -2} over Southeast China, and it weakened slightly by approximately 2-10 W m{sup -2} over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m{sup -2} over Southeast and North China and weakened by 10 W m{sup -2} over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.

Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Zhao, Chun

2012-01-16T23:59:59.000Z

40

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect (OSTI)

We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: â?˘ Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. â?˘ Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. â?˘ Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

2011-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics  

SciTech Connect (OSTI)

Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

2013-10-01T23:59:59.000Z

42

Optical, physical, and chemical properties of springtime aerosol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in...

43

A new cloud and aerosol layer detection method based on micropulse lidar measurements  

E-Print Network [OSTI]

A new cloud and aerosol layer detection method based on micropulse lidar measurements Chuanfeng algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds

Li, Zhanqing

44

6, 43414373, 2006 Cloud-borne aerosol  

E-Print Network [OSTI]

.g., par- ticle nucleation, coagulation, gravitational settling, dry deposition); some involve AP attached to a single type of cloud/precipitation particle (e.g., aqueous and heteroge-25 neous chemistry), and some, transformation, and removal processes on the attachment state, one might expect that model simulations

Paris-Sud XI, Université de

45

Aerosols and Clouds: In Cahoots to Change Climate  

SciTech Connect (OSTI)

Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

Berg, Larry

2014-03-29T23:59:59.000Z

46

Aerosols and Clouds: In Cahoots to Change Climate  

ScienceCinema (OSTI)

Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

Berg, Larry

2014-06-02T23:59:59.000Z

47

Investigation of the aerosol-cloud interaction using the WRF framework  

E-Print Network [OSTI]

. Simulations with various aerosol profiles demonstrate that the response of precipitation to the increase of aerosol concentrations is non-monotonic. The maximal cloud cover, core updraft, and maximal vertical velocity exhibit similar responses as precipitation...

Li, Guohui

2009-05-15T23:59:59.000Z

48

Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models  

SciTech Connect (OSTI)

One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

Penner, Joyce

2012-06-30T23:59:59.000Z

49

Investigations of cloud altering effects of atmospheric aerosols using a new mixed Eulerian-Lagrangian aerosol model  

E-Print Network [OSTI]

Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud ...

Steele, Henry Donnan, 1974-

2004-01-01T23:59:59.000Z

50

ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

Newsom, Rob; Goldsmith, John

51

The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic  

SciTech Connect (OSTI)

The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron microscope – were often very compacted, suggesting cloud processing and exhibiting different optical properties from fresh emissions. In addition, black carbon was found to be sometimes mixed with mineral dust, affecting its optical properties and potential forcing. c) Some aerosols collected at PMO acted as ice nuclei, potentially contributing to cirrus cloud formation during their transport in the upper free troposphere. Identified good ice nuclei were often mineral dust particles. d) The free tropospheric aerosols studied at PMO have relevance to low level marine clouds due, for example, to synoptic subsidence entraining free tropospheric aerosols into the marine boundary layer. This has potentially large consequences on cloud condensation nuclei concentrations and compositions in the marine boundary layer; therefore, having an effect on the marine stratus clouds, with potentially important repercussions on the radiative forcing. The scientific products of this project currently include contributions to two papers published in the Nature Publishing group (Nature Communications and Scientific Reports), one paper under revision for Atmospheric Chemistry and Physics, one in review in Geophysical Research Letters and one recently submitted to Atmospheric Chemistry and Physics Discussion. In addition, four manuscripts are in advanced state of preparation. Finally, twenty-eight presentations were given at international conferences, workshops and seminars.

Mazzoleni, Claudio [Michigan Technological University; Kumar, Sumit [Michigan Technological University; Wright, Kendra [Michigan Technological University; Kramer, Louisa [Michigan Technological University; Mazzoleni, Lynn [Michigan Technological University; Owen, Robert [Michigan Technological University; Helmig, Detlev [University of Colorado at Boulder

2014-12-09T23:59:59.000Z

52

REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS.  

SciTech Connect (OSTI)

Atmospheric aerosols, suspensions of solid or liquid particles, are an important multi-phase system. Aerosols scatter and absorb shortwave (solar) radiation, affecting climate (Charlson et al., 1992; Schwartz, 1996) and visibility; nucleate cloud droplet formation, modifying the reflectivity of clouds (Twomey et al., 1984; Schwartz and Slingo, 1996) as well as contributing to composition of cloudwater and to wet deposition (Seinfeld and Pandis, 1998); and affect human health through inhalation (NRC, 1998). Existing and prospective air quality regulations impose standards on concentrations of atmospheric aerosols to protect human health and welfare (EPA, 1998). Chemical transport and transformation models representing the loading and geographical distribution of aerosols and precursor gases are needed to permit development of effective and efficient strategies for meeting air quality standards, and for examining aerosol effects on climate retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes depend on their size distribution: light scattering, cloud nucleating properties, dry deposition, and penetration into airways of lungs. The evolution of the mass loading itself depends on particle size because of the size dependence of growth and removal processes. For these reasons it is increasingly recognized that chemical transport and transformation models must represent not just the mass loading of atmospheric particulate matter but also the aerosol microphysical properties and the evolution of these properties if aerosols are to be accurately represented in these models. If the size distribution of the aerosol is known, a given property can be evaluated as the integral of the appropriate kernel function over the size distribution. This has motivated the approach of determining aerosol size distribution, and of explicitly representing this distribution and its evolution in chemical transport models.

SCHWARTZ,S.E.; MCGRAW,R.; BENKOVITZ,C.M.; WRIGHT,D.L.

2001-04-01T23:59:59.000Z

53

Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model  

SciTech Connect (OSTI)

Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better AOD and AAOD over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.

Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

2013-06-05T23:59:59.000Z

54

Cloud condensation nucleus activity of secondary organic aerosol particles mixed with sulfate  

E-Print Network [OSTI]

Cloud condensation nucleus activity of secondary organic aerosol particles mixed with sulfate 2007; revised 30 July 2007; accepted 15 October 2007; published 21 December 2007. [1] The cloud-sulfate particles may be reliably omitted in the treatment of cloud droplet formation. Citation: King, S. M., T

55

DRAFT, last update 5 January 2012 Aerosol cloud-mediated radiative forcing: highly uncertain and  

E-Print Network [OSTI]

phase and ice processes. Respectively, the parameterization of these processes for GCMs is further away and aerosol parameterizations, but intense research efforts aimed at improving the realism of cloud lower than for the shallow clouds, as the deep clouds are much more complicated, because mixed phase

Wood, Robert

56

Constraining cloud lifetime effects of aerosols using A-Train satellite observations  

SciTech Connect (OSTI)

Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (S{sub pop}), is a good measure of the liquid water path response to aerosol perturbation ({lambda}), as both Spop and {lambda} strongly depend on the magnitude of autoconversion, a model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. S{sub pop} in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing (SWCF) over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of S{sub pop} and to examine S{sub pop} in high-resolution models.

Wang, Minghuai; Ghan, Steven J.; Liu, Xiaohong; Ecuyer, Tristan L.; Zhang, Kai; Morrison, H.; Ovchinnikov, Mikhail; Easter, Richard C.; Marchand, Roger; Chand, Duli; Qian, Yun; Penner, Joyce E.

2012-08-15T23:59:59.000Z

57

DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?  

E-Print Network [OSTI]

BALANCE Global and annual average energy fluxes in watts per square meter Schwartz, 1996, modified from;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS

Schwartz, Stephen E.

58

Clouds of short-circuited thermionic nanobatteries and promising prospects for development of nanobattery-based aerosol fusion reactors. The preliminary report  

E-Print Network [OSTI]

The physical mechanisms of periodic separation and relaxation of electric charges within aerosol particles possessing the properties the short-circuited batteries can be extremely diverse. With use of appropriate materials and dispersing methods, the electrochemical, thermoelectric, thermionic, pyroelectric, photoelectric, photo electronic emission, or even radionuclide-based emission micro and nano-batteries can be synthesized and be dispersed in the air as clouds self-assembed of the short-circuited aerosol batteries due to the inter-particle electromagnetic dipole-dipole attraction. Intense thermionic emission from ionized hot spots migrating on the relatively cold surface of charged explosive particles, can convert these particles into short-circuited thermionic batteries, turning an aerosol cloud consisting of such unipolar charged, gradually decomposing explosive particles into ball lightning. The slow exothermic decomposition of the highly sensitive explosive aerosol particles, catalyzed by excess ions on their surface, and also ion-catalyzed reactions of slow water vapor induced oxidation of charged combustible aerosol particles underlie two main classes of natural ball lightning. At the same time, the artificially generated clouds consisting of such unipolar charged aerosol nanobatteries, probably, can have some useful applications, not only military ones. In particular, it seems that high-performance pyroelectric fusion reactors could be created on the basis of such ball-shaped aerosol clouds self-assembled of pyroelectric nanocrystals - short-circuited pyroelectric nanobatteries.

Oleg Meshcheryakov

2012-04-13T23:59:59.000Z

59

Investigation of warm-cloud microphysics using a multi-component cloud model: Interactive effects of the aerosol spectrum. Master's thesis  

SciTech Connect (OSTI)

Clouds, especially low, warm, boundary-layer clouds, play an important role in regulating the earth's climate due to their significant contribution to the global albedo. The radiative effects of individual clouds are controlled largely by cloud microstructure, which is itself sensitive to the concentration and spectral distribution of the atmospheric aerosol. Increases in aerosol particle concentrations from anthropogenic activity could result in increased cloud albedo and global cloudiness, increasing the amount of reflected solar radiation. However, the effects of increased aerosol particle concentrations could be offset by the presence of giant or ultragiant aerosol particles. A one-dimensional, multi-component microphysical cloud model has been used to demonstrate the effects of aerosol particle spectral variations on the microstructure of warm clouds. Simulations performed with this model demonstrate that the introduction of increased concentrations of giant aerosol particles has a destabilizing effect on the cloud microstructure. Also, it is shown that warm-cloud microphysical processes modify the aerosol particle spectrum, favoring the generation of the largest sized particles via the collision-coalescence process. These simulations provide further evidence that the effect of aerosol particles on cloud microstructure must be addressed when considering global climate forecasts.

Zahn, S.G.

1993-12-01T23:59:59.000Z

60

Author's personal copy Estimates of radiation over clouds and dust aerosols  

E-Print Network [OSTI]

and clouds are computed for the community radiative transfer model (CRTM) that is a flagship effort, and for ultimately improving the assessment of the Earth's radiant energy budget. Clouds and aerosols are usually field measured by satellite sensors Contents lists available at ScienceDirect journal homepage: www

Baum, Bryan A.

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Clouds of short-circuited thermionic nanobatteries and promising prospects for development of nanobattery-based aerosol fusion reactors. The preliminary report  

E-Print Network [OSTI]

The physical mechanisms of periodic separation and relaxation of electric charges within aerosol particles possessing the properties the short-circuited batteries can be extremely diverse. With use of appropriate materials and dispersing methods, the electrochemical, thermoelectric, thermionic, pyroelectric, photoelectric, photo electronic emission, or even radionuclide-based emission micro and nano-batteries can be synthesized and be dispersed in the air as clouds self-assembed of the short-circuited aerosol batteries due to the inter-particle electromagnetic dipole-dipole attraction. Intense thermionic emission from ionized hot spots migrating on the relatively cold surface of charged explosive particles, can convert these particles into short-circuited thermionic batteries, turning an aerosol cloud consisting of such unipolar charged, gradually decomposing explosive particles into ball lightning. The slow exothermic decomposition of the highly sensitive explosive aerosol particles, catalyzed by excess ions...

Meshcheryakov, Oleg

2012-01-01T23:59:59.000Z

62

Cloud Properties and Precipitation Formation Processes Observed  

E-Print Network [OSTI]

of spring time precipitation that develops in the Riyadh, Saudi Arabia region. · What are the cloud properties for developing cloud in the Riyadh, Saudi Arabia region. Research Objective #12;#12;Quality is based on calibration conducted by Kelly bosch and Dennis Afseth at Weather Modification Inc. (WMI) on 22

Delene, David J.

63

Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing  

SciTech Connect (OSTI)

Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

2013-11-01T23:59:59.000Z

64

Organic and Inorganic Aerosol Below-Cloud Scavenging by  

E-Print Network [OSTI]

concentrations, with an average gravimetric PM1.0 of 8.2 ( 1.6 µg m-3 and an average Fourier transform infrared-rinsing behavior was unaffected by source type. The aerosol OM was hydrophilic throughout the sampling period the description of aerosol lifetimes in global models. Introduction Wet and dry deposition of aerosol particles

Russell, Lynn

65

Development and testing of an aerosol/stratus cloud parameterization scheme for middle and high latitudes. Final technical progress report, November 1, 1994--October 31, 1998  

SciTech Connect (OSTI)

At the present time, general circulation models (GCMs) poorly represent clouds, to the extent that they cannot be relied upon to simulate the climatic effects of increasing concentrations of greenhouse gases, or of anthropogenic perturbations to concentrations of cloud condensation nuclei (CCN) or ice nuclei (IN). The long-term objective of this research was the development of an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary-layer clouds which responds to variations in CCN and IN. The work plan was to perform simulations of these cloud systems to gain understanding of their dynamics and microphysics, especially how aerosols affect cloud development and properties, that cold then be used to guide parameterizations. Several versions of the CSU RAMS (Regional Atmospheric Modeling System), modified to treat Arctic clouds, have been used during the course of this work. The authors also developed a new modeling system, the Trajectory Ensemble Model, to perform detailed chemical and microphysical simulations off-line from the host LES model. The increased understanding of the cloud systems investigated in this research can be applied to a single-column cloud model, designed as an adaptive grid model which can interface into a GCM vertical grid through distinct layers of the troposphere where the presence of layer clouds is expected.

Kreidenweis, S.M.; Cotton, W.R.

1999-05-20T23:59:59.000Z

66

Dust Aerosol Impact on North Africa Climate: A GCM Investigation of Aerosol-Cloud-Radiation Interactions Using A-Train Satellite Data  

SciTech Connect (OSTI)

The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM) developed at the University of California, Los Angeles (UCLA). The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol indirect effect based on cloud and aerosol data retrieved from A-Train satellite observations have been employed in the climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols generally increase with increasing aerosol optical depth (AOD). When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced, since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing could exceed aerosol forcing. With the aerosol indirect effect, the net cloud forcing is generally reduced for ice water path (IWP) larger than 20 g m-2. The magnitude of the reduction increases with IWP. AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect result in less OLR and net solar flux at the top of the atmosphere over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. The increased precipitation seems to be associated with enhanced ice water contents in this region. The 200 mb radiative heating rate shows more cooling with the aerosol indirect effect since greater cooling is produced at the cloud top with smaller ice crystal size. The 500 mb omega indicates strong upward motion, which, together with the increased cooling effect, results in the increased ice water contents. Adding the aerosol direct effect into the model simulation reduces the precipitation in the normal rainfall band over North Africa, where precipitation is shifted to the south and the northeast produced by the absorption of sunlight and the subsequent heating of the air column by dust particles. As a result, rainfall is drawn further inland to the northeast. This study represents the first attempt to quantify the climate impact of aerosol indirect effect using a GCM in connection with A-train satellite data. The parameterization for the aerosol first indirect effect developed in this study can be readily incorporated for application to any other GCMs.

Gu, Y.; Liou, K. N.; Jiang, Jonathan; Su, Hui; Liu, Xiaohong

2012-02-15T23:59:59.000Z

67

Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic  

SciTech Connect (OSTI)

A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.

Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.; Morrison, H.; Solomon, Amy

2014-11-17T23:59:59.000Z

68

Indirect and Semi-Direct Aerosol Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October? 2. To what extent do the different properties of the Arctic aerosol during April produce differences in clouds? * Do the more polluted conditions during April in the...

69

Aerosols, Clouds, and Climate Change Stephen E. Schwartz  

E-Print Network [OSTI]

in atmospheric carbon dioxide associated with fossil fuel combustion. Briefly the options are mitigation work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous

Schwartz, Stephen E.

70

A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation  

SciTech Connect (OSTI)

The impact of anthropogenic aerosol on the East Asian summer monsoon (EASM) is investigated with NCAR CAM5, a state-of-the-art climate model with aerosol’s direct and indirect effects. Results indicate that anthropogenic aerosol tends to cause a weakened EASM with a southward shift of precipitation in East Asia mostly by its radiative effect. Anthropogenic aerosol induced surface cooling stabilizes the boundary layer, suppresses the convection and latent heat release in northern China, and reduces the tropospheric temperature over land and land-sea thermal contrast, thus leading to a weakened EASM. Meanwhile, acting as cloud condensation nuclei (CCN), anthropogenic aerosol can significantly increase the cloud droplet number concentration but decrease the cloud droplet effective radius over Indochina and Indian Peninsulas as well as over southwestern and northern China, inhibiting the precipitation in these regions. Thus, anthropogenic aerosol tends to reduce Southeast and South Asian summer monsoon precipitation by its indirect effect.

Jiang, Yiquan; Liu, Xiaohong; Yang, Xiuqun; Wang, Minghuai

2013-05-01T23:59:59.000Z

71

Aerosol Impacts on California Winter Clouds and Precipitation during CalWater 2011: Local Pollution versus Long-Range Transported Dust  

SciTech Connect (OSTI)

Mineral dust aerosols often observed over California in winter and spring, associated with long-range transport from Asia and Sahara, have been linked to enhanced precipitation based on observations. Local anthropogenic pollution, on the other hand, was shown in previous observational and modeling studies to reduce precipitation. Here we incorporate recent developments in ice nucleation parameterizations to link aerosols with ice crystal formation in a spectral-bin cloud microphysical model coupled with the Weather Research and Forecasting (WRF) model, to examine the relative and combined impacts of dust and local pollution particles on cloud properties and precipitation type and intensity. Simulations are carried out for two cloud cases with contrasting meteorology and cloud dynamics that occurred on February 16 (FEB16) and March 02 (MAR02) from the CalWater 2011 field campaign. In both cases, observations show the presence of dust and biological particles in a relative pristine environment. The simulated cloud microphysical properties and precipitation show reasonable agreement with aircraft and surface measurements. Model sensitivity experiments indicate that in the pristine environment, the dust and biological aerosol layers increase the accumulated precipitation by 10-20% from the Central Valley to the Sierra Nevada Mountains for both FEB16 and MAR02 due to a ~40% increase in snow formation, validating the observational hypothesis. Model results show that local pollution increases precipitation over the windward slope of the mountains by few percent due to increased snow formation when dust is present but reduces precipitation by 5-8% if dust is removed on FEB16. The effects of local pollution on cloud microphysics and precipitation strongly depend on meteorology including the strength of the Sierra Barrier Jet, and cloud dynamics. This study further underscores the importance of the interactions between local pollution, dust, and environmental conditions for assessing aerosol effects on cold season precipitation in California.

Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, Allen B.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

2014-01-03T23:59:59.000Z

72

A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform Clouds  

E-Print Network [OSTI]

freezing in a mixed-phase stratiform cloud. Immersion freez- ing is represented using a parameterization, and the larger droplets nucleate into ice particles through the immersion freezing process. In mixed-phaseA Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform

Eloranta, Edwin W.

73

X-1 ROEBELING ET AL.: SEVIRI & AVHRR CLOUD PROPERTY RETRIEVALS Cloud property retrievals for climate monitoring  

E-Print Network [OSTI]

Generation (METEOSAT-8) and the Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic a consistent and high quality dataset of SEVIRI and AVHRR retrieved cloud properties for climate research studies. Clouds strongly modulate the energy balance of the Earth and its atmosphere through

Stoffelen, Ad

74

Development and testing of an aerosol/stratus cloud parameterization scheme for middle and high latitudes. Year 3 technical progress report, November 1, 1996--August 31, 1997  

SciTech Connect (OSTI)

At the present time, general circulation models (GCMs) poorly represent clouds, to the extent that they cannot be relied upon to simulate the climatic effects of increasing concentrations of greenhouse gases, or of anthropogenic perturbations to concentrations of cloud condensation nuclei (CCN) or ice nuclei (IN). The net radiative forcing of clouds varies strongly with latitude. Poleward of 30 degrees in both hemispheres, low-level clouds create a net cooling effect corresponding to radiative divergences of {minus}50 to {minus}100 W/m{sup 2}. It is likely that a combination of fogs, boundary-layer stratocumulus, and stratus clouds are the main contributors to this forcing. Models of the response of the microphysical and radiative properties of clouds to changes in aerosol abundance, for a variety of large-scale meteorological forcings, are important additions to GCMs used for the study of the role of Arctic systems in global climate. The overall objective of this research is the development of an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary-layer clouds which responds to variations in CCN and IN. The parameterization is to be designed for ultimate use in GCM simulations as a tool in understanding the role of CCN, IN, and Arctic clouds in radiation budgets. Several versions of the CSU RAMS (Regional Atmospheric Modeling System) will be used during the course of this work. The parameterizations developed in this research are intended for application in a single-column cloud model, designed as an adaptive grid model which can interface into a GCM vertical grid through distinct layers of the troposphere where the presence of layer clouds is expected.

Kreidenweis, S.M.; Cotton, W.R.

1997-09-02T23:59:59.000Z

75

Boreal forests, aerosols and the impacts on clouds and climate  

E-Print Network [OSTI]

of energy, momentum, water, carbon dioxide and other trace gas and aerosol species (figure 1). Through due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored shown in figure 2) have a dark canopy (with low albedo) that obscures the snow-covered ground (with high

Spracklen, Dominick

76

Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction  

SciTech Connect (OSTI)

Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the �¢����solar-background�¢��� mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM�¢����s zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS�¢���� 1 Hz sampling to study the �¢����twilight zone�¢��� around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM�¢����s 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM�¢����s operational data processing.

D. Jui-Yuan Chiu

2010-10-19T23:59:59.000Z

77

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect (OSTI)

This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

Chiu, Jui-Yuan Christine [University of Reading] [University of Reading

2014-04-10T23:59:59.000Z

78

Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data  

E-Print Network [OSTI]

Aerosols have a large potential to influence climate through their effects on the microphysics and optical properties of clouds and, hence, on the Earth's radiation budget. Aerosol–cloud interactions have been intensively ...

Lana, A.

79

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008  

SciTech Connect (OSTI)

Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 ?m (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm?3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 ?m) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of larger particles at higher elevations and relatively slow deposition to the surface.

Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Zelenyuk, Alla; Earle, Michael; MacDonald, A. M.; Liu, Peter S.; Leaitch, W. R.

2014-03-06T23:59:59.000Z

80

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWST Cloud OD Sensor TWST ARM Data

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWST Cloud OD Sensor TWST ARM DataExtended

82

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWST Cloud OD Sensor TWST ARM

83

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor TWST Cloud OD Sensor TWST ARMSnowfall

84

Investigating the Radiative Impact Clouds Using Retrieved Properties to Classify Cloud Type  

E-Print Network [OSTI]

of Reading, RG6 6AL, UK Abstract. Active remote sensing allows cloud properties such as ice and liquid water remote sensing, Cloud categorization, Cloud properties, Radiative impact. PACS: 92.60. Vb. INTRODUCTION in a radiation scheme which can simulate the radiation budget and heating rates throughout the atmospheric

Hogan, Robin

85

Microphysical Properties of Single and Mixed-Phase Arctic Clouds Derived from AERI Observations  

SciTech Connect (OSTI)

A novel new approach to retrieve cloud microphysical properties from mixed-phase clouds is presented. This algorithm retrieves cloud optical depth, ice fraction, and the effective size of the water and ice particles from ground-based, high-resolution infrared radiance observations. The theoretical basis is that the absorption coefficient of ice is stronger than that of liquid water from 10-13 mm, whereas liquid water is more absorbing than ice from 16-25 um. However, due to strong absorption in the rotational water vapor absorption band, the 16-25 um spectral region becomes opaque for significant water vapor burdens (i.e., for precipitable water vapor amounts over approximately 1 cm). The Arctic is characterized by its dry and cold atmosphere, as well as a preponderance of mixed-phase clouds, and thus this approach is applicable to Arctic clouds. Since this approach uses infrared observations, cloud properties are retrieved at night and during the long polar wintertime period. The analysis of the cloud properties retrieved during a 7 month period during the Surface Heat Budget of the Arctic (SHEBA) experiment demonstrates many interesting features. These results show a dependence of the optical depth on cloud phase, differences in the mode radius of the water droplets in liquid-only and mid-phase clouds, a lack of temperature dependence in the ice fraction for temperatures above 240 K, seasonal trends in the optical depth with the clouds being thinner in winter and becoming more optically thick in the late spring, and a seasonal trend in the effective size of the water droplets in liquid-only and mixed-phase clouds that is most likely related to aerosol concentration.

Turner, David D.

2003-06-01T23:59:59.000Z

86

A41E-0166: Measurements of the Statistical Relationship between Cloud Base Aerosols and Cloud Droplet Concentrations David J Delene, University of North Dakota (delene@aero.und.edu; http://aerosol.atmos.und.edu)  

E-Print Network [OSTI]

in Saudi Arabia, North Dakota and Mali are analyzed to determine the relationship of below cloud base during the 2007 rainy season in Mali were generally lower than in North Dakota and Saudi Arabia or dust. Saudi Arabia has high aerosol concentration, lots of dust (> 1 µm), and higher cloud droplet

Delene, David J.

87

Study of ice cloud properties using infrared spectral data  

E-Print Network [OSTI]

The research presented in this thesis involves the study of ice cloud microphysical and optical properties using both hyperspectral and narrowband infrared spectral data. First, ice cloud models are developed for the Infrared Atmospheric Sounding...

Garrett, Kevin James

2009-05-15T23:59:59.000Z

88

ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosionAnnouncements Media ContactCenterFeaturegovCampaignsARM Cloud

89

Cloud Property Retrieval Products for Graciosa Island, Azores  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

Dong, Xiquan

90

Cloud Property Retrieval Products for Graciosa Island, Azores  

SciTech Connect (OSTI)

The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

Dong, Xiquan

2014-05-05T23:59:59.000Z

91

Aerosol, Cloud, and Climate: From Observation to Model (457th Brookhaven Lecture)  

SciTech Connect (OSTI)

In the last 100 years, the Earth has warmed by about 1şF, glaciers and sea ice have been melting more quickly than previously, especially during the past decade, and the level of the sea has risen about 6-8 inches worldwide. Scientists have long been investigating this phenomenon of “global warming,” which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions. Among many findings, researchers observed that atmospheric aerosols, minute particles in the atmosphere, can significantly affect global energy balance and climate. Directly, aerosols scatter and absorb sunlight. Indirectly, increased aerosol concentration can lead to smaller cloud droplets, changing clouds in ways that tend to cool global climate and potentially mask overall warming from man-made CO2.

Wang, Jian (Ph.D., Environmental Sciences Department) [Ph.D., Environmental Sciences Department

2010-05-12T23:59:59.000Z

92

Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took place at Steamboat Springs, Colorado, for the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX). The objective of this field campaign was to obtain data about liquid and mixed-phase clouds using AMF2 instruments in conjunction with Storm Peak Laboratory (located at an elevation of 3220 meters on Mt. Werner), a cloud and aerosol research facility operated by the Desert Research Institute. STORMVEX datasets are freely available for viewing and download. Users are asked to register with the ARM Archive; the user's email address is used from that time forward as the login name.

93

Photolytic processing of secondary organic aerosols dissolved in cloud droplets  

SciTech Connect (OSTI)

The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05 - 1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300 - 400 nm radiation for up to 24 hours. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly reduced by photolysis relative to the monomeric compounds. Direct pH measurements showed that compounds containing carboxylic acids increased upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonylswas confirmed by the UV-Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n??* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~ 0.03. The concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content.

Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

2011-05-26T23:59:59.000Z

94

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES  

E-Print Network [OSTI]

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES: WHY ARE THE MODELS SO of Energy under Contract No. DE-AC02-98CH10886. #12;PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW will present a study of the properties of ammoniated sulfate aerosols ((NH4)2SO4, NH4HSO4, and in- between

95

Assessment of the mixing state and cloud nucleating efficiency of Asian aerosols using aircraft-based measurements of hygroscopicity  

E-Print Network [OSTI]

to cloud droplet size. Although this is a direct measure of CCN, it does not permit rapid characterization of the spectrum of critical supersaturations within an aerosol population. The approach taken here uses measurement of hygroscopic... uniform substance, generally a salt solution (Svenningsson et al. 1992). However, studies have shown that individual aerosol particles are composed of multiple species (Quinn et al. 2000, Raymond & Pandis 2003), and are often non-spherical (Crouzet...

Thomas, Timothy William

2006-08-16T23:59:59.000Z

96

Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: Sensitivity Study  

SciTech Connect (OSTI)

We conducted a sensitivity study to better understand the potential of a new method for retrieving aerosol optical depth (AOD) under partly cloudy conditions. This method exploits reflectance ratios in the visible spectral range and provides an effective way to avoid three-dimensional (3D) cloud effects. The sensitivity study is performed for different observational conditions and random errors in input data. The results of the sensitivity study suggest that this ratio method has the ability to detect clear pixels even in close proximity to clouds. Such detection does not require a statistical analysis of the two-dimensional (2D) horizontal distribution of reflected solar radiation, and thus it could be customized for operational retrievals. In comparison with previously suggested approaches, the ratio method has the capability to increase the "harvest" of clear pixels. Similar to the traditional Independent Pixel Approximation (IPA), the ratio method has a low computational cost for retrieving AOD. In contrast to the IPA method, the ratio method provides much more accurate estimations of the AOD values under broken cloud conditions: pixel-based and domain-averaged estimations of errors in AOD are about 25% and 10%, respectively. Finally, both the ratio-based cloud screening and the accuracy of domain-averaged ratio-based AOD values do not suffer greatly when 5% random errors are introduced in the reflectances.

Kassianov, Evgueni I.; Ovtchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.

2009-09-01T23:59:59.000Z

97

Ice Formation in Arctic Mixed-Phase Clouds: Insights from a 3-D Cloud-Resolving Model with Size-Resolved Aerosol and Cloud Microphysics  

SciTech Connect (OSTI)

The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program’s Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a 3-dimensional cloud-resolving model the System for Atmospheric Modeling (SAM) coupled with an explicit bin microphysics scheme and a radar-lidar simulator. Two possible ice enhancement mechanisms – activation of droplet evaporation residues by condensation-followed-by-freezing and droplet freezing by contact freezing inside-out, are scrutinized by extensive comparisons with aircraft and radar and lidar measurements. The locations of ice initiation associated with each mechanism and the role of ice nuclei (IN) in the evolution of mixed-phase clouds are mainly addressed. Simulations with either mechanism agree well with the in-situ and remote sensing measurements on ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give very similar cloud microphysical, macrophysical, dynamical, and radiative properties, although the ice nucleation properties (rate, frequency and location) are completely different. Ice nucleation from activation of evaporation nuclei is most efficient near cloud top areas concentrated on the edges of updrafts, while ice initiation from the drop freezing process has no significant location preference (occurs anywhere that droplet evaporation is significant). Both enhanced nucleation mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. The contribution of ice nuclei (IN) recycling from ice particle evaporation to IN and ice particle concentration is found to be very significant in this case. Cloud can be very sensitive to IN initially and form a nonquilibrium transition condition, but become much less sensitive as cloud evolves to a steady mixed-phase condition. The parameterization of Meyers et al. [1992] with the observed MPACE IN concentration is able to predict the observed mixed-phase clouds reasonably well. This validation may facilitate the application of this parameterization in the cloud and climate models to simulate Arctic clouds.

Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

2009-02-27T23:59:59.000Z

98

Cloud Properties and Radiative Heating Rates for TWP  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

99

Cloud Properties and Radiative Heating Rates for TWP  

SciTech Connect (OSTI)

A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

Comstock, Jennifer

2013-11-07T23:59:59.000Z

100

CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan  

SciTech Connect (OSTI)

Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-05-27T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE  

SciTech Connect (OSTI)

Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

2012-08-14T23:59:59.000Z

102

REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS  

E-Print Network [OSTI]

understanding of the key processes that govern the aerosol size distribution: · Gas-to-particle conversion--conversion, suspensions of solid or liquid particles, are an important multi- phase system. Aerosols scatter and absorb retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes

103

Correcting transport errors during advection of aerosol and cloud moment sequences in eulerian models  

SciTech Connect (OSTI)

Moment methods are finding increasing usage for simulations of particle population balance in box models and in more complex flows including two-phase flows. These highly efficient methods have nevertheless had little impact to date for multi-moment representation of aerosols and clouds in atmospheric models. There are evidently two reasons for this: First, atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex and take many man-years to develop. Thus there is considerable inertia to the implementation of novel approaches. Second, and more fundamental, the nonlinear transport algorithms designed to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in the typically coarse grid arrays of these models, can and occasionally do fail to preserve correlations between the moments. Other correlated tracers such as isotopic abundances, composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate. In the case of moments, this loss of correlation can and occasionally does give rise to unphysical moment sets. When this happens the simulation can come to a halt. Following a brief description and review of moment methods, the goal of this paper is to present two new approaches that both test moment sequences for validity and correct them when they fail. The new approaches work on individual grid cells without requiring stored information from previous time-steps or neighboring cells.

McGraw R.

2012-03-01T23:59:59.000Z

104

E-Print Network 3.0 - aerosol properties in-canopy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in-canopy Page: << < 1 2 3 4 5 > >> 1 Quantitative Assessments of Radiative and Optical Properties of Marine Biogenic Aerosol PI: N. Meskhidze (NCSU) Summary: Quantitative...

105

Influence of clouds and diffuse radiation on ecosystem-atmosphere CO 2 and CO 18 O exchanges  

E-Print Network [OSTI]

cover, radiation, meteorological and water isotope data tohere, radiation, cloud property, and aerosol data wereData were obtained from the Atmospheric Radiation

2009-01-01T23:59:59.000Z

106

Chemical and physicochemial properties of submicron aerosol agglomerates  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory. The formation of nanometer-sized aerosol particles in a premixed methane flame from both solid-phase aerosol precursors and gas-phase precursors was investigated. Techniques were developed to determine the distribution of the individual chemical species as a function of agglomerate size by using inductively coupled plasma atomic emission spectroscopy (ICP-AES). To determine the distribution of chemical species both from particle to particle and within the particles on a nanometer scale, we used the analytical electron microscopy techniques of energy dispersive x-ray spectrometry (EDS) and electron energy loss spectrometry (EELS) coupled with transmission electron microscopy (TEM). The observed distribution of individual chemical species as a function of agglomerate size was linked to the material properties of the solid-phase precursors. For aerosol formed from gas-phase precursors by gas-to-particle conversion, the distribution of species on a manometer scale was found to correspond to the equilibrium phase distribution expected from equilibrium for the system at the flame temperatures.

Scripsick, R.C. [Los Alamos National Lab., NM (United States); Ehrman, S.; Friedlander, S.K. [Univ. of California, Los Angeles, CA (United States). Dept. of Chemical Engineering

1998-12-31T23:59:59.000Z

107

Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study  

SciTech Connect (OSTI)

The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to simulate relationships between aerosols and clouds in the vicinity of Oklahoma City during the June 2007 Cumulus Humilis Aerosol Processing Study (CHAPS). The regional scale simulation completed using 2 km horizontal grid spacing evaluates four important relationships between aerosols and shallow cumulus clouds observed during CHAPS. First, the model reproduces the trends of higher nitrate volume fractions in cloud droplet residuals compared to interstitial non-activated aerosols, as measured using the Aerosol Mass Spectrometer. Comparing simulations with cloud chemistry turned on and off, we show that nitric acid vapor uptake by cloud droplets explains the higher nitrate content of cloud droplet residuals. Second, as documented using an offline code, both aerosol water and other inorganics (OIN), which are related to dust and crustal emissions, significantly affect predicted aerosol optical properties. Reducing the OIN content of wet aerosols by 50% significantly improves agreement of model predictions with measurements of aerosol optical properties. Third, the simulated hygroscopicity of aerosols is too high as compared to their hygroscopicity derived from cloud condensation nuclei and particle size distribution measurements, indicating uncertainties associated with simulating size-dependent chemical composition and treatment of aerosol mixing state within the model. Fourth, the model reasonably represents the observations of the first aerosol indirect effect where pollutants in the vicinity of Oklahoma City increase cloud droplet number concentrations and decrease the droplet effective radius. While previous studies have often focused on cloud-aerosol interactions in stratiform and deep convective clouds, this study highlights the ability of regional-scale models to represent some of the important aspects of cloud-aerosol interactions associated with fields of short-lived shallow cumuli.

Shrivastava, ManishKumar B.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Laskin, Alexander; Chapman, Elaine G.; Gustafson, William I.; Liu, Ying; Berkowitz, Carl M.

2013-02-07T23:59:59.000Z

108

Preliminary investigation of the role that DMS (dimethyl sulfide) and cloud cycles play in the formation of the aerosol size distribution. Interim report  

SciTech Connect (OSTI)

A series of experiments designed to study the production of new particulate matter by photolysis of dimethyl sulfide (DMS) and the effect that nonprecipitating clouds have on the aerosol size distributions were carried out in Calspan Corporation's 600 cum environmental chamber during January and February 1986. The results show that DMS, the most-abundant natural source of sulfur, is photooxidized to some product of low volatility that can form new particles by homogeneous nucleation or condense on existing aerosols causing them to grow. To explain these observations, a theoretical study of the nucleation properties of methane sulfonic acid (MSA) was undertaken. The nucleation thresholds, calculated using thermodynamic data for MSA, show that at 70% RH, and MSA concentration of only 0.006 ppb will result in a supersaturated environment in which MSA will condense on preexisting particles larger than 0.02-micron radius. If the MSA concentrations increase to 30 ppb, then spontaneous formation of MSA solution droplets occurs by homogeneous binary nucleation. Simulations of the evolution of the size distribution observed for the DMS irradiation experiments with a dynamic aerosol model that includes the effects of coagulation, growth by condensation, and deposition to the walls of the chamber, yield results that are in excellent agreement with the observed evolution.

Hoppel, W.A.; Fitzgerald, J.W.; Frick, G.M.; Larson, R.E.; Wattle, B.J.

1987-07-29T23:59:59.000Z

109

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa  

E-Print Network [OSTI]

Evolution of biomass burning aerosol properties from an agricultural fire in southern Africa Steven Met Office C-130 within a distinct biomass burning plume during the Southern AFricAn Regional science, and P. R. Buseck, Evolution of biomass burning aerosol properties from an agricultural fire in southern

Highwood, Ellie

110

Simultaneous retrievals of column ozone and aerosol optical properties from direct and diffuse solar irradiance measurements  

E-Print Network [OSTI]

of column ozone and aerosol optical properties from direct and diffuse solar irradiance measurements, JSimultaneous retrievals of column ozone and aerosol optical properties from direct and diffuse solar irradiance measurements Christian D. Goering,1 Tristan S. L'Ecuyer,1 Graeme L. Stephens,1 James R

Stephens, Graeme L.

111

Optical Properties of Mixed Black Carbon, Inorganic and Secondary Organic Aerosols  

SciTech Connect (OSTI)

Summarizes the achievements of the project, which are divided into four areas: 1) Optical properties of secondary organic aerosols; 2) Development and of a polar nephelometer to measure aerosol optical properties and theoretical approaches to several optical analysis problems, 3) Studies on the accuracy of measurements of absorbing carbon by several methods, and 4) Environmental impacts of biodiesel.

Paulson, S E

2012-05-30T23:59:59.000Z

112

Cloud Properties Working Group Break Out Session  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVailCloisteredPresence of AerosolsBreak

113

Cirrus cloud formation and the role of heterogeneous ice nuclei  

E-Print Network [OSTI]

Composition, size, and phase are key properties that define the ability of an aerosol particle to initiate ice in cirrus clouds. Properties of cirrus ice nuclei (IN) have not been well constrained due to a lack of systematic ...

Froyd, Karl D.

2013-01-01T23:59:59.000Z

114

The Radiative Properties of Small Clouds: Multi-Scale Observations and Modeling  

SciTech Connect (OSTI)

Warm, liquid clouds and their representation in climate models continue to represent one of the most significant unknowns in climate sensitivity and climate change. Our project combines ARM observations, LES modeling, and satellite imagery to characterize shallow clouds and the role of aerosol in modifying their radiative effects.

Feingold, Graham [NOAA ESRL; McComiskey, Allison [CIRES, University of Colorado

2013-09-25T23:59:59.000Z

115

Tropical Cloud Properties and Radiative Heating Profiles  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

We have generated a suite of products that includes merged soundings, cloud microphysics, and radiative fluxes and heating profiles. The cloud microphysics is strongly based on the ARM Microbase value added product (Miller et al., 2003). We have made a few changes to the microbase parameterizations to address issues we observed in our initial analysis of the tropical data. The merged sounding product is not directly related to the product developed by ARM but is similar in that it uses the microwave radiometer to scale the radiosonde column water vapor. The radiative fluxes also differ from the ARM BBHRP (Broadband Heating Rate Profile) product in terms of the radiative transfer model and the sampling interval.

Mather, James

116

Macrophysical Properties of Tropical Cirrus Clouds from the CALIPSO Satellite and from Ground-based Micropulse and Raman Lidars  

SciTech Connect (OSTI)

Lidar observations of cirrus cloud macrophysical properties over the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program Darwin, Australia site are compared from the Cloud-Aerosol Lidar and In- frared Pathfinder Satellite Observation (CALIPSO) satellite, the ground-based ARM micropulse lidar (MPL), and the ARM Raman lidar (RL). Comparisons are made using the subset of profiles where the lidar beam is not fully attenuated. Daytime measurements using the RL are shown to be relatively unaffected by the solar background and are therefore suited for checking the validity of diurnal cycles. RL and CALIPSO cloud fraction profiles show good agreement while the MPL detects significantly less cirrus, particularly during the daytime. Both MPL and CALIPSO observations show that cirrus clouds occur less frequently during the day than at night at all altitudes. In contrast, the RL diurnal cy- cle is significantly different than zero only below about 11 km; where it is the opposite sign (i.e. more clouds during the daytime). For cirrus geomet- rical thickness, the MPL and CALIPSO observations agree well and both datasets have signficantly thinner clouds during the daytime than the RL. From the examination of hourly MPL and RL cirrus cloud thickness and through the application of daytime detection limits to all CALIPSO data we find that the decreased MPL and CALIPSO cloud thickness during the daytime is very likely a result of increased daytime noise. This study highlights the vast im- provement the RL provides (compared to the MPL) in the ARM program's ability to observe tropical cirrus clouds as well as a valuable ground-based lidar dataset for the validation of CALIPSO observations and to help im- prove our understanding of tropical cirrus clouds.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.; Sivaraman, Chitra; Vaughan, Mark A.; Winker, D.; Turner, David D.

2013-08-27T23:59:59.000Z

117

ARM Cloud Properties Working Group: Meeting Logistics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)Productssondeadjustsondeadjust Documentation DataProductswsicloudwsicloudsummarygifAOS3 ARM9 ARM2Cloud

118

Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008  

SciTech Connect (OSTI)

The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary conditions are likely to be very different because of the much more extensive ocean water during M-PACE. The uniformity of the surface conditions during ISDAC greatly simplifies the objective analysis (surface fluxes and precipitation are very weak), so that it can largely rely on the European Centre for Medium-Range Weather Forecasts analysis. The aerosol measurements can also be used as input to the cloud models and to evaluate the aerosol retrievals. By running the cloud models with and without solar absorption by the aerosols, we can determine the semidirect effect of the aerosol on the clouds.

SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

2007-11-01T23:59:59.000Z

119

E-Print Network 3.0 - aerosol-stratus cloud parameterization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GCMs Clouds challenge both the grid resolution and physical parameterizations... (greenhouse effect dominates) - Low clouds cool (shading effect ... Source: Ackerman, Thomas P. -...

120

Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties  

SciTech Connect (OSTI)

The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

Wang, Zhien

2010-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Study of cloud properties from single-scattering, radiative forcing, and retrieval perspectives  

E-Print Network [OSTI]

This dissertation reports on three different yet related topics in light scattering computation, radiative transfer simulation, and remote sensing implementation, regarding the cloud properties and the retrieval of cloud properties from satellite...

Lee, Yong-Keun

2009-06-02T23:59:59.000Z

122

Intercomparison and Evaluation of Global Aerosol Microphysical Properties among AeroCom Models of a Range of Complexity  

SciTech Connect (OSTI)

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by twelve global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the results suggest that most global aerosol microphysics models simulate the global variation of the particle size distribution with a good degree of skill, but some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.

Mann, G. W.; Carslaw, K. S.; Reddington, C. L.; Pringle, K. J.; Schulz, M.; Asmi, A.; Spracklen, D. V.; Ridley, D. A.; Woodhouse, M. T.; Lee, L. A.; Zhang, Kai; Ghan, Steven J.; Easter, Richard C.; Liu, Xiaohong; Stier, P.; Lee, Y. H.; Adams, P. J.; Tost, H.; Lelieveld, J.; Bauer, S.; Tsigaridis, Kostas; van Noije, T.; Strunk, A.; Vignati, E.; Bellouin, N.; Dalvi, M.; Johnson, C. E.; Bergman, T.; Kokkola, H.; Von Salzen, Knut; Yu, Fangqun; Luo, Gan; Petzold, A.; Heintzenberg, J.; Clarke, A. D.; Ogren, J. A.; Gras, J.; Baltensperger, Urs; Kaminski, U.; Jennings, S. G.; O'Dowd, C. D.; Harrison, R. M.; Beddows, D. C.; Kulmala, M.; Viisanen, Y.; Ulevicius, V.; Mihalopoulos, Nikos; Zdimal, V.; Fiebig, M.; Hansson, H. C.; Swietlicki, E.; Henzing, J. S.

2014-05-13T23:59:59.000Z

123

The Structure of the Local Interstellar Medium IV: Dynamics, Morphology, Physical Properties, and Implications of Cloud-Cloud Interactions  

E-Print Network [OSTI]

We present an empirical dynamical model of the local interstellar medium based on 270 radial-velocity measurements for 157 sight lines toward nearby stars. Physical-parameter measurements (i.e., temperature, turbulent velocity, depletions) are available for 90 components, or one-third of the sample, enabling initial characterizations of the physical properties of LISM clouds. The model includes 15 warm clouds located within 15 pc of the Sun, each with a different velocity vector. We derive projected morphologies of all clouds and estimate the volume filling factor of warm partially ionized material in the LISM to be between ~5.5% and 19%. Relative velocities of potentially interacting clouds are often supersonic, consistent with heating, turbulent, and metal-depletion properties. Cloud-cloud collisions may be responsible for the filamentary morphologies found in ~1/3 of LISM clouds, the distribution of clouds along the boundaries of the two nearest clouds (LIC and G), the detailed shape and heating of the Mic Cloud, the location of nearby radio scintillation screens, and the location of a LISM cold cloud. Contrary to previous claims, the Sun appears to be located in the transition zone between the LIC and G Clouds.

Seth Redfield; Jeffrey L. Linsky

2007-09-27T23:59:59.000Z

124

Variability of Aerosol Optical Properties from Long-term  

E-Print Network [OSTI]

%) controlled measurements: sp ­ Aerosol total light scattering coefficient at 450, 550, and 700 nm wavelengths automated generation and review of quality control plots · Weekly editing of data by station scientist]. Indirect Forcing Direct Forcing Carbon Dioxide Forcing Total Forcing Importance of Aerosols #12;Direct

Delene, David J.

125

Effect of coarse marine aerosols on stratocumulus clouds Yoav Lehahn,1,2  

E-Print Network [OSTI]

an important role not only over land for windpower estimation but also over the oceans by changing clouds

Kostinski, Alex

126

Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect  

E-Print Network [OSTI]

thought. 1. Introduction Black Carbon (BC) has important effects on climate, owing to its ability of Technology, Pasadena, California, 91125, USA Abstract. This work examines the effect of black carbon (BC) radiative heating on cloud droplet formation. Changes in cloud droplet concentration and cloud albedo due

Nenes, Athanasios

127

Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem  

SciTech Connect (OSTI)

This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.

Yang Q.; Lee Y.; Gustafson Jr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

2011-12-02T23:59:59.000Z

128

Parameterization of shortwave ice cloud optical properties for various particle habits  

E-Print Network [OSTI]

: Remote sensing; KEYWORDS: clouds, optical properties, radiative transfer, ice particles 1. IntroductionParameterization of shortwave ice cloud optical properties for various particle habits Jeffrey R 2001; accepted 1 December 2001; published 12 July 2002. [1] The relative importance of ice clouds

Baum, Bryan A.

129

ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

Tomlinson, Jason; Jensen, Mike

130

ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)  

SciTech Connect (OSTI)

Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

Tomlinson, Jason; Jensen, Mike

2012-02-28T23:59:59.000Z

131

Dust properties inside molecular clouds from coreshine modeling and observations  

E-Print Network [OSTI]

Context. Using observations to deduce dust properties, grain size distribution, and physical conditions in molecular clouds is a highly degenerate problem. Aims. The coreshine phenomenon, a scattering process at 3.6 and 4.5 $\\mu$m that dominates absorption, has revealed its ability to explore the densest parts of clouds. We want to use this effect to constrain the dust parameters. The goal is to investigate to what extent grain growth (at constant dust mass) inside molecular clouds is able to explain the coreshine observations. We aim to find dust models that can explain a sample of Spitzer coreshine data. We also look at the consistency with near-infrared data we obtained for a few clouds. Methods. We selected four regions with a very high occurrence of coreshine cases: Taurus-Perseus, Cepheus, Chameleon and L183/L134. We built a grid of dust models and investigated the key parameters to reproduce the general trend of surface bright- nesses and intensity ratios of both coreshine and near-infrared observation...

Lefčvre, Charlčne; Juvela, Mika; Paladini, Roberta; Lallement, Rosine; Marshall, D J; Andersen, Morten; Bacmann, Aurore; Mcgee, Peregrine M; Montier, Ludovic; Noriega-Crespo, Alberto; Pelkonen, V -M; Ristorcelli, Isabelle; Steinacker, Jürgen

2014-01-01T23:59:59.000Z

132

On the Microphysical Properties of Ice Clouds as Inferred from the Polarization of Electromagnetic Waves  

E-Print Network [OSTI]

Uncertainties associated with the microphysical and radiative properties of ice clouds remain an active research area because of the importance these clouds have in atmospheric radiative transfer problems and the energy balance of the Earth...

Cole, Benjamin

2012-10-19T23:59:59.000Z

133

An investigation of aerosol physical properties in Houston, Texas  

E-Print Network [OSTI]

From June through October 2001, three Tandem Differential Mobility Analyzer (TDMA) systems were operated around Houston, Texas, to obtain a large, high-quality dataset in order to explore characteristics of aerosol size distributions...

Gasparini, Roberto

2002-01-01T23:59:59.000Z

134

Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter Relationships  

E-Print Network [OSTI]

comparison of mineral dust aerosol retrievals from two instruments, MODIS and CALIPSO lidar. And, we implement and evaluate a new mineral dust detection algorithm based on the analysis of thin dust radiative signature. In comparison, three commonly used...

Cho, Hyoun-Myoung

2012-02-14T23:59:59.000Z

135

Oxidation of ambient biogenic secondary organic aerosol by hydroxyl radicals: Effects on cloud condensation nuclei activity  

E-Print Network [OSTI]

Changes in the hygroscopicity of ambient biogenic secondary organic aerosols (SOA) due to controlled OH oxidation were investigated at a remote forested site at Whistler Mountain, British Columbia during July of 2010. ...

Wong, J. P. S.

136

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate  

E-Print Network [OSTI]

aerosols from fossil fuel, bio fuel and biomass sources) andof natural gas to replace bio fuels, etc. ) than that forTotal (fossil- and bio fuel, biomass) Direct forcing (W m )

Menon, Surabi

2008-01-01T23:59:59.000Z

137

Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: Analysis of Results from the ARM Mobile Facility Deployment to the Azores (2009/2010)  

SciTech Connect (OSTI)

The project focuses upon dataset analysis and synthesis of datasets from the AMF deployment entitled “Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP?MBL)” at Graciosa Island in the Azores. Wood is serving a PI for this AMF deployment.

Wood, Robert [University of Washington, Dept of Atmos Sci

2013-05-31T23:59:59.000Z

138

Next generation aerosol-cloud microphysics for advanced high-resolution climate predictions  

SciTech Connect (OSTI)

The three top-level project goals are: -We proposed to develop, test, and run a new, physically based, scale-independent microphysical scheme for those cloud processes that most strongly affect greenhouse gas scenarios, i.e. warm cloud microphysics. In particular, we propsed to address cloud droplet activation, autoconversion, and accretion. -The new, unified scheme was proposed to be derived and tested using the University of Hawaii's IPRC Regional Atmospheric Model (iRAM). -The impact of the new parameterizations on climate change scenarios will be studied. In particular, the sensitivity of cloud response to climate forcing from increased greenhouse gas concentrations will be assessed.

Bennartz, Ralf; Hamilton, Kevin P; Phillips, Vaughan T.J.; Wang, Yuqing; Brenguier, Jean-Louis

2013-01-14T23:59:59.000Z

139

Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity  

E-Print Network [OSTI]

Measurements of cloud condensation nuclei (CCN) concentrations, single particle composition and size distributions at a high-elevation research site from March 2011 are presented.

Friedman, B.

140

aerosol particles collected: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Saller 2002-05-07 6 Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles Materials Science Websites Summary: being clouds...

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Measurements of aerosol vertical profiles and optical properties during INDOEX  

E-Print Network [OSTI]

Markowicz,5 James R. Campbell,6 James D. Spinhirne,7 Howard R. Gordon,2 and James E. Johnson3 Received 5 field phase. Measurements were made from two platforms: the NOAA ship R/V Ronald H. Brown. Markowicz, J. R. Campbell, J. D. Spinhirne, H. R. Gordon, and J. E. Johnson, Measurements of aerosol

142

Synthesis of information on aerosol optical properties Hongqing Liu,1  

E-Print Network [OSTI]

revealed a significant decrease in sur- face solar heating due to the presence of absorbing aerosols, which spectral dependence derived from AERONET retrievals. The asymmetry parameter over the solar spectrum radiation balance [Intergovernmental Panel on Climate Change, 2001]. Their potential to increase reflected

Chin, Mian

143

E-Print Network 3.0 - aerosol optical properties Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. Summary: ) of the solar radiation back to space, and an indirect one by determining cloud optical properties...

144

Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012  

SciTech Connect (OSTI)

The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

Meskhidze, Nicholas [NCSU] [NCSU

2013-10-21T23:59:59.000Z

145

Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements  

E-Print Network [OSTI]

- flux of sulfate aerosol from industrial regions of Europe or North America to remote areas of the North- atmosphere system over the industrial period and a cooling influence on climate. Estimates of the global), the negative sign indicating a cooling influence. Such a global mean forcing would more than offset the warming

146

Microphysical Properties of Clouds with Low Liquid Water Paths: An Update from Clouds with Low Optical (Water) Depth  

SciTech Connect (OSTI)

Clouds play a critical role in the modulation of the radiative transfer in the atmosphere, and how clouds interact with radiation is one of the primary uncertainties in global climate models (GCMs). To reduce this uncertainty, the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program collects an immense amount of data from its Climate Research Facilities (CRFs); these data include observations of radiative fluxes, cloud properties from active and passive remote sensors, upper atmospheric soundings, and other observations. The program's goal is to use these coincident, longterm observations to improve the parameterization of radiative transfer in clear and cloudy atmospheres in GCMs.

Turner, D.D.; Flynn, C.; Long, C.; McFarlane, S.; Vogelmann, A.; Johnson, K.; Miller, M.; Chiu, C.; Marshak, A.; Wiscombe, W.; Clough, S.A.; Heck, P.; Minnis, P.; Liljegren, J.; Min, Q.; O'Hirok, W.; Wang, Z.

2005-03-18T23:59:59.000Z

147

The Two-Column Aerosol Project (TCAP) Science Plan  

SciTech Connect (OSTI)

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

148

Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar  

SciTech Connect (OSTI)

The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

Hostetler, Chris; Ferrare, Richard

2013-02-14T23:59:59.000Z

149

Incorporation of Aerosol Optical Properties into Climate Models  

E-Print Network [OSTI]

precipitation and, with no flux adjustment, correctly does not produce a double ITCZ #12;Modeled vs. Measured Sea Ice Area Antarctic Model (at 4 x 5 degree resolution) predicts stable sea ice area Data from NASA that of BC from FF+BF soot #12;Black Carbon in Snow and Sea Ice #12;Black Carbon Absorption in Clouds #12

150

Influence of sky radiance measurement errors on inversion-retrieved aerosol properties  

SciTech Connect (OSTI)

Remote sensing of the atmospheric aerosol is a well-established technique that is currently used for routine monitoring of this atmospheric component, both from ground-based and satellite. The AERONET program, initiated in the 90's, is the most extended network and the data provided are currently used by a wide community of users for aerosol characterization, satellite and model validation and synergetic use with other instrumentation (lidar, in-situ, etc.). Aerosol properties are derived within the network from measurements made by ground-based Sun-sky scanning radiometers. Sky radiances are acquired in two geometries: almucantar and principal plane. Discrepancies in the products obtained following both geometries have been observed and the main aim of this work is to determine if they could be justified by measurement errors. Three systematic errors have been analyzed in order to quantify the effects on the inversion-derived aerosol properties: calibration, pointing accuracy and finite field of view. Simulations have shown that typical uncertainty in the analyzed quantities (5% in calibration, 0.2 Degree-Sign in pointing and 1.2 Degree-Sign field of view) yields to errors in the retrieved parameters that vary depending on the aerosol type and geometry. While calibration and pointing errors have relevant impact on the products, the finite field of view does not produce notable differences.

Torres, B.; Toledano, C.; Cachorro, V. E.; Bennouna, Y. S.; Fuertes, D.; Gonzalez, R.; Frutos, A. M. de [Atmospheric Optics Group (GOA), University of Valladolid, Valladolid (Spain); Berjon, A. J. [Izana Atmospheric Research Center, Meteorological State Agency of Spain (AEMET), Sta. Cruz de Tenerife (Spain); Dubovik, O.; Goloub, P.; Podvin, T.; Blarel, L. [Laboratory of Atmospheric Optics, Universite Lille 1, Villeneuve d'Ascq (France)

2013-05-10T23:59:59.000Z

151

DISPERSION BIAS, DISPERSION EFFECT, AND AEROSOL-CLOUD Yangang Liu1*  

E-Print Network [OSTI]

that acts to offset the cooling from the Twomey effect. This work extends the previous studies by further radiative cooling by climate models compared to satellite observations, large uncertainty and discrepancy and southern hemispheres. Application of the new formulation to remote sensing spectral shape of the cloud

152

Characteristics of aerosol optical properties in pollution and Asian dust episodes  

E-Print Network [OSTI]

Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China Chenbo Xie,1,2 Tomoki Nishizawa,2, * Nobuo Sugimoto,2 Ichiro Matsui,2 and Zifa Wang3 1 Atmospheric for Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui

153

The seasonality of aerosol properties in Big Bend National Park  

E-Print Network [OSTI]

growth cycle present in the daily averaged 32 Day (December 2003) Dp (um) Day (December 2003) Dp (um) Day (January 2004) Dp (um) Day (January 2004) Dp (um) Day (June 2003) Dp (um) Day (June 2003) Dp (um) Day (April 2003) Dp (um) Day (April 2003) Dp... (um) Day (December 2003) Dp (um) Day (December 2003) Dp (um) Day (January 2004) Dp (um) Day (January 2004) Dp (um) Day (June 2003) Dp (um) Day (June 2003) Dp (um) Day (April 2003) Dp (um) Day (April 2003) Dp (um) Fig. 12. Seasonal aerosol number...

Allen, Christopher Lee

2007-04-25T23:59:59.000Z

154

An optimal fitting approach to improve the GISS ModelE aerosol optical property parameterization using AERONET data  

E-Print Network [OSTI]

and absorbing solar radiation and the indirect effect by interacting with water vapor to affect cloud formation and lifetime. Absorbing aerosols also have the semidirect effect by heating the atmosphere layer, reducing; Intergovernmental Panel on Climate Change, 2001]. [3] Globalscale models, which simulate the emission, transport

155

Atmospheric Aerosols Aging Involving Organic Compounds and Impacts on Particle Properties  

E-Print Network [OSTI]

through sandstorm.2 Examples of anthropogenic sources are vehicle exhaust, plant emission, and construction sites. Some aerosols may have both biogenic and anthropogenic sources. For example, soot aerosols, also known as black carbon, can be produced... with an initial size of 150 nm increases slightly faster than those of soot with the initial size of 80 or 100 nm. Table 1. Properties of Fresh Soot Particles. Dp, nm mp, 10 ?16 g Dve, nm Npp a 82.4 1.47 54.1 20 101 2.34 63.2 32 155 7.77 94.3 105 a...

Qiu, Chong

2013-02-01T23:59:59.000Z

156

MeteorologicalObservationsin Support of a Hill Cap Cloud Experiment  

E-Print Network [OSTI]

of this document may be illegible in electronic image products. Images are produced from the best available Riso National Laboratory, Roskilde, Denmark July 1998 #12;Abstract Humid air flows form a hill cap this cloud forma- tion to investigate the chemical and physical properties of cloud aerosols by land based

157

Simulation of Aerosol-Cloud Interactions in the WRF Model at the Southern Great Plains Site  

E-Print Network [OSTI]

for his assistance early on with getting me starting using the WRF model and helping me fix and debug problems with the model as they arose. At BNL, I would like to thank Dr. Yangang Liu and Dr. Wuyin Lin for their help pertaining to my questions... with 95% confidence intervals for cloud, rain, and ice water .................................... 76 19 Average vertical velocity in cloudy regions over the entire time period for Case A with 95% confidence intervals for the strongest updraft...

Vogel, Jonathan 1988-

2012-08-21T23:59:59.000Z

158

The effects of emission of anthropogenic chemical species on chemical and physical properties of aerosols  

SciTech Connect (OSTI)

Numerical studies have been carried out to examine the effects of chemically reactive trace gases emitted into the atmosphere on the evolution of chemical species concentrations, on the chemical composition and size distribution of airborne particles, and on optical properties of aerosols. Argonne`s chemistry module has been modified by refining the treatment of gas-to-particle conversion. The changes in size distribution and chemical composition of aerosols are calculated with consideration of heteramolecular diffusion and coagulation. Results of the 24 h real-time simulation indicate that the maximum oxidation rate of sulfur dioxide is about 0.4% h{sup {minus}1}; that the total aerosol volume increases with the increase in relative humidity by as much as 36% (due mainly to the collection of sulfuric acid embryos by preexisting particles); and that the surface area, a measure of optical depth, increases with the increase in relative humidity by as much as 27%.

Lee, In Young

1994-07-01T23:59:59.000Z

159

Thin Cloud Length Scales Using CALIPSO and CloudSat Data  

E-Print Network [OSTI]

Thin clouds are the most difficult cloud type to observe. The recent availability of joint cloud products from the active remote sensing instruments aboard CloudSat and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) facilitates...

Solbrig, Jeremy E.

2010-10-12T23:59:59.000Z

160

Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

Jensen, M; Jensen, K

2006-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

How do A-train Sensors Intercompare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study-based Assessment  

SciTech Connect (OSTI)

We inter-compare the above-cloud aerosol optical depth (ACAOD) of biomass burning plumes retrieved from different A-train sensors, i.e., MODIS, CALIOP, POLDER, and OMI. These sensors have shown independent capabilities to detect and retrieve aerosol loading above marine boundary layer clouds--a kind of situation often found over the Southeast Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods derive comparable ACAOD with differences mostly within 0.2 over homogeneous cloud fields. The 532-nm ACAOD retrieved by CALIOP operational algorithm is largely underestimated; however, it’s 1064-nm AOD when converted to 500 nm shows closer agreement to the passive sensors. Given the different types of sensor measurements processed with different algorithms, the close agreement between them is encouraging. Due to lack of adequate direct measurements above cloud, the validation of satellite-based ACAOD retrievals remains an open challenge. The inter-satellite comparison, however, can be useful for the relative evaluation and consistency check.

Jethva, H. T.; Torres, O.; Waquet, F.; Chand, Duli; Hu, Yong X.

2014-01-16T23:59:59.000Z

162

Retrievals of mixed-phase cloud properties during the National Polar-Orbiting Operational Environmental  

E-Print Network [OSTI]

Retrievals of mixed-phase cloud properties during the National Polar-Orbiting Operational/Visible Infrared Imaging Radiometer Suite (VIIRS) to retrieve pixel-level mixed-phase cloud optical thicknesses Satellite Observations Validation Project (C3VP), were analyzed. The performance of the mixed-phase

Liou, K. N.

163

Cloud properties and associated radiative heating rates in the tropical western Pacific  

E-Print Network [OSTI]

Cloud properties and associated radiative heating rates in the tropical western Pacific James H set of atmospheric remote sensing instruments at sites around the world, including three radiative fluxes and heating rates. Maxima in cloud occurrence are found in the boundary layer and the upper

164

Droplet Activation Properties of Organic Aerosols Observed at an Urban Site during CalNex-LA  

SciTech Connect (OSTI)

Size-resolved cloud condensation nuclei (CCN) spectra and aerosol chemical composition were characterized at an urban supersite in Pasadena, California from 15 May to 4 June, 2010, during the CalNex campaign. The derived hygroscopicity (?CCN) of CCN-active particles with diameter between 97 and 165 nm ranged from 0.05 to 0.4. Diurnal variation showed a slight decrease of ?CCN from 8:00 to 16:00 (from 0.24 to 0.20), which is attributed to increasing organics volume fraction resulted from secondary organic aerosol (SOA) formation. The derived hygroscopicity distribution and maximum activated fraction of the size selected particles were examined as functions of photochemical age. The result indicates that condensation of secondary species (e.g., SOA and sulfate) quickly converted hydrophobic particles to hydrophilic ones, and during daytime, nearly every particle became a CCN at ~0.4% in just a few hours. Based on ?CCN and aerosol chemical composition, the organic hygroscopicity (?org) was derived, and ranged from 0.05 to 0.23 with an average value of 0.13, consistent with the results from earlier studies. The derived ?org generally increased with the organic oxidation level, and most of the variation in ?org could be explained by the variation of the organic O:C atomic ratio alone. The least squares fit of the data yielded ?org =(0.83±0.06) ? (O:C) +(-0.19±0.02). Compared to previous results based on CCN measurements of laboratory generated aerosols, ?org derived from measurements during the CalNex campaign exhibited stronger increase with O:C atomic ratio, and therefore substantially higher values for organics with average O:C greater than 0.5.

Mei, Fan; Hayes, Patrick L.; Ortega, Amber; Taylor, Jonathan W.; Allan, James D.; Gilman, Jessica; Kuster, W. C.; de Gouw, Joost A.; Jimenez, Jose L.; Wang, Jian

2013-04-11T23:59:59.000Z

165

FINAL REPORT: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds  

SciTech Connect (OSTI)

This final report summarizes the major accomplishments and products resulting from a three-year grant funded by the DOE, Office of Science, Atmospheric Radiation Measurement Program titled: An Investigation of the Microphysical, Radiative, and Dynamical Properties of Mixed-Phase Clouds. Accomplishments are listed under the following subcategories: Mixed-phase cloud retrieval method development; Mixed-phase cloud characterization; ARM mixed-phase cloud retrieval review; and New ARM MICROBASE product. In addition, lists are provided of service to the Atmospheric Radiation Measurement Program, data products provided to the broader research community, and publications resulting from this grant.

Shupe, Matthew D

2007-10-01T23:59:59.000Z

166

High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics  

E-Print Network [OSTI]

High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics) ABSTRACT This study surveys the optical and microphysical properties of high (ice) clouds over the Tropics on the gridded level-3 cloud products derived from the measurements acquired by the Moderate Resolution Imaging

Baum, Bryan A.

167

The application of size- resolved hygroscopicity measurements to understand the physical and chemical properties of ambient aerosol  

E-Print Network [OSTI]

THE APPLICATION OF SIZE-RESOLVED HYGROSCOPICITY MEASUREMENTS TO UNDERSTANDING THE PHYSICAL AND CHEMICAL PROPERTIES OF AMBIENT AEROSOL A Dissertation by JOSHUA L. SANTARPIA Submitted to the Office of Graduate Studies of Texas A... AND CHEMICAL PROPERTIES OF AMBIENT AEROSOL A Dissertation by JOSHUA L. SANTARPIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved...

Santarpia, Joshua Lee

2005-08-29T23:59:59.000Z

168

Retrieval of Cloud Microphysical Properties from MODIS and AIRS JUN LI,* HUNG-LUNG HUANG,* CHIAN-YI LIU,* PING YANG, TIMOTHY J. SCHMIT,# HELI WEI,  

E-Print Network [OSTI]

Retrieval of Cloud Microphysical Properties from MODIS and AIRS JUN LI,* HUNG-LUNG HUANG,* CHIAN monitoring of the distribution of clouds during day and night. The MODIS is able to provide a high-spatial-resolution (1­5 km) cloud mask, cloud classification mask, cloud-phase mask, cloud-top pressure (CTP

Li, Jun

169

FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties  

SciTech Connect (OSTI)

Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

Lin, W; McGraw, R; Liu, Y; Wang, J; Vogelmann, A; Daum, PH

2010-10-01T23:59:59.000Z

170

Aerosol Indirect Effect on the Grid-scale Clouds in the Two-way Coupled WRF-CMAQ: Model Description, Development, Evaluation and Regional Analysis  

SciTech Connect (OSTI)

This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQpredicted aerosol distributions and WRF meteorological conditions. The performance of the newly-developed WRF-CMAQ model, with alternate CAM and RRTMG radiation schemes, was evaluated with the observations from the CERES satellite and surface monitoring networks (AQS, IMPROVE, CASTNet, STN, and PRISM) over the continental U.S. (CONUS) (12-km resolution) and eastern Texas (4-km resolution) during August and September of 2006. The results at the AQS surface sites show that in August, the NMB values for PM2.5 over the eastern/western U.S (EUS/WUS) and western U.S. (WUS) are 5.3% (?0.1%) and 0.4% (-5.2%) for WRF-CMAQ/CAM (WRF-CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF-CMAQ/CAM (WRF-CMAQ/RRTMG) consistently underestimated the observed SO4 2? by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the CASTNet, IMPROVE and STN sites, respectively. Both models (WRF-CMAQ/CAM, WRF-CMAQ/RRTMG) overestimated the observed mean OC, EC and TC concentrations over the EUS in August at the IMPROVE sites. Both models generally underestimated the cloud field (SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model simulations were run at the 12 km resolution. This is in agreement with the fact that both models captured SWCF and LWCF very well for the 4-km simulation over the eastern Texas when all clouds were resolved by the finer domain. Both models generally overestimated the observed precipitation by more than 40% mainly because of significant overestimation in the southern part of the CONUS in August. The simulations of WRF-CMAQ/CAM and WRF-CMAQ/RRTMG show dramatic improvements for SWCF, LWCF, COD, cloud fractions and precipitation over the ocean relative to those of WRF default cases in August. The model performance in September is similar to that in August except for greater overestimation of PM2.5 due to the overestimations of SO4 2-, NH4 +, NO3 -, and TC over the EUS, less underestimation of clouds (SWCF) over the land areas due to about 10% lower SWCF values and less convective clouds in September.

Yu, Shaocai; Mathur, Rohit; Pleim, Jonathan; Wong, David; Gilliam, R.; Alapaty, Kiran; Zhao, Chun; Liu, Xiaohong

2014-10-24T23:59:59.000Z

171

Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site  

SciTech Connect (OSTI)

There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

1997-12-31T23:59:59.000Z

172

aerosol ratio program: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contribute a major portion of atmospheric aerosol mass loading 5. The estimated global annual Liou, K. N. 2 Studying Clouds and Aerosols with Lidar Depolarization Ratio and...

173

The Indirect and Semi-Direct Aerosol Campaign  

ScienceCinema (OSTI)

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-06-12T23:59:59.000Z

174

The Indirect and Semi-Direct Aerosol Campaign  

SciTech Connect (OSTI)

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-03-24T23:59:59.000Z

175

The dependence of ice microphysics on aerosol concentration in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. The dependence of ice microphysics on aerosol...

176

Combined CloudSatCALIPSOMODIS retrievals of the properties of ice clouds  

E-Print Network [OSTI]

March 2010; published 21 July 2010. [1] In this paper, data from spaceborne radar, lidar and infrared radiometers on the "ATrain" of satellites are combined in a variational algorithm to retrieve ice cloud the impact of the microphysical assumptions on the algorithm when radiances are not assimilated by evaluating

Hogan, Robin

177

Observations of the first aerosol indirect effect in shallow cumuli  

SciTech Connect (OSTI)

Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

2011-02-08T23:59:59.000Z

178

Retrieval of cloud properties using SCIAMACHY on ENVISAT  

E-Print Network [OSTI]

;2 AGENDA 1. Rationale 2. SCIAMACHY and its calibration 3. Algorithms 4. SCIMACHY cloud retrievals 5 Synthetic Aperture Radar (ASAR), operating at C-band, ASAR ensures continuity with the image mode (SAR;13 VICARIOUS CALIBRATION USING MERIS #12;14 MERIS on ENVISAT spacecraft /1.03.2002-present/ · Instrument bands

Kuligowski, Bob

179

Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations  

E-Print Network [OSTI]

Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database Applications and Research, Camp Spring, MD 20746, USA a r t i c l e i n f o Article history: Received 14 Optical properties Database a b s t r a c t This paper presents a user-friendly database software package

Liou, K. N.

180

Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx  

SciTech Connect (OSTI)

We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

Saide, Pablo; Spak, S. N.; Carmichael, Gregory; Mena-Carrasco, M. A.; Yang, Qing; Howell, S. G.; Leon, Dolislager; Snider, Jefferson R.; Bandy, Alan R.; Collett, Jeffrey L.; Benedict, K. B.; de Szoeke, S.; Hawkins, Lisa; Allen, Grant; Crawford, I.; Crosier, J.; Springston, S. R.

2012-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,Cloud OD Sensor

182

The Microbase Value-Added Product: A Baseline Retrieval of Cloud Microphysical Properties  

SciTech Connect (OSTI)

This report describes the Atmospheric Radiation Measurement (ARM) Climate Research Facility baseline cloud microphysical properties (MICROBASE) value-added product (VAP). MICROBASE uses a combination of millimeter-wavelength cloud radar, microwave radiometer, and radiosonde observations to estimate the vertical profiles of the primary microphysical parameters of clouds including the liquid/ice water content and liquid/ice cloud particle effective radius. MICROBASE is a baseline algorithm designed to apply to most conditions and locations using a single set of parameterizations and a simple determination of water phase based on temperature. This document provides the user of this product with guidelines to assist in determining the accuracy of the product under certain conditions. Quality control flags are designed to identify outliers and indicate instances where the retrieval assumptions may not be met. The overall methodology is described in this report through a detailed description of the input variables, algorithms, and output products.

Dunn, M; Johnson, K; Jensen, M

2011-05-31T23:59:59.000Z

183

Corrigendum to Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust published in Atmos. Chem. Phys., 14, 81–101, 2014  

SciTech Connect (OSTI)

In the paper “Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust” by J. Fan et al., wrong versions of Fig. 8 and Fig. 12 were published. Please find the correct figures below.

Fan, Jiwen; Leung, Lai-Yung R.; DeMott, Paul J.; Comstock, Jennifer M.; Singh, Balwinder; Rosenfeld, Daniel; Tomlinson, Jason M.; White, A.; Prather, Kimberly; Minnis, Patrick; Ayers, J. K.; Min, Qilong

2014-05-01T23:59:59.000Z

184

E-Print Network 3.0 - aerosol chemical vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical and microphysical properties influence aerosol optical properties and radiative effects... distribution of aerosol extensive and intensive properties will aid ......

185

ARM - Evaluation Product - Cloud Optical Properties from MFRSR Using Min  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborne Visible/Infrared Imaging SpectrometerAlgorithm ProductsCloud

186

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 32, JANUARY 2015, 3263 On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing,  

E-Print Network [OSTI]

of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensingADVANCES IN ATMOSPHERIC SCIENCES, VOL. 32, JANUARY 2015, 32­63 On the Radiative Properties of Ice Clouds: Light Scattering, Remote Sensing, and Radiation Parameterization Ping YANG1, Kuo-Nan LIOU2, Lei

Baum, Bryan A.

187

Polluting of Winter Convective Clouds upon Transition from Ocean Inland Over Central California: Contrasting Case Studies  

SciTech Connect (OSTI)

In-situ aircraft measurements of aerosol chemical and cloud microphysical properties were conducted during the CalWater campaign in February and March 2011 over the Sierra Nevada Mountains and the coastal waters of central California. The main objective was to elucidate the impacts of aerosol properties on clouds and precipitation forming processes. In order to accomplish this, we compared contrasting cases of clouds that ingested aerosols from different sources. The results showed that clouds containing pristine oceanic air had low cloud drop concentrations and started to develop rain 500 m above their base. This occurred both over the ocean and over the Sierra Nevada, mainly in the early morning when the radiatively cooled stable continental boundary layer was decoupled from the cloud base. Supercooled rain dominated the precipitation that formed in growing convective clouds in the pristine air, up to the -21°C isotherm level. A contrasting situation was documented in the afternoon over the foothills of the Sierra Nevada, when the clouds ingested high pollution aerosol concentrations produced in the Central Valley. This led to slow growth of the cloud drop effective radius with height and suppressed and even prevented the initiation of warm rain while contributing to the development of ice hydrometeors in the form of graupel. Our results show that cloud condensation and ice nuclei were the limiting factors that controlled warm rain and ice processes, respectively, while the unpolluted clouds in the same air mass produced precipitation quite efficiently. These findings provide the motivation for deeper investigations into the nature of the aerosols seeding clouds.

Rosenfeld, Daniel; Chemke, Rei; Prather, Kimberly; Suski, Kaitlyn; Comstock, Jennifer M.; Schmid, Beat; Tomlinson, Jason M.; Jonsson, Haf

2014-01-01T23:59:59.000Z

188

5, 79658026, 2005 Simulating aerosol  

E-Print Network [OSTI]

composition, number concentration, and size distribution of the global submicrometer aerosol. The present, coagulation, condensation, nucleation of sulfuric acid vapor, aerosol chemistry, cloud processing, and sizeACPD 5, 7965­8026, 2005 Simulating aerosol microphysics with ECHAM/MADE A. Lauer et al. Title Page

Paris-Sud XI, Université de

189

Solar differential rotation and properties of magnetic clouds  

E-Print Network [OSTI]

The most geoeffective solar drivers are magnetic clouds - a subclass of coronal mass ejections (CME's) distinguished by the smooth rotation of the magnetic field inside the structure. The portion of CME's that are magnetic clouds is maximum at sunspot minimum and mimimum at sunspot maximum. This portion is determined by the amount of helicity carried away by CME's which in turn depends on the amount of helicity transferred from the solar interior to the surface, and on the surface differential rotation. The latter can increase or reduce, or even reverse the twist of emerging magnetic flux tubes, thus increasing or reducing the helicity in the corona, or leading to the violation of the hemispheric helicity rule, respectively. We investigate the CME's associated with the major geomagnetic storms in the last solar cycle whose solar sources have been identified, and find that in 10 out of 12 cases of violation of the hemispheric helicity rule or of highly geoeffective CME's with no magnetic field rotation, they originate from regions with "anti-solar" type of surface differential rotation.

K. Georgieva; B. Kirov; E. Gavruseva; J. Javaraiah

2005-11-09T23:59:59.000Z

190

Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant  

SciTech Connect (OSTI)

This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment â?? Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

Weinstein-Lloyd, Judith B

2009-05-04T23:59:59.000Z

191

Evaluation of ground-based remotely sensed liquid water cloud properties using shortwave radiation measurements  

E-Print Network [OSTI]

properties of low level water clouds. A number of remote sensing retrieval techniques provide either radar-only retrie- vals or combine millimeter-wave radar with microwave radiometer measurements (Frisch et al., 1995 radiation measurements from the ground. The remote sensing observations of radar reflectivity, microwave

Haak, Hein

192

The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol  

SciTech Connect (OSTI)

The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Köhler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Köhler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Köhler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The biases associated with these simplifications are compared for different supersaturations, and the variation of the biases is examined as a function of aerosol age. The results show that the simplification of internally mixed, size-independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

2010-03-15T23:59:59.000Z

193

Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol : the significance of soluble material  

E-Print Network [OSTI]

This study examines the interaction of clay mineral particles and water vapor to determine the conditions required for cloud droplet formation. Droplet formation conditions are investigated for two common clay minerals, ...

Garimella, Sarvesh

2014-01-01T23:59:59.000Z

194

Cloud condensation nucleus activity comparison of dry- and wet-generated mineral dust aerosol: the significance of soluble material  

E-Print Network [OSTI]

This study examines the interaction of clay mineral particles and water vapor for determining the conditions required for cloud droplet formation. Droplet formation conditions are investigated for two common clay minerals, ...

Garimella, Sarvesh

195

The Properties of Early-type Stars in the Magellanic Clouds  

E-Print Network [OSTI]

The past decade has witnessed impressive progress in our understanding of the physical properties of massive stars in the Magellanic Clouds, and how they compare to their cousins in the Galaxy. I summarise new results in this field, including evidence for reduced mass-loss rates and faster stellar rotational velocities in the Clouds, and their present-day compositions. I also discuss the stellar temperature scale, emphasizing its dependence on metallicity across the entire upper-part of the Hertzsprung-Russell diagram.

Christopher J. Evans

2008-09-15T23:59:59.000Z

196

Heterogeneous chemistry of atmospheric mineral dust particles and their resulting cloud-nucleation properties  

E-Print Network [OSTI]

Aerosol size distribution The size of an aerosol particle is an important parameter that controls the rates of diffusion, coagulation,coagulation into the larger ultrafine and accumulation Figure 1.1. Typical size distribution of atmospheric aerosols and

Sullivan, Ryan Christopher

2008-01-01T23:59:59.000Z

197

Testing AGCM-Predicted Cloud and Radiation Properties with ARM Data: The Super-Parameterization Approach  

SciTech Connect (OSTI)

The goal of our study is to directly evaluate treatment of clouds and radiation in an atmospheric global climate model (AGCM) using long-term observations from the Atmospheric Radiation Measurement (ARM) program. In this presentation, we will present a comparison of observations from two ARM sites, one in north central Oklahoma and one at Nauru island in the Tropical Western Pacific region, with the model output from corresponding grid points. Traditional parametric approach of diagnosing cloud and radiation properties from large-scale model fields is not well suited for comparison with observed time series at selected locations. A recently emerging approach called super parameterization has shown promise to bridge the gap. Super parameterization consists of a two-dimensional cloud system resolving model (CSRM) embedded into each grid of the NCAR Community Climate System Model thereby computing cloud properties at a scale that is more consistent with observations. Because the approach is computationally expensive only limited simulations have been carried out. Two sets of one year long simulations are considered: one using climatological sea surface temperatures (SST) and another using 1999 SST. Each set includes a run with super-parameterization (SP) as well as an AGCM run with traditional or standard (STD) cloud and radiation treatment. Time series of cloud fraction, precipitation intensity, and downwelling solar radiation flux at the surface are statistically analyzed. Nearly all parameters of frequency distributions of these variables from SP run are shown to be more consistent with observation than those from STD model run. Different temporal and spatial averaging in the simulations and observations imposes limitations on the comparisons and these scale effects will be discussed. Output from the STD run represents statistics for the AGCM grid, which, in our case, is roughly 300 km x 300 km. In contrast, the CSRM domain is 4 km x 256 km and consists of a row of 64 columns, 4 km x 4 km each. One of the benefits of the SP approach is that statistics can be collected for domain-averaged as well as column cloud and radiation properties. The column statistics are representative of scales that are closer to the scales of observations and therefore allow for more direct comparisons.

Ovchinnikov, Mikhail; Ackerman, Thomas P.; Marchand, Roger T.; Khairoutdinov, Marat

2004-01-31T23:59:59.000Z

198

E-Print Network 3.0 - atmospheric aerosol properties Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and... the industrial period, largely on account of uncertainties in the...

199

Investigation of Thin Cirrus Cloud Optical and Microphysical Properties on the Basis of Satellite Observations and Fast Radiative Transfer Models  

E-Print Network [OSTI]

This dissertation focuses on the global investigation of optically thin cirrus cloud optical thickness (tau) and microphysical properties, such as, effective particle size (D_(eff)) and ice crystal habits (shapes), based on the global satellite...

Wang, Chenxi

2013-07-25T23:59:59.000Z

200

The distance modulus of the Large Magellanic Cloud: Constraints from RR Lyrae pulsation properties  

E-Print Network [OSTI]

It has recently been suggested that the discrepancy between the "long" and "short" distance moduli of the Large Magellanic Cloud (LMC), as inferred from the properties of the Cepheid and RR Lyrae variables, respectively, might be due to the action of "third parameters" between the Galaxy and the LMC, which would make the RR Lyraes in the old LMC globular clusters brighter than their Galactic counterparts by $\\simeq 0.3 {mag}$. Through analysis of the RR Lyrae pulsation properties, we show that this idea is not supported by the available data. A satisfactory explanation of the problem has yet to be found.

M. Catelan

1996-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

SciTech Connect (OSTI)

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 Oct–Nov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

2012-09-28T23:59:59.000Z

202

Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations  

SciTech Connect (OSTI)

Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

2013-06-11T23:59:59.000Z

203

STORMVEX: The Storm Peak Lab Cloud Property Validation Experiment Science and Operations Plan  

SciTech Connect (OSTI)

During the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX), a substantial correlative data set of remote sensing observations and direct in situ measurements from fixed and airborne platforms will be created in a winter season, mountainous environment. This will be accomplished by combining mountaintop observations at Storm Peak Laboratory and the airborne National Science Foundation-supported Colorado Airborne Multi-Phase Cloud Study campaign with collocated measurements from the second ARM Mobile Facility (AMF2). We describe in this document the operational plans and motivating science for this experiment, which includes deployment of AMF2 to Steamboat Springs, Colorado. The intensive STORMVEX field phase will begin nominally on 1 November 2010 and extend to approximately early April 2011.

Mace, J; Matrosov, S; Shupe, M; Lawson, P; Hallar, G; McCubbin, I; Marchand, R; Orr, B; Coulter, R; Sedlacek, A; Avallone, L; Long, C

2010-09-29T23:59:59.000Z

204

A geostatistical data fusion technique for merging remote sensing and groundbased observations of aerosol optical thickness  

E-Print Network [OSTI]

A geostatistical data fusion technique for merging remote sensing and groundbased observations. Braverman, and C. E. Miller (2010), A geostatistical data fusion technique for merging remote sensing cloud properties (the aerosol indirect effect), producing a net cooling of the Earth surface, and can

Michalak, Anna M.

205

Hygroscopic growth of submicron and supermicron aerosols in the marine boundary layer  

E-Print Network [OSTI]

balance and climate directly through absorption and scattering of the incoming solar radiation and indirectly through modification of cloud properties [Intergovernmental Panel on Climate Change, 2007 behaviors of the dynamic and complex atmospheric aerosol consisting of particles with a wide range of sizes

206

A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5  

SciTech Connect (OSTI)

In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

2013-11-08T23:59:59.000Z

207

Stratocumulus Clouds ROBERT WOOD  

E-Print Network [OSTI]

by latent heating in updrafts and cooling in downdrafts. Turbulent eddies and evaporative cooling drives, stratification of the STBL, and in some cases cloud breakup. Feedbacks between radiative cooling, precipitation- way interactions may be a key driver of aerosol concentrations over the remote oceans. Aerosol

Wood, Robert

208

Sensitivity of aerosol properties to new particle formation mechanism and to primary emissions in a continental-scale chemical  

E-Print Network [OSTI]

of aerosol particles and in turn their number concentration and size distribution. Aerosol particles can grow contribution from coagulation. The aerosol mass concentration, which is primarily in the accumulation mode of aerosol number concentration and size distri- bution is important for considerations of the aerosol

209

E-Print Network 3.0 - aerosol pool scrubbing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sensing of non-aerosol absorption in cloud free atmosphere Yoram J. Kaufman,1 Summary: Remote sensing of non-aerosol absorption in cloud free atmosphere Yoram J. Kaufman,1 Oleg...

210

Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation  

E-Print Network [OSTI]

Measurements of the evolution of organic aerosol extinction cross sections (?[subscript ext]) and subsaturated hygroscopicity upon heterogeneous OH oxidation are reported for two model compounds, squalane (a C30 saturated ...

Cappa, Christopher D.

211

The Evolution of the Physicochemical Properties of Aerosols in the Atmosphere  

E-Print Network [OSTI]

A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) system was used to measure simultaneously the size distribution and hygroscopicity of the ambient aerosol population. The system was operated aboard the National...

Tomlinson, Jason

2011-02-22T23:59:59.000Z

212

Global ice cloud observations: radiative properties and statistics from moderate-resolution imaging spectroradiometer measurements  

E-Print Network [OSTI]

Ice clouds occur quite frequently, yet so much about these clouds is unknown. In recent years, numerous investigations and field campaigns have been focused on the study of ice clouds, all with the ultimate goal of gaining a better understanding...

Meyer, Kerry Glynne

2009-05-15T23:59:59.000Z

213

Validation of Cloud Properties Derived from GOES-9 Over the ARM TWP Region  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II FieldVacancy-InducedCloud Properties Derived from GOES-9

214

MODIS Cloud-Top Property Refinements for Collection 6 BRYAN A. BAUM, W. PAUL MENZEL, RICHARD A. FREY, DAVID C. TOBIN, ROBERT E. HOLZ,  

E-Print Network [OSTI]

MODIS Cloud-Top Property Refinements for Collection 6 BRYAN A. BAUM, W. PAUL MENZEL, RICHARD A the Collection-6 refinements in the Moderate Resolution Imaging Spectroradiometer (MODIS) operational cloud Satellite Observations (CALIPSO) instantaneous cloud products throughout the course of algorithm refinement

Baum, Bryan A.

215

Soot aerosol properties in laminar soot-emitting microgravity nonpremixed flames  

SciTech Connect (OSTI)

The spatial distributions and morphological properties of the soot aerosol are examined experimentally in a series of 0-g laminar gas-jet nonpremixed flames. The methodology deploys round jet diffusion flames of nitrogen-diluted acetylene fuel burning in quiescent air at atmospheric pressure. Full-field laser-light extinction is utilized to determine transient soot spatial distributions within the flames. Thermophoretic sampling is employed in conjunction with transmission electron microscopy to define soot microstructure within the soot-emitting 0-g flames. The microgravity tests indicate that the 0-g flames attain a quasi-steady state roughly 0.7 s after ignition, and sustain their annular structure even beyond their luminous flame tip. The measured peak soot volume fractions show a complex dependence on burner exit conditions, and decrease in a nonlinear fashion with decreasing characteristic flow residence times. Fuel preheat by {approximately}140K appears to accelerate the formation of soot near the flame axis via enhanced field pyrolysis rates. The increased soot presence caused by the elevated fuel injection temperatures triggers higher flame radiative losses, which may account for the premature suppression of soot growth observed along the annular region of preheated-fuel flames. Electron micrographs of soot aggregates collected in 0-g reveal the presence of soot precursor particles near the symmetry axis at midflame height. The observations also verify that soot primary particle sizes are nearly uniform among aggregates present at the same flame location, but vary considerably with radius at a fixed distance from the burner. The maximum primary size in 0-g is found to be by 40% larger than in 1-g, under the same burner exit conditions. Estimates of the number concentration of primary particles and surface area of soot particulate phase per unit volume of the combustion gases are also made for selected in-flame locations.

Konsur, B.; Megaridis, C.M.; Griffin, D.W.

1999-09-01T23:59:59.000Z

216

OAK 270 - The use of Lidar/radiometer (LIRAD) in the ARM program to obtain optical properties and microphysics of high and midlevel clouds  

SciTech Connect (OSTI)

OAK 270 - The use of Lidar/Radiometer (LIRAD) in the ARM program to obtain optical properties and microphysics of high and midlevel clouds

C.M.R. Platt; R.T. Austin; S.A. Young; and G.L. Stephens

2002-12-13T23:59:59.000Z

217

Cloud Services Cloud Services  

E-Print Network [OSTI]

Cloud Services Cloud Services In 2012 UCD IT Services launched an exciting new set of cloud solutions called CloudEdu, which includes cloud servers, cloud storage, cloud hosting and cloud network. The CloudEdu package includes a consultancy service in design, deployment, management and utilisation

218

Cloud Condensation Nuclei Retrievals at Cloud Base in North Dakota  

E-Print Network [OSTI]

Cloud Condensation Nuclei Retrievals at Cloud Base in North Dakota · Mariusz Starzec #12;Motivation Compare University of Wyoming (UWyo) and Droplet Measurement Technologies (DMT) cloud condensation nuclei condensation nuclei concentration (CCNC) at any supersaturation (SS) #12;Background Aerosols act as nuclei

Delene, David J.

219

A Novel Retrieval Algorithm for Cloud Optical Properties from the Atmopsheric Radiation Measurement Program's Two-Channel Narrow-Field-of-View Radiometer  

SciTech Connect (OSTI)

Cloud optical depth is the most important of all cloud optical properties, and vital for any cloud-radiation parameterization. To estimate cloud optical depth, the atmospheric science community has widely used ground-based flux measurements from either broadband or narrowband radiometers in the past decade. However, this type of technique is limited to overcast conditions and, at best, gives us an "effective" cloud optical depth instead of its "local" value. Unlike flux observations, monochromatic narrow-field-of-view (NFOV) radiance measurements contain information of local cloud properties, but unfortunately, the use of radiance to interpret optical depth suffers from retrieval ambiguity. We have pioneered an algorithm to retrieve cloud optical depth in a fully three-dimensional cloud situation using new Atmospheric Radiation Measurement (ARM) ground-based passive two-channel (673 and 870 nm) NFOV measurements. The underlying principle of the algorithm is that these two channels have similar cloud properties but strong spectral contrast in surface reflectance. This algorthm offers the first opportunity to illustrate cloud evolution with high temporal resolution retrievals. A combination of two-channel NFOV radiances with multi-filter rotating shadowband radiometer (MFRSR) fluxes for the retrieval of cloud optical properties is also discussed.

Wiscombe, Warren J.; Marshak, A.; Chiu, J.-Y. C.; Knyazikhin, Y.; Barnard, James C.; Luo, Yi

2005-03-14T23:59:59.000Z

220

A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site  

SciTech Connect (OSTI)

A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 {mu}m in winter to 9.7 {mu}m during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances. (c) 2000 American Geophysical Union.

Dong, Xiquan [Meteorology Department, University of Utah, Salt Lake City (United States)] [Meteorology Department, University of Utah, Salt Lake City (United States); Minnis, Patrick [NASA Langley Research Center, Hampton, Virginia (United States)] [NASA Langley Research Center, Hampton, Virginia (United States); Ackerman, Thomas P. [Pacific Northwest National Laboratory, DOE, Richland, Washington (United States)] [Pacific Northwest National Laboratory, DOE, Richland, Washington (United States); Clothiaux, Eugene E. [Department of Meteorology, Pennsylvania State University, University Park (United States)] [Department of Meteorology, Pennsylvania State University, University Park (United States); Mace, Gerald G. [Meteorology Department, University of Utah, Salt Lake City (United States)] [Meteorology Department, University of Utah, Salt Lake City (United States); Long, Charles N. [Department of Meteorology, Pennsylvania State University, University Park (United States)] [Department of Meteorology, Pennsylvania State University, University Park (United States); Liljegren, James C. [Ames Laboratory, DOE, Ames, Iowa (United States)] [Ames Laboratory, DOE, Ames, Iowa (United States)

2000-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

AERONET: The Aerosol Robotic Network  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

222

investigate the effects of cloud composition, such as ice particle shape and orientation, on  

E-Print Network [OSTI]

, on the Earth's energy balance, · understand the properties and impact of aerosols in the atmosphere. Scientists), and radiometer instruments to characterise the atmosphere by making detailed measurements of precipitation, cloud on this antenna and provides high resolution, long range measurements of all types of precipitation such as rain

223

THE MASS DISTRIBUTION AND ASSEMBLY OF THE MILKY WAY FROM THE PROPERTIES OF THE MAGELLANIC CLOUDS  

SciTech Connect (OSTI)

We present a new measurement of the mass of the Milky Way (MW) based on observed properties of its largest satellite galaxies, the Magellanic Clouds (MCs), and an assumed prior of a {Lambda}CDM universe. The large, high-resolution Bolshoi cosmological simulation of this universe provides a means to statistically sample the dynamical properties of bright satellite galaxies in a large population of dark matter halos. The observed properties of the MCs, including their circular velocity, distance from the center of the MW, and velocity within the MW halo, are used to evaluate the likelihood that a given halo would have each or all of these properties; the posterior probability distribution function (PDF) for any property of the MW system can thus be constructed. This method provides a constraint on the MW virial mass, 1.2{sup +0.7}{sub -0.4} (stat.){sup +0.3}{sub -0.3} (sys.) Multiplication-Sign 10{sup 12} M{sub Sun} (68% confidence), which is consistent with recent determinations that involve very different assumptions. In addition, we calculate the posterior PDF for the density profile of the MW and its satellite accretion history. Although typical satellites of 10{sup 12} M{sub Sun} halos are accreted over a wide range of epochs over the last 10 Gyr, we find a {approx}72% probability that the MCs were accreted within the last Gyr, and a 50% probability that they were accreted together.

Busha, Michael T.; Marshall, Philip J.; Wechsler, Risa H. [Kavli Institute for Particle Astrophysics and Cosmology, Physics Department, Stanford University, Stanford, CA 94305 (United States); Klypin, Anatoly [Astronomy Department, New Mexico State University, Las Cruces, NM 88003 (United States); Primack, Joel, E-mail: mbusha@physik.uzh.ch, E-mail: pjm@slac.stanford.edu, E-mail: rwechsler@stanford.edu, E-mail: aklypin@nmsu.edu, E-mail: joel@ucsc.edu [Department of Physics, University of California, Santa Cruz, CA 95064 (United States)

2011-12-10T23:59:59.000Z

224

Direct Aerosol Forcing Uncertainty  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

Mccomiskey, Allison

225

Design of a Shadowband Spectral Radiometer for the Retrieval of Thin Cloud Optical Depth, Liquid Water Path, and the Effective Radius  

SciTech Connect (OSTI)

The design and operation of a Thin-Cloud Rotating Shadowband Radiometer (TCRSR) described here was used to measure the radiative intensity of the solar aureole and enable the simultaneous retrieval of cloud optical depth, drop effective radius, and liquid water path. The instrument consists of photodiode sensors positioned beneath two narrow metal bands that occult the sun by moving alternately from horizon to horizon. Measurements from the narrowband 415-nm channel were used to demonstrate a retrieval of the cloud properties of interest. With the proven operation of the relatively inexpensive TCRSR instrument, its usefulness for retrieving aerosol properties under cloud-free skies and for ship-based observations is discussed.

Bartholomew M. J.; Reynolds, R. M.; Vogelmann, A. M.; Min, Q.; Edwards, R.; Smith, S.

2011-11-01T23:59:59.000Z

226

Intercomparison of the Cloud Water Phase among Global Climate Models  

SciTech Connect (OSTI)

Mixed-phase clouds (clouds that consist of both cloud droplets and ice crystals) are frequently present in the Earth’s atmosphere and influence the Earth’s energy budget through their radiative properties, which are highly dependent on the cloud water phase. In this study, the phase partitioning of cloud water is compared among six global climate models (GCMs) and with Cloud and Aerosol Lidar with Orthogonal Polarization retrievals. It is found that the GCMs predict vastly different distributions of cloud phase for a given temperature, and none of them are capable of reproducing the spatial distribution or magnitude of the observed phase partitioning. While some GCMs produced liquid water paths comparable to satellite observations, they all failed to preserve sufficient liquid water at mixed-phase cloud temperatures. Our results suggest that validating GCMs using only the vertically integrated water contents could lead to amplified differences in cloud radiative feedback. The sensitivity of the simulated cloud phase in GCMs to the choice of heterogeneous ice nucleation parameterization is also investigated. The response to a change in ice nucleation is quite different for each GCM, and the implementation of the same ice nucleation parameterization in all models does not reduce the spread in simulated phase among GCMs. The results suggest that processes subsequent to ice nucleation are at least as important in determining phase and should be the focus of future studies aimed at understanding and reducing differences among the models.

Komurcu, Muge; Storelvmo, Trude; Tan, Ivy; Lohmann, U.; Yun, Yuxing; Penner, Joyce E.; Wang, Yong; Liu, Xiaohong; Takemura, T.

2014-03-27T23:59:59.000Z

227

Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008  

E-Print Network [OSTI]

assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We the microphysical properties of clouds [Lubin and Vogelmann, 2006]. Deposition of BC onto snow and ice changes

Jimenez, Jose-Luis

228

The Roles of Cloud Drop Effective Radius and LWP in Determining Rain Properties in Marine Stratocumulus  

SciTech Connect (OSTI)

Numerical simulations described in previous studies showed that adding cloud condensation nuclei to marine stratocumulus can prevent their breakup from closed into open cells. Additional analyses of the same simulations show that the suppression of rain is well described in terms of cloud drop effective radius (re). Rain is initiated when re near cloud top is around 12-14 um. Cloud water starts to get depleted when column-maximum rain intensity (Rmax) exceeds 0.1 mm h-1. This happens when cloud-top re reaches 14 um. Rmax is mostly less than 0.1 mm h-1 at re<14 um, regardless of the cloud water path, but increases rapidly when re exceeds 14 um. This is in agreement with recent aircraft observations and theoretical observations in convective clouds so that the mechanism is not limited to describing marine stratocumulus. These results support the hypothesis that the onset of significant precipitation is determined by the number of nucleated cloud drops and the height (H) above cloud base within the cloud that is required for cloud drops to reach re of 14 um. In turn, this can explain the conditions for initiation of significant drizzle and opening of closed cells providing the basis for a simple parameterization for GCMs that unifies the representation of both precipitating and non-precipitating clouds as well as the transition between them. Furthermore, satellite global observations of cloud depth (from base to top), and cloud top re can be used to derive and validate this parameterization.

Rosenfeld, Daniel; Wang, Hailong; Rasch, Philip J.

2012-07-04T23:59:59.000Z

229

FY 2010 Third Quarter Report Comparison of Aerosol and Cloud Condensation Nuclei (CCN) Relationship Parameterizations with Data Collected During the 2008 VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign  

SciTech Connect (OSTI)

Metric for Quarter 3: Report comparisons of aerosol/CCN relationship parameterizations with data collected in the first quarter and best parameterization for VOCALS data set.

Wang, J; Daum, PH; Kleinman, LI; Lee, YN; McGraw, R; Sedlacek, AJ; Senum, G; Springston, SR

2010-06-01T23:59:59.000Z

230

aerosol characteristic researching: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as they have significant impacts both on localregional air pollution and global climate. Recent for Aerosol and Cloud Chemistry, Aerodyne Research, Incorporated, Billerica,...

231

aerosol retrieval validation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

off the coast of Chile and Peru, where aerosol-cloud interactions are important to the energy balance (15), and limitations in current observing and modeling capabilities...

232

Q. J. R. Meteorol. Soc. (2005), 131, pp. 26392663 doi: 10.1256/qj.04.62 Aerosol impact on the dynamics and microphysics of deep convective clouds  

E-Print Network [OSTI]

Cloud dynamics Microphysics of cumulus clouds Precipitation efficiency 1. INTRODUCTION High in the concentration of small cloud condensation nuclei (CCN) leads to the formation of a large number of small of the diffusion droplet growth stage, increasing latent heat release by condensation. The additional water

Daniel, Rosenfeld

233

A model simulation of Pinatubo volcanic aerosols in the stratosphere  

SciTech Connect (OSTI)

A one-dimensional, time-dependent model is used to study the chemical, microphysical, and radiative properties of volcanic aerosols produced by the Mount Pinatubo eruption on June 15, 1991. The authors` model treats gas-phase sulfur photochemistry, gas-to-particle conversion of sulfur, and the microphysics of sulfate aerosols and ash particles under stratospheric conditions. The dilution and diffusion of the volcanic eruption clouds are also accounted for in these conditions. Heteromolecular homogeneous and heterogeneous binary H{sub 2}SO{sub 4}/H{sub 2}O nucleation, acid and water condensational growth, coagulation, and gravitational sedimentation are treated in detail in the model. Simulations suggested that after several weeks, the volcanic cloud was composed mainly of sulfuric acid/water droplets produced in situ from the SO{sub 2} emissions. The large amounts of SO{sub 2} (around 20 Mt) injected into the stratosphere by the Pinatubo eruption initiated homogeneous nucleation which generated a high concentration of small H{sub 2}SO{sub 4}/H{sub 2}O droplets. These newly formed particles grew rapidly by condensation and coagulation in the first few months and then reached their stabilized sizes with effective radii in a range between 0.3 and 0.5 {mu}m approximately one-half year after the eruption. The predicted volcanic cloud parameters reasonably agree with measurements in term of the vertical distribution and lifetime of the volcanic aerosols, their basic microphysical structures (e.g., size distribution, concentration, mass ratio, and surface area) and radiative properties. The persistent volcanic aerosols can produce significant anomalies in the radiation field, which have important climatic consequences. The large enhancement in aerosol surface area can result in measurable global stratospheric ozone depletion. 57 refs., 15 figs., 1 tab.

Zhao, J. [Univ. of Hawaii, Honolulu, HI (United States)] [Univ. of Hawaii, Honolulu, HI (United States); Turco, R.P. [Univ. of California, Los Angeles, CA (United States)] [Univ. of California, Los Angeles, CA (United States); Toon, O.B. [NASA Ames Research Center, Moffett Field, CA (United States)] [NASA Ames Research Center, Moffett Field, CA (United States)

1995-04-20T23:59:59.000Z

234

Development and testing of parameterizations for continental and tropical ice cloud microphysical and radiative properties in GCM and mesoscale models. Final report  

SciTech Connect (OSTI)

The overall purpose of this research was to exploit measurements in clouds sampled during several field programs, especially from experiments in tropical regions, in a four-component study to develop and validate cloud parameterizations for general circulation models, emphasizing ice clouds. The components were: (1) parameterization of basic properties of mid- and upper-tropospheric clouds, such as condensed water content, primarily with respect to cirrus from tropical areas; (2) the second component was to develop parameterizations which express cloud radiative properties in terms of basic cloud microphysical properties, dealing primarily with tropical oceanic cirrus clouds and continental thunderstorm anvils, but also including altocumulus clouds; (3) the third component was to validate the parameterizations through use of ground-based measurements calibrated using existing and planned in-situ measurements of cloud microphysical properties and bulk radiative properties, as well as time-resolved data collected over extended periods of time; (4) the fourth component was to implement the parameterizations in the National Center for Atmospheric Research (NCAR) community climate model (CCM) II or in the NOAA-GFDL model (by L. Donner GFDL) and to perform sensitivity studies.

Heymsfield, A.

1997-09-01T23:59:59.000Z

235

Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol  

SciTech Connect (OSTI)

The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

2014-06-17T23:59:59.000Z

236

Laboratory investigation of chemical and physical properties of soot-containing aerosols  

E-Print Network [OSTI]

....................................................................................44 3-6 Hygroscopic growth factor of H2SO4-coated (a) propane (b) methane and (c) kerosene soot aerosols of selected dry particle sizes as a function of RH... on the surfaces of soot generated from methane, hexane and kerosene combustion. The kinetic experiments are conducted with a low-pressure, coated-wall laminar flow reactor 8 apparatus equipped with ion drift - chemical ionization mass spectrometry...

Zhang, Dan

2006-08-16T23:59:59.000Z

237

Atmospheric Radiation Measurement (ARM) Data from Cape Cod, Massachusetts for the Two-Column Aerosol Project (TCAP)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Two-Column Aerosol Project (TCAP) was designed to provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the ARM Mobile Facility and the Mobile Aerosol Observing System were deployed on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations were supplemented by two aircraft intensive observation periods, one in the summer and a second in the winter.

238

Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity  

E-Print Network [OSTI]

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical ...

Ridley, David Andrew

239

aerosols | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosols aerosols Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

240

Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols  

SciTech Connect (OSTI)

The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

2012-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

aerosol optical thickness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

242

aerosol black carbon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

243

Ground-based All-sky Mid-infrared and Visible Imagery for Purposes of Characterizing Cloud Properties  

SciTech Connect (OSTI)

This paper describes the All Sky Infrared Visible Analyzer (ASIVA), a multi-purpose visible and infrared sky imaging and analysis instrument whose primary functionality is to provide radiometrically calibrated imagery in the mid-infrared (mid-IR) atmospheric window. This functionality enables the determination of diurnal hemispherical cloud fraction (HCF) and estimates of sky/cloud temperature from which one can derive estimates of cloud emissivity and cloud height. This paper describes the calibration methods and performance of the ASIVA instrument with particular emphasis on data products being developed for the meteorological community. Data presented here were collected during a field campaign conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Climate Research Facility from May 21 to July 27, 2009. The purpose of this campaign was to determine the efficacy of IR technology in providing reliable nighttime HCF data. Significant progress has been made in the analysis of the campaign data over the past several years and the ASIVA has proven to be an excellent instrument for determining HCF as well as several other important cloud properties.

Klebe, Dimitri; Blatherwick, R. D.; Morris, Victor R.

2014-02-24T23:59:59.000Z

244

Validation of Surface Retrieved Cloud Optical Properties with in situ Measurements at the Atmospheric Radiation Measurement Program (ARM) South Great Plains Site  

SciTech Connect (OSTI)

The surface inferred cloud optical properties from a multifilter rotating shadowband radiometer have been validated against the in situ measurements during the second ARM Enhanced Shortwave Experiment (ARESE II) field campaign at the ARM South Great Plains (SGP) site. On the basis of eight effective radius profiles measured by the in situ Forward Spectra Scattering Probe (FSSP), our retrieved cloud effective radii for single-layer warm water clouds agree well with in situ measurements, within 5.5%. The sensitivity study also illustrates that for this case a 13% uncertainty in observed liquid water path (LWP, 20 g/m2) results in 1.5% difference in retrieved cloud optical depth and 12.7% difference in referred cloud effective radius, on average. The uncertainty of the LWP measured by the microwave radiometer (MWR) is the major contributor to the uncertainty of retrieved cloud effective radius. Further, we conclude that the uncertainty of our inferred cloud optical properties is better than 5% for warm water clouds based on a surface closure study, in which cloud optical properties inferred from narrowband irradiances are applied to a shortwave model and the modeled broadband fluxes are compared to a surface pyranometer.

Min, Qilong; Duan, M.; Marchand, Roger T.

2003-09-11T23:59:59.000Z

245

Clouds, Aerosols and Precipitation in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVailCloisteredPresence3 Cloudiness Inter-

246

AEROSOL DIRECT RADIATIVE EFFECTS OVER THE NORTHWEST ATLANTIC, NORTHWEST PACIFIC, AND NORTH INDIAN OCEANS: ESTIMATES BASED ON IN-SITU CHEMICAL AND  

E-Print Network [OSTI]

AEROSOL DIRECT RADIATIVE EFFECTS OVER THE NORTHWEST ATLANTIC, NORTHWEST PACIFIC, AND NORTH INDIAN OCEANS: ESTIMATES BASED ON IN-SITU CHEMICAL AND OPTICAL MEASUREMENTS AND CHEMICAL TRANSPORT MODELING radiation, changing cloud properties and altering precipitation. The largest uncertainty in the radiative

247

CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global survey of the fundamental physical entity linking them  

E-Print Network [OSTI]

understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal of the boundary layer air) simultaneously, allowing their effects to be distinguished. Changes in the behavior cloud solar reflectance for a constant liquid water path (Twomey 1977) if the clouds are not optically

Daniel, Rosenfeld

248

Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites  

SciTech Connect (OSTI)

Statistics of ice cloud macrophysical and optical properties from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite are compared with those from ground-based lidar observations over a 31 month period. Ground-based lidar observations are taken from the micropulse lidars (MPL) at the three Department of Energy Atmospheric Radiation Measurement (ARM) tropical western pacific (TWP) sites: Manus, Nauru and Darwin. CALIPSO observations show a larger cloud fraction at high altitudes while the ground-based MPLs show a larger cloud fraction at low altitudes. The difference in mean ice cloud top and base heights at the Manus and Nauru sites are all within 0.51 km, although differences are statistically significant. Mean ice cloud geometrical thickness agree to within 0.05 km at the Manus and Nauru sites. Larger differences exist at Darwin due to excessive degradation of the MPL output power during our sampling period. Both sets of observations show thicker clouds during the nighttime which may be real but could also be partially an artifact of the decreased signal-to-noise ratio during the daytime. The number of ice cloud layers per profile are also shown to be consistent after accounting for the difference in spatial resolution. For cloud optical depths, four different retrieval methods are compared, two for each set of observations. All products show that the majority of ice cloud optical depths ({approx}60%) fall below an optical depth of 0.2. For most comparisons all four retrievals agree to within the uncertainty intervals. We find that both CALIPSO retrievals agree best to ground-based optical depths when the lidar ratio in the latter is retrieved instead of set to a fixed value. Also thoroughly compared is the cloud properties for the subset of ice clouds which reside in the tropical tropopause layer (TTL).

Thorsen, Tyler J.; Fu, Q.; Comstock, Jennifer M.

2011-11-10T23:59:59.000Z

249

Radiative and climate impacts of absorbing aerosols  

E-Print Network [OSTI]

incident radiation are distinguished, and albedos for oceanOceans using multiple satellite datasets in conjunction with MACR (Monte Carlo Aerosol-Cloud-Radiation)ocean temperature is coupled with the rest of the climate system, the dimming of surface radiation

Zhu, Aihua

2010-01-01T23:59:59.000Z

250

CLOUD AND HAZE IN THE WINTER POLAR REGION OF TITAN OBSERVED WITH VISUAL AND INFRARED MAPPING SPECTROMETER ON BOARD CASSINI  

SciTech Connect (OSTI)

A large cloud in the north polar region of Titan was first observed by the Visual and Infrared Mapping Spectrometer (VIMS) in 2005 and then in 2006. This cloud, confined beyond the latitude 62 Degree-Sign N, is surrounded by a mixture of aerosol and mist probably lying in the low stratosphere and troposphere. Subsequent images of this region of Titan show a gradual vanishing of this cloud which was reported previously. In this paper, we characterize the physical properties of this cloud, haze, and mist as well as their time evolutions. We note several details on the images such as a secondary cloud above the main cloud and latitudes beyond 70 Degree-Sign N. We also show that the cloud disappearance leaves the polar region poorly loaded in aerosols, yielding an annular zone of aerosols between 50 Degree-Sign N and 65 Degree-Sign N. Our analysis suggests that this structure observed by VIMS in the near-IR is an annular structure observed by ISS on board Voyager one Titan year ago in 1980.

Rannou, P. [GSMA, UMR CNRS 7331, Universite de Reims Champagne-Ardenne (France); Le Mouelic, S. [LPGN, UMR CNRS 6112, Universite de Nantes (France); Sotin, C. [JPL, California Institute of Technology, PA (United States); Brown, R. H., E-mail: pascal.rannou@univ-reims.fr [LPL, University of Arizona, Tucson, AZ (United States)

2012-03-20T23:59:59.000Z

251

Impact of Aerosols on Tropical Cyclones: An Investigation Using Convection-permitting Model Simulation  

SciTech Connect (OSTI)

The role of aerosols effect on two tropical cyclones over Bay of Bengal are investigated using a convection permitting model with two-moment mixed-phase bulk cloud microphysics scheme. The simulation results show the role of aerosol on the microphysical and dynamical properties of cloud and bring out the change in efficiency of the clouds in producing precipitation. The tracks of the TCs are hardly affected by the changing aerosol types, but the intensity exhibits significant sensitivity due to the change in aerosol contribution. It is also clearly seen from the analyses that higher heating in the middle troposphere within the cyclone center is in response to latent heat release as a consequence of greater graupel formation. Greater heating in the middle level is particularly noticeable for the clean aerosol regime which causes enhanced divergence in the upper level which, in turn, forces the lower level convergence. As a result, the cleaner aerosol perturbation is more unstable within the cyclone core and produces a more intense cyclone as compared to other two perturbations of aerosol. All these studies show the robustness of the concept of TC weakening by storm ingestion of high concentrations of CCN. The consistency of these model results gives us confidence in stating there is a high probability that ingestion of high CCN concentrations in a TC will lead to weakening of the storm but has little impact on storm direction. Moreover, as pollution is increasing over the Indian sub-continent, this study suggests pollution may be weakening TCs over the Bay of Bengal.

Hazra, Anupam; Mukhopadhyay, P.; Taraphdar, Sourav; Chen, J. P.; Cotton, William R.

2013-07-16T23:59:59.000Z

252

Atmospheric Rivers Coming to a Cloud Near You  

ScienceCinema (OSTI)

Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

Leung, Ruby

2014-06-12T23:59:59.000Z

253

Atmospheric Rivers Coming to a Cloud Near You  

SciTech Connect (OSTI)

Learn about the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) field campaign in this short video. Ruby Leung, PNNL's lead scientist on this campaign's observational strategy to monitor precipitation.

Leung, Ruby

2014-03-29T23:59:59.000Z

254

Final Report for Ă?¢Ă?Â?Ă?Â?Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)Ă?¢Ă?Â?Ă?Âť (DE-SC0002003) for 8/15/2009 through 8/14/2012  

SciTech Connect (OSTI)

Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by �¢����nudging�¢��� to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

Lynn M. Russell; Richard C.J. Somerville

2012-11-05T23:59:59.000Z

255

Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols  

SciTech Connect (OSTI)

We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general, measured UV absorption coefficients were found to be much larger for biomass burning aerosol than for typical ambient aerosols.

Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.; Song, Chen; Moosmuller, H.; Liu, Li; Mishchenko, M.; Chen, L-W A.; Green, M.; Watson, J. G.; Chow, J. C.

2012-03-08T23:59:59.000Z

256

Phase Transformations of the Ternary System (NH4)2SO4-H2SO4-H2O and the Implications for Cirrus Cloud Formation  

E-Print Network [OSTI]

the presence of NH4 + ions in the aerosol of the upper troposphere. Low-temperature ternary phase diagrams distribution alters the cloud's radiative properties, persistence, and surface area available for heterogeneous radiation, which insulates or warms Earth, and scattering the sun's visible radiation upward, thus cooling

257

Use of airs and modis thermal infrared channels to retrieve ice cloud properties  

E-Print Network [OSTI]

In this study, we use thermal infrared channels to retrieve the optical thickness and effective particle radius of ice clouds. A physical model is used in conjunction with Atmospheric Infrared Sounder (AIRS) temperature and water vapor profiles...

Yost, Christopher Rogers

2007-04-25T23:59:59.000Z

258

Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?  

E-Print Network [OSTI]

retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol depth in deserts and the surrounding regions during periods of high wind. Long range transport of desert particles into the air [6] (wind alone does not have sufficient energy to remove particles from the surface

Oxford, University of

259

Aerosol engineering: design and stability of aerosol reactors  

SciTech Connect (OSTI)

A theoretical study of the performance of aerosol reactors is presented. The goals of this study are (1) to identify the appropriate reactor types (batch, CSTR, and tubular) for production of aerosol with specific properties (for example, uniform size particles, high aerosol surface area, etc.) and (2) to investigate the effect of various process parameters on product aerosol characteristics and on the stability of operation of aerosol reactors. In all the reactors considered, the aerosol dynamics were detemined by chemical reaction, nucleation, and aerosol growth in the free molecule regime in the absence of coagulation at isothermal conditions. Formulation of the aerosol dynamics in terms of moments of the aerosol size distribution facilitated the numerical solution of the resulting systems of ordinary or partial differential equations. The stability characteristics of a continuous stirred tank aerosol reactor (CSTAR) were investigated since experimental data in the literature indicate that under certain conditions this reactor exhibits oscillatory behavior with respect to product aerosol concentration and size distribution.

Pratsinis, S.E.

1985-01-01T23:59:59.000Z

260

High Flash-point Fluid Flow System Aerosol Flammability Study and Combustion Mechanism Analysis  

E-Print Network [OSTI]

understanding of this combustion process. The potential application of the ignition delay will be beneficial to the mitigation timing and detector sensor setting of facilities to prevent aerosol cloud fires. Finally, the scientific method of aerosol...

Huang, Szu-Ying

2013-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FINAL REPORT FOR THE DOE/ARM PROJECT TITLED Representation of the Microphysical and Radiative Properties of Ice Clouds in SCMs and GCMs  

SciTech Connect (OSTI)

The broad goal of this research is to improve climate prediction through better representation of cirrus cloud microphysical and radiative properties in global climate models (GCMs). Clouds still represent the greatest source of uncertainty in climate prediction, and the representation of ice clouds is considerably more challenging than liquid water clouds. While about 40% of cloud condensate may be in the form of ice by some estimates, there have been no credible means of representing the ice particle size distribution and mass removal rates from ice clouds in GCMs. Both factors introduce large uncertainties regarding the global net flux, the latter factor alone producing a change of 10 W/m2 in the global net flux due to plausible changes in effective ice particle fallspeed. In addition, the radiative properties of ice crystals themselves are in question. This research provides GCMs with a credible means of representing the full (bimodal) ice particle size distribution (PSD) in ice clouds, including estimates of the small crystal (D < 65 microns) mode of the PSD. It also provides realistic estimates of mass sedimentation rates from ice clouds, which have a strong impact on their ice contents and radiative properties. This can be done through proper analysis of ice cloud microphysical data from ARM and other field campaigns. In addition, this research tests the ice cloud radiation treatment developed under two previous ARM projects by comparing it against laboratory measurements of ice cloud extinction efficiency and by comparing it with explicit theoretical calculations of ice crystal optical properties. The outcome of this project includes two PSD schemes for ice clouds; one appropriate for mid-latitude cirrus clouds and another for tropical anvil cirrus. Cloud temperature and ice water content (IWC) are the inputs for these PSD schemes, which are based on numerous PSD observations. The temperature dependence of the small crystal mode of the PSD for tropical anvils is opposite to that of mid-latitude cirrus, and this results in very different radiative properties for these two types of cirrus at temperatures less than about 50 C for a given ice water path. In addition, the representative PSD fall velocity is strongly influenced by the small crystal mode, and for temperatures less than 52 C, this fall velocity for mid-latitude cirrus is 2-8 times greater than for tropical anvil cirrus. Finally, the treatment of ice cloud optical properties was found to agree with laboratory measurements and exact theory within 15% for any given wavelength, PSD and ice particle shape. This treatment is analytical, formulated in terms of the PSD and ice particle shape properties. It thus provides the means for explicitly coupling the ice cloud microphysical and radiative properties, and can treat any combination of ice particle shape. It is very inexpensive regarding computer time. When these three deliverables were incorporated into the GCM at the National Center for Atmospheric Research (NCAR) under another project, it was found that the sunlight reflected and the amount of upwelling heat absorbed by cirrus clouds depended strongly on the PSD scheme used (i.e. mid-latitude or tropical anvil). This was largely due to the fall velocities associated with the two PSD schemes, although the PSD shape was also important.

Mitchell, David L.

2005-08-08T23:59:59.000Z

262

MAGIC: Marine ARM GPCI Investigation of Clouds  

SciTech Connect (OSTI)

The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

2012-10-03T23:59:59.000Z

263

Stratospheric Aerosol Geoengineering ALAN ROBOCK  

E-Print Network [OSTI]

Stratospheric Aerosol Geoengineering ALAN ROBOCK ABSTRACT In response to global warming, one suggested geoengineering response involves creating a cloud of particles in the stratosphere to reflect some, the volcano analog also warns against geoengineering because of responses such as ozone depletion, regional

Robock, Alan

264

Impacts of aerosol particles on the microphysical and radiative1 properties of stratocumulus clouds over the southeast Pacific ocean2  

E-Print Network [OSTI]

layer along 20°S was41 anthropogenic pollution from central Chilean sources, with copper smelters, urban25 pollution and smelters on the stratocumulus deck was investigated during the VOCALS26

Wood, Robert

265

Perturbed Physics Ensemble Simulations of Cirrus on the Cloud System-resolving Scale  

SciTech Connect (OSTI)

In this study, the effect of uncertainties in the parameterization of ice microphysical processes and initial conditions on the variability of cirrus microphysical and radiative properties are investigated in a series of cloud system-resolving perturbed physics ensemble (PPE) and initial condition ensemble (ICE) simulations. Three cirrus cases representative of mid-latitude, subtropical and tropical cirrus are examined. It is found that the variability in cirrus properties induced by perturbing uncertain parameters in ice microphysics parameterizations outweighs the variability induced by perturbing the initial conditions in midlatitude and subtropical cirrus. However, in tropical anvil cirrus the variability in the PPE and ICE simulations is about the same order of magnitude. The cirrus properties showing the largest sensitivity are ice water content (IWC) and cloud thickness whereas the averaged high cloud cover is only marginally affected. Changes in cirrus ice water path and outgoing longwave radiation are controlled primarily by changes in IWC and cloud thickness but not by changes is the averaged high cloud cover. The change in the vertical distribution of cloud fraction and cloud thickness is caused by changes in cirrus cloud base whereas cloud top is not sensitive to either perturbed physics or perturbed initial conditions. In all cirrus cases, the top three parameters controlling the microphysical variability and radiative impact of cirrus clouds are ice fall speeds, ice autoconversion size thresholds and heterogeneous ice nucleation. Changes in the ice deposition coefficient do not affect the ice water path and outgoing longwave radiation. Similarly, changes in the number concentration of aerosols available for homogeneous freezing have virtually no effect on the microphysical and radiative properties of midlatitude and subtropical cirrus but only little impact on tropical anvil cirrus. Overall, the sensitivity of cirrus microphysical and radiative properties to uncertainties in ice microphysics is largest for midlatitude cirrus and smallest for tropical anvil cirrus.

Muhlbauer, Andreas; Berry, Elizabeth; Comstock, Jennifer M.; Mace, Gerald G.

2014-04-16T23:59:59.000Z

266

E-Print Network 3.0 - aerosols influencing atmospheric Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and... influencing cloud reflectance and precipitation formation. The...

267

E-Print Network 3.0 - aerosol retrieval algorithms Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the scavenging... site provide retrievals of aerosol, cloud, precipitation and radiative heating in the Arctic? 12;Key... profiles derived from ground-based and satellite remote...

268

Retrieval of optical and microphysical properties of ice clouds using Atmospheric Radiation Measurement (ARM) data  

E-Print Network [OSTI]

is based on a method proposed by Yang et al. (2005). The research examines single-layer ice clouds in the midlatitude and polar regions. The retrieved information in the midlatitudes is then verified using retrievals from the Moderate-resolution Imaging...

Kinney, Jacqueline Anne

2005-11-01T23:59:59.000Z

269

Remote Sensing: Cloud Properties P Yang, Texas A&M University, College Station, TX, USA  

E-Print Network [OSTI]

a large influ- ence on the Earth's radiative energy budget. The energy budget is composed of both solar weather models may be regional in extent, covering a specific area such as North America, or global over large horizontal distances. While these clouds may extend over wide areas, their typical geometric

Baum, Bryan A.

270

IMPLICATIONS OF INFALLING Fe II-EMITTING CLOUDS IN ACTIVE GALACTIC NUCLEI: ANISOTROPIC PROPERTIES  

SciTech Connect (OSTI)

We investigate consequences of the discovery that Fe II emission in quasars, one of the spectroscopic signatures of 'Eigenvector 1', may originate in infalling clouds. Eigenvector 1 correlates with the Eddington ratio L/L {sub Edd} so that Fe II/Hbeta increases as L/L {sub Edd} increases. We show that the 'force multiplier', the ratio of gas opacity to electron scattering opacity, is approx10{sup 3}-10{sup 4} in Fe II-emitting gas. Such gas would be accelerated away from the central object if the radiation force is able to act on the entire cloud. As had previously been deduced, infall requires that the clouds have large column densities so that a substantial amount of shielded gas is present. The critical column density required for infall to occur depends on L/L {sub Edd}, establishing a link between Eigenvector 1 and the Fe II/Hbeta ratio. We see predominantly the shielded face of the infalling clouds rather than the symmetric distribution of emitters that has been assumed. The Fe II spectrum emitted by the shielded face is in good agreement with observations thus solving several long-standing mysteries in quasar emission lines.

Ferland, Gary J. [Department of Physics, University of Kentucky, Lexington, KY 40506 (United States); Hu Chen; Wang Jianmin [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Baldwin, Jack A. [Department of Physics and Astronomy, Michigan State University, Lansing, MI (United States); Porter, Ryan L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Van Hoof, Peter A. M. [Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels (Belgium); Williams, R. J. R. [AWE plc, Aldermaston, Reading RG7 4PR (United Kingdom)

2009-12-10T23:59:59.000Z

271

A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID  

E-Print Network [OSTI]

In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

Hohaus, T.

272

Aircraft induced cirrus cloud First year report  

E-Print Network [OSTI]

and coagulation. A resulting size distribution of ice crystals is deemed indicative of contrail cirrus cloud model operates, simulating the life cycle of aerosol and ice particles: nucleation, condensation

Oxford, University of

273

Cloud Properties Derived from Visible and Near-infrared Reflectance in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVailCloisteredPresence of Aerosols

274

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

SciTech Connect (OSTI)

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

275

EMSL - aerosols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosols en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-m...

276

E-Print Network 3.0 - aerosol robotic network Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

), AERONET--A federated instrument network and data archive for aerosol characterization, Remote Sens... Period examining aerosol properties and radiative ... Source: Brookhaven...

277

E-Print Network 3.0 - aerosol main physical Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND INTEGRAL AEROSOL PROPERTIES RETRIEVAL FROM RAMAN LIDAR DATA USING PRINCIPLE COMPONENT ANALYSIS Summary: retrievals of physical aerosol parameters from ground-based and...

278

Electron-Cloud Build-Up: Summary  

E-Print Network [OSTI]

Properties In?uencing Electron Cloud Phenomena,” Appl. Surf.Dissipation of the Electron Cloud,” Proc. PAC03 (Portland,is no signi?cant electron-cloud under nominal operating

Furman, M.A.

2007-01-01T23:59:59.000Z

279

Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data  

SciTech Connect (OSTI)

In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)���¢��������s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9�������°��������2.5�������° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1�������° x 1�������°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 �������µm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4�������º by 5�������º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between ���¢��������clean marine���¢������� aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses

Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

2012-03-28T23:59:59.000Z

280

Final Report - Satellite Calibration and Verification of Remotely Sensed Cloud and Radiation Properties Using ARM UAV Data (February 28, 1995 - February 28, 1998)  

SciTech Connect (OSTI)

The work proposed under this agreement was designed to validate and improve remote sensing of cloud and radiation properties in the atmosphere for climate studies with special emphasis on the use of satellites for monitoring these parameters to further the goals of the Atmospheric Radiation Measurement (ARM) Program.

Minnis, Patrick

1998-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model  

SciTech Connect (OSTI)

Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

2014-05-13T23:59:59.000Z

282

Correlations Between Optical, Chemical and Physical Properties...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols. Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols....

283

Total aerosol effect: forcing or radiative flux perturbation?  

SciTech Connect (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

284

Development and Comparison of Ground and Satellite-based Retrievals of Cirrus Cloud Physical Properties  

SciTech Connect (OSTI)

This report is the final update on ARM research conducted at DRI through May of 2006. A relatively minor amount of work was done after May, and last month (November), two journal papers partially funded by this project were published. The other investigator on this project, Dr. Bob d'Entremont, will be submitting his report in February 2007 when his no-cost extension expires. The main developments for this period, which concludes most of the DRI research on this project, are as follows: (1) Further development of a retrieval method for cirrus cloud ice particle effective diameter (De) and ice water path (IWP) using terrestrial radiances measured from satellites; (2) Revision and publication of the journal article 'Testing and Comparing the Modified Anomalous Diffraction Approximation'; and (3) Revision and publication of our radar retrieval method for IWC and snowfall rate.

Mitchell, David L

2009-10-14T23:59:59.000Z

285

Vapor scavenging by atmospheric aerosol particles  

SciTech Connect (OSTI)

Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

Andrews, E.

1996-05-01T23:59:59.000Z

286

Study of Ice Cloud Properties from Synergetic Use of Satellite Observations and Modeling Capabilities  

E-Print Network [OSTI]

The dissertation first investigates the single-scattering properties of inhomogeneous ice crystals containing air bubbles. Specifically, a combination of the ray-tracing technique and the Monte Carlo method is used to simulate the scattering...

Xie, Yu

2011-02-22T23:59:59.000Z

287

Mass Spectral Evidence That Small Changes in Composition Caused by Oxidative Aging Processes Alter Aerosol CCN Properties  

E-Print Network [OSTI]

Mass Spectral Evidence That Small Changes in Composition Caused by Oxidative Aging Processes Alter that small changes in particle chemical composition caused by oxidation could increase the CCN activity increased cloud condensation nuclei (CCN) activity compared to their hydro- phobic counterparts. At present

288

Atmospheric Aerosol Systems | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

289

Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process  

SciTech Connect (OSTI)

This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

Shaw, Raymond A. [Michigan Technological University

2014-10-28T23:59:59.000Z

290

Final Report fir DE-SC0005507 (A1618): The Development of an Improved Cloud Microphysical Product for Model and Remote Sensing Evaluation using RACORO Observations  

SciTech Connect (OSTI)

We proposed to analyze data collected during the Routine Aerial Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) in order to develop an integrated product of cloud microphysical properties (number concentration of drops in different size bins, total liquid drop concentration integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds, effective radius of water drops, and radar reflectivity factor) that could be used to evaluate large-eddy simulations (LES), general circulation models (GCMs) and ground-based remote sensing retrievals, and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. We have completed the development of this microphysical database. we investigated the differences in the size distributions measured by the Cloud and Aerosol Spectrometer (CAS) and the Forward Scattering Probe (FSSP), between the one dimensional cloud imaging probe (1DC) and the two-dimensional cloud imaging probe (2DC), and between the bulk LWCs measured by the Gerber probe against those derived from the size resolved probes.

McFarquhar, Greg M.

2012-09-21T23:59:59.000Z

291

Solar absorption by Mie resonances in cloud droplets  

E-Print Network [OSTI]

on the enhancement factor for absorption of light by carbonKlett JD. Black carbon and absorption of solar radiation bySize parameter; Particle absorption; Water clouds; Aerosols

Zender, Charles S; Talamantes, Jorge

2006-01-01T23:59:59.000Z

292

Enhanced toxic cloud knockdown spray system for decontamination applications  

DOE Patents [OSTI]

Methods and systems for knockdown and neutralization of toxic clouds of aerosolized chemical or biological warfare (CBW) agents and toxic industrial chemicals using a non-toxic, non-corrosive aqueous decontamination formulation.

Betty, Rita G. (Rio Rancho, NM); Tucker, Mark D. (Albuquerque, NM); Brockmann, John E. (Albuquerque, NM); Lucero, Daniel A. (Albuquerque, NM); Levin, Bruce L. (Tijeras, NM); Leonard, Jonathan (Albuquerque, NM)

2011-09-06T23:59:59.000Z

293

The effect of ice crystal surface roughness on the retrieval of ice cloud microphysical and optical properties  

E-Print Network [OSTI]

The effect of the surface roughness of ice crystals is not routinely accounted for in current cloud retrieval algorithms that are based on pre-computed lookup libraries. In this study, we investigate the effect of ice crystal surface roughness...

Xie, Yu

2007-09-17T23:59:59.000Z

294

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect (OSTI)

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

295

Cloud Condensation Nuclei Profile Value-Added Product  

SciTech Connect (OSTI)

The cloud condensation nuclei (CCN) concentration at cloud base is the most relevant measure of the aerosol that influences droplet formation in clouds. Since the CCN concentration depends on supersaturation, a more general measure of the CCN concentration is the CCN spectrum (values at multiple supersaturations). The CCN spectrum is now measured at the surface at several fixed ARM sites and by the ARM Mobile Facility (AMF), but is not measured at the cloud base. Rather than rely on expensive aircraft measurements for all studies of aerosol effects on clouds, a way to project CCN measurements at the surface to cloud base is needed. Remote sensing of aerosol extinction provides information about the vertical profile of the aerosol, but cannot be directly related to the CCN concentration because the aerosol extinction is strongly influenced by humidification, particularly near cloud base. Ghan and Collins (2004) and Ghan et al. (2006) propose a method to remove the influence of humidification from the extinction profiles and tie the “dry extinction” retrieval to the surface CCN concentration, thus estimating the CCN profile. This methodology has been implemented as the CCN Profile (CCNPROF) value-added product (VAP).

McFarlane, S; Sivaraman, C; Ghan, S

2012-10-08T23:59:59.000Z

296

Final Report on the Development of an Improved Cloud Microphysical Product for Model and Remote Sensing Evaluation using RACORO Observations  

SciTech Connect (OSTI)

We proposed to analyze data collected during the Routine Aerial Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) in order to develop an integrated product of cloud microphysical properties (number concentration of drops in different size bins, total liquid drop concentration integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds bw, effective radius of water drops re, and radar reflectivity factor) that could be used to evaluate large-eddy simulations (LES), general circulation models (GCMs) and ground-based remote sensing retrievals, and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. We have completed the development of this microphysical database and have submitted it to ARM for consideration of its inclusion on the ARM database as a PI product. This report describes the development of this database, and also describes research that has been conducted on cloud-aerosol interactions using the data obtained during RACORO. A list of conference proceedings and publications is also included.

McFarquhar, Greg

2012-09-19T23:59:59.000Z

297

aerosol detection equipment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel, Rosenfeld 464 Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties Energy Storage, Conversion and Utilization Websites...

298

The LANL Cloud-Aerosol Model  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2DifferentTheInforum LIFTThe IronF-Actin

299

Sunlight Changes Aerosols in Clouds | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium OxideSumin Kim Sumin KimSunil K. Sinha, 1996 TheSunlight

300

Cloud a particle beam facility to investigate the influence of cosmic rays on clouds  

E-Print Network [OSTI]

Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

Kirkby, Jasper

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A13B-0215: Case study of the 9 April 2009 `brown' cloud: Observations of unusually high cloud droplet concentrations in Saudi Arabia, David J Delene, University of North Dakota (delene@aero.und.edu; http://aerosol.atmos.und.edu)  

E-Print Network [OSTI]

' cloud: Observations of unusually high cloud droplet concentrations in Saudi Arabia, David J Delene accumulation on the unprotected leading edge of the aircraft's wing during the 9 April 2009 research in Saudi diameters compared to a normal cell. Cloud base CCN measurements in Saudi Arabia are variable with some

Delene, David J.

302

Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

303

Cloud Computing  

SciTech Connect (OSTI)

Chicago Matters: Beyond Burnham (WTTW). Chicago has become a world center of "cloud computing." Argonne experts Pete Beckman and Ian Foster explain what "cloud computing" is and how you probably already use it on a daily basis.

Pete Beckman and Ian Foster

2009-12-04T23:59:59.000Z

304

CLOUD CONDENSATION NUCLEI IN CUMULUS HUMILIS SELECTED CASE STUDY DURING THE CHAPS CAMPAIGN  

E-Print Network [OSTI]

CLOUD CONDENSATION NUCLEI IN CUMULUS HUMILIS ­ SELECTED CASE STUDY DURING THE CHAPS CAMPAIGN Xiao and particles can partition to cloud droplets by absorption and condensation as well as activation and impact of Oklahoma City. Measurements of interstitial aerosols and residuals of activated condensation cloud nuclei

305

Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations  

E-Print Network [OSTI]

Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations October 2011; accepted 26 October 2011; published 24 December 2011. [1] Arctic clouds simulated-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its

306

E-Print Network 3.0 - aerosol particles originating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. Summary: incoming solar radiation, either directly or indirectly as cloud particles, aerosols exert a cooling...

307

Investigation of Aerosol Indirect Effects using a Cumulus Microphysics Parameterization in a Regional Climate Model  

SciTech Connect (OSTI)

A new Zhang and McFarlane (ZM) cumulus scheme includes a two-moment cloud microphysics parameterization for convective clouds. This allows aerosol effects to be investigated more comprehensively by linking aerosols with microphysical processes in both stratiform clouds that are explicitly resolved and convective clouds that are parameterized in climate models. This new scheme is implemented in the Weather Research and Forecasting (WRF) model, which is coupled with the physics and aerosol packages from the Community Atmospheric Model version 5 (CAM5). A test case of July 2008 during the East Asian summer monsoon is selected to evaluate the performance of the new ZM scheme and to investigate aerosol effects on monsoon precipitation. The precipitation and radiative fluxes simulated by the new ZM scheme show a better agreement with observations compared to simulations with the original ZM scheme that does not include convective cloud microphysics and aerosol convective cloud interactions. Detailed analysis suggests that an increase in detrained cloud water and ice mass by the new ZM scheme is responsible for this improvement. To investigate precipitation response to increased anthropogenic aerosols, a sensitivity experiment is performed that mimics a clean environment by reducing the primary aerosols and anthropogenic emissions to 30% of that used in the control simulation of a polluted environment. The simulated surface precipitation is reduced by 9.8% from clean to polluted environment and the reduction is less significant when microphysics processes are excluded from the cumulus clouds. Ensemble experiments with ten members under each condition (i.e., clean and polluted) indicate similar response of the monsoon precipitation to increasing aerosols.

Lim, Kyo-Sun; Fan, Jiwen; Leung, Lai-Yung R.; Ma, Po-Lun; Singh, Balwinder; Zhao, Chun; Zhang, Yang; Zhang, Guang; Song, Xiaoliang

2014-01-29T23:59:59.000Z

308

Developing models of aerosol representation to investigate composition, evolution, optical properties, and CCN spectra using measurements of size-resolved hygroscopicity  

E-Print Network [OSTI]

A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure size distributions, hygroscopicity, and volatility during the May 2003 Aerosol Intensive Operational Period at the Central Facility...

Gasparini, Roberto

2006-08-16T23:59:59.000Z

309

E-Print Network 3.0 - alkali sulfate aerosol Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Collection: Environmental Sciences and Ecology 87 BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES Summary: BNL-65388-AB PROPERTIES OF AMMONIATED...

310

Organic Aerosols in the Earth's J O O S T D E G O U W *  

E-Print Network [OSTI]

, and indirectly through their role as cloud-condensation nuclei. A large fraction (50%) of the submicron aerosol(primaryorganicaerosolorPOA) are distinguished from secondary organic aerosol (SOA) formed in the atmosphere from gas-phase precursors. Both POA scales of minutes: particle-into-liquid sampling combined with total organic carbon analysis for measure

Jimenez, Jose-Luis

311

Statistical analysis of 4-year observations of aerosol sizes in a semi-rural continental environment  

E-Print Network [OSTI]

Statistical analysis of 4-year observations of aerosol sizes in a semi-rural continental. Introduction Formation of new aerosol particles via gas-to-particle conver- sion is an important process, which to understanding how new particle formation (NPF) processes lead to formation of cloud condensation nuclei (CCN

Lee, Shan-Hu

312

Cloud Computing.  

E-Print Network [OSTI]

?? Cloud computing has been given a great deal of attention during recent years. Almost all the technology market leaders and leading hosting service providers… (more)

Siddiqui, Muhammad Anas

2013-01-01T23:59:59.000Z

313

Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global  

E-Print Network [OSTI]

, the aerosols have an indirect effect by serving as cloud condensation nuclei, and their interaction latent heating (6), leading to an enhanced pre- cipitation efficiency (7­12), invigorated convection Satellite Cloud Climatology Project and high-resolution infrared sounder. In addition, a trend of increasing

314

Improved solid aerosol generator  

DOE Patents [OSTI]

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

315

Arctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA MATTHEW D. SHUPE AND SERGEY Y. MATROSOV  

E-Print Network [OSTI]

, cloud-top liquid layer from which ice particles formed and fell, although deep, multilayered mixed-phase. These values are all larger than those found in single-phase ice clouds at SHEBA. Vertically resolved cloud phases can coexist is in question. A re- view of model parameterizations shows the lower tem- perature

Shupe, Matthew

316

Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals  

SciTech Connect (OSTI)

Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

Shupe, Matthew

2013-05-22T23:59:59.000Z

317

Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

Shupe, Matthew

318

BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL AND SURFACE PROPERTIES FROM THE ORAC-AATSR RETRIEVAL  

E-Print Network [OSTI]

BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL, OX1 3PU, UK 2: Science and Technology Facilities Council Rutherford Appleton Laboratory, Harwell://www.iup.uni-bremen.de/sciamachy/ · ESA (A)ATSR World Fire Atlas: http://dup.esrin.esa.it/ionia/wfa/index.asp · MODIS Fire and Thermal

Oxford, University of

319

Cloud Properties Working Group Low Clouds Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVailCloisteredPresence of

320

Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic  

SciTech Connect (OSTI)

Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

Janet Intrieri; Mathhew Shupe

2005-01-01T23:59:59.000Z

322

ARM - Measurement - Aerosol optical properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAcid RainTheimage ARM Data

323

ARM - AOS Aerosol Properties Plots  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011AstudiesRingFacilitiesAMF1FacilitiesAMF3

324

Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study  

SciTech Connect (OSTI)

In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

Andreae, M.O.; Crutzen, P.J. [Max Planck Institute for Chemistry, Mainz (Germany); Cofer, W.R. III; Hollande, J.M. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Division] [and others

1995-06-01T23:59:59.000Z

325

Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China  

E-Print Network [OSTI]

Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China Xiangao Xia,1 Hongbin Chen,1 Zhanqing Li,1,2 Pucai Wang,1 and Jiankai Wang1 Received 25 May region in northeastern China. Aerosol properties derived from Sun photometer measurements and aerosol

Li, Zhanqing

326

MICS Asia Phase II - Sensitivity to the aerosol module  

E-Print Network [OSTI]

In the framework of the model inter-comparison study - Asia Phase II (MICS2), where eight models are compared over East Asia, this paper studies the influence of different parameterizations used in the aerosol module on the aerosol concentrations of sulfate and nitrate in PM10. An intracomparison of aerosol concentrations is done for March 2001 using different configurations of the aerosol module of one of the model used for the intercomparison. Single modifications of a reference setup for model configurations are performed and compared to a reference case. These modifications concern the size distribution, i.e. the number of sections, and physical processes, i.e. coagulation, condensation/evaporation, cloud chemistry, heterogeneous reactions and sea-salt emissions. Comparing monthly averaged concentrations at different stations, the importance of each parameterization is first assessed. It is found that sulfate concentrations are little sensitive to sea-salt emissions and to whether condensation is computed...

Sartelet, Karine; Sportisse, Bruno

2007-01-01T23:59:59.000Z

327

Aerodynamic Focusing Of High-Density Aerosols  

SciTech Connect (OSTI)

High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

Ruiz, D. E.; Fisch, Nathaniel

2014-02-24T23:59:59.000Z

328

Dynamic Cloud Infrastructure.  

E-Print Network [OSTI]

??This thesis will explore and investigate the possibility of implementing nested clouds to increase flexibility. A nested cloud is a private cloud running inside another… (more)

Gundersen, Espen

2012-01-01T23:59:59.000Z

329

Securing Cloud Storage Service.  

E-Print Network [OSTI]

?? Cloud computing brought flexibility, scalability, and capital cost savings to the IT industry. As more companies turn to cloud solutions, securing cloud based services… (more)

Zapolskas, Vytautas

2012-01-01T23:59:59.000Z

330

Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data  

SciTech Connect (OSTI)

Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5+-0.5 Wm-2. An alternative estimate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic Ta and satellite-retrieved Nd - Ta regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) estimate of -0.4+-0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7+-0.5 Wm-2, with a total estimate of -1.2+-0.4 Wm-2.

Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

2009-04-10T23:59:59.000Z

331

CLOUD CONDENSATION NUCLEI IN CUMULUS HUMILIS --SELECTED CASE STUDY DURING THE CHAPS CAMPAIGN  

E-Print Network [OSTI]

CLOUD CONDENSATION NUCLEI IN CUMULUS HUMILIS -- SELECTED CASE STUDY DURING THE CHAPS CAMPAIGN X and condensation as well as activation and impact scavenging. The U.S. Department of Energy (DOE) G-1 aircraft and residuals of activated condensation cloud nuclei were conducted simultaneously. The interstitial aerosols

332

Distinguishing Aerosol Impacts on Climate Over the Past Century  

SciTech Connect (OSTI)

Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

2008-08-22T23:59:59.000Z

333

Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

334

Cloud Computing Adam Barker  

E-Print Network [OSTI]

Cloud Computing 1 Adam Barker #12;Overview · Introduction to Cloud computing · Enabling technologies · Di erent types of cloud: IaaS, PaaS and SaaS · Cloud terminology · Interacting with a cloud: management consoles · Launching an instance · Connecting to an instance · Running your application · Clouds

St Andrews, University of

335

Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements  

SciTech Connect (OSTI)

This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

Dr. Timothy Onasch

2009-09-09T23:59:59.000Z

336

Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol  

SciTech Connect (OSTI)

The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.

John A. Ogren

2010-04-05T23:59:59.000Z

337

GIANT MOLECULAR CLOUD FORMATION IN DISK GALAXIES: CHARACTERIZING SIMULATED VERSUS OBSERVED CLOUD CATALOGS  

SciTech Connect (OSTI)

We present the results of a study of simulated giant molecular clouds (GMCs) formed in a Milky Way-type galactic disk with a flat rotation curve. This simulation, which does not include star formation or feedback, produces clouds with masses ranging between 10{sup 4} M{sub ?} and 10{sup 7} M{sub ?}. We compare our simulated cloud population to two observational surveys: the Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey and the BIMA All-Disk Survey of M33. An analysis of the global cloud properties as well as a comparison of Larson's scaling relations is carried out. We find that simulated cloud properties agree well with the observed cloud properties, with the closest agreement occurring between the clouds at comparable resolution in M33. Our clouds are highly filamentary—a property that derives both from their formation due to gravitational instability in the sheared galactic environment, as well as to cloud-cloud gravitational encounters. We also find that the rate at which potentially star-forming gas accumulates within dense regions—wherein n{sub thresh} ? 10{sup 4} cm{sup –3}—is 3% per 10 Myr, in clouds of roughly 10{sup 6} M{sub ?}. This suggests that star formation rates in observed clouds are related to the rates at which gas can be accumulated into dense subregions within GMCs via filamentary flows. The most internally well-resolved clouds are chosen for listing in a catalog of simulated GMCs—the first of its kind. The cataloged clouds are available as an extracted data set from the global simulation.

Benincasa, Samantha M.; Pudritz, Ralph E.; Wadsley, James [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada); Tasker, Elizabeth J. [Department of Physics, Faculty of Science, Hokkaido University, Kita-ku, Sapporo 060-0810 (Japan)

2013-10-10T23:59:59.000Z

338

Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects  

SciTech Connect (OSTI)

To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 ?m is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large discrepancies in predicting cloud water in the SC case, suggesting that an explicit calculation of diffusion growth with predicted supersaturation is necessary for further improvements of the bulk microphysics scheme. Lastly, a larger rain evaporation rate below cloud is found in the bulk scheme in comparison to the SBM simulation, which could contribute to a lower surface precipitation in the bulk scheme.

Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

2013-06-05T23:59:59.000Z

339

Satellite remote sensing of clouds and the atmosphere 3  

SciTech Connect (OSTI)

This volume contains the proceedings of EOS/SPIE Remote Sensing Symposium which was held September 21--23, 1998 in Barcelona, Spain. Topics of discussion include the following: cloud detection and characterization; earth radiation budget; data assimilation and retrieval methods; and aerosols, ozone, and trace gases.

Russell, J.E. [ed.] [Imperial College of Science, Technology and Medicine, London (United Kingdom)

1998-12-31T23:59:59.000Z

340

Rapid Scan Humidified Growth Cloud Condensation Nuclei Counter  

SciTech Connect (OSTI)

This research focused on enhancements to the streamwise thermal gradient cloud condensation nuclei counter to support the rapid scan mode and to enhance the capability for aerosol humidified growth measurements. The research identified the needs for flow system modifications and range of capability for operating the conventional instrument in the rapid scan and humidified growth modes.

Gregory L. Kok; Athanasios Nenes

2013-03-13T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Cloud Processes: Insights over a Decade into the Links between  

E-Print Network [OSTI]

Cloud Resolving Models Satellite and radar data Field Campaigns Radar Simulators (image: C. McGee) Grid Diffuse Sensible heat flux Latent heat flux Latent heat flux Aerosol direct effects Incoming solar radiation Direct Diffuse Sensible heat flux SiB RAMS CO2 Fluxes: Photosynthesis Respiration CO2 Radiative

Collett Jr., Jeffrey L.

342

Cloud Controlling Factors --Low Clouds BJORN STEVENS,  

E-Print Network [OSTI]

Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic) clouds is reviewed, with an emphasis on factors that may be expected to change in a changing climate of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

Stevens, Bjorn

343

Cloud Tracking in Cloud-Resolving Models  

E-Print Network [OSTI]

Cloud Tracking in Cloud-Resolving Models RMetS Conference 4th September 2007 Bob Plant Department of Meteorology, University of Reading, UK #12;Introduction Obtain life cycle statistics for clouds in CRM simulations What is the distribution of cloud lifetimes? What factors determine the lifetime of an individual

Plant, Robert

344

Cloud Controlling Factors --Low Clouds BJORN STEVENS,  

E-Print Network [OSTI]

Cloud Controlling Factors -- Low Clouds BJORN STEVENS, Department of Atmospheric and Oceanic conspire to determine the statistics and cli- matology of layers of shallow (boundary layer) clouds of low-cloud control- ling processes are offered: these include renewing our focus on theory, model

Stevens, Bjorn

345

Cloud Computing: Rain-Clouds System  

E-Print Network [OSTI]

Abstract — Cloud Computing is the on demand service can be provided to the users at any time. It delivers the software, data access, computing as a service rather than the product. The Cloud application simplifies the computing technology by providing pay-per-use customer relationship. It is the theory that familiar to cheaper devices with low processing power, lower storage capacities, great flexibility and many more things. The security of cloud computing is a major factor as users store sensitive and confidential information with cloud storage providers. The range of these providers may be un trusted and harmful. The purpose of adopting cloud computing in an organization is to decide between a „public cloud ? and „private cloud ? by means of privacy. Public clouds often known as provider clouds are administrated by third parties and services are offered on pay-per-use basis. Private clouds or internal clouds are owned by the single firm but it has some metrics such as lacking of availability of services (such as memory, server) and network resources which leads it to down. Due to this, technology moves toward the concept of “Multi clouds ” or “Rain Clouds”. This paper displays the use of multi-clouds or rain clouds due to its ability to handle the huge amount of data traffic that affect the cloud computing user.

Harinder Kaur

346

The modeling of aerosol dynamics during degraded core events  

SciTech Connect (OSTI)

There is substantial interest in developing simple, yet accurate, models for the prediction of aerosol dynamics during degraded core events. The exact aerosol transport equation is given by {partial derivative}n(v,t)/{partial derivative}t = 1/2 {integral}{sub 0}{sup {infinity}} K(u,v {minus} u)n(u,t)n(v {minus} u,t)du {minus} {integral}{sub 0}{sup {infinity}} K(u,v)n(v,t)n(u,t)du {minus} n(v,t)c(v)/h + n{sub p}(v), where n(v,t) is the particle size density distribution function. The kernel, K(v,u), is related to the frequency of coagulation between aerosol particles of volume u and v, and the quantity c(v) is the deposition velocity. The quantity h is the effective height for deposition of aerosol; it is the volume of the aerosol cloud divided by the projected horizontal area A. Finally, the term n{sub p} (v) is the source rate of aerosol. Evaluation of the above equation is discussed.

Clausse, A.; Lahey, R.T. Jr.

1989-01-01T23:59:59.000Z

347

Indirect radiative forcing by ion-mediated nucleation of aerosol  

SciTech Connect (OSTI)

A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN) in generating new particles and cloud condensation nuclei (CCN) in the atmosphere. Here we implement for the first time a physically based treatment of IMN into the Community Atmosphere Model version 5. Our simulations show that, compared to globally averaged results based on binary homogeneous nucleation (BHN), the presence of ionization (i.e., IMN) halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~ 3, CCN burden by ~ 10% (at 0.2% supersaturation) to 65% (at 1.0% supersaturation), and cloud droplet number burden by ~ 18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing by 3.67 W/m2 (more negative) and longwave cloud forcing by 1.78 W/m2 (more positive), resulting in a -1.9 W/m2 net change in cloud radiative forcing associated with IMN. The significant impacts of ionization on global aerosol formation, CCN abundance, and cloud radiative forcing may provide an important physical mechanism linking the global energy balance to various processes affecting atmospheric ionization, which should be properly represented in climate models.

Yu, Fangqun; Luo, Gan; Liu, Xiaohong; Easter, Richard C.; Ma, Xiaoyan; Ghan, Steven J.

2012-12-03T23:59:59.000Z

348

A Physically Based Framework for Modelling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria  

SciTech Connect (OSTI)

The presence of a large fraction of organic matter in primary sea spray aerosol (SSA) can strongly affect its cloud condensation nuclei activity and interactions with marine clouds. Global climate models require new parameterizations of the SSA composition in order to improve the representation of these processes. Existing proposals for such a parameterization use remotely-sensed chlorophyll-a concentrations as a proxy for the biogenic contribution to the aerosol. However, both observations and theoretical considerations suggest that existing relationships with chlorophyll-a, derived from observations at only a few locations, may not be representative for all ocean regions. We introduce a novel framework for parameterizing the fractionation of marine organic matter into SSA based on a competitive Langmuir adsorption equilibrium at bubble surfaces. Marine organic matter is partitioned into classes with differing molecular weights, surface excesses, and Langmuir adsorption parameters. The classes include a lipid-like mixture associated with labile dissolved organic carbon (DOC), a polysaccharide-like mixture associated primarily with semi-labile DOC, a protein-like mixture with concentrations intermediate between lipids and polysaccharides, a processed mixture associated with recalcitrant surface DOC, and a deep abyssal humic-like mixture. Box model calculations have been performed for several cases of organic adsorption to illustrate the underlying concepts. We then apply the framework to output from a global marine biogeochemistry model, by partitioning total dissolved organic carbon into several classes of macromolecule. Each class is represented by model compounds with physical and chemical properties based on existing laboratory data. This allows us to globally map the predicted organic mass fraction of the nascent submicron sea spray aerosol. Predicted relationships between chlorophyll-\\textit{a} and organic fraction are similar to existing empirical parameterizations, but can vary between biologically productive and non-productive regions, and seasonally within a given region. Major uncertainties include the bubble film thickness at bursting and the variability of organic surfactant activity in the ocean, which is poorly constrained. In addition, marine colloids and cooperative adsorption of polysaccharides may make important contributions to the aerosol, but are not included here. This organic fractionation framework is an initial step towards a closer linking of ocean biogeochemistry and aerosol chemical composition in Earth system models. Future work should focus on improving constraints on model parameters through new laboratory experiments or through empirical fitting to observed relationships in the real ocean and atmosphere, as well as on atmospheric implications of the variable composition of organic matter in sea spray.

Burrows, Susannah M.; Ogunro, O.; Frossard, Amanda; Russell, Lynn M.; Rasch, Philip J.; Elliott, S.

2014-12-19T23:59:59.000Z

349

Cloud Security by Max Garvey  

E-Print Network [OSTI]

Cloud Security Survey by Max Garvey #12;Cloudy Cloud is Cloudy What is the cloud? On Demand Service Network access Resource pooling Elasticity of Resources Measured Service #12;Cloud Types/Variants Iaa Cloud Public Cloud Hybrid Cloud combination. Private cloud with overflow going to public cloud. #12

Tolmach, Andrew

350

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

351

ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Newsom, Rob; Goldsmith, John

352

Acoustic clouds: standing sound waves around a black hole analogue  

E-Print Network [OSTI]

Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

2015-01-28T23:59:59.000Z

353

Acoustic clouds: standing sound waves around a black hole analogue  

E-Print Network [OSTI]

Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

2014-01-01T23:59:59.000Z

354

Phase transformation and growth of hygroscopic aerosols  

SciTech Connect (OSTI)

Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

Tang, I.N.

1999-11-01T23:59:59.000Z

355

Modal aerosol dynamics modeling  

SciTech Connect (OSTI)

The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

1991-02-01T23:59:59.000Z

356

Aerosol Cans? -Aerosol cans use a pressurized  

E-Print Network [OSTI]

? - The waste generated in the processing of images/photos contains silver. Silver is a toxic heavy metal the product. Propellants are often flammable and/or toxic. Therefore, never store aerosol cans near ignition of this pamphlet. -Carefully transfer the old paint thinner from the one gallon closable can to the 30 gallon metal

Jia, Songtao

357

Cloud Computing For Bioinformatics  

E-Print Network [OSTI]

Cloud Computing For Bioinformatics #12;Cloud Computing: what is it? · Cloud Computing is a distributed infrastructure where resources, software, and data are provided in an on-demand fashion. · Cloud Computing abstracts infrastructure from application. · Cloud Computing should save you time the way software

Ferrara, Katherine W.

358

SAGE II long-term measurements of stratospheric and upper tropospheric aerosols  

SciTech Connect (OSTI)

The Stratospheric Aerosol and Gas Experiment (SAGE) II solar occultation instrument has been making measurements on stratospheric aerosols and gases continually since October 1984. Observations from the SAGE II instrument provide a valuable long-term data set for study of the aerosol in the stratosphere and aerosol and cloud in the upper troposphere. The period of observation covers the decay phase of material injected by the El Chichon volcanic eruption in 1982, the years 1988--1990 when stratospheric aerosol levels approached background levels, and the period after the eruption of Mount Pinatubo in 1991. The Mount Pinatubo eruption caused the largest perturbation in stratospheric aerosol loading in this century, with effects on stratospheric dynamics and chemistry. The SAGE II data sequence shows the global dispersion of aerosols following the Mount Pinatubo eruption, as well as the changes occurring in stratospheric aerosol mass and surface area. The downward transfer of stratospheric aerosols into the upper troposphere following the earlier eruption of El Chichon is clearly visible. Estimates have been made of the amount of volcanic material lying in the upper troposphere and the way in which this varies with latitude and season.

Wang, P.H.; Kent, G.S. [Science and Technology Corp., Hampton, VA (United States); McCormick, M.P.; Thomason, L.W. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Div.

1995-12-31T23:59:59.000Z

359

Where do particulate toxins reside? An improved paradigm for the structure and dynamics of the urban mid-Atlantic aerosol  

SciTech Connect (OSTI)

Discussions of excess mortality and morbidity from exposure to urban aerosol particles typically invoke the now 20-year-old trimodal aerosol paradigm proposed by Whitby to explain the structure and behavior of ambient aerosol volume and its major constituent, sulfate. However, this paradigm largely ignores the primary high-temperature combustion (HTC) components of the urban aerosol, which contribute minor amounts of the aerosol mass, but carry the bulk of the particulate toxins and numbers of aerosol particles. Studies encompassing the analyses of >100 size distributions of important intrinsic tracers of primary particles from HTC sources collected over the past decade in various environments show that urban aerosol contains a complex mixture of physically-discrete fresh and aged, primary particle populations from a variety of sources. Furthermore, whereas the behavior of fine-particulate aerosol mass and sulfate was described in terms of coagulation and accumulation aerosol scavenging of new secondary sulfate nuclei, studies reviewed herein suggest that the behavior of primary aerosol is mediated more by hygroscopic growth and cloud processing, accompanied by oxidation of SO{sub 2} on wet particles and droplets. The authors conclude that the distribution of airborne particulate toxins and their atmospheric behavior is far more complex than commonly conceptualized on the basis of the classical trimodal model, and they develop an extended paradigm in which the focus is on the primary accumulation aerosol.

Ondov, J.M. [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry] [Univ. of Maryland, College Park, MD (United States). Dept. of Chemistry and Biochemistry; Wexler, A.S. [Univ. of Delaware, Newark, DE (United States). Dept. of Mechanical Engineering] [Univ. of Delaware, Newark, DE (United States). Dept. of Mechanical Engineering

1998-09-01T23:59:59.000Z

360

A study of the relationship between anthropogenic sulfate and cloud drop nucleation  

SciTech Connect (OSTI)

This document investigates the relationship between anthropogenic sulfate-containing aerosols and the condensationally produced cloud drops. The changes in aerosol size distribution associated with anthropogenic sulfur emissions may increase the number of cloud drops with subsequent influence on cloud albedo and climate. It has been suggested that the increase in CCN in industrial regions might explain why the Northern Hemisphere has not been warming as rapidly as the Southern Hemisphere over the last 50 Years (Wigley, 1989). In reality, the aerosol size distribution is the result of processes working simultaneously and continuously with such sources as sulfur, soot, particulate organic carbon, nitrate, ammonium, etc. Instead of applying a complete aerosol model to investigate the effect of anthropogenic sulfur emissions on the aerosol size distribution, we simply derived the anthropogenic sulfate-containing aerosol distribution by assuming that 75% of the anthropogenic was formed through aqueous-phase oxidation and the remaining 25% condensed onto a Prescribed preexisting particle distribution. Uncertainties may arise from the assumed fraction of sulfate produced by condensation and in cloud oxidation. In addition, new particle formation through homogeneous nucleation of H{sub 2}SO{sub 4}/H{sub 2}O is ignored in this paper.

Chuang, C. C..; Penner, J. E.

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Aerosol Sampler Operations Manual  

E-Print Network [OSTI]

-1123 Laboratory FAX (916) 752-4107 Standard Operating Procedures Technical Information Document TI 201A #12;TI 201.................................................................................................................................................. 3 1.0 Weekly Maintenance ProceduresIMPROVE Aerosol Sampler Operations Manual February 10, 1997 Air Quality Group Crocker Nuclear

Fischer, Emily V.

362

THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS  

SciTech Connect (OSTI)

We model multi-wavelength broadband UBVIJHK{sub s} and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with {gamma} of -3.5, a {sub min} of 0.01 {mu}m, and a {sub 0} of 0.1 {mu}m to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be {approx}5100 L {sub sun} and {approx}36,000 L {sub sun}, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of {approx}3 M {sub sun} and {approx}7 M {sub sun}. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius {approx}17 and {approx}52 times the stellar radius, respectively, with dust temperatures there of 900 K and 430 K, respectively, and with optical depths at 10 {mu}m through the shells of 0.095 and 0.012, respectively. The models compute the dust mass-loss rates for the two stars to be 2.0 x 10{sup -9} M{sub sun} yr{sup -1} and 2.3 x 10{sup -9} M{sub sun} yr{sup -1}, respectively. When a dust-to-gas mass ratio of 0.002 is assumed for SSTSAGE052206 and HV 5715, the dust mass-loss rates imply total mass-loss rates of 1.0 x 10{sup -6} M{sub sun} yr{sup -1} and 1.2 x 10{sup -6} M{sub sun} yr{sup -1}, respectively. These properties of the dust shells and stars, as inferred from our models of the two stars, are found to be consistent with properties observed or assumed by detailed studies of other O-rich AGB stars in the LMC and elsewhere.

Sargent, Benjamin A.; Meixner, M.; Gordon, Karl D. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Srinivasan, S. [Institut d'Astrophysique de Paris, 98 bis, Boulevard Arago, Paris 75014 (France); Kemper, F.; Woods, Paul M. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Tielens, A. G. G. M. [Leiden Observatory, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Speck, A. K. [Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States); Matsuura, M. [Institute of Origins, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Bernard, J.-Ph. [Centre d'Etude Spatiale des Rayonnements, 9 Av. du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4 (France); Hony, S. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot DAPNIA/Service d'Astrophysique Bat. 709, CEA-Saclay F-91191 Gif-sur-Yvette Cedex (France); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Marengo, M. [Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Sloan, G. C., E-mail: sargent@stsci.ed [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States)

2010-06-10T23:59:59.000Z

363

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect (OSTI)

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

364

Cloud Computing og availability  

E-Print Network [OSTI]

Cloud Computing og availability Projekt i pålidelighed Henrik Lavdal - 20010210 Søren Bardino Kaa - 20011654 Gruppe 8 19-03-2010 #12;Cloud Computing og availability Side 2 af 28 Indholdsfortegnelse ...........................................................................................5 Cloud computing

Christensen, Henrik Bærbak

365

Stratus cloud structure from MM-radar transects and satellite images: scaling properties and artifact detection with semi-discrete wavelet analysis  

SciTech Connect (OSTI)

Spatial and/or temporal variabilities of clouds is of paramount importance for at least two in tensely researched sub-problems in global and regional climate modeling: (1) cloud-radiation interaction where correlations can trigger 3D radiative transfer effects; and (2) dynamical cloud modeling where the goal is to realistically reproduce the said correlations. We propose wavelets as a simple yet powerful way of quantifying cloud variability. More precisely, we use 'semi-discrete' wavelet transforms which, at least in the present statistical applications, have advantages over both its continuous and discrete counterparts found in the bulk of the wavelet literature. With the particular choice of normalization we adopt, the scale-dependence of the variance of the wavelet coefficients (i.e,, the wavelet energy spectrum) is always a better discriminator of transition from 'stationary' to 'nonstationary' behavior than conventional methods based on auto-correlation analysis, second-order structure function (a.k.a. the semi-variogram), or Fourier analysis. Indeed, the classic statistics go at best from monotonically scale- or wavenumber-dependent to flat at such a transition; by contrast, the wavelet spectrum changes the sign of its derivative with respect to scale. We apply 1D and 2D semi-discrete wavelet transforms to remote sensing data on cloud structure from two sources: (1) an upward-looking milli-meter cloud radar (MMCR) at DOE's climate observation site in Oklahoma deployed as part of the Atmospheric Radiation Measurement (ARM) Progrm; and (2) DOE's Multispectral Thermal Imager (MTI), a high-resolution space-borne instrument in sunsynchronous orbit that is described in sufficient detail for our present purposes by Weber et al. (1999). For each type of data, we have at least one theoretical prediction - with empirical validation already in existence - for a power-law relation for wavelet statistics with respect to scale. This is what is expected in physical (i.e., finite scaling range) fractal phenomena. In particular, we find long-range correlations in cloud structure coming from the important nonstationary regime. More surprisingly, we also uncover artifacts the data that are traceable either to instrumental noise (in the satellite data) or to smoothing assumptions (in the MMCR data processing). Finally, we discuss the potentially damaging ramifications the smoothing artifact can have on both cloud-radiation and cloud-modeling studies using MMCR data.

Davis, A. B. (Anthony B.); Petrov, N. P. (Nikola P.); Clothiaux, E. E. (Eugene E.); Marshak, A. (Alexander)

2002-01-01T23:59:59.000Z

366

Atmospheric State, Cloud Microphysics and Radiative Flux  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

Mace, Gerald

367

TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E. Luke  

E-Print Network [OSTI]

TROPICAL CLOUD LIFE CYCLE AND OVERLAP STRUCTURE A. M. Vogelmann, M. P. Jensen, P. Kollias, and E.bnl.gov ABSTRACT The profile of cloud microphysical properties and how the clouds are overlapped within a vertical simulations. We will present how cloud microphysical properties and overlap structure retrieved at the ARM

368

On Demand Surveillance Service in Vehicular Cloud  

E-Print Network [OSTI]

Toward Vehicular Service Cloud . . . . . . . . . . . . . . .4.2 Open Mobile Cloud Requirement . . . . .3.1 Mobile Cloud

Weng, Jui-Ting

2013-01-01T23:59:59.000Z

369

Effects of aerosol and horizontal inhomogeneity on the broadband albedo of marine stratus: Numerical simulations  

SciTech Connect (OSTI)

Recent estimates of the effect of increasing of anthropogenic sulfate aerosol on the radiative forcing of the atmosphere have indicated that its impact may be comparable in magnitude to the effect from increases in CO{sub 2}. Much of this impact is expected from the effects of the aerosol on cloud microphysics and the subsequent impact on cloud albedo. A solar broadband version of a 2D radiative transfer model was used to quantify the impact of enhanced aerosol concentrations and horizontal inhomogeneity on the solar broadband albedo of marine stratus. The results of the radiative transfer calculations indicated that in unbroken marine stratus clouds the net horizontal transport of photons over a domain of a few kilometers was nearly zero, and the domain-average broadband albedo computed in a 2D cross section was nearly identical to the domain average calculated from a series of independent pixel approximation (IPA) calculations of the same cross section. However, the horizontal inhomogeneity does affect the cloud albedo compared to plane-parallel approximation (PPA) computations due to the nonlinear relationship between albedo and optical depth. The reduction in cloud albedo could be related to the variability of the distribution of log (cloud optical depth). These results extend the finding of Cahalan et al. to broadband solar albedos in a more realistic cloud model and suggest that accurate computation of domain-averaged broadband albedos in unbroken (or nearly unbroken) marine stratus can be made using IPA calculations with 1D radiative transfer models. Computations of the mean albedo over portions of the 3D RAMS domain show the relative increase in cloud albedo due to a 67% increase in the boundary-layer average CCN concentration was between 6% and 9%. The effects of cloud inhomogeneity on the broadband albedo as measured from the PPA bias ranged from 3% to 5%. 25 refs., 8 figs., 4 tabs.

Duda, D.P.; Stephens, G.L.; Stevens, B.; Cotton, W.R. [Colorado State Univ., Fort Collins, CO (United States)] [Colorado State Univ., Fort Collins, CO (United States)

1996-12-15T23:59:59.000Z

370

Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 mm  

E-Print Network [OSTI]

W. Dayton Street, Madison, WI 53706, United States b Texas A&M University, College Station, TX February 2014 Available online 11 March 2014 Keywords: Ice clouds Light scattering Remote sensing Radiative agreement between solar and infrared optical thicknesses. Finally, spectral results are presented

Baum, Bryan A.

371

Paper presented at the WMO Workshop on Measurement of Cloud Properties for Forcasts of Weather, Air Quality and Climate. June 2327, 1997. Mexico City, Mexico.  

E-Print Network [OSTI]

cloud composition in terms of the phase, size and shape of the hydrometeors, these interpretations to be severely limited by two factors: insuffi- cient sampling rates of the in situ probes, and the complexities presented at the workshop "Theoretical and Practical Aspects of a Regional Precipitation Enhancement Program

Vali, Gabor

372

Effects of Aerosols on Autumn Precipitation over Mid-Eastern China  

SciTech Connect (OSTI)

Long-term observational data indicated a decreasing trend for the amount of autumn precipitation (i.e. 54.3 mm per decade) over Mid-Eastern China, especially after 1980s (~ 5.6% per decade). To examine the cause of the decreasing trend, the mechanisms associated with the change of autumn precipitation were investigated from the perspective of water vapor transportation, atmospheric stability and cloud microphysics. Results show that the decrease of convective available potential energy (i.e. 12.81 J kg-1/ decade) and change of cloud microphysics, which were closely related to the increase of aerosol loading during the past twenty years, were the two primary factors responsible for the decrease of autumn precipitation. Ours results showed that increased aerosol could enhance the atmospheric stability thus weaken the convection. Meanwhile, more aerosols also led to a significant decline of raindrop concentration and to a delay of raindrop formation because of smaller size of cloud droplets. Thus, increased aerosols produced by air pollution could be one of the major reasons for the decrease of autumn precipitation. Furthermore, we found that the aerosol effects on precipitation in autumn was more significant than in other seasons, partly due to the relatively more stable synoptic system in autumn. The impact of large-scale circulation dominated in autumn and the dynamic influence on precipitation was more important than the thermodynamic activity.

Chen, Siyu; Huang, J.; Qian, Yun; Ge, Jinming; Su, Jing

2014-09-20T23:59:59.000Z

373

Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations  

SciTech Connect (OSTI)

Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

2011-12-24T23:59:59.000Z

374

Reexamination of the State of the Art Cloud Modeling Shows Real Improvements  

SciTech Connect (OSTI)

Following up on an almost thirty year long history of International Cloud Modeling Workshops, that started out with a meeting in Irsee, Germany in 1985, the 8th International Cloud Modeling Workshop was held in July 2012 in Warsaw, Poland. The workshop, hosted by the Institute of Geophysics at the University of Warsaw, was organized by Szymon Malinowski and his local team of students and co-chaired by Wojciech Grabowski (NCAR/MMM) and Andreas Muhlbauer (University of Washington). International Cloud Modeling Workshops have been held traditionally every four years typically during the week before the International Conference on Clouds and Precipitation (ICCP) . Rooted in the World Meteorological Organization’s (WMO) weather modification program, the core objectives of the Cloud Modeling Workshop have been centered at the numerical modeling of clouds, cloud microphysics, and the interactions between cloud microphysics and cloud dynamics. In particular, the goal of the workshop is to provide insight into the pertinent problems of today’s state-of-the-art of cloud modeling and to identify key deficiencies in the microphysical representation of clouds in numerical models and cloud parameterizations. In recent years, the workshop has increasingly shifted the focus toward modeling the interactions between aerosols and clouds and provided case studies to investigate both the effects of aerosols on clouds and precipitation as well as the impact of cloud and precipitation processes on aerosols. This time, about 60 (?) scientists from about 10 (?) different countries participated in the workshop and contributed with discussions, oral and poster presentations to the workshop’s plenary and breakout sessions. Several case leaders contributed to the workshop by setting up five observationally-based case studies covering a wide range of cloud types, namely, marine stratocumulus, mid-latitude squall lines, mid-latitude cirrus clouds, Arctic stratus and winter-time orographic clouds and precipitation. Interested readers are encouraged to visit the workshop website at http://www.atmos.washington.edu/~andreasm/workshop2012/ and browse through the list of case studies. The web page also provides a detailed list of participants and the workshop agenda. Aside from contributed oral and poster presentations during the workshop’s plenary sessions, parallel breakout sessions focused on presentations and discussions of the individual cases. A short summary and science highlights from each of the cases is presented below.

Muehlbauer, Andreas D.; Grabowski, Wojciech W.; Malinowski, S. P.; Ackerman, Thomas P.; Bryan, George; Lebo, Zachary; Milbrandt, Jason; Morrison, H.; Ovchinnikov, Mikhail; Tessendorf, Sarah; Theriault, Julie M.; Thompson, Gregory

2013-05-25T23:59:59.000Z

375

Cloud Computing For Bioinformatics  

E-Print Network [OSTI]

Cloud Computing For Bioinformatics EC2 and AMIs #12;Quick-starting an EC2 instance (let's get our feet wet!) Cloud Computing #12;Cloud Computing: EC2 instance Quick Start · On EC2 console, we can click on Launch Instance · This will let us get up and going quickly #12;Cloud Computing: EC2 instance

Ferrara, Katherine W.

376

Highly stable aerosol generator  

DOE Patents [OSTI]

An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

DeFord, H.S.; Clark, M.L.

1981-11-03T23:59:59.000Z

377

Sensitivity Study of the Effects of Mineral Dust Particle Nonsphericity and Thin Cirrus Clouds on MODIS Dust Optical Depth Retrievals and Direct Radiative Forcing Calculations  

E-Print Network [OSTI]

A special challenge posed by mineral dust aerosols is associated with their predominantly nonspherical particle shapes. In the present study, the scattering and radiative properties for nonspherical mineral dust aerosols at violet-to-blue (0.412, 0...

Feng, Qian

2011-10-21T23:59:59.000Z

378

Electrostatics and radioactive aerosol behavior  

SciTech Connect (OSTI)

Radioactive aerosols differ from their nonradioactive counterparts by their ability to charge themselves by emitting charged particles during the radioactive decay process. Evidence that electrostatics, including this charging process, can affect the transport of the aerosols was summarized previously. Charge distributions and the mean charge for a monodisperse radioactive aerosol have been considered in detail. The principal results of theory to calculate charge distributions on a aerosol with a size distribution, changes to Brownian coagulation rates for an aerosol in a reactor containment, and possible changes to aerosol deposition resulting from the charging will be presented. The main purpose of the work has been to improve calculations of aerosol behavior in reactor containments, but behavior in less ionizing environments will be affected more strongly, and some problems remain to be solved in performing reliable calculations.

Clement, C.F.

1994-12-31T23:59:59.000Z

379

SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE VARIATION  

E-Print Network [OSTI]

SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE/Atmospheric Sciences Division Brookhaven National Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT Cloud-induced climate change. Cloud-radiative forcing, cloud fraction, and cloud albedo are three key quantities

380

aerosols and climate : uncertainties  

E-Print Network [OSTI]

contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Bimodal Distribution of Sulfuric Acid Aerosols in the Upper Haze of Venus  

E-Print Network [OSTI]

The upper haze (UH) of Venus is variable on the order of days and it is populated by two particle modes. We use a 1D microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two size modes and whether their observed variability are due to cloud top vertical transient winds. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets that then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and cannot reproduce the observed bimodal size distribution. The mass transport enabled by cloud top transient winds are able to generate a bimodal size distribution in a time scale consistent with observations. Sedimentation and convection in the middle and lower...

Gao, Peter; Crisp, David; Bardeen, Charles G; Yung, Yuk L

2013-01-01T23:59:59.000Z

382

ARM - Publications: Science Team Meeting Documents: Interpretation of cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD) by Microtops AtmosphericApplication andAn AssessmentARMArcticCloud FractionsAerosolClouds

383

Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

Sedlacek, Art

384

3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations  

SciTech Connect (OSTI)

Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

Howard Barker; Jason Cole

2012-05-17T23:59:59.000Z

385

Retrieval of Cloud Phase Using the Moderate Resolution Imaging Spectroradiometer Data during the Mixed-Phase Arctic Cloud Experiment  

SciTech Connect (OSTI)

Improving climate model predictions over Earth's polar regions requires a comprehensive knowledge of polar cloud microphysics. Over the Arctic, there is minimal contrast between the clouds and background snow surface, making it difficult to detect clouds and retrieve their phase from space. Snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds make it even more difficult to determine cloud phase. Also, since determining cloud phase is the first step toward analyzing cloud optical depth, particle size, and water content, it is vital that the phase be correct in order to obtain accurate microphysical and bulk properties. Changes in these cloud properties will, in turn, affect the Arctic climate since clouds are expected to play a critical role in the sea ice albedo feedback. In this paper, the IR trispectral technique (IRTST) is used as a starting point for a WV and 11-{micro}m brightness temperature (T11) parameterization (WVT11P) of cloud phase using MODIS data. In addition to its ability to detect mixed-phase clouds, the WVT11P also has the capability to identify thin cirrus clouds overlying mixed or liquid phase clouds (multiphase ice). Results from the Atmospheric Radiation Measurement (ARM) MODIS phase model (AMPHM) are compared to the surface-based cloud phase retrievals over the ARM North Slope of Alaska (NSA) Barrow site and to in-situ data taken from University of North Dakota Citation (CIT) aircraft which flew during the Mixed-Phase Arctic Cloud Experiment (MPACE). It will be shown that the IRTST and WVT11P combined to form the AMPHM can achieve a relative high accuracy of phase discrimination compared to the surface-based retrievals. Since it only uses MODIS WV and IR channels, the AMPHM is robust in the sense that it can be applied to daytime, twilight, and nighttime scenes with no discontinuities in the output phase.

Spangenberg, D.; Minnis, P.; Shupe, M.; Uttal, T.; Poellot, M.

2005-03-18T23:59:59.000Z

386

Research Unit on Biosphere -Aerosol -Cloud -Climate Interactions  

E-Print Network [OSTI]

IN THE KATTEGAT STRAIT Charlotte B. Hasager and Merete B. Christiansen Risø National Laboratory, Wind Energy al. 2003). The statistical method on assessment of the extreme events applied is the periodical events. 24 #12;Acknowledgements Funding from EC for the project Marine Effects of Atmospheric Deposition

387

Research Unit on Biosphere -Aerosol -Cloud -Climate Interactions  

E-Print Network [OSTI]

experiments described in (Hoffmann et al. 1997), (Odum et al. 1996) and (Griffin et al. 1999). These smog is given in (Hoffmann et al. 1997), (Odum et al. 1996) while (Griffin et al. 1999) indicate

388

Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity  

E-Print Network [OSTI]

J. F. , Herrmann, H. , Hoffmann, T. , Iinuma, Y. , Jang,J. F. , Herrmann, H. , Hoffmann, T. , Iinuma, Y. , Jang,J. F. , Herrmann, H. , Hoffmann, T. , Iinuma, Y. , Jang,

Tang, Xiaochen

2013-01-01T23:59:59.000Z

389

Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity  

E-Print Network [OSTI]

this study, H 2 (99.5%, Praxair) was introduced through thetubes. O 2 (99.5%, Praxair) was introduced between the

Tang, Xiaochen

2013-01-01T23:59:59.000Z

390

Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity  

E-Print Network [OSTI]

stroke main engine and our lab- scale oxy-hydrogen flame toduring both real engine combustion and oxy-hydrogen flamediesel engine. This supports that the lab-scale oxy-hydrogen

Tang, Xiaochen

2013-01-01T23:59:59.000Z

391

Aerosol-cloud Interactions from Urban, Regional, to Global Scales  

E-Print Network [OSTI]

&M University help me tackle several technical problems. Special thanks go to Jiwen Fan from Pacific Northwest National Laboratory, who offered me substantial helps during my visit to PNNL. I also benefits a lot from the collaboration with Minghuai Wang from... PNNL to analyze the results from the super-parameterized climate model. I also want to extend my gratitude to the National Aeronautics and Space Administration fellowship program, which provided me a three-year funding support. vii TABLE...

Wang, Yuan

2013-07-30T23:59:59.000Z

392

Research Unit on Biosphere -Aerosol -Cloud -Climate Interactions  

E-Print Network [OSTI]

.s.l.. The forest is dominated by Norway spruce (Picea abies) and the leaf area index (LAI) during the measurement OF THE MAGNITUDE OF RESISTANCE TERMS IN DRY DEPOSITION FLUXES TO A CONIFER FOREST S. C. Pryor1,2 , O. Klemm3 and R University, Bloomington, IN 47405 2 Department of Wind Energy and Atmospheric Physics, Risoe National

393

Research Unit on Biosphere -Aerosol -Cloud -Climate Interactions  

E-Print Network [OSTI]

.L. S�RENSEN1 1 Wind Energy Department, Risø National Laboratory, 4000 Roskilde, Denmark 2 Atmospheric Science The purpose of this study is to quantify N gas concentrations in the city of Copenhagen and at a downwind site the city (i.e. the relative importance of deposition and gas-particle partitioning). Measurements of NH3

394

Research Unit on Biosphere -Aerosol -Cloud -Climate Interactions  

E-Print Network [OSTI]

IN SENSIBLE AND LATENT HEAT TRANSFER IN THE MARINE SURFACE LAYER. Anna M. Sempreviva (1,2), Sara Pryor (2 of the HEXOS (Humidity Exchange Over the Sea) data in open sea, indicate sea spray may contribute up to 40 turbulent moisture ( ) and heat ( ) fluxes and measurements of particles collected during

395

Aerosol, Cloud, and Climate: From Observation to Model  

ScienceCinema (OSTI)

Scientists have long been investigating this phenomenon of "global warming," which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions.

Jian Wang

2010-09-01T23:59:59.000Z

396

Research Unit on Biosphere -Aerosol -Cloud -Climate Interactions  

E-Print Network [OSTI]

-222. Seinfeld J., 1986: Atmospheric Chemistry and Physics of Air Pollution. Jonh Wiley and sons. New York, USA that dry deposition and surface exchange processes require a better description in atmospheric chemistry.R. and Lenschow D.H., 1983) in the modelling. Finlayson-Pitts B.J. and Pitts J.N., 1986: Atmospheric Chemistry

397

Aerosol, Cloud, and Climate: From Observation to Model  

SciTech Connect (OSTI)

Scientists have long been investigating this phenomenon of "global warming," which is believed to be at least partly due to the increased carbon dioxide (CO2) concentration in the air from burning fossil fuels. Funded by DOE, teams of researchers from BNL and other national labs have been gathering data in the U.S. and internationally to build computer models of climate and weather to help in understanding general patterns, causes, and perhaps, solutions.

Jian Wang

2010-05-12T23:59:59.000Z

398

Photolytic processing of secondary organic aerosols dissolved in cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministration

399

Chemical Composition and Cloud Nucleation Ability of Marine Aerosol  

E-Print Network [OSTI]

all the analyses. My fellow PhD candidate Andy Glen also helped me a great deal in preparing for the field and lab measurements. My officemate Katie Jeziorski also helped me a great deal with the research. vi TABLE OF CONTENTS... .............................................................................................................................. iv ACKNOWLEDGEMENTS ........................................................................................................... v TABLE OF CONTENTS...

Deng, Chunhua

2013-12-12T23:59:59.000Z

400

Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity  

E-Print Network [OSTI]

and Oxygen, Environmental Science & Technology, 46, 787-794,and Oxygen, Environmental Science & Technology, 46, 787-794,and Oxygen, Environmental Science & Technology, 46, 787-794,

Tang, Xiaochen

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News]January 18, 200610, 20099,19,Aerial

402

ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News]January 18, 200610,

403

ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News]January 18, 200610,Ship-Based Ice

404

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcal Documentation(AVIRIS) ProductsAirborneOctober 11, 2011 [Facility News]January 18, 200610,Ship-Based

405

ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfraredgovCampaignsAircraftIslandMarine

406

Effects of aerosol organics on cloud condensation nucleus (CCN)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUITYearEffect0/2002catalysts:|Effects

407

Surface based remote sensing of aerosol-cloud interactions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline GalliumSuppression of conductivitySurface based remote sensing

408

Residence times of fine tropospheric aerosols as determined by {sup 210}Pb progeny.  

SciTech Connect (OSTI)

Fine tropospheric aerosols can play important roles in the radiative balance of the atmosphere. The fine aerosols can act directly to cool the atmosphere by scattering incoming solar radiation, as well as indirectly by serving as cloud condensation nuclei. Fine aerosols, particularly carbonaceous soots, can also warm the atmosphere by absorbing incoming solar radiation. In addition, aerosols smaller than 2.5 {micro}m have recently been implicated in the health effects of air pollution. Aerosol-active radioisotopes are ideal tracers for the study of atmospheric transport processes. The source terms of these radioisotopes are relatively well known, and they are removed from the atmosphere only by radioactive decay or by wet or dry deposition of the host aerosol. The progeny of the primordial radionuclide {sup 238}U are of particular importance to atmospheric studies. Uranium-238 is common throughout Earth's crust and decays to the inert gas {sup 222}Rn, which escapes into the atmosphere. Radon-222 decays by the series of alpha and beta emissions shown in Figure 1 to the long-lived {sup 210}Pb. Once formed, {sup 210}Pb becomes attached to aerosol particles with average attachment times of 40 s to 3 min.

Marley, N. A.; Gaffney, J. S.; Drayton, P. J.; Cunningham, M. M.; Mielcarek, C.; Ravelo, R.; Wagner, C.

1999-10-05T23:59:59.000Z

409

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

410

The Mid-Latitude Continental Convective Clouds Experiment (MC3E)  

SciTech Connect (OSTI)

The Midlatitude Continental Convective Cloud Experiment (MC3E) will take place in central Oklahoma during the April-May 2011 period. The experiment is a collaborative effort between the U.S. Department of Energy Atmospheric Radition Measurement Program and the National Aeronautics and Space Administration's (NASA) Global Precipitation Measurement (GPM) mission Ground Validation program. The Intensive Observation Period leverages the unprecedented observing infrastructure currently available in the central United States, combined with an extensive sounding array, remote sensing and in situ aircraft observations, NASA GPM ground validation remote sensors and new ARM instrumentation purchased with American Recovery and Reinvestment Act funding. The overarching goal is to provide the most complete characterization of convective cloud systems, precipitation and the environment that has ever been obtained, providing constraints for model cumulus parameterizations and space-based rainfall observations over land that have never before been available. Several different components of convective processes tangible to the convective parameterization problem are targeted such as, pre-convective environment and convective initiation, updraft / downdraft dynamics, condensate transport and detrainment, precipitation and cloud microphysics, influence on the environment and radiation and a detailed description of the large-scale forcing. MC3E will use a new multi-scale observing strategy with the participation of a network of distributed sensors (both passive and active). The approach is to document in 3-D not only the full spectrum of precipitation rates, but also clouds, winds and moisture in an attempt to provide a holistic view of convective clouds and their feedback with the environment. A goal is to measure cloud and precipitation transitions and environmental quantities that are important for satellite retrieval algorithms, convective parameterization in large-scale models and cloud-resolving model simulations. This will be accomplished through the deployment of several different elements that complement the existing (and soon to become available) ARM facilities: a network of radiosonde stations, NASA scanning multi-frequency/parameter radar systems at three different frequencies (Ka/Ku/S), high-altitude remote sensing and in situ aircraft, wind profilers and a network of surface disdrometers. In addition to these special MC3E instruments, there will be important new instrumentation deployed by DOE at the ARM site including: 3 networked scanning X-band radar systems, a C-band scanning radar, a dual wavelength (Ka/W) scanning cloud radar, a Doppler lidar and upgraded vertically pointing millimeter cloud radar (MMCR) and micropulse lidar (MPL).To fully describe the properties of precipitating cloud systems, both in situ and remote sensing airborne observations are necessary. The NASA GPM-funded University of North Dakota (UND) Citation will provide in situ observations of precipitation-sized particles, ice freezing nuclei and aerosol concentrations. As a complement to the UND Citation's in situ observations, the NASA ER-2 will provide a high altitude satellite simulator platform that carrying a Ka/Ku band radar and passive microwave radiometers (10-183 GHZ).

Petersen,W.; Jensen,M.; Genio, A. D.; Giangrande, S.; Heymsfield, A.; Heymsfield, G.; Hou, A.; Kollias, P.; Orr, B.; Rutledge, S.; Schwaller, M.; Zipser, E.

2010-03-15T23:59:59.000Z

411

Experimental study of nuclear workplace aerosol samplers  

E-Print Network [OSTI]

LITERATURE REVIEW Aerosol Losses in an Inlet . Aerosol Losses in a Transport System Aerosol Losses in CAMs Critical Flow Venturi 8 13 15 16 EXPERIMENT PROCEDURE 18 CAM Evaluation Consideration FAS Evaluation Consideration Test Protocol Mixing... Chamber Setup High Speed Aerosol Wind Tunnel Setup Low Speed Aerosol Wind Tunnel Setup Critical Flow Venturi 18 19 21 22 24 25 27 RESULTS AND DISCUSSION Page 28 Aerosol Penetration through Transport Systems and CAM Areal Uniformity Deposits...

Parulian, Antony

2012-06-07T23:59:59.000Z

412

XSEDE Cloud Survey Report  

E-Print Network [OSTI]

XSEDE Cloud Survey Report David Lifka, Cornell Center for Advanced Computing Ian Foster, ANL, ANL and The University of Chicago A National Science Foundation-sponsored cloud user survey was conducted from September 2012 to April 2013 by the XSEDE Cloud Integration Investigation Team to better

Walter, M.Todd

413

Research Cloud Computing Recommendations  

E-Print Network [OSTI]

Research Cloud Computing Recommendations SRCPAC December 3, 2014 #12;Mandate and Membership SRCPAC convened this committee in Sept 2014 to investigate the role that cloud computing should play in our & Academic Affairs (Social Work) #12;Questions discussed · What cloud resources are available? · Which kinds

Qian, Ning

414

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

415

Nonequilibrium Atmospheric Secondary Organic Aerosol Formation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Formation and Growth. Abstract: Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA)...

416

Cirrus Microphysical Properties from Stellar Aureole Measurements, Phase I  

SciTech Connect (OSTI)

While knowledge of the impact of aerosols on climate change has improved significantly due to the routine, ground-based, sun photometer measurements of aerosols made at AERONET sites world-wide, the impact of cirrus clouds remains much less certain because they occur high in the atmosphere and are more difficult to measure. This report documents work performed on a Phase I SBIR project to retrieve microphysical properties of cirrus ice crystals from stellar aureole imagery. The Phase I work demonstrates that (1) we have clearly measured stellar aureole profiles; (2) we can follow the aureole profiles out to ~1/4 degree from stars (~1/2 degree from Jupiter); (3) the stellar aureoles from cirrus have very distinctive profiles, being flat out to a critical angle, followed by a steep power-law decline with a slope of ~-3; (4) the profiles are well modeled using exponential size distributions; and (5) the critical angle in the profiles is ~0.12 degrees, (6) indicating that the corresponding critical size ranges from ~150 to ~200 microns. The stage has been set for a Phase II project (1) to proceed to validating the use of stellar aureole measurements for retrieving cirrus particle size distributions using comparisons with optical property retrievals from other, ground-based instruments and (2) to develop an instrument for the routine, automatic measurement of thin cirrus microphysical properties.

DeVore, J.G.; Kristl, J.A.; Rappaport, S.A

2012-04-20T23:59:59.000Z

417

CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan  

SciTech Connect (OSTI)

The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-07-12T23:59:59.000Z

418

TROPOSPHERIC AEROSOL PROGRAM, PROGRAM PLAN, MARCH 2001  

SciTech Connect (OSTI)

The goal of Tropospheric Aerosol Program (TAP) will be to develop the fundamental scientific understanding required to construct tools for simulating the life cycle of tropospheric aerosols--the processes controlling their mass loading, composition, and microphysical properties, all as a function of time, location, and altitude. The TAP approach to achieving this goal will be by conducting closely linked field, modeling, laboratory, and theoretical studies focused on the processes controlling formation, growth, transport, and deposition of tropospheric aerosols. This understanding will be represented in models suitable for describing these processes on a variety of geographical scales; evaluation of these models will be a key component of TAP field activities. In carrying out these tasks TAP will work closely with other programs in DOE and in other Federal and state agencies, and with the private sector. A forum to directly work with our counterparts in industry to ensure that the results of this research are translated into products that are useful to that community will be provided by NARSTO (formerly the North American Research Strategy on Tropospheric Ozone), a public/private partnership, whose membership spans government, the utilities, industry, and university researchers in Mexico, the US, and Canada.

SCHWARTZ,S.E.; LUNN,P.

2001-03-01T23:59:59.000Z

419

AT772, Fall 2007 Aerosol Chemistry and Physics  

E-Print Network [OSTI]

Relevant program August 22 W 1 Introduction Aerosol size distributions Properties of lognormal distributions Fitting model size distribution functions to data [Other functions (e.g., gamma, power law)] 8 distribution 29 W Extra 1/2 31 3b 4 Overview, continued Time scales for diffusion, coagulation, condensational

420

GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 16, PAGES 3139-3142, AUGUST 15, 1998 Multiwavelength lidar aerosol measurements made at  

E-Print Network [OSTI]

., 1995] leading to polar stratospheric cloud (PSC) formation. Stratospheric aerosols can also serve to as P1) so only a brief overview will be given here. 1Center for Research in Earth and Space Technology) Nagoya University, Nagoya, Japan. 4Communications Research Laboratory (CRL) Tokyo, Japan. 5Meteorological

Duck, Thomas J.

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

6, 75197562, 2006 Simulating aerosol  

E-Print Network [OSTI]

, particle number concentration and aerosol size-distribution. The model takes into account sulfate (SO4. This model system enables explicit simulations of the particle number concentration and size-distribution of aerosol dynamical processes (nucleation, condensation, coagulation) is evaluated by comparison

Paris-Sud XI, Université de

422

Chemical Composition and Sources of Coastal Marine Aerosol Particles during the 2008 VOCALS-REx Campaign  

SciTech Connect (OSTI)

The chemical composition of aerosol particles (Dp 1.5 ?m) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO2?4, followed by Na+, Cl?, Org (total organics), NH+4 , and NO?3 , in decreasing order of importance; CH3SO?3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH+4 to SO2?4 equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl? deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO2?4. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol concentrations were negligible. The very low levels of CH3SO?3 observed as well as the correlation between SO2?4 and NO?3 (which is thought primarily anthropogenic) suggest a limited contribution of DMS to SO2?4 aerosol production during VOCALS.

Lee, Y.- N.; Springston, S.; Jayne, John T.; Wang, Jian; Hubbe, John M.; Senum, Gunnar I.; Kleinman, Lawrence I.; Daum, Peter H.

2014-05-23T23:59:59.000Z

423

Dynamic Cloud Resource Reservation via Cloud Brokerage  

E-Print Network [OSTI]

Department of Electrical and Computer Engineering, University of Toronto Department of Electrical@eecg.toronto.edu, liang@utoronto.ca Abstract--Infrastructure-as-a-Service clouds offer diverse pric- ing options

Li, Baochun

424

Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations  

SciTech Connect (OSTI)

Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

2011-12-24T23:59:59.000Z

425

Parameterizing Size Distribution in Ice Clouds  

SciTech Connect (OSTI)

PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

DeSlover, Daniel; Mitchell, David L.

2009-09-25T23:59:59.000Z

426

Tropical Warm Pool International Cloud Experiment TWP-ICE Cloud and rain characteristics in the Australian Monsoon  

SciTech Connect (OSTI)

The impact of oceanic convection on its environment and the relationship between the characteristics of the convection and the resulting cirrus characteristics is still not understood. An intense airborne measurement campaign combined with an extensive network of ground-based observations is being planned for the region near Darwin, Northern Australia, during January-February, 2006, to address these questions. The Tropical Warm Pool International Cloud Experiment (TWP-ICE) will be the first field program in the tropics that attempts to describe the evolution of tropical convection, including the large scale heat, moisture, and momentum budgets, while at the same time obtaining detailed observations of cloud properties and the impact of the clouds on the environment. The emphasis will be on cirrus for the cloud properties component of the experiment. Cirrus clouds are ubiquitous in the tropics and have a large impact on their environment but the properties of these clouds are poorly understood. A crucial product from this experiment will be a dataset suitable to provide the forcing and testing required by cloud-resolving models and parameterizations in global climate models. This dataset will provide the necessary link between cloud properties and the models that are attempting to simulate them.

May, P.T., Jakob, C., and Mather, J.H.

2004-05-31T23:59:59.000Z

427

FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations  

SciTech Connect (OSTI)

The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled “Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models” to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (10–20 km) until 5–10 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

Koch, D

2011-03-20T23:59:59.000Z

428

Simulation of the Extinction Efficiency, the Absorption Efficiency and the Asymmetry Factor of Ice Crystals and Relevant Applications to the Study of Cirrus Cloud Radiative Properties  

E-Print Network [OSTI]

The single-scattering properties of six non-spherical ice crystals, droxtals, plates, solid columns, hollow columns, aggregates and 6-branch bullet rosettes are simulated. The anomalous diffraction theory (ADT) is applied to the simulation...

Lu, Kai

2010-10-12T23:59:59.000Z

429

The Nearby Supernova Factory Ozone + Aerosol + Rayleigh  

E-Print Network [OSTI]

Rayleigh + Aerosol Extinction monitor filter Auxiliary Camera CCD Spectrograph picko ff mirror Umbra

430

Implications of the formation of cloud condensation nuclei from gaseous precursors  

SciTech Connect (OSTI)

The question of the derivation of the characteristic shape of the cloud condensation nucleus (CCN) spectrum from commonly used aerosol size distributions is examined. The shape of the CCN spectrum is important since it determines if the cloud droplets are controlled by the number of CCN or cloud dynamics. It is found that both a Junge and a Whitby size distribution of soluble particles over-predict the exponent of the CCN spectrum, and the situation is made worse by considering the fraction of soluble material to be particle size dependent. Approximate agreement is obtained from a model that assumes the number of CCN to be proportional to the surface area of the ambient aerosol as might be the case if the particle surface catalysts a chemical reaction to form the soluble material.

Williams, A.

1990-12-31T23:59:59.000Z

431

Implications of the formation of cloud condensation nuclei from gaseous precursors  

SciTech Connect (OSTI)

The question of the derivation of the characteristic shape of the cloud condensation nucleus (CCN) spectrum from commonly used aerosol size distributions is examined. The shape of the CCN spectrum is important since it determines if the cloud droplets are controlled by the number of CCN or cloud dynamics. It is found that both a Junge and a Whitby size distribution of soluble particles over-predict the exponent of the CCN spectrum, and the situation is made worse by considering the fraction of soluble material to be particle size dependent. Approximate agreement is obtained from a model that assumes the number of CCN to be proportional to the surface area of the ambient aerosol as might be the case if the particle surface catalysts a chemical reaction to form the soluble material.

Williams, A.

1990-01-01T23:59:59.000Z

432

Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study  

E-Print Network [OSTI]

, a parameterization of the bulk scattering properties is developed. The radiative properties of ice cloudsSpectral signature of ice clouds in the far-infrared region: Single-scattering calculations the spectral signature of ice clouds in the far-infrared (far-IR) spectral region from 100 to 667 cmĂ?1 (15

Baum, Bryan A.

433

Characterizing synoptic and cloud variability in the Northern Atlantic using self-organizing maps  

E-Print Network [OSTI]

. . . . . . . . . . . 16 4 Results 19 4.1 June . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 January . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 Joint variability of cloud fraction with vertical motion and EIS... heights using the same contour limits and intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 LIST OF FIGURES vii 4.9 Cloud properties for four patterns in January. . . . . . . . . . . . . . 40 4.10 Joint PDFs of cloud fraction and EIS...

Fish, Carly Sue

2014-08-31T23:59:59.000Z

434

VALIDATION OF CLOUD LIQUID WATER PATH RETRIEVALS FROM SEVIRI ON METEOSAT-8 USING CLOUDNET OBSERVATIONS  

E-Print Network [OSTI]

of the Earth and its atmosphere through their interaction with solar and thermal radiation (King and Tsay, 1997 forecast models. The Intergovernmental Panel on Climate Change calls for more measurements on cloud forecast models. The radiative behavior of clouds depends predominantly on cloud properties

Haak, Hein

435

P2.11 AN ANNUAL CYCLE OF ARCTIC CLOUD MICROPHYSICS Matthew D. Shupe*  

E-Print Network [OSTI]

to classify cloud scenes as all- ice, all-liquid, mixed-phase, or precipitating so that the appropriate ice/snow-covered surfaces. Several studies have demonstrated the importance of specific cloud microphysical properties on cloud-radiation and ice-albedo feedback mechanisms; these in turn have bearing

Shupe, Matthew

436

Optical Properties of Secondary Organic Aerosols  

E-Print Network [OSTI]

oxygen (0.5 L/min) through a mercury lamp O 3 generator (oxygen (0.5 L/min) through a mercury lamp O 3 generator (

Kim, Hwajin

2012-01-01T23:59:59.000Z

437

Optimal Estimation Retrieval Aerosol Microphysical Properties  

E-Print Network [OSTI]

SAGE II Satellite Observations A thesis submitted in partial fulfillment of the requirements or entirely insensitive. A successful retrieval algorithm must then be able (a) to fill the `blind spot functions. The three main parts of this thesis are (1) the development of the new OE retrieval algorithm, (2

Oxford, University of

438

ARM - Field Campaign - MASRAD - Aerosol Optical Properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3,CloudgovCampaignsIR CloudgovCampaignsLower

439

Emerging Technology for Measuring Atmospheric Aerosol Properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia Nanoparticles asSecond stage of theEMI SIG

440

Cloud Model Evaluation Using Radiometric Measurements from the Airborne Multiangle Imaging Spectroradiometer (AirMISR)  

SciTech Connect (OSTI)

Detailed information on cloud properties is needed to vigorously test retrieval algorithms for satellite and ground-based remote sensors. The inherent complexity of clouds makes this information difficult to obtain from observations alone and cloud resolving models are often used to generating synthetic datasets that can be used as proxies for real data. We test the ability of a cloud resolving model to reproduce cloud structure in a case study of low-level clouds observed by the Earth Observing System (EOS) validation program in north central Oklahoma on March 3, 2000. A three-dimensional radiative transfer model is applied to synthetic cloud properties generated by a high-resolution three-dimensional cloud model in order to simulate the top of atmosphere radiances. These synthetic radiances are then compared with observations from the airborne Multiangle Imaging SpectroRadiometer (AirMISR), flown on the NASA ER-2 high-altitude aircraft.

Ovtchinnikov, Mikhail; Marchand, Roger T.

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols cloud properties" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Mexico City Aerosol Analysis during MILAGRO using High Resolution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Abstract: Submicron aerosol was analyzed during...

442

Mexico City Aerosol Analysis during MILAGRO using High Resolution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Abstract: Submicron aerosol was analyzed during...

443

Nonlinear Hydromagnetic Wave Support of a Stratified Molecular Cloud  

E-Print Network [OSTI]

We perform numerical simulations of nonlinear MHD waves in a gravitationally stratified molecular cloud that is bounded by a hot and tenuous external medium. We study the relation between the strength of the turbulence and various global properties of a molecular cloud, within a 1.5-dimensional approximation. Under the influence of a driving source of Alfvenic disturbances, the cloud is lifted up by the pressure of MHD waves and reaches a steady-state characterized by oscillations about a new time-averaged equilibrium state. The nonlinear effect results in the generation of longitudinal motions and many shock waves; however, the wave kinetic energy remains predominantly in transverse, rather than longitudinal, motions. There is an approximate equipartition of energy between the transverse velocity and fluctuating magnetic field (aspredicted by small-amplitude theory) in the region of the stratified cloud which contains most of the mass; however, this relation breaks down in the outer regions, particularly near the cloud surface, where the motions have a standing-wave character. This means that the Chandrasekhar-Fermi formula applied to molecular clouds must be significantly modified in such regions. Models of an ensemble of clouds show that, for various strengths of the input energy, the velocity dispersion in the cloud $\\sigma \\propto Z^{0.5}$, where $Z$ is a characteristic size of the cloud.Furthermore, $\\sigma$ is always comparable to the mean Alfven velocity of the cloud, consistent with observational results.

T. Kudoh; S. Basu

2003-06-23T23:59:59.000Z

444

Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of ‘cross-talk’ between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of