Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EMSL: Science: Atmospheric Aerosol Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

2

DOE research on atmospheric aerosols  

SciTech Connect

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

3

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Policy Applications Speaker(s): Susanne Bauer Date: December 6, 2011 - 4:00pm Location: 90-4133 Seminar Host/Point of Contact: Surabi Menon The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, However, understanding the net effect of multi-source emitting sectors and the involved cloud feedbacks is

4

Comparative Analysis of Urban Atmospheric Aerosol by Particle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

5

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

6

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

7

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

8

Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility  

SciTech Connect

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

Mroz, E.J.; Olivares, J.; Kok, G.

1996-04-01T23:59:59.000Z

9

Nonequilibrium atmospheric secondary organic aerosol formation and growth  

Science Journals Connector (OSTI)

...Mexico City area are shown...inorganic atmospheric aerosols...2005 ) A large organic aerosol source...photochemical and thermal studies of...Characteristic Group Frequencies—Tables and...particle thermal speed...phase-equilibrium in the atmospheric system: Aerosol...Support, Non-U.S...Determination by plasma-based...implications for atmospheric chemistry...2002) A thermal disso-ciation...

Véronique Perraud; Emily A. Bruns; Michael J. Ezell; Stanley N. Johnson; Yong Yu; M. Lizabeth Alexander; Alla Zelenyuk; Dan Imre; Wayne L. Chang; Donald Dabdub; James F. Pankow; Barbara J. Finlayson-Pitts

2012-01-01T23:59:59.000Z

10

E-Print Network 3.0 - atmospheric aerosol size Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

for about ten percent of all aerosols in the atmosphere. We... , can actually absorb solar energy and warm the atmosphere. Atmospheric aerosols are very important... by...

11

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09T23:59:59.000Z

12

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09T23:59:59.000Z

13

Determination of vertical profiles of aerosol extinction, single scatter  

NLE Websites -- All DOE Office Websites (Extended Search)

Determination of vertical profiles of aerosol extinction, single scatter Determination of vertical profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Category: Aerosols Efforts are currently underway to run and evaluate the Broadband Heating Rate Profile project at the ARM North Slope of Alaska (NSA) Barrow site for the time period March 2004 - February 2005. The Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide continuous estimates of vertical profiles of aerosol extinction, single-scatter albedo, and asymmetry parameter above the Northern Slopes of Alaska (NSA) facility. In the interest of temporal continuity, we have developed an algorithm that

14

Atmospheric aerosol monitoring at the Pierre Auger Observatory  

SciTech Connect

For a ground based cosmic-ray observatory the atmosphere is an integral part of the detector. Air fluorescence detectors (FDs) are particularly sensitive to the presence of aerosols in the atmosphere. These aerosols, consisting mainly of clouds and dust, can strongly affect the propagation of fluorescence and Cherenkov light from cosmic-ray induced extensive air showers. The Pierre Auger Observatory has a comprehensive program to monitor the aerosols within the atmospheric volume of the detector. In this paper the aerosol parameters that affect FD reconstruction will be discussed. The aerosol monitoring systems that have been deployed at the Pierre Auger Observatory will be briefly described along with some measurements from these systems.

Cester, R.; Chiosso, M.; Chirin, J.; Clay, R.; Dawson, B.; Fick, B.; Filipcic, A.; Garcia, B.; Grillo, A.; Horvat, M.; Iarlori, M.; Malek, M.; Matthews, J.; Matthews,; Melo, D.; Meyhandan, R.; Mostafa, M.; Mussa, R.; Prouza, M.; Raefert, B.; Rizi, V.

2005-07-01T23:59:59.000Z

15

AT631, Spring 2011 Introduction to Atmospheric Aerosols  

E-Print Network (OSTI)

. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley-Interscience, 2006AT631, Spring 2011 Introduction to Atmospheric Aerosols Tuesdays 9-9:50 AM, 212B ACRC Wednesdays, Lab, 1-4 PM, ACB 10 Instructor: Prof. Sonia Kreidenweis Atmospheric Chemistry Bldg., Room 19 491

16

Mobile Climate Observatory for Atmospheric Aerosols in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosols in India Atmospheric Aerosols in India Nainital, India, was the site chosen for deployment of a portable climate research laboratory to study how aerosols impact clouds and energy transfer in the atmosphere. The well-being of hundreds of millions of residents in northeastern India depends on the fertile land around the Ganges River, which is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Any disturbance to the monsoon rains could threaten the population. In the same region, increased industrial activities due to economic growth are releasing small aerosol particles, such as soot and dust, that absorb and scatter sunlight and thus can change cloud formation processes and the heat distribution in the atmosphere. Such changes could greatly increase or

17

Atmospheric Aerosol Chemistry, Climate Change, and Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

607 Atmospheric Aerosol Chemistry, Climate Change, and Air Quality An EMSL Science Theme Advisory Panel Workshop Workshop Date: January 30, 2013 Prepared for the U.S. Department of...

18

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network (OSTI)

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

19

E-Print Network 3.0 - atmospheric aerosol aggregates Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

are also directly associated with reduction in visibility and with long-range transport... for atmospheric aerosols is their association ... Source: Brookhaven National...

20

E-Print Network 3.0 - atmospheric aerosol characterisation Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and... of the U.S. Department of Energy under Contract No....

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles  

Science Journals Connector (OSTI)

An airborne differential absorption lidar (DIAL) system has been developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. The...

Browell, E V; Carter, A F; Shipley, S T; Allen, R J; Butler, C F; Mayo, M N; Siviter, J H; Hall, W M

1983-01-01T23:59:59.000Z

22

About ÂŤEffectiveÂŽ Height of the Aerosol Atmosphere in Visible and IR Wavelength Range  

NLE Websites -- All DOE Office Websites (Extended Search)

"Effective" Height of the Aerosol Atmosphere in "Effective" Height of the Aerosol Atmosphere in Visible and IR Wavelength Range V. N. Uzhegov, D. M. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, and S. M. Sakerin Institute of Atmospheric Optics Tomsk, Russia Introduction Aerosol component of the atmosphere is one of the important factors affecting the radiation budget of the space - atmosphere - underlying surface system in visible and infrared (IR) wavelength ranges. It is extremely important to take into account the contribution of this component into the extinction of solar radiation under cloudless sky conditions. Sometimes it is important to know not only the total value of the aerosol component of extinction, but also to have the possibility to estimate the "effective" height of

23

Atmospheric Aerosol Optical Properties in the Persian Gulf  

Science Journals Connector (OSTI)

Aerosol optical depth measurements over Bahrain acquired through the ground-based Aerosol Robotic Network (AERONET) are analyzed. Optical depths obtained from ground-based sun/sky radiometers showed a pronounced temporal trend, with a maximum ...

Alexander Smirnov; Brent N. Holben; Oleg Dubovik; Norm T. O'Neill; Thomas F. Eck; Douglas L. Westphal; Andreas K. Goroch; Christophe Pietras; Ilya Slutsker

2002-02-01T23:59:59.000Z

24

Chemistry of carbonaceous aerosols : studies of atmospheric processing and OH-initiated oxidation  

E-Print Network (OSTI)

Carbonaceous aerosols are among the most prevalent yet least understood constituents of the atmosphere, particularly in urban environments. We have performed analyses of field samples and laboratory studies to probe the ...

Johnson, Kirsten S. (Kirsten Sue)

2008-01-01T23:59:59.000Z

25

The Campaign on atmospheric Aerosol REsearch network of China: CARE-China  

Science Journals Connector (OSTI)

Based on a network of field stations belonging to the Chinese Academy of Sciences (CAS), the “Campaign on atmospheric Aerosol REsearch” network of China (CARE-China) was recently established as the country's first monitoring network for the study ...

Yuesi Wang; Jinyuan Xin; Yuepeng Pan; Dongsheng Ji; Zirui Liu; Tianxue Wen; Yinghong Wang; Xingru Li; Yang Sun; Jie Sun; Pucai Wang; Gehui Wang; Xinming Wang; Zhiyuan Cong; Tao Song; Bo Hu; Lili Wang; Guiqian Tang; Wenkang Gao; Yuhong Guo; Hongyan Miao; Shili Tian; Lu Wang

26

Atmospheric aerosols and possibilities of their analysis for elemental content at the IBR-2 reactor  

Science Journals Connector (OSTI)

Possibilities of neutron activation analysis for studying the elemental content of atmospheric aerosols at the IBR-2 reactor are discussed on the bases of the ... contents on the sensitivity of NAA, the reliability

V. F. Peresedov

1997-10-01T23:59:59.000Z

27

Transport of Atmospheric Aerosol by Gap Winds in the Columbia River Gorge  

Science Journals Connector (OSTI)

Typical diurnal wind patterns and their relationship to transport of atmospheric aerosol in the Columbia River gorge of Oregon and Washington are addressed in this paper. The measurement program included measurements of light scattering by ...

Mark C. Green; Jin Xu; Narendra Adhikari

2008-01-01T23:59:59.000Z

28

DETERMINATION OF LOW-Z ELEMENTS IN ATMOSPHERIC AEROSOLS BY CHARGED-PARTICLE-INDUCED NUCLEAR REACTIONS  

E-Print Network (OSTI)

the nuclear reaction N14 (p,a)c 11 with low-energy protonsLOW-Z ELEMENTS IN ATMOSPHERIC AEROSOLS BY CHARGED-PARTICLE-INDUCED NUCLEAR REACTIONS Mark Steven Clemenson Energy

Clemenson, Mark Steven

2013-01-01T23:59:59.000Z

29

Carbon-Specific Analysis of Humic-like Substances in Atmospheric Aerosol and Precipitation Samples  

Science Journals Connector (OSTI)

6-9 This means that HULIS have an impact on the hygroscopicity and the cloud condensation nuclei formation potential of the atmospheric aerosol and are, therefore, of climatic relevance. ... Journal of Geophysical Research, [Atmospheres] (2000), 105 (D16), 20697-20706 CODEN: JGRDE3 ISSN:. ... solvents, and recovery from spiked rain water, were included. ...

Andreas Limbeck; Markus Handler; Bernhard Neuberger; Barbara Klatzer; Hans Puxbaum

2005-10-11T23:59:59.000Z

30

Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols in our Atmosphere  

E-Print Network (OSTI)

;Carnegie Mellon University Smog Chamber Air supply Computer Temperature control Clean air 10 m3 Teflon spectrometer Aerosol mass spectrometerOzone monitor Air supply Computer Temperature control Clean air 10 m3 on temperature Hevap also needed Assumes no interactions among organic aerosol species or with inorganics. #12

Einat, Aharonov

31

Atmospheric Measurements of Submicron Aerosols at the California-Mexico Border and in Houston, Texas  

E-Print Network (OSTI)

Pacific Northwest National Laboratory POAs Primary Organic Aerosols SEMARNAT Secretaria del Medio Ambiente Recursos Naturales SHARP Study of Houston Atmospheric Radical Precursors SSA Single Scattering Albedo SOAs Secondary Organic Aerosols... quality and climate. Historically, the region has exceeded both the US EPA National Ambient Air Quality (NAAQS) and Mexico?s Secretaria del Medio Ambiente Recursos Naturales (SEMARNAT) air standards, stimulating a united interest. When comparing...

Levy, Misti E

2013-04-29T23:59:59.000Z

32

Observations of Secondary Organic Aerosol Production and Soot Aging under Atmospheric Conditions Using a Novel Environmental Aerosol Chamber  

E-Print Network (OSTI)

, heterogeneous surface reactions, cloud processing, and gas-to-particle partitioning through the formation of secondary organic aerosol (SOA) by organic gases (Pankow 1994). Moreover, SOA has been linked to adverse health effects as they typically contain... 1985; Ng et al. 2006; Presto et al. 2005; Saathoff et al. 2003). Such classes include cycloalkenes, aromatic hydrocarbons, and terpenes, most of which are cyclic compounds. When these compounds undergo atmospheric oxidation, 3 they produce first-generation...

Glen, Crystal

2012-02-14T23:59:59.000Z

33

Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols R. A. Ferrare and K. D. Evans (a) Hughes STX Corporation Lanham, Maryland S. H. Melfi and D. N. Whiteman NASA/Goddard Space Flight Center Greenbelt, Maryland The principal objective of the Department of Energy's (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general circulation models (GCMs) which are used to study climate change. Meeting this objective requires detailed measurements of both water vapor and aerosols since these atmospheric constituents affect the radiation balance directly, through scattering and absorption of solar and

34

Influence of local waste burning on atmospheric aerosol properties in urban environment  

Science Journals Connector (OSTI)

Aerosols affect the radiative energy budget on both the regional and global scales. The wavelength-dependent aerosol optical depth (AOD) is a fundamental determinant of the amount by which extra-terrestrial incoming sunlight and outgoing terrestrial radiation are being attenuated in the atmosphere. The present study addresses the influence of local waste burning on aerosol characteristics, black carbon (BC) aerosol mass concentration and spectral solar irradiance using ground-based measurements over the tropical urban environment of Hyderabad, India. AOD has been observed to be maximum during burning days compared to normal days. Aerosol size spectra suggest bimodal distributions during pre-and post-burning periods and trimodal distributions during burning periods. Angstrom wavelength exponent estimated from spectral variation of AOD suggested dominance of accumulation mode particle loading during burning days compared to normal days. Diurnal variation of BC on normal days showed a broad nocturnal peak during ?20:00 to ?24:00 h with a maximum value of BC aerosol concentration of ?14,000 ng m?3 whereas on local waste burning days enormous increases in BC concentrations have been observed with a peak at ?60,000 ng m?3. Relative attenuation of global solar irradiance during burning days has been found to be of the order of 30% in the visible and 28% in the near-infrared regions. The results are discussed in detail in this paper.

K. Madhavi Latha; K.V.S. Badarinath

2006-01-01T23:59:59.000Z

35

Scale-free Universal Spectrum for Atmospheric Aerosol Size Distribution for Davos, Mauna Loa and Izana  

E-Print Network (OSTI)

Atmospheric flows exhibit fractal fluctuations and inverse power law form for power spectra indicating an eddy continuum structure for the selfsimilar fluctuations. A general systems theory for fractal fluctuations developed by the author is based on the simple visualisation that large eddies form by space-time integration of enclosed turbulent eddies, a concept analogous to Kinetic Theory of Gases in Classical Statistical Physics. The ordered growth of atmospheric eddy continuum is in dynamical equilibrium and is associated with Maximum Entropy Production. The model predicts universal (scale-free) inverse power law form for fractal fluctuations expressed in terms of the golden mean. Atmospheric particulates are held in suspension in the fractal fluctuations of vertical wind velocity. The mass or radius (size) distribution for homogeneous suspended atmospheric particulates is expressed as a universal scale-independent function of the golden mean, the total number concentration and the mean volume radius. Model predicted spectrum is in agreement (within two standard deviations on either side of the mean) with total averaged radius size spectra for the AERONET (aerosol inversions) stations Davos and Mauna Loa for the year 2010 and Izana for the year 2009 daily averages. The general systems theory model for aerosol size distribution is scale free and is derived directly from atmospheric eddy dynamical concepts. At present empirical models such as the log normal distribution with arbitrary constants for the size distribution of atmospheric suspended particulates are used for quantitative estimation of earth-atmosphere radiation budget related to climate warming/cooling trends. The universal aerosol size spectrum will have applications in computations of radiation balance of earth-atmosphere system in climate models.

A. M. Selvam

2014-08-14T23:59:59.000Z

36

Program Abstracts: Formation and Growth of Atmospheric Aerosols  

SciTech Connect

DOE provided $11,000 to sponsor the Workshop on New Particle Formation in the Atmosphere, which was held at The Riverwood Inn and Conference Center near Minneapolis, MN from September 7 to 9, 2006. Recent work has shown that new particle formation is an important atmospheric process that must be better understood due to its impact on cloud cover and the Earth's radiation balance. The conference was an informal gathering of atmospheric and basic scientists with expertise pertinent to this topic. The workshop included discussions of: • atmospheric modeling; • computational chemistry pertinent to clustering; • ions and ion induced nucleation; • basic laboratory and theoretical studies of nucleation; • studies on neutral molecular clusters; • interactions of organic compounds and sulfuric acid; • composition of freshly nucleated particles. Fifty six scientists attended the conference. They included 27 senior scientists, 9 younger independent scientists (assistant professor or young associate professor level), 7 postdocs, 13 graduate students, 10 women, 35 North Americans (34 from the U.S.), 1 Asian, and 20 Europeans. This was an excellent informal workshop on an important topic. An effort was made to include individuals from communities that do not regularly interact. A number of participants have provided informal feedback indicating that the workshop led to research ideas and possible future collaborations.

Peter H. McMurry; Markku Kulmala

2006-09-07T23:59:59.000Z

37

Generation of non-thermal plasma at atmospheric pressure in hetero-phase media of air with water aerosol  

Science Journals Connector (OSTI)

The results of experimental investigations on non-thermal plasma generation using of high-voltage discharge in hetero-phase media of airflow at atmospheric pressure with liquid aerosol are presented in...B. subti...

Yu. S. Akishev; G. I. Aponin; M. E. Grushin…

2006-10-01T23:59:59.000Z

38

Nonlinear Effects of Coexisting Surface and Atmospheric Forcing of Anthropogenic Absorbing Aerosols: Impact on the South Asian Monsoon Onset  

E-Print Network (OSTI)

The direct radiative effect of absorbing aerosols consists of absorption-induced atmospheric heating together with scattering- and absorption-induced surface cooling. It is thus important to understand whether some of the ...

Lee, Shao-Yi

39

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

40

Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project  

DOE Data Explorer (OSTI)

Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

UNDERSTANDING THE INFLUENCES OF ATMOSPHERIC AEROSOLS ON CLIMATE AND CLIMATE CHANGE  

E-Print Network (OSTI)

.ecd.bnl.gov/steve BOB BRAWDY / AP #12;OVERVIEW Aerosol influences on climate and climate change Earth's energy balance remarks #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS AS SEEN FROM SPACE Fire plumes from southern

Schwartz, Stephen E.

42

E-Print Network 3.0 - aerosol atmospheric interactions Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Climate Summary: order estimates of aerosol-climate interaction But... only Earth System Models can include all... of the interactions (in theory at least) 12;Aerosols <>...

43

Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)  

DOE Data Explorer (OSTI)

In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

44

Integrated Study of MFRSR-derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facili...  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Study of MFRSR-Derived Parameters of Integrated Study of MFRSR-Derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facilities - Comparison with Satellite and Other Ground-Based Measurements M. D. Alexandrov and B. Cairns Columbia University National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. A. Lacis and B. E. Carlson National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Comparison of SGP MFRSR Network Aerosol Retrievals with MODIS Aerosol Product The network of Multi-filter Rotating Shadowband Radiometers (MFRSRs) at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) site consists of 21 instrument sites

45

Aerosol Best Estimate Value-Added Product  

SciTech Connect

The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

2012-07-19T23:59:59.000Z

46

The Evolution of the Physicochemical Properties of Aerosols in the Atmosphere  

E-Print Network (OSTI)

campaign investigated the evolution of the physicochemical properties of the Asian aerosol plume after 3 to 7 days of transport. The Asian aerosol within the free troposphere exhibited a bimodal growth distribution roughly 50 percent of the time. The more...

Tomlinson, Jason

2011-02-22T23:59:59.000Z

47

Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China  

DOE Data Explorer (OSTI)

In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

48

Retrieval of cloud-cleared atmospheric temperature profiles from hyperspectral infrared and microwave observations  

E-Print Network (OSTI)

This thesis addresses the problem of retrieving the temperature profile of the Earth's atmosphere from overhead infrared and microwave observations of spectral radiance in cloudy conditions. The contributions of the thesis ...

Blackwell, William Joseph, 1971-

2002-01-01T23:59:59.000Z

49

Nonlinear Retrieval of Atmospheric Profiles from MetOp-IASI and MTG-IRS Data  

E-Print Network (OSTI)

Nonlinear Retrieval of Atmospheric Profiles from MetOp-IASI and MTG-IRS Data Gustavo Camps-Vallsa , Luis Guanterb , Jordi Mu~noz-Mar´ia , Luis G´omez-Chovaa and Xavier Calbetc a Image Processing retrieval methods to derive cloud, surface and atmospheric properties from hyperspectral MetOp-IASI and MTG

Camps-Valls, Gustavo

50

E-Print Network 3.0 - atmospheric aerosol limb Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Big Influence... Aerosols play an important role in our planet's dynamic ... Source: Jet Propulsion Laboratory, Machine Learning Systems Group Collection: Computer Technologies...

51

E-Print Network 3.0 - atmospheric aerosol processes Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Applied Science Collection: Environmental Sciences and Ecology 3 Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Measurements...

52

Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols  

Science Journals Connector (OSTI)

... The global model that I used was GATOR-GCMM, which treated gas, aerosol, radiative, meteorological and transport processes (see Supplementary ...

Mark Z. Jacobson

2001-02-08T23:59:59.000Z

53

E-Print Network 3.0 - atmospheric aerosols basic Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

SIZE DISTRIBUTION Brookhaven National Laboratory is a multi... analyzers due to its speed and ability to detect aerosol particles smaller than 100 nm in diameter ... Source:...

54

E-Print Network 3.0 - airborne aerosol prediction Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

profiles of aerosol extinction and optical depth Evaluate predictions from aerosol transport... aerosol measurements. Comparison of AOT ... Source: Brookhaven National...

55

Evidence for the role of organics in aerosol particle formation under atmospheric conditions  

Science Journals Connector (OSTI)

...used to simulate the solar light spectrum and start...denuder--aerosol collector (WEDD-AC) coupled...measured in the aerosol collector. The...ratio of the projected horizontal surface area to the total...run the model with a horizontal resolution of 2.8...

Axel Metzger; Bart Verheggen; Josef Dommen; Jonathan Duplissy; Andre S. H. Prevot; Ernest Weingartner; Ilona Riipinen; Markku Kulmala; Dominick V. Spracklen; Kenneth S. Carslaw; Urs Baltensperger

2010-01-01T23:59:59.000Z

56

Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission  

E-Print Network (OSTI)

Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 {\\mu}m effective radius during northern summer and a 2 {\\mu}m effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136{\\deg} period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS=50 and 115{\\deg}. In addition to water ice clouds, ...

Lemmon, Mark T; Bell, James F; Smith, Michael D; Cantor, Bruce A; Smith, Peter H

2014-01-01T23:59:59.000Z

57

Heterogeneous Surface-Based Freezing of Atmospheric Aerosols Containing Ash, Soot, and Soil  

E-Print Network (OSTI)

nucleation will occur through one of several mechanisms including the contact and immersion freezing mechanisms. Through a series of contact freezing experiments, we have characterized the ability of aerosols composed of volcanic ash, soot, and peat soil...

Fornea, Adam P.

2010-07-14T23:59:59.000Z

58

E-Print Network 3.0 - affect atmospheric aerosols Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and absorb shortwave (solar) radiation and... of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. AEROSOLS AND CLIMATE CHANGE... : A TUTORIAL S. E. Schwartz...

59

Comparison of temperature and humidity profiles with elastic-backscatter lidar data  

SciTech Connect

This contribution analyzes elastic-backscatter lidar data and temperature and humidity profiles from radiosondes acquired in Barcelona in July 1992. Elastic-backscatter lidar data reveal the distribution of aerosols within the volume of atmosphere scanned. By comparing this information with temperature and humidity profiles of the atmosphere at a similar time, we are able to asses de relationship among aerosol distribution and atmospheric stability or water content, respectively. Comparisons have shown how lidar`s revealed layers of aerosols correspond to atmospheric layers with different stability condition and water content.

Soriano, C. [Universidad Politecnica de Cataluna, Barcelona (Spain)]|[Los Alamos National Lab., NM (United States); Buttler, W.T. [Los Alamos National Lab., NM (United States); Baldasano, J.M. [Universidad Politecnica de Cataluna, Barcelona (Spain)

1995-04-01T23:59:59.000Z

60

Hygroscopicity of Water-Soluble Organic Compounds in Atmospheric Aerosols:? Amino Acids and Biomass Burning Derived Organic Species  

Science Journals Connector (OSTI)

In the hygroscopic measurement, the chemicals were first dissolved in ultrapure water to make stock solutions that were used to generate particles by a piezoelectric droplet generator (Uni-Photon Inc., NY., USA, Model 201). ... Together with the measurements of the hygroscopicity of glucose, glycerol, humic-like substances, and arginine, which have been detected in biomass burning aerosols and found noncrystallizing in single particle measurements (8,9,16,20,28,41), these results suggest that organic species derived from biomass burning may retain water at low RH in the atmosphere. ... (6)?Zhang, Q.; Anastasio, C. Free and combined amino compounds in atmospheric fine particles (PM2.5) and fog waters from Northern California. ...

Man Nin Chan; Man Yee Choi; Nga Lee Ng; Chak K. Chan

2005-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Atmospheric aerosols versus greenhouse gases in the twenty-first century  

Science Journals Connector (OSTI)

...Say it is thus with what you show me. (Charles Dickens, A Christmas Carol, 1843) 1. Introduction The evolution of human society...properties of the aerosol. Sulphates, which do not absorb visible light, have been the dominant species responsible for the cooling...

2007-01-01T23:59:59.000Z

62

Atmospheric aerosols versus greenhouse gases in the twenty-first century  

Science Journals Connector (OSTI)

...energy-yielding combustion process, and its...sensible to latent heat flux over land...carbon-a tracer of combustion and pollution in...obtained by merging data from several satellite...aerosols by biogenic hydrocarbon oxidation. J...estimated from satellite data. Geophys. Res...

2007-01-01T23:59:59.000Z

63

Light Scattering by Ice Crystals and Mineral Dust Aerosols in the Atmosphere  

E-Print Network (OSTI)

of cirrus clouds is demonstrated and explained theoretically, which provides guidance in the calibra¬tion algorithm for 1.064-µm channel on the Calipso lidar. Dust aerosols have no particular morphology. To develop an approach to modeling the optical...

Bi, Lei

2012-07-16T23:59:59.000Z

64

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 102, NO. D24, PAGES 29,737-29,745, DECEMBER 26, 1997 Atmospheric aerosol and water vapor characteristics over north  

E-Print Network (OSTI)

Atmospheric aerosol and water vapor characteristics over north central Canada during BOREAS B. L. Markham, J typically0.09 and 0.34 cm, respectively.Size distributionsderivedfrom solar almucantarmeasurementsshowtheHughesSTXCorporation,Greenbelt,Maryland. 2Formerlyat HSTX/GSFC-NASA,Greenbelt,Maryland. Copyright1997by the American

65

Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties  

E-Print Network (OSTI)

Fossil fuel combustion versus biomass-burning signatures,from smoldering biomass combustion, Atmospheric Chemistryfrom the Combustion of Biomass Fuels, Environmental Science

Moore, Meagan Julia Kerry

2011-01-01T23:59:59.000Z

66

Atmospheric Aerosols Aging Involving Organic Compounds and Impacts on Particle Properties  

E-Print Network (OSTI)

) and chemical reactions (oxidation of particles by gas-phase oxidants and heterogeneous reactions between gas molecules and particles).5 For example, when initially formed, soot particles are hydrophobic and fractal in morphology, with low effective density... particles have a ? value of 1.0; whereas fractal ones will have ? > 1.0. Measurements of Aerosol Optical Properties The optical system consisted of a commercial integrating Nephelometer (Model 3563, TSI) and a CRDS connected in series.20 The particles...

Qiu, Chong

2013-02-01T23:59:59.000Z

67

Impact of Varying Atmospheric Profiles on Extensive Air Shower Observation: Fluorescence Light Emission and Energy Reconstruction  

E-Print Network (OSTI)

Several experiments measure the fluorescence light produced by extensive air showers in the atmosphere. This light is converted into a longitudinal shower profile from which information on the primary energy and composition is derived. The fluorescence yield, as the conversion factor between light profile measured by EAS experiments and physical interpretation of showers, has been measured in several laboratory experiments. The results, however, differ considerably. In this article, a model calculation of the fluorescence emission from relevant band systems of nitrogen in dependence on wavelength and atmospheric conditions is presented. Different calculations are compared to each other in combination with varying input parameters. The predictions are compared with measurements and the altitude-dependence of the fluorescence yield is discussed in detail.

B. Keilhauer; J. Bluemer; R. Engel; H. O. Klages

2005-11-05T23:59:59.000Z

68

Evaluation of Hydrometeor Occurrence Profiles in the Multiscale Modeling Framework Climate Model using Atmospheric Classification  

SciTech Connect

Vertical profiles of hydrometeor occurrence from the Multiscale Modeling Framework (MMF) climate model are compared with profiles observed by a vertically pointing millimeter wavelength cloud-radar (located in the U.S. Southern Great Plains) as a function of the largescale atmospheric state. The atmospheric state is determined by classifying (or clustering) the large-scale (synoptic) fields produced by the MMF and a numerical weather prediction model using a neural network approach. The comparison shows that for cold frontal and post-cold frontal conditions the MMF produces profiles of hydrometeor occurrence that compare favorably with radar observations, while for warm frontal conditions the model tends to produce hydrometeor fractions that are too large with too much cloud (non-precipitating hydrometeors) above 7 km and too much precipitating hydrometeor coverage below 7 km. We also find that the MMF has difficulty capturing the formation of low clouds and that for all atmospheric states that occur during June, July, and August, the MMF produces too much high and thin cloud, especially above 10 km.

Marchand, Roger T.; Beagley, Nathaniel; Ackerman, Thomas P.

2009-09-01T23:59:59.000Z

69

Experimental and theoretical investigation of nucleation and growth of atmospheric aerosols  

E-Print Network (OSTI)

, and a theoretical study of atmospheric molecular complexes and clusters. The nucleation rate was considerably enhanced in the presence of cis-pinonic acid and ammonia. The composition of the critical cluster was estimated from the dependence...

Zhao, Jun

2009-05-15T23:59:59.000Z

70

Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing  

Science Journals Connector (OSTI)

...12), or engine combustion (16...mass, we draw fundamental conclusions of atmospheric...particles from diesel combustion by using combined...Properties of jet engine combustion particles...of carbon and diesel soot particles...vehicle with a diesel oxidation catalyst . J...Boubel RW ( 1994 ) Fundamentals of Air Pollution...

Renyi Zhang; Alexei F. Khalizov; Joakim Pagels; Dan Zhang; Huaxin Xue; Peter H. McMurry

2008-01-01T23:59:59.000Z

71

2.1 RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE  

E-Print Network (OSTI)

with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors with the use of narrowband (~0.4 nm bandpass) filters, reduces the background skylight and, therefore

72

Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements  

SciTech Connect

This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

Dr. Timothy Onasch

2009-09-09T23:59:59.000Z

73

Development of a Wet-Chemical Method for the Speciation of Iron in Atmospheric Aerosols  

Science Journals Connector (OSTI)

The ability to quantify the chemical and physical forms of transition metals in atmospheric particulate matter (PM) is essential in determining potential human health and ecological effects. ... As an application of this method to mobile source emissions, size-resolved PM10 samples were collected at the inlet and outlet of the Caldecott Motor Vehicle Tunnel in northern California. ... A series of 6 h samples was obtained at the inlets and outlets of Bore 1 (approximately 4% Diesel, 96% gasoline vehicles) and Bore 2 (gasoline only). ...

Brian J. Majestic; James J. Schauer; Martin M. Shafer; Jay R. Turner; Philip M. Fine; Manisha Singh; Constantinos Sioutas

2006-02-24T23:59:59.000Z

74

Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago  

E-Print Network (OSTI)

possible pollutant sources. Keywords Atmospheric aerosols . Canonical correlation analysis . Chicago air pollution studies involve collection and anal- ysis of atmospheric aerosols and concurrent meteorol- ogy) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations

O'Brien, Timothy E.

75

A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5  

SciTech Connect

In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

2013-11-08T23:59:59.000Z

76

ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS  

SciTech Connect

This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

2004-12-01T23:59:59.000Z

77

ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS  

SciTech Connect

This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2003 through August 2003. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. Major accomplishments included: Development of an emission profile for an integrated coke production facility and simulations using PMCAMx for a two week period during July 2001. The emissions from the coke facility are dominated by carbonaceous compounds. Forty seven percent of the organic carbon mass was identified on a compound level basis. Polycyclic aromatic hydrocarbons were the dominant organic compound class in the coke emissions. Initial comparisons with the data collected in Pittsburgh suggest good agreement between the model predictions and observations. Single particle composition data appear useful for identifying primary sources. An example of this unique approach is illustrated using the Fe and Ce particle class with appear associated with steel production.

Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

2003-11-01T23:59:59.000Z

78

ARM - Publications: Science Team Meeting Documents: Effects of Aerosol Size  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Aerosol Size Distribution and Vertical Profile on the Effects of Aerosol Size Distribution and Vertical Profile on the Polarization in the Oxygen A-Band Duan, Minzheng State University of New York at Albany Min, Qilong State University of New York at Albany A vector radiative transfer code with successive order of scattering method was used to simulate the high-resolution polarization spectra in the oxygen A-band. The effects of aerosol size distribution and vertical profile on the radiance and polarization at the top and bottom of the atmosphere were analyzed. The impacts of instrument specification on information content are also analyzed. Polarized radiances were dominated (>95%) by the first and second orders of scattering. The contributions of scattering from different levels to the TOA and surface observation are analyzed. The

79

Resolving the internal structure of individual atmospheric aerosol particle by the combination of Atomic Force Microscopy, ESEM–EDX, Raman and ToF–SIMS imaging  

Science Journals Connector (OSTI)

Abstract In this study, internal structures of individual aerosol particles were resolved by using micro-analytical techniques in combination. We demonstrated the practical applicability of the combined use of Atomic Force Microscopy (AFM), Environmental Scanning Electron Microscopy coupled with Energy-Dispersive X-ray analysis (ESEM–EDX), Raman Microspectrometry (RMS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToF–SIMS) to provide morphological, elemental, molecular and outer surface imaging of the same individual airborne particles for the first time. The characterization of single particles collected in the industrial atmosphere influenced by marine air masses demonstrated the physicochemical evolution of the particles in a short time period. The marine-derived particles were mainly encountered as genuine sea salts internally mixed with reacted sea salts such as NaNO3 and liquid NO3? which are covered by an organic thin layer. The particles collected downwind the industrial area were solid particles composed of an internal mixture of iron oxides and of marine-derived particles coated with an organic layer. The formation of these particles is a result of coalescence, agglomeration and drying processes occurring in the atmosphere during the transport of particles in a short time period (~ 15 min). It is demonstrated that the combined use of the different types of spectral and imaging data from the same individual particles in atmospheric aerosol sample provides richer information on their physicochemical characteristics than when those techniques were used alone or when two techniques in combination.

S. Sobanska; G. Falgayrac; J. Rimetz-Planchon; E. Perdrix; C. Brémard; J. Barbillat

2014-01-01T23:59:59.000Z

80

Two-Column Aerosol Project  

NLE Websites -- All DOE Office Websites (Extended Search)

help find the answer, the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is conducting the Two-Column Aerosol Project (TCAP) at Cape Cod...

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

The Two-Column Aerosol Project Definitions TCAP Educational  

NLE Websites -- All DOE Office Websites (Extended Search)

What's the big deal about aerosols? The Two-Column Aerosol Project Definitions TCAP Educational Outreach Activity About ARM: The Atmospheric Radiation Measurement (ARM) Climate...

82

The Indirect and Semi-Direct Aerosol Campaign  

SciTech Connect

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-03-24T23:59:59.000Z

83

Water-Soluble dicarboxylic acids, ketoacids and dicarbonyls in the atmospheric aerosols over the southern ocean and western pacific ocean  

Science Journals Connector (OSTI)

Water-soluble dicarboxylic acids (DCAs), ketoacids, and ?-dicarbonyls in the marine aerosol samples collected over the Southern Ocean and western Pacific Ocean were determined. Oxalic acid was the most ... aeroso...

Haobo Wang; Kimitaka Kawamura; Koji Yamazaki

2006-01-01T23:59:59.000Z

84

Atmospheric Radiation Measurement (ARM) Data from Cape Cod, Massachusetts for the Two-Column Aerosol Project (TCAP)  

DOE Data Explorer (OSTI)

The Two-Column Aerosol Project (TCAP) was designed to provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the ARM Mobile Facility and the Mobile Aerosol Observing System were deployed on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations were supplemented by two aircraft intensive observation periods, one in the summer and a second in the winter.

85

ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 31, MAY 2014, 559569 Ensemble Retrieval of Atmospheric Temperature Profiles from AIRS  

E-Print Network (OSTI)

Satellite-based observations provide great opportunities for improving weather forecasting. Physical in global climate and weather systems. Among all observations, satellite-derived atmospheric temperatureCooperative Institute for Meteorological Satellite Studies, University of Wisconsin--Madison, Madison

Li, Jun

86

Atmospheric Aerosol Systems | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

long-term storage of data collected by EMSL... Custodian(s): Ryan Wright, Dave Cowley Cascade Supercomputer The 3.4 petaflop system's 23,000 Intel processors have 184,000...

87

Atmospheric aerosol light scattering and surface wetness influence the diurnal pattern of net ecosystem exchange in a semi-arid  

E-Print Network (OSTI)

and can enhance terrestrial carbon sequestration (Gu et al., 1999, 2002, 2003; Roderick et al., 2001 observational evidence of a link between routine aerosol variability, diffuse radiation and carbon sequestration.g. Baldocchi, 1997). Relation- ships using these variables have been used to model carbon exchange between

Cohen, Ronald C.

88

BNL | Aerosol Lifecycle IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Aerosol Life Cycle IOP The primary objectives that make up the Aerosol Life Cycle IOP can be broken down into three categories: Scientific; Logistical; and GVAX preparation. Scientific Objectives The science goals are to conduct intensive aerosol observations in a region exposed to anthropogenic, biogenic, and marine emissions with atmospheric processing times depending on air mass trajectories and time of day. Take advantage of new instruments in the MAOS (e.g., SP2, HR-PTRMS, ACSM, Trace Gas Suite, PASS-3, Aethelometer, UHSAS). Within this broad umbrella are embedded three main foci: Aerosol light absorption: How does the aerosol mass absorption coefficient (absorption per unit mass of BC) vary with atmospheric processing? Do observations agree with a shell-core model?

89

ARM - Measurement - Aerosol absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

absorption absorption ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The process in which radiation energy is retained by aerosols. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) PSAP : Particle Soot Absorption Photometer PASS : Photoacoustic Soot Spectrometer External Instruments OMI : Ozone Monitoring Instrument

90

ARM - Measurement - Aerosol concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

concentration concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol concentration A measure of the amount of aerosol particles (e.g. number, mass, volume) per unit volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer CPC : Condensation Particle Counter IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) TDMA : Tandem Differential Mobility Analyzer

91

Reflective Aerosols and the Greenhouse Effect  

Science Journals Connector (OSTI)

The contributions of atmospheric aerosols to add to either a climate-warming effect or climate-cooling effect depend on the chemical composition of the aerosol and the local environment. The best estimation is...

Kathryn E. Kautzman

2014-07-01T23:59:59.000Z

92

Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of ?-pinene degradation and secondary organic aerosol formation  

Science Journals Connector (OSTI)

This paper studies the reaction products of ?-pinene, ?-pinene, sabinene, 3-carene and limonene with OH radicals and of ?-pinene with ozone using FT-IR spectroscopy for measuring gas phase products and HPLC-MS-MS to measure products in the aerosol phase. These techniques were used to investigate the secondary organic aerosol (SOA) formation from the terpenes. The gas phase reaction products were all quantified using reference compounds. At low terpene concentrations (0.9–2.1 ppm), the molar yields of gas phase reaction products were: HCHO 16–92%, HCOOH 10–54% (OH source: H2O2, 6–25 ppm); HCHO 127–148%, HCOOH 4–6% (OH source: CH3ONO, 5–8 ppm). At high terpene concentrations (4.1–13.2 ppm) the results were: HCHO 9–27%, HCOOH 15–23%, CH3(CO)CH3 0–14%, CH3COOH 0–5%, nopinone 24% (only from ?-pinene oxidation), limona ketone 61% (only from limonene oxidation), pinonaldehyde was identified during ?-pinene degradation (OH source H2O2, 23–30 ppm); HCHO 76–183%, HCOOH 12–15%, CH3(CO)CH3 0–12%, nopinone 17% (from ?-pinene oxidation), limona ketone 48% (from limonene oxidation), pinonaldehyde was identified during ?-pinene degradation (OH source CH3ONO, 14–16 ppm). Pinic acid, pinonic acid, limonic acid, limoninic acid, 3-caric acid, 3-caronic acid and sabinic acid were identified in the aerosol phase. On the basis of these results, we propose a formation mechanism for pinonic and pinic acid in the aerosol phase explaining how degradation products could influence SOA formation and growth in the troposphere.

Vito Librando; Giuseppe Tringali

2005-01-01T23:59:59.000Z

93

Chemical and Physical Properties of Atmospheric Aerosols (a) A Case Study in the Unique Properties of Agricultural Aerosols (b) The Role of Chemical Composition in Ice Nucleation during the Arctic Spring  

E-Print Network (OSTI)

dataset is reported for these physical and chemical properties of agricultural aerosols appropriate for use in a site-specific emission inventory. The emission rate and transport of the aerosols are also discussed. In addition, mixing ratios of total...

Moon, Seong-Gi

94

BNL | Aerosol, Cloud, Precipitation Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Aerosol-Precipitation Interactions Cloud-Aerosol-Precipitation Interactions Atmospheric aerosols exert important "indirect effects" on clouds and climate by serving as cloud condensation nuclei (CCN) and ice nuclei that affect cloud radiative and microphysical properties. For example, an increase in CCN increases the number concentration of droplets enhances cloud albedo, and suppresses precipitation that alters cloud coverage and lifetime. However, in the case of moist and strong convective clouds, increasing aerosols may increase precipitation and enhance storm development. Although aerosol-induced indirect effects on climate are believed to have a significant impact on global climate change, estimating their impact continues to be one of the most uncertain climate forcings.

95

ARM AOS Processing Status and Aerosol Intensive Properties VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS)...

96

Beryllium Carcinogenesis. I. Inhalation Exposure of Rats to Beryllium Sulfate Aerosol  

Science Journals Connector (OSTI)

...aerosol at a mean atmospheric concentration of...aerosol at a mean atmospheric concentration of...in the drinking water) for 2 weeks...a glass aerosol generator, with an airflow...chamber, distilled water was disseminated...aerosol generation, atmospheric concentration control...

Andrew L. Reeves; Daniel Deitch; and Arthur J. Vorwald

1967-03-01T23:59:59.000Z

97

Atomic Force and Scanning Electron Microscopy of Atmospheric Particles  

E-Print Network (OSTI)

conducted so as to characterize atmospheric aerosols from anthropogenic (pollution) and natural (sea saltAtomic Force and Scanning Electron Microscopy of Atmospheric Particles ZAHAVA BARKAY,1 * AMIT 69978, Israel KEY WORDS atmospheric aerosols; atomic force microscopy; scanning electron microscopy

Shapira, Yoram

98

BNL | Atmospheric Systems Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric System Research is a DOE observation-based research program Atmospheric System Research is a DOE observation-based research program created to advance process-level understanding of the key interactions among aerosols, clouds, precipitation, radiation, dynamics, and thermodynamics, with the ultimate goal of reducing the uncertainty in global and regional climate simulations and projections. General areas of research at BNL under this program include studies of aerosol and cloud lifecycles, and cloud-aerosol-precipitation interactions. Contact Robert McGraw, 631.344.3086 aerosols Aerosol Life Cycle The strategic focus of the Aerosol Life Cycle research is observation-based process science-examining the properties and evolution of atmospheric aerosols. Observations come from both long-term studies conducted by the

99

Large Aerosols Play Unexpected Role in Ganges Valley | U.S. DOE...  

Office of Science (SC) Website

The data have revealed that large aerosols in this region absorb a greater amount of light than expected. The Science Aerosol particles in the atmosphere may absorb solar...

100

Direct Aerosol Forcing Uncertainty  

DOE Data Explorer (OSTI)

Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

Mccomiskey, Allison

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

aerosols | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

aerosols aerosols Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

102

4, 58315854, 2004 Fluorescing aerosol  

E-Print Network (OSTI)

released by combustion into the atmosphere absorbs radiation and therefore heats the climate counteracting such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores) or by combustion processes (soot), or they form in situ by gas to particle conversion, like sulphate aerosol. While

Paris-Sud XI, Université de

103

Headspace profiles of modified atmosphere packaged fresh red snapper (Lutjanus campechanus) by gas liquid chromatography  

E-Print Network (OSTI)

activity. Typical components found in the headspace were, butanal, ethanol, hexanal, dimethylamine and trimethylamine. During storage at 4 C, the microbial population within the packages containing C02 tended to shift from an initial gram negative... dioxide (CO2) enriched atmospheres and vacuum packaging have become important new technologies that will improve the quality and shelf-life of fresh seafood products. This type of packaging not only extends the shelf-life of seafoods, it also makes...

Scorah, Craig Darrell Allen

1988-01-01T23:59:59.000Z

104

Assessing the Influence of Secondary Organic versus Primary Carbonaceous Aerosols on Long-Range Atmospheric Polycyclic Aromatic Hydrocarbon Transport  

Science Journals Connector (OSTI)

§ Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States ... Summer underestimates are likely partially due to the influence of local sources not included in model emissions (e.g., camp- or wildfires). ... emission of these 16 PAHs in 2004 was 520 giga grams per yr (Gg y-1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y-1), India (90 Gg y-1) and United States (32 Gg y-1) were the top three countries with the highest PAH emissions. ...

C. L. Friedman; J. R. Pierce; N. E. Selin

2014-02-24T23:59:59.000Z

105

AEROgui: A graphical user interface for the optical properties of aerosols  

Science Journals Connector (OSTI)

Atmospheric aerosols have an uncertain effect on climate, and serious impact on human health. The uncertainty in the aerosols role on climate has several sources. First, aerosols present a great spatial and temporal variability. The spatial variability ...

R. Pedrós; J.L. Gómez-Amo; C.R. Marcos; M.P. Utrillas; S. Gandía; F. Tena; J.A. Martinez Lozano

106

Stratospheric and mesospheric pressure-temperature profiles from rotational analysis of CO2 lines in atmospheric trace molecule spectroscopy/ATLAS 1 infrared solar occultation spectra  

SciTech Connect

A simple, classical, and expedient method for the retrieval of atmospheric pressure-temperature profiles has been applied to the high-resolution infrared solar absorption spectra obtained with the atmospheric trace molecule spectroscopy (ATMOS) instrument. The basis for this method is a rotational analysis of retrieved apparent abundances from CO2 rovibrational absorption lines, employing existing constituent concentration retrieval software used in the analysis of data returned by ATMOS. Pressure-temperature profiles derived from spectra acquired during the ATLAS 1 space shuttle mission of March-April 1992 are quantitatively evaluated and compared with climatological and meteorological data as a means of assessing the validity of this approach.

Stiller, G.P.; Gunson, M.R.; Lowes, L.L.; Abrams, M.C.; Raper, O.F.; Farmer, C.B.; Zander, R.; Rinsland, C.P. [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany)] [Kernforschungszentrum Karlsruhe, Karlsruhe (Germany); [Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA (United States); [Liege Univ., Liege (Belgium); [NASA, Langley Research Center, Hampton, VA (United States)

1995-02-01T23:59:59.000Z

107

Absolute atomic oxygen density profiles in the discharge core of a microscale atmospheric pressure plasma jet  

Science Journals Connector (OSTI)

The micro atmospheric pressure plasma jet is an rf driven (13.56 MHz ? 20 ? W ) capacitively coupled discharge producing a homogeneous plasma at ambient pressure when fed with a gas flow of helium (1.4 slm) containing small admixtures of oxygen ( ? 0.5 % ) . The design provides excellent optical access to the plasma core. Ground state atomic oxygen densities up to 3 × 10 16 ? cm ? 3 are measured spatially resolved in the discharge core by absolutely calibrated two-photon absorption laser-induced fluorescence spectroscopy. The atomic oxygen density builds up over the first 8 mm of the discharge channel before saturating at a maximum level. The absolute value increases linearly with applied power.

Nikolas Knake; Kari Niemi; Stephan Reuter; Volker Schulz-von der Gathen; Jörg Winter

2008-01-01T23:59:59.000Z

108

Generated using version 3.0 of the official AMS LATEX template A remotely-operated lidar for aerosol, temperature, and water  

E-Print Network (OSTI)

Generated using version 3.0 of the official AMS LATEX template A remotely-operated lidar for aerosol, temperature, and water vapor profiling in the High Arctic. G. J. Nott, T. J. Duck, J. G. Doyle, M. E. W. Coffin, C. Perro, C. P. Thackray, and J. R. Drummond Department of Physics and Atmospheric

Duck, Thomas J.

109

HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols  

Science Journals Connector (OSTI)

...emissions to human activity or natural processes, in a variety...new features of trace gas and aerosol emissions...surface fluxes of trace gases and aerosols. 2. HIAPER...sensor drift. The quantum cascade laser spectrometer (QCLS...CO2 sensor using an IR gas analyser (IRGA), which...

2011-01-01T23:59:59.000Z

110

Interaction of Ozone and Water Vapor with Spark Discharge Soot Aerosol Particles Coated with Benzo[a]pyrene:? O3 and H2O Adsorption, Benzo[a]pyrene Degradation, and Atmospheric Implications  

Science Journals Connector (OSTI)

Besides their relevance as toxic air pollutants, polycyclic aromatic compounds (PAC = PAH + derivatives) at the surface of combustion aerosol particles can influence these particles' interaction with reactive trace gases and water vapor, their activity as condensation nuclei, their atmospheric residence times, and consequently their direct and indirect climatic effects. ... Assuming equal relative losses of triphenylene and BaP during the clean up process, the triphenylene recovery, which was generally on the order of 70%, was used to correct the BaP peak area to 100% recovery. ... Thus, the potential influence of liquid organic or aqueous layers on atmospheric particles has to be kept in mind when using the kinetic parameters presented in this work for extrapolations to the atmosphere. ...

Ulrich Pöschl; Thomas Letzel; Christian Schauer; Reinhard Niessner

2001-03-31T23:59:59.000Z

111

ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsBroadband Heating Rate Profile Project ProductsBroadband Heating Rate Profile Project (BBHRP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Broadband Heating Rate Profile Project (BBHRP) 2000.03.01 - 2006.02.28 Site(s) SGP General Description The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties

112

E-Print Network 3.0 - arctic aerosol burden Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and surface... generally exhibits low aerosol ... Source: National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Atmopsheric Chemistry and...

113

E-Print Network 3.0 - aerosol generation characterization Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: , Brookhaven National Laboratory: "Characterization of Aerosol Organic Matter: Detection, Formation and Optical... : "Atmospheric Formation, Transformation, and...

114

E-Print Network 3.0 - aerosol biokinetics concentrations Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

115

ARM - Evaluation Product - Organic Aerosol Component VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsOrganic Aerosol Component VAP ProductsOrganic Aerosol Component VAP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Organic Aerosol Component VAP 2011.01.08 - 2012.03.24 Site(s) SGP General Description Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10-90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties. This deficiency represents a large source of uncertainty in the quantification of aerosol direct and indirect effects and the prediction of future climate change. The Organic Aerosol Component (OACOMP) value-added product (VAP) uses

116

Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure  

Science Journals Connector (OSTI)

In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence–X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0–8.0 ?m, 8.0–2.0 ?m, 2.0–0.13 ?m 0.13–0.015 ?m (aerodynamic particle size) and 15–30 nm, 30–60 nm, 60–130 nm, 130–250 nm, 250–500 nm, 0.5–1 ?m, 1–2 ?m, 2–4 ?m, 4–8 ?m, 8–16 ?m. Prior to the sampling “bounce off” effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1–10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions.

U.E.A. Fittschen; F. Meirer; C. Streli; P. Wobrauschek; J. Thiele; G. Falkenberg; G. Pepponi

2008-01-01T23:59:59.000Z

117

Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5  

E-Print Network (OSTI)

Zhao (2006), A simulated climatology of Asian dust aerosolN) PI (F) ? PI (F) ? X ? 2000 (PD Climatology) ? ? 2000 (PD Climatology) ? PD (F) X a All simulations used the same

Kooperman, Gabriel J; Pritchard, Michael S; Ghan, Steven J; Wang, Minghuai; Somerville, Richard C. J; Russell, Lynn M

2012-01-01T23:59:59.000Z

118

Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect

4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2013-11-13T23:59:59.000Z

119

DUAL ORIGIN OF AEROSOLS IN TITAN'S DETACHED HAZE LAYER  

SciTech Connect

We have analyzed scattered light profiles from the Cassini Imaging Science Subsystem, taken at the limb and at several large phase angles. We also used results from an occultation observed by Ultraviolet Imaging Spectrograph in the ultraviolet. We found that particles responsible for the scattering in the detached haze have an effective radius around 0.15 {mu}m and the aerosol size distribution follows a power law (exponent about -4.5). We discuss these results along with microphysical constraints and thermal equilibrium of the detached haze, and we conclude that only a strong interaction with atmospheric dynamics can explain such a structure.

Cours, T.; Burgalat, J.; Rannou, P. [Groupe de Spectrometrie Moleculaire et Atmospherique (GSMA), CNRS UMR-6089, Universite de Reims Champagne-Ardenne, 51687 Reims Cedex 2 (France); Rodriguez, S.; Brahic, A. [Laboratoire AIM, Universite Paris 7, CNRS UMR-7158, CEA-Saclay/DSM/IRFU/SAp, 91191 Gif/Yvette (France); West, R. A., E-mail: thibaud.cours@univ-reims.fr [Jet Propulsion Laboratory M/S 169-237, Pasadena, CA 91109 (United States)

2011-11-10T23:59:59.000Z

120

Implications of the In?Situ Measured Mass Absorption Cross Section of Organic Aerosols in Mexico City on the Atmospheric Energy Balance, Satellite Retrievals, and Photochemistry  

Science Journals Connector (OSTI)

The absorption of short wave incoming solar radiation by the organic component of aerosols has been examined by using data from the MCMA?2003 and the 2006 MILAGRO field campaigns. Both field efforts took place in and around Mexico City. Single Scattering Albedo (SSA) was derived as a function of wavelength (300–870 nm) by combining irradiance measurements from a Multi?Filter Rotating Shadowband Radiometer (MFRSR) and spectrally resolved actinic flux measurements by spectroradiometry with a radiative transfer model (TUV). In addition organic aerosol mass measured by a surface deployed aerodyne aerosol mass spectrometer was used to estimate the Mass Absorption Cross?section (MAC) of Organic Carbon (OC). It was found that the MAC for OC is about 10.5? m 2 / g at 300 nm and falls close to zero at about 500 nm; these values are roughly consistent with previous MAC estimates of OC and present first in?situ observations of this quantity.

B. Dix; J. C. Barnard; R. Volkamer

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Final Report for Ă?¢Ă?Â?Ă?Â?Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)Ă?¢Ă?Â?Ă?Âť (DE-SC0002003) for 8/15/2009 through 8/14/2012  

SciTech Connect

Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by �¢����nudging�¢��� to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

Lynn M. Russell; Richard C.J. Somerville

2012-11-05T23:59:59.000Z

122

Modal Bin Hybrid Model: A Surface Area Consistent, Triple Moment Sectional Method for Use in Process-oriented Modeling of Atmospheric Aerosols  

SciTech Connect

A triple moment sectional method, Modal Bin Hybrid Model (MBHM), has been developed. In addition to number and mass (volume), surface area is predicted (and preserved), which is important for gas-to-particle mass transfer and light extinction cross section. The performance of MBHM was evaluated against double moment sectional (DMS) methods with various size resolutions up to BIN256 (BINx: x is number of sections over three orders of magnitude in size, ?logD = 3/x) for simulating evolution of particles under simultaneously occurring nucleation, condensation and coagulation processes. Because MBHM gives a physically consistent form of the intra-sectional distributions, errors and biases of MBHM at BIN4-8 resolution were almost equivalent to those of DMS at BIN16-32 resolution for various important variables such as the moments Mk (k: 0, 2, 3), dMk/dt, and the number and volume of particles larger than a certain diameter. Another important feature of MBHM is that only a single bin is adequate to simulate full aerosol dynamics for particles whose size distribution can be approximated by a single lognormal mode. This flexibility is useful for process-oriented (multi category and/or mixing state) modeling: primary aerosols whose size parameters would not differ substantially in time and space can be expressed by a single or a small number of modes, whereas secondary aerosols whose size changes drastically from one to several hundred nanometers can be expressed by a number of modes. Added dimensions can be applied to MBHM to represent mixing state or photo-chemical age for aerosol mixing state studies.

Kajino, Mizuo; Easter, Richard C.; Ghan, Steven J.

2013-09-10T23:59:59.000Z

123

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

124

ATMOSPHERIC ELSEVIER AtmosphericResearch40 (1996) 223-259  

E-Print Network (OSTI)

of atmospheric aerosol particles and cloud hydrometeors (water drops, ice particles, and, particularlyATMOSPHERIC RESEARCH ELSEVIER AtmosphericResearch40 (1996) 223-259 Simulations of drop fall turbulence. The model permits us to generate different realizations of the random velocity field component

Mark, Pinsky

125

Understanding Brown Carbon Aerosols and Their Role in Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown Carbon Aerosols Brown Carbon Aerosols Tiny aerosol particles in the atmosphere are a possible cause of climate change. Among the many contributors to climate change are aerosols in the atmosphere. These tiny particles suspended in the air come from many sources, some natural and some man-made. Some aerosols are organic (containing carbon), while others are inorganic (such as sea salt and sulfates). Most aerosols reflect sunlight, and some also absorb it. Many of these nanoparticles have severe health effects in addition to climate effects. Human activities that produce aerosols include transportation, industry, and agriculture. Black carbon particles (a component of soot) originating from combustion processes have been known for some time to absorb sunlight and warm the

126

Lidar determination of altitude profile of the refraction index in electro-optical monitoring of the Earths atmosphere  

E-Print Network (OSTI)

generated data 1. Introduction Control of atmosphere pollution is a complex problem of environmental of the reconstruction of the individual contributions and the overall altitude pro- file of the refraction index of air the pollutants and obtain detailed information about the distri- bution of the substances both in altitude

127

E-Print Network 3.0 - atmospheric material particles Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

MECHANICAL AND AEROSPACE ENGINEERING COLLOQUIUM SERIES Atmospheric Aerosols: Linking Air Pollution... Earth's atmosphere with sulfur to cool down the earth? Is this true that...

128

E-Print Network 3.0 - atmospheric line observations Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

basis of these results we have generated a freezing line... predictive efflorescence lines for a variety of atmospheric aerosols. Recent results on the atmospherically... of...

129

E-Print Network 3.0 - atmospheric pollution part Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

MECHANICAL AND AEROSPACE ENGINEERING COLLOQUIUM SERIES Atmospheric Aerosols: Linking Air Pollution... Earth's atmosphere with sulfur to cool down the earth? Is this true that...

130

Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing  

SciTech Connect

Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

Ghan, Steven J.

2013-10-09T23:59:59.000Z

131

Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Aerosol Models for Radiative Flux Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology E. Andrews Cooperative Institute for Research in the Environment University of Colorado Boulder, Colorado E. Andrews, J. A. Ogren, P. J. Sheridan, and J. M. Harris Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. K. Quinn Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington Abstract The uncertainties associated with assumptions of generic aerosol properties in radiative transfer codes are unknown, which means that these uncertainties are frequently invoked when models and

132

The Proton Transfer Reaction-Mass Spectrometer for Atmospheric Chemistry Tracers of Diesel Exhaust Emissions and Measurements of Trace gas and Aerosol properties.  

E-Print Network (OSTI)

The Proton Transfer Reaction-Mass Spectrometer for Atmospheric Chemistry Tracers of Diesel Exhaust exhaust experiment It has previously been difficult to identify the emissions of diesel exhaust until reactive with organic compounds such as alkanes which are present in diesel exhaust emissions. The reaction

Collins, Gary S.

133

ARM - Measurement - Aerosol optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

134

Atmospheric Pb deposition since the Industrial Revolution recorded by five Swiss peat profiles: Enrichment factors, fluxes, isotopic composition, and sources  

SciTech Connect

Atmospheric Pb deposition since the Industrial Revolution was studied in western, central, and southern Switzerland using five rural peat bogs. Similar temporal patterns were found in western and central Switzerland, with two distinct periods of Pb enrichment relative to the natural background: between 1880 and 1920 with enrichments ranging from 40 to 80 times, and between 1960 and 1980 with enrichments ranging from 80 to 100 times. The fluxes also were generally elevated in those time periods: in western Switzerland between 1.16 and 1.55 {micro}g cm{sup {minus}2} y{sup {minus}1} during the second period. Between the Industrial Revolution and 1985, nonradiogenic Pb became increasingly important in all five cores because of the replacement of coal by oil after ca. 1920, the use of Australian Pb in industry, and the extensive combustion of leaded gasoline after 1950. The introduction of unleaded gasoline in 1985 had a pronounced effect on the Pb deposition in all five cores. Enrichments dropped sharply, and the isotopic ratios reverted back toward natural values. The cores from western and central Switzerland showed very similar isotopic trends throughout the time period studied, implying that these sites were influenced contemporaneously by similar pollution sources and atmospheric pathways. Southern Switzerland revealed a different record with respect to the Pb pollution: it was dominated by a single massive Pb enrichment dated between 1930 and 1950.

Weiss, D.; Shotyk, W.; Kramers, J.D. [Univ. of Bern (Switzerland)] [Univ. of Bern (Switzerland); Appleby, P.G. [Univ. of Liverpool (United Kingdom). Dept. of Mathematical Sciences] [Univ. of Liverpool (United Kingdom). Dept. of Mathematical Sciences; Cheburkin, A.K. [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. of Geological Sciences] [Ukrainian Academy of Sciences, Kiev (Ukraine). Inst. of Geological Sciences

1999-05-01T23:59:59.000Z

135

E-Print Network 3.0 - aerosol mass spectrometry Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

used in health effects studies by aerosol mass spectrometry Wingen, L... and heats of sublimation using atmospheric solids analysis probe mass spectrometry (ASAP-MS) Bruns E......

136

E-Print Network 3.0 - ammonium nitrate aerosols Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

ON MINERAL DUSTS: CRYSTALLINE OR AQUEOUS? Summary: 02138, USA Keywords: Phase transition; Atmospheric Aerosols; Ammonium sulfate; Ammonium nitrate... that of ammonium...

137

E-Print Network 3.0 - annually occurring aerosol Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Radiative Transfer Encyclopedia of Atmospheric Science Summary: system. Naturally occurring aerosols reflect some of the incident solar radiation back to space before... in...

138

E-Print Network 3.0 - aerosol wastes Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Schwartz Proc. Aerosols and Atmospheric Optics Radiation Balance... and Visual Air Quality, Snowbird, UT, Sept. 26-30, pp. 403-409, Air and Waste Management Association... ,...

139

E-Print Network 3.0 - aerosol monitoring Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Dodd Way, Atlanta, GA, 30332, U.S.A. Abstract. Atmospheric aerosols scatter and absorb solar Source: Bergin, Mike - Schools of Civil and Environmental Engineering & Earth and...

140

E-Print Network 3.0 - aerosol size classification Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Spectroradiometer observations: Top-of-atmosphere albedo change Summary: Panel on Climate Change, 2007. Aerosol particles have a variety of shapes, sizes, and...

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Radon in atmospheric studies: a review  

SciTech Connect

The distribution of the isotopes of radon in space and time, their physical characteristics, and their behavior in the dynamics of the atmosphere have presented challenges for many decades. /sup 220/Rn, /sup 222/Rn and their daughters furnish a unique set of tracers for the study of transport and mixing processes in the atmosphere. Appropriate applications of turbulent diffusion theory yield general agreement with measured profiles. Diurnal and seasonal variations follow patterns set by consideration of atmospheric stability. /sup 222/Rn has been used successfully in recent studies of nocturnal drainage winds and cumulus convection. Good results have been obtained using /sup 222/Rn and its long-lived /sup 210/Pb daughter as tracers in the study of continent-to-ocean and ocean-to-continent air mass trajectories, /sup 220/Rn (thoron) because of its short half-life of only 55 seconds has been used to measure turbulent diffusion within the first few meters of the earth's surface and to study the influence of meteorological variables on the rate of exhalation from the ground. Radon daughters attach readily to atmospheric particulate matter which makes it possible to study these aerosols with respect to size spectra, attachment characteristics, removal by gravitation and precipitation, and residence times in the troposphere. The importance of ionization by radon and its daughters in the lower atmosphere and its effect on atmospheric electrical parameters is well known. Knowledge of the mobility and other characteristics of radon daughter ions has led to applications in the study of atmospheric electrical environments under fair weather and thunderstorm conditions and in the formation of condensation nuclei. The availability of increasingly sophisticated analytical tools and atmospheric measurement systems can be expected to add much to our understanding of radon and its daughters as trace components of the atmospheric environment in the years ahead.

Wilkening, M.

1981-01-01T23:59:59.000Z

142

BNL | Mobile Aerosol Observing System (MAOS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Aerosol Observing System (MAOS) Mobile Aerosol Observing System (MAOS) The Mobile Aerosol Observing System (MAOS) is a platform and instrument suite for Intensive Operation Periods (IOPs) to conduct in situ measurements of aerosols and their precursors. MAOS is part of the ARM Climate Research Facility. Physically MAOS is contained in two 20' SeaTainers custom adapted to provide a sheltered laboratory environment for operators and instruments even under harsh conditions. The two structures are designated MAOS-A and MAOS-C for Aerosol and Chemistry respectively. Although independent, with separate data systems, inlets and power distribution, the two structures are normally a single operating unit. The two enclosures comprising MAOS are designed for rapid deployment. All components (except for the Radar Wind Profiler) are transported internally

143

Emerging Issues in Nanoparticle Aerosol Science and Technology Workshop report sponsored by: NSF, Southern California Particle Center and UCLA  

E-Print Network (OSTI)

has responsibility for nuclear reactor safety which includes emissions of radioactive particles pollution sources, (2) industrial production of nanoparticle reinforcing fillers such as carbon black nanoparticle products by aerosol processes, (4) atmospheric dynamics of fractal-like nanoparticle aerosols (e

Jimenez, Jose-Luis

144

Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies  

Science Journals Connector (OSTI)

...John Schellnhuber Integrating biomass, sulphate and sea-salt aerosol...biomass burning. In Global biomass burning: atmospheric, climatic...particles from African savanna combustion experiments. Atmos. Res...99)00329-5 . Integrating biomass, sulphate and sea-salt aerosol...

2007-01-01T23:59:59.000Z

145

Reflective 'cool' roofs under aerosol-burdened skies: radiative benefits across selected Indian cities  

Science Journals Connector (OSTI)

The use of reflective surfaces offers one low-cost solution for reducing solar loading to urban environments and the Earth that should be considered as part of sustainable urban design. Here, we characterize the radiative benefits, i.e. the additional shortwave radiation leaving the atmosphere, from the installation of highly reflective 'cool' roofs in urban areas in India that face relatively large local aerosol burdens. We use a previously tested column radiative transfer model to estimate the energy per unit area reflected to space from increasing the surface albedo at six cities within India. The model is used to characterize radiative transfer each day over five years (2008–2012) based on mid-day satellite retrievals of MODIS aerosol depth, cloud water path, and average surface albedo and MERRA atmospheric profiles of temperature and composition. Compared against ten months of field observations in two cities, the model derived incoming surface shortwave radiation estimates relative to observations show small biases (0.5% and ?2.6%, at Pantnagar and Nainital, respectively). Despite the high levels of local aerosols we found cool roofs provided significant radiative benefits at all locations. Averaged over the five year period we found that increasing the albedo of 1 m2 of roof area by 0.5 would reflect to space 0.9–1.2 kWh daily from 08:30–15:30 LST, depending on location. This is equivalent to a constant forcing of 37–50 W m?2 (equivalent to reducing CO2 emissions by 74 to 101 kg CO2 m?2 roof area). Last, we identify a co-benefit of improving air quality, in that removing aerosols from the atmosphere could increase the radiative benefits from cool roofs by 23–74%, with the largest potential increase found at Delhi and the smallest change found at Nainital.

D E Millstein; M L Fischer

2014-01-01T23:59:59.000Z

146

Linearity of Climate Response to Increases in Black Carbon Aerosols  

Science Journals Connector (OSTI)

The impacts of absorbing aerosols on global climate are not completely understood. This paper presents the results of idealized experiments conducted with the Community Atmosphere Model, version 4 (CAM4), coupled to a slab ocean model (CAM4–SOM) ...

Salil Mahajan; Katherine J. Evans; James J. Hack; John E. Truesdale

2013-10-01T23:59:59.000Z

147

Aerosol-Cloud interactions : a new perspective in precipitation enhancement  

E-Print Network (OSTI)

Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation ...

Gunturu, Udaya Bhaskar

2010-01-01T23:59:59.000Z

148

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

SciTech Connect

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

149

ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 44, 1, 2008, p. 1-9 Ship tracks have been considered the Rosetta Stone demonstrating the effects of anthropogenic aerosols on cloud radia-  

E-Print Network (OSTI)

the signatures of indirect aerosol effects (e.g. enhanced droplet concentration) caused by ship emissions. Key words:Ship tracks, cloud parameterization, indirect aerosol effect, effective radius, mean in preexisting marine stratiform clouds, and argued that ship tracks served as good examples of the Twomey effect

150

Indirect and Semi-Direct Aerosol Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Campaign For the month of April, researchers are descending on and above Barrow, Alaska, to obtain data from the atmosphere that will help them understand the impacts that aerosols have on Arctic clouds and climate. Scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility are using a heavily instrumented aircraft to collect data from the sky, while instruments based at surface sites in Barrow and Atqasuk, Alaska, are obtaining measurements from the ground. Information obtained during the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, will help scientists analyze the role of aerosols in climate, and represents a key contribution to Arctic climate research during International Polar Year.

151

Researchers Model Impact of Aerosols Over California  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Model Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu, lvu@lbl.gov, (510) 495-2404 LosAngelesSmogv1.jpg Smog over downtown Los Angeles. Aerosols are microscopic particles-like dust, pollen and soot-that ubiquitously float around in our atmosphere. Despite their tiny stature, these particles can have a huge impact on human health, climate and the environment. So scientists from the Pacific Northwest National Laboratory (PNNL), Colorado State University and the California Air Resources Board have set out to characterize the roles of various particles as atmospheric change agents on a regional scale.

152

3, 59195976, 2003 The nitrate aerosol  

E-Print Network (OSTI)

ACPD 3, 5919­5976, 2003 The nitrate aerosol field over Europe M. Schaap et al. Title Page Abstract of Utrecht, Institute of Marine and Atmospheric Science, PO Box 80005, 3508 TA, Utrecht, The Netherlands 2, The Netherlands 3 Netherlands Energy Research Foundation (ECN), PO Box 1, 1755 LE Petten, The Netherlands 4 Joint

Paris-Sud XI, Université de

153

Interannual Tropospheric Aerosol Variability in the Late Twentieth Century and Its Impact on Tropical Atlantic and West African Climate by Direct and Semidirect Effects  

Science Journals Connector (OSTI)

A new high-resolution global tropospheric aerosol dataset with monthly resolution is generated using version 4 of the Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the ...

Salil Mahajan; Katherine J. Evans; John E. Truesdale; James J. Hack; Jean-François Lamarque

2012-12-01T23:59:59.000Z

154

On the energy content of the atmosphere  

Science Journals Connector (OSTI)

Vertical profiles of the content of sensible heat, potential energy, and latent heat in the atmosphere between...

Stefan L. Hastenrath

1969-01-01T23:59:59.000Z

155

Long-term Statistics of Continental Cumuli: Does Aerosol Trigger Cumulus Variability?  

SciTech Connect

Atmospheric aerosols may control the formation, maintenance, and dissipation of cumuli by changing their microphysics. Recent observational and modeling results exist both in support and against strong potential impacts of aerosol [1-3]. Typically, the aerosol impact on water clouds has been investigated for regions with high aerosol loading and/or large atmospheric moisture [4]. Can we provide observational evidence of the aerosol-cloud relationship for a relatively dry continental region with low/moderate aerosol burden? To address this question, we revisit the aerosol-cloud relationship at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. In comparison with highly polluted regions, the SGP site is characterized by relatively small-to-moderate aerosol loading. Also, moisture content is small-to-moderate (compared to marine and coastal regions) for the SGP site. Because cumulus clouds have important impacts on climate forcing estimations [5] and are susceptible to aerosol effects [6], we focus on fair-weather cumuli (FWC) and their association with aerosol concentration and other potentially important factors. This association is investigated using a new 8-year aerosol and cloud climatology (2000-2007) developed with collocated and coincident surface and satellite observations.

Kassianov, Evgueni I.; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Turner, David D.

2009-02-01T23:59:59.000Z

156

Characterizing the formation of secondary organic aerosols  

SciTech Connect

Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

Lunden, Melissa; Black, Douglas; Brown, Nancy

2004-02-01T23:59:59.000Z

157

Light extinction in the atmosphere  

SciTech Connect

Atmospheric aerosol particles originating from natural sources, such as volcanos and sulfur-bearing gas emissions from the oceans, and from human sources, such as sulfur emissions from fossil fuel combustion and biomass burning, strongly affect visual air quality and are suspected to significantly affect radiative climate forcing of the planet. During the daytime, aerosols obscure scenic vistas, while at night they diminish our ability to observe stellar objects. Scattering of light is the main means by which aerosols attenuate and redistribute light in the atmosphere and by which aerosols can alter and reduce visibility and potentially modify the energy balance of the planet. Trends and seasonal variability of atmospheric aerosol loading, such as column-integrated light extinction or optical depth, and how they may affect potential climate change have been difficult to quantify because there have been few observations made of important aerosol optical parameters, such as optical depth, over the globe and over time and often these are of uneven quality. To address questions related to possible climate change, there is a pressing need to acquire more high-quality aerosol optical depth data. Extensive deployment of improved solar radiometers over the next few years will provide higher-quality extinction data over a wider variety of locations worldwide. An often overlooked source of turbidity data, however, is available from astronomical observations, particularly stellar photoelectric photometry observations. With the exception of the Project ASTRA articles published almost 20 years ago, few of these data ever appear in the published literature. This paper will review the current status of atmospheric extinction observations, as highlighted by the ASTRA work and augmented by more recent solar radiometry measurements.

Laulainen, N.

1992-06-01T23:59:59.000Z

158

Improved solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

159

Quantifying the Aerosol Indirect Effect Using Ground-Based Remote Sensors and Models  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying the Aerosol Indirect Effect Quantifying the Aerosol Indirect Effect Using Ground-Based Remote Sensors and Models G. Feingold National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. E. Lane Rutgers University Camden, New Jersey Q.-L. Min Atmospheric Sciences Research Center State University of New York Albany, New York Introduction The effect of aerosols on cloud microphysical and radiative properties (the "indirect effect") has the greatest uncertainty of all known climate-forcing mechanisms. Increases in aerosol concentrations result in higher concentrations of cloud condensation nuclei (CCN), increased cloud droplet concentrations, and smaller droplet sizes (Twomey 1974). A possible secondary effect is the suppression of rainfall.

160

Atmospheric Science Program Cumulus Humilis Aerosol Processing...  

NLE Websites -- All DOE Office Websites (Extended Search)

term used to describe the small fair weather clouds that dot the summer skies over Oklahoma. During the month of June, scientists sponsored by the U.S. Department of Energy's...

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Evolution of Organic Aerosols in the Atmosphere  

Science Journals Connector (OSTI)

...and to improve air quality (13...global climate and air-quality models...21). POA from fossil fuel combustion and...substantial particulate pollution, including intense...dilution of the air mass. Biomass...quasi-ideal solution according to standard...

J. L. Jimenez; M. R. Canagaratna; N. M. Donahue; A. S. H. Prevot; Q. Zhang; J. H. Kroll; P. F. DeCarlo; J. D. Allan; H. Coe; N. L. Ng; A. C. Aiken; K. S. Docherty; I. M. Ulbrich; A. P. Grieshop; A. L. Robinson; J. Duplissy; J. D. Smith; K. R. Wilson; V. A. Lanz; C. Hueglin; Y. L. Sun; J. Tian; A. Laaksonen; T. Raatikainen; J. Rautiainen; P. Vaattovaara; M. Ehn; M. Kulmala; J. M. Tomlinson; D. R. Collins; M. J. Cubison; E.; J. Dunlea; J. A. Huffman; T. B. Onasch; M. R. Alfarra; P. I. Williams; K. Bower; Y. Kondo; J. Schneider; F. Drewnick; S. Borrmann; S. Weimer; K. Demerjian; D. Salcedo; L. Cottrell; R. Griffin; A. Takami; T. Miyoshi; S. Hatakeyama; A. Shimono; J. Y Sun; Y. M. Zhang; K. Dzepina; J. R. Kimmel; D. Sueper; J. T. Jayne; S. C. Herndon; A. M. Trimborn; L. R. Williams; E. C. Wood; A. M. Middlebrook; C. E. Kolb; U. Baltensperger; D. R. Worsnop

2009-12-11T23:59:59.000Z

162

Our Dusty Atmosphere | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dusty Atmosphere Dusty Atmosphere Our Dusty Atmosphere September 6, 2011 - 4:26pm Addthis A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Researchers are developing a better understanding of the effects of

163

Our Dusty Atmosphere | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Our Dusty Atmosphere Our Dusty Atmosphere Our Dusty Atmosphere September 6, 2011 - 4:26pm Addthis A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts? Researchers are developing a better understanding of the effects of

164

E-Print Network 3.0 - atmospheric krypton-85 concentrations Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geosciences Union Atmospheric Chemistry and Physics Characterization of aerosol... -shale-burning industrial areas. Ion chro- matography analysis showed that concentrations of...

165

E-Print Network 3.0 - atmospheric surface layer Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

determining albedo and opacity Clouds Snow and ice Aerosols Time... Horizontal transport in the atmosphere Dry and moist static energy Eddy ... Source: Sherwood, Steven -...

166

E-Print Network 3.0 - atmospheric monitoring mass Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Paris May 2003John Matthews Monitoring the Aerosol Phase Function... University of New Mexico 12;AstroParticles & Atmosphere, Paris May 2003John Matthews 12;Astro... Particles &...

167

PNNL-MILAGRO Aerosol Modeling in Mexico | Open Energy Information  

Open Energy Info (EERE)

PNNL-MILAGRO Aerosol Modeling in Mexico PNNL-MILAGRO Aerosol Modeling in Mexico Jump to: navigation, search Name PNNL-MILAGRO Aerosol Modeling in Mexico Agency/Company /Organization Pacific Northwest National Laboratory Topics Co-benefits assessment Resource Type Dataset, Maps Website http://www.pnl.gov/atmospheric Country Mexico UN Region Latin America and the Caribbean References PNNL-MILAGRO Aerosol Modeling in Mexico[1] "MILGARO surface data includes measurements from Supersites, RAMA (Red Automatica de Monitoreo Atmosferico), Mobile, and Other sites. A description of each site type follows along with a plot of the site locations. Supersites Supersites provide detailed atmospheric chemistry and meteorological measurements; these sites included: T0 (located at the Instituto Mexicano

168

Pressure-flow reducer for aerosol focusing devices  

DOE Patents (OSTI)

A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

Gard, Eric (San Francisco, CA); Riot, Vincent (Oakland, CA); Coffee, Keith (Diablo Grande, CA); Woods, Bruce (Livermore, CA); Tobias, Herbert (Kensington, CA); Birch, Jim (Albany, CA); Weisgraber, Todd (Brentwood, CA)

2008-04-22T23:59:59.000Z

169

A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform Clouds Gijs de Boer, Tempei Hashino, Edwin W. Eloranta and Gregory J. Tripoli The University of Wisconsin - Madison (1) Introduction (1) Introduction Mixed-phase stratiform clouds are commonly observed at high latitudes (Shupe et al., 2006; de Boer et al., 2009a). These clouds significaly impact the atmospheric radiative

170

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

171

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

SciTech Connect

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

172

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

SciTech Connect

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

173

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

DOE Data Explorer (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

174

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

DOE Data Explorer (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

175

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

176

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

SciTech Connect

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

177

Carbonaceous Aerosols and Radiative...  

NLE Websites -- All DOE Office Websites (Extended Search)

and absorption of light by aerosols. At the ground sites, a new Humidigraph, a Cloud Condensation Nuclei Counter, a Scanning Mobility Particle Sizer, and an upgraded 915-MHz...

178

Acidbase chemical reaction model for nucleation rates in the polluted atmospheric boundary layer  

E-Print Network (OSTI)

Atmospheric Sciences Division, Brookhaven National Laboratory, Upton, NY 11973; f Sustainable Energy Systems Group, Environmental Energy Technologies Division, E. O. Lawrence Berkeley National Laboratory, Berkeley agreement with measurements from Mexico City and Atlanta. amines | atmospheric aerosol | climate forcing

179

Coal Fly Ash as a Source of Iron in Atmospheric Dust. | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Fly Ash as a Source of Iron in Atmospheric Dust. Coal Fly Ash as a Source of Iron in Atmospheric Dust. Abstract: Anthropogenic coal fly ash aerosols may represent a...

180

Spaceborne profiling of atmospheric temperature and particle extinction with pure rotational Raman lidar and of relative humidity in combination with differential absorption lidar: performance simulations  

SciTech Connect

The performance of a spaceborne temperature lidar based on the pure rotational Raman (RR) technique in the UV has been simulated. Results show that such a system deployed onboard a low-Earth-orbit satellite would provide global-scale clear-sky temperature measurements in the troposphere and lower stratosphere with precisions that satisfy World Meteorological Organization (WMO) threshold observational requirements for numerical weather prediction and climate research applications. Furthermore, nighttime temperature measurements would still be within the WMO threshold observational requirements in the presence of several cloud structures. The performance of aerosol extinction measurements from space, which can be carried out simultaneously with temperature measurements by RR lidar, is also assessed. Furthermore, we discuss simulations of relative humidity measurements from space obtained from RR temperature measurements and water-vapor data measured with the differential absorption lidar (DIAL) technique.

Di Girolamo, Paolo; Behrendt, Andreas; Wulfmeyer, Volker

2006-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Comparison of coliphage and bacterial aerosols at a wastewater spray irrigation site.  

Science Journals Connector (OSTI)

...replaced by distilled water plus 0.1% Tween 80...tained 30 ml of distilled water for sampling of dye aerosols...spinning-disk aerosol generator (Environmental Re...ground level. Seeding of water with f2 virus and fluorescein...at the Fort Huachuca Atmospheric Sciences Laboratory...

H T Bausum; S A Schaub; K F Kenyon; M J Small

1982-01-01T23:59:59.000Z

182

Organic Aerosols in the Earth's J O O S T D E G O U W *  

E-Print Network (OSTI)

, and indirectly through their role as cloud-condensation nuclei. A large fraction (50%) of the submicron aerosol(primaryorganicaerosolorPOA) are distinguished from secondary organic aerosol (SOA) formed in the atmosphere from gas-phase precursors. Both POA scales of minutes: particle-into-liquid sampling combined with total organic carbon analysis for measure

Jimenez, Jose-Luis

183

Direct radiative effect of aerosols emitted by transport from road, shipping and  

E-Print Network (OSTI)

Direct radiative effect of aerosols emitted by transport from road, shipping and aviation 1234567.0 License. Atmospheric Chemistry and Physics Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation Y. Balkanski1, G. Myhre2,3, M. Gauss2,*, G. R�adel4, E. J. Highwood4, and K

Wirosoetisno, Djoko

184

Infection of mice by aerosols of Klebsiella pneumoniae under hyperbaric conditions.  

Science Journals Connector (OSTI)

...equipment, and aerosol generation. Each small chamber...Mechanical Engineers Un- fired Pressure Vessel Code...or other mixed-gas atmospheres. The...gauges, electric power feed-through...of aerosol. Air (gas) in the central...of bacteriocidal power of the blood. J...

R J Heckly; M A Chatigny; R L Dimmick

1980-07-01T23:59:59.000Z

185

Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions  

Science Journals Connector (OSTI)

...common model that reproduces the general features of all...throughout the aerosol life cycle in the atmosphere. Aging can significantly...gas-particle interactions—part 1: General equations, parameters, and terminology . Atmos Chem...steranes) in motor oil and diesel primary organic aerosols with...

Neil M. Donahue; Kaytlin M. Henry; Thomas F. Mentel; Astrid Kiendler-Scharr; Christian Spindler; Birger Bohn; Theo Brauers; Hans P. Dorn; Hendrik Fuchs; Ralf Tillmann; Andreas Wahner; Harald Saathoff; Karl-Heinz Naumann; Ottmar Möhler; Thomas Leisner; Lars Müller; Marc-Christopher Reinnig; Thorsten Hoffmann; Kent Salo; Mattias Hallquist; Mia Frosch; Merete Bilde; Torsten Tritscher; Peter Barmet; Arnaud P. Praplan; Peter F. DeCarlo; Josef Dommen; Andre S.H. Prévôt; Urs Baltensperger

2012-01-01T23:59:59.000Z

186

Formation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning  

E-Print Network (OSTI)

Physics and Chemistry Abstract The combustion of biomass is a major source of atmospheric trace gasesFormation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning by Matthew and Planetary Sciences #12;Formation of Ozone and Growth of Aerosols in Young Smoke Plumes from Biomass Burning

187

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents (OSTI)

A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

Postma, Arlin K. (Halfway, OR)

1986-01-01T23:59:59.000Z

188

Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report  

SciTech Connect

In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

2011-08-31T23:59:59.000Z

189

Analyzing Surface Solar Flux Data in Oregon for Changes Due to Aerosols Laura D. Riihimaki1, Frank E. Vignola1, Charles N. Long2, James A. Coakley Jr.3 1 University of Oregon Solar Radiation Monitoring Lab 2 Pacific Northwest National Laboratory 3 Oregon State University, College of Oceanic and Atmospheric Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

76 76 1980 1984 1988 1992 1996 2000 2004 2008 100 150 200 250 Direct Normal Irradiance (W/m 2 ) Eugene Hermiston Burns 3. All-sky direct normal irradiance increases 5% per decade Eppley NIP Conclusions Annual average all-sky total and direct normal irradiance measurements show an overall increase in Oregon between 1980 and 2007. Two measurement sites show statistically significant increases in clear- sky direct normal irradiance in background periods before and after the eruption of Mt. Pinatubo [6] (1987- 2008), consistent with the hypothesis that a reduction in anthropogenic aerosols may contribute to the increase in surface irradiance. References 1. Long, C.N. and T. P. Ackerman, 2000: J. Geophys. Res., 105(D12), 15,609-15,626. 2. Long, C.N., and K.L. Gaustad, 2004: Atmospheric Radiation

190

The Airborne Cloud–Aerosol Transport System: Overview and Description of the Instrument and Retrieval Algorithms  

Science Journals Connector (OSTI)

The Airborne Cloud–Aerosol Transport System (ACATS) is a Doppler wind lidar system that has recently been developed for atmospheric science capabilities at the NASA Goddard Space Flight Center (GSFC). ACATS is also a high-spectral-resolution lidar ...

John E. Yorks; Matthew J. McGill; V. Stanley Scott; Shane W. Wake; Andrew Kupchock; Dennis L. Hlavka; William D. Hart; Patrick A. Selmer

2014-11-01T23:59:59.000Z

191

E-Print Network 3.0 - aerosol polarimetry sensor Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

sensor Page: << < 1 2 3 4 5 > >> 1 National Aeronautics and Space Administration. www.nasa.gov. Summary: energy that strikes the top of the atmosphere. Meanwhile, Glory's Aerosol...

192

Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)  

E-Print Network (OSTI)

Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting ...

Cziczo, Daniel James

193

Contrasting the direct radiative effect and direct radiative forcing of aerosols  

E-Print Network (OSTI)

The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which ...

Heald, Colette L.

194

Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US : prescribed burns and wildfires.  

E-Print Network (OSTI)

??Insufficient knowledge regarding the sources and number concentrations of atmospheric ice nucleating particles (INP) leads to large uncertainties in understanding the interaction of aerosols with… (more)

McCluskey, Christina S.

2013-01-01T23:59:59.000Z

195

Atmospheric Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

competencies Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced...

196

Ocean–Atmosphere Interactions in the Emergence of Complexity in Simple Chemical Systems  

Science Journals Connector (OSTI)

Ocean–Atmosphere Interactions in the Emergence of Complexity in Simple Chemical Systems ... In this Account, we examine how water–air interfaces, namely, the surfaces of lakes, oceans, and atmospheric aerosols on ancient Earth, facilitated the emergence of complex structures necessary for life. ... Aerosols are liquid or solid suspensions in air with a broad, power law size distribution. ...

Elizabeth C. Griffith; Adrian F. Tuck; Veronica Vaida

2012-04-17T23:59:59.000Z

197

Discrimination between thin cirrus and and tropospheric aerosol using  

NLE Websites -- All DOE Office Websites (Extended Search)

Discrimination between thin cirrus and and tropospheric aerosol using Discrimination between thin cirrus and and tropospheric aerosol using multiple measurements from Darwin ARCS Mitchell, Ross CSIRO Category: Aerosols Thin cirrus cloud occurs frequently in the tropics, and is often difficult to distinguish from tropospheric aerosol on the basis of temporal variations in ground based measurements, since both can be rather spatially uniform. In this study we investigate their discrimination by combining data from three instruments at the Darwin Atmospheric Radiation and Cloud Station (ARCS): the Cimel sun photometer (CSP), the micropulse lidar (MPL), and the total sky imager (TSI). The study was carried out over the dry season of 2005, with the usual widespread burning of tropical savanna leading to extensive smoke plumes. It is shown that the locus of data in

198

The Two-Column Aerosol Project (TCAP) Science Plan  

SciTech Connect

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

199

Aerosol Cans? -Aerosol cans use a pressurized  

E-Print Network (OSTI)

? - The waste generated in the processing of images/photos contains silver. Silver is a toxic heavy metal the product. Propellants are often flammable and/or toxic. Therefore, never store aerosol cans near ignition of this pamphlet. -Carefully transfer the old paint thinner from the one gallon closable can to the 30 gallon metal

Jia, Songtao

200

One ARM, Two Columns and a Whole Lot of Aerosols | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ARM, Two Columns and a Whole Lot of Aerosols ARM, Two Columns and a Whole Lot of Aerosols One ARM, Two Columns and a Whole Lot of Aerosols July 25, 2012 - 5:49pm Addthis This observatory is part of an air particles research initiative at Cape Cod National Seashore in Massachusetts, and includes dozens of sophisticated instruments that take continuous ground-based measurements of clouds, aerosols, and other atmospheric properties. | Photo courtesy of the ARM Climate Research Facility. This observatory is part of an air particles research initiative at Cape Cod National Seashore in Massachusetts, and includes dozens of sophisticated instruments that take continuous ground-based measurements of clouds, aerosols, and other atmospheric properties. | Photo courtesy of the ARM Climate Research Facility.

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model  

SciTech Connect

Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

2014-05-13T23:59:59.000Z

202

Water content and morphology of sodium chloride aerosol particles  

E-Print Network (OSTI)

to explain the H2O content. The model in which the NaCl particles contain pockets of aqueous NaCl solution was found to be most consistent with the spectroscopic observations. The relevance of salt particle morphology and water content to atmospheric aerosol...

Weis, David D.; Ewing, George E.

1999-09-20T23:59:59.000Z

203

DISSERTATION THE OPTICAL, CHEMICAL, AND PHYSICAL PROPERTIES OF AEROSOLS AND  

E-Print Network (OSTI)

AND GASES EMITTED BY THE LABORATORY COMBUSTION OF WILDLAND FUELS Biomass burning is a major source of trace BY THE LABORATORY COMBUSTION OF WILDLAND FUELS Submitted by Gavin R. McMeeking Department of Atmospheric Science PROPERTIES OF AEROSOL AND GASES EMITTED BY THE LABORATORY COMBUSTION OF WILDLAND FUELS BE ACCEPTED

Pierce, Jeffrey

204

Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”  

SciTech Connect

In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2014-02-16T23:59:59.000Z

205

Evolution of Asian aerosols during transpacific transport in INTEX-B  

SciTech Connect

Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B 5 (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to 10 be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). 15 Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, 20 the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary 25 organic aerosol formation in the free troposphere.

Dunlea, E. J.; DeCarlo, Peter; Aiken, Allison; Kimmel, Joel; Peltier, R. E.; Weber, R. J.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Yohei; McNaughton, C. S.; Howell, S. G.; Clarke, A. D.; Emmons, L.; Apel, Eric; Pfister, G. G.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Heald, C. L.; Jimenez, J. L.

2009-10-01T23:59:59.000Z

206

ARM - Measurement - Aerosol particle size  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass Spectrometer CPI : Cloud Particle Imager DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments DRUM-AEROSOL : Drum Aerosol Sampler AEROSOL-TOWER-EML : EML Tower based Aerosol Measurements

207

A World-wide Stratospheric Aerosol Layer  

Science Journals Connector (OSTI)

...Massachusetts An aerosol layer has been identified by a stratospheric balloon and aircraft aerosol collection program. Measurements...Abstract. An aerosol layer has been identified by a stratospheric balloon and aircraft aerosol collection program. Meas-urements...

Christian E. Junge; Charles W. Chagnon; James E. Manson

1961-05-12T23:59:59.000Z

208

On modification of global warming by sulfate aerosols  

SciTech Connect

There is increasing evidence that the response of climate to increasing greenhouse gases may be modified by accompanying increases in sulfate aerosols. In this study, the patterns of response in the surface climatology of a coupled ocean-atmosphere general circulation model forced by increases in carbon dioxide alone is compared with those obtained by increasing carbon dioxide and aerosol forcing. The simulations are run from early industrial times using the estimated historical forcing and continued to the end of the twenty-first century assuming a nonintervention emissions scenario for greenhouse gases and aerosols. The comparison is made for the period 2030-2050 when the aerosol forcing is a maximum. In winter, the cooling due to aerosols merely tends to reduce the response to carbon dioxide, whereas in summer, it weakens the monsoon circulations and reverses some of the changes in the hydrological cycle on increasing carbon dioxide. This response is in some respects similar to that found in simulations with changed orbital parameters, as between today and the middle Holocene. The hydrological response in the palaeosimulations is supported by palaeoclimatic reconstructions. The results of changes in aerosol concentrations of the magnetic projected in the scenarios would have a major effect on regional climate, especially over Europe and Southeast Asia. 74 refs., 12 figs., 6 tabs.

Mitchell, J.F.B.; Johns, T.C. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

1997-02-01T23:59:59.000Z

209

Dynamics of Planetary Atmospheres  

E-Print Network (OSTI)

pressure (bars) N2 82%; Ar 12%; CH4 6%CO2 96.5%; N2 3.5%Atmospheric composition 26177Orbital inclination (1992) orbiter ­ Winds from cloud-tracking and probe drifts ­ IR temperatures, solar-fixed tides, polar-Huygens mission (from 2005) ­ Doppler wind descent profile ­ IR temperature and composition maps ­ Visible, IR

Read, Peter L.

210

On surface temperature, greenhouse gases, and aerosols: models and observations  

SciTech Connect

The effect of changes in atmospheric carbon dioxide concentrations and sulphate aerosols on near-surface temperature is investigated using a version of the Hadley Centre atmospheric model coupled to a mixed layer ocean. The scattering of sunlight by sulphate aerosols is represented by appropriately enhancing the surface albedo. On doubling atmospheric carbon dioxide concentrations, the global mean temperature increases by 5.2 K. An integration with a 39% increase in CO{sub 2}, giving the estimated change in radiative heating due to increases in greenhouse gases since 1900, produced an equilibrium warming of 2.3 K, which, even allowing for oceanic inertia, is significantly higher than the observed warming over the same period. Furthermore, the simulation suggests a substantial warming everywhere, whereas the observations indicate isolated regions of cooling, including parts of the northern midlatitude continents. The addition of an estimate of the effect of scattering by current industrial aerosols (uncertain by a factor of at least 3) leads to improved agreement with the observed pattern of changes over the northern continents and reduces the global mean warming by about 30%. Doubling the aerosol forcing produces patterns that are still compatible with the observations, but further increase leads to unrealistically extensive cooling in the midlatitudes. The diurnal range of surface temperature decreases over most of the northern extratropics on increasing CO{sub 2}, in agreement with recent observations. The addition of the current industrial aerosol had little detectable effect on the diurnal range in the model because the direct effect of reduced solar heating at the surface is approximately balanced by the indirect effects of cooling. Thus, the ratio of the reduction in diurnal range to the mean warming is increased, in closer agreement with observations. Results from further sensitivity experiments with larger increases in aerosol and CO{sub 2} are presented.

Mitchell, J.F.B.; Davis, R.A.; Ingram, W.J.; Senior, C.A. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

1995-10-01T23:59:59.000Z

211

The Cell Membrane as a Major Site of Damage during Aerosolization of Escherichia coli  

Science Journals Connector (OSTI)

...Germany) using a 60 water immersion lens. The...nozzle and the subsequent atmospheric conditions. Prior to...differences between aerosol generators were significant (P...Typhimurium from soil and water microcosms. Appl...of culturable outdoor atmospheric bacteria. Atmos. Environ...

Richard J. Thomas; Daniel Webber; Rebecca Hopkins; Andrew Frost; Thomas Laws; Pramukh N. Jayasekera; Timothy Atkins

2010-12-10T23:59:59.000Z

212

hal-00205429,version1-16Jan2008 On the number of droplets in aerosols  

E-Print Network (OSTI)

and pollution. Epidemics, radioactive elements can be carried by small droplets; volcanoes generate sulphated aerosols contributing to the destruction of the ozone layer. The planetary atmospheres are charged with such mixtures in suspension. The interaction between oceans and atmosphere generates mixtures of gas and water

Paris-Sud XI, Université de

213

Influence of the thermophoresis on aerosol deposition on warm urban surfaces P. Roupsard1  

E-Print Network (OSTI)

.roupsard@irsn.fr In the case of an accidental or chronic atmospheric pollution by a nuclear plant, aerosols' deposition in the radioactive plume on urban areas with the smallest uncertainties. In this case, deposition must be determined locally in urban canopy. In dry atmospheric conditions, transfer coefficients are defined by the dry

Paris-Sud XI, Université de

214

Characteristics of aerosol optical properties in pollution and Asian dust episodes  

E-Print Network (OSTI)

Characteristics of aerosol optical properties in pollution and Asian dust episodes over Beijing, China Chenbo Xie,1,2 Tomoki Nishizawa,2, * Nobuo Sugimoto,2 Ichiro Matsui,2 and Zifa Wang3 1 Atmospheric for Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui

215

Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change  

E-Print Network (OSTI)

The sensitivity of secondary organic aerosol (SOA) concentration to changes in climate and emissions is investigated using a coupled global atmosphere-land model driven by the year 2100 IPCC A1B scenario predictions. The ...

Heald, C. L.; Henze, D. K.; Horowitz, L. W.; Feddema, Johannes J.; Lamarque, J. F.; Guenther, A.; Hess, P. G.; Vitt, F.; Seinfeld, J. H.; Goldstein, A. H.; Fung, I.

2008-03-01T23:59:59.000Z

216

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents (OSTI)

This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

Postma, A.K.

1984-09-07T23:59:59.000Z

217

Aerosol Radiative Forcing Under Cloudless Conditions.in Winter ZCAREX-2001  

NLE Websites -- All DOE Office Websites (Extended Search)

Forcing Under Cloudless Conditions Forcing Under Cloudless Conditions in Winter ZCAREX-2001 G. S. Golitsyn, I. A. Gorchakova, and I. I. Mokhov Institute of Atmospheric Physic Moscow, Russia Introduction Aerosol radiative forcing (ARF) is estimated for winter clear-sky conditions from measurements during ZCAREX-2001-Cloud-Aerosol-Radiation Experiment in February-March, 2001 at the Zvenigorod Scientific Station (ZSS) of the A.M. Obukhov Institute of Atmospheric Physics RAS. ARF in the shortwave range is determined by the difference between the net fluxes of the solar radiation, calculated with and without the aerosol component of the atmosphere. The estimates of ARF are made for conditions with high surface albedo. Data Used The following data of atmospheric characteristics observed during winter are used for the

218

Atmospheric Radiation Measurement (ARM) Data from Specific Instruments Used in the ARM Program  

DOE Data Explorer (OSTI)

ARM is known for its comprehensive set of world-class, and in some cases, unique, instruments available for use by the global scientific community. In addition to the ARM instruments, the ARM Climate Research Facility identifies and acquires a wide variety of data including model, satellite, and surface data, from "external instruments," to augment the data being generated within the program. External instruments belong to organizations that are outside of the ARM Program. Field campaign instruments are another source of data used to augment routine observations. The huge archive of ARM data can be organized by instrument categories into twelve "collections:" Aerosols, Airborne Observations, Atmospheric Carbon, Atmospheric Profiling, Cloud Properties, Derived Quantities and Models, Ocean Observations, Radiometric, Satellite Observations, Surface Meteorology, Surface/Subsurface Properties, and Other. Clicking on one of the instrument categories leads to a page that breaks that category down into sub-categories. For example, "Atmospheric Profiling" is broken down into ARM instruments (with 11 subsets), External Instruments (with 6 subsets), and Field Campaign Instruments (with 42 subsets). Each of the subset links, in turn, leads to detailed information pages and links to specific data streams. Users will be requested to create a password, but the data files are free for viewing and downloading.

219

Interactive Visualization of Modeled Atmospheric Trace Constituents Carmen M. Benkovitz  

E-Print Network (OSTI)

the effects of the emissions of Popocatepetl volcano, located near Mexico City. The effects of stronger of the Brookhaven National Laboratory Chemical Transport Model (CTM) of sulfate in the atmosphere. The visualization on climate. Anthropogenic activities affect the aerosol content of the atmosphere. Anthropogenic emissions

220

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

SciTech Connect

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane  

DOE Data Explorer (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

222

Geometrical Optics of Dense Aerosols  

SciTech Connect

Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

2013-04-24T23:59:59.000Z

223

Jankovic Aerosol Characterization.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization, Characterization, Aerosol Characterization, Interpretation, and Interpretation, and Application of Data Application of Data NSRC Symposium NSRC Symposium July 8, 2008 John Jankovic, CIH CIH Center for Nanophase Materials Sciences Center for Nanophase Materials Sciences Aerosol Characterization, Interpretation, and Aerosol Characterization, Interpretation, and Application of Data Application of Data Department of Energy (DOE) Nanoscale Science Research Centers (NSRC) developing Approach to Nanomaterial ES&H - The CNMS Approach * Establish Exposure Control Guideline (ECG) - Characterize Aerosol * Collect and interpret data * Assign Process to a Control Band Aerosol Particle Characterization * Size distribution (geometric mean and geometric standard deviation related to either mass, surface, or number)

224

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

225

Atmospheric Dynamics of Exoplanets  

E-Print Network (OSTI)

The characterization of exoplanetary atmospheres has come of age in the last decade, as astronomical techniques now allow for albedos, chemical abundances, temperature profiles and maps, rotation periods and even wind speeds to be measured. Atmospheric dynamics sets the background state of density, temperature and velocity that determines or influences the spectral and temporal appearance of an exoplanetary atmosphere. Hot exoplanets are most amenable to these characterization techniques; in the present review, we focus on highly-irradiated, large exoplanets (the "hot Jupiters"), as astronomical data begin to confront theoretical questions. We summarize the basic atmospheric quantities inferred from the astronomical observations. We review the state of the art by addressing a series of current questions and look towards the future by considering a separate set of exploratory questions. Attaining the next level of understanding will require a concerted effort of constructing multi-faceted, multi-wavelength dat...

Heng, Kevin

2014-01-01T23:59:59.000Z

226

aerosols and climate : uncertainties  

E-Print Network (OSTI)

contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

227

Direct Aerosol Forcing in the Infrared at the SGP Site?  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

228

Aerosols and Clouds: In Cahoots to Change Climate  

ScienceCinema (OSTI)

Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

Berg, Larry

2014-06-02T23:59:59.000Z

229

Parameterizations of Cloud Microphysics and Indirect Aerosol Effects  

SciTech Connect

1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

2014-05-19T23:59:59.000Z

230

Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant  

SciTech Connect

This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment â?? Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

Weinstein-Lloyd, Judith B

2009-05-04T23:59:59.000Z

231

Musical Atmospherics  

Science Journals Connector (OSTI)

... THE characteristics of audio musical atmospherics which are obtained when an ... musical atmospherics which are obtained when an audio amplifier is placed in a long line or aerial have been discussed from time to ...

T. L. ECKERSLEY

1935-01-19T23:59:59.000Z

232

Investigations of the Absorption Properties of Near-Ground Aerosol by the Methods of Optical-Acoustic Spectrometry and Diff...  

NLE Websites -- All DOE Office Websites (Extended Search)

Investigations of the Absorption Properties of Investigations of the Absorption Properties of Near-Ground Aerosol by the Methods of Optical-Acoustic Spectrometry and Diffuse Extinction V. S. Kozlov, M. V. Panchenko, A. B. Tikhomirov, and B. A. Tikhomirov Institute of Atmospheric Optics Tomsk, Russia Introduction Aerosol absorption is an important factor in the formation of non-selective radiation extinction in the visible wavelength range, and plays a great role in solving many radiative and climatic problems. The principal absorbing substance in atmospheric aerosol is soot (crystal carbon), which strongly affects the atmospheric transparency, albedo of clouds, and snow cover. The non-selective absorption by finely dispersed soot aerosol is considered to be one of the most plausible reasons for the appearance of

233

THE DOE ATMOSPHERIC SCIENCE PROGRAM Highlights from the 2008 Science Team Meeting  

E-Print Network (OSTI)

atmospheric CO2 that would result in a given increase in global mean surface temperature. · Uncertainty Aerosol Experiment­MEXico City (MAX-MEX) ­ 2006. Cumulus Humilis Aerosol Processing Study (CHAPS) ­ OK in global chemical transport models and global climate models. Summary. DOE workshop on "grand challenges

Schwartz, Stephen E.

234

ARM - Mobile Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesMobile Aerosol Observing System FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Aerosol Observing System Intensive aerosol observations conducted on the campus of Brookhaven National Laboratory on Long Island, New York, using the ARM Mobile Aerosol Observing System. Intensive aerosol observations conducted on the campus of Brookhaven

235

Aerosol Observing System (AOS) Handbook  

SciTech Connect

The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

Jefferson, A

2011-01-17T23:59:59.000Z

236

Active Spectral Nephelometry in Studies of the Condensational Activity of Submicron Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Spectral Nephelometry in Studies of the Active Spectral Nephelometry in Studies of the Condensational Activity of Submicron Aerosol M. V. Panchenko, S. A. Terpugova, and V. S. Kozlov Institute of Atmospheric Optics Russian Academy of Sciences Tomsk, Russia M. A. Sviridenkov A. M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia A. S. Kozlov Institute of Chemical Kinetics and Combustion Russian Academy of Sciences Novosibirsk, Russia Introduction Water vapor condensation and evaporation are among the main processes of the atmospheric aerosol transformation essentially affecting its optical and radiative characteristics. Most of the known methods for investigating the aerosol condensation activity are based on measurements of only the changes in the

237

The impact of biogenic carbon emissions on aerosol absorption inMexico City  

SciTech Connect

In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

2009-02-24T23:59:59.000Z

238

Experimental study of nuclear workplace aerosol samplers  

E-Print Network (OSTI)

LITERATURE REVIEW Aerosol Losses in an Inlet . Aerosol Losses in a Transport System Aerosol Losses in CAMs Critical Flow Venturi 8 13 15 16 EXPERIMENT PROCEDURE 18 CAM Evaluation Consideration FAS Evaluation Consideration Test Protocol Mixing... Chamber Setup High Speed Aerosol Wind Tunnel Setup Low Speed Aerosol Wind Tunnel Setup Critical Flow Venturi 18 19 21 22 24 25 27 RESULTS AND DISCUSSION Page 28 Aerosol Penetration through Transport Systems and CAM Areal Uniformity Deposits...

Parulian, Antony

2012-06-07T23:59:59.000Z

239

ARM Cloud Aerosol Precipitation Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Observation CAS Cloud Aerosol Spectrometer CCN Cloud Condensation Nuclei CIP Cloud Imaging Probe CPC Condensation Particle Counter CSPHOT Cimel sunphotometer CVI...

240

Molecular Characterization of Biomass Burning Aerosols Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Regional variation of organic functional groups in aerosol particles on four U.S. east coast platforms during the International Consortium for  

E-Print Network (OSTI)

and secondary organic aerosol (SOA) formation. SOA can be formed by condensation of species produced by gas aerosol samples were collected during the International Consortium for Atmospheric Research on Transport) spectroscopy at all four sampling platforms. The ratio of molar concentrations of carbonyl C=O to saturated

242

Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)  

SciTech Connect

Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes in climate models.

Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

2012-08-22T23:59:59.000Z

243

Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing  

SciTech Connect

Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

2013-11-01T23:59:59.000Z

244

Techniques and Methods Used to Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility C. Sivaraman, D. D. Turner, and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington Objective Profiles of aerosol optical properties are needed for radiative closure exercises such as the broadband heating rate profile (BBHRP) project (Mlawer et al. 2002) and the Shortwave Quality Measurement Experiment (QME). Retrieving cloud microphysical properties using radiation measurements in the shortwave, such as the spectral retrieval technique described in Daniel et al. (2002), also require the optical properties of the aerosols so that they can be accounted for in the retrieval process. The objective of the aerosol best estimate (ABE) value-added procedure (VAP) is to provide profiles of

245

The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions  

E-Print Network (OSTI)

The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic ...

Guenther, A. B.

246

Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign  

E-Print Network (OSTI)

The Mexico City Metropolitan Area (MCMA) experiences high loadings of atmospheric aerosols from anthropogenic sources, biomass burning and wind-blown dust. This paper uses a combination of measurements and numerical ...

de Foy, B.

247

Atmospheric Neutrinos  

E-Print Network (OSTI)

This paper is a brief overview of the theory and experimental data of atmospheric neutrino production at the fiftieth anniversary of the experimental discovery of neutrinos.

Thomas K. Gaisser

2006-12-11T23:59:59.000Z

248

Airborne measurements of carbonaceous aerosols in southern Africa during  

NLE Websites -- All DOE Office Websites (Extended Search)

Airborne measurements of carbonaceous aerosols in southern Africa during Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season Title Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season Publication Type Journal Article LBNL Report Number LBNL-50880 Year of Publication 2003 Authors Kirchstetter, Thomas W., Tihomir Novakov, and Peter V. Hobbs Journal Journal of Geophysical Research - Atmospheres Keywords black carbon, evolved gas analysis, light absorption, organic carbon, positive sampling artifact, SAFARI Abstract Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18±0.06) is lower than that of samples collected in the regional haze (0.25±0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

249

Improved Humidity Profiling by Combining Passive and Active Remote...  

NLE Websites -- All DOE Office Websites (Extended Search)

resolution of atmospheric humidity profiles. We show preliminary results and discuss advantages and limitations related to this technique. Basic Principles The role of ground-based...

250

FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations  

SciTech Connect

The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled “Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models” to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (10–20 km) until 5–10 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

Koch, D

2011-03-20T23:59:59.000Z

251

Climate response of the South Asian monsoon system to anthropogenic aerosols  

SciTech Connect

The equilibrium climate response to the total effects (direct, indirect and semi-direct effects) of aerosols arising from anthropogenic and biomass burning emissions on the South Asian summer monsoon system is studied using a coupled atmosphere-slab ocean model. Our results suggest that anthropogenic and biomass burning aerosols generally induce a reduction in mean summer monsoon precipitation over most parts of the Indian subcontinent, strongest along the western coastline of the Indian peninsula and eastern Nepal region, but modest increases also occur over the north western part of the subcontinent. While most of the noted reduction in precipitation is triggered by increased emissions of aerosols from anthropogenic activities, modest increases in the north west are mostly associated with decreases in local emissions of aerosols from forest fire and grass fire sources. Anthropogenic aerosols from outside Asia also contribute to the overall reduction in precipitation but the dominant contribution comes from aerosol sources within Asia. Local emissions play a more important role in the total rainfall response to anthropogenic aerosol sources during the early monsoon period, whereas both local as well as remote emissions of aerosols play almost equally important roles during the later part of the monsoon period. While precipitation responses are primarily driven by local aerosol forcing, regional surface temperature changes over the region are strongly influenced by anthropogenic aerosols from sources further away (non-local changes). Changes in local anthropogenic organic and black carbon emissions by as much as a factor of two (preserving their ratio) produce the same basic signatures in the model's summer monsoon temperature and precipitation responses.

Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

2012-07-13T23:59:59.000Z

252

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect

In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

Glenn C. England

2004-10-20T23:59:59.000Z

253

Sulfate aerosols and polar stratospheric cloud formation  

SciTech Connect

Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most important heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underline the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.

Tolbert, M.A. (Univ. of Colorado, Boulder, CO (United States))

1994-04-22T23:59:59.000Z

254

CARES Helps Explain Secondary Organic Aerosols  

ScienceCinema (OSTI)

What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

Zaveri, Rahul

2014-06-02T23:59:59.000Z

255

Aerosol Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Aerosol Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Aerosol Laboratory The Aerosol Laboratory (AL) houses equipment to measure and record the physical parameters necessary to characterize the formation and transport of aerosols. Bookmark and Share The Aerosol Laboratory (AL) has extensive analytic and experimental capabilities to characterize the formation and transport of aerosols formed from the condensation of vapors. Computer codes have been developed to

256

Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem  

SciTech Connect

This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.

Yang Q.; Lee Y.; Gustafson Jr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

2011-12-02T23:59:59.000Z

257

Evidence that the spectral dependence of light absorption by aerosols is  

NLE Websites -- All DOE Office Websites (Extended Search)

Evidence that the spectral dependence of light absorption by aerosols is Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon Title Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon Publication Type Journal Article LBNL Report Number LBNL-55056 Year of Publication 2004 Authors Kirchstetter, Thomas W., Tihomir Novakov, and Peter V. Hobbs Journal Journal of Geophysical Research: Atmospheres Volume 109 Issue D21 Keywords aerosol light absorption, biomass burning, organic carbon Abstract The wavelength dependence of light absorption by aerosols collected on filters is investigated throughout the near-ultraviolet to near-infrared spectral region. Measurements were made using an optical transmission method. Aerosols produced by biomass combustion, including wood and savanna burning, and by motor vehicles, including diesel trucks, are included in the analysis. These aerosol types were distinguished by different wavelength (λ) dependences in light absorption. Light absorption by the motor vehicle aerosols exhibited relatively weak wavelength dependence; absorption varied approximately as λ-1, indicating that black carbon (BC) was the dominant absorbing aerosol component. By contrast, the biomass smoke aerosols had much stronger wavelength dependence, approximately λ-2. The stronger spectral dependence was the result of enhanced light absorption at wavelengths shorter than 600 nm and was largely reduced when much of the sample organic carbon (OC) was extracted by dissolution in acetone. This indicates that OC in addition to BC in the biomass smoke aerosols contributed significantly to measured light absorption in the ultraviolet and visible spectral regions and that OC in biomass burning aerosols may appreciably absorb solar radiation. Estimated absorption efficiencies and imaginary refractive indices are presented for the OC extracted from biomass burning samples and the BC in motor vehicle-dominated aerosol samples. The uncertainty of these constants is discussed. Overall, results of this investigation show that low-temperature, incomplete combustion processes, including biomass burning, can produce light-absorbing aerosols that exhibit much stronger spectral dependence than high-temperature combustion processes, such as diesel combustion.

258

Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface-Based Remote Sensing of the Surface-Based Remote Sensing of the Aerosol Indirect Effect at Southern Great Plains G. Feingold and W. L. Eberhard National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. E. Vernon and M. Previdi Rutgers University New Brunswick, New Jersey Abstract We have demonstrated first measurements of the aerosol indirect effect using ground-based remote sensors at the Southern Great Plains (SGP) site. The response of non-precipitating, ice-free clouds to changes in aerosol loading is quantified in terms of a relative change in cloud-drop effective radius (r e ) for a relative change in aerosol extinction under conditions of equivalent cloud liquid water path (LWP). This is done in a single column of air at a temporal resolution of 20 s (spatial resolution of ~100 m).

259

Cloud Condensation Nuclei Profile Value-Added Product  

SciTech Connect

The cloud condensation nuclei (CCN) concentration at cloud base is the most relevant measure of the aerosol that influences droplet formation in clouds. Since the CCN concentration depends on supersaturation, a more general measure of the CCN concentration is the CCN spectrum (values at multiple supersaturations). The CCN spectrum is now measured at the surface at several fixed ARM sites and by the ARM Mobile Facility (AMF), but is not measured at the cloud base. Rather than rely on expensive aircraft measurements for all studies of aerosol effects on clouds, a way to project CCN measurements at the surface to cloud base is needed. Remote sensing of aerosol extinction provides information about the vertical profile of the aerosol, but cannot be directly related to the CCN concentration because the aerosol extinction is strongly influenced by humidification, particularly near cloud base. Ghan and Collins (2004) and Ghan et al. (2006) propose a method to remove the influence of humidification from the extinction profiles and tie the “dry extinction” retrieval to the surface CCN concentration, thus estimating the CCN profile. This methodology has been implemented as the CCN Profile (CCNPROF) value-added product (VAP).

McFarlane, S; Sivaraman, C; Ghan, S

2012-10-08T23:59:59.000Z

260

Spectro-microscopic Measurements of Carbonaceous Aerosol Aging in Central California  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectro-microscopic Measurements of Carbonaceous Spectro-microscopic Measurements of Carbonaceous Aerosol Aging in Central California For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Atmospheric aerosols affect climate by scattering and absorbing sunlight and by modifying the properties of clouds. However, there are gaps in our understanding of chemical processes involving these airborne particulates, and these gaps contribute significantly to uncertainties in predicting future climate change. Developing more- accurate global climate models requires a more complete understanding of the aerosol lifecycle, from initial particle formation to loss through incorporation into precipitating clouds or dry deposition. In research published in the journal Atmospheric Chemistry and Physics, a team of

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An Instrumentation Complex for Atmospheric Radiation Measurements in Siberia  

NLE Websites -- All DOE Office Websites (Extended Search)

Instrumentation Complex for Atmospheric Radiation Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Polkin, V. P. Shmargunov, S. A. Terpugova, S. A. Turchinovich, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction The instrumentation complex is described, which has been prepared for radiative experiments in the region of Tomsk (West Siberia). The complex consists of three groups of devices to measure (a) the characteristics of the total downward radiation; (b) the most variable components of the atmospheric transparency directly affecting the income of radiation (aerosol optical depth [AOD], total content of water vapor, ozone, etc.); and (c) aerosol and meteorological parameters of the near-ground layer of the

262

High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonenew  

E-Print Network (OSTI)

and measured reaction products in the monomer product range. Introduction Atmospheric aerosols impact local air of both monomeric (m/z o 300) and oligomeric (m/z 4 300) condensed products of oxidation. A combination by previous studies. The isomerization reactions yield numerous products with a progressively increasing

Nizkorodov, Sergey

263

CHARACTERIZING THE INFLUENCE OF ANTHROPOGENIC EMISSIONS AND TRANSPORT VARIABILITY ON SULFATE AEROSOL CONCENTRATIONS AT MAUNA  

E-Print Network (OSTI)

CONCENTRATIONS AT MAUNA LOA OBSERVATORY Sulfate aerosol in the atmosphere has substantial impacts on human health confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N

Pierce, Jeffrey

264

Net radiative effect of dust aerosols from satellite measurements over Sahara  

E-Print Network (OSTI)

's Radiant Energy System (CERES) to calculate the top-of-atmosphere SW and LW flux radiative effect due to oceans where the shortwave effect dominates. Citation: Yang, E.-S., P. Gupta, and S. A. Christopher (2009 of aerosols, space-borne sensors use information from the ultraviolet (UV) to the visible and thermal infrared

Christopher, Sundar A.

265

ARM - Surface Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesSurface Aerosol Observing System FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Surface Aerosol Observing System The ARM Mobile Facility (AMF) is equipped to quantify the interaction between clouds and aerosol particles. A counter-flow virtual impactor (CVI) is used to selectively sample cloud drops. The CVI takes advantage of the

266

Atmospheric tritium  

SciTech Connect

Research progress for the year 1979 to 1980 are reported. Concentrations of tritiated water vapor, tritium gas and tritiated hydrocarbons in the atmosphere at selected sampling points are presented. (ACR)

Oestlund, H.G.; Mason, A.S.

1980-01-01T23:59:59.000Z

267

PNNL: Atmospheric Sciences & Global Change - Frontiers in Global Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Frontiers in Global Change Frontiers in Global Change Dr. Thanos Nenes Dr. Thanos Nenes Aerosol-Cloud Interactions: The Elusive Component of Climate Change Dr. Thanos Nenes Professor & Georgia Power Faculty Scholar, School of Earth & Atmospheric Sciences, School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA Thursday, August 1, 2013 EMSL Auditorium 10:00AM The effect of human activities on climate is one of the most important issues facing society. Humans influence climate in many ways. Emissions of greenhouse gases (GHGs) tend to warm climate, by reducing the amount of infrared radiation that is emitted to space. Increased levels of suspended atmospheric particles ("aerosols") exert a net cooling effect by directly scattering and absorption of solar radiation (the "aerosol direct climatic

268

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2007  

SciTech Connect

This annual report describes the purpose and structure of the program, and presents key accomplishments in 2007. Notable achievements include: • Successful review of the ACRF as a user facility by the DOE Biological and Environmental Research Advisory Committee. The subcommittee reinforced the importance of the scientific impacts of this facility, and its value for the international research community. • Leadership of the Cloud Land Surface Interaction Campaign. This multi-agency, interdisciplinary field campaign involved enhanced surface instrumentation at the ACRF Southern Great Plains site and, in concert with the Cumulus Humilis Aerosol Processing Study sponsored by the DOE Atmospheric Science Program, coordination of nine aircraft through the ARM Aerial Vehicles Program. • Successful deployment of the ARM Mobile Facility in Germany, including hosting nearly a dozen guest instruments and drawing almost 5000 visitors to the site. • Key advancements in the representation of radiative transfer in weather forecast models from the European Centre for Medium-Range Weather Forecasts. • Development of several new enhanced data sets, ranging from best estimate surface radiation measurements from multiple sensors at all ACRF sites to the extension of time-height cloud occurrence profiles to Niamey, Niger, Africa. • Publication of three research papers in a single issue (February 2007) of the Bulletin of the American Meteorological Society.

LR Roeder

2007-12-01T23:59:59.000Z

269

Formation mechanisms and quantification of organic nitrates in atmospheric aerosol  

E-Print Network (OSTI)

G. K. Moortgat, T. J. Wallington, and G. Yarwood, TheM. D. Hurley, and T. J. Wallington, Investigation of the

Rollins, Andrew Waite

2010-01-01T23:59:59.000Z

270

ATMOSPHERIC AEROSOL RESEARCH ANNUAL REPORT 1975-76  

E-Print Network (OSTI)

of a) soot particles from propane-benzene combustion in air;tempera­ downstream from a propane Photoelectron spectraand carbon (Is) regions of propane soot particles produced

Novakov, T.

2010-01-01T23:59:59.000Z

271

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect

The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

272

Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation  

SciTech Connect

Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2011-11-23T23:59:59.000Z

273

Multi-year Satellite and Surface Observations of AOD in support of Two-Column Aerosol Project (TCAP) Field Campaign  

SciTech Connect

We use combined multi-year measurements from the surface and space for assessing the spatial and temporal distribution of aerosol properties within a large (~400x400 km) region centered on Cape Cod, Massachusetts, along the East Coast of the United States. The ground-based Aerosol Robotic Network (AERONET) measurements at Martha’s Vineyard Coastal Observatory (MVCO) site and Moderate Resolution Imaging Spectrometer (MODIS) sensors on board the Terra and Aqua satellites provide horizontal and temporal variations of aerosol optical depth, while the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) offers the altitudes of aerosol-layers. The combined ground-based and satellite measurements indicated several interesting features among which were the large differences in the aerosol properties observed in July and February. We applied the climatology of aerosol properties for designing the Two-Column Aerosol Project (TCAP), which is supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The TCAP field campaign involves 12-month deployment (started July 1, 2012) of the ground-based ARM Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) on Cape Cod and complimentary aerosol observations from two research aircraft: the DOE Gulfstream-1 (G-1) and the National Aeronautics and Space Administration (NASA) B200 King Air. Using results from the coordinated G-1 and B200 flights during the recent (July, 2012) Intensive Observation Period, we demonstrated that the G-1 in situ measurements and B200 active remote sensing can provide complementary information on the temporal and spatial changes of the aerosol properties off the coast of North America.

Kassianov, Evgueni I.; Chand, Duli; Berg, Larry K.; Fast, Jerome D.; Tomlinson, Jason M.; Ferrare, R.; Hostetler, Chris A.; Hair, John

2012-11-01T23:59:59.000Z

274

Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing  

SciTech Connect

A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2012-07-25T23:59:59.000Z

275

A Four-Year Lidar–Sun Photometer Aerosol Study at Săo Paulo, Brazil  

Science Journals Connector (OSTI)

A backscattering lidar system, the first of this kind in Brazil, has been used to provide the vertical profile of the aerosol backscatter coefficient at 532 nm up to an altitude of 4–6 km above sea level (ASL), in a suburban area in the city of ...

Eduardo Landulfo; Alexandros Papayannis; Ani Sobral Torres; Sandro Toshio Uehara; Lucila Maria Viola Pozzetti; Caio Alencar de Matos; Patricia Sawamura; Walter Morinobu Nakaema; Wellington de Jesus

2008-08-01T23:59:59.000Z

276

People Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

What Is NIF? How NIF Works Seven Wonders Beamline NIF Construction Who Works for NIF & PS? People Profiles Management Awards Honors Fellows Who Partners with NIF? FAQs Visit Us...

277

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network (OSTI)

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

278

Final Report for LDRD Project ''A New Era of Research in Aerosol/Cloud/Climate Interactions at LLNL''  

SciTech Connect

Observations of global temperature records seem to show less warming than predictions of global warming brought on by increasing concentrations of CO{sub 2} and other greenhouse gases. One of the reasonable explanations for this apparent inconsistency is that the increasing concentrations of anthropogenic aerosols may be partially counteracting the effects of greenhouse gases. Aerosols can scatter or absorb the solar radiation, directly change the planetary albedo. Aerosols, unlike CO{sub 2}, may also have a significant indirect effect by serving as cloud condensation nuclei (CCN). Increases in CCN can result in clouds with more but smaller droplets, enhancing the reflection of solar radiation. Aerosol direct and indirect effects are a strong function of the distributions of all aerosol types and the size distribution of the aerosol in question. However, the large spatial and temporal variabilities in the concentration, chemical characteristics, and size distribution of aerosols have made it difficult to assess the magnitude of aerosol effects on atmospheric radiation. These variabilities in aerosol characteristics as well as their effects on clouds are the leading sources of uncertainty in predicting future climate variation. Inventory studies have shown that the present-day anthropogenic emissions contribute more than half of fine particle mass primarily due to sulfate and carbonaceous aerosols derived from fossil fuel combustion and biomass burning. Parts of our earlier studies have been focused on developing an understanding of global sulfate and carbonaceous aerosol abundances and investigating their climate effects [Chuang et al., 1997; Penner et al., 1998]. We have also modeled aerosol optical properties to account for changes in the refractive indices with relative humidity and dry aerosol composition [Grant et al., 1999]. Moreover, we have developed parameterizations of cloud response to aerosol abundance for use in global models to evaluate the importance of aerosol/cloud interactions on climate forcing [Chuang and Penner, 1995]. Our research has been recognized as one of a few studies attempting to quantify the effects of anthropogenic aerosols on climate in the IPCC Third Assessment Report [IPCC, 2001]. Our previous assessments of aerosol climate effects were based on a general circulation model (NCAR CCM1) fully coupled to a global tropospheric chemistry model (GRANTOUR). Both models, however, were developed more than a decade ago. The lack of advanced physics representation and techniques in our current models limits us from further exploring the interrelationship between aerosol, cloud, and climate variation. Our objective is to move to a new era of aerosol/cloud/climate modeling at LLNL by coupling the most advanced chemistry and climate models and by incorporating an aerosol microphysics module. This modeling capability will enable us to identify and analyze the responsible processes in aerosol/cloud/climate interactions and therefore, to improve the level of scientific understanding for aerosol climate effects. This state-of-the-art coupled models will also be used to address the relative importance of anthropogenic and natural emissions in the spatial pattern of aerosol climate forcing in order to assess the potential of human induced climate change.

Chuang, C; Bergman, D J; Dignon, J E; Connell, P S

2002-01-31T23:59:59.000Z

279

ARM - Field Campaign - Fall 1997 Aerosol IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol IOP Aerosol IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Aerosol IOP 1997.09.15 - 1997.10.05 Lead Scientist : Stephen Schwartz For data sets, see below. Summary The Aerosol IOP was highlighted by the Gulfstream-1 aircraft flying clear-sky aerosol missions over the Central Facility to study the effect of aerosol loading on clear sky radiation fields, with weather particularly favorable for these flights during the first and third weeks of the IOP. A secondary but important goal of this IOP was to fly cloudy-sky missions over the Central Facility to study the effect of aerosol loading on cloud microphysics, and the effect of the microphysics on cloud optical properties. The Gulfstream obtained aerosol data in support of some of the

280

Antiviral therapy with small particle aerosols  

Science Journals Connector (OSTI)

The generation and use of small particle aqueous aerosols (1.23 µm aerodynamic mass median diameter, GSD=2.0 µm) containing ribavirin is described. Administered via aerosol, ribavirin will be deposited rather ...

V. Knight; B. Gilbert

1988-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

2, 20952131, 2002 Below-cloud aerosol  

E-Print Network (OSTI)

). In addition, the understanding of wet removal processes remains crucial in local and regional pollutionACPD 2, 2095­2131, 2002 Below-cloud aerosol removal C. Andronache Title Page Abstract Introduction-cloud aerosol removal by rainfall for observed aerosol size distributions C. Andronache Boston College, Chestnut

Paris-Sud XI, Université de

282

6, 93519388, 2006 Aerosol-cloud  

E-Print Network (OSTI)

ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

Paris-Sud XI, Université de

283

Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

Vertical Variability of Aerosols and Water Vapor Vertical Variability of Aerosols and Water Vapor Over the Southern Great Plains R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton, Virginia D. D. Turner Pacific Northwest National Laboratory Richland, Washington M. Clayton and V. Brackett Science Applications International Corporation National Aeronautics and Space Administration Langley Research Center Hampton, Virginia T. P. Tooman and J. E. M. Goldsmith Sandia National Laboratories Livermore, California J. A. Ogren National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory Boulder, Colorado E. Andrews Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado

284

The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing  

SciTech Connect

Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

Ricchiazzi, P.; O'Hirok, W.; Gautier, C.

2005-03-18T23:59:59.000Z

285

Investigation of Aerosol Indirect Effects using a Cumulus Microphysics Parameterization in a Regional Climate Model  

SciTech Connect

A new Zhang and McFarlane (ZM) cumulus scheme includes a two-moment cloud microphysics parameterization for convective clouds. This allows aerosol effects to be investigated more comprehensively by linking aerosols with microphysical processes in both stratiform clouds that are explicitly resolved and convective clouds that are parameterized in climate models. This new scheme is implemented in the Weather Research and Forecasting (WRF) model, which is coupled with the physics and aerosol packages from the Community Atmospheric Model version 5 (CAM5). A test case of July 2008 during the East Asian summer monsoon is selected to evaluate the performance of the new ZM scheme and to investigate aerosol effects on monsoon precipitation. The precipitation and radiative fluxes simulated by the new ZM scheme show a better agreement with observations compared to simulations with the original ZM scheme that does not include convective cloud microphysics and aerosol convective cloud interactions. Detailed analysis suggests that an increase in detrained cloud water and ice mass by the new ZM scheme is responsible for this improvement. To investigate precipitation response to increased anthropogenic aerosols, a sensitivity experiment is performed that mimics a clean environment by reducing the primary aerosols and anthropogenic emissions to 30% of that used in the control simulation of a polluted environment. The simulated surface precipitation is reduced by 9.8% from clean to polluted environment and the reduction is less significant when microphysics processes are excluded from the cumulus clouds. Ensemble experiments with ten members under each condition (i.e., clean and polluted) indicate similar response of the monsoon precipitation to increasing aerosols.

Lim, Kyo-Sun; Fan, Jiwen; Leung, Lai-Yung R.; Ma, Po-Lun; Singh, Balwinder; Zhao, Chun; Zhang, Yang; Zhang, Guang; Song, Xiaoliang

2014-01-29T23:59:59.000Z

286

ARM - Measurement - Aerosol optical properties  

NLE Websites -- All DOE Office Websites (Extended Search)

properties properties ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter fraction. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer NEPHELOMETER : Nephelometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

287

ARM - Measurement - Aerosol backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

backscattered radiation backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System MPL : Micropulse Lidar NEPHELOMETER : Nephelometer

288

JGR-Atmospheres Papers from the RADAGAST Research Team  

NLE Websites -- All DOE Office Websites (Extended Search)

JGR-Atmospheres Papers from the RADAGAST Research Team JGR-Atmospheres Papers from the RADAGAST Research Team Bharmal, N.A., A. Slingo, G.J. Robinson, and J.J. Settle, 2009: Simulation of surface and top of atmosphere thermal fluxes and radiances from the RADAGAST experiment. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010504, in press. Kollias, P., M.A. Miller, K.L. Johnson, M.P. Jensen, and D.T. Troyan, 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. Journal of Geophysical Research- Atmospheres, 114, doi: 10.1029/2008JD010641, in press. McFarlane, S.A., E.I. Kassianov, J. Barnard, C. Flynn, and T. Ackerman, 2009: Surface shortwave aerosol forcing during the ARM Mobile Facility deployment in Niamey, Niger. Journal of Geophysical Research-Atmospheres, 114, doi: 10.1029/2008JD010491, 17 pages.

289

Atmospheric and Climate Science | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric and Climate Science Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic, social, and health effects. Research spans the molecular level to whole organisms and their interaction with climate, the ecosystem, and human activities. The goal is to improve our understanding of the world around us while increasing the accuracy of regional climate models to

290

Large historical changes of fossil-fuel black carbon aerosols  

SciTech Connect

Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

2002-09-26T23:59:59.000Z

291

Review of models applicable to accident aerosols  

SciTech Connect

Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

Glissmeyer, J.A.

1983-07-01T23:59:59.000Z

292

Water Structure at Aqueous Solution Surfaces of Atmospherically Relevant Dimethyl Sulfoxide and Methanesulfonic Acid Revealed by Phase-Sensitive Sum Frequency  

E-Print Network (OSTI)

layer (MBL), the sulfur cycle dominates in the gas-to-particle conversion process and in the growth-containing aerosols play an important role in atmospheric chemistry and climate.1-3 Especially in the marine boundary

293

The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3  

Science Journals Connector (OSTI)

The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud ...

Leo J. Donner; Bruce L. Wyman; Richard S. Hemler; Larry W. Horowitz; Yi Ming; Ming Zhao; Jean-Christophe Golaz; Paul Ginoux; S.-J. Lin; M. Daniel Schwarzkopf; John Austin; Ghassan Alaka; William F. Cooke; Thomas L. Delworth; Stuart M. Freidenreich; C. T. Gordon; Stephen M. Griffies; Isaac M. Held; William J. Hurlin; Stephen A. Klein; Thomas R. Knutson; Amy R. Langenhorst; Hyun-Chul Lee; Yanluan Lin; Brian I. Magi; Sergey L. Malyshev; P. C. D. Milly; Vaishali Naik; Mary J. Nath; Robert Pincus; Jeffrey J. Ploshay; V. Ramaswamy; Charles J. Seman; Elena Shevliakova; Joseph J. Sirutis; William F. Stern; Ronald J. Stouffer; R. John Wilson; Michael Winton; Andrew T. Wittenberg; Fanrong Zeng

2011-07-01T23:59:59.000Z

294

Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)  

DOE Data Explorer (OSTI)

CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

295

Development of a Fast Time-Resolved Aerosol Collector (Fast TRAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Yu Yu & James Cowin PNNL Fast Time-Resolved Aerosol Collector ......Fast TRAC...... Xiao-Ying Yu, Ali Hashim, Martin Iedema, and James Cowin Atmospheric Sciences, Chemical Sciences Pacific Northwest National Laboratory Richland, WA Research is supported by NOAA & DOE. *Patent Pending Xiao-Ying Yu & James Cowin PNNL Cloud Microstructures ≤ 1 m Want to know the aerosols at this resolution Aircraft flies at 150 m/s Need time resolution 1 m/150 m/s = 6 ms (!!!!!) Xiao-Ying Yu & James Cowin PNNL What is TRAC? - Time-Resolved Aerosol Collector * Uses an impactor * ~ 600 TEM samples * Flow rate: 1 l/min * Time resolution: ≥ 1 min* * Applications: Off-line analysis: - particle hygroscopicity, morphology, composition.. (6.5 in) 3 , 7 lb, 12 V, 8 W 0% 20% 40% 60%

296

Effective Radius of Cloud Droplets by Ground-Based Remote Sensing: Relationships to Aerosol?  

NLE Websites -- All DOE Office Websites (Extended Search)

Effective Radius of Cloud Droplets by Ground-Based Effective Radius of Cloud Droplets by Ground-Based Remote Sensing: Relationships to Aerosol? B.-G. Kim, S. E. Schwartz, and M. A. Miller Environmental Sciences Department Brookhaven National Laboratory Upton, New York Q.-L. Min Atmospheric Science Research Center State University of New York Albany, New York Introduction Aerosol Indirect Effect Increases in anthropogenic sources of cloud condensation nuclei can increase cloud albedo by increasing the concentration and reducing the size of cloud droplets, usually referred to as the indirect effect of aerosol on climate (Twomey 1977). However, the magnitudes of the various kinds of indirect forcing are particularly uncertain, because they involve subtle changes in cloud radiative properties and lifetimes

297

Aerosol nucleation in coal-fired power-plant plumes  

Science Journals Connector (OSTI)

New-particle nucleation within coal-fired power-plant plumes can have large effects on particle number concentrations particularly near source regions with implications for human health and climate. In order to resolve the formation and growth of particles in these plumes we have integrated TwO-Moment Aerosol Sectional (TOMAS) microphysics in the System for Atmospheric Modelling (SAM) a large-eddy simulation/cloud-resolving model (LES/CRM). We have evaluated this model against aircraft observations for three case studies and the model reproduces well the major features of each case. Using this model we have shown that meteorology and background aerosol concentrations can have strong effects on new-particle formation and growth in coal-fired power-plant plumes even if emissions are held constant. We subsequently used the model to evaluate the effects of SO 2 and NOx pollution controls on newparticle formation in coal-fired power-plant plumes. We found that strong reductions in NOx emissions without concurrent reductions in SO 2 emissions may increase new-particle formation due to increases in OH formation within the plume. We predicted the change in new-particle formation due to changes in emissions between 1997 and 2010 for 330 coal-fired power plants in the US and we found a median decrease of 19% in new-particle formation. However the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO 2 emissions in each plant. More extensive plume measurements for a range of emissions of SO 2 and NOx and in varying background aerosol conditions are needed however to better quantify these effects.

2013-01-01T23:59:59.000Z

298

Mentee Profile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

299

Mentor Profile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

300

Time-and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes  

E-Print Network (OSTI)

Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications), Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications] Atmospheric aerosols have important adverse impacts on human health [Dockery et al., 1993; Pope et al., 2002

Jimenez, Jose-Luis

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite, radiometric, and station data  

E-Print Network (OSTI)

1 Assessing temporal and spatial variations in atmospheric dust over Saudi Arabia through satellite Saud University, Riyadh, Saudi Arabia #12;2 Abstract1 Temporal and spatial variations in atmospheric dust over Saudi Arabia are studied for 2000-20102 using satellite and ground-based Aerosol Optical

Wisconsin at Madison, University of

302

Uncertainty in Contaminant Concentration Fields Resulting from Atmospheric Boundary Layer Depth Uncertainty  

Science Journals Connector (OSTI)

The relationship between atmospheric boundary layer (ABL) depth uncertainty and uncertainty in atmospheric transport and dispersion (ATD) simulations is investigated by examining profiles of predicted concentrations of a contaminant. Because ...

Brian P. Reen; Kerrie J. Schmehl; George S. Young; Jared A. Lee; Sue Ellen Haupt; David R. Stauffer

2014-11-01T23:59:59.000Z

303

A Comparison of ARM Cloud Radar Profiles with MMF Simulated Radar...  

NLE Websites -- All DOE Office Websites (Extended Search)

MMF Simulated Radar Profiles as a Function of the Large-Scale Atmospheric State Roger Marchand and Thomas Ackerman Joint Institute for the Study of the Atmosphere and Ocean...

304

Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations  

SciTech Connect

Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

2013-06-11T23:59:59.000Z

305

Source Attribution of Light Absorbing Aerosol in Arctic Snow  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Attribution of Light Absorbing Source Attribution of Light Absorbing Aerosol in Arctic Snow (Preliminary analysis of 2008-2009 data) Outline * Receptor modeling overview * Results from 2007 data set * New goals arising from analysis of 2007 data * New data for 2008 * New data for 2009 * Tentative conclusions * Future analysis i Factor profiles from 2007 analysis Source attribution of Black Carbon from 2007 analysis Goals/Issues suggested by the analysis of the 2007 data set * Are there seasonal differences in the source strengths? * Are there other LAA chemical components besides black carbon. What are their sources? * Can the various data sets available (e.g., 2007, 2008, 2009) be combined in a single large PMF analysis 2008 Data Set For Receptor Analysis * 42 samples from Eastern Siberia including 4 depth profiles

306

Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging in Central California  

SciTech Connect

Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (June 27-29, 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research.

Moffet, Ryan C.; Rodel, Tobias; Kelly, Stephen T.; Yu, Xiao-Ying; Carroll, Gregory; Fast, Jerome D.; Zaveri, Rahul A.; Laskin, Alexander; Gilles, Mary K.

2013-10-29T23:59:59.000Z

307

Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx  

SciTech Connect

We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

Saide, Pablo; Spak, S. N.; Carmichael, Gregory; Mena-Carrasco, M. A.; Yang, Qing; Howell, S. G.; Leon, Dolislager; Snider, Jefferson R.; Bandy, Alan R.; Collett, Jeffrey L.; Benedict, K. B.; de Szoeke, S.; Hawkins, Lisa; Allen, Grant; Crawford, I.; Crosier, J.; Springston, S. R.

2012-03-30T23:59:59.000Z

308

Atmospheric Science and Climate Research [EVS Program Area]  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Science and Climate Research Atmospheric Science and Climate Research EVS research, combined with portable, high-performance climate and weather applications, offers a unique look at the complexities of a dynamic planet. In an ever-changing, dynamic climate, we measure, model, and analyze atmospheric processes that are vital to understanding our planet. Our measurement capabilities range from remote sensing and surface meteorology instruments to instrumentation designed to quantify the land-atmosphere exchange of energy, water, and greenhouse gases. Modeling capabilities begin with regional-scale climate, air quality, and aerosol modeling and extend to global chemical transport models, general circulation models of the atmosphere, models of the biosphere, and coupled Earth system models.

309

Retrieval of Intensive Aerosol Properties from MFRSR observations: Partly Cloudy Cases  

SciTech Connect

An approach for the obtaining column intensive aerosol properties, namely the single scattering albedo (SSA) and asymmetry parameter (ASP), from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) spectral observations under partly cloudy conditions is described. The approach involves the MFRSR-based aerosol retrieval for clear-sky periods and an interpolation of the retrieved column aerosol properties for cloudy periods. The observed weak diurnal variability of SSA and ASP at the surface and the close association of the surface intensive aerosol properties with their column counterparts form the basis of such interpolation. The approach is evaluated by calculating the corresponding clear-sky total, direct and diffuse fluxes at five wavelengths (415, 500, 615, 673 and 870 nm) and compare them with the observed fluxes. The aerosol properties provided by this approach are applied for (i) an examination of the statistical relationship between spectral (visible spectral range) and broadband values of the total normalized cloud radiative forcing and (ii) an estimation of the fractional sky cover. Data collected during 13 days with single-layer cumulus clouds observed at U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during summer 2007 are applied to illustrate the performance and application of this approach.

Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Flynn, Connor J.; Long, Charles N.

2010-09-30T23:59:59.000Z

310

Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol  

E-Print Network (OSTI)

of this research is to examine sea salt aerosols and their impact on polluted environments. Sea salt aerosols act as Cloud Condensation Nuclei (CCN) as well as providing a surface for heterogeneous reactions. Such reactions have implications for trace gases...

Benoit, Mark David

2013-02-06T23:59:59.000Z

311

Continuous Collection of Soluble Atmospheric Particles with a Wetted Hydrophilic Filter  

Science Journals Connector (OSTI)

Continuous Collection of Soluble Atmospheric Particles with a Wetted Hydrophilic Filter ... aerodynamic diameter range were generated with a vibrating orifice aerosol generator (VOAG, model 3450, TSI Inc.) using 0.5 mg/L fluorescein solution in ultrapure water as the feed without and with 0.2, 2, 5, and 10 mM NaCl added to the feed. ... The performance of a gas and aerosol monitoring system (GAMS) for the determination of acidic water soluble organic and inorganic gases and ammonia as well as related particles from the atmosphere ...

Masaki Takeuchi; S. M. Rahmat Ullah; Purnendu K. Dasgupta; Donald R. Collins; Allen Williams

2005-11-03T23:59:59.000Z

312

E-Print Network 3.0 - atmospheric infrared sounder Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

humidity profiles which are also measurable by a microwave sounder... on a geosynchronous satellite. The proposed microwave sounder could provide sensing of atmospheric...

313

NUCLEAR NON-PROLIFERATION-TASK 1: Deployable Plume and Aerosol Release Prediction and Tracking System  

SciTech Connect

This contract was awarded in response to a proposal in which a deployable plume and aerosol release prediction and tracking system would be designed, fabricated, and tested. The system would gather real time atmospheric data and input it into a real time atmospheric model that could be used for plume predition and tracking. The system would be able to be quickly deployed by aircraft to points of interest or positioned for deployment by vehicles. The system would provide three dimensional (u, v, and w) wind vector data, inversion height measurements, surface wind information, classical weather station data, and solar radiation. The on-board real time computer model would provide the prediction of the behavior of plumes and released aerosols.

John Kleppe, Ph.D., William Norris, Ph.D., Mehdi Etezada, Ph.D., P.E.

2006-07-19T23:59:59.000Z

314

An Aerosol Condensation Model for Sulfur Trioxide  

SciTech Connect

This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

Grant, K E

2008-02-07T23:59:59.000Z

315

ARM - Field Campaign - Two-Column Aerosol Project (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsTwo-Column Aerosol Project (TCAP) govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction Measurements 2012.07.15, Dubey, AMF Two-Column Aerosol Project (TCAP): Aerial Campaign 2012.07.07, Berg, AAF Two-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer 2012.07.01, Berg, AMF Two-Column Aerosol Project (TCAP): KASPRR Engineering Tests 2012.07.01, Mead, AMF Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements

316

Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem  

SciTech Connect

In the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model, we have coupled the Morrison double-moment microphysics scheme with interactive aerosols so that full two-way aerosol-cloud interactions are included in simulations. We have used this new WRF-Chem functionality in a study focused on assessing predictions of aerosols, marine stratocumulus clouds, and their interactions over the Southeast Pacific using measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals. This study also serves as a detailed analysis of our WRF-Chem simulations contributed to the VOCALS model Assessment (VOCA) project. The WRF-Chem 31-day (October 15-November 16, 2008) simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations assumed by the default in Morrison microphysics scheme with no interactive aerosols. The well-predicted aerosol properties such as number, mass composition, and optical depth lead to significant improvements in many features of the predicted stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness, and cloud macrostructure such as cloud depth and cloud base height. These improvements in addition to the aerosol direct and semi-direct effects, in turn, feed back to the prediction of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengths temperature and humidity gradients within capping inversion layer and lowers the MBL depth by 150 m from that of the MET simulation. Mean top-of-the-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity over the remote ocean) and aerosol quantities (e.g., overestimations of supermicron sea salt mass) might affect simulated stratocumulus and energy fluxes over the SEP, and require further investigations. Although not perfect, the overall performance of the regional model in simulating mesoscale aerosol-cloud interactions is encouraging and suggests that the inclusion of spatially varying aerosol characteristics is important when simulating marine stratocumulus over the southeastern Pacific.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Morrison, H.; Lee, Y.- N.; Chapman, Elaine G.; Spak, S. N.; Mena-Carrasco, M. A.

2011-12-02T23:59:59.000Z

317

ARM - Campaign Instrument - s-band-profiler  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentss-band-profiler govInstrumentss-band-profiler Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA S-band (2835 Mhz) Profiler (S-BAND-PROFILER) Instrument Categories Cloud Properties, Atmospheric Profiling Campaigns CRYSTAL-FACE [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2002.06.26 - 2002.08.01 Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers [ Download Data ] Southern Great Plains, 2011.04.22 - 2011.06.06 Tropical Warm Pool - International Cloud Experiment (TWP-ICE) [ Download Data ] Tropical Western Pacific, 2006.01.21 - 2006.02.13 Primary Measurements Taken The following measurements are those considered scientifically relevant. Refer to the datastream (netcdf) file headers for the list of all available

318

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network (OSTI)

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

319

FY 2010 Fourth Quarter Report: Evaluation of the Dependency of Drizzle Formation on Aerosol Properties  

SciTech Connect

Metric for Quarter 4: Report results of implementation of composite parameterization in single-column model (SCM) to explore the dependency of drizzle formation on aerosol properties. To better represent VOCALS conditions during a test flight, the Liu-Duam-McGraw (LDM) drizzle parameterization is implemented in the high-resolution Weather Research and Forecasting (WRF) model, as well as in the single-column Community Atmosphere Model (CAM), to explore this dependency.

Lin, W; McGraw, R; Liu, Y; Wang, J; Vogelmann, A; Daum, PH

2010-10-01T23:59:59.000Z

320

Using Levoglucosan as a Molecular Marker for the Long-Range Transport of Biomass Combustion Aerosols  

Science Journals Connector (OSTI)

Widespread biomass burning in the tropics has been identi fied as a major source of trace gases and particulate matter to the atmosphere (1?3). ... Corpus?Christi ... The largest primary source contributors to fine particle mass concns. in Los Angeles are found to include diesel engine exhaust, paved road dust, gasoline-powered vehicle exhaust, plus emissions form food cooking and wood smoke, with smaller contributions from tire dust, plant fragments, a natural gas combustion aerosol, and cigarette smoke. ...

Matthew P. Fraser; Kalyan Lakshmanan

2000-09-22T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)  

DOE Data Explorer (OSTI)

From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

322

Separating Cloud Forming Nuclei from Interstitial Aerosol  

SciTech Connect

It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

Kulkarni, Gourihar R.

2012-09-12T23:59:59.000Z

323

Carbonaceous Aerosol Study Using Advanced Particle Instrumentation  

E-Print Network (OSTI)

particles from the combustion of biomass fuels. Environ.range transport of biomass combustion aerosols. Environ.during the open combustion of biomass in the laboratory, J.

Qi, Li

2010-01-01T23:59:59.000Z

324

Linearity of Climate Response to Increases in Black Carbon Aerosols  

SciTech Connect

The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $\\textnormal W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $\\textnormal W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $\\textnormal W^{-1} \\textnormal m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $\\textnormal PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

Mahajan, Salil [ORNL; Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR)

2013-01-01T23:59:59.000Z

325

Indirect radiative forcing by ion-mediated nucleation of aerosol  

SciTech Connect

A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN) in generating new particles and cloud condensation nuclei (CCN) in the atmosphere. Here we implement for the first time a physically based treatment of IMN into the Community Atmosphere Model version 5. Our simulations show that, compared to globally averaged results based on binary homogeneous nucleation (BHN), the presence of ionization (i.e., IMN) halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~ 3, CCN burden by ~ 10% (at 0.2% supersaturation) to 65% (at 1.0% supersaturation), and cloud droplet number burden by ~ 18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing by 3.67 W/m2 (more negative) and longwave cloud forcing by 1.78 W/m2 (more positive), resulting in a -1.9 W/m2 net change in cloud radiative forcing associated with IMN. The significant impacts of ionization on global aerosol formation, CCN abundance, and cloud radiative forcing may provide an important physical mechanism linking the global energy balance to various processes affecting atmospheric ionization, which should be properly represented in climate models.

Yu, Fangqun; Luo, Gan; Liu, Xiaohong; Easter, Richard C.; Ma, Xiaoyan; Ghan, Steven J.

2012-12-03T23:59:59.000Z

326

Reduction in biomass burning aerosol light absorption upon humidificat...  

NLE Websites -- All DOE Office Websites (Extended Search)

in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

327

Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...  

NLE Websites -- All DOE Office Websites (Extended Search)

properties of orographically induced clouds and how do these depend on dynamics, thermodynamics, and aerosol microphysics? * What is the role of aerosols and changing cloud...

328

Molecular Chemistry of Organic Aerosols Through the Application...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

329

Optical, physical, and chemical properties of springtime aerosol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in...

330

Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects  

SciTech Connect

To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 ?m is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large discrepancies in predicting cloud water in the SC case, suggesting that an explicit calculation of diffusion growth with predicted supersaturation is necessary for further improvements of the bulk microphysics scheme. Lastly, a larger rain evaporation rate below cloud is found in the bulk scheme in comparison to the SBM simulation, which could contribute to a lower surface precipitation in the bulk scheme.

Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

2013-06-05T23:59:59.000Z

331

The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments  

Science Journals Connector (OSTI)

Abstract The near future change in productivity of photovoltaic energy (PVE) in Europe and Africa is assessed by using the climate variables simulated by the ECHAM5-HAM aerosol-climate model, and a model for the performance of photovoltaic systems. The climate simulations are forced by green-house gases emissions from the IPCC SRES B2 scenario. In addition, different scenarios for future anthropogenic aerosols emissions are applied. Thus, the sensitivity of the future PVE productivity to changes in aerosol atmospheric burdens between 2000 and 2030 is analyzed. The analysis indicates that reductions in aerosols emissions in the near future result in an increase of global warming, and a significant response in surface solar radiation and associated PVE productivity. A statistically significant reduction in PVE productivity up to 7% is observed in eastern Europe and northern Africa, while a significant increase up to 10% is observed in western Europe and eastern Mediterranean. The changes in surface solar radiation and PVE productivity are related to global effects of aerosols reduction on the large scale circulation and associated cloud cover pattern, rather than to local effects on the atmospheric optical properties. PVE assessment is then discussed in the frame of the present situation and next decades evolution of the photovoltaic market, highlighting that the effects on productivity induced by industrial and public policies, and technological development are comparable to climate related effects. The presented results encourage the improvement and further use of climate models in assessment of future renewable energies availability.

Marco Gaetani; Thomas Huld; Elisabetta Vignati; Fabio Monforti-Ferrario; Alessandro Dosio; Frank Raes

2014-01-01T23:59:59.000Z

332

Anthropogenic NO2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing  

NLE Websites -- All DOE Office Websites (Extended Search)

Anthropogenic NO Anthropogenic NO 2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing A. N. Rublev Institution of Molecular Physics Russian Research Center Kurchatov Institute Moscow, Russia N Chubarova Meteorological Observatory of Moscow State University Moscow, Russia G. Gorchakov Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia Introduction The work summarizes the different methodical aspects, firstly, the use of atmosphere optical depths presented in Aerosol Robotic Network (AERONET) data for NO 2 column retrievals, and, secondly, its radiative forcing calculated as difference between integral solar fluxes absorbed in the atmosphere with and without NO 2 under given air mass or the sun zenith angle.

333

Chemical Composition and Sources of Coastal Marine Aerosol Particles during the 2008 VOCALS-REx Campaign  

SciTech Connect

The chemical composition of aerosol particles (Dp 1.5 ?m) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO2?4, followed by Na+, Cl?, Org (total organics), NH+4 , and NO?3 , in decreasing order of importance; CH3SO?3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH+4 to SO2?4 equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl? deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO2?4. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol concentrations were negligible. The very low levels of CH3SO?3 observed as well as the correlation between SO2?4 and NO?3 (which is thought primarily anthropogenic) suggest a limited contribution of DMS to SO2?4 aerosol production during VOCALS.

Lee, Y.- N.; Springston, S.; Jayne, John T.; Wang, Jian; Hubbe, John M.; Senum, Gunnar I.; Kleinman, Lawrence I.; Daum, Peter H.

2014-05-23T23:59:59.000Z

334

ARCADE - Atmospheric Research for Climate and Astroparticle DEtection  

E-Print Network (OSTI)

The characterization of the optical properties of the atmosphere in the near UV, in particular the tropospheric aerosol stratification, clouds optical depth and spatial distribution are common in the field of atmospheric physics, due to aerosol effect on climate, and also in cosmic rays physics, for a correct reconstruction of energy and longitudinal development of showers. The goal of the ARCADE project is the comparison of the aerosol attenuation measurements obtained with the typical techniques used in cosmic ray experiments (side-scattering measurement, elastic LIDAR and Raman LIDAR) in order to assess the systematic errors affecting each method providing simultaneous observations of the same air mass with different techniques. For this purpose we projected a LIDAR that is now under construction: it will use a 355 nm Nd:YAG laser and will collect the elastic and the N2 Raman back-scattered light. For the side-scattering measurement we will use the Atmospheric Monitoring Telescope, a facility owned by the ...

Buscemi, M; Cilmo, M; Coco, M; Ferrarese, S; Guarino, F; Tonachini, A S; Valore, L; Wiencke, L

2014-01-01T23:59:59.000Z

335

Wind Structure in the Atmospheric Boundary Layer  

Science Journals Connector (OSTI)

13 May 1971 research-article Wind Structure in the Atmospheric Boundary Layer...semi-empirical laws for the variation of mean wind speed with height and for the statistical...provide some useful ordering of the mean wind profile characteristics in relation to...

1971-01-01T23:59:59.000Z

336

The Opposed Migration Aerosol Classifier (OMAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

The Opposed Migration Aerosol Classifier (OMAC) The Opposed Migration Aerosol Classifier (OMAC) Speaker(s): Harmony Gates Date: February 22, 2007 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Melissa Lunden A new differential mobility classifier will be described. The instrument classifies aerosol particles in a channel flow between porous (or screen) electrodes. The aerosol enters the channel parallel to the porous electrodes, while a larger, particle-free cross-flow enters through one of the porous electrode. A potential difference between electrodes causes the charged aerosol particles to migrate upstream against the cross-flow. Only particles whose upward migration velocity balances the cross flow will be transmitted along the path of the classifier. Simulations of the OMAC show that it should give the same resolution at the traditional

337

Posters Atmospheric Emitted Radiance Interferometer Data Analysis Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Posters Atmospheric Emitted Radiance Interferometer Data Analysis Methods R. O. Knuteson, W. L. Smith, S. A. Ackerman, H. E. Revercomb, H. Woolf, and H. Howell Cooperative Institute for Meteorological Satellite Studies University of Wisconsin-Madison Madison, Wisconsin Introduction Data from the Atmospheric Emitted Radiance Inter- ferometer (AERI) have been analyzed for the Atmospheric Radiation Measurement (ARM) Program's Fourier Transform Data Analysis Tools science team project under the direction of William L. Smith of the University of Wisconsin-Madison. The data consist of observations of the downwelling infrared emission at the surface from gaseous atmospheric constituents and from cloud and particulate aerosols. The observations are at 0.5 cm-1 spectral resolution over the

338

Global observations of desert dust and biomass burning aerosols  

E-Print Network (OSTI)

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

339

CIRRICULUM VITAE: TOM BREIDER Atmospheric Chemistry Post-Doctoral Research Fellow  

E-Print Network (OSTI)

to changing anthropogenic and dynamic biogenic emissions of trace gases and aerosols. These chemistry and trace gas factors affecting the number concentration of atmospheric Aitken (Dp=50 nm) particles. Discuss., 3, 1185-1221, 2010 4) Hossani, R., M. P. Chipperfield, W. Feng, T. J. Breider, E. Atlas, S. A

Jacob, Daniel J.

340

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2  

E-Print Network (OSTI)

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME the resulting time series, we use tropospheric NO2 data as a reference in the regions dominated by biomass sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

Tilstra, Gijsbert

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

E-Print Network 3.0 - aerosol chemical composition Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol on Clouds Summary: chemical composition and mixing stateTime-Resolved Aerosol Collector CCSEMEDX (ASP) Single particle... Sizer CCN spectrum Aerosol absorptionDRI...

342

E-Print Network 3.0 - aerosol number distributions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

inorganic composition PILS-IC Summary: 3563 nephelometers Aerosol number concentration CNC (TSI 3010, 3025) Aerosol size distribution DMA... and APS Non-volatile aerosol size...

343

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract: A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic...

344

E-Print Network 3.0 - aerosol jet system Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

-controlled laminar aerosol jets and their application for studying aerosol combustion processes Author(s): Shoshin Y... 2002 Times Cited: 6 48. Title: Exhaust aerosol of a...

345

CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan  

SciTech Connect

Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-05-27T23:59:59.000Z

346

Stable carbon fractionation in size-segregated aerosol particles produced by controlled biomass burning  

Science Journals Connector (OSTI)

Abstract Six different biomass fuel types (wood pellets, sunflower stalk pellets, straw pellets, buckwheat shells, mixed biomass waste pellets, and grain screenings) and wastewater sludge pellets were burned under controlled conditions to determine the effect of the biomass type on the emitted particulate matter mass and stable carbon isotope composition of bulk and size-segregated particles. Aerosol particles were sampled using the total suspended particle (TSP) sampler and a micro-orifice uniform deposit impactor (MOUDI). The results demonstrated that particle emissions were dominated by the submicron particles (size <1 µm) in all biomass types. However, significant differences in emissions of submicron particles and their dominant sizes were found between different biomass fuels. The isotopic fractionation between aerosol particles and original biomass material varied from ?0.94±0.23‰ to 1.12±0.16‰. The largest negative fractionation ?0.94±0.23‰ was obtained for the wood pellet fuel type while the largest positive isotopic fractionation (1.12±0.16‰) was observed during the grain screenings combustion. The carbon isotope composition of MOUDI samples compared very well with the isotope composition of TSP samples indicating consistency of the results. The measurements of the stable carbon isotope ratio in size-segregated aerosol particles suggested that combustion processes could strongly affect isotopic fractionation in aerosol particles of different sizes thereby potentially affecting an interpretation of ambient atmospheric observations.

A. Garbaras; A. Masalaite; I. Garbariene; D. Ceburnis; E. Krugly; V. Remeikis; E. Puida; K. Kvietkus; D. Martuzevicius

2015-01-01T23:59:59.000Z

347

Status of the Broadband Heating Rate Profile (BBHRP) VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Status of the Broadband Heating Rate Profile (BBHRP) VAP Status of the Broadband Heating Rate Profile (BBHRP) VAP Mlawer, Eli Atmospheric & Environmental Research, Inc. Clough, Shepard Atmospheric and Environmental Research Delamere, Jennifer Atmospheric and Environmental Research, Inc. Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory Jensen, Michael Brookhaven National Laboratory Shippert, Timothy Pacific Northwest National Laboratory Long, Chuck Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Heck, Patrick University of Wisconsin Rutan, David Analytical Services & Materials, Inc.

348

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

349

Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol  

SciTech Connect

Natural and prescribed biomass fires are a major source of atmospheric aerosols that can persist in the atmosphere for long periods of time. Biomass burning aerosols (BBA) can be associated with long range transport of water soluble N?, S?, P?, and metal?containing species. In this study, BBA samples were collected using a particle?into?liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR?MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of probable elemental formulae. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba?containing organometallic species were identified. The results suggest that the biomass may have accumulated metal?containing species that were reemitted during biomass burning. Further research into the sources, persistence, and dispersion of metal?containing aerosols as well as their environmental effects is needed.

Chang-Graham, Alexandra L.; Profeta, Luisa Tm; Johnson, Timothy J.; Yokelson, Robert J.; Laskin, Alexander; Laskin, Julia

2011-01-10T23:59:59.000Z

350

Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics  

SciTech Connect

Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

2013-10-01T23:59:59.000Z

351

Photometric Variations as Small Perturbations in Aerosol Content  

NLE Websites -- All DOE Office Websites (Extended Search)

Photometric Variations as Photometric Variations as Small Perturbations in Aerosol Content I. Musat Department of Meteorology University of Maryland College Park, Maryland R. G. Ellingson Department of Meteorology Florida State University Tallahassee, Florida Abstract The quality of profile fitting of resolved stars depends ultimately upon the accuracy with which spectral differences of the sources are retrievable within the data, because the radiation color of well-separated known sources can serve as an indicator of the origin of the optical depth variations one observes during the night. The particularities of the whole sky imager (WSI) detector and optical system are such that the data suffer from lack of the spatial resolution required in a common astronomical observation.

352

Classification of Vertical Wind Speed Profiles Observed Above a Sloping Forest at Nighttime Using the Bulk Richardson Number  

Science Journals Connector (OSTI)

Wind speed profiles above a forest canopy relate to ... atmosphere. Many studies have reported that vertical wind speed profiles above a relatively flat forest can ... be classified by a stability index developed...

Hikaru Komatsu; Norifumi Hotta; Koichiro Kuraji…

2005-05-01T23:59:59.000Z

353

Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy  

SciTech Connect

This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

Sheen, David M.; Aker, Pam M.

2007-09-19T23:59:59.000Z

354

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

355

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

356

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

357

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

358

Southern hemisphere tropospheric aerosol microphysics  

SciTech Connect

Aerosol particle size distribution data have been obtained in the southern hemisphere from approximately 4{degree}S to 44{degree}S and between ground level and 6 km, in the vicinity of eastern Australia. The relative shape of the free-tropospheric size distribution for particles with radii larger than approximately 0.04 {mu}m was found to be remarkably stable with time, altitude, and location for the autumn-winter periods considered. This was despite some large concentration changes which were found to be typical of the southeastern Australian coastal region. The majority of free-troposphere large particles were found to have sulfuric acid or lightly ammoniated sulfate morphology. Large particles in the boundary layer almost exclusively had a sea-salt morphology.

Gras, J.L. (Commonwealth Scientific and Industrial Research Organization, Aspendale (Australia))

1991-03-20T23:59:59.000Z

359

ARM - Measurement - Aerosol particle size distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size distribution particle size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size distribution The number of aerosol particles present in any given volume of air within a specificied size range Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

360

BNL | Two-Column Aerosol Program (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Column Aerosol Project (TCAP) Two-Column Aerosol Project (TCAP) There remain many key knowledge gaps despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. Many climatically important processes depend on particles that undergo continuous changes within a size range spanning a few nanometers to a few microns, and with compositions that consist of a variety of carbonaceous materials, soluble inorganic salts and acids and insoluble mineral dust. Primary particles, which are externally-mixed when emitted, are subject to coagulation and chemical changes associated with the condensation of semi-volatile gases to their surface resulting in a spectrum of compositions or mixing-states with a range of climate-affecting optical and hygroscopic properties. The numerical treatments of aerosol transformation

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NASA's Aerosol-Cloud-Ecosystems (ACE) Mission  

Science Journals Connector (OSTI)

Plans for NASA’s Aerosol-Cloud-Ecosystem (ACE) mission is described. Recommended by Earth Science Decadal Survey in 2007, ACE is nominally planned for a 2021 launch. ACE is...

Starr, David O'C

362

Aerosol Radiative Effects and Single-Scattering Properties in the Tropical Western Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects and Single-Scattering Properties Effects and Single-Scattering Properties in the Tropical Western Pacific A. M. Vogelmann and P. J. Flatau Center for Atmospheric Sciences Scripps Institution of Oceanography University of California San Diego, California M. A. Miller, M. J. Bartholomew, and R. M. Reynolds Brookhaven National Laboratory Upton, New York P. J. Flatau University Corporation for Atmospheric Research Naval Research Laboratory Monterey, California K. M. Markowicz Institute of Geophysics University of Warsaw Warsaw, Poland Introduction The Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) sites are downwind from Southeast Asia where biomass burning occurs and can advect over the tropical warm pool. Previous research (Vogelmann 2001, 2002, 2003) indicates that aerosol forcing was particularly large

363

ARM - Field Campaign - Aerosol Life Cycle IOP at BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAerosol Life Cycle IOP at BNL govCampaignsAerosol Life Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News, June 14, 2011: Next-generation Aerosol-sampling Stations to Head for India Related Campaigns Aerosol Life Cycle: Chemical Ionization Mass Spectrometer - CIMS 2011.07.10, Lee, OSC Aerosol Life Cycle: HR-ToF-AMS 2011.06.15, Zhang, OSC Aerosol Life Cycle: ARM Mobile Facility 2 Aerosol Observing System 2011.06.15, Sedlacek, OSC Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10, Hallar, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle IOP at BNL 2011.06.01 - 2011.08.31 Lead Scientist : Arthur Sedlacek For data sets, see below.

364

ARM - Publications: Science Team Meeting Documents: A decade long aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

A decade long aerosol and cloud statistics and aerosol indirect effect at A decade long aerosol and cloud statistics and aerosol indirect effect at the ARM SGP site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Twelve-year data of MFRSR and MWR have been used to derive aerosol and cloud optical properties at the ARM SGP. Diurnal, monthly, seasonal and interannual variability of aerosol (optical depth and Angstrom coefficient) and cloud (optical depth and effective radius) have been analyzed. We specially focused on aerosol-cloud interactions. We found a signature of indirect aerosol effect for summer data: increased aerosol index has a statistically-significant anti-correlation with mean effective radius. No

365

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL  

NLE Websites -- All DOE Office Websites (Extended Search)

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL SIZE DISTRIBUTION FROM MEASUREMENTS OF LIGHT TRANSMITTANCE AND SCATTERING Ernie R. Lewis and Stephen E. Schwartz Brookhaven National Laboratory, Upton, NY 11933 ses@bnl.gov elewis@bnl.gov MOMENTS FROM MEASUREMENTS As each of the measured quantities is linear in the size distribution dn/dr, it is possible to construct linear combinations of measurements that yield

366

Aerosol fabrication methods for monodisperse nanoparticles  

DOE Patents (OSTI)

Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

Jiang, Xingmao; Brinker, C Jeffrey

2014-10-21T23:59:59.000Z

367

Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect

The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

2003-01-28T23:59:59.000Z

368

Development of plutonium aerosol fractionation system  

E-Print Network (OSTI)

DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

Mekala, Malla R.

1993-01-01T23:59:59.000Z

369

Sensitivity of Clear-Sky Diffuse Radiation to In Situ Aerosol Scattering Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Sensitivity of Clear-Sky Diffuse Radiation to In Situ Sensitivity of Clear-Sky Diffuse Radiation to In Situ Aerosol Scattering Parameters P. J. Ricchiazzi and C. Gautier University of California Santa Barbara, California Introduction Recent studies of clear-sky radiation indicate that current radiative transfer (RT) models underestimate atmospheric absorption when standard aerosol properties are used. This so-called clear-sky anomaly is manifested in predicted levels of diffuse radiation significantly below those observed at Southern Great Plains (SGP) and other sites in the continental United States (e.g., Halthore et al. 1998 GRL). Other observations at pristine sites do not show a discrepancy (Barnard and Powell 2001, 2001; Kato et al. 1997; Halthore 1998). These results may indicate that the clear-sky anomaly is only observed at sites

370

Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Ocean Aerosols: The Marine Fast-Rotating Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network M. A. Miller, R. M. Reynolds, and J. J. Bartholomew Brookhaven National Laboratory Upton, New York Introduction A network of ship-mounted marine fast-rotating shadow-band radiometers (FRSRs) and broadband radiometers have been deployed over the fast four years on several backbone ships, funded jointly by Atmospheric Radiation Measurement (ARM) and National Aeronautic and Space Administration's (NASA's) Sensor Intercomparison and Merger for Biological and Interdisciplinary Studies (SIMBIOS). These radiometers operate continuously and automatically during daylight hours. There fundamental measurements made by the FRSRs in the network are the direct-normal irradiance

371

E-Print Network 3.0 - aerosol microphysical characteristics Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

new particle formation, aerosol microphysical evolution, three-dimensional transport, and wet... of aerosol microphysical properties. Some of ... Source: Brookhaven...

372

E-Print Network 3.0 - aerosol chemical vapor Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical and microphysical properties influence aerosol optical properties and radiative effects... distribution of aerosol extensive and intensive properties will aid ......

373

Atmospheric Transport of Radionuclides  

SciTech Connect

The purpose of atmospheric transport and diffusion calculations is to provide estimates of concentration and surface deposition from routine and accidental releases of pollutants to the atmosphere. This paper discusses this topic.

Crawford, T.V.

2003-03-03T23:59:59.000Z

374

The Boulder Atmospheric Observatory  

Science Journals Connector (OSTI)

The Boulder Atmospheric Observatory (BAO) is a unique research facility for studying the planetary boundary layer and for testing and calibrating atmospheric sensors. The facility includes a 300 m tower instrumented with fast- and slow-response ...

J. C. Kaimal; J. E. Gaynor

1983-05-01T23:59:59.000Z

375

Spectrophotometric Resolution of Stellar Atmospheres with Microlensing  

E-Print Network (OSTI)

Microlensing is a powerful tool for studying stellar atmospheres because as the source crosses regions of formally infinite magnification (caustics) the surfaceof the star is resolved, thereby allowing one to measure the radial intensity profile, both photometrically and spectroscopically. However, caustic crossing events are relatively rare, and monitoring them requires intensive application of telescope resources. It is therefore essential that the observational parameters needed to accurately measure the intensity profile are quantified. We calculate the expected errors in the recovered radial intensity profile as a function of the unlensed flux, source radius, spatial resolution the recovered intensity profile, and caustic crossing time for the two principle types of caustics: point-mass and binary lenses. We demonstrate that for both cases there exist simple scaling relations between these parameters and the resultant errors. We find that the error as a function of the spatial resolution of the recovered profile, parameterized by the number of radial bins, increases as $N_R^{3/2}$, considerably faster than the naive $N_R^{1/2}$ expectation. Finally, we discuss the relative advantages of binary caustic-crossing events and point-lens events. Binary events are more common, easier to plan for, and provide more homogeneous information about the stellar atmosphere. However, a sub-class of point-mass events with low impact parameters can provide dramatically more information provided that they can be recognized in time to initiate observations.

B. Scott Gaudi; Andrew Gould

1998-02-14T23:59:59.000Z

376

PNNL: Atmospheric Sciences & Global Change - Fundamental & Computational  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us Our mission is to understand the atmospheric processes that drive regional and global earth systems, with a primary focus on climate, aerosol and cloud physics; global and regional scale modeling; integrated assessment; and complex regional meteorology and chemistry. In supporting this mission, our research addresses one of the key missions of the Department of Energy, namely to ensure that the nation's energy system is economically and environmentally sustainable. Because nearly all energy-related emissions enter the atmosphere, research on atmospheric processes and their impacts on human health and the environment-over a variety of temporal and geographic scales-is critical to understanding these consequences. Scientists in this division lead and contribute to programs within the

377

User_TalentProfile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accessing and Modifying Talent Profile Accessing and Modifying Talent Profile © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Accessing and Modifying Talent Profile Purpose The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile information. Task A. Access Talent Profile Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. Access Talent Profile 4 Steps Task A Add Information to Talent Profile Sections 5 Steps Task B Edit Talent Profile Sections

378

8, 10691088, 2008 Atmospheric  

E-Print Network (OSTI)

into the atmosphere (Molina et al., 1974; Farman et al., 1985) has led to an interna- tional effort to replace

Boyer, Edmond

379

Human influence on the atmospheric vertical temperature structure: Detection and observations  

SciTech Connect

Recent work suggests a discernible human influence on climate. This finding is supported, with less restrictive assumptions than those used in earlier studies, by a 1961 through 1995 data set of radiosonde observations and by ensembles of coupled atmosphere-ocean simulations forced with changes in greenhouse gases, tropospheric sulfate aerosols, and stratospheric ozone. On balance, agreement between the simulations and observations is best for a combination of greenhouse gas, aerosol, and ozone forcing. The uncertainties remaining are due to imperfect knowledge of radiative forcing, natural climate variability, and errors in observations and model response. 32 refs., 3 figs., 2 tabs.

Tett, S.F.B.; Mitchell, J.F.B.; Parker, D.E. [Hadley Centre for Climate Prediction and Research, Bracknell, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Bracknell, Berkshire (United Kingdom); Allen, M.R. [Rutherford Appleton Lab., Chilton, Didcot (United Kingdom)] [Rutherford Appleton Lab., Chilton, Didcot (United Kingdom)

1996-11-15T23:59:59.000Z

380

The Upper Atmosphere Observatory  

Science Journals Connector (OSTI)

...with *the plasma frethe progress...explorcreated an even larger number of...the upper atmosphere and ionosphere...the upper atmosphere. For this...ionospheric plasma motion simul-taneously...field is large, the horizontal...resolved. The atmospheric gravity waves...simul-taneously at a large number of...two regions plasma drifts separated...

J. V. Evans

1972-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The Upper Atmosphere Observatory  

Science Journals Connector (OSTI)

...DATA, JOURNAL OF ATMOSPHERIC AND TERRESTRIAL...IN NEAR-EARTH PLASMA, SPACE SCIENCE...INVESTIGATION OF WHISTLING ATMOSPHERICS, PHILOSOPHICAL...TRANSPOLAR EXOSPHERIC PLASMA .1. PLASMASPHERE...dynamics of the upper atmosphere. For this purpose...the ionospheric plasma motion simul-taneously...

J. V. Evans

1972-05-05T23:59:59.000Z

382

5, 60416076, 2005 Atmospheric  

E-Print Network (OSTI)

opportunity to examine atmospheric oxidation in a megacity that has more pollution than typical USACPD 5, 6041­6076, 2005 Atmospheric oxidation in the Mexico City Metropolitan Area T. R. Shirley et.atmos-chem-phys.org/acpd/5/6041/ SRef-ID: 1680-7375/acpd/2005-5-6041 European Geosciences Union Atmospheric Chemistry

Boyer, Edmond

383

An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling  

SciTech Connect

One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by turbulence. But, simulated horizontal variability indicates that trace gases and aerosols are not well mixed horizontally in the PBL. During nighttime the SGV for trace gases is maximum at the surface, and quickly decreases with height. Unlike the trace gases, the SGV of BC and secondary aerosols reaches a maximum at the PBL top during the day. The SGV decreases with distance away from the polluted urban area, has a more rapid decrease for long-lived trace gases and aerosols than for secondary ones, and is greater during daytime than nighttime. The SGV of trace gases and aerosols is generally larger than for meteorological quantities. Emissions can account for up to 50% of the SGV over urban areas such as Mexico City during daytime for less-reactive trace gases and aerosols, such as CO and BC. The impact of emission spatial variability on SGV decays with altitude in the PBL and is insignificant in the free troposphere. The emission variability affects SGV more significantly during daytime (rather than nighttime) and over urban (rather than rural or remote) areas. The terrain, through its impact on meteorological fields such as wind and the PBL structure, affects dispersion and transport of trace gases and aerosols and their SGV.

Qian, Yun; Gustafson, William I.; Fast, Jerome D.

2010-07-29T23:59:59.000Z

384

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

DOE Data Explorer (OSTI)

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Christopher Williams; Mike Jensen

385

ARM - Midlatitude Continental Convective Clouds Experiment (MC3E): Multi-Frequency Profilers, 449 MHz Profiler(williams-449_prof)  

SciTech Connect

This data was collected by the NOAA 449-MHz and 2.8-GHz profilers in support of the Department of Energy (DOE) and NASA sponsored Mid-latitude Continental Convective Cloud Experiment (MC3E). The profiling radars were deployed in Northern Oklahoma at the DOE Atmospheric Radiation Mission (ARM) Southern Great Plans (SGP) Central Facility from 22 April through 6 June 2011. NOAA deployed three instruments: a Parsivel disdrometer, a 2.8-GHz profiler, and a 449-MHz profiler. The parasivel provided surface estimates of the raindrop size distribution and is the reference used to absolutely calibrate the 2.8 GHz profiler. The 2.8-GHz profiler provided unattenuated reflectivity profiles of the precipitation. The 449-MHz profiler provided estimates of the vertical air motion during precipitation from near the surface to just below the freezing level. By using the combination of 2.8-GHz and 449-MHz profiler observations, vertical profiles of raindrop size distributions can be retrieved. The profilers are often reference by their frequency band: the 2.8-GHz profiler operates in the S-band and the 449-MHz profiler operates in the UHF band. The raw observations are available as well as calibrated spectra and moments. This document describes how the instruments were deployed, how the data was collected, and the format of the archived data.

Williams, Christopher; Jensen, Mike

2012-11-06T23:59:59.000Z

386

ARM Aerosol Working Group Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

and MFRSR Measurements ARM STM 2008 Norfolk, VA Connor Flynn 1 , Annette Koontz 1 , Anne Jefferson 2 , Jim Barnard 1 , Sally McFarlane 1 1 Pacific Northwest National Laboratory 2 CIRES, University of Colorado, Boulder Progress towards ARM DOE 2008 Performance Metric 3 & 4 * Produce and make available new continuous time series of aerosol total column depth, based on results from the AMF deployment in Niger, Africa. * Produce and make available new continuous time series of retrieved dust properties, based on results from the AMF deployment in Niger, Africa. 0 100 200 300 400 0 20 40 60 80 100 ITF movement and surface RH % RH day of year (2006) 0 100 200 300 400 0 50 100 150 200 250 300 350 day of year wind direction (N = 0, E = 90) 2 4 6 8 10 12 14 Wind speed m/s 0 100 200 300 1.4 1.6 1.8 2 MFRSR Vo for filter2, Niamey

387

ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) Campaign Links CARES Website Related Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding 2010.05.26, Zaveri, OSC Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light Absorption and Scattering 2010.05.26, Arnott, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES): SMPS & CCN counter deployment during CARES/Cal-NEx 2010.05.04, Wang, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES) Ground Based Instruments 2010.04.01, Cziczo, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiative Effects Study (CARES)

388

Distinguishing Aerosol Impacts on Climate over the Past Century  

Science Journals Connector (OSTI)

Aerosol direct (DE), indirect (IE), and black carbon–snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol–climate simulations in the Goddard Institute for Space Studies General Circulation Model ...

Dorothy Koch; Surabi Menon; Anthony Del Genio; Reto Ruedy; Igor Alienov; Gavin A. Schmidt

2009-05-01T23:59:59.000Z

389

ARM - Midlatitude Continental Convective Clouds - Ultra High Sensitivity Aerosol Spectrometer(tomlinson-uhsas)  

SciTech Connect

Ultra High Sensitivity Aerosol Spectrometer (UHSASA) A major component of the Mid-latitude Continental Convective Clouds Experiment (MC3E) field campaign was the deployment of an enhanced radiosonde array designed to capture the vertical profile of atmospheric state variables (pressure, temperature, humidity wind speed and wind direction) for the purpose of deriving the large-scale forcing for use in modeling studies. The radiosonde array included six sites (enhanced Central Facility [CF-1] plus five new sites) launching radiosondes at 3-6 hour sampling intervals. The network will cover an area of approximately (300)2 km2 with five outer sounding launch sites and one central launch location. The five outer sounding launch sites are: S01 Pratt, KS [ 37.7oN, 98.75oW]; S02 Chanute, KS [37.674, 95.488]; S03 Vici, Oklahoma [36.071, -99.204]; S04 Morris, Oklahoma [35.687, -95.856]; and S05 Purcell, Oklahoma [34.985, -97.522]. Soundings from the SGP Central Facility during MC3E can be retrieved from the regular ARM archive. During routine MC3E operations 4 radiosondes were launched from each of these sites (approx. 0130, 0730, 1330 and 1930 UTC). On days that were forecast to be convective up to four additional launches were launched at each site (approx. 0430, 1030, 1630, 2230 UTC). There were a total of approximately 14 of these high frequency launch days over the course of the experiment. These files contain brightness temperatures observed at Purcell during MC3E. The measurements were made with a 5 channel (22.235, 23.035, 23.835, 26.235, 30.000GHz) microwave radiometer at one minute intervals. The results have been separated into daily files and the day of observations is indicated in the file name. All observations were zenith pointing. Included in the files are the time variables base_time and time_offset. These follow the ARM time conventions. Base_time is the number seconds since January 1, 1970 at 00:00:00 for the first data point of the file and time_offset is the offset in seconds from base_time.

Tomlinson, Jason; Jensen, Mike

2012-02-28T23:59:59.000Z

390

Top-of-atmosphere radiative cooling with white roofs: experimental  

NLE Websites -- All DOE Office Websites (Extended Search)

Top-of-atmosphere radiative cooling with white roofs: experimental Top-of-atmosphere radiative cooling with white roofs: experimental verification and model-based evaluation Title Top-of-atmosphere radiative cooling with white roofs: experimental verification and model-based evaluation Publication Type Journal Article Year of Publication 2012 Authors Salamanca, Francisco, Shaheen R. Tonse, Surabi Menon, Vishal Garg, Krishna P. Singh, Manish Naja, and Marc L. Fischer Journal Environmental Research Letters Volume 7 Issue 4 Abstract We evaluate differences in clear-sky upwelling shortwave radiation reaching the top of the atmosphere in response to increasing the albedo of roof surfaces in an area of India with moderately high aerosol loading. Treated (painted white) and untreated (unpainted) roofs on two buildings in northeast India were analyzed on five cloudless days using radiometric imagery from the IKONOS satellite. Comparison of a radiative transfer model (RRTMG) and radiometric satellite observations shows good agreement (R2 = 0.927). Results show a mean increase of ~50 W m-2 outgoing at the top of the atmosphere for each 0.1 increase of the albedo at the time of the observations and a strong dependence on atmospheric transmissivity.

391

Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model  

Science Journals Connector (OSTI)

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying ...

Philip Stier; Johann Feichter; Silvia Kloster; Elisabetta Vignati; Julian Wilson

2006-08-01T23:59:59.000Z

392

Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing  

Science Journals Connector (OSTI)

The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic ...

S. J. Ghan; X. Liu; R. C. Easter; R. Zaveri; P. J. Rasch; J.-H. Yoon; B. Eaton

2012-10-01T23:59:59.000Z

393

Organic and Elemental Carbon Measurements during ACE-Asia Suggest a Longer Atmospheric Lifetime for Elemental Carbon  

Science Journals Connector (OSTI)

Additional measurements made aboard the ship and used in this analysis include concentrations of SO2 and total particle number (27), O3 (28), CO (29), and radon (30). ... This research is a contribution to the International Global Atmospheric Chemistry (IGAC) Core Project of the International Geosphere Biosphere Program (IGBP) and is part of the IGAC Aerosol Characterization Experiments (ACE). ...

H.-J. Lim; B. J. Turpin; L. M. Russell; T. S. Bates

2003-06-12T23:59:59.000Z

394

Organic and Inorganic Aerosol Below-Cloud Scavenging by  

E-Print Network (OSTI)

concentrations, with an average gravimetric PM1.0 of 8.2 ( 1.6 µg m-3 and an average Fourier transform infrared-rinsing behavior was unaffected by source type. The aerosol OM was hydrophilic throughout the sampling period the description of aerosol lifetimes in global models. Introduction Wet and dry deposition of aerosol particles

Russell, Lynn

395

Project of Aerosol Optical Depth Change in South America  

E-Print Network (OSTI)

AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Paraguay Uruguay #12;Statistics of Aerosol M ean D ec 01 to 06 Mean Month AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela

Frank, Thomas D.

396

DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?  

E-Print Network (OSTI)

AS SEEN FROM SPACE Fire plumes from southern Mexico transported north into Gulf of Mexico. #12;CLOUD IPCC AR4 (2007) 3210-1-2 Forcing, W m-2 CO2 CH4 CFCs N2O Long Lived Greenhouse Gases Tropospheric;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL

Schwartz, Stephen E.

397

Inter-annual Tropospheric Aerosol Variability in Late Twentieth Century and its Impact on Tropical Atlantic and West African Climate by Direct and Semi-direct Effects  

SciTech Connect

A new high-resolution (0.9$^{\\circ}$x1.25$^{\\circ}$ in the horizontal) global tropospheric aerosol dataset with monthly resolution is generated using the finite-volume configuration of Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the latter part of twentieth century. The surface emissions dataset is constructed from Coupled Model Inter-comparison Project (CMIP5) decadal-resolution surface emissions dataset to include REanalysis of TROpospheric chemical composition (RETRO) wildfire monthly emissions dataset. Experiments forced with the new tropospheric aerosol dataset and conducted using the spectral configuration of CAM4 with a T85 truncation (1.4$^{\\circ}$x1.4$^{\\circ}$) with prescribed twentieth century observed sea surface temperature, sea-ice and greenhouse gases reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the inter-annual timescales. Regression analyses over tropical Atlantic and Africa reveal that increasing dust aerosols can cool the North African landmass and shift convection southwards from West Africa into the Gulf of Guinea in the spring season in the simulations. Further, we find that increasing carbonaceous aerosols emanating from the southwestern African savannas can cool the region significantly and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present day aerosols can shift the ITCZ southwards over the tropical Atlantic and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.

Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR); Mahajan, Salil [ORNL; Lamarque, J-F [University Center for Atmospheric Research

2012-01-01T23:59:59.000Z

398

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE  

SciTech Connect

Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

2012-08-14T23:59:59.000Z

399

A New Microwave Temperature Profiler Â… First Measurements in Polar Regions  

NLE Websites -- All DOE Office Websites (Extended Search)

Microwave Temperature Profiler - First Microwave Temperature Profiler - First Measurements in Polar Regions E. N. Kadygrov, A. V. Koldaev, and A. S. Viazankin Central Aerological Observatory Moscow, Russia A. Argentini, and A. Conidi Institute of Atmospheric Physics CNR, Italy Introduction Temperature inversions are a ubiquitous feature of the high latitude atmospheric boundary layer (ABL). In Polar Regions, the temperature inversion is a complicated phenomenon involving interactions between surface radiative cooling, subsidence and warm air advection. In the period 1997-2002, several microwave temperature profilers were used to measure temperature inversion parameters at one of the three sites of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM)

400

AtmosphericAtmospheric Composition Introduction The division investigates the atmospheric  

E-Print Network (OSTI)

development on observation side was the installation of an ozone observation station in Surinam in close co-operation with the Surinam Meteorological Service. Processes in the tropical regions are important for the global climate and the global atmospheric composition. The participation in Indoex (Indian Ocean Experiment) and this Surinam

Haak, Hein

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 Posters Atmospheric Emitted Radiance Interferometer: Status and Water Vapor Continuum Results H. E. Revercomb, R. O. Knuteson, W. L. Smith, F. A. Best, and R. G. Dedecker University of Wisconsin Madison, Wisconsin H. B. Howell National Oceanic and Atmospheric Administration Systems Design and Applications Branch Madison, Wisconsin Introduction Accurate and spectrally detailed observations of the thermal emission from radiatively important atmospheric gases, aerosols, and clouds are now being provided to the Atmospheric Radiation Measurement (ARM) data base by the Atmospheric Emitted Radiance Interferometer (AERI) prototype at the Southern Great Plains Cloud and Radiation Testbed (CART) site. Spectra over the range from 520 to 3000 cm -1 (3 to 19 microns) with a resolution of 0.5 cm

402

Computational study of atmospheric transfer radiation on an equatorial tropical desert (La Tatacoa, Colombia)  

E-Print Network (OSTI)

Radiative transfer models explain and predict interaction between solar radiation and the different elements present in the atmosphere, which are responsible for energy attenuation. In Colombia there have been neither measurements nor studies of atmospheric components such as gases and aerosols that can cause turbidity and pollution. Therefore satellite images cannot be corrected radiometrically in a proper way. When a suitable atmospheric correction is carried out, loss of information is avoided, which may be useful for discriminating image land cover. In this work a computational model was used to find radiative atmospheric attenuation (300 1000nm wavelength region) on an equatorial tropical desert (La Tatacoa, Colombia) in order to conduct an adequate atmospheric correction.

Delgado-Correal, Camilo; Castańo, Gabriel

2012-01-01T23:59:59.000Z

403

Aerodynamic Focusing Of High-Density Aerosols  

SciTech Connect

High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

Ruiz, D. E.; Fisch, Nathaniel

2014-02-24T23:59:59.000Z

404

Atmospheric Radiation Measurement Program  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 ARM 2003 Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING! WARNING! Today is April 1 But that has NO bearing on this message Today is April 1 But that has NO bearing on this message ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Two Topics Two Topics * Status of ARM (quick overview) * Science plan - ARM in the next 5 years * Status of ARM (quick overview) * Science plan - ARM in the next 5 years ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement ARM Status - Science ARM Status - Science * Steadily increasing productivity - Poster session - over 220 posters (may need to do something about submissions next year) - Peer-reviewed articles: 2.5 to 3 per year per

405

Near real time vapor detection and enhancement using aerosol adsorption  

SciTech Connect

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

406

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

Novick, V.J.; Johnson, S.A.

1999-08-03T23:59:59.000Z

407

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

1999-01-01T23:59:59.000Z

408

Atmospheric Neutrino Fluxes  

E-Print Network (OSTI)

Starting with an historical review, I summarize the status of calculations of the flux of atmospheric neutrinos and how they compare to measurements.

Thomas K. Gaisser

2005-02-18T23:59:59.000Z

409

ARM - Atmospheric Heat Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About...

410

Aerosol Science and Technology, 41:202216, 2007 Copyright c American Association for Aerosol Research  

E-Print Network (OSTI)

processes, such as con- densation, coagulation, gas-to-particle conversion (Reid et al. 1998), and particle Aerosol size distribution is, along with particle refractive in- dex and shape, one of important

411

Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data  

SciTech Connect

In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)���¢��������s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9�������°��������2.5�������° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1�������° x 1�������°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 �������µm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4�������º by 5�������º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between ���¢��������clean marine���¢������� aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses

Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

2012-03-28T23:59:59.000Z

412

A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements  

SciTech Connect

Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

Brown, G.S. (Sandia National Labs., Albuquerque, NM (USA)); Weiss, R.E. (Radiance Research, Seattle, WA (USA))

1990-08-01T23:59:59.000Z

413

Response of California temperature to regional anthropogenic aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

Response of California temperature to regional anthropogenic aerosol Response of California temperature to regional anthropogenic aerosol changes Title Response of California temperature to regional anthropogenic aerosol changes Publication Type Journal Article Year of Publication 2008 Authors Novakov, Tihomir, Thomas W. Kirchstetter, Surabi Menon, and Jeffery Aguiar Journal Geophysical Research Letters Volume 35 Issue 19 Abstract In this paper, we compare constructed records of concentrations of black carbon (BC) - an indicator of anthropogenic aerosols - with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

414

Evaluation of Preindustrial to Present-day Black Carbon and its Albedo Forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)  

SciTech Connect

As a part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against the observations including 12 ice core records, a long-term surface mass concentrations and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using the NCAR Community Land and Sea-Ice model 4 with prescribed meteorology from 1996-2000, which includes the SNICAR BC-snow model. We evaluated the vertical profile of BC snow concentrations from these offline simulations to using recent BC snowpack measurements. Despite using the same BC emissions, global BC burden differs by approximately a factor of 3 among models due to the differences in aerosol removal parameterizations and simulated meteorology among models; 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However,models agree well on 2.5~3 times increase in the global BC burden from preindustrial to present-day, which matches with the 2.5 times increase in BC emissions. We find a large model diversity at both NH and SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC mass concentrations well in Europe and North America except at Jungfrauch and Ispra. However, the models fail to capture the Arctic BC seasonality due tosevere underestimations during winter and spring. Compared to recent snowpack measurements, the simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of observations except for Greenland and Arctic Ocean. However, model and observation differ widely due to missing interannual variations in emissions and possibly due to the choice of the prescribed meteorology period (i.e., 1996-2000).

Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, Drew; Berntsen, T.; Bisiauxs, M.; Cao, J.; Collins, W. J.; Curran, M.; Edwards, R.; Faluvegi, G.; Ghan, Steven J.; Horowitz, L.; McConnell, J.R.; Ming, J.; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Takemura, T.; Thevenon, F.; Xu, B.; Yoon, Jin-Ho

2013-03-05T23:59:59.000Z

415

Composition analyses of size-resolved aerosol samples taken from aircraft downwind of Kuwait, Spring 1991  

SciTech Connect

Analyses are reported for eight aerosol samples taken from the National Center for Atmospheric Research Electra typically 200 to 250 km downwind of Kuwait between May 19 and June 1, 1991. Aerosols were separated into fine (D{sub p} < 2.5 {mu}m) and coarse (2.5 < D{sub p} 10 {mu}m) particles for optical, gravimetric, X ray and nuclear analyses, yielding information on the morphology, mass, and composition of aerosols downwind of Kuwait. The mass of coarse aerosols ranged between 60 and 1971 {mu}g/m{sup 3} and, while dominated by soil derived aerosols, contained considerable content of sulfates and salt (NaCl) and soot in the form of fluffy agglomerates. The mass of fine aerosols varied between 70 and 785 {mu}g/m{sup 3}, of which about 70% was accounted for via compositional analyses performed in vacuum. While most components varied greatly from flight to flight, organic matter and fine soils each accounted for about 1/4 of the fine mass, while salt and sulfates contributed about 10% and 7%, respectively. The Cl/S ratios were remarkably constant, 2.4 {+-} 1.2 for coarse particles and 2.0 {+-} 0.2 for fine particles, with one flight deleted in each case. Vanadium, when observed, ranged from 9 to 27 ng/m{sup 3}, while nickel ranged from 5 to 25 ng/m{sup 3}. In fact, fine sulfates, vanadium, and nickel occurred in levels typical of Los Angeles, California, during summer 1986. The V/Ni ratio, 1.7 {+-} 0.4, was very similar to the ratios measured in fine particles from combusted Kuwaiti oil, 1.4 {+-} 0.9. Bromine, copper, zinc, and arsenic/lead were also observed at levels between 2 and 190 ng/m{sup 3}. The presence of massive amounts of fine, typically alkaline soils in the Kuwaiti smoke plumes significantly modified their behavior and probably mitigated their impacts, locally and globally. 16 refs., 1 fig., 3 tabs.

Cahill, T.A.; Wilkinson, K. [Univ. of California, Davis, CA (United States); Schnell, R. [National Center for Atmospheric Research, Boulder, CO (United States)

1992-09-20T23:59:59.000Z

416

Source Apportionment of Carbonaceous Aerosols using  

E-Print Network (OSTI)

are different than the collection of particles from water Filtration has high efficiency for all sizes Size Condensation Nuclei (CCN) Human health Carbonaceous aerosol implicated as important for toxicity and adverse of particulate matter Again, agreement between these two approaches would give a high level of confidence

Einat, Aharonov

417

Photophoretic levitation of engineered aerosols for geoengineering  

Science Journals Connector (OSTI)

...W. Keith Energy and Environmental...space-based solar scattering...The salient advantage of sulfate aerosols...instrument. Disadvantages of sulfates...concentrating solar power systems...higher energy than molecules...solving the energy balance equation...ratio of solar-spectrum to thermal-spectrum...two of the disadvantages of stratospheric...

David W. Keith

2010-01-01T23:59:59.000Z

418

Modeling Semivolatile Organic Aerosol Mass Emissions from  

E-Print Network (OSTI)

in diluted diesel and wood combustion exhaust are interpreted using a two-component absorptive with dilution of both wood smoke and diesel exhaust can be described by two lumped compounds in roughly equal. Introduction Sources of organic aerosol such as diesel engines and wood stoves emit semivolatile organic

Stanier, Charlie

419

ADEPT. aerosol deposition in cylindrical pipes  

SciTech Connect

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C (Burns and Roe, Oradell, NJ (United States))

1985-01-01T23:59:59.000Z

420

ADEPT. Aerosol Deposition in Cylindrical Pipes  

SciTech Connect

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C [Burns and Roe, Oradell, NJ (United States)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM Site Atmospheric State Best Estimates for AIRS Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Atmospheric State Best Estimates Site Atmospheric State Best Estimates for AIRS Validation D. C. Tobin, H. E. Revercomb, W. F. Feltz, R. D. Knuteson, and D. D. Turner Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin B. M. Lesht Environmental Research Division Argonne National Laboratory Argonne, Illinois L. Strow University of Maryland College Park, Maryland C. Barnet Joint Center for Earth Systems Technology Baltimore, Maryland E. Fetzer National Aeronautics Space Administration Jet Propulsion Laboratory Pasadena, California Introduction The atmospheric infrared sounder (AIRS) is a high spectral resolution infrared sounder on the earth observing plan (EOS) Aqua platform. Temperature and water vapor profile retrievals from AIRS are

422

Conference on Atmospheric Pollution  

Science Journals Connector (OSTI)

... THE half-yearly Conference of representatives of local authorities and other organisations co-operating with the Department of Scientific ... of atmospheric pollution was held in the offices of the Department on May 25. The Conference received from Dr. G. M. B. Dobson, chairman of the Atmospheric Pollution ...

1936-05-30T23:59:59.000Z

423

Measurements of NO2 and Analysis of Submicron Aerosol Composition in the ARM-Related Experiment at Zvenigorod in March-April 2002 and During Forest and Peatbog Fires in July-September 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of NO Measurements of NO 2 and Analysis of Submicron Aerosol Composition in the ARM-Related Experiment at Zvenigorod in March-April 2002 and During Forest and Peatbog Fires in July-September 2002 L. M. Shukurova, A. S. Elokhov, K. A. Shukurov, A. N. Gruzdev, and G. S. Golitsyn A.M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia Introduction One insufficiently explored problem is the effect of pollution of the lower troposphere by nitrogen oxides on the chemical composition and microphysical properties of atmospheric aerosol. Earlier experimental studies showed that submicron aerosol collected during anthropogenic pollution episodes in winter could contain the nitric acid component (Shukurova et al. 2001). In this study, we present

424

Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology  

SciTech Connect

The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

2013-08-06T23:59:59.000Z

425

Spatial Characterization of the Atmospheric-Pressure Moderate-Power He Microwave-Induced Plasma  

Science Journals Connector (OSTI)

Three-dimensional emission profiles of several metallic and nonmetallic elements from a moderate-power (450 W) atmospheric-pressure helium microwave-induced plasma (He MIP) are...

Pak, Yong-Nam; Koirtyohann, S R

1991-01-01T23:59:59.000Z

426

Gaseous Chemistry and Aerosol Mechanism Developments for Version 3.5.1 of the Online Regional Model, WRF-Chem  

SciTech Connect

We have made a number of developments in the regional coupled model WRF-Chem, with the aim of making the model more suitable for prediction of atmospheric composition and of interactions between air quality and weather. We have worked on the European domain, with a particular focus on making the model suitable for the study of night time chemistry and oxidation by the nitrate radical in the UK atmosphere. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been implemented to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas phase scheme. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments is illustrated in order to demonstrate the impact that these changes have in the North-West European domain. These developments are now part of the freely available WRF-Chem distribution.

Archer-Nicholls, Scott; Lowe, Douglas; Utembe, Steve; Allan, James D.; Zaveri, Rahul A.; Fast, Jerome D.; Hodnebrog, Oivind; Denier van der Gon, Hugo; McFiggans, Gordon

2014-11-08T23:59:59.000Z

427

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research  

E-Print Network (OSTI)

Atmospheric Pollution Research 1 (2010) 220228 Atmospheric Pollution Research www in modeling of the associated multiphase processes. Iron redox species are important pollutants. The oxidative capacity of the atmospheric cloud water decreases when dissolution is included

Boyer, Edmond

428

Estimation of sector roughness lengths and the effect on prediction of the vertical wind speed profile  

Science Journals Connector (OSTI)

An estimate of roughness length is required by some atmospheric models and is also used in the logarithmic profile to determine the increase of wind speed with height under neutral conditions. The choice ... thei...

R. J. Barthelmie; J. P. Palutikof; T. D. Davies

1993-10-01T23:59:59.000Z

429

Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere  

SciTech Connect

This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

Tooman, T.P. [ed.] [Sandia National Labs., Livermore, CA (United States). Exploratory Systems Technology Dept.

1997-01-01T23:59:59.000Z

430

Plutonium-aerosol emission rates and human pulmonary deposition calculations for Nuclear Site 201, Nevada Test Site  

SciTech Connect

This study determined the plutonium-aerosol fluxes from the soil to quantify (1) the extent of potential human exposure by deep-lung retention of alpha-emitting particles; (2) the source term should there be any significant, long-term, transport of plutonium aerosols; and (3) the resuspension factor and rate so that, for the first time at any nuclear site, one may calculate how long it will take for wind erosion to carry away a significant amount of the contaminated soil. High-volume air samplers and cascade impactors were used to characterize the plutonium aerosols. Meteorological flux-profile methods were used to calculate dust and plutonium aerosol emission rates. A floorless wind tunnel (10-m long) was used to examine resuspension under steady-state, high wind speed. The resuspension factor was two orders of magnitude lower than the other comparable sites at NTS and elsewhere, and the average resuspension rate of 5.3 x 10/sup -8//d was also very low, so that the half-time for resuspension by wind erosion was about 36,000 y.

Shinn, J.H.; Homan, D.N.

1982-06-21T23:59:59.000Z

431

Atmospheric Burnup of the Cosmos-954 Reactor  

Science Journals Connector (OSTI)

...SPECTROMETER FOR ISOTOPIC ANALYSIS OF URANIUM, ANALYTICAL CHEMISTRY 32...board the satellite. Enriched uranium-bearing aerosols at concentrations...Sawicki,Arch. Environ. Health 14, 46 (1967). 7. J...board the satellite. Enriched uranium-bearing aerosols at concentrations...

P. W. KREY; R. LEIFER; W. K. BENSON; L. A. DIETZ; H. C. HENDRIKSON; J. L. COLUZZA

1979-08-10T23:59:59.000Z

432

LANSCE | News & Media | Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Profiles Shea Mosby: Lighting the way for nuclear science discoveries By Diana Del Mauro ADEPS Communications Photos by Richard Robinson, IRM-CAS Shea Mosby Cradling a heavy...

433

EIA - State Electricity Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

434

Management's Discussion & Analysis Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

7-26-2013. Management's Discussion & Analysis Profile The Bonneville Power Administration is a federal agency under the Department of Energy. BPA markets wholesale electrical power...

435

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

436

Atmospheric Physics and Earth Observations  

Science Journals Connector (OSTI)

...has been used by atmospheric modelers as a vertical...Ackerman, in Atmospheric Physics from Spacelab...shut-tle allows recovery of the film, we...dry nitrogen at atmospheric pressure. To avoid water condensation on the optical...

M. HERSÉ

1984-07-13T23:59:59.000Z

437

The oceanic cycle and global atmospheric budget of carbonyl sulfide  

SciTech Connect

A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

Weiss, P.S.

1994-12-31T23:59:59.000Z

438

Mesoscale Waves as a Probe of Jupiter's Deep Atmosphere  

Science Journals Connector (OSTI)

Search of the Voyager images of Jupiter reveals a class of mesoscale waves occurring near the extrema of the zonal velocity profile between latitudes 30°S and 30°N. The average horizontal wavelength is 300 km, compared to an atmospheric scale ...

F. M. Flasar; P. J. Gierasch

1986-11-01T23:59:59.000Z

439

2015 Pearson Education, Inc. Chapter 6 Atmospheric and Oceanic  

E-Print Network (OSTI)

. Atmospheric Pressure Profile #12;© 2015 Pearson Education, Inc. Measure Air Pressure--Mercury Barometer · Seal Education, Inc. Learning Objectives · Define the concept of air pressure. · Describe instruments used to measure air pressure. · Define wind. · Locate the primary high- and low-pressure areas and principal winds

Pan, Feifei

440

Elisa Carboni1, Roy Grainger1, Gareth Thomas1, Andy Sayer1,2,  

E-Print Network (OSTI)

sensitivity to the aerosol vertical distribution, surface temperature and atmospheric profile. and 0, extinction profile concentration) Sun-photometer: Plymouth, Chilbolton-Aeronet,Sun-photometer: Plymouth, Chilbolton-Aeronet, Cambridge-microtop. (AOD, size distribution) Radiosonde: particle profile ( ash

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nature: Earth's Atmosphere and Beyond  

Science Journals Connector (OSTI)

Nature: Earth's Atmosphere and Beyond ... The column summarizes research articles from Nature that report on anthropogenic activities and natural phenomena that influence the chemical composition of Earth's atmosphere. ...

Sabine Heinhorst; Gordon Cannon

2003-10-01T23:59:59.000Z

442

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 2014.04.01 - 2014.06.01 Lead Scientist : Joel Thornton Description The ultimate goal of this work is to connect field and laboratory observations of organic aerosol chemical and physical properties during the nascent growth stage to the diurnal and vertical distributions of aerosol abundance measured over the boreal forest by the ARM Mobile Facility 2

443

Aerosol Modeling at LLNL - Our capability, results, and perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effects to Cloud Aerosol Indirect Effects to Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 Over the Southern Great Plains during May 2003 IOP Lawrence Livermore National Laboratory This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Catherine Chuang, James Boyle Shaocheng Xie and James Kelly LLNL-POST-401948 March 11, 2008 Why are aerosol/cloud interactions important? The greatest uncertainty in the assessment of radiative forcing arises from the interactions of aerosols with clouds. Radiative forcing of climate between 1750 and 2005 (IPCC, 2007) Sources of uncertainty Emissions Gas to particle conversion Aerosol size distribution Linkage between aerosols

444

ARM - Field Campaign - 2007 Cumulus Humilis Aerosol Process Study (CHAPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Cumulus Humilis Aerosol Process Study (CHAPS) 7 Cumulus Humilis Aerosol Process Study (CHAPS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2007 Cumulus Humilis Aerosol Process Study (CHAPS) 2007.06.04 - 2007.06.25 Lead Scientist : Carl Berkowitz For data sets, see below. Description The primary goal of this campaign was to characterize and contrast freshly emitted aerosols above, within and below fields of cumulus humilis (or fair-weather cumulus, FWC) and to use these observations to address how below-cloud and above-cloud aerosol optical and cloud nucleating properties differ downwind of a mid-size city relative to similar aerosols in air less affected by emissions. The observations from this campaign can also be used to aid in the development and evaluation of parameterizations of the

445

Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements  

Science Journals Connector (OSTI)

The Georgia Institute of Technology–Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the aerosol optical thickness ? for major types of tropospheric aerosols including sulfate, dust, organic carbon ...

Mian Chin; Paul Ginoux; Stefan Kinne; Omar Torres; Brent N. Holben; Bryan N. Duncan; Randall V. Martin; Jennifer A. Logan; Akiko Higurashi; Teruyuki Nakajima

2002-02-01T23:59:59.000Z

446

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III (SAGE III)  

E-Print Network (OSTI)

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas extinction. We retrieve ozone and nitrogen dioxide number densities and aerosol extinction from transmission), Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III

447

Aerosol climate effects and air quality impacts from 1980 to 2030  

E-Print Network (OSTI)

Aerosol climate e?ects and air quality impacts from 1980 toAerosol climate e?ects and air quality impacts from 1980 toAerosol climate e?ects and air quality impacts from 1980 to

Menon, Surabi

2008-01-01T23:59:59.000Z

448

The atmosphere of Venus  

Science Journals Connector (OSTI)

The investigations of Venus take a special position in planetary researches. It was just the atmosphere of Venus where first measurements in situ were carried out by means of the equipment delivered by a space pr...

V. I. Moroz

1981-01-01T23:59:59.000Z

449

Aerosol measurements with laser-induced breakdown spectroscopy  

E-Print Network (OSTI)

monitoring with an atmospheric microwave-plasma having aMonitoring with an Atmospheric Microwave-Plasma Having abased on an atmospheric microwave plasma are underway by

Lithgow, Gregg Arthur

2007-01-01T23:59:59.000Z

450

Priorities for In-situ Aerosol Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Priorities for In-situ Priorities for In-situ Aerosol Measurements Parameters * Aerosol light absorption coefficient - spectral, including UV, vis, and IR - as f(RH), and at ambient RH * Phase function - or relevant integral properties (how many?) * Ice nuclei * Scattering vs. RH, for RH>90% * CCN, as f(S, D p ) * Size distribution * Chemical composition - for determining climate forcing, vs. radiative effect Calibration * Number concentration * Size and shape * Light absorption reference method Characterization * Accuracy and precision - need well-understood error bars * Algorithm comparisons * Closure studies * Facilities for method testing - aircraft time Methods * Inlets - shattering/splashing - location on airplane - passing efficiency - inletless analyzers/samplers * Packaging - modular/portable "pods" for multiple a/c

451

Aerosol and graphitic carbon content of snow  

SciTech Connect

Snow samples from southern New Mexico, west Texas, Antarctica, and Greenland were analyzed for aerosol and graphitic carbon. Graphitic carbon contents were found to be between 2.2 and 25 ..mu..g L/sup -1/ of snow meltwater; water-insoluble aerosol content varied between 0.62 and 8.5 mg L/sup -1/. For comparison, two samples of Camp Century, Greenland, ice core, having approximate ages of 4,000 and 6,000 years, were also analyzed. Ice core graphitic carbon contents were found to be 2.5 and 1.1 ..mu..g L/sup -1/. copyrightAmerican Geophysical Union 1987

Chy-acute-accentlek, P.; Srivastava, V.; Cahenzli, L.; Pinnick, R.G.; Dod, R.L.; Novakov, T.; Cook, T.L.; Hinds, B.D.

1987-08-20T23:59:59.000Z

452

Aerosol generation and entrainment model for cough simulations.  

E-Print Network (OSTI)

??The airborne transmission of diseases is of great concern to the public health community. The possible spread of infectious disease by aerosols is of particular… (more)

Ersahin, Cem.

2007-01-01T23:59:59.000Z

453

Method of Preparing Super-Concentrated Jets From Dense Aerosol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael J. Hay, Ernest J. Valeo, and Nathaniel J. Fisch This is improvement in aerodynamic focusing of dilute aerosol suspensions. All previous work on this subject has...

454

ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems...  

NLE Websites -- All DOE Office Websites (Extended Search)

properties during the winter-spring transition. Opportunity to investigate fire and automobile emission interactions with biogenic aerosols will also harnessed MAOS will be...

455

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements  

Science Journals Connector (OSTI)

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements ... diesel engines have received increasing attention due to their potential health effects. ...

Tero Lähde; Topi Rönkkö; Annele Virtanen; Tanja J. Schuck; Liisa Pirjola; Kaarle Hämeri; Markku Kulmala; Frank Arnold; Dieter Rothe; Jorma Keskinen

2008-12-09T23:59:59.000Z

456

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

NLE Websites -- All DOE Office Websites (Extended Search)

modifications reduced but could not eliminate these adverse effects. The Raman lidar water vapor (aerosol extinction) measurements produced by these modified algorithms were,...

457

aerosol influenza transmission: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

and Information Sciences Websites Summary: . In preliminary work, we used artificial neural networks (ANNs) to construct global aerosol predictors by learningIntegration...

458

E-Print Network 3.0 - aerosol particle size Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: of aerosol over many orders-of-magnitude of particle size range, from subcritical clusters on the molecular... to modeling aerosol dynamics under conditions of new...

459

E-Print Network 3.0 - aerosol modeling decadal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geosciences 8 Absorbing aerosols and pre-summer monsoon hydroclimate variability over the Indian subcontinent: The challenge in investigating links Summary: in the aerosol-monsoon...

460

E-Print Network 3.0 - aerosol radiative forcing Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

No. DE- Summary: : WHY MEASUREMENTS ALONE CANNOT QUANTIFY AEROSOL RADIATIVE FORCING OF CLIMATE CHANGE Stephen E. Schwartz... of radiative forcing of climate change by aerosols,...

Note: This page contains sample records for the topic "aerosols atmospheric profiling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - aerosols nanometriques application Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

is studying how aerosol particles affect everything from Summary: of aerosol particles on climate change, public health, and renewable energy applications. In particular, he......

462

E-Print Network 3.0 - aerosol lung inhalation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

aerosolized by means... is aerosolized upon inhalation by utilizing the ... Source: Groningen, Rijksuniversiteit - Centre for Ecological and Evolutionary Studies, Department of...

463

E-Print Network 3.0 - aerosol condensation model Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Science Collection: Environmental Sciences and Ecology 8 DETERMINING AEROSOL RADIATIVE FORCING AT ARM SITES Summary: OF AEROSOL DIRECT FORCING By linear model and by...

464

E-Print Network 3.0 - aerosol code comparisons Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Ecology 4 Estimates of global radiative forcing derived from the GlobAEROSOL dataset Summary: -sky direct aerosol radiative forcing. The Edwards and Slingo (1996)...

465

Aerosol-Cloud-Precipitation Interactions in the Trade Wind Boundary Layer.  

E-Print Network (OSTI)

??This dissertation includes an overview of aerosol, cloud, and precipitation properties associated with shallow marine cumulus clouds observed during the Barbados Aerosol Cloud Experiment (BACEX,… (more)

Jung, Eunsil

2012-01-01T23:59:59.000Z

466

E-Print Network 3.0 - aerosols harbor diverse Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud & Aerosol Process Group CSDESRLNOAA Presented at: NIST... Aerosol Metrology for Climate Workshop 15th March, 2011 12;Deposition Snow Darkens and Warms BC...

467

E-Print Network 3.0 - aerosol light absorption Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

AND Summary: population centers were used to calculate the aerosol forcing due to light scattering and absorption. Directly... , NY www.bnl.gov ABSTRACT Aerosols influence...

468

E-Print Network 3.0 - alkali sulfate aerosol Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Formation during... " and "Mechanism of Alkali Sulfate Aerosols Formation during Biomass Combustion" describe the development... the ... Source: Ris National Laboratory...

469

Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)  

SciTech Connect

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar; WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere which then can be entrained into the growing boundary layer the subsequent day.

Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

2012-02-17T23:59:59.000Z

470

Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)  

SciTech Connect

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar. WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere that are then entrained into the growing boundary layer the subsequent day.

Fast J. D.; Springston S.; Gustafson Jr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

2012-02-17T23:59:59.000Z

471

Science Plan for the Atmospheric Radiation Measurement Program (ARM)  

SciTech Connect

The purpose of this Atmospheric Radiation Measurement (ARM) Science Plan is to articulate the scientific issues driving the ARM Program, and to relate them to DOE`s programmatic objectives for ARM, based on the experience and scientific progress gained over the past five years. ARM programmatic objectives are to: (1) Relate observed radiative fluxes and radiances in the atmosphere, spectrally resolved and as a function of position and time, to the temperature and composition of the atmosphere, specifically including water vapor and clouds, and to surface properties, and sample sufficient variety of situations so as to span a wide range of climatologically relevant possibilities; (2) develop and test parameterizations that can be used to accurately predict the radiative properties and to model the radiative interactions involving water vapor and clouds within the atmosphere, with the objective of incorporating these parameterizations into general circulation models. The primary observational methods remote sending and other observations at the surface, particularly remote sensing of clouds, water vapor and aerosols.

NONE

1996-02-01T23:59:59.000Z

472

MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars with DISORT-based Rad. Transfer Modeling: Phase 1 - Using Historical Climatology for Temperatures, Aerosol Opacities, & Atmo. Pressures  

E-Print Network (OSTI)

We discuss the DISORT-based radiative transfer pipeline ('CRISM_LambertAlb') for atmospheric and thermal correction of MRO/CRISM data acquired in multispectral mapping mode (~200 m/pixel, 72 spectral channels). Currently, in this phase-one version of the system, we use aerosol optical depths, surface temperatures, and lower-atmospheric temperatures, all from climatology derived from Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data, and surface altimetry derived from MGS Mars Orbiter Laser Altimeter (MOLA). The DISORT-based model takes as input the dust and ice aerosol optical depths (scaled to the CRISM wavelength range), the surface pressures (computed from MOLA altimetry, MGS-TES lower-atmospheric thermometry, and Viking-based pressure climatology), the surface temperatures, the reconstructed instrumental photometric angles, and the measured I/F spectrum, and then outputs a Lambertian albedo spectrum. The Lambertian albedo spectrum is valuable geologically since it allows the mineralogical ...

McGuire, P C; Smith, M D; Arvidson, R E; Murchie, S L; Clancy, R T; Roush, T L; Cull, S C; Lichtenberg, K A; Wiseman, S M; Green, R O; Martin, T Z; Milliken, R E; Cavender, P J; Humm, D C; Seelos, F P; Seelos, K D; Taylor, H W; Ehlmann, B L; Mustard, J F; Pelkey, S M; Titus, T N; Hash, C D; Malaret, E R

2009-01-01T23:59:59.000Z

473

Global Thermodynamic Atmospheric Modeling: Search for NewHeterogeneous Reactions  

SciTech Connect

This article demonstrates quantitatively how far reactions are from chemical equilibrium over the full space of a two-dimensional atmospheric model. This method could be used with data where an instrument-equipped aircraft measures numerous species simultaneously, An atmospheric reaction is displaced from equilibrium by solar radiation and relocation of species by atmospheric motions. One purpose of this study is to seek additional stratospheric or tropospheric gas-phase chemical reactions that might undergo heterogeneous catalysis. Hypothetical cases can be rapidly screened in terms of their thermodynamic potential to react under measured or modeled atmospheric conditions of temperature and local species concentrations. If a reaction is interesting, is slow in the gas phase, and has a high thermodynamic tendency to react, it is a good candidate for a laboratory study to seek a heterogeneous catalyst, if the reaction is thermodynamically unfavorable, there is no catalyst that can cause the reaction to occur. If a reaction is thermodynamically favored to occur but also endothermic, it will tend to be slow at stratospheric temperatures. We find, as expected, that four heterogeneous reactions important in causing the Antarctic ''ozone hole'' have high thermodynamic tendencies to occur under atmospheric conditions, but one of these is only weakly thermodynamically allowed in some regions of the atmosphere. The reaction of SO2 and HNO3 to form HONO has a high thermodynamic potential to occur, is a well-known laboratory reaction at ice temperature, and may occur in nitric acid-rich sulfate aerosols. Throughout the troposphere and stratosphere, we find that formaldehyde has an extremely high thermodynamic potential to reduce nitric acid. Formaldehyde is known to stick to and remain in sulfuric acid solution, where it adds water to form H2C(OH)(2). Near room-temperature H2C(OH)(2) reacts with nitric acid in a two-step mechanism to form two molecules of HONO, but the rate of this process under conditions of stratospheric sulfuric acid aerosols is unknown.

Fairbrother, D.H.; Sullivan, D.S.D.; Johnston, H.S.

1997-07-03T23:59:59.000Z

474

ARM - Publications: Science Team Meeting Documents: ARM Site Atmospheric  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM Site Atmospheric State Best Estimates for AIRS Forward Model and ARM Site Atmospheric State Best Estimates for AIRS Forward Model and Retrieval Validation Tobin, David University of Wisconsin-Madison Revercomb, Henry University Of Wisconsin-Madison Knuteson, Robert University Of Wisconsin Feltz, Wayne University of Wisconsin Moy, Leslie University of Wisconsin-Madison Lesht, Barry Argonne National Laboratory Cress, Ted Pacific Northwest National Laboratory Strow, Larrabee Hannon, Scott Fetzer, Eric Jet Propulsion Laboratory The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua platform is the first of a new generation of advanced hyperspectral atmospheric sounders with the capability of retrieving temperature and trace gas profiles with high vertical resolution and absolute accuracy. In the past few years ARM has played a major role in the validation of AIRS, including the launch of

475

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

SciTech Connect

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 Oct–Nov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivit