Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reactive Gliosis Reactive Oxygen Species: Superoxide  

E-Print Network [OSTI]

. By sensing the electric signals generated by other 3368 Reactive Gliosis #12;individuals, mormyrids are alsoReactive Gliosis Glial Scar Reactive Oxygen Species: Superoxide Anions Neuroinflammation motor output. Reafferent Control in Electric Communication Reafferent Control in Electric Communication

2

Electrocatalytic Reactivity for Oxygen Reduction of Palladium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactivity for Oxygen Reduction of Palladium-Modified Carbon Nanotubes Synthesized in Supercritical Fluid. Electrocatalytic Reactivity for Oxygen Reduction of Palladium-Modified...

3

Formation, characterization and reactivity of adsorbed oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Formation, characterization and reactivity of adsorbed oxygen on BaOPt(111). Abstract: The formation...

4

Mitochondrial reactive oxygen species and cancer  

E-Print Network [OSTI]

Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity. While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift ...

Chandel, Navdeep S

5

Reactive oxygen species: a breath of life or death?  

E-Print Network [OSTI]

AP1, activator protein-1; ODD, oxygen-dependent degradationSignaling response when oxygen levels decrease (Fig. 1C;3. Halliwell B. Reactive oxygen species in living sys- tems:

Fruehauf, John P; Meyskens, Frank L Jr

2007-01-01T23:59:59.000Z

6

Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic  

E-Print Network [OSTI]

, quenching singlet oxygen generated during the water-splitting process of photo- synthesis (10, 11). VariousLycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS

Wurtzel, Eleanore

7

E-Print Network 3.0 - ameliorating reactive oxygen Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

structure and surface relaxation Summary: reactivity of each type of oxygen the adsorption of hydrogen over different oxygen sites is studied. Full... oxygen is the reactive...

8

Reactive oxygen species deglycosilate glomerular a-dystroglycan  

E-Print Network [OSTI]

Reactive oxygen species deglycosilate glomerular a-dystroglycan NPJ Vogtla¨nder1 , WPM Tamboer1 open. Reactive oxygen species (ROS) are known to degrade and depolymerize carbohydrates, and to playDa in skeletal muscle, ranging from 120 kDa in brain to 190 kDa in the Torpedo electric organ.8

Campbell, Kevin P.

9

Aging Enhances the Production of Reactive Oxygen Species andBactericid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhances the Production of Reactive Oxygen Species andBactericidal Activity in Peritoneal Macrophages by Aging Enhances the Production of Reactive Oxygen Species andBactericidal...

10

E-Print Network 3.0 - accumulate reactive oxygen Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reactive oxygen Search Powered by Explorit Topic List Advanced Search Sample search results for: accumulate reactive oxygen Page: << < 1 2 3 4 5 > >> 1 CLINICAL CONCEPTS AND...

11

Generation of reactive oxygen species by a persulfide (BnSSH) Tonika Chatterji,  

E-Print Network [OSTI]

Generation of reactive oxygen species by a persulfide (BnSSH) Tonika Chatterji, Kripa Keerthi generate reactive oxygen species under biologically rele- vant conditions via the sequence of reactions by reactive oxygen species generated in this manner may contribute to the cytotoxic properties of leinamycin

Gates, Kent. S.

12

Properties of Reactive Oxygen Species by Quantum Monte Carlo  

E-Print Network [OSTI]

The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of Chemistry, Biology and Atmospheric Science. Nevertheless, the electronic structure of such species is a challenge for ab-initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as $N^3-N^4$, where $N$ is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

Andrea Zen; Bernhardt L. Trout; Leonardo Guidoni

2014-03-11T23:59:59.000Z

13

Properties of reactive oxygen species by quantum Monte Carlo  

SciTech Connect (OSTI)

The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} ? N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

Zen, Andrea [Dipartimento di Fisica, La Sapienza - Università di Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy); Trout, Bernhardt L. [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139 (United States); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Scienze Fisiche e Chimiche, Università degli studi de L'Aquila, Via Vetoio, 67100 Coppito, L'Aquila (Italy)

2014-07-07T23:59:59.000Z

14

Effect of different intravenous iron preparations on lymphocyte intracellular reactive oxygen species generation and subpopulation survival.  

E-Print Network [OSTI]

IV iron compounds induced greater intracellular ROS generation,IV iron preparations on intracellular reactive oxygen species generationIV iron preparations on intracellular immune cell ROS generation

Gupta, Ajay; Zhuo, Jiaying; Zha, Junli; Reddy, Srinivasa; Olp, Jonathan; Pai, Amy

2010-01-01T23:59:59.000Z

15

INHIBITION OF CASPASE-LIKE ACTIVITIES PREVENTS THE APPEARANCE OF REACTIVE OXYGEN SPECIES AND DARK-INDUCED APOPTOSIS  

E-Print Network [OSTI]

cells revealed by SYTOX-green staining, and the generation of reactive oxygen species (ROS), we usedINHIBITION OF CASPASE-LIKE ACTIVITIES PREVENTS THE APPEARANCE OF REACTIVE OXYGEN SPECIES AND DARK viability; Dunaliella tertiolecta; phosphatidylserine; phytoplankton; reactive oxygen species; unicellular

Berges, John A.

16

RESUS-D-12-00285 Mild hypothermia reduces per-ischemic reactive oxygen species production4  

E-Print Network [OSTI]

this dysfunction through per-ischemic3 inhibition of reactive oxygen species (ROS) generation.4 Methods: First, ROS ischemic injuries through complex events2 involving reactive oxygen species (ROS) generation 1, 2RESUS-D-12-00285 1 2 3 Mild hypothermia reduces per-ischemic reactive oxygen species production4

Paris-Sud XI, Université de

17

Photochemical Transformation of Carboxylated Multiwalled Carbon Nanotubes: Role of Reactive Oxygen Species  

E-Print Network [OSTI]

in consumer and industrial products (e.g., electronics, composite materials, and sporting equipment) mayPhotochemical Transformation of Carboxylated Multiwalled Carbon Nanotubes: Role of Reactive Oxygen investigated the photochemical transformation of carboxylated multiwalled carbon nanotubes (COOH

Alvarez, Pedro J.

18

S-nitrosothiols and reactive oxygen species in plant disease resistance and development   

E-Print Network [OSTI]

Nitric oxide (NO) as well as reactive oxygen species (ROS) play an important role in defence signalling in plants. After successful recognition of an invading pathogen, an increase in ROS occurs, the ’oxidative burst’; ...

Brzezek, Kerstin

2014-06-28T23:59:59.000Z

19

Reactive oxygen species and Udx1 during early sea urchin development Julian L. Wong, Gary M. Wessel*  

E-Print Network [OSTI]

Reactive oxygen species and Udx1 during early sea urchin development Julian L. Wong, Gary M. Wessel Abstract Sea urchin fertilization is marked by a massive conversion of molecular oxygen to hydrogen of these defective embryos. We also report an unequal distribution of reactive oxygen species between sister

Wessel, Gary M.

20

Frequency effects on the production of reactive oxygen species in atmospheric radio frequency helium-oxygen discharges  

SciTech Connect (OSTI)

Several experimental and computational studies have shown that increasing frequency can effectively enhance the discharge stability in atmospheric radio-frequency (rf) discharges, but the frequency effects on the reactivity of rf discharges, represented by the densities of reactive oxygen species (ROS), are still far from fully understood. In this paper, a one-dimensional fluid model with 17 species and 65 reactions taken into account is used to explore the influences of the driving frequency on the production and destruction of ROS in atmospheric rf helium-oxygen discharges. From the computational results, with an increase in the frequency the densities of ROS decrease always at a constant power density, however, in the relatively higher frequency discharges the densities of ROS can be effectively improved by increasing the input power density with an expanded oxygen admixture range, while the discharges operate in the {alpha} mode, and the numerical data also show the optimal oxygen admixture for ground state atomic oxygen, at which the peak atomic oxygen density can be obtained, increases with the driving frequency.

Zhang, Yuantao T.; He Jin [Shandong Provincial Key Lab of UHV Technology and Gas Discharge Physics, School of Electrical Engineering, Shandong University, Jinan, Shandong Province 250061 (China)

2013-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reactivity and stability of platinum and platinum alloy catalysts toward the oxygen reduction reaction  

E-Print Network [OSTI]

Density functional theory (DFT) is used to study the reactivity of Pt and Pt-M (M: Pd, Co, Ni, V, and Rh) alloy catalysts towards the oxygen reduction reaction (ORR) as a function of the alloy overall composition and surface atomic distribution...

Calvo, Sergio Rafael

2009-05-15T23:59:59.000Z

22

Isoquinoline-1,3,4-trione Derivatives Inactivate Caspase-3 by Generation of Reactive Oxygen Species*S  

E-Print Network [OSTI]

Isoquinoline-1,3,4-trione Derivatives Inactivate Caspase-3 by Generation of Reactive Oxygen Species that ROS can be generated by reaction of isoquinoline-1,3,4-trione derivatives with DTT. Oxygen- pounds can irreversibly inactivate caspase-3 in a 1,4-dithio- threitol (DTT)- and oxygen-dependent manner

Tian, Weidong

23

Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}  

SciTech Connect (OSTI)

We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

2012-12-01T23:59:59.000Z

24

Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds  

SciTech Connect (OSTI)

The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

Hartwig, J.F.

1990-12-01T23:59:59.000Z

25

Green fluorescent protein based indicators of dynamic redox changes and reactive oxygen species  

E-Print Network [OSTI]

attached a singlet oxygen generator to the C-terminal ofencoded singlet oxygen generators, which is currentlyassays. A. Singlet oxygen generator and sensor are tethered;

Dooley, Colette

2006-01-01T23:59:59.000Z

26

Generation of DNA-Damaging Reactive Oxygen Species via the Autoxidation of Hydrogen Sulfide under Physiologically Relevant  

E-Print Network [OSTI]

Generation of DNA-Damaging Reactive Oxygen Species via the Autoxidation of Hydrogen Sulfide under found that micromolar concentrations of H2S generated single-strand DNA cleavage. Mechanistic studies indicate that this process involved autoxidation of H2S to generate superoxide, hydrogen peroxide, and

Gates, Kent. S.

27

Surface reactivity and oxygen migration in amorphous indium-gallium-zinc oxide films annealed in humid atmosphere  

SciTech Connect (OSTI)

An isotope tracer study, i.e., {sup 18}O/{sup 16}O exchange using {sup 18}O{sub 2} and H{sub 2}{sup 18}O, was performed to determine how post-deposition annealing (PDA) affected surface reactivity and oxygen diffusivity of amorphous indium–gallium–zinc oxide (a-IGZO) films. The oxygen tracer diffusivity was very high in the bulk even at low temperatures, e.g., 200?°C, regardless of PDA and exchange conditions. In contrast, the isotope exchange rate, dominated by surface reactivity, was much lower for {sup 18}O{sub 2} than for H{sub 2}{sup 18}O. PDA in a humid atmosphere at 400?°C further suppressed the reactivity of O{sub 2} at the a-IGZO film surface, which is attributable to –OH-terminated surface formation.

Watanabe, Ken, E-mail: Watanabe.Ken@nims.go.jp [International Center for Young Scientists (ICYS-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan)] [International Center for Young Scientists (ICYS-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Lee, Dong-Hee [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan) [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan); Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Sakaguchi, Isao; Haneda, Hajime [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan)] [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan); Nomura, Kenji [Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan)] [Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Kamiya, Toshio [Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan) [Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Hosono, Hideo [Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan) [Materials and Structures Laboratory (MSL), Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan); Ohashi, Naoki, E-mail: Ohashi.Naoki@nims.go.jp [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan) [Optical and Electronic Materials Unit, NIMS, 1-1 Namiki, Tsukuba 305-0044 (Japan); Materials Research Center for Element Strategy (MCES), Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 (Japan)

2013-11-11T23:59:59.000Z

28

Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate  

SciTech Connect (OSTI)

The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O{sub 2} and O{sub 3} produced via two pathways: O + O and O{sub 2} + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O{sub 2} + O reactions is ?150 K/k{sub b}. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley–Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O{sub 3} formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O{sub 3} is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO{sub 2} and H{sub 2}O in the ices.

Minissale, M., E-mail: marco.minissale@obspm.fr; Congiu, E.; Dulieu, F. [LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 Mail Gay Lussac, 95000 Cergy Pontoise Cedex (France)] [LERMA-LAMAp, Université de Cergy-Pontoise, Observatoire de Paris, ENS, UPMC, UMR 8112 du CNRS, 5 Mail Gay Lussac, 95000 Cergy Pontoise Cedex (France)

2014-02-21T23:59:59.000Z

29

Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes  

SciTech Connect (OSTI)

Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not lead to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.

Radogna, Flavia [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy); Paternoster, Laura [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy); Istitututo di Chimica Biologica, Universita di Urbino Carlo Bo (Italy); De Nicola, Milena; Cerella, Claudia [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy); Ammendola, Sergio [Ambiotec (Italy); Bedini, Annalida; Tarzia, Giorgio [Istituto di Chimica Farmaceutica, Universita di Urbino Carlo Bo (Italy); Aquilano, Katia; Ciriolo, Maria [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy); Ghibelli, Lina [Dipartimento di Biologia, Universita di Roma Tor Vergata, via Ricerca Scientifica, 1, 00133 Roma (Italy)], E-mail: ghibelli@uniroma2.it

2009-08-15T23:59:59.000Z

30

Controllable generation of reactive oxygen species by femtosecond-laser irradiation  

SciTech Connect (OSTI)

Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

Yan, Wei; He, Hao, E-mail: haohe@tju.edu.cn; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue [Ultrafast Laser Laboratory, Key Laboratory of Optoelectronic Information Technology (Ministry of Education), College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin (China)

2014-02-24T23:59:59.000Z

31

IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway  

SciTech Connect (OSTI)

Highlights: Black-Right-Pointing-Pointer Cellular senescence plays an important role in tumorigenesis and aging process. Black-Right-Pointing-Pointer We demonstrated IGF-I enhanced cellular senescence in primary confluent cells. Black-Right-Pointing-Pointer IGF-I enhanced cellular senescence in the ROS and p53-dependent manner. Black-Right-Pointing-Pointer These results may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. -- Abstract: Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated {beta}-galactosidase (SA-{beta}-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, {gamma}H2AX, the increased levels of p53 and p21 proteins, and activated SA-{beta}-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-{beta}-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging.

Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)] [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan); Takahashi, Yutaka, E-mail: takahash@med.kobe-u.ac.jp [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)] [Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe (Japan)

2012-08-24T23:59:59.000Z

32

Electronic structure of perovskite oxide surfaces at elevated temperatures and its correlation with oxygen reduction reactivity  

E-Print Network [OSTI]

The objective is to understand the origin of the local oxygen reduction reaction (ORR) activity on the basis of the local electronic structure at the surface of transition metal oxides at elevated temperatures and in oxygen ...

Chen, Yan, Ph. D. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

33

Reactive oxygen species and oxidative DNA damage mediate the cytotoxicity of tungsten-nickel-cobalt alloys in vitro  

SciTech Connect (OSTI)

Tungsten alloys (WA) have been introduced in an attempt to find safer alternatives to depleted uranium and lead munitions. However, it is known that at least one alloy, 91% tungsten-6% nickel-3% cobalt (WNC-91-6-3), causes rhabdomyosarcomas when fragments are implanted in rat muscle. This raises concerns that shrapnel, if not surgically removable, may result in similar tumours in humans. There is therefore a clear need to develop rapid and robust in vitro methods to characterise the toxicity of different WAs in order to identify those that are most likely to be harmful to human health and to guide development of new materials in the future. In the current study we have developed a rapid visual in vitro assay to detect toxicity mediated by individual WA particles in cultured L6-C11 rat muscle cells. Using a variety of techniques (histology, comet assay, caspase-3 activity, oxidation of 2'7'-dichlorofluorescin to measure the production of reactive oxygen species and whole-genome microarrays) we show that, in agreement with the in vivo rat carcinogenicity studies, WNC-91-6-3 was the most toxic of the alloys tested. On dissolution, it produces large amounts of reactive oxygen species, causes significant amounts of DNA damage, inhibits caspase-3, triggers a severe hypoxic response and kills the cells in the immediate vicinity of the alloy particles within 24 h. By combining these in vitro data we offer a mechanistic explanation of the effect of this alloy in vivo and show that in vitro tests are a viable alternative for assessing new alloys in the future.

Harris, R.M.; Williams, T.D.; Hodges, N.J.; Waring, R.H., E-mail: R.H.Waring@bham.ac.uk

2011-01-01T23:59:59.000Z

34

Binding of misonidazole to V79 spheroids and fragments of Dunning rat prostatic and human colon carcinomas in vitro: diffusion of oxygen and reactive metabolites  

SciTech Connect (OSTI)

Differences were noted previously in the binding of /sup 14/C-Misonidazole (MISO) to V79 and EMT6 spheroids when incubated at low oxygen levels. Further data reported here indicate that the K/sub m/ for the inhibition of binding by oxygen is lower in V79 than EMT6 spheroids, so that part of the non-uniformity of binding to V79 spheroids can be explained by diffusion of small amounts of oxygen through the entire rim of viable cells. Diffusion of reactive metabolites of MISO out of the spheroid previously was considered an unlikely explanation. Further evidence to support this interpretation is presented here. Patterns of binding of /sup 3/H-MISO to Dunning and human colon carcinomas are presented which are consistent with the interpretation that most of the reactive metabolites are confined to the cell in which they are produced.

Franko, A.J.; Koch, C.J.

1984-08-01T23:59:59.000Z

35

Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells  

SciTech Connect (OSTI)

Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKC? mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China)] [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei, Taiwan, ROC (China) [Instrumentation Center, National Taiwan University, Taipei, Taiwan, ROC (China); Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan, ROC (China)] [Department of Biotechnology, Asia University, Taichung, Taiwan, ROC (China); Lee, Ming-Shyue [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China)] [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Chen, Jiun-Hong [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China) [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China) [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC (China)

2013-11-01T23:59:59.000Z

36

Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2  

SciTech Connect (OSTI)

Silica nanoparticles are increasingly utilized in various applications including agriculture and medicine. In vivo studies have shown that liver is one of the primary target organ of silica nanoparticles. However, possible mechanisms of hepatotoxicity caused by silica nanoparticles still remain unclear. In this study, we explored the reactive oxygen species (ROS) mediated apoptosis induced by well-characterized 14 nm silica nanoparticles in human liver cell line HepG2. Silica nanoparticles (25–200 ?g/ml) induced a dose-dependent cytotoxicity in HepG2 cells. Silica nanoparticles were also found to induce oxidative stress in dose-dependent manner indicated by induction of ROS and lipid peroxidation and depletion of glutathione (GSH). Quantitative real-time PCR and immunoblotting results showed that both the mRNA and protein expressions of cell cycle checkpoint gene p53 and apoptotic genes (bax and caspase-3) were up-regulated while the anti-apoptotic gene bcl-2 was down-regulated in silica nanoparticles treated cells. Moreover, co-treatment of ROS scavenger vitamin C significantly attenuated the modulation of apoptotic markers along with the preservation of cell viability caused by silica nanoparticles. Our data demonstrated that silica nanoparticles induced apoptosis in human liver cells, which is ROS mediated and regulated through p53, bax/bcl-2 and caspase pathways. This study suggests that toxicity mechanisms of silica nanoparticles should be further investigated at in vivo level. -- Highlights: ? We explored the mechanisms of toxicity caused by silica NPs in human liver HepG2 cells. ? Silica NPs induced a dose-dependent cytotoxicity in HepG2 cells. ? Silica NPs induced ROS generation and oxidative stress in a dose-dependent manner. ? Silica NPs were also modulated apoptosis markers both at mRNA and protein levels. ? ROS mediated apoptosis induced by silica NPs was preserved by vitamin C.

Ahmad, Javed [Department of Zoology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)] [Department of Zoology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Ahamed, Maqusood, E-mail: maqusood@gmail.com [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia)] [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Akhtar, Mohd Javed [Fibre Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow-226001 (India)] [Fibre Toxicology, CSIR-Indian Institute of Toxicology Research, Lucknow-226001 (India); Alrokayan, Salman A. [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia)] [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451 (Saudi Arabia); Siddiqui, Maqsood A.; Musarrat, Javed; Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)] [Department of Zoology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

2012-03-01T23:59:59.000Z

37

Reactivity deterioration of NiO/Al{sub 2}O{sub 3} oxygen carrier for chemical looping combustion of coal in a 10 kW{sub th} reactor  

SciTech Connect (OSTI)

A relatively long-term experiment for chemical looping combustion of coal with NiO/Al{sub 2}O{sub 3} oxygen carrier was carried out in a 10 kW{sub th} continuous reactor of interconnected fluidized beds, and 100 h of operation was reached with the same batch of the oxygen carrier. The reactivity deterioration of the oxygen carriers was present during the experimental period. The reactivity deterioration of reacted oxygen carriers at different experimental stages was evaluated using X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray fluorescence spectrometer. SEM analysis showed no significant change in the morphology of the nickel-based oxygen carrier at the fuel reactor temperature {<=}940 C, but loss of surface area and porosity of reacted oxygen carriers was observed when the fuel reactor temperature exceeded 960 C. The results show that the sintering effect have mainly contributed to the reactivity deterioration of reacted oxygen carriers in the CLC process for coal, while the effects of coal ash and sulfur can be ignored. The oxidization of reduced oxygen carrier with air was an intensive exothermic process, and the high temperature of oxygen carrier particles led to sintering on the surface of oxygen carrier particles in the air reactor. Attention must be paid to control the external circulation of oxygen carrier particles in the interconnected fluidized beds in order to efficiently transport heat from the air reactor to the fuel reactor, and reduce the temperature of oxygen carrier particles in the air reactor. Improvement of reactivity deterioration of reacted oxygen carriers was achieved by the supplement of steam into the fuel reactor. Nevertheless, NiO/Al{sub 2}O{sub 3} is still one of the optimal oxygen carriers for chemical looping combustion of coal if the sintering of oxygen carrier is minimized at the suitable reactor temperature. (author)

Shen, Laihong; Wu, Jiahua; Gao, Zhengping; Xiao, Jun [Thermoenergy Engineering Research Institute, Southeast University, 2 Sipailou, Nanjing 210096 (China)

2009-07-15T23:59:59.000Z

38

NADPH oxidase-mediated generation of reactive oxygen species: A new mechanism for X-ray-induced HeLa cell death  

SciTech Connect (OSTI)

Oxidative damage is an important mechanism in X-ray-induced cell death. Radiolysis of water molecules is a source of reactive oxygen species (ROS) that contribute to X-ray-induced cell death. In this study, we showed by ROS detection and a cell survival assay that NADPH oxidase has a very important role in X-ray-induced cell death. Under X-ray irradiation, the upregulation of the expression of NADPH oxidase membrane subunit gp91{sup phox} was dose-dependent. Meanwhile, the cytoplasmic subunit p47{sup phox} was translocated to the cell membrane and localized with p22{sup phox} and gp91{sup phox} to form reactive NADPH oxidase. Our data suggest, for the first time, that NADPH oxidase-mediated generation of ROS is an important contributor to X-ray-induced cell death. This suggests a new target for combined gene transfer and radiotherapy.

Liu Qing [Department of Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, 509 Nanchang Rd., Lanzhou 730000 (China); He Xiaoqing [First Affiliated Hospital of Lanzhou University, 1 Donggang West Rd., Lanzhou 730000 (China); Liu Yongsheng [Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural, 1 Xujiaping Rd., Lanzhou 730046 (China); Du Bingbing; Wang Xiaoyan [College of Medicine, Lanzhou University, 222, South Tianshui Rd., Lanzhou 730000 (China); Zhang Weisheng [Gansu Province People's Hospital, 160 Donggang West Rd., Lanzhou 730000 (China); Jia Pengfei [Institute of Cell Biology, School of Life Science, Lanzhou University, 222, South Tianshui Rd., Lanzhou 730000 (China); Dong Jingmei [Institute of Sports Medicine, Lanzhou City University, Jiefang Rd., Lanzhou 730070 (China); Ma Jianxiu [College of Medicine, Northwest University for Nationalities, 1 Northwest New Village, Lanzhou 730030 (China); Wang Xiaohu [Department of Radiology, Gansu Province Cancer Hospital, 2 Xiaoxihu East Rd., Lanzhou 730050 (China); Li Sha [Department of Radiology, Lanzhou General Hospital of PLA, 98 Xiaoxihu West Rd., 730050 (China); Zhang Hong [Department of Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd., Lanzhou 730000 (China); Key Laboratory of Heavy Ion Radiation Medicine of Gansu Province, 509 Nanchang Rd., Lanzhou 730000 (China)], E-mail: zhangh@impcas.ac.cn

2008-12-19T23:59:59.000Z

39

Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma DLD1 cells  

SciTech Connect (OSTI)

Long term exposure to arsenic can increase incidence of human cancers, such as skin, lung, and colon rectum. The mechanism of arsenic induced carcinogenesis is still unclear. It is generally believed that reactive oxygen species (ROS) may play an important role in this process. In the present study, we investigate the possible linkage between ROS, {beta}-catenin and arsenic induced transformation and tumorigenesis in human colorectal adenocarcinoma cell line, DLD1 cells. Our results show that arsenic was able to activate p47{sup phox} and p67{sup phox}, two key proteins for activation of NADPH oxidase. Arsenic was also able to generate ROS in DLD1 cells. Arsenic increased {beta}-catenin expression level and its promoter activity. ROS played a major role in arsenic-induced {beta}-catenin activation. Treatment of DLD1 cells by arsenic enhanced both transformation and tumorigenesis of these cells. The tumor volumes of arsenic treated group were much larger than those without arsenic treatment. Addition of either superoxide dismutase (SOD) or catalase reduced arsenic induced cell transformation and tumor formation. The results indicate that ROS are involved in arsenic induced cell transformation and tumor formation possible through Wnt/{beta}-catenin pathway in human colorectal adenocarcinoma cell line DLD1 cells. - Highlights: > Arsenic activates NADPH oxidase and increases reactive oxygen species generation in DLD1 cells. > Arsenic increases {beta}-catenin expression. > Inhibition of ROS induced by arsenic reduce {beta}-catenin expression. > Arsenic increases cell transformation in DLD1 cells and tumorigenesis in nude mice. > Blockage of ROS decrease cell transformation and tumorigenesis induced by arsenic.

Zhang Zhuo [Department of Preventive Medicine and Environmental Health, University of Kentucky, 121 Washington Avenue, Lexington, KY 40536 (United States); Wang Xin; Cheng Senping; Sun Lijuan; Son, Young-Ok [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Yao Hua [Department of Stomatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003 (China); Li Wenqi [Department of Preventive Medicine and Environmental Health, University of Kentucky, 121 Washington Avenue, Lexington, KY 40536 (United States); Budhraja, Amit [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Li Li [Department of Family Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Shelton, Brent J.; Tucker, Thomas [Markey Cancer Control Program, University of Kentucky, 2365 Harrodsburg Rd, Lexington, KY 40504 (United States); Arnold, Susanne M. [Markey Cancer Center, University of Kentucky, 800 Rose street, Lexington, KY 40536 (United States); Shi Xianglin, E-mail: Xianglin.sh@uky.edu [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

2011-10-15T23:59:59.000Z

40

The effects of wavelength, metals, and reactive oxygen species on the sunlight inactivation of microorganisms: observations and applications to the solar disinfection of drinking water  

E-Print Network [OSTI]

singlet oxygen. Environmental Science & Technology 41(13),Oxygen Mediated Inactivation. Environmental Science & TechnologyOxygen Mediated Inactivation. Environmental Science & Technology

Fisher, Michael Benjamin

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Depletion of hepatoma-derived growth factor-related protein-3 induces apoptotic sensitization of radioresistant A549 cells via reactive oxygen species-dependent p53 activation  

SciTech Connect (OSTI)

Highlights: •HRP-3 is a radiation- and anticancer drug-responsive protein in A549 cells. •Depletion of HRP-3 induces apoptosis of radio- and chemoresistant A549 cells. •Depletion of HRP-3 promotes ROS generation via inhibition of the Nrf2/HO-1 pathway. •Depletion of HRP-3 enhances ROS-dependent p53 activation and PUMA expression. -- Abstract: Biomarkers based on functional signaling have the potential to provide greater insight into the pathogenesis of cancer and may offer additional targets for anticancer therapeutics. Here, we identified hepatoma-derived growth factor-related protein-3 (HRP-3) as a radioresistance-related gene and characterized the molecular mechanism by which its encoded protein regulates the radio- and chemoresistant phenotype of lung cancer-derived A549 cells. Knockdown of HRP-3 promoted apoptosis of A549 cells and potentiated the apoptosis-inducing action of radio- and chemotherapy. This increase in apoptosis was associated with a substantial generation of reactive oxygen species (ROS) that was attributable to inhibition of the Nrf2/HO-1 antioxidant pathway and resulted in enhanced ROS-dependent p53 activation and p53-dependent expression of PUMA (p53 upregulated modulator of apoptosis). Therefore, the HRP-3/Nrf2/HO-1/ROS/p53/PUMA cascade is an essential feature of the A549 cell phenotype and a potential radiotherapy target, extending the range of targets in multimodal therapies against lung cancer.

Yun, Hong Shik; Hong, Eun-Hee [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of) [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)] [Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Baek, Jeong-Hwa [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of) [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Lee, Chang-Woo [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of)] [Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746 (Korea, Republic of); Yim, Ji-Hye; Um, Hong-Duck [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)] [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Hwang, Sang-Gu, E-mail: sgh63@kcch.re.kr [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)] [Division of Radiation Cancer Biology, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of)

2013-09-27T23:59:59.000Z

42

Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species  

SciTech Connect (OSTI)

Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

Gray, Joshua P. [Department of Science, United States Coast Guard Academy, New London, CT (United States); Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Mishin, Vladimir [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Health Science, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.ed [Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

2010-09-01T23:59:59.000Z

43

SNP in TXNRD2 Associated With Radiation-Induced Fibrosis: A Study of Genetic Variation in Reactive Oxygen Species Metabolism and Signaling  

SciTech Connect (OSTI)

Purpose: The aim of the study was to identify noninvasive markers of treatment-induced side effects. Reactive oxygen species (ROS) are generated after irradiation, and genetic variation in genes related to ROS metabolism might influence the level of radiation-induced adverse effects (AEs). Methods and Materials: 92 breast cancer (BC) survivors previously treated with hypofractionated radiation therapy were assessed for the AEs subcutaneous atrophy and fibrosis, costal fractures, lung fibrosis, pleural thickening, and telangiectasias (median follow-up time 17.1 years). Single-nucleotide polymorphisms (SNPs) in 203 genes were analyzed for association to AE grade. SNPs associated with subcutaneous fibrosis were validated in an independent BC survivor material (n=283). The influence of the studied genetic variation on messenger ribonucleic acid (mRNA) expression level of 18 genes previously associated with fibrosis was assessed in fibroblast cell lines from BC patients. Results: Subcutaneous fibrosis and atrophy had the highest correlation (r=0.76) of all assessed AEs. The nonsynonymous SNP rs1139793 in TXNRD2 was associated with grade of subcutaneous fibrosis, the reference T-allele being more prevalent in the group experiencing severe levels of fibrosis. This was confirmed in another sample cohort of 283 BC survivors, and rs1139793 was found significantly associated with mRNA expression level of TXNRD2 in blood. Genetic variation in 24 ROS-related genes, including EGFR, CENPE, APEX1, and GSTP1, was associated with mRNA expression of 14 genes previously linked to fibrosis (P?.005). Conclusion: Development of subcutaneous fibrosis can be associated with genetic variation in the mitochondrial enzyme TXNRD2, critically involved in removal of ROS, and maintenance of the intracellular redox balance.

Edvardsen, Hege, E-mail: hege.edvardsen@rr-research.no [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway) [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway); K. G. Jebsen Breast cancer centre, Institute for Clinical Medicine, University of Oslo, Oslo (Norway); Landmark-Høyvik, Hege [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway) [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway); K. G. Jebsen Breast cancer centre, Institute for Clinical Medicine, University of Oslo, Oslo (Norway); Reinertsen, Kristin V. [National Resource Centre for Late Effects after Cancer Treatment, OUS Radiumhospitalet, Oslo (Norway)] [National Resource Centre for Late Effects after Cancer Treatment, OUS Radiumhospitalet, Oslo (Norway); Zhao, Xi [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway) [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway); K. G. Jebsen Breast cancer centre, Institute for Clinical Medicine, University of Oslo, Oslo (Norway); Grenaker-Alnæs, Grethe Irene; Nebdal, Daniel [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway)] [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway); Syvänen, Ann-Christine [Department of Medical Sciences, Uppsala University, Uppsala (Sweden)] [Department of Medical Sciences, Uppsala University, Uppsala (Sweden); Rødningen, Olaug [Department of Medical Genetics, OUS Ullevaal, Oslo (Norway)] [Department of Medical Genetics, OUS Ullevaal, Oslo (Norway); Alsner, Jan; Overgaard, Jens [Department of Experimental Clinical Oncology, Ahus University Hospital (Norway)] [Department of Experimental Clinical Oncology, Ahus University Hospital (Norway); Borresen-Dale, Anne-Lise [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway) [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway); K. G. Jebsen Breast cancer centre, Institute for Clinical Medicine, University of Oslo, Oslo (Norway); Fosså, Sophie D. [K. G. Jebsen Breast cancer centre, Institute for Clinical Medicine, University of Oslo, Oslo (Norway) [K. G. Jebsen Breast cancer centre, Institute for Clinical Medicine, University of Oslo, Oslo (Norway); National Resource Centre for Late Effects after Cancer Treatment, OUS Radiumhospitalet, Oslo (Norway); Kristensen, Vessela N. [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway) [Department of Genetics, Institute for Cancer Research, OUS Radiumhospitalet, Oslo (Norway); K. G. Jebsen Breast cancer centre, Institute for Clinical Medicine, University of Oslo, Oslo (Norway); Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Ahus University Hospital (Norway)

2013-07-15T23:59:59.000Z

44

Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells  

SciTech Connect (OSTI)

Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and transformation.

Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

2013-05-15T23:59:59.000Z

45

The effects of wavelength, metals, and reactive oxygen species on the sunlight inactivation of microorganisms: observations and applications to the solar disinfection of drinking water  

E-Print Network [OSTI]

contained in transparent plastic bottles: characterizing thepolyethylene terephthalate) plastic bottle, oxygenating themethod requires only plastic bottles, considered by many of

Fisher, Michael Benjamin

2011-01-01T23:59:59.000Z

46

Reactive oxygen species mediate Cr(VI)-induced carcinogenesis through PI3K/AKT-dependent activation of GSK-3?/?-catenin signaling  

SciTech Connect (OSTI)

Cr(VI) compounds are known human carcinogens that primarily target the lungs. Cr(VI) produces reactive oxygen species (ROS), but the exact effects of ROS on the signaling molecules involved in Cr(VI)-induced carcinogenesis have not been extensively studied. Chronic exposure of human bronchial epithelial cells to Cr(VI) at nanomolar concentrations (10–100 nM) for 3 months not only induced cell transformation, but also increased the potential of these cells to invade and migrate. Injection of Cr(VI)-stimulated cells into nude mice resulted in the formation of tumors. Chronic exposure to Cr(VI) increased levels of intracellular ROS and antiapoptotic proteins. Transfection with catalase or superoxide dismutase (SOD) prevented Cr(VI)-mediated increases in colony formation, cell invasion, migration, and xenograft tumors. While chronic Cr(VI) exposure led to activation of signaling cascades involving PI3K/AKT/GSK-3?/?-catenin and PI3K/AKT/mTOR, transfection with catalase or SOD markedly inhibited Cr(VI)-mediated activation of these signaling proteins. Inhibitors specific for AKT or ?-catenin almost completely suppressed the Cr(VI)-mediated increase in total and active ?-catenin proteins and colony formation. In particular, Cr(VI) suppressed autophagy of epithelial cells under nutrition deprivation. Furthermore, there was a marked induction of AKT, GSK-3?, ?-catenin, mTOR, and carcinogenic markers in tumor tissues formed in mice after injection with Cr(VI)-stimulated cells. Collectively, our findings suggest that ROS is a key mediator of Cr(VI)-induced carcinogenesis through the activation of PI3K/AKT-dependent GSK-3?/?-catenin signaling and the promotion of cell survival mechanisms via the inhibition of apoptosis and autophagy. - Highlights: • Chronic exposure to Cr(VI) induces carcinogenic properties in BEAS-2B cells. • ROS play an important role in Cr(VI)-induced tumorigenicity of BEAS-2B cells. • PI3K/AKT/GSK-3?/?-catenin signaling involved in Cr(VI) carcinogenesis. • The inhibition of apoptosis and autophagy contributes to Cr(VI) carcinogenesis.

Son, Young-Ok; Pratheeshkumar, Poyil; Wang, Lei; Wang, Xin; Fan, Jia; Kim, Dong-Hern; Lee, Ju-Yeon; Zhang, Zhuo [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); Lee, Jeong-Chae [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States); School of Dentistry and Institute of Oral Biosciences, Research Center of Bioactive Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536-0305 (United States)

2013-09-01T23:59:59.000Z

47

Determining the Intrinsic Properties of the C1B Domain that Influence PKC Ligand Specificity and Sensitivity to Reactive Oxygen Species  

E-Print Network [OSTI]

reactive, an alternative conformation of C1B in which this residue is more exposed, and modification of C1B leads to unfolding and zinc loss. Because the regulatory domains are responsible for auto-inhibition of the kinase domain, C1B unfolding provides a...

Stewart, Mikaela D.

2013-06-04T23:59:59.000Z

48

Penetration Deep into Tissues of Reactive Oxygen Species Generated in Floating-Electrode Dielectric Barrier Discharge (FE-DBD): in Vitro Agarose Gel Model Mimicking an Open Wound  

E-Print Network [OSTI]

In this manuscript we present an in vitro model based on agarose gel that can be used to simulate a dirty, oily, bloody, and morphologically complex surface of, for example, an open wound. We show this models effectiveness in simulating depth of penetration of reactive species generated in plasma deep into tissue of a rat and confirm the penetration depths with agarose gel model. We envision that in the future such a model could be used to study plasma discharges (and other modalities) and minimize the use of live animals: plasma can be optimized on the agarose gel wound model and then finally verified using an actual wound.

Dobrynin, Danil; Friedman, Gary; Fridman, Alexander

2013-01-01T23:59:59.000Z

49

Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes  

SciTech Connect (OSTI)

Reactive O{sub 2} species production triggered by particulate matter (PM) exposure is able to initiate oxidative damage mechanisms, which are postulated as responsible for increased morbidity along with the aggravation of respiratory diseases. The aim of this work was to quantitatively analyse the major sources of reactive O{sub 2} species involved in lung O{sub 2} metabolism after an acute exposure to Residual Oil Fly Ashes (ROFAs). Mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight), and lung samples were analysed 1 h after instillation. Tissue O{sub 2} consumption and NADPH oxidase (Nox) activity were evaluated in tissue homogenates. Mitochondrial respiration, respiratory chain complexes activity, H{sub 2}O{sub 2} and ATP production rates, mitochondrial membrane potential and oxidative damage markers were assessed in isolated mitochondria. ROFA exposure was found to be associated with 61% increased tissue O{sub 2} consumption, a 30% increase in Nox activity, a 33% increased state 3 mitochondrial O{sub 2} consumption and a mitochondrial complex II activity increased by 25%. During mitochondrial active respiration, mitochondrial depolarization and a 53% decreased ATP production rate were observed. Neither changes in H{sub 2}O{sub 2} production rate, nor oxidative damage in isolated mitochondria were observed after the instillation. After an acute ROFA exposure, increased tissue O{sub 2} consumption may account for an augmented Nox activity, causing an increased O{sub 2}{sup ·?} production. The mitochondrial function modifications found may prevent oxidative damage within the organelle. These findings provide new insights to the understanding of the mechanisms involving reactive O{sub 2} species production in the lung triggered by ROFA exposure. - Highlights: • Exposure to ROFA alters the oxidative metabolism in mice lung. • The augmented Nox activity contributes to the high tissue O{sub 2} consumption. • Exposure to ROFA produces alterations in mitochondrial function. • ??{sub m} decrease in state 3 may be responsible for the decreased ATP production. • Mild uncoupling prevents mitochondrial oxidative damage.

Magnani, Natalia D.; Marchini, Timoteo; Vanasco, Virginia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Tasat, Deborah R. [CESyMA, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Alvarez, Silvia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Evelson, Pablo, E-mail: pevelson@ffyb.uba.ar [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina)

2013-07-01T23:59:59.000Z

50

Up-regulation of cytosolic phospholipase A{sub 2}{alpha} expression by N,N-diethyldithiocarbamate in PC12 cells; involvement of reactive oxygen species and nitric oxide  

SciTech Connect (OSTI)

Disulfiram (an alcohol-aversive drug) and related compounds are known to provoke several side effects involving behavioral and neurological complications. N,N-diethyldithiocarbamate (DDC) is considered as one of the main toxic species of disulfiram and acts as an inhibitor of superoxide dismutase. Since arachidonic acid (AA) formation is regulated by reactive oxygen species (ROS) and related to toxicity in neuronal cells, we investigated the effects of DDC on AA release and expression of the {alpha} type of cytosolic phospholipase A{sub 2} (cPLA{sub 2}{alpha}) in PC12 cells. Treatment with 80-120 {mu}M DDC that causes a moderate increase in ROS levels without cell toxicity stimulated cPLA{sub 2}{alpha} mRNA and its protein expression. The expression was mediated by extracellular-signal-regulated kinase (ERK1/2), one of the mitogen-activated protein kinases. Treatment with N {sup G} nitro-L-arginine methyl ester (an inhibitor of nitric oxide synthase, 1 mM) and oxy-hemoglobin (a scavenger of nitric oxide, 2 mg/mL) abolished the DDC-induced responses (ERK1/2 phosphorylation and cPLA{sub 2}{alpha} expression). We also showed DDC-induced up-regulation of the mRNA expression of lipocortin 1, an inhibitor of PLA{sub 2}. Furthermore, DDC treatment of the cells enhanced Ca{sup 2+}-ionophore-induced AA release in 30 min, although the effect was limited. Changes in AA metabolism in DDC-treated cells may have a potential role in mediating neurotoxic actions of disulfiram. In this study, we show the first to demonstrate the up-regulation of cPLA{sub 2}{alpha} expression by DDC treatment in neuronal cells.

Akiyama, Nobuteru [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Nabemoto, Maiko [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Hatori, Yoshio [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Nakamura, Hiroyuki [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Hirabayashi, Tetsuya [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Fujino, Hiromichi [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan); Saito, Takeshi [Department of Health Sciences, Hokkaido University School of Medicine, Sapporo 060-0812 (Japan); Murayama, Toshihiko [Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675 (Japan)]. E-mail: murayama@p.chiba-u.ac.jp

2006-09-01T23:59:59.000Z

51

Reactive Maintenance  

Broader source: Energy.gov [DOE]

Reactive maintenance follows a run-it-until-it-breaks strategy where no actions or efforts are taken to maintain equipment as intended by the manufacturer. Studies indicate this is still the predominant mode of maintenance for Federal facilities.

52

Oxygen analyzer  

DOE Patents [OSTI]

An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

Benner, William H. (Danville, CA)

1986-01-01T23:59:59.000Z

53

Oxygen analyzer  

DOE Patents [OSTI]

An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

Benner, W.H.

1984-05-08T23:59:59.000Z

54

Photoluminescent silicon nanocrystals synthesized by reactive laser Daria Riabinina,a  

E-Print Network [OSTI]

Photoluminescent silicon nanocrystals synthesized by reactive laser ablation Daria Riabinina reactive laser ablation in oxygen atmosphere followed by annealing. We observe a strong photoluminescence size, obtained independently by fitting photoluminescence spectra and from x-ray diffraction patterns

55

Chemical Reactivity of Reduced TiO2(110): The dominant role of...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactivity of Reduced TiO2(110): The dominant role of surface defects in oxygen chemisorption. Chemical Reactivity of Reduced TiO2(110): The dominant role of surface defects in...

56

E-Print Network 3.0 - active oxygen content Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: active oxygen content Page: << < 1 2 3 4 5 > >> 1 Reactivity and coverage of active surface species...

57

Guidance Document Reactive Chemicals  

E-Print Network [OSTI]

showers and chillers. Health Hazards: The reactive chemicals are grouped primarily because of the physical

58

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. The in situ electrical conductivity and Seebeck coefficient measurements were made on LSFT at 1000 and 1200 C over the oxygen activity range from air to 10{sup -15} atm. The electrical conductivity measurements exhibited a p to n type transition at an oxygen activity of 1 x 10{sup -10} at 1000 C and 1 x 10{sup -6} at 1200 C. Thermogravimetric studies were also carried out over the same oxygen activities and temperatures. Based on the results of these measurements, the chemical and mechanical stability range of LSFT were determined and defect structure was established. The studies on the fracture toughness of the LSFT and dual phase membranes exposed to air and N{sub 2} at 1000 C was done and the XRD and SEM analysis of the specimens were carried out to understand the structural and microstructural changes. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affect the mechanical properties. A complete transformation of fracture behavior was observed in the N{sub 2} treated LSFT samples. Further results to investigate the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Recent results on transient kinetic data are presented. The 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model is used to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

59

Biodiesel Fuel Property Effects on Particulate Matter Reactivity  

SciTech Connect (OSTI)

Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

Williams, A.; Black, S.; McCormick, R. L.

2010-06-01T23:59:59.000Z

60

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This report covers the following tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints; Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability; Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres; Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures; Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability; and Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

This is the third quarterly report on oxygen Transport Ceramic Membranes. In the following, the report describes the progress made by our university partners in Tasks 1 through 6, experimental apparatus that was designed and built for various tasks of this project, thermodynamic calculations, where applicable and work planned for the future. (Task 1) Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. (Task 2) Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. (Task 3) Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. (Task 4) Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. (Task 5) Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. (Task 6) Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2000-10-01T23:59:59.000Z

62

Regulation of Singlet Oxygen Generation Using Single-Walled Carbon Zhiwen Tang,  

E-Print Network [OSTI]

Regulation of Singlet Oxygen Generation Using Single-Walled Carbon Nanotubes Zhi Zhu, Zhiwen TangDNA aptamer, and single-walled carbon nanotubes (SWNTs) for controllable singlet oxygen (1 O2) generation. 1 O to tissue oxygen to generate highly reactive 1 O2, an aggressive chemical species, which can react rapidly

Tan, Weihong

63

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals. This project has the following 6 main tasks: Task 1--Design, fabricate and evaluate ceramic to metal seals based on graded ceramic powder/metal braze joints. Task 2--Evaluate the effect of defect configuration on ceramic membrane conductivity and long term chemical and structural stability. Task 3--Determine materials mechanical properties under conditions of high temperatures and reactive atmospheres. Task 4--Evaluate phase stability and thermal expansion of candidate perovskite membranes and develop techniques to support these materials on porous metal structures. Task 5--Assess the microstructure of membrane materials to evaluate the effects of vacancy-impurity association, defect clusters, and vacancy-dopant association on the membrane performance and stability. Task 6--Measure kinetics of oxygen uptake and transport in ceramic membrane materials under commercially relevant conditions using isotope labeling techniques.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2001-12-01T23:59:59.000Z

64

Reactive species and DNA damage in chronic inflammation: Reconciling chemical mechanisms and biological fates  

E-Print Network [OSTI]

Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and ...

Lonkar, Pallavi

65

High Selectivity Oxygen Delignification  

SciTech Connect (OSTI)

The overall objective of this program was to develop improved extended oxygen delignification (EOD) technologies for current U.S. pulp mill operations. This was accomplished by: (1) Identifying pulping conditions that optimize O and OO performance; (2) Identifying structural features of lignin that enhance reactivity towards EOD of high kappa pulps; (3) Identifying factors minimizing carbohydrate degradation and improve pulp strength of EOD high kappa pulps; (4) Developing a simple, reproducible method of quantifying yield gains from EOD; and (5) Developing process conditions that significantly reduce the capital requirements of EOD while optimizing the yield benefits. Key research outcomes included, demonstrating the use of a mini-O sequence such as (E+O)Dkf:0.05(E+O) or Dkf:0.05(E+O)(E+O) without interstage washing could capture approximately 60% of the delignification efficiency of a conventional O-stage without the major capital requirements associated with an O-stage for conventional SW kraft pulps. The rate of formation and loss of fiber charge during an O-stage stage can be employed to maximize net fiber charge. Optimal fiber charge development and delignification are two independent parameters and do not parallel each other. It is possible to utilize an O-stage to enhance overall cellulosic fiber charge of low and high kappa SW kraft pulps which is beneficial for physical strength properties. The application of NIR and multi-variant analysis was developed into a rapid and simple method of determining the yield of pulp from an oxygen delignification stage that has real-world mill applications. A focus point of this program was the demonstration that Kraft pulping conditions and oxygen delignification of high and low-kappa SW and HW pulps are intimately related. Improved physical pulp properties and yield can be delivered by controlling the H-factor and active alkali charge. Low AA softwood kraft pulp with a kappa number 30 has an average improvement of 2% in yield and 4 cP in viscosity in comparison to high AA pulp for the oxygen delignification. This difference is also seen for high-kappa SW kraft pulps with an average improvement of {approx}3% in yield and 3 cP in viscosity for low AA high kappa number 50 pulp. Low AA hardwood kappa number 20 pulp had an average improvement of {approx}4% in yield and 6-12 cP in viscosity as compared to high AA pulp. Lower kraft cooking temperature (160 vs. 170 C) in combination with the medium AA provides a practical approach for integrating high kappa pulping of hardwoods (i.e., low rejects) with an advanced extended oxygen delignification stage. ECF pulp bleaching of low and high kappa kraft SW and HW pulps exhibit comparable optical and physical strength properties when bleached D(EPO)D.

Arthur J. Ragauskas

2005-09-30T23:59:59.000Z

66

Formation, characterization and reactivity of adsorbed oxygen on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" Give formsingle-phase BaOEMSL

67

Electrocatalytic Reactivity for Oxygen Reduction of Palladium-Modified  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLEEFFECTSHighElectroactiveand Gold AlloyCarbon

68

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect (OSTI)

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

69

Artificial oxygen transport protein  

DOE Patents [OSTI]

This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

Dutton, P. Leslie

2014-09-30T23:59:59.000Z

70

Evidence for Thiol-Dependent Production of Oxygen Radicals by 4-Methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione  

E-Print Network [OSTI]

to a peroxide species that undergoes a trace metal-catalyzed, Fenton-type reaction to generate oxygen radicalsEvidence for Thiol-Dependent Production of Oxygen Radicals by 4-Methyl-5-pyrazinyl-3H-1,2-dithiole the conversion of molecular oxygen to reactive oxygen radicals. Using a plasmid-based assay that monitors DNA

Gates, Kent. S.

71

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the current research, the electrical conductivity and Seebeck coefficient were measured as a function of temperature in air. Based on these measurements, the charge carrier concentration, net acceptor dopant concentration, activation energy of conduction and mobility were estimated. The studies on the fracture toughness of the LSFT and dual phase membranes at room temperature have been completed and reported previously. The membranes that are exposed to high temperatures at an inert and a reactive atmosphere undergo many structural and chemical changes which affects the mechanical properties. To study the effect of temperature on the membranes when exposed to an inert environment, the membranes (LAFT and Dual phase) were heat treated at 1000 C in air and N{sub 2} atmosphere and hardness and fracture toughness of the membranes were studied after the treatment. The indentation method was used to find the fracture toughness and the effect of the heat treatment on the mechanical properties of the membranes. Further results on the investigation of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appears to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. 2-D modeling of oxygen movement has been undertaken in order to fit isotope data. The model will serve to study ''frozen'' profiles in patterned or composite membranes.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-11-01T23:59:59.000Z

72

Reactive power compensator  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

1992-01-01T23:59:59.000Z

73

Reactive Power Compensator.  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

1992-07-28T23:59:59.000Z

74

Solid state oxygen sensor  

DOE Patents [OSTI]

Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

Garzon, Fernando H. (Sante Fe, NM); Chung, Brandon W. (Los Alamos, NM); Raistrick, Ian D. (Los Alamos, NM); Brosha, Eric L. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

75

Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Covalency in Metal-Oxygen Multiple Bonds Evaluated Using Oxygen K-edge Spectroscopy and Electronic Structure Theory . Covalency in Metal-Oxygen Multiple Bonds Evaluated Using...

76

Reactive Power Compensating System.  

DOE Patents [OSTI]

The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

1985-01-04T23:59:59.000Z

77

Oxygen enriched fireflooding  

SciTech Connect (OSTI)

Both pure oxygen and enriched air have been considered in fireflooding for enhanced oil recovery. Laboratory and field testing have conclusively shown that oxygen is practical and cost effective for this application. For reservoirs that require a large volume of high pressure gas, oxygen is cheaper than air simply based on compression costs. Additional process benefits with oxygen include: Faster Oil Production; Lower Injection Pressure; Greater Well Spacing; Increased Carbon Dioxide Partial Pressure; Lower Gas-to-Oil Ratios; and Purer Produced Gas. These features provide a compelling case for oxygen, once the safety and materials compatibility issues are properly addressed.

Shahani, G.H.; Gunardson, H.H. [Air Products and Chemicals, Allentown, PA (United States)

1995-02-01T23:59:59.000Z

78

Atomic oxygen patterning from a biomedical needle-plasma source  

SciTech Connect (OSTI)

A “plasma needle” is a cold plasma source operating at atmospheric pressure. Such sources interact strongly with living cells, but experimental studies on bacterial samples show that this interaction has a surprising pattern resulting in circular or annular killing structures. This paper presents numerical simulations showing that this pattern occurs because biologically active reactive oxygen and nitrogen species are produced dominantly where effluent from the plasma needle interacts with ambient air. A novel solution strategy is utilised coupling plasma produced neutral (uncharged) reactive species to the gas dynamics solving for steady state profiles at the treated biological surface. Numerical results are compared with experimental reports corroborating evidence for atomic oxygen as a key bactericidal species. Surface losses are considered for interaction of plasma produced reactants with reactive solid and liquid interfaces. Atomic oxygen surface reactions on a reactive solid surface with adsorption probabilities above 0.1 are shown to be limited by the flux of atomic oxygen from the plasma. Interaction of the source with an aqueous surface showed hydrogen peroxide as the dominant species at this interface.

Kelly, Seán; Turner, Miles M. [School of Physical Science and National Centre for Plasma Science and Technology, Dublin City University, Dublin (Ireland)] [School of Physical Science and National Centre for Plasma Science and Technology, Dublin City University, Dublin (Ireland)

2013-09-28T23:59:59.000Z

79

Oxygen partial pressure sensor  

DOE Patents [OSTI]

A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

Dees, D.W.

1994-09-06T23:59:59.000Z

80

Integrated turbomachine oxygen plant  

SciTech Connect (OSTI)

An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

2014-06-17T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

2005-07-12T23:59:59.000Z

82

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

2004-11-23T23:59:59.000Z

83

Oxygen ion conducting materials  

DOE Patents [OSTI]

An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

Vaughey, John (Elmhurst, IL); Krumpelt, Michael (Naperville, IL); Wang, Xiaoping (Downers Grove, IL); Carter, J. David (Bolingbrook, IL)

2003-01-01T23:59:59.000Z

84

H6 and mBDCA-5p-H6 in oxygen-saturated DMF solution. An increase in the limiting current as  

E-Print Network [OSTI]

of molecular rec- ognition of an in situ­generated reactive oxygen species has the potential to be incorporatedH6 and mBDCA-5p-H6 in oxygen-saturated DMF solution. An increase in the limiting current as well) is consistent with a greater number of electrons transferred during reduction of oxygen in the presence of m

Weiss, Benjamin P.

85

New oxygen radical source using selective sputtering of oxygen atoms for high rate deposition of TiO{sub 2} films  

SciTech Connect (OSTI)

We have developed a new oxygen radical source based on the reactive sputtering phenomena of a titanium target for high rate deposition of TiO{sub 2} films. In this oxygen radical source, oxygen radicals are mainly produced by two mechanisms: selective sputter-emission of oxygen atoms from the target surface covered with a titanium oxide layer, and production of high-density oxygen plasma in the space near the magnetron-sputtering cathode. Compared with molecular oxygen ions, the amount of atomic oxygen radicals increased significantly with an increase in discharge current so that atomic oxygen radicals were mainly produced by this radical source. It should be noted that oxygen atoms were selectively sputtered from the target surface, and titanium atoms sputter-emitted from the target cathode were negligibly small. The amount of oxygen radicals supplied from this radical source increased linearly with increasing discharge current, and oxygen radicals of 1 Multiplication-Sign 10{sup 15} atoms/s/cm{sup 2} were supplied to the substrate surface at a discharge current of 1.2 A. We conclude that our newly developed oxygen radical source can be a good tool to achieve high rate deposition and to control the structure of TiO{sub 2} films for many industrial design applications.

Yasuda, Yoji; Lei, Hao; Hoshi, Yoichi [Department of Electronics and Information Technology, Tokyo Polytechnic University, Kanagawa 243-0297 (Japan); State Key Laboratory for Corrosion and Protection, Surface Engineering of Materials Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Department of Electronics and Information Technology, Tokyo Polytechnic University, Kanagawa 243-0297 (Japan)

2012-11-15T23:59:59.000Z

86

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, oxygen transport perovskite ceramic membranes are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-07-01T23:59:59.000Z

87

High Selectivity Oxygen Delignification  

SciTech Connect (OSTI)

Project Objective: The objectives of this project are as follows: (1) Examine the physical and chemical characteristics of a partner mill pre- and post-oxygen delignified pulp and compare them to lab generated oxygen delignified pulps; (2) Apply the chemical selectivity enhancement system to the partner pre-oxygen delignified pulps under mill conditions (with and without any predetermined amounts of carryover) to determine how efficiently viscosity is preserved, how well selectivity is enhanced, if strength is improved, measure any yield differences and/or bleachability differences; and (3) Initiate a mill scale oxygen delignification run using the selectivity enhancement agent, collect the mill data, analyze it, and propose any future plans for implementation.

Lucian A. Lucia

2005-11-15T23:59:59.000Z

88

Towards forming-free resistive switching in oxygen engineered HfO{sub 2?x}  

SciTech Connect (OSTI)

We have investigated the resistive switching behavior in stoichiometric HfO{sub 2} and oxygen-deficient HfO{sub 2?x} thin films grown on TiN electrodes using reactive molecular beam epitaxy. Oxygen defect states were controlled by the flow of oxygen radicals during thin film growth. Hard X-ray photoelectron spectroscopy confirmed the presence of sub-stoichiometric hafnium oxide and defect states near the Fermi level. The oxygen deficient HfO{sub 2?x} thin films show bipolar switching with an electroforming occurring at low voltages and low operating currents, paving the way for almost forming-free devices for low-power applications.

Sharath, S. U., E-mail: sharath@oxide.tu-darmstadt.de; Kurian, J.; Hildebrandt, E.; Alff, L. [Institute of Materials Science, Technische Universität Darmstadt, Alarich-Weiss-Strasse 2, 64287 Darmstadt (Germany); Bertaud, T.; Walczyk, C.; Calka, P.; Zaumseil, P.; Sowinska, M.; Walczyk, D. [IHP, Im Technologiepark 25, 15236 Frankfurt Oder (Germany); Gloskovskii, A. [Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt Oder (Germany); Brandenburgische Technische Universität, Konrad-Zuse-Strasse 1, 03046 Cottbus (Germany)

2014-02-10T23:59:59.000Z

89

A Tariff for Reactive Power  

SciTech Connect (OSTI)

Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

2008-07-01T23:59:59.000Z

90

Conservation of reactive electromagnetic energy in reactive time  

E-Print Network [OSTI]

The complex Poynting theorem (CPT) is extended to a canonical time-scale domain $(t,s)$. Time-harmonic phasors are replaced by the positive-frequency parts of general fields, which extend analytically to complex time $t+is$, with $s>0$ interpreted as a time resolution scale. The real part of the extended CPT gives conservation in $t$ of a time-averaged field energy, and its imaginary part gives conservation in $s$ of a time-averaged reactive energy. In both cases, the averaging windows are determined by a Cauchy kernel of width $\\Delta t\\sim \\pm s$. This completes the time-harmonic CPT, whose imaginary part is generally supposed to be vaguely `related to' reactive energy without giving a conservation law, or even an expression, for the latter. The interpretation of $s$ as reactive time, tracking the leads and lags associated with stored capacitative and inductive energy, gives a simple explanation of the volt-ampere reactive (var) unit measuring reactive power: a var is simply one Joule per reactive second. The related 'complex radiation impedance density' is introduced to represent the field's local reluctance to radiate.

Gerald Kaiser

2015-01-05T23:59:59.000Z

91

Conservation of reactive electromagnetic energy in reactive time  

E-Print Network [OSTI]

The complex Poynting theorem (CPT) is extended to a canonical time-scale domain $(t,s)$. Time-harmonic phasors are replaced by the positive-frequency parts of general fields, which extend analytically to complex time $t+is$, with $s>0$ interpreted as a time resolution scale. The real part of the extended CPT gives conservation in $t$ of a time-averaged field energy, and its imaginary part gives conservation in $s$ of a time-averaged reactive energy. In both cases, the averaging windows are determined by a Cauchy kernel of width $\\Delta t\\sim \\pm s$. This completes the time-harmonic CPT, whose imaginary part is generally supposed to be vaguely `related to' reactive energy without giving a conservation law, or even an expression, for the latter. The interpretation of $s$ as reactive time, tracking the leads and lags associated with stored capacitative and inductive energy, gives a simple explanation of the volt-ampere reactive (var) unit measuring reactive power: a var is simply one Joule per reactive second. T...

Kaiser, Gerald

2015-01-01T23:59:59.000Z

92

On the origin of the selectivity of oxygen reduction of ruthenium-containing electrocatalysts in methanol-containing electrolyte  

SciTech Connect (OSTI)

The reactivity with water and methanol of oxygen-reducing (Ru{sub 1{minus}x}Mo{sub x}SeO{sub z}) and oxygen (from water)-evolving electrocatalysts (RuS{sub 2}, RuO{sub 2}), which permit electron transfer via ruthenium d-states, was studied using electrochemical techniques and differential electrochemical mass spectroscopy (DEMS). In contrast to platinum, which is depolarized by methanol, ruthenium compounds show a high reactivity with water species and an extremely low reactivity with methanol. The authors conclude that the ruthenium-centered coordination chemical reactivity with water channels electrochemical currents, thus producing kinetic selectivity. The reason for the higher reactivity with water of Ru d-states as compared to platinum is seen in the higher density of d-states near the Fermi level as shown by this comparative study.

Alonso-Vante, N.; Bogdanoff, P.; Tributsch, H.

2000-03-10T23:59:59.000Z

93

Fuel Temperature Coefficient of Reactivity  

SciTech Connect (OSTI)

A method for measuring the fuel temperature coefficient of reactivity in a heterogeneous nuclear reactor is presented. The method, which is used during normal operation, requires that calibrated control rods be oscillated in a special way at a high reactor power level. The value of the fuel temperature coefficient of reactivity is found from the measured flux responses to these oscillations. Application of the method in a Savannah River reactor charged with natural uranium is discussed.

Loewe, W.E.

2001-07-31T23:59:59.000Z

94

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

In the present quarter, the possibility of using a more complex interfacial engineering approach to the development of reliable and stable oxygen transport perovskite ceramic membranes/metal seals is discussed. Experiments are presented and ceramic/metal interactions are characterized. Crack growth and fracture toughness of the membrane in the reducing conditions are also discussed. Future work regarding this approach is proposed are evaluated for strength and fracture in oxygen gradient conditions. Oxygen gradients are created in tubular membranes by insulating the inner surface from the reducing environment by platinum foils. Fracture in these test conditions is observed to have a gradient in trans and inter-granular fracture as opposed to pure trans-granular fracture observed in homogeneous conditions. Fracture gradients are reasoned to be due to oxygen gradient set up in the membrane, variation in stoichiometry across the thickness and due to varying decomposition of the parent perovskite. The studies are useful in predicting fracture criterion in actual reactor conditions and in understanding the initial evolution of fracture processes.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2003-01-01T23:59:59.000Z

95

Optical oxygen concentration monitor  

DOE Patents [OSTI]

A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

Kebabian, Paul (Acton, MA)

1997-01-01T23:59:59.000Z

96

Direct Observation of the Oxygenated Species during Oxygen Reduction...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Observation of the Oxygenated Species during Oxygen Reduction on a Platinum Fuel Cell Cathode Friday, December 20, 2013 Fuel Cell Figure 1 Figure 1. In situ x-ray...

97

Method for preparing hydride configurations and reactive metal surfaces  

DOE Patents [OSTI]

A method for preparing highly hydrogen-reactive surfaces on metals which normally require substantial heating, high pressures, or an extended induction period, which involves pretreatment of said surfaces with either a non-oxidizing acid or hydrogen gas to form a hydrogen-bearing coating on said surfaces, and subsequently heating said coated metal in the absence of moisture and oxygen for a period sufficient to decompose said coating and cooling said metal to room temperature. Surfaces so treated will react almost instantaneously with hydrogen gas at room temperature and low pressure. The method is particularly applicable to uranium, thorium, and lanthanide metals.

Silver, Gary L. (Centerville, OH)

1988-08-16T23:59:59.000Z

98

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

Morris, Donald E. (Kensington, CA)

1992-01-01T23:59:59.000Z

99

High pressure oxygen furnace  

DOE Patents [OSTI]

A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

Morris, D.E.

1992-07-14T23:59:59.000Z

100

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In the previous research, the reference point of oxygen occupancy was determined and verified. In the current research, the oxygen occupancy was investigated at 1200 C as a function of oxygen activity and compared with that at 1000 C. The cause of bumps at about 200 C was also investigated by using different heating and cooling rates during TGA. The fracture toughness of LSFT and dual phase membranes at room temperature is an important mechanical property. Vicker's indentation method was used to evaluate this toughness. Through this technique, a K{sub Ic} (Mode-I Fracture Toughness) value is attained by means of semi-empirical correlations between the indentation load and the length of the cracks emanating from the corresponding Vickers indentation impression. In the present investigation, crack propagation behavior was extensively analyzed in order to understand the strengthening mechanisms involved in the non-transforming La based ceramic composites. Cracks were generated using Vicker's indenter and used to identify and evaluate the toughening mechanisms involved. Preliminary results of an electron microscopy study of the origin of the slow kinetics on reduction of ferrites have been obtained. The slow kinetics appear to be related to a non-equilibrium reduction pathway that initially results in the formation of iron particles. At long times, equilibrium can be reestablished with recovery of the perovskite phase. Modeling of the isotopic transients on operating membranes (LSCrF-2828 at 900 C) and a ''frozen'' isotope profile have been analyzed in conjunction with a 1-D model to reveal the gradient in oxygen diffusivity through the membrane under conditions of high chemical gradients.

S. Bandopadhyay; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Oxygen abundances in the most oxygen-rich spiral galaxies  

E-Print Network [OSTI]

Oxygen abundances in the spiral galaxies expected to be richest in oxygen are estimated. The new abundance determinations are based on the recently discovered ff-relation between auroral and nebular oxygen line fluxes in HII regions. We find that the maximum gas-phase oxygen abundance in the central regions of spiral galaxies is 12+log(O/H)~8.75. This value is significantly lower than the previously accepted value. The central oxygen abundance in the Milky Way is similar to that in other large spirals.

L. S. Pilyugin; T. X. Thuan; J. M. Vilchez

2006-01-06T23:59:59.000Z

102

Oxygen Concentration Microgradients for Cell Culture  

E-Print Network [OSTI]

The Chemotactic Effect of Oxygen on Bacteria,” J. Pathol.Measurement and Control of Oxygen Levels in MicrofluidicA Microfabricated Electrochemical Oxygen Generator for High-

Park, Jaehyun

2010-01-01T23:59:59.000Z

103

Oxygen Transport Membranes  

SciTech Connect (OSTI)

The focus of this research was to develop new membrane materials by synthesizing different compounds and determining their defect structures, crystallographic structures and electrical properties. In addition to measuring electrical conductivity, oxygen vacancy concentration was also evaluated using thermogravimetry, Neutron diffraction and Moessbauer Spectroscopy. The reducing conditions (CO{sub 2}/CO/H{sub 2} gas mixtures with steam) as encountered in a reactor environment can be expected to have significant influence on the mechanical properties of the oxides membranes. Various La based materials with and without Ti were selected as candidate membrane materials for OTM. The maximum electrical conductivity of LSF in air as a function of temperature was achieved at < 600 C and depends on the concentration of Sr (acceptor dopant). Oxygen occupancy in LSF was estimated using Neutron diffractometry and Moessbauer Spectroscopy by measuring magnetic moment changes depending on the Fe{sup 3+} and Fe{sup 4+} ratio. After extensive studies of candidate materials, lanthanum ferrites (LSF and LSFT) were selected as the favored materials for the oxygen transport membrane (OTM). LSF is a very good material for an OTM because of its high electronic and oxygen ionic conductivity if long term stability and mechanical strength are improved. LSFT not only exhibits p-type behavior in the high oxygen activity regime, but also has n-type conduction in reducing atmospheres. Higher concentrations of oxygen vacancies in the low oxygen activity regime may improve the performance of LSFT as an OTM. The hole concentration is related to the difference in the acceptor and donor concentration by the relation p = [Sr'{sub La}]-[Ti{sm_bullet}{sub Fe}]. The chemical formulation predicts that the hole concentration is, p = 0.8-0.45 or 0.35. Experimental measurements indicated that p is about {approx} 0.35. The activation energy of conduction is 0.2 eV which implies that LSCF conducts via the small polaron conduction mechanism. Scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) were used to develop strategies to detect and characterize vacancy creation, dopant segregations and defect association in the oxygen conducting membrane material. The pO{sub 2} and temperature dependence of the conductivity, non-stoichiometry and thermal-expansion behavior of compositions with increasing complexity of substitution on the perovskite A and B sites were studied. Studies with the perovskite structure show anomalous behavior at low oxygen partial pressures (<10{sup -5} atm). The anomalies are due to non-equilibrium effects and can be avoided by using very strict criteria for the attainment of equilibrium. The slowness of the oxygen equilibration kinetics arises from two different mechanisms. In the first, a two phase region occurs between an oxygen vacancy ordered phase such as brownmillerite SrFeO{sub 2.5} and perovskite SrFeO{sub 3-x}. The slow kinetics is associated with crossing the two phase region. The width of the miscibility gap decreases with increasing temperature and consequently the effect is less pronounced at higher temperature. The preferred kinetic pathway to reduction of perovskite ferrites when the vacancy concentration corresponds to the formation of significant concentrations of Fe{sup 2+} is via the formation of a Ruddlesden-Popper (RP) phases as clearly observed in the case of La{sub 0.5}Sr{sub 0.5}FeO{sub 3-x} where LaSrFeO{sub 4} is found together with Fe. In more complex compositions, such as LSFTO, iron or iron rich phases are observed locally with no evidence for the presence of discrete RP phase. Fracture strength of tubular perovskite membranes was determined in air and in reducing atmospheric conditions. The strength of the membrane decreased with temperature and severity of reducing conditions although the strength distribution (Weibull parameter, m) was relatively unaltered. Surface and volume dominated the fracture origins and the overall fracture was purely transgranular. The dual phas

S. Bandopadhyay

2008-08-30T23:59:59.000Z

104

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. Thermogravimetric analysis (TGA) was carried out on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} to investigate oxygen deficiency ({delta}) of the sample. The TGA was performed in a controlled atmosphere using oxygen, argon, carbon monoxide and carbon dioxide with adjustable gas flow rates. In this experiment, the weight loss and gain of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} was directly measured by TGA. The weight change of the sample was evaluated at between 600 and 1250 C in air or 1000 C as a function of oxygen partial pressure. The oxygen deficiencies calculated from TGA data as a function of oxygen activity and temperature will be estimated and compared with that from neutron diffraction measurement in air. The LSFT and LSFT/CGO membranes were fabricated from the powder obtained from Praxair Specialty Ceramics. The sintered membranes were subjected to microstructure analysis and hardness analysis. The LSFT membrane is composed of fine grains with two kinds of grain morphology. The grain size distribution was characterized using image analysis. In LSFT/CGO membrane a lot of grain pullout was observed from the less dense, porous phase. The hardness of the LSFT and dual phase membranes were studied at various loads. The hardness values obtained from the cross section of the membranes were also compared to that of the values obtained from the surface. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. Measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} as a function of temperature an oxygen partial pressure are reported. Further analysis of the dilatometry data obtained previously is presented. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; T. Nithyanantham; X.-D Zhou; Y-W. Sin; H.U. Anderson; Alan Jacobson; C.A. Mims

2005-02-01T23:59:59.000Z

105

Controlled oxygen vacancy induced p-type conductivity in HfO{sub 2-x} thin films  

SciTech Connect (OSTI)

We have synthesized highly oxygen deficient HfO{sub 2-x} thin films by controlled oxygen engineering using reactive molecular beam epitaxy. Above a threshold value of oxygen vacancies, p-type conductivity sets in with up to 6 times 10{sup 21} charge carriers per cm{sup 3}. At the same time, the band-gap is reduced continuously by more than 1 eV. We suggest an oxygen vacancy induced p-type defect band as origin of the observed behavior.

Hildebrandt, Erwin; Kurian, Jose; Mueller, Mathis M.; Kleebe, Hans-Joachim; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany); Schroeder, Thomas [IHP, 15236 Frankfurt/Oder (Germany)

2011-09-12T23:59:59.000Z

106

Natural Ores as Oxygen Carriers in Chemical Looping Combustion  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

2013-08-01T23:59:59.000Z

107

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

Ti doping on La{sub 1-x}Sr{sub x}FeO{sub 3-{delta}} (LSF) tends to increase the oxygen equilibration kinetics of LSF in lower oxygen activity environment because of the high valence state of Ti. However, the addition of Ti decreases the total conductivity because the acceptor ([Sr{prime}{sub La}]) is compensated by the donor ([Ti{sub Fe}{sup {sm_bullet}}]) which decreases the carrier concentration. The properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 1-x}Ti{sub x}O{sub 3-{delta}} (LSFT, x = 0.45) have been experimentally and theoretically investigated to elucidate (1) the dependence of oxygen occupancy and electrochemical properties on temperature and oxygen activity by thermogravimetric analysis (TGA) and (2) the electrical conductivity and carrier concentration by Seebeck coefficient and electrical measurements. In the present study, dual phase (La{sub 0.2}Sr{sub 0.8}Fe{sub 0.6}Ti{sub 0.4}O{sub 3-{delta}}/Ce{sub 0.9}Gd{sub 0.1}O{sub 2-{delta}}) membranes have been evaluated for structural properties such as hardness, fracture toughness and flexural strength. The effect of high temperature and slightly reducing atmosphere on the structural properties of the membranes was studied. The flexural strength of the membrane decreases upon exposure to slightly reducing conditions at 1000 C. The as-received and post-fractured membranes were characterized using XRD, SEM and TG-DTA to understand the fracture mechanisms. Changes in structural properties of the composite were sought to be correlated with the physiochemical features of the two-phases. We have reviewed the electrical conductivity data and stoichiometry data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} some of which was reported previously. Electrical conductivity data for La{sub 0.2}Sr{sub 0.8}Cr{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCrF) were obtained in the temperature range, 752 {approx} 1055 C and in the pO{sub 2} range, 10{sup -18} {approx} 0.5 atm. The slope of the plot of log {sigma} vs. log pO{sub 2} is {approx} 1/5 in the p-type region, pO{sub 2} = 10{sup -5} {approx} 10{sup -1} atm. The pO{sub 2} at which the p-n transition is observed increases with increasing temperature. The activation energy for ionic conduction was estimated to be 0.86 eV from an Arrhenius plot of the minimum conductivity vs. reciprocal temperature. At temperatures below 940 C, a plateau in the conductivity isotherm suggests the presence of a two-phase region. Most likely, phase separation occurs to form a mixture of a perovskite phase and an oxygen vacancy ordered phase related to brownmillerite. Additional data for the oxygen non stoichiometry are presented.

S. Bandopadhyay; T. Nithyanantham

2006-12-31T23:59:59.000Z

108

The CRG1 gene required for resistance to the singlet oxygen-generating cercosporin toxin in Cercospora nicotianae encodes a putative  

E-Print Network [OSTI]

The CRG1 gene required for resistance to the singlet oxygen-generating cercosporin toxin electron or energy transfer to generate reactive oxygen species such as superoxide (OÅÀ 2 ) and singlet gene is involved in cellular resistance to the perylenequinone toxin, cercosporin, that generates

Daub, Margaret

109

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on...

110

Stabilization of Platinum Nanoparticle Electrocatalysts for Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Platinum Nanoparticle Electrocatalysts for Oxygen Reduction Using Poly(diallyldimethylammonium chloride). Stabilization of Platinum Nanoparticle Electrocatalysts for Oxygen...

111

Composite oxygen transport membrane  

DOE Patents [OSTI]

A method of producing a composite oxygen ion membrane and a composite oxygen ion membrane in which a porous fuel oxidation layer and a dense separation layer and optionally, a porous surface exchange layer are formed on a porous support from mixtures of (Ln.sub.1-xA.sub.x).sub.wCr.sub.1-yB.sub.yO.sub.3-.delta. and a doped zirconia. In the porous fuel oxidation layer and the optional porous surface exchange layer, A is Calcium and in the dense separation layer A is not Calcium and, preferably is Strontium. Preferred materials are (La.sub.0.8Ca.sub.0.2).sub.0.95Cr.sub.0.5Mn.sub.0.5O.sub.3-.delta. for the porous fuel oxidation and optional porous surface exchange layers and (La.sub.0.8Sr.sub.0.2).sub.0.95Cr.sub.0.5Fe.sub.0.5O.sub.3-.delta. for the dense separation layer. The use of such materials allows the membrane to sintered in air and without the use of pore formers to reduce membrane manufacturing costs. The use of materials, as described herein, for forming the porous layers have application for forming any type of porous structure, such as a catalyst support.

Christie, Gervase Maxwell; Lane, Jonathan A.

2014-08-05T23:59:59.000Z

112

Particle Swarm Optimization Based Reactive Power Optimization  

E-Print Network [OSTI]

Reactive power plays an important role in supporting the real power transfer by maintaining voltage stability and system reliability. It is a critical element for a transmission operator to ensure the reliability of an electric system while minimizing the cost associated with it. The traditional objectives of reactive power dispatch are focused on the technical side of reactive support such as minimization of transmission losses. Reactive power cost compensation to a generator is based on the incurred cost of its reactive power contribution less the cost of its obligation to support the active power delivery. In this paper an efficient Particle Swarm Optimization (PSO) based reactive power optimization approach is presented. The optimal reactive power dispatch problem is a nonlinear optimization problem with several constraints. The objective of the proposed PSO is to minimize the total support cost from generators and reactive compensators. It is achieved by maintaining the whole system power loss as minimum...

Sujin, P R; Linda, M Mary

2010-01-01T23:59:59.000Z

113

Reactive Power Support Services in Electricity Markets  

E-Print Network [OSTI]

Reactive Power Support Services in Electricity Markets Costing and Pricing of Ancillary Services Final Project Report Power Systems Engineering Research Center A National Science Foundation Industry Reactive Power Support Services in Electricity Markets Costing and Pricing of Ancillary Services Project

114

Engine combustion control via fuel reactivity stratification  

DOE Patents [OSTI]

A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2013-12-31T23:59:59.000Z

115

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C. It was found that space group of R3c yielded a better refinement than a cubic structure of Pm3m. Oxygen occupancy was nearly 3 in the region from room temperature to 700 C, above which the occupancy decreased due to oxygen loss. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. The X-Ray data and fracture mechanisms points to non-equilibrium decomposition of the LSFCO OTM membrane. The non-equilibrium conditions could probably be due to the nature of the applied stress field (stressing rates) and leads to transition in crystal structures and increased kinetics of decomposition. The formations of a Brownmillerite or Sr2Fe2O5 type structures, which are orthorhombic are attributed to the ordering of oxygen vacancies. The cubic to orthorhombic transitions leads to 2.6% increase in strains and thus residual stresses generated could influence the fracture behavior of the OTM membrane. Continued investigations on the thermodynamic properties (stability and phase-separation behavior) and total conductivity of prototype membrane materials were carried out. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previously characterization, stoichiometry and conductivity measurements for samples of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were reported. In this report, measurements of the chemical and thermal expansion as a function of temperature and p{sub O2} are described.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

116

Oxygen-reducing catalyst layer  

DOE Patents [OSTI]

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O'Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O'Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

117

Electrochemical studies of quinone oxygen  

SciTech Connect (OSTI)

Asphaltenes are a chemically complex mixture of aromatic and heteroaromatic compounds. This material contains oxygen in various functional groups. The distribution includes esters, carboxylic acids, phenolic and most probably quinone type oxygen functionalities. The present work details the complete electrochemical behaviour of quinone type oxygen. The method is quinone specific. A condensed aromatic quinone, 9,10-anthraquinone, was selected as representative of complex quinones. By this method quinones can be determined in the presence of other oxygen functional groups, alcohols, carboxylic acids, ethers, and other carbonyls.

Deanhardt, M.L. (Lander College, Greenwood, SC (US)); Mushrush, G.W.; Stalick, W.M. (Chemistry Dept., George mason Univ., Fairfax, VA (US)); Watkins, J.M. Jr. (Naval Research Lab., Fuels Section, Code 6180, Washington, DC (US))

1990-02-01T23:59:59.000Z

118

Pool octanes via oxygenates  

SciTech Connect (OSTI)

Increasingly stringent antipollution regulations placed on automobile exhaust gases with consequent reduction or complete lead ban from motor gasoline result in octane shortage at many manufacturing sites. Attractive solutions to this problem, especially in conjunction with abundant methanol supplies, are the hydration and etherification of olefins contained in light product streams from cracking unit or produced by field gas dehydrogenation. A comparison is made between oxygenates octane-volume pool contributions and established refinery technologies. Process reviews for bulk manufacture of fuel-grade isopropanol (IPA), secondary butanol (SBA), tertiary butanol (TBA), methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME) are presented together with the characteristic investment and operating data. The implantation of these processes into a typical FCCU refinery complex with the resulting octane-pool improvement possibilities is descried.

Prezelj, M.

1987-09-01T23:59:59.000Z

119

Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion  

SciTech Connect (OSTI)

The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

Bhavsar, Saurabh; Veser, Goetz

2013-11-06T23:59:59.000Z

120

Oxygen Electrocatalysis on Epitaxial La[subscript 0.6]Sr[subscript 0.4]CoO[subscript 3-?] Perovskite Thin Films for Solid Oxide Fuel Cells  

E-Print Network [OSTI]

Hetero-structured interfaces of oxides, which can exhibit reactivity characteristics remarkably different from bulk oxides, are interesting systems to explore in search of highly active fuel cell catalysts for oxygen ...

Crumlin, Ethan J.

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, Moessbauer spectroscopy was used to study the local environmentals of LSFT with various level of oxygen deficiency. Ionic valence state, magnetic interaction and influence of Ti on superexchange are discussed Stable crack growth studies on Dense OTM bars provided by Praxair were done at elevated temperature, pressure and elevated conditions. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. An electrochemical cell has been designed and built for measurements of the Seebeck coefficient as a function of temperature and pressure. The initial measurements on La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} are reported. Neutron diffraction measurements of the same composition are in agreement with both the stoichiometry and the kinetic behavior observed in coulometric titration measurements. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The COCO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-10-01T23:59:59.000Z

122

Oxygen detection using evanescent fields  

DOE Patents [OSTI]

An apparatus and method for the detection of oxygen using optical fiber based evanescent light absorption. Methylene blue was immobilized using a sol-gel process on a portion of the exterior surface of an optical fiber for which the cladding has been removed, thereby forming an optical oxygen sensor. When light is directed through the optical fiber, transmitted light intensity varies as a result of changes in the absorption of evanescent light by the methylene blue in response to the oxygen concentration to which the sensor is exposed. The sensor was found to have a linear response to oxygen concentration on a semi-logarithmic scale within the oxygen concentration range between 0.6% and 20.9%, a response time and a recovery time of about 3 s, ant to exhibit good reversibility and repeatability. An increase in temperature from 21.degree. C. to 35.degree. C. does not affect the net absorption of the sensor.

Duan, Yixiang (Los Alamos, NM); Cao, Weenqing (Los Alamos, NM)

2007-08-28T23:59:59.000Z

123

Mixed oxygen ion/electron-conducting ceramics for oxygen separation  

SciTech Connect (OSTI)

Solid mixed-conducting electrolytes in the series La{sub l-x}A{sub x}Co{sub l-y}Fe{sub y}O{sub 3-{delta}} (A = Sr,Ca,Ba) are potentially useful as passive membranes to separate high purity oxygen from air and as cathodes in fuel cells. All of the compositions studied exhibited very high electrical conductivities. At lower temperatures, conductivities increased with increasing temperature, characterized by activation energies of 0.05 to 0.16 eV that are consistent with a small polaron (localized electronic carrier) conduction mechanism. At higher temperatures, electronic conductivities tended to decrease with increasing temperature, which is attributed to decreased electronic carrier populations associated with lattice oxygen loss. Oxygen ion conductivities were higher than that of yttria stabilized zirconia and increased with the cobalt content and also increased with the extent of divalent A-site substitution. Thermogravimetric studies were conducted to establish the extent of oxygen vacancy formation as a function of temperature, oxygen partial pressure, and composition. These vacancy populations strongly depend on the extent of A-site substitution. Passive oxygen permeation rates were established for each of the compositions as a function of temperature and oxygen partial pressure gradient. For 2.5 mm thick membranes in an oxygen vs nitrogen partial pressure gradient, oxygen fluxes at 900 C ranged from approximately 0.3 sccm/cm{sup 2} for compositions high in iron and with low amounts of strontium A-site substitution to approximately 0.8 sccm/cm{sup 2} for compositions high in cobalt and strontium. A-site substitution with calcium instead of strontium resulted in substantially lower fluxes.

Stevenson, J.W.; Armstrong, B.L.; Armstrong, T.R.; Bates, J.L.; Pederson, L.R.; Weber, W.J.

1995-05-01T23:59:59.000Z

124

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and initial studies on newer composition of Ti doped LSF. Dense OTM bars provided by Praxair were loaded to fracture at varying stress rates. Studies were done at room temperature in air and at 1000 C in a specified environment to evaluate slow crack growth behavior. In addition, studies were also begun to obtain reliable estimates of fracture toughness and stable crack growth in specific environments. Newer composition of Ti doped LSF membranes were characterized by neutron diffraction analysis. Quench studies indicated an apparent correlation between the unit cell volume and oxygen occupancy. The studies however, indicated an anomaly of increasing Fe/Ti ratio with change in heat treatment. Ti doped LSF was also characterized for stoichiometry as a function of temp and pO{sub 2}. The non stoichiometry parameter {delta} was observed to increase almost linearly on lowering pO{sub 2} until a ideal stoichiometric composition of {delta} = 0.175 was approached.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; W.B. Yelon; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-02-01T23:59:59.000Z

125

OXYGEN TRANSPORT CERAMIC MEMBRANES  

SciTech Connect (OSTI)

Conversion of natural gas to liquid fuels and chemicals is a major goal for the Nation as it enters the 21st Century. Technically robust and economically viable processes are needed to capture the value of the vast reserves of natural gas on Alaska's North Slope, and wean the Nation from dependence on foreign petroleum sources. Technologies that are emerging to fulfill this need are all based syngas as an intermediate. Syngas (a mixture of hydrogen and carbon monoxide) is a fundamental building block from which chemicals and fuels can be derived. Lower cost syngas translates directly into more cost-competitive fuels and chemicals. The currently practiced commercial technology for making syngas is either steam methane reforming (SMR) or a two-step process involving cryogenic oxygen separation followed by natural gas partial oxidation (POX). These high-energy, capital-intensive processes do not always produce syngas at a cost that makes its derivatives competitive with current petroleum-based fuels and chemicals.

Dr. Sukumar Bandopadhyay; Dr. Nagendra Nagabhushana

2002-01-01T23:59:59.000Z

126

Low Oxygen Environments in Chesapeake Bay  

E-Print Network [OSTI]

Low Oxygen Environments in Chesapeake Bay Jeremy Testa Chesapeake Biological Laboratory University of Maryland Center for Environmental Science Why we care about low oxygen? What causes low oxygen? Where and When does Chesapeake Bay lose oxygen? #12;#12;Hypoxia and Chesapeake Animals Low dissolved oxygen

Boynton, Walter R.

127

Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch  

SciTech Connect (OSTI)

In the majority of cases, Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by little or no bacterial replication and drug tolerance. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Mtb encodes eleven serine/threonine protein kinases, a family of signaling molecules known to regulate similar replicative adaptations in other bacteria. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in hypoxia. Activity-based protein profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle - active disease, latency, and reactivation.

Ortega, Corrie; Liao, Reiling; Anderson, Lindsey N.; Rustad, Tige; Ollodart, Anja R.; Wright, Aaron T.; Sherman, David R.; Grundner, Christoph

2014-01-07T23:59:59.000Z

128

Deep Reactive Ion Etching | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice ofINL isSeparationsRelevantDeep Reactive Ion

129

Layered reactive particles with controlled geometries, energies, and reactivities, and methods for making the same  

DOE Patents [OSTI]

An energetic composite having a plurality of reactive particles each having a reactive multilayer construction formed by successively depositing reactive layers on a rod-shaped substrate having a longitudinal axis, dividing the reactive-layer-deposited rod-shaped substrate into a plurality of substantially uniform longitudinal segments, and removing the rod-shaped substrate from the longitudinal segments, so that the reactive particles have a controlled, substantially uniform, cylindrically curved or otherwise rod-contoured geometry which facilitates handling and improves its packing fraction, while the reactant multilayer construction controls the stability, reactivity and energy density of the energetic composite.

Fritz, Gregory M; Knepper, Robert Allen; Weihs, Timothy P; Gash, Alexander E; Sze, John S

2013-04-30T23:59:59.000Z

130

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

In the present quarter, experiments are presented on ceramic/metal interactions of Zirconia/ Ni-B-Si system and with a thin Ti coating deposited on zirconia surface. Existing facilities were modified for evaluation of environmental assisted slow crack growth and creep in flexural mode. Processing of perovskites of LSC, LSF and LSCF composition were continued for evaluation of mechanical properties as a function of environment. These studies in parallel to those on the LSFCO composition is expect to yield important information on questions such as the role of cation segregation and the stability of the perovskite structure on crack initiation vs. crack growth. Studies have been continued on the La{sub 1-x}Sr{sub x}FeO{sub 3-d} composition using neutron diffraction and TGA studies. A transition from p-type to n-type of conductor was observed at relative low pO{sub 2}, at which the majority carriers changed from the holes to electrons because of the valence state decreases in Fe due to the further loss of oxygen. Investigation on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane transport. Data obtained at 850 C show that the stoichiometry in La{sub 0.2}Sr{sub 0.8}Fe{sub 0.8}Cr{sub 0.2}O{sub 3-x} vary from {approx}2.85 to 2.6 over the pressure range studied. From the stoichiometry a lower limit of 2.6 corresponding to the reduction of all Fe{sup 4+} to Fe{sup 3+} and no reduction of Cr{sup 3+} is expected.

S. Bandopadhyay; N. Nagabhushana

2003-08-07T23:59:59.000Z

131

Recovery Act: Novel Oxygen Carriers for Coal-fueled Chemical Looping  

SciTech Connect (OSTI)

Chemical Looping Combustion (CLC) could totally negate the necessity of pure oxygen by using oxygen carriers for purification of CO{sub 2} stream during combustion. It splits the single fuel combustion reaction into two linked reactions using oxygen carriers. The two linked reactions are the oxidation of oxygen carriers in the air reactor using air, and the reduction of oxygen carriers in the fuel reactor using fuels (i.e. coal). Generally metal/metal oxides are used as oxygen carriers and operated in a cyclic mode. Chemical looping combustion significantly improves the energy conversion efficiency, in terms of the electricity generation, because it improves the reversibility of the fuel combustion process through two linked parallel processes, compared to the conventional combustion process, which is operated far away from its thermo-equilibrium. Under the current carbon-constraint environment, it has been a promising carbon capture technology in terms of fuel combustion for power generation. Its disadvantage is that it is less mature in terms of technological commercialization. In this DOE-funded project, accomplishment is made by developing a series of advanced copper-based oxygen carriers, with properties of the higher oxygen-transfer capability, a favorable thermodynamics to generate high purity of CO{sub 2}, the higher reactivity, the attrition-resistance, the thermal stability in red-ox cycles and the achievement of the auto-thermal heat balance. This will be achieved into three phases in three consecutive years. The selected oxygen carriers with final-determined formula were tested in a scaled-up 10kW coal-fueled chemical looping combustion facility. This scaled-up evaluation tests (2-day, 8-hour per day) indicated that, there was no tendency of agglomeration of copper-based oxygen carriers. Only trace-amount of coke or carbon deposits on the copper-based oxygen carriers in the fuel reactor. There was also no evidence to show the sulphidization of oxygen carriers in the system by using the high-sulfur-laden asphalt fuels. In all, the scaled-up test in 10 kW CLC facility demonstrated that the preparation method of copper-based oxygen carrier not only help to maintain its good reactivity, also largely minimize its agglomeration tendency.

Pan, Wei-Ping; Cao, Yan

2012-11-30T23:59:59.000Z

132

Oxygen transfer in the implant environment  

E-Print Network [OSTI]

Temperature dependence of oxygen diffusion and consumptionRN. Influence of temperature on oxygen diffusion in hamster341-347, 1988. Cox ME. Oxygen Diffusion in Poly(dimethyl

Goor, Jared Braden

2007-01-01T23:59:59.000Z

133

OXYGEN DIFFUSION IN UO2-x  

E-Print Network [OSTI]

~ K.C. K:i.m, "Oxygen Diffusion in Hypostoichiometricsystem for enriching uo 2 in oxygen-18 or for stoichiometry+nal of Nuclear Materials OXYGEN DIFFUSION IN U0 2 _:x K.C.

Kim, K.C.

2013-01-01T23:59:59.000Z

134

PRIMARY RESEARCH PAPER Water column oxygen demand and sediment oxygen flux  

E-Print Network [OSTI]

PRIMARY RESEARCH PAPER Water column oxygen demand and sediment oxygen flux: patterns of oxygen dissolved oxygen (DO) levels often occur during summer in tidal creeks along the southeastern coast of the USA. We analyzed rates of oxygen loss as water-column biochemical oxygen demand (BOD5) and sediment

Mallin, Michael

135

Anisotropic reactive ion etching of vanadium dioxide  

E-Print Network [OSTI]

. Weichold Vanadium dioxide (V02) was anisotropically reactive ion etched using carbon tetrafluoride (CF4) . CF4, as an etch gas, provided the chemistry along with the control needed to achieve an anisotropic etch. This chemistry was practically inert... with vanadium quite easily. This leads to interest in using a fluorine- based chemistry. The goal of this research is to produce a selective anisotropic reactive ion etch for VO2 /photoresist using only carbon tetrafluoride (CFq) . Reactive ion etching...

Radle, Byron K

1990-01-01T23:59:59.000Z

136

Polycyclic Aromatic Triptycenes: Oxygen Substitution Cyclization Strategies  

E-Print Network [OSTI]

The cyclization and planarization of polycyclic aromatic hydrocarbons with concomitant oxygen substitution was achieved through acid catalyzed transetherification and oxygen-radical reactions. The triptycene scaffold ...

VanVeller, Brett

137

Extracorporeal membrane oxygenation promotes long chain fatty...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation...

138

OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC URANIUM DIOXIDE  

E-Print Network [OSTI]

Research Division OXYGEN DIFFUSION IN HYPOSTOICHIOMETRIC11905 -DISCLAIMER - OXYGEN DIFFUSION IN HYPOSTOICHIOMETRICc o n e e n i g woroxygen self-diffusion coefficient

Kim, Kee Chul

2010-01-01T23:59:59.000Z

139

Oxygen Concentration Microgradients for Cell Culture  

E-Print Network [OSTI]

for technology that can control microscale oxygen gradientstechnology is the ability to rapidly generate and alter oxygentechnology should enable numerous studies in the field of biology where oxygen

Park, Jaehyun

2010-01-01T23:59:59.000Z

140

Rejuvenating Permeable Reactive Barriers by Chemical Flushing  

Broader source: Energy.gov [DOE]

Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Exploring the reactivity of bacterial multicomponent monooxygenases  

E-Print Network [OSTI]

Chapter 1. Introduction: The Reactivity of Bacterial Multicomponent Monooxygenases Bacterial multicomponent monooxygenases constitute a remarkable family of enzymes that oxidize small, inert hydrocarbon substrates using ...

Tinberg, Christine Elaine

2010-01-01T23:59:59.000Z

142

Permeable Reactive Barriers | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils with reactive material in a trench cut through a contaminated ground water aquifer....

143

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the initial studies on newer compositions and also includes newer approaches to address various materials issues such as in metal-ceramic sealing. The current quarter's research has also focused on developing a comprehensive reliability model for predicting the structural behavior of the membranes in realistic conditions. In parallel to industry provided compositions, models membranes have been evaluated in varying environment. Of importance is the behavior of flaws and generation of new flaws aiding in fracture. Fracture mechanics parameters such as crack tip stresses are generated to characterize the influence of environment. Room temperature slow crack growth studies have also been initiated in industry provided compositions. The electrical conductivity and defect chemistry of an A site deficient compound (La{sub 0.55}Sr{sub 0.35}FeO{sub 3}) was studied. A higher conductivity was observed for La{sub 0.55}Sr{sub 0.35}FeO{sub 3} than that of La{sub 0.60}Sr{sub 0.40}FeO{sub 3} and La{sub 0.80}Sr{sub 0.20}FeO{sub 3}. Defect chemistry analysis showed that it was primarily contributed by a higher carrier concentration in La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. Moreover, the ability for oxygen vacancy generation is much higher in La{sub 0.55}Sr{sub 0.35}FeO{sub 3} as well, which indicates a lower bonding strength between Fe-O and a possible higher catalytic activity for La{sub 0.55}Sr{sub 0.35}FeO{sub 3}. The program continued to investigate the thermodynamic properties (stability and phase separation behavior) and total conductivity of prototype membrane materials. The data are needed together with the kinetic information to develop a complete model for the membrane transport. Previous report listed initial measurements on a sample of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-x} prepared in-house by Praxair. Subsequently, a second sample of powder from a larger batch of sample were characterized and compared with the results from the previous batch.

S. Bandopadhyay; N. Nagabhushana; Thomas W. Eagar; Harold R. Larson; Raymundo Arroyave; X.-D Zhou; Y.-W. Shin; H.U. Anderson; Nigel Browning; Alan Jacobson; C.A. Mims

2003-11-01T23:59:59.000Z

144

Method for reactivating catalysts and a method for recycling supercritical fluids used to reactivate the catalysts  

DOE Patents [OSTI]

A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed.

Ginosar, Daniel M. (Idaho Falls, ID); Thompson, David N. (Idaho Falls, ID); Anderson, Raymond P. (Idaho Falls, ID)

2008-08-05T23:59:59.000Z

145

Synergetic effects of mixed copper-iron oxides oxygen carriers in chemical looping combustion  

SciTech Connect (OSTI)

Chemical looping combustion (CLC) is an emerging technology for clean energy production from fuels. CLC produces sequestration-ready CO{sub 2}-streams without a significant energy penalty. Development of efficient oxygen carriers is essential to successfully operate a CLC system. Copper and iron oxides are promising candidates for CLC. Copper oxide possesses high reactivity but it has issues with particle agglomeration due to its low melting point. Even though iron oxide is an inexpensive oxygen carrier it has a slower reactivity. In this study, mixed metal oxide carriers containing iron and copper oxides were evaluated for coal and methane CLC. The components of CuO and Fe{sub 2}O{sub 3} were optimized to obtain good reactivity while maintaining physical and chemical stability during cyclic reactions for methane-CLC and solid-fuel CLC. Compared with single metal oxygen carriers, the optimized Cu–Fe mixed oxide oxygen carriers demonstrated high reaction rate, better combustion conversion, greater oxygen usage and improved physical stability. Thermodynamic calculations, XRD, TGA, flow reactor studies and TPR experiments suggested that there is a strong interaction between CuO and Fe{sub 2}O{sub 3} contributing to a synergistic effect during CLC reactions. The amount of oxygen release of the mixed oxide carrier in the absence of a fuel was similar to that of the single metal oxides. However, in the presence of fuels, the oxygen consumption and the reaction profiles of the mixed oxide carriers were significantly better than that of the single metal oxides. The nature of the fuel not only influenced the reactivity, but also the final reduction status of the oxygen carriers during chemical looping combustion. Cu oxide of the mixed oxide was fully reduced metallic copper with both coal and methane. Fe oxide of the mixed oxide was fully reduced Fe metal with methane but it was reduced to only FeO with coal. Possible mechanisms of how the presence of CuO enhances the reduction of Fe{sub 2}O{sub 3} are discussed.

Siriwardane, Ranjani; Tian, Hanjing; Simonyi, Thomas; Poston, James

2013-06-01T23:59:59.000Z

146

Advanced hydraulic fracturing methods to create in situ reactive barriers  

SciTech Connect (OSTI)

Many contaminated areas consist of a source area and a plume. In the source area, the contaminant moves vertically downward from a release point through the vadose zone to an underlying saturated region. Where contaminants are organic liquids, NAPL may accumulate on the water table, or it may continue to migrate downward through the saturated region. Early developments of permeable barrier technology have focused on intercepting horizontally moving plumes with vertical structures, such as trenches, filled with reactive material capable of immobilizing or degrading dissolved contaminants. This focus resulted in part from a need to economically treat the potentially large volumes of contaminated water in a plume, and in part from the availability of construction technology to create the vertical structures that could house reactive compounds. Contaminant source areas, however, have thus far remained largely excluded from the application of permeable barrier technology. One reason for this is the lack of conventional construction methods for creating suitable horizontal structures that would place reactive materials in the path of downward-moving contaminants. Methods of hydraulic fracturing have been widely used to create flat-lying to gently dipping layers of granular material in unconsolidated sediments. Most applications thus far have involved filling fractures with coarse-grained sand to create permeable layers that will increase the discharge of wells recovering contaminated water or vapor. However, it is possible to fill fractures with other compounds that alter the chemical composition of the subsurface. One early application involved development and field testing micro-encapsulated sodium percarbonate, a solid compound that releases oxygen and can create aerobic conditions suitable for biodegradation in the subsurface for several months.

Murdoch, L. [FRx Inc., Cincinnati, OH (United States); [Clemson Univ., SC (United States); Siegrist, B. [Oak Ridge National Lab., TN (United States); Vesper, S. [Univ. of Cincinnati, OH (United States)] [and others

1997-12-31T23:59:59.000Z

147

Reactive scattering of small molecules  

SciTech Connect (OSTI)

In an ultrahigh vacuum system equipped with an effusive molecular beam source, several molecular beam relaxation spectroscopy studies were performed on a stepped Pt(111) single crystal. Carbon monoxide adsorption/desorption was studied as a function of sulfur coverage. Sulfur adsorption at step sites was found to slightly decrease the sticking probability but strongly decrease the carbon monoxide interaction with the surface. The kinetics of desorption were characteristic of the tightest binding state accessible to the adsorbed carbon monoxide. Hydrogen atom recombination and desorption was studied following formaldehyde decomposition. The reaction was second order and the desorption proceeded by two pathways: one associated with the step sites and the other with the terraces. The activation energies for desorption were 25 and 19 kcal/mol for the steps and terraces, respectively and the pre-exponential factors were of the order 0.01 cm/sup 2//s. Adsorbed sulfur and high carbon monoxide surface coverages blocked the high energy hydrogen recombination pathway. The kinetics and mechanism of the hydrogen-oxygen reaction was studied in the temperature range 400 to 1000 K. The reaction proceeded by the sequential addition of hydrogen to oxygen, first to form hydroxyls and then to form water.

Gdowski, G.E.

1985-01-01T23:59:59.000Z

148

Oxygen Transport Ceramic Membranes  

SciTech Connect (OSTI)

The present quarterly report describes some of the investigations on the structural properties of dense OTM bars provided by Praxair and studies on newer composition of Ti doped LSF. In this report, in situ neutron diffraction was used to characterize the chemical and structural properties of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} (here after as L2SF55T) specimen, which was subject to measurements of neutron diffraction from room temperature to 900 C in N{sub 2}. Space group of R3c was found to result in a better refinement and is used in this study. The difference for crystal structure, lattice parameters and local crystal chemistry for LSFT nearly unchanged when gas environment switched from air to N{sub 2}. Stable crack growth studies on Dense OTM bars provided by Praxair were done at room temperature in air. A bridge-compression fixture was fabricated to achieve stable pre-cracks from Vickers indents. Post fracture evaluation indicated stable crack growth from the indent and a regime of fast fracture. Post-fracture X-ray data of the OTM fractured at 1000 C in environment were refined by FullProf code and results indicate a distortion of the parent cubic perovskite to orthorhombic structure with reduced symmetry. TGA-DTA studies on the post-fracture samples also indicated residual effect arising from the thermal and stress history of the samples. The thermal and chemical expansion of La{sub 0.2}Sr{sub 0.8}Fe{sub 0.55}Ti{sub 0.45}O{sub 3-{delta}} were studied at 800 {le} T {le} 1000 C and at {approx} 1 x 10{sup -15} {le} pO{sub 2} {le} 0.21 atm. The thermal expansion coefficient of the sample was calculated from the dilatometric analysis in the temperature range between room temperature and 1200 C in air. A series of isotope transients under air separation mode (small gradient) were completed on the membrane of LSCrF-2828 at 900 C. Low pO{sub 2} atmospheres based on with CO-CO{sub 2} mixtures have also been admitted to the delivery side of the LSCrF-2828 membrane to produce the gradients which exist under syngas generation conditions. The CO-CO{sub 2} mixtures have normal isotopic {sup 18}O abundances. The evolution of {sup 18}O on the delivery side in these experiments after an {sup 18}O pulse on the air side reveals a wealth of information about the oxygen transport processes.

S. Bandopadhyay; N. Nagabhushana; X.-D Zhou; Q. Cai; J. Yang; W.B. Yelon; W.J. James; H.U. Anderson; Alan Jacobson; C.A. Mims

2004-05-01T23:59:59.000Z

149

REACTIVE LOAD MODELINGIMPACTS ONNODAL PRICESINPOOL MODELELECTRICITYMARKETS  

E-Print Network [OSTI]

REACTIVE LOAD MODELINGIMPACTS ONNODAL PRICESINPOOL MODELELECTRICITYMARKETS EttoreBompard, Enrico of the nodal prices in competitive electricity markets based on the Pool paradigm. Such prices focus of the paper is on the explicit evaluation of the impactsof the reactive load onthenodal real

Gross, George

150

REACTIVE ENVIRONMENTS AND AUGMENTED MEDIA SPACES  

E-Print Network [OSTI]

REACTIVE ENVIRONMENTS AND AUGMENTED MEDIA SPACES by Jeremy R. Cooperstock A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto © Copyright by Jeremy R. Cooperstock, 1996 #12;ii REACTIVE

Cooperstock, Jeremy R.

151

Rat colonic reactive oxygen species production and DNA damage are mediated by diet and age  

E-Print Network [OSTI]

is based on the theory of decreased ROS in response to respiratory chain suppression and utilizes diphenyliodonium chloride to determine if ROS production is altered in response to a mitochondrial electron transport chain inhibitor. Although... mitochondria are thought to be a major source of ROS, literature regarding this theory is inconclusive [37]. Other sites of free radical production have been identified, each generating ROS at levels that may be specific to certain tissues. For instance, Hid...

Henderson, Cara Aletha Everett

2012-06-07T23:59:59.000Z

152

Modulation of the response to cisplatin by nitric oxide and reactive oxygen species in melanoma cells  

E-Print Network [OSTI]

Malignant melanoma causes the highest mortality rate in skin cancers. Although cisplatin has proved efficacious in the treatment of various solid tumors, melanoma seems particularly resistant to this chemotherapeutic drug. ...

Anderson, Chase Thaddeus Maceo

2013-01-01T23:59:59.000Z

153

Carbon-Oxygen Bond Activation in Esters by Platinum(0): Cleavage of the Less Reactive Bond  

E-Print Network [OSTI]

esters in the presence of trialkylphosphines to give -allyl addition products.2 Acetate and benzoate-O oxidative addition to give -allyl products. Vinyl esters (acetate and benzoate) were also reported of the solution. Reaction with Allyl Acetate. Treatment of 1 with 10 equiv of allyl acetate in p-xylene-d10 at 160

Jones, William D.

154

CROSSED BEAM REACTIVE SCATTERING OF OXYGEN ATOMS AND SURFACE SCATTERING STUDIES OF GASEOUS CONDENSATION  

E-Print Network [OSTI]

Ohio, Palo Alto, California, U.S.A. Carborundum hot pressedboron nitride: Carborundum Co. , Refractories and

Sibener, S.J.

2010-01-01T23:59:59.000Z

155

Reactive oxygen species play a causal role in multiple forms of insulin resistance  

E-Print Network [OSTI]

Insulin resistance is a cardinal feature of type 2 diabetes and is characteristic of a wide range of other clinical and experimental settings. Little is known about why insulin resistance occurs in so many contexts. Do the ...

Houstis, Nicholas E

2007-01-01T23:59:59.000Z

156

Aging Enhances the Production of Reactive Oxygen Species andBactericidal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre theAdministratorCFM LEAPAgenda Agenda LargeTransfers

157

Direct and indirect photoreactions of chromophoric dissolved organic matter : roles of reactive oxygen species and iron  

E-Print Network [OSTI]

Photochemical transformations of chromophoric dissolved organic matter (CDOM) are one of the principal processes controlling its fate in coastal waters. The photochemical decomposition of CDOM leads to the formation of a ...

Goldstone, Jared Verrill, 1971-

2002-01-01T23:59:59.000Z

158

Evidence of reactive oxygen species-mediated damage to mitochondrial DNA in children with typical autism  

E-Print Network [OSTI]

1997:77–102. 3. Lin MT, Beal MF: Mitochondrial dysfunction13:262–270. 5. Albers DS, Beal MF: Mitochondrial dysfunctionAMS, Mecocci P, Cormio A, Beal MF, Cherubini A, Cantatore P,

Napoli, Eleonora; Wong, Sarah; Giulivi, Cecilia

2013-01-01T23:59:59.000Z

159

OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES  

E-Print Network [OSTI]

OXYGEN ADSORPTION ON NITROGEN CONTAINING CARBON SURFACES Alejandro Montoya, Jorge O. Gil, Fanor-rich site of the carbon basal plane of graphite and then, it dissociates into oxygen atoms.1,2 Oxygen atoms at the edge of the carbon surface can form covalent bonds with oxygen. These sites can chemisorb

Truong, Thanh N.

160

Reactive Support and Voltage Control Service: Key Issues and Challenges  

E-Print Network [OSTI]

reactive support and voltage control services. Keywords ­ Competitive Electricity Markets, Reactive PowerReactive Support and Voltage Control Service: Key Issues and Challenges George Gross^, Paolo Marannino° and Gianfranco Chicco* ^ Department of Electrical and Computer Engineering, University

Gross, George

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Oxygen isotopic exchange: A useful tool for characterizing oxygen conducting oxides  

E-Print Network [OSTI]

Oxygen isotopic exchange: A useful tool for characterizing oxygen conducting oxides Bassat J we obtain in both cases data concerning the oxygen diffusion in the bulk and the oxygen exchange with regards to the oxygen reduction reaction. Detailed experimental and analytical processes are given

Paris-Sud XI, Université de

162

Oxygen uptake of benthic systems  

E-Print Network [OSTI]

mg/hr/sq m between standard and maximum mixing. Hanes and Irvine (23) made a determination of the effects of temperature on quiescent oxygen uptake rates by covering sludge with aerated water and allowing the supernatant to be totally de- pleted.... ECTROLTSIS STSTDI FOA MEMURIRC BOO. FIGURE 2. SWITCH ELECTROQE IN CONTACT WITH ELECTROIYTE. OXYGEN GENERATOR OFF. FIGURE 3. SWIICH ELECI'RODE NOT IN CONTACT' WITH -' ECTROLYTE. 0 0 0 a 0 0 0 ~ O0 0 o 0 0 o o 0 0 0 0 PIERRE A. HIGH SPEED NIXINC...

Priebe, William Franklin

1972-01-01T23:59:59.000Z

163

In situ formation of magnetite reactive barriers in soil for waste stabilization  

DOE Patents [OSTI]

Reactive barriers containing magnetite and methods for making magnetite reactive barriers in situ in soil for sequestering soil contaminants including actinides and heavy metals, organic materials, iodine and technetium are disclosed. According to one embodiment, a two-step reagent introduction into soil takes place. In the first step, free oxygen is removed from the soil by separately injecting into the soil aqueous solutions of iron (II) salt, for example FeCl.sub.2, and base, for example NaOH or NH.sub.3 in about a 1:1 volume ratio. Then, in the second step, similar reagents are injected a second time (however, according to about a 1:2 volume ratio, iron to salt) to form magnetite. The magnetite formation is facilitated, in part, due to slow intrusion of oxygen into the soil from the surface. The invention techniques are suited to injection of reagents into soil in proximity to a contamination plume or source allowing in situ formation of the reactive barrier at the location of waste or hazardous material. Mixing of reagents to form. precipitate is mediated and enhanced through movement of reagents in soil as a result of phenomena including capillary action, movement of groundwater, soil washing and reagent injection pressure.

Moore, Robert C. (Edgewood, NM)

2003-01-01T23:59:59.000Z

164

Characterization of Dual-Fuel Reactivity Controlled Compression...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dual-Fuel Reactivity Controlled Compression Ignition (RCCI) Using Hydrated Ethanol and Diesel Fuel Characterization of Dual-Fuel Reactivity Controlled Compression Ignition (RCCI)...

165

A smoothed particle hydrodynamics model for reactive transport...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. A smoothed particle hydrodynamics model for reactive...

166

Oxygen-assisted multipass cutting of carbon fiber reinforced plastics with ultra-short laser pulses  

SciTech Connect (OSTI)

Deep multipass cutting of bidirectional and unidirectional carbon fiber reinforced plastics (CFRP) with picosecond laser pulses was investigated in different static atmospheres as well as with the assistance of an oxygen or nitrogen gas flow. The ablation rate was determined as a function of the kerf depth and the resulting heat affected zone was measured. An assisting oxygen gas flow is found to significantly increase the cutting productivity, but only in deep kerfs where the diminished evaporative ablation due to the reduced laser fluence reaching the bottom of the kerf does not dominate the contribution of reactive etching anymore. Oxygen-supported cutting was shown to also solve the problem that occurs when cutting the CFRP parallel to the fiber orientation where a strong deformation and widening of the kerf, which temporarily slows down the process speed, is revealed to be typical for processing in standard air atmospheres.

Kononenko, T. V.; Komlenok, M. S.; Konov, V. I. [Natural Sciences Center, General Physics Institute, Vavilov str. 38, 119991 Moscow (Russian Federation); National Research Nuclear University, “MEPhI,” Kashirskoye shosse 31, 115409 Moscow (Russian Federation); Freitag, C. [Universität Stuttgart, Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany); GSaME Graduate School of Excellence Advanced Manufacturing Engineering, Nobelstrasse 12, 70569 Stuttgart (Germany); Onuseit, V.; Weber, R.; Graf, T. [Universität Stuttgart, Institut für Strahlwerkzeuge (IFSW), Pfaffenwaldring 43, 70569 Stuttgart (Germany)

2014-03-14T23:59:59.000Z

167

Reactivity control assembly for nuclear reactor  

DOE Patents [OSTI]

Reactivity control assembly for nuclear reactor comprises supports stacked above reactor core for holding control rods. Couplers associated with the supports and a vertically movable drive shaft have lugs at their lower ends for engagement with the supports.

Bollinger, Lawrence R. (Schenectady, NY)

1984-01-01T23:59:59.000Z

168

Fossil plant layup and reactivation conference: Proceedings  

SciTech Connect (OSTI)

The Fossil Plant Layup and Reactivation Conference was held in New Orleans, Louisiana on April 14--15, 1992. The Conference was sponsored by EPRI and hosted by Entergy Services, Inc. to bring together representatives from utilities, consulting firms, manufacturers and architectural engineers. Eighteen papers were presented in three sessions. These sessions were devoted to layup procedures and practices, and reactivation case studies. A panel discussion was held on the second day to interactively discuss layup and reactivation issues. More than 80 people attended the Conference. This report contains technical papers and a summary of the panel discussion. Of the eighteen papers, three are related to general, one is related to regulatory issues, three are related to specific equipment, four are related to layup procedures and practices, and seven are layup and reactivation case studies.

Not Available

1992-10-01T23:59:59.000Z

169

Groundwater well with reactive filter pack  

DOE Patents [OSTI]

A method and apparatus for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques.

Gilmore, Tyler J. (Pasco, WA); Holdren, Jr., George R. (Kennewick, WA); Kaplan, Daniel I. (Richland, WA)

1998-01-01T23:59:59.000Z

170

A Tariff for Reactive Power - IEEE  

SciTech Connect (OSTI)

This paper describes a suggested tariff or payment for the local supply of reactive power from distributed energy resources. The authors consider four sample customers, and estimate the cost of supply of reactive power for each customer. The power system savings from the local supply of reactive power are also estimated for a hypothetical circuit. It is found that reactive power for local voltage regulation could be supplied to the distribution system economically by customers when new inverters are installed. The inverter would be supplied with a power factor of 0.8, and would be capable of local voltage regulation to a schedule supplied by the utility. Inverters are now installed with photovoltaic systems, fuel cells and microturbines, and adjustable-speed motor drives.

Kueck, John D [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator; Kirby, Brendan J [ORNL

2008-11-01T23:59:59.000Z

171

Consideration of spatial effects in reactivity measurements  

SciTech Connect (OSTI)

Various methods of considering spatial effects in reactivity measurements are presented. These methods are employed both at the critical (mainly fast-neutron) facilities and at the BN-600 reactor.

Matveenko, I. P., E-mail: matveenko@ippe.ru; Lititskii, V. A.; Shokod'ko, A. G. [Institute of Physics and Power Engineering (Russian Federation)

2010-12-15T23:59:59.000Z

172

Systematic approach for chemical reactivity evaluation  

E-Print Network [OSTI]

Screening Tool (RSST) and the Automatic Pressure Tracking Adiabatic Calorimeter (APTAC) were employed to evaluate the reactive systems experimentally. The RSST detected exothermic behavior and measured the overall liberated energy. The APTAC simulated...

Aldeeb, Abdulrehman Ahmed

2004-09-30T23:59:59.000Z

173

Groundwater well with reactive filter pack  

DOE Patents [OSTI]

A method and apparatus are disclosed for the remediation of contaminated soil and ground water wherein a reactive pack material is added to the annular fill material utilized in standard well construction techniques. 3 figs.

Gilmore, T.J.; Holdren, G.R. Jr.; Kaplan, D.I.

1998-09-08T23:59:59.000Z

174

Reactive Attachment Disorder: Concepts, Treatment, and Research  

E-Print Network [OSTI]

Reactive Attachment Disorder (RAD) is a disorder characterized by controversy, both with respect to its definition and its treatment. By definition, the RAD diagnosis attempts to characterize and explain the origin of ...

Walter, Uta M.; Petr, Chris

2004-06-01T23:59:59.000Z

175

Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases.  

E-Print Network [OSTI]

??Several lines of evidence indicate that the advent of oxygenic photosynthesis preceded the oxygenation of the atmosphere—perhaps by as much as 300 million years. The… (more)

Olson, Stephanie

2013-01-01T23:59:59.000Z

176

Relative reactivities of solid benzoic acids  

E-Print Network [OSTI]

RELATIVE REACTIVITIES OF SOLID BENZOIC ACIDS A Thesis By EDWIN J, WARWAS Submitted to the Graduate College of the Texas A8rM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1967' Major... Subject: Chemistry RELATIVE REACTIVITIES OF SOLID BENZOIC ACIDS A Thesis By EDWIN J. WARWAS Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MAST ER OF S CIENCE January...

Warwas, Edwin James

2012-06-07T23:59:59.000Z

177

Oxygen reduction on platinum : an EIS study  

E-Print Network [OSTI]

The oxygen reduction reaction (ORR) on platinum over yttria-stabilized zirconia (YSZ) is examined via electrochemical impedance spectroscopy (EIS) for oxygen partial pressures between 10-4 and 1 atm and at temperatures ...

Golfinopoulos, Theodore

2009-01-01T23:59:59.000Z

178

Microchemical systems for singlet oxygen generation  

E-Print Network [OSTI]

Chemical Oxygen-Iodine Lasers (COIL) are a technology of interest for industrial and military audiences. COILs are flowing gas lasers where the gain medium of iodine atoms is collisionally pumped by singlet delta oxygen ...

Hill, Tyrone F. (Tyrone Frank), 1980-

2008-01-01T23:59:59.000Z

179

The Role of Oxygen in Coal Gasification  

E-Print Network [OSTI]

Air Products supplies oxygen to a number of coal gasification and partial oxidation facilities worldwide. At the high operating pressures of these processes, economics favor the use of 90% and higher oxygen purities. The effect of inerts...

Klosek, J.; Smith, A. R.; Solomon, J.

180

Composite oxygen ion transport element  

SciTech Connect (OSTI)

A composite oxygen ion transport element that has a layered structure formed by a dense layer to transport oxygen ions and electrons and a porous support layer to provide mechanical support. The dense layer can be formed of a mixture of a mixed conductor, an ionic conductor, and a metal. The porous support layer can be fabricated from an oxide dispersion strengthened metal, a metal-reinforced intermetallic alloy, a boron-doped Mo.sub.5Si.sub.3-based intermetallic alloy or combinations thereof. The support layer can be provided with a network of non-interconnected pores and each of said pores communicates between opposite surfaces of said support layer. Such a support layer can be advantageously employed to reduce diffusion resistance in any type of element, including those using a different material makeup than that outlined above.

Chen, Jack C. (Getzville, NY); Besecker, Charles J. (Batavia, IL); Chen, Hancun (Williamsville, NY); Robinson, Earil T. (Mentor, OH)

2007-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Catalyst containing oxygen transport membrane  

SciTech Connect (OSTI)

A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.

Christie, Gervase Maxwell; Wilson, Jamie Robyn; van Hassel, Bart Antonie

2012-12-04T23:59:59.000Z

182

Eoeective Recognizability and Model Checking of Reactive Fioeo Automata  

E-Print Network [OSTI]

Electre. For this, we deøne a particular behavioral model for Electre programs, Reactive Fioeo Au­ tomata speciøed with the reactive language Electre [CR95]. A reactive pro­ gram is supposed to reactEoeective Recognizability and Model Checking of Reactive Fioeo Automata G. Sutre 1 , A. Finkel 1

Sutre, Grégoire

183

AN ELECTRICAL OXYGEN-TEMPERATURE METER  

E-Print Network [OSTI]

426 AN ELECTRICAL OXYGEN-TEMPERATURE METER FOR FISHERY BIOLOGISTS SEP 2 1196: vuUiJo HIM. . SPECIAL and Wildlife, Daniel H. Janzen, Director AN ELECTRICAL OXYGEN-TEMPERATURE METER FOR FISHERY BIOLOGISTS -temperature meter 11 Maintenance and trouble -shooting 12 #12;AN ELECTRICAL OXYGEN-TEMPERATURE METER

184

Effects of oxygen on fracturing fluids  

SciTech Connect (OSTI)

The stability of polysaccharide gels at high temperature is limited by such factors as pH, mechanical degradation, and oxidants. Oxygen is unavoidably placed in fracturing fluids through dissolution of air. To prevent premature degradation of the fracturing fluid by this oxidant, oxygen scavengers are commonly used. In this paper, the effects of oxygen and various oxygen scavengers on gel stability will be presented. Mechanical removal of oxygen resulted in surprisingly stable fracturing gels at 275 F. However, chemical removal of oxygen gave mixed results. Test data from sodium thiosulfate, sodium sulfite, and sodium erythorbate used as oxygen scavengers/gel stabilizers showed that the efficiency of oxygen removal from gels did not directly coincide with the viscosity retention of the gel, and large excesses of additives were necessary to provide optimum gel stabilization. The inability of some oxygen scavengers to stabilize the gel was the result of products created from the interaction of oxygen with the oxygen scavenger, which in turn, produced species that degraded the gel. The ideal oxygen scavenger should provide superior gel stabilization without creating detrimental side reaction products. Of the materials tested, sodium thiosulfate appeared to be the most beneficial.

Walker, M.L.; Shuchart, C.E.; Yaritz, J.G.; Norman, L.R.

1995-11-01T23:59:59.000Z

185

Oxygen Detection via Nanoscale Optical Indicators  

E-Print Network [OSTI]

Oxygen Detection via Nanoscale Optical Indicators Ruby N. Ghosh Dept. of Physics Michigan State University East Lansing, MI, USA weekschr@msu.edu Abstract--Oxygen plays a ubiquitous role in terrestrial developed an optical technique for monitoring oxygen in both gas and liquid phases utilizing nanoscale metal

Ghosh, Ruby N.

186

8, 22252248, 2008 Detection of oxygen  

E-Print Network [OSTI]

ACPD 8, 2225­2248, 2008 Detection of oxygen emission related to spring bloom H. Yamagishi et al Chemistry and Physics Discussions Detection of regional scale sea-to-air oxygen emission related to spring bloom near Japan by using in-situ measurements of atmospheric oxygen/nitrogen ratio H. Yamagishi 1 , Y

Paris-Sud XI, Université de

187

The Mechanisms of Oxygen Reduction and Evolution Reactions in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries. The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous...

188

Oxygen consumption of bovine granulosa cells in vitro.  

E-Print Network [OSTI]

??The oxygen consumption rate of granulosa cells is considered to be a key determinant of oocyte oxygenation in follicles. The oxygen status of the oocyte… (more)

Li, Dongxing

2012-01-01T23:59:59.000Z

189

Experimental Effects of Atomic Oxygen on the Development of an Electric Discharge Oxygen Iodine Laser  

E-Print Network [OSTI]

state I. Conventionally, a two-phase (gas-liquid) chemistry singlet oxygen generator (SOG) producesExperimental Effects of Atomic Oxygen on the Development of an Electric Discharge Oxygen Iodine of the electric discharge iodine laser continues, the role of oxygen atoms downstream of the discharge region

Carroll, David L.

190

Singlet Oxygen Singlet oxygen generation and detection are growing fields with applications in such areas as  

E-Print Network [OSTI]

Singlet Oxygen Singlet oxygen generation and detection are growing fields with applications in such areas as cancer treatment, photosensitized oxidations, and biomolecular degradation. Ground state oxygen state of an oxygen molecule is a singlet state, which can readily react with other singlet molecules

Wells, Mathew G. - Department of Physical and Environmental Sciences, University of Toronto

191

Oxygen permeation in bismuth-based materials part I: Sintering and oxygen permeation fluxes  

E-Print Network [OSTI]

1 Oxygen permeation in bismuth-based materials part I: Sintering and oxygen permeation fluxes E;2 Abstract Oxygen permeation measurements were performed on two layered bismuth based oxide ceramics. Oxygen permeability for these systems was compared to permeability of the cubic fluorite type structure

Paris-Sud XI, Université de

192

Structural, optical and electrical properties of WOxNy filmsdeposited by reactive dual magnetron sputtering  

SciTech Connect (OSTI)

Thin films of tungsten oxynitride were prepared by dual magnetron sputtering of tungsten using argon/oxygen/nitrogen gas mixtures with various nitrogen/oxygen ratios. The presence of even small amounts of oxygen had a great effect not only on the composition but on the structure of WOxNy films, as shown by Rutherford backscattering and x-ray diffraction, respectively. Significant incorporation of nitrogen occurred only when the nitrogen partial pressure exceeded 89 percent of the total reactive gas pressure. Sharp changes in the stoichiometry, deposition rate, room temperature resistivity, electrical activation energy and optical band gap were observed when the nitrogen/oxygen ratio was high.The deposition rate increased from 0.31 to 0.89 nm/s, the room temperature resistivity decreased from 1.65 x 108 to 1.82 x 10-2 ?cm, the electrical activation energy decreased from 0.97 to 0.067 eV, and the optical band gap decreased from 3.19 to 2.94 eV upon nitrogen incorporation into the films. WOxNy films were highly transparent as long as the nitrogen incorporation was low, and were brownish (absorbing) and partially reflecting as nitrogen incorporation became significant.

Mohamed, Sodky H.; Anders, Andre

2006-06-05T23:59:59.000Z

193

A dominant role of oxygen additive on cold atmospheric-pressure He + O{sub 2} plasmas  

SciTech Connect (OSTI)

We present in this paper how oxygen additive impacts on the cold atmospheric-pressure helium plasmas by means of a one-dimensional fluid model. For the oxygen concentration [O{sub 2}]?>??0.1%, the influence of oxygen on the electron characteristics and the power dissipation becomes important, e.g., the electron density, the electron temperature in sheath, the electron-coupling power, and the sheath width decreasing by 1.6 to 16 folds with a two-log increase in [O{sub 2}] from 0.1% to 10%. Also the discharge mode evolves from the ? mode to the ? mode. The reactive oxygen species are found to peak in the narrow range of [O{sub 2}]?=?0.4%–0.9% in the plasmas, similar to their power-coupling values. This applies to their wall fluxes except for those of O* and O{sub 2}{sup ?}. These two species have very short lifetimes, thus only when generated in boundary layers within several micrometers next to the electrode can contribute to the fluxes. The dominant reactive oxygen species and the corresponding main reactions are schematically presented, and their relations are quantified for selected applications.

Yang, Aijun; Liu, Dingxin, E-mail: liudingxin@gmail.com, E-mail: xhw@mail.xjtu.edu.cn; Rong, Mingzhe; Wang, Xiaohua, E-mail: liudingxin@gmail.com, E-mail: xhw@mail.xjtu.edu.cn [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Kong, Michael G. [Centre for Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049 (China); Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia 23508 (United States); Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia 23529 (United States)

2014-08-15T23:59:59.000Z

194

Chemical Analysis of Complex Organic Mixtures Using Reactive Nanospray Desorption Electrospray Ionization Mass Spectrometry  

SciTech Connect (OSTI)

Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of secondary organic aerosol produced through ozonolysis of limonene (LSOA). Previous studies showed that LSOA constituents are multifunctional compounds containing aldehyde and ketone groups. In this study, we used the selectivity of the Girard T (GT) reagent towards carbonyl compounds to examine the utility of reactive nano-DESI for the analysis of complex organic mixtures. In these experiments, 1-100 {micro}M GT solution was used as a working solvent for reactive nano-DESI analysis. Abundant products of a single addition of GT to LSOA constituents were observed at GT concentrations in excess of 10 {micro}M. We found that LSOA compounds with 18-20 carbon atoms (dimers) and 27-30 carbon atoms (trimers) react with GT through a simple addition reaction resulting in formation of the carbinolamine derivative. In contrast, reactions of GT with monomeric species result in formation of both the carbinolamine and the hydrazone derivatives. In addition, several monomers did not react with GT on the timescale of our experiment. These molecules were characterized by relatively high values of the double bond equivalent (DBE) and low oxygen content. Furthermore, because addition of a charged GT tag to a neutral molecule eliminates the discrimination against the low proton affinity compounds in the ionization process, reactive nano-DESI analysis enables quantification of individual compounds in the complex mixture. For example, we were able to estimate for the first time the amounts of dimers and trimers in the LSOA mixture. Specifically, we found that the most abundant LSOA dimer was detected at ca. 0.5 pg level and the total amount of dimers and trimers in the analyzed sample was just around 11 pg. Our results indicate that reactive nano-DESI is a valuable approach for examining the presence of specific functional groups and quantification of compounds possessing these groups in complex mixtures.

Laskin, Julia; Eckert, Peter A.; Roach, Patrick J.; Heath, Brandi S.; Nizkorodov, Sergey A.; Laskin, Alexander

2012-08-21T23:59:59.000Z

195

Application of computer modeling techniques to the kinetics of the reaction of carbon with oxygen  

SciTech Connect (OSTI)

Computer modeling techniques are applied to the kinetics of the reaction of carbon with oxygen. The rates of disappearance of oxygen, of formation of CO, CO/sub 2/ and the surface complex, measured over the temperature range 748-1173 K and the pressure range 0.5-400 Pa may be described by a mechanism involving adsorption of oxygen, formation of the strongly-bound complex, desorption of the complex and reaction of the complex with a gas-phase molecule of oxygen. The latter is shown to be an important source of CO/sub 2/ at low temperatures and higher pressures of oxygen. An important feature of the mechanism is the existence of at least two distinct types of active sites for the binding of the complex on the carbon surface, each with a characteristic reactivity. Most of the results on which the model is based were obtained using thin films of pyrolytic carbon, but some results from the oxidation of graphon are also consistent with the mechanism.

Ahmed, S.; Back, M.H.; Roscoe, J.M.

1989-01-01T23:59:59.000Z

196

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-11-25T23:59:59.000Z

197

Water reactive hydrogen fuel cell power system  

DOE Patents [OSTI]

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21T23:59:59.000Z

198

OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES  

E-Print Network [OSTI]

OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES TWO-eng-48 OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

Byrn, Marianne; Calvin, Melvin

1965-01-01T23:59:59.000Z

199

Oxygen transport in the internal xenon plasma of a dispenser hollow cathode  

SciTech Connect (OSTI)

Reactive gases such as oxygen and water vapor modify the surface morphology of BaO dispenser cathodes and degrade the electron emission properties. For vacuum cathodes operating at fixed temperature, the emission current drops rapidly when oxygen adsorbs on top of the low work function surface. Previous experiments have shown that plasma cathodes are more resistant to oxygen poisoning and can operate with O{sub 2} partial pressures one to two orders of magnitude higher than vacuum cathodes before the onset of poisoning occurs. Plasma cathodes used for electric thrusters are typically operated with xenon; however, gas phase barium, oxygen, and tungsten species may be found in small concentrations. The densities of these minor species are small compared with the plasma density, and thus, their presence in the discharge does not significantly alter the xenon plasma parameters. It is important, however, to consider the transport of these minor species as they may deposit on the emitter surface and affect the electron emission properties. In this work, we present the results of a material transport model used to predict oxygen fluxes to the cathode surface by solving the species conservation equations in a cathode with a 2.25?mm diameter orifice operated at a discharge current of 15?A, a Xe flow rate of 3.7 sccm, and 100?ppm of O{sub 2}. The dominant ionization process for O{sub 2} is resonant charge exchange with xenon ions. Ba is effectively recycled in the plasma; however, BaO and O{sub 2} are not. The model shows that the oxygen flux to the surface is not diffusion-limited; therefore, the high resistance to oxygen poisoning observed in plasma cathodes likely results from surface processes not considered here.

Capece, Angela M., E-mail: acapece@pppl.gov; Shepherd, Joseph E. [California Institute of Technology, Pasadena, California 91125 (United States); Polk, James E.; Mikellides, Ioannis G. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, California 91109 (United States)

2014-04-21T23:59:59.000Z

200

Studies on Waterborne Pathogen Reactivation after Disinfection  

E-Print Network [OSTI]

ultraviolet (LP UV) irradiation at five titanium dioxide (TiO_(2)) concentrations (1 g/L, 0.5 g/L, 0.75 g/L, and 0.1 g/L) to achieve 5 log_(10) reduction of a laboratory E. coli K-12 strain (ATCC® 10798). Regrowth and reactivation of E. coli in dark and light...

Kaur, Jasjeet

2013-12-09T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Gasification reactivities of solid biomass fuels  

SciTech Connect (OSTI)

The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

Moilanen, A.; Kurkela, E.

1995-12-31T23:59:59.000Z

202

Controlling uranium reactivity March 18, 2008  

E-Print Network [OSTI]

for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

Meyer, Karsten

203

Identification of an Archean marine oxygen oasis  

SciTech Connect (OSTI)

The early Earth was essentially anoxic. A number of indicators suggest the presence of oxygenic photosynthesis 2700 3000 million years (Ma) ago, but direct evidence for molecular oxygen (O2) in seawater has remained elusive. Here we report rare earth element (REE) analyses of 2800 million year old shallowmarine limestones and deep-water iron-rich sediments at Steep Rock Lake, Canada. These show that the seawater from which extensive shallow-water limestones precipitated was oxygenated, whereas the adjacent deeper waters where iron-rich sediments formed were not. We propose that oxygen promoted limestone precipitation by oxidative removal of dissolved ferrous iron species, Fe(II), to insoluble Fe(III) oxyhydroxide, and estimate that at least 10.25 M oxygen concentration in seawater was required to accomplish this at Steep Rock. This agrees with the hypothesis that an ample supply of dissolved Fe(II) in Archean oceans would have hindered limestone formation. There is no direct evidence for the oxygen source at Steep Rock, but organic carbon isotope values and diverse stromatolites in the limestones suggest the presence of cyanobacteria. Our findings support the view that during the Archean significant oxygen levels first developed in protected nutrient-rich shallow marine habitats. They indicate that these environments were spatially restricted, transient, and promoted limestone precipitation. If Archean marine limestones in general reflect localized oxygenic removal of dissolved iron at the margins of otherwise anoxic iron-rich seas, then early oxygen oases are less elusive than has been assumed.

Riding, Dr Robert E [University of Tennessee (UT); Fralick, Dr Philip [Lakehead University, Canada; Liang, Liyuan [ORNL

2014-01-01T23:59:59.000Z

204

Myocardial Reloading after Extracorporeal Membrane Oxygenation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protein Synthesis. Abstract: Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after...

205

Oxygen Concentration Microgradients for Cell Culture.  

E-Print Network [OSTI]

??There is a growing need for technology that can control microscale oxygen gradients onto a tissue or culture sample in vitro. This dissertation introduces the… (more)

Park, Jaehyun

2010-01-01T23:59:59.000Z

206

Oxygen ion-beam microlithography  

DOE Patents [OSTI]

A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

Tsuo, Y. Simon (Lakewood, CO)

1991-01-01T23:59:59.000Z

207

Assessment of the Economic Potential of Microgrids for Reactive Power Supply  

E-Print Network [OSTI]

Reactive Power from Distributed Energy”, The Electricityvoltage. Electricity consumers’ demand for reactive power ison electricity supply security, the costs of local reactive

Appen, Jan von

2012-01-01T23:59:59.000Z

208

Parallel Web Scripting with Reactive Constraints Thibaud Hottelier  

E-Print Network [OSTI]

Parallel Web Scripting with Reactive Constraints Thibaud Hottelier James Ide Doug Kimelman Ras Bodik Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report to lists, requires prior specific permission. #12;Parallel Web Scripting with Reactive Constraints Thibaud

Bodik, Rastisla

209

Transient oxygen consumption rate measurements with the BDT?M? oxygen biosensor system  

E-Print Network [OSTI]

Oxygen consumption rate (OCR) is a reliable indicator of tissue health. Recently, the OCR of isolated human islets has been shown to predict transplant outcome in diabetic mice. The Oxygen Biosensor System (OBS) is a ...

Low, Clarke Alan

2008-01-01T23:59:59.000Z

210

ENVIRONMENTAL REACTIVITY OF SOLID STATE HYDRIDE MATERIALS  

SciTech Connect (OSTI)

In searching for high gravimetric and volumetric density hydrogen storage systems, it is inevitable that higher energy density materials will be used. In order to make safe and commercially acceptable condensed phase hydrogen storage systems, it is important to understand quantitatively the risks involved in using and handling these materials and to develop appropriate mitigation strategies to handle potential material exposure events. A crucial aspect of the development of risk identification and mitigation strategies is the development of rigorous environmental reactivity testing standards and procedures. This will allow for the identification of potential risks and implementation of risk mitigation strategies. Modified testing procedures for shipping air and/or water sensitive materials, as codified by the United Nations, have been used to evaluate two potential hydrogen storage materials, 2LiBH{sub 4} {center_dot} MgH{sub 2} and NH{sub 3}BH{sub 3}. The modified U.N. procedures include identification of self-reactive substances, pyrophoric substances, and gas-emitting substances with water contact. The results of these tests for air and water contact sensitivity will be compared to the pure material components where appropriate (e.g. LiBH{sub 4} and MgH{sub 2}). The water contact tests are divided into two scenarios dependent on the hydride to water mole ratio and heat transport characteristics. Air contact tests were run to determine whether a substance will spontaneously react with air in a packed or dispersed form. In the case of the 2LiBH{sub 4} {center_dot} MgH{sub 2} material, the results from the hydride mixture compared to the pure materials results showed the MgH{sub 2} to be the least reactive component and LiBH{sub 4} the more reactive. The combined 2LiBH{sub 4} {center_dot} MgH{sub 2} resulted in a material having environmental reactivity between these two materials. Relative to 2LiBH{sub 4} {center_dot} MgH{sub 2}, the chemical hydride NH{sub 3}BH{sub 3} was observed to be less environmentally reactive.

Gray, J; Donald Anton, D

2009-04-23T23:59:59.000Z

211

Nitric oxide inhibition of soot oxidation by oxygen atoms at 298/sup 0/Ktiation  

SciTech Connect (OSTI)

Nitric oxide is observed to inhibit the rate of soot oxidation by oxygen atoms at 298 K. Small amounts of added NO reduce the rates of production of CO/sub 2/ and CO by up to 35%. The authors show experimentally that NO is not reducing the gas phase O atom concentration. Thermal description mass spectrometry is used to measure the small adsorption of NO on the soot; this NO adsorption corresponds to 1.5% of the carbon atoms on the surface of the individual soot spheres. This inhibition is interpreted in terms of a relatively small number of reactive sites on the soot at which soot gasification occurs and which are effectively blocked by NO. When considered together with our previously reported work on oxidation of soot by oxygen atoms at 298 K, these results allow a partial mechanism to be formulated for this soot oxidation process.

Wicke, B.G.; Grady, K.A.

1987-01-01T23:59:59.000Z

212

Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species  

SciTech Connect (OSTI)

The oxidation of carbon monoxide with nitrous oxide on mass-selected Au{sub 3}{sup +} and Ag{sub 3}{sup +} clusters has been investigated under multicollision conditions in an octopole ion trap experiment. The comparative study reveals that for both gold and silver cations carbon dioxide is formed on the clusters. However, whereas in the case of Au{sub 3}{sup +} the cluster itself acts as reactive species that facilitates the formation of CO{sub 2} from N{sub 2}O and CO, for silver the oxidized clusters Ag{sub 3}O{sub x}{sup +} (n= 1-3) are identified as active in the CO oxidation reaction. Thus, in the case of the silver cluster cations N{sub 2}O is dissociated and one oxygen atom is suggested to directly react with CO, whereas a second kind of oxygen strongly bound to silver is acting as a substrate for the reaction.

Popolan, Denisia M.; Bernhardt, Thorsten M. [Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89069 Ulm (Germany)

2011-03-07T23:59:59.000Z

213

The Simulation of Synchronous Reactive Systems In Ptolemy II  

E-Print Network [OSTI]

The Simulation of Synchronous Reactive Systems In Ptolemy II by Paul Whitaker Submitted to the Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, in partial;_____________________________________________________________________ Simulation of Synchronous Reactive Systems in Ptolemy II ii Abstract The Synchronous Reactive (SR) domain

214

Autonomic Reactive Systems via Online Learning Sanjit A. Seshia  

E-Print Network [OSTI]

Autonomic Reactive Systems via Online Learning Sanjit A. Seshia Department of Electrical@eecs.berkeley.edu Abstract-- Reactive systems are those that maintain an ongoing interaction with their environment- covering a class of reactive systems from run-time failures. This class of systems comprises those whose

California at Irvine, University of

215

Towards Synthesis of Reactive & Robust Behavior Chains Amol D. Mali  

E-Print Network [OSTI]

Towards Synthesis of Reactive & Robust Behavior Chains Amol D. Mali Electrical Engg. & Computer robots need to be reactive and robust. Behavior-based robots that identify and repair the failures have of reactivity and robustness have been hitherto only informally used and have been loaded with var- ious

Mali, Amol D.

216

A Synchronous Approach to Reactive System Design1 Charles Andr  

E-Print Network [OSTI]

our experience teaching discrete-event reactive systems to Electrical Engineering students. The courseA Synchronous Approach to Reactive System Design1 Charles André I3S Laboratory ­ UNSA/CNRS BP 121 This paper was presented at the 12th EAEEIE Annual Conf., 14-16 May 2001, Nancy (France). Abstract Reactive

André, Charles

217

On Some Properties of Instantaneous Active and Reactive Powers  

E-Print Network [OSTI]

On Some Properties of Instantaneous Active and Reactive Powers Leszek S. CZARNECKI, Fellow IEEE Louisiana State University, USA Abstract: Some features of the instantaneous active and reactive powers p control. Also it was shown that the instantaneous reactive power q cannot be interpreted as a measure

Czarnecki, Leszek S.

218

High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen  

E-Print Network [OSTI]

High density adsorbed oxygen on Rh,,111... and enhanced routes to metallic oxidation using atomic oxygen K. D. Gibson, Mark Viste, Errol C. Sanchez, and S. J. Sibener The James Franck Institute; accepted 30 November 1998 Exposure of Rh 111 to atomic oxygen leads to the facile formation of a full

Sibener, Steven

219

Nuclear reactivity control using laser induced polarization  

DOE Patents [OSTI]

A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neturons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

Bowman, Charles D. (Los Alamos, NM)

1990-01-01T23:59:59.000Z

220

Nuclear reactivity control using laser induced polarization  

DOE Patents [OSTI]

A control element for reactivity control of a fission source provides an atomic density of .sup.3 He in a control volume which is effective to control criticality as the .sup.3 He is spin-polarized. Spin-polarization of the .sup.3 He affects the cross section of the control volume for fission neutrons and hence, the reactivity. An irradiation source is directed within the .sup.3 He for spin-polarizing the .sup.3 He. An alkali-metal vapor may be included with the .sup.3 He where a laser spin-polarizes the alkali-metal atoms which in turn, spin-couple with .sup.3 He to spin-polarize the .sup.3 He atoms.

Bowman, Charles D. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mined land reclamation by biological reactivation  

SciTech Connect (OSTI)

A mine reclamation technique, developed in Europe, restores land to full productivity within two years without topsoil replacement. The method deliberately reestablishes within one year following mining, the required biological balance between microbes, enzymes, and trace elements in the rock spoil rather than waiting five or more years for natural processes to restore balance. The technique is called Biological Reactivation (BR). This paper discusses the feasibility of BR reclamation after surface mining operations in the US. Staff of the Ohio Mining and Mineral Resources Research Institute completed an OSM-sponsored research project on BR in which physical and chemical tests characterized 140 spoil samples obtained from 10 surface mining operations. Test results indicated that Biological Reactivation technology could be effectively applied, at least in the test areas sampled within Appalachia. Preliminary estimates make clear that the new technique reduces reclamation costs on prime farmland by approximately 95% compared to topsoil segregation and replacement methods.

Gozon, J.S.; Konya, C.J.; Lukovic, S.S.; Lundquist, R.G.; Olah, J.

1982-12-01T23:59:59.000Z

222

Reactivity control assembly for nuclear reactor. [LMFBR  

DOE Patents [OSTI]

This invention, which resulted from a contact with the United States Department of Energy, relates to a control mechanism for a nuclear reactor and, more particularly, to an assembly for selectively shifting different numbers of reactivity modifying rods into and out of the core of a nuclear reactor. It has been proposed heretofore to control the reactivity of a breeder reactor by varying the depth of insertion of control rods (e.g., rods containing a fertile material such as ThO/sub 2/) in the core of the reactor, thereby varying the amount of neutron-thermalizing coolant and the amount of neutron-capturing material in the core. This invention relates to a mechanism which can advantageously be used in this type of reactor control system.

Bollinger, L.R.

1982-03-17T23:59:59.000Z

223

New Oxygen-Production Technology Proving Successful  

Broader source: Energy.gov [DOE]

The Office of Fossil Energy's National Energy Technology Laboratory has partnered with Air Products and Chemicals Inc. of Allentown, Penn. to develop the Ion Transport Membrane (ITM) Oxygen, a revolutionary new oxygen-production technology that requires less energy and offers lower capital costs than conventional technologies.

224

Oxygen and Nitrogen Contamination During Arc Welding  

E-Print Network [OSTI]

) ) : ,- Oxygen and Nitrogen Contamination During Arc Welding T. W. Eagar Department of }faterials, shielded metal arc, self-shielded metal arc, and submerged arc welding are reviewed. Calcu- lations upon heating is also discussed. Introduction Oxygen and nitrogen ~ontamination of weld metal

Eagar, Thomas W.

225

Modelling Hydrogen Reduction and Hydrodeoxygenation of Oxygenates  

SciTech Connect (OSTI)

Based on Density Functional Theory (DFT) simulations, we have studied the reduction of nickel oxide and biomass derived oxygenates (catechol, guaiacol, etc.) in hydrogen. Both the kinetic barrier and thermodynamic favorability are calculated with respect to the modeled reaction pathways. In early-stage reduction of the NiO(100) surface by hydrogen, the pull-off of the surface oxygen atom and simultaneous activation of the nearby Ni atoms coordinately dissociate the hydrogen molecules so that a water molecule can be formed, leaving an oxygen vacancy on the surface. In hydrogen reaction with oxygenates catalyzed by transition metals, hydrogenation of the aromatic carbon ring normally dominates. However, selective deoxygenation is of particular interest for practical application such as biofuel conversion. Our modeling shows that doping of the transition metal catalysts can change the orientation of oxygenates adsorbed on metal surfaces. The correlation between the selectivity of reaction and the orientation of adsorption are discussed.

Zhao, Y.; Xu, Q.; Cheah, S.

2013-01-01T23:59:59.000Z

226

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes and Task 4 - Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the first year. OTM material characterization was completed. 100% of commercial target flux was demonstrated with OTM disks. The design and assembly of Praxair's single tube high-pressure test facility was completed. The production of oxygen with a purity of better than 99.5% was demonstrated. Coal combustion testing was conducted at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. The injector for oxygen enhanced coal based reburning was conducted at Praxair. Combustion modeling with Keystone boiler was completed. Pilot-scale combustion test furnace simulations continued this quarter.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2001-04-01T23:59:59.000Z

227

Oxygen ion-conducting dense ceramic  

DOE Patents [OSTI]

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1997-01-01T23:59:59.000Z

228

Oxygen ion-conducting dense ceramic  

DOE Patents [OSTI]

Preparation, structure, and properties of mixed metal oxide compositions containing at least strontium, cobalt, iron and oxygen are described. The crystalline mixed metal oxide compositions of this invention have, for example, structure represented by Sr.sub..alpha. (Fe.sub.1-x Co.sub.x).sub..alpha.+.beta. O.sub..delta. where x is a number in a range from 0.01 to about 1, .alpha. is a number in a range from about 1 to about 4, .beta. is a number in a range upward from 0 to about 20, and .delta. is a number which renders the compound charge neutral, and wherein the composition has a non-perovskite structure. Use of the mixed metal oxides in dense ceramic membranes which exhibit oxygen ionic conductivity and selective oxygen separation, are described as well as their use in separation of oxygen from an oxygen-containing gaseous mixture.

Balachandran, Uthamalingam (Hinsdale, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Morissette, Sherry L. (Las Cruces, NM); Pei, Shiyou (Naperville, IL)

1996-01-01T23:59:59.000Z

229

Selective photooxidation of hydrocarbons in zeolites by oxygen  

DOE Patents [OSTI]

A selective photooxidation process for the conversion of hydrocarbon molecules to partially oxygenated derivatives, which comprises the steps of adsorbing a hydrocarbon and oxygen onto a dehydrated zeolite support matrix to form a hydrocarbon-oxygen contact pair, and subsequently exposing the hydrocarbon-oxygen contact pair to visible light, thereby forming a partially oxygenated derivative.

Frei, Heinz (Berkeley, CA); Blatter, Fritz (Berkeley, CA); Sun, Hai (Berkeley, CA)

1998-01-01T23:59:59.000Z

230

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

Conventional wisdom says adding oxygen to a combustion system enhances product throughput, system efficiency, and, unless special care is taken, increases NOx emissions. This increase in NOx emissions is typically due to elevated flame temperatures associated with oxygen use leading to added thermal NOx formation. Innovative low flame temperature oxy-fuel burner designs have been developed and commercialized to minimize both thermal and fuel NOx formation for gas and oil fired industrial furnaces. To be effective these systems require close to 100% oxy-fuel combustion and the cost of oxygen is paid for by fuel savings and other benefits. For applications to coal-fired utility boilers at the current cost of oxygen, however, it is not economically feasible to use 100% oxygen for NOx control. In spite of this conventional wisdom, Praxair and its team members, in partnership with the US Department of Energy National Energy Technology Laboratory, have developed a novel way to use oxygen to reduce NOx emissions without resorting to complete oxy-fuel conversion. In this concept oxygen is added to the combustion process to enhance operation of a low NOx combustion system. Only a small fraction of combustion air is replaced with oxygen in the process. By selectively adding oxygen to a low NOx combustion system it is possible to reduce NOx emissions from nitrogen-containing fuels, including pulverized coal, while improving combustion characteristics such as unburned carbon. A combination of experimental work and modeling was used to define how well oxygen enhanced combustion could reduce NOx emissions. The results of this work suggest that small amounts of oxygen replacement can reduce the NOx emissions as compared to the air-alone system. NOx emissions significantly below 0.15 lbs/MMBtu were measured. Oxygen addition was also shown to reduce carbon in ash. Comparison of the costs of using oxygen for NOx control against competing technologies, such as SCR, show that this concept offers substantial savings over SCR and is an economically attractive alternative to purchasing NOx credits or installing other conventional technologies. In conjunction with the development of oxygen based low NOx technology, Praxair also worked on developing the economically enhancing oxygen transport membrane (OTM) technology which is ideally suited for integration with combustion systems to achieve further significant cost reductions and efficiency improvements. This OTM oxygen production technology is based on ceramic mixed conductor membranes that operate at high temperatures and can be operated in a pressure driven mode to separate oxygen with infinite selectivity and high flux. An OTM material was selected and characterized. OTM elements were successfully fabricated. A single tube OTM reactor was designed and assembled. Testing of dense OTM elements was conducted with promising oxygen flux results of 100% of target flux. However, based on current natural gas prices and stand-alone air separation processes, ceramic membranes do not offer an economic advantage for this application. Under a different DOE-NETL Cooperative Agreement, Praxair is continuing to develop oxygen transport membranes for the Advanced Boiler where the economics appear more attractive.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2004-04-01T23:59:59.000Z

231

Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen minimum zone (7001100 m)  

E-Print Network [OSTI]

Oxygen and organic matter thresholds for benthic faunal activity on the Pakistan margin oxygen increased animal activity associated with increasing bottom-water oxygen concentration. We examined faunal community responses to oxygen and organic matter gradients across the lower oxygen minimum zone (OMZ

Levin, Lisa

232

Oxygen Discharge and Post-Discharge Kinetics Experiments and Modeling for the Electric Oxygen-Iodine Laser System  

E-Print Network [OSTI]

Oxygen Discharge and Post-Discharge Kinetics Experiments and Modeling for the Electric Oxygen a low-pressure oxygen/helium/nitric oxide discharge. In the electric discharge oxygen-iodine laser (ElectricOIL) the discharge production of atomic oxygen, ozone, and other excited species adds levels

Carroll, David L.

233

A novel reactive processing technique: using telechelic polymers to reactively compatibilize polymer blends  

SciTech Connect (OSTI)

Difunctional reactive polymers, telechelics, were used to reactively form multiblock copolymers in situ when melt-blended with a blend of polystyrene and polyisoprene. To quantify the ability of the copolymer to compatibilize the blends, the time evolution of the domain size upon annealing was analyzed by SEM. It was found that the most effective parameter to quantify the ability of the copolymer to inhibit droplet coalescence is Kreltstable, the relative coarsening constant multiplied by the stabilization time. These results indicate that intermediate-molecular-weight telechelic pairs of both highly reactive Anhydride-PS-Anhydride/NH2-PI-NH2 and slower reacting Epoxy-PS-Epoxy/COOH-PI-COOH both effectively suppress coalescence, with the optimal molecular weight being slightly above the critical molecular weight of the homopolymer,Mc. The effects of telechelic loading were also investigated, where the optimal loading concentration for this system was 0.5 wt %, as higher concentrations exhibited a plasticizing effect due to the presence of unreacted low-molecular-weight telechelics present in the blend. A determination of the interfacial coverage of the copolymer shows that a conversion of 1.5-3.0% was required for 20% surface coverage at 5.0 wt % telechelic loading, indicating a large excess of telechelics in this system. At the optimal loading level of 0.5 wt %, a conversion of 15% was required for 20% surface coverage. The results of these experiments provide a clear understanding of the role of telechelic loading and molecular weight on its ability to reactively form interfacial modifiers in phase-separated polymer blends and provide guidelines for the development of similar reactive processing schemes that can use telechelic polymers to reactively compatibilize a broad range of polymer blends.

Ashcraft, Earl C [ORNL; Ji, Haining [ORNL; Mays, Jimmy [ORNL; Dadmun, Mark D [ORNL

2009-01-01T23:59:59.000Z

234

Characterization of an oxygen suspension used for intravenous infusion  

E-Print Network [OSTI]

Oxygenated fluid mixture can be used to treat critically ill patients suffering from asphyxia, lung injury, and cardiac arrest. This oxygenated fluid delivered intravenously re-oxygenates the bloodstream, allowing for more ...

Peña, Kristen Helen

2012-01-01T23:59:59.000Z

235

Blood oxygen transport and depletion : the key of consummate divers  

E-Print Network [OSTI]

and Dill, D. B. (1935). Oxygen dissociation curves of birdE. (1964). A venous blood oxygen reservoir in the divingand Torrance, J. D. (1977). Oxygen-Affinity of Avian Blood.

Meir, Jessica Ulrika

2009-01-01T23:59:59.000Z

236

Imaging Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies on TiO2(110). Imaging Intrinsic Diffusion of Bridge-Bonded Oxygen Vacancies on TiO2(110). Abstract: Since oxygen atom...

237

Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF  

E-Print Network [OSTI]

neural repair. Keywords Oxygen tension . Neurite extension .respective physiological oxygen microenvironments (Chen etet al. 2008). For example, oxygen tension differentially

Genetos, Damian C.; Cheung, Whitney K.; Decaris, Martin L.; Leach, J. Kent

2010-01-01T23:59:59.000Z

238

Long-term oxygen sensor implantation in the porcine subcutaneous environment  

E-Print Network [OSTI]

Membrane-­?Covered  Oxygen  Electrode.   Analytical  Microvascular  and  tissue  oxygen   distribution.  vitro  stability  of  an  oxygen  sensor.   Anal  Chem,  

Kumosa, Lucas Stefan

2011-01-01T23:59:59.000Z

239

On the maximum value of the cosmic abundance of oxygen and the oxygen yield  

E-Print Network [OSTI]

We search for the maximum oxygen abundance in spiral galaxies. Because this maximum value is expected to occur in the centers of the most luminous galaxies, we have constructed the luminosity - central metallicity diagram for spiral galaxies, based on a large compilation of existing data on oxygen abundances of HII regions in spiral galaxies. We found that this diagram shows a plateau at high luminosities (-22.3 oxygen abundance 12+log(O/H) ~ 8.87. This provides strong evidence that the oxygen abundance in the centers of the most luminous metal-rich galaxies reaches the maximum attainable value of oxygen abundance. Since some fraction of the oxygen (about 0.08 dex) is expected to be locked into dust grains, the maximum value of the true gas+dust oxygen abundance in spiral galaxies is 12+log(O/H) ~ 8.95. This value is a factor of ~ 2 higher than the recently estimated solar value. Based on the derived maximum oxygen abundance in galaxies, we found the oxygen yield to be about 0.0035, depending on the fraction of oxygen incorporated into dust grains.

L. S. Pilyugin; T. X. Thuan; J. M. Vilchez

2007-01-11T23:59:59.000Z

240

IAEA sodium void reactivity benchmark calculations  

SciTech Connect (OSTI)

In this paper, the IAEA-1 992 ``Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core`` problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.

Hill, R.N.; Finck, P.J.

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

IAEA sodium void reactivity benchmark calculations  

SciTech Connect (OSTI)

In this paper, the IAEA-1 992 Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated.

Hill, R.N.; Finck, P.J.

1992-01-01T23:59:59.000Z

242

Theoretical and Experimental Evaluation of Chemical Reactivity  

E-Print Network [OSTI]

released and the rate of energy released for a specific reactive chemical. 2.1 DSC DSC is a popular screening tool (safe and fast) and can provide an overall indication of exothermic activity of the chemical being tested. In a DSC, a sample and a... endothermic or exothermic reaction. When the rate of heat generation in the sample exceeds a particular value, the heat supply to the sample is cut off and this additional heat gain is attributed to exothermic activity within the sample.17 From the DSC...

Wang, Qingsheng

2011-10-21T23:59:59.000Z

243

Preparation of reactive beta-dicalcium silicate  

DOE Patents [OSTI]

This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

Shen, Ming-Shing (Laramie, WY, NJ); Chen, James M. (Rahway, NJ); Yang, Ralph T. (Amherst, NY)

1982-01-01T23:59:59.000Z

244

Preparation of reactive beta-dicalcium silicate  

DOE Patents [OSTI]

This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.

Shen, M.S.; Chen, J.M.; Yang, R.T.

1980-02-28T23:59:59.000Z

245

Tetraoxygen on Reduced Ti02(110): Oxygen Adsorption and Reactions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tetraoxygen on Reduced Ti02(110): Oxygen Adsorption and Reactions with Oxygen Vacancies. Tetraoxygen on Reduced Ti02(110): Oxygen Adsorption and Reactions with Oxygen Vacancies....

246

Density Functional Theory Study of Oxygen Reduction Activity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes. Density Functional Theory Study of Oxygen Reduction Activity on Ultrathin Platinum Nanotubes. Abstract: The...

247

Selective reduction of NOx in oxygen rich environments with plasma...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reduction of NOx in oxygen rich environments with plasma-assisted catalysis: Catalyst development and mechanistic studies Selective reduction of NOx in oxygen rich environments...

248

Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium Oxygen Diffusion (OD) Dramatically Improves Wear-Resistance of Titanium 2007 Diesel Engine-Efficiency &...

249

Oxygen detected in atmosphere of Saturn's moon Dione  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of...

250

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

251

Effects of Oxygen-Containing Functional Groups on Supercapacitor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen-Containing Functional Groups on Supercapacitor Performance. Effects of Oxygen-Containing Functional Groups on Supercapacitor Performance. Abstract: Molecular dynamics (MD)...

252

Testing Oxygen Reduction Reaction Activity with the Rotating...  

Broader source: Energy.gov (indexed) [DOE]

Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique Testing Oxygen Reduction Reaction Activity with the Rotating Disc Electrode Technique...

253

Isolation, Characterization of an Intermediate in an Oxygen Atom...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of an Intermediate in an Oxygen Atom-Transfer Reaction, and the Determination of the Bond Isolation, Characterization of an Intermediate in an Oxygen Atom-Transfer...

254

Fractionation of Oxygen Isotopes in Phosphate during its Interactions...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fractionation of Oxygen Isotopes in Phosphate during its Interactions with Iron Oxides. Fractionation of Oxygen Isotopes in Phosphate during its Interactions with Iron Oxides....

255

Direct Measurement of Oxygen Incorporation into Thin Film Oxides...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

256

Density Functional Study of the Structure, Stability and Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study of the Structure, Stability and Oxygen Reduction Activity of Ultrathin Platinum Nanowires. Density Functional Study of the Structure, Stability and Oxygen Reduction Activity...

257

Electron-Stimulated Production of Molecular Oxygen in Amorphous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water. Electron-Stimulated Production of Molecular Oxygen in Amorphous Solid Water. Abstract: The low-energy, electron-stimulated production of molecular oxygen from pure amorphous...

258

Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis . Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis . Abstract: The research described in...

259

Advantages of Oxygenates Fuels over Gasoline in Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

260

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the thirteenth quarter, April-June 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with project objectives. REI's model was modified to evaluate mixing issues in the upper furnace of a staged unit. Analysis of the results, and their potential application to this unit is ongoing. Economic evaluation continues to confirm the advantage of oxygen-enhanced combustion. A contract for a commercial demonstration has been signed with the Northeast Generation Services Company to supply oxygen and license the oxygen enhanced low NOx combustor technology for use at the 147-megawatt coal fired Mt. Tom Station in Holyoke, MA. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2003-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Design optimization of oxygenated fluid pump  

E-Print Network [OSTI]

In medical emergencies, an oxygen-starved brain quickly suffers irreparable damage. In many cases, patients who stop breathing can be resuscitated but suffer from brain damage. Dr. John Kheir from Boston Children's Hospital ...

Piazzarolo, Bruno Aiala

2012-01-01T23:59:59.000Z

262

Electron-impact excitation of neutral oxygen  

E-Print Network [OSTI]

Aims: To calculate transition rates from ground and excited states in neutral oxygen atoms due to electron collisions for non-LTE modelling of oxygen in late-type stellar atmospheres, thus enabling reliable interpretation of oxygen lines in stellar spectra. Methods: A 38-state R-matrix calculation in LS-coupling has been performed. Basis orbitals from the literature (Thomas et al.) are adopted, and a large set of configurations are included to obtain good representations of the target wavefunctions. Rate coefficients are calculated by averaging over a Maxwellian velocity distribution. Results: Estimates for the cross sections and rate coefficients are presented for transitions between the seven lowest LS states of neutral oxygen. The cross sections for excitation from the ground state compare well with existing experimental and recent theoretical results.

P. S. Barklem

2006-09-25T23:59:59.000Z

263

Injectable polymer for in vivo oxygen sensing  

E-Print Network [OSTI]

This thesis documents the synthesis and characterization of an elastomeric polymer that is oxygen sensitive and can be interrogated using Magnetic Resonance Imaging (MRI) or Magnetic Resonance (MR) technology to report the ...

Imaad, Syed M. (Syed Muhammad)

2013-01-01T23:59:59.000Z

264

Oxygen Enriched Combustion System Performance Study  

E-Print Network [OSTI]

}ched combustlon systems are technically, envlronmentally and economically feasible and offer significant energy savings and/or productivity improvement, and then to verify the performance of selected systems in research furnaces. Tests of several commercial... for 35 - 100 percent oxygen. The absolute levels of the NO x emissions also depended on the furnace temperature. INTRODUCTION Oxygen enriched combustion has been found to have significant energy saving potential in industrial furnace applications...

Chen, S. L.; Kwan, Y.; Abele, A. R.; Silver, L. S.; Kobayashi, H.

265

Section 10: Turbulence and reactive flows 1 Section 10: Turbulence and reactive flows  

E-Print Network [OSTI]

premixed combustion is recently a theme of interest in gas turbines and other industrial applications flames #12;2 Section 10: Turbulence and reactive flows for gas turbine application. In: International Gas combustion LES in- cluding thickened flame model A. Hosseinzadeh, A. Sadiki, J. Janicka (TU Darmstadt) Lean

Kohlenbach, Ulrich

266

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program in the seventh quarter October-December 2001 in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. Computational fluid dynamic (CFD) modeling of oxygen injection strategies was performed during the quarter resulting in data that suggest the oxygen injection reduces NOx emissions while reducing LOI. Pilot-scale testing activities concluded at the University of Utah this quarter. Testing demonstrated that some experimental conditions can lead to NOx emissions well below the 0.15 lb/MMBtu limit. Evaluation of alternative OTM materials with improved mechanical properties continued this quarter. Powder procedure optimization continued and sintering trial began on an element with a new design. Several OTM elements were tested in Praxair's single tube high-pressure test facility under various conditions. A modified PSO1d element demonstrated stable oxygen product purity of >98% and oxygen flux of 68% of target. Updated test results and projected economic performance have been reviewed with the Utility Industrial Advisors. The economic comparison remains very favorable for O{sub 2} enhanced combustion. Discussions regarding possible Beta sites have been held with three other utilities in addition to the industrial advisors. Proposals will be prepared after the completion of full scale burner testing. Beta test cost estimating work has been initiated.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-01-01T23:59:59.000Z

267

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the fourth quarter January-March 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. This report will also recap the results of the past year. The program is proceeding in accordance with the objectives for the second year. The first round of pilot scale testing with 3 bituminous coals was completed at the University of Utah. Full-scale testing equipment is in place and experiments are underway. Coal combustion lab-scale testing was completed at the University of Arizona. Modest oxygen enhancement resulted in NOx emissions reduction. Combustion modeling activities continued with pilot-scale combustion test furnace simulations. 75% of target oxygen flux was demonstrated with small PSO1 tube in Praxair's single tube high-pressure test facility. The production of oxygen with a purity of better than 99.999% was demonstrated. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host sites have been identified.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-04-01T23:59:59.000Z

268

Magnetism in Lithium–Oxygen Discharge Product  

SciTech Connect (OSTI)

Nonaqueous lithium–oxygen batteries have a much superior theoretical gravimetric energy density compared to conventional lithium-ion batteries, and thus could render long-range electric vehicles a reality. A molecular-level understanding of the reversible formation of lithium peroxide in these batteries, the properties of major/minor discharge products, and the stability of the nonaqueous electrolytes is required to achieve successful lithium–oxygen batteries. We demonstrate that the major discharge product formed in the lithium–oxygen cell, lithium peroxide, exhibits a magnetic moment. These results are based on dc-magnetization measurements and a lithium– oxygen cell containing an ether-based electrolyte. The results are unexpected because bulk lithium peroxide has a significant band gap. Density functional calculations predict that superoxide- type surface oxygen groups with unpaired electrons exist on stoichiometric lithium peroxide crystalline surfaces and on nanoparticle surfaces; these computational results are consistent with the magnetic measurement of the discharged lithium peroxide product as well as EPR measurements on commercial lithium peroxide. The presence of superoxide-type surface oxygen groups with spin can play a role in the reversible formation and decomposition of lithium peroxide as well as the reversible formation and decomposition of electrolyte molecules.

Lu, Jun; Jung, Hun-Ji; Lau, Kah Chun; Zhang, Zhengcheng; Schlueter, John A.; Du, Peng; Assary, Rajeev S.; Greeley, Jeffrey P.; Ferguson, Glen A.; Wang, Hsien-Hau; Hassoun, Jusef; Iddir, Hakim; Zhou, Jigang; Zuin, Lucia; Hu, Yongfeng; Sun, Yang-Kook; Scrosati, Bruno; Curtiss, Larry A.; Amine, Khalil

2013-05-13T23:59:59.000Z

269

Atomic Oxygen in the Comae of Comets  

E-Print Network [OSTI]

We report on the detection of atomic oxygen lines in the spectra of 8 comets. These forbidden lines are a result of the photodissociation of the parent oxygen-bearing species directly into an excited state. We used high resolution spectra obtained at the McDonald Observatory 2.7m telescope to resolve the cometary oxygen lines from the telluric oxygen lines and from other cometary emissions. We find that the relative intensities of the two red lines (6300.304 and 6363.776A) are consistent with theory. The green line (5577.339A) has an intensity which is about 10% of the sum of the intensities of the two red lines. We show that collisional quenching may be important in the inner coma. If we assume the relative excitation rates of potential parents which have appeared in the literature, then H2O would be the parent of the cometary green oxygen line. However, those rates have been questioned. We measured the width of the three oxygen lines and find that the green line is wider than either of the two red lines. The finding of a wider line could imply a different parent for the green and red lines. However, the constancy of the green to red line flux ratio suggests the parent is the same for these lines but that the exciting photons have different energies.

Anita L. Cochran

2008-07-03T23:59:59.000Z

270

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

Increased environmental regulations will require utility boilers to reduce NO{sub x} emissions to less than 0.15lb/MMBtu in the near term. Conventional technologies such as Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are unable to achieve these lowered emission levels without substantially higher costs and major operating problems. Oxygen enhanced combustion is a novel technology that allows utilities to meet the NO{sub x} emission requirements without the operational problems that occur with SCR and SNCR. Furthermore, oxygen enhanced combustion can achieve these NO{sub x} limits at costs lower than conventional technologies. The objective of this program is to demonstrate the use of oxygen enhanced combustion as a technical and economical method of meeting the EPA State Implementation Plan for NO{sub x} reduction to less than 0.15lb/MMBtu for a wide range of boilers and coal. The oxygen enhanced coal combustion program (Task 1) focused this quarter on the specific objective of exploration of the impact of oxygen enrichment on NO{sub x} formation utilizing small-scale combustors for parametric testing. Research efforts toward understanding any limitations to the applicability of the technology to different burners and fuels such as different types of coal are underway. The objective of the oxygen transport membrane (OTM) materials development program (Task 2.1) is to ascertain a suitable material composition that can be fabricated into dense tubes capable of producing the target oxygen flux under the operating conditions. This requires that the material have sufficient oxygen permeation resulting from high oxygen ion conductivity, high electronic conductivity and high oxygen surface exchange rate. The OTM element development program (Task 2.2) objective is to develop, fabricate and characterize OTM elements for laboratory and pilot reactors utilizing quality control parameters to ensure reproducibility and superior performance. A specific goal is to achieve a material that will sinter to desired density without compromising other variables such as reaction to binder systems or phase purity. Oxygen-enhanced combustion requires a facility which is capable of supplying high purity oxygen (>99.5%) at low costs. This goal can be achieved through the thermal integration of high temperature air separation with ceramic OTM. The objective of the OTM process development program (Task 2.3) is to demonstrate successfully the program objectives on a lab-scale single OTM tube reactor under process conditions comparable to those of an optimum large-scale oxygen facility. This quarterly technical progress report will summarize work accomplished for the Program through the first quarter April--June 2000 in the following task areas: Task 1 Oxygen Enhanced Coal Combustion; Task 2 Oxygen Transport Membranes; and Task 4 Program Management.

Lawrence E. Bool; Jack C. Chen; David R. Thompson

2000-07-01T23:59:59.000Z

271

Physical properties of erbium implanted tungsten oxide filmsdeposited by reactive dual magnetron sputtering  

SciTech Connect (OSTI)

Amorphous and partially crystalline WO3 thin films wereprepared by reactive dual magnetron sputtering and successively implantedby erbium ions with a fluence in the range from 7.7 x 1014 to 5 x 1015ions/cm2. The electrical and optical properties were studied as afunction of the film deposition parameters and the ion fluence. Ionimplantation caused a strong decrease of the resistivity, a moderatedecrease of the index of refraction and a moderate increase of theextinction coefficient in the visible and near infrared, while theoptical band gap remained almost unchanged. These effects could belargely ascribed to ion-induced oxygen deficiency. When annealed in air,the already low resistivities of the implanted samples decreased furtherup to 70oC, whereas oxidation, and hence a strong increase of theresistivity, was observed at higher annealing temperatures.

Mohamed, Sodky H.; Anders, Andre

2006-11-08T23:59:59.000Z

272

Oxygen generator for medical applications (USIC)  

SciTech Connect (OSTI)

The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible using a Membrane-PSA system.

Staiger, C. L.

2012-03-01T23:59:59.000Z

273

Advancing Reactive Tracer Methods for Measuring Thermal Evolution...  

Open Energy Info (EERE)

Advancing Reactive Tracer Methods for Measuring Thermal Evolution in CO2- and Water-Based Geothermal Reservoirs Geothermal Lab Call Project Jump to: navigation, search Last...

274

Reactive Dehydration technology for Production of Fuels and Chemicals...  

Broader source: Energy.gov (indexed) [DOE]

Catalytic and Reactive Distillation) for compact, inexpensive production of biomass-based chemicals from complex aqueous mixtures. SeparationPurification of Biomass...

275

Comparison of Conventional Diesel and Reactivity Controlled Compressio...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Advanced Diesel Engine Combustion Strategies Effect of Compression Ratio and Piston Geometry on RCCI load limit High Efficiency Fuel Reactivity Controlled Compression...

276

Chemically Reactive Working Fluids for the Capture and Transport...  

Broader source: Energy.gov (indexed) [DOE]

Optical Waveguide Coupler Transformers for High-Power Solar Enegy Collection and Transmission Chemically Reactive Working Fluids Low-Cost Light Weigh Thin Film Solar Concentrators...

277

Chemical Analysis of Complex Organic Mixtures Using Reactive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Spectrometry. Abstract: Reactive nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was utilized for the analysis of...

278

Airborne measurement of OH reactivity during INTEX-B  

E-Print Network [OSTI]

plus OH sign), reactiv- propane ing different gases gases atisoprene (plus sign), propane (star) and propene (triangle).NMHC includes ethane, ethene, propane, propene, i-butane, n-

2009-01-01T23:59:59.000Z

279

Multiphase flow and multicomponent reactive transport model of the ventilation experiment in Opalinus clay  

SciTech Connect (OSTI)

During the construction and operational phases of a high-level radioactive waste (HLW) repository constructed in a clay formation, ventilation of underground drifts will cause desaturation and oxidation of the rock. The Ventilation Experiment (VE) was performed in a 1.3 m diameter unlined horizontal microtunnel on Opalinus clay at Mont Terri underground research laboratory in Switzerland to evaluate the impact of desaturation on rock properties. A multiphase flow and reactive transport model of VE is presented here. The model accounts for liquid, vapor and air flow, evaporation/condensation and multicomponent reactive solute transport with kinetic dissolution of pyrite and siderite and local-equilibrium dissolution/precipitation of calcite, ferrihydrite, dolomite, gypsum and quartz. Model results reproduce measured vapor flow, liquid pressure and hydrochemical data and capture the trends of measured relative humidities, although such data are slightly overestimated near the rock interface due to uncertainties in the turbulence factor. Rock desaturation allows oxygen to diffuse into the rock and triggers pyrite oxidation, dissolution of calcite and siderite, precipitation of ferrihydrite, dolomite and gypsum and cation exchange. pH in the unsaturated rock varies from 7.8 to 8 and is buffered by calcite. Computed changes in the porosity and the permeability of Opalinus clay in the unsaturated zone caused by oxidation and mineral dissolution/precipitation are smaller than 5%. Therefore, rock properties are not expected to be affected significantly by ventilation of underground drifts during construction and operational phases of a HLW repository in clay.

Zheng, L.; Samper, J.; Montenegro, L.; Major, J.C.

2008-10-15T23:59:59.000Z

280

Dissecting Oxygenic Photosynthesis: The Evolution of the "Z"-Scheme  

E-Print Network [OSTI]

of the "period four oxygen clock" and the structure of the oxygen-evolving center. After a brief mention the maximum quantum yield, i.e., the number of oxygen molecules evolved per photon of light absorbed11CHAPTER Dissecting Oxygenic Photosynthesis: The Evolution of the "Z"-Scheme for Thylakoid

Govindjee

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Oxygen Toxicity Calculations by Erik C. Baker, P.E.  

E-Print Network [OSTI]

1 Oxygen Toxicity Calculations by Erik C. Baker, P.E. Management of exposure to oxygen toxicity myself using the good ole' FORTRAN programming language, I found that incorporating oxygen toxicity for others. Background Two oxygen toxicity parameters are typically "tracked" in technical diving

Read, Charles

282

Energetic neutral atoms at Mars 4. Imaging of planetary oxygen  

E-Print Network [OSTI]

Energetic neutral atoms at Mars 4. Imaging of planetary oxygen S. Barabash and M. Holmstro of the Martian oxygen exosphere/corona results in the production of planetary oxygen ions. The newborn ions start. The oxygen ions can then charge exchange with the neutral gases (H, H2, and O) of the Martian exosphere

Lukyanov, Alex

283

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the eleventh quarter, October-December 2002, in the following task areas: Task 1 - Oxygen Enhanced Combustion, Task 2 - Oxygen Transport Membranes, Task 3 - Economic Evaluation and Task 4 - Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah were aimed at confirming the importance of oxygen injection strategy for different types of burners. CFD modeling at REI was used to better understand the potential for increased corrosion under oxygen enhanced combustion conditions. Data from a full-scale demonstration test in Springfield, MO were analyzed. OTM element development continued with preliminary investigation of an alternative method of fabrication of PSO1d elements. OTM process development continued with long-term testing of a PSO1d element. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. A first commercial proposal has been submitted. Economic analysis of a beta site test performance was conducted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2003-02-01T23:59:59.000Z

284

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the twelfth quarter, January-March 2003, in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Pilot scale experiments conducted at the University of Utah explored both the effectiveness of oxygen addition and the best way to add oxygen with a scaled version of Riley Power's newest low NOx burner design. CFD modeling was done to compare the REI's modeling results for James River Unit 3 with the NOx and LOI results obtained during the demonstration program at that facility. Investigation of an alternative method of fabrication of PSO1d elements was conducted. OTM process development work has concluded with the completion of a long-term test of a PSO1d element Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Proposals have been submitted for two additional beta test sites. Commercial proposals have been submitted. Economic analysis of a beta site test performance was conducted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2003-04-01T23:59:59.000Z

285

Oxygenates du`jour...MTBE? Ethanol? ETBE?  

SciTech Connect (OSTI)

There are many different liquids that contain oxygen which could be blended into gasoline. The ones that have been tried and make the most sense are in the alcohol (R-OH) and ether (R-O-R) chemical family. The alcohols considered are: methanol (MeOH), ethanol (EtOH), tertiary butyl alcohol (TBA). The ethers are: methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary amyl ethyl ether (TAEE), di-isopropyl ether (DIPE). Of the eight oxygenates listed above, the author describes the five that are still waiting for widespread marketing acceptance (methanol, TBA, TAME, TAEE, and DIPE). He then discusses the two most widely used oxygenates in the US, MTBE and ethanol, along with the up-and-coming ethanol ether, ETBE. Selected physical properties for all of these oxygenates can be found in Table 2 at the end of this paper. A figure shows a simplified alcohol/ether production flow chart for the oxygenates listed above and how they are interrelated.

Wolfe, R.

1995-12-31T23:59:59.000Z

286

Oxygen abundance of open cluster dwarfs  

E-Print Network [OSTI]

We present oxygen abundances of dwarfs in the young open cluster IC 4665 deduced from the OI $\\lambda$7774 triplet lines and of dwarfs in the open cluster Pleiades derived from the [OI] $\\lambda$6300 forbidden line. Stellar parameters and oxygen abundances were derived using the spectroscopic synthesis tool SME (Spectroscopy Made Easy). We find a dramatic increase in the upper boundary of the OI triplet abundances with decreasing temperature in the dwarfs of IC 4665, consistent with the trend found by Schuler et al. in the open clusters Pleiades and M 34, and to a less extent in the cool dwarfs of Hyades (Schuler et al. 2006a) and UMa (King & Schuler 2005). By contrast, oxygen abundances derived from the [OI] $\\lambda$6300 forbidden line for stars in Pleiades and Hyades (Schuler et al. 2006b) are constant within the errors. Possible mechanisms that may lead a varying oxygen triplet line abundance are examined, including systematic errors in the stellar parameter determinations, the NLTE effects, surface activities and granulation. The age-related effects stellar surface activities (especially the chromospheric activities) are suggested by our analysis to blame for the large spreads of oxygen triplet line abundances.

Z. -X. Shen; X. -W. Liu; H. -W. Zhang; B. Jones; D. N. C. Lin

2007-03-30T23:59:59.000Z

287

Oxygen-Reducing Biocathodes Operating with Passive Oxygen Transfer in Microbial Fuel Cells  

E-Print Network [OSTI]

Oxygen-Reducing Biocathodes Operating with Passive Oxygen Transfer in Microbial Fuel Cells Xue Xia, Justin C. Tokash, Fang Zhang, Peng Liang, Xia Huang,*, and Bruce E. Logan*,, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P

288

Serotonin 5-HT2B Receptor Blockade Prevents Reactive Oxygen SpeciesInduced Cardiac Hypertrophy in Mice  

E-Print Network [OSTI]

hypertrophy, ie, angiotensin II and isoproterenol infusions in mice. Angiotensin II infusion for 14 days215505) prevented the increase in cardiac superoxide generation and hypertrophy. Similarly, infusion

Boyer, Edmond

289

Comparison of on-line and off-line methods to quantify reactive oxygen species (ROS) in atmospheric aerosols  

E-Print Network [OSTI]

  a   wide   range   of   inorganic   and   organic  72   compounds   such   as   transition  metals,   hydrogen  peroxide   (H2O2),   radicals   (e.g.,  73   OH??,  O2???),  and  organic  (hydro...   Solutions  of  known  H2O2 concentration (0.8 ml) were combined with DCFH (1 ml, 278   10 µM, 20 % PBS) and HRP solution (0.2 ml, 5 unit ml-­?1)   in   a   disposable   UV-­?279   10   cuvette   (Brand,   semi-­?micro,   Sigma...

Fuller, S. J.; Wragg, F. P. H.; Nutter, J.; Kalberer, M.

2014-04-08T23:59:59.000Z

290

Effects of oxygen reduction on nickel deposition from unbuffered aqueous solutions. 2: Characterization of the electrode interface in electrodeposition  

SciTech Connect (OSTI)

Contrary to the reactive electrodeposition of cobalt, porous nickel is not easily produced by electrodeposition from neutral aqueous solutions in the presence of dissolved oxygen. X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) examination of the electrode surface detected the presence of a highly stable metal hydroxide layer of the same characteristics as precipitated Ni(OH){sub 2}. The hydroxide layer inhibits the nucleation of nickel nuclei and increases the irreversibility in electrodeposition. For reactive deposition to result in a porous deposit, the hydroxide layer should have only moderate stability so that it can be continuously removed and reinstated by interfacial chemical and electrochemical reactions. The surface Ni(OH){sub 2} formed in neutral solutions lacks the reactivity for such dynamism. Nonetheless, the stability of surface Ni(OH){sub 2} could be lowered by increasing the acidity of the deposition medium. Careful pH control seems to be a requirement for nickel reactive electrodeposition to produce porous metal deposits.

Cui, C.Q.; Lee, J.Y.; Lin, J.; Tan, K.L. [National Univ. of Singapore (Singapore)

1995-04-01T23:59:59.000Z

291

Completing the complex Poynting theorem: Conservation of reactive energy in reactive time  

E-Print Network [OSTI]

The complex Poynting theorem is extended canonically to a time-scale domain $(t, s)$ by replacing the phasors of time-harmonic fields by the analytic signals $X(r, t+is)$ of fields $X(r,t)$ with general time dependence. The imaginary time $s>0$ is shown to play the role of a time resolution scale, and the extended Poynting theorem splits into two conservation laws: its real part gives the conservation in $t$ of the scale-averaged active energy at fixed $s$, and its imaginary part gives the conservation in $s$ of the scale-averaged reactive energy at fixed $t$. At coarse scales (large $s$, slow time), where the system reduces to the circuit level, this may have applications to the theory of electric power transmission and conditioning. At fine scales (small $s$, fast time) it describes reactive energy dynamics in radiating systems.

Gerald Kaiser

2014-12-11T23:59:59.000Z

292

Oxygen: From Environment to Genes. The periodic occurrence of oxygen minima can powerfully influence organisms living in near  

E-Print Network [OSTI]

Oxygen: From Environment to Genes. The periodic occurrence of oxygen minima can powerfully to the winter of 2014. Their scholarly work is presented in this collection. #12;1 Oxygen: From Environment", 2013, 2014 Table of contents Page 2. Laura Lilly - Low-oxygen formation along the California current. 6

293

Interaction of light with the ZnO surface: Photon induced oxygen "breathing," oxygen vacancies, persistent photoconductivity,  

E-Print Network [OSTI]

Interaction of light with the ZnO surface: Photon induced oxygen "breathing," oxygen vacancies donation of oxygen vacancies. Our findings suggest that the observed decomposition of the ZnO lattice may. The formation of oxygen-vacancy rich surface is suggested to induce surface delta doping, causing accumulation

Shalish, Ilan

294

The Specification and Execution of Heterogeneous Synchronous Reactive Systems  

E-Print Network [OSTI]

The Specification and Execution of Heterogeneous Synchronous Reactive Systems by Stephen Anthony in Engineering---Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY of Heterogeneous Synchronous Reactive Systems Copyright ã 1997 by Stephen Anthony Edwards #12; Abstract

295

A Modified Reactive Control Framework for Cooperative Mobile Robots  

E-Print Network [OSTI]

A Modified Reactive Control Framework for Cooperative Mobile Robots J. Salido a , J.M. Dolan a , J Dept. of Electrical & Computer Engineering, Carnegie Mellon Univ. Pittsburgh, PA 15213­3890 USA. Purely reactive approaches such as that of Brooks are efficient, but lack a mechanism for global control

296

Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting  

E-Print Network [OSTI]

Reactive Sputtering of Bismuth Vanadate Photoanodes for Solar Water Splitting Le Chen,, Esther of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720 has remained relatively underexplored. Here, we report the synthesis of BiVO4 thin films by reactive

Javey, Ali

297

Reactive Rearrangement of Parts under Sensor Inaccuracy: Particle Filter Approach  

E-Print Network [OSTI]

Reactive Rearrangement of Parts under Sensor Inaccuracy: Particle Filter Approach Hal^uk Bayram, Electrical and Electronic Engineering Bogazici University, Bebek 34342 Istanbul Turkey Abstract-- The paper will be left undisturbed, the robot is required to employ a reactive strategy. A feedback-based event

298

Towards Interactive Timing Analysis for Designing Reactive Systems  

E-Print Network [OSTI]

Towards Interactive Timing Analysis for Designing Reactive Systems Insa Fuhrmann David Broman Steven Smyth Reinhard von Hanxleden Electrical Engineering and Computer Sciences University of California Interactive Timing Analysis for Designing Reactive Systems Insa Fuhrmann1 , David Broman2,3 , Steven Smyth1

299

Reactive ion etched substrates and methods of making and using  

DOE Patents [OSTI]

Disclosed herein are substrates comprising reactive ion etched surfaces and specific binding agents immobilized thereon. The substrates may be used in methods and devices for assaying or isolating analytes in a sample. Also disclosed are methods of making the reactive ion etched surfaces.

Rucker, Victor C. (San Francisco, CA); Shediac, Rene (Oakland, CA); Simmons, Blake A. (San Francisco, CA); Havenstrite, Karen L. (New York, NY)

2007-08-07T23:59:59.000Z

300

Tropospheric Reactive Nitrogen Speciation, Deposition, and Chemistry at Harvard Forest  

E-Print Network [OSTI]

and absolute contributions of nitric acid (HNO3) and NOx (nitric oxide (NO) + nitrogen dioxide (NO2)) to totalTropospheric Reactive Nitrogen Speciation, Deposition, and Chemistry at Harvard Forest A thesis. Steven C. Wofsy Cassandra Volpe Horii Tropospheric Reactive Nitrogen Speciation, Deposition

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

On-Road Emission Measurements of Reactive Nitrogen Compounds from  

E-Print Network [OSTI]

, nitric oxide (NO), nitrogen dioxide (NO2), ammonia (NH3), and nitrous acid (HONO) produced by internalOn-Road Emission Measurements of Reactive Nitrogen Compounds from Three California Cities G A R Y measurements of reactive nitrogen compounds from light-duty vehicles. At the San Jose and wLA sites

Denver, University of

302

ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS  

E-Print Network [OSTI]

ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS By JORGE ANTONIO JEREZ transport experiments; Dr. Barbara Williams and Jason Shira from University of Idaho for providing access-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS Abstract by Jorge Antonio Jerez Briones, Ph.D. Washington

Flury, Markus

303

Photochemical Escape of Oxygen from Early Mars  

E-Print Network [OSTI]

Photochemical escape is an important process for oxygen escape from present Mars. In this work, a 1-D Monte-Carlo Model is developed to calculate escape rates of energetic oxygen atoms produced from O2+ dissociative recombination reactions (DR) under 1, 3, 10, and 20 times present solar XUV fluxes. We found that although the overall DR rates increase with solar XUV flux almost linearly, oxygen escape rate increases from 1 to 10 times present solar XUV conditions but decreases when increasing solar XUV flux further. Analysis shows that atomic species in the upper thermosphere of early Mars increases more rapidly than O2+ when increasing XUV fluxes. While the latter is the source of energetic O atoms, the former increases the collision probability and thus decreases the escape probability of energetic O. Our results suggest that photochemical escape be a less important escape mechanism than previously thought for the loss of water and/or CO2 from early Mars.

Zhao, Jinjin

2015-01-01T23:59:59.000Z

304

Observations of nonmethane hydrocarbons and oxygenated volatile organic compounds at a rural site in the southeastern United States  

SciTech Connect (OSTI)

Measurements of an extensive range of nonmethane hydrocarbons (NMHCs) including alkanes, alkenes, and aromatics, and oxygenated volatile organic compounds (OVOCs) including alcohols, ketones, and aldehydes were conducted for several weeks during the summer of 1995 as part of the Southern Oxidants Study (SOS) at a rural experimental site (Youth, Inc.) 32 km southeast of Nashville, Tennessee, in the southeastern United States. These measurements were conducted to (1) determine the absolute magnitude and variability of oxygenated compounds found in a contemporary rural region; (2) assess the importance of the measured ambient levels of OVOCs on a photochemical reactivity basis relative to the more commonly determined NMHCs; and (3) to evaluate our ability to accurately measure oxygenates by the current techniques employed under a field study scenario. Several other physical (temperature, insolation, etc.), meteorological (wind velocity, wind direction, atmospheric structure, and boundary layer height), and chemical (criterion pollutants, NO{sub x}, SO{sub 2}, CO, O{sub 3}, etc.) parameters were measured concurrently with the NMHC and OVOC measurements. During the study period, OVOCs were consistently the dominant compounds present, and methanol and acetone had the highest mixing ratios. Although OVOCs made up the majority of the volatile organic compound component on a mass basis, a substantial sink for OH was isoprene and its immediate oxidation products, methacrolein and methyl vinyl ketone. In combination with CO and formaldehyde, these compounds comprised about 85{percent} of the observed OH reactivity at the site. Acetaldehyde and methanol were responsible for an additional 10{percent}, with the NMHCs and remaining OVOCs making up the final 5{percent} of the measured OH reactivity at the site. These observed patterns reinforce recent studies which find OVOCs to be an important component of the rural troposphere. {copyright} 1998 American Geophysical Union

Riemer, Daniel; Pos, Willer; Milne, Peter; Farmer, Charlesk; Zika, Rod [Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida (United States)] [Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, Colorado (United States)] [Atmospheric Sciences, Tennessee Valley Authority, Muscle Shoals, Alabama (United States)] Apel, Eric [Atmospheric Chemistry Group, Mantech Environmental Research Triangle Park, North Carolina (United States)] Olszyna, Ken [National Environmental Research Laboratory, U.S. EPA. Research Triangle Park, North Carolina (United States)] Kliendienst, Tad [Department of Chemistry, Western Michigan University, Kalamazoo, Michigan (United States)] Lonneman, William [Departments of Chemistry, and Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana (United States); Shepson, Paul; Starn, Tim

1998-11-01T23:59:59.000Z

305

Oxygen Transport Ceramic Membranes Quarterly Report  

E-Print Network [OSTI]

/Reaction rates in Ion 21 Transport Membranes using Isotope Tracer and Transient Kinetic Techniques CONCLUSIONS 30Oxygen Transport Ceramic Membranes Quarterly Report January 2003 ­ March 2003 Principal Authors on the thermodynamic properties of the membrane materials are continued to develop a complete model for the membrane

Eagar, Thomas W.

306

Novel Membranes and Processes for Oxygen Enrichment  

SciTech Connect (OSTI)

The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions using a Bloom baffle burner at GTI. The results are positive and confirm that oxygen-enriched combustion can be carried out without producing higher levels of NOx than normal air firing, if lancing of combustion air is used and the excess air levels are controlled. A simple economic study shows that the membrane processes can produce O{sub 2} at less than $40/ton EPO{sub 2} and an energy cost of 1.1-1.5 MMBtu/ton EPO{sub 2}, which are very favorable compared with conventional technologies such as cryogenics and vacuum pressure swing adsorption processes. The benefits of integrated membrane processes/combustion process trains have been evaluated, and show good savings in process costs and energy consumption, as well as reduced CO{sub 2} emissions. For example, if air containing 30% oxygen is used in natural gas furnaces, the net natural gas savings are an estimated 18% at a burner temperature of 2,500 F, and 32% at a burner temperature of 3,000 F. With a 20% market penetration of membrane-based oxygen-enriched combustion in all combustion processes by 2020, the energy savings would be 414-736 TBtu/y in the U.S. The comparable net cost savings are estimated at $1.2-2.1 billion per year by 2020, calculated as the value of fuel savings subtracted from the cost of oxygen production. The fuel savings of 18%-32% by the membrane/oxygen-enriched combustion corresponds to an 18%-32% reduction in CO{sub 2} emissions, or 23-40 MM ton/y less CO{sub 2} from natural gas-fired furnaces by 2020. In summary, results from this project (Concept Definition phase) are highly promising and clearly demonstrate that membrane processes can produce oxygen-enriched air in a low cost manner that will lower operating costs and energy consumption in industrial combustion processes. Future work will focus on proof-of-concept bench-scale demonstration in the laboratory.

Lin, Haiqing

2011-11-15T23:59:59.000Z

307

Oxygen addition to sulfur of metal thiolates  

E-Print Network [OSTI]

, and characterized. Molecular oxygen or hydrogen peroxide reacted with (N,N'-bis(mercaptoethyl)-1,5-diazacyclooctane-nickel(II), (BME-DACO)2Ni3 +2, to produce a trimetallic, (N,N'-bismercaptoethyl-1,5-diazacyclooctane-nickel(II))-nickelate, (BME-DACO)2Ni3 2...

Soma, Takako

2012-06-07T23:59:59.000Z

308

Oxygen isotope exchange between water and semiquinones  

SciTech Connect (OSTI)

A reaction is described that can be utilized to produce /sup 17/O-labeled anion radicals that yield strong well resolved ESR signals exhibiting splitting from the /sup 17/O nucleus. The oxygen anthraquinone has been studied, and the results are reported herein. 7 references, 1 figure.

Stevenson, G.R.; Wang, Z.Y.; Reiter, R.C.; Peters, S.J.

1988-09-14T23:59:59.000Z

309

Oxygen-producing inert anodes for SOM process  

DOE Patents [OSTI]

An electrolysis system for generating a metal and molecular oxygen includes a container for receiving a metal oxide containing a metallic species to be extracted, a cathode positioned to contact a metal oxide housed within the container; an oxygen-ion-conducting membrane positioned to contact a metal oxide housed within the container; an anode in contact with the oxygen-ion-conducting membrane and spaced apart from a metal oxide housed within the container, said anode selected from the group consisting of liquid metal silver, oxygen stable electronic oxides, oxygen stable crucible cermets, and stabilized zirconia composites with oxygen stable electronic oxides.

Pal, Uday B

2014-02-25T23:59:59.000Z

310

Silicon-on-glass pore network micromodels with oxygen-sensing fluorophore films for chemical imaging and defined spatial structure  

SciTech Connect (OSTI)

Pore network microfluidic models were fabricated by a silicon-on-glass technique that provides the precision advantage of dry etched silicon while creating a structure that is transparent across all microfluidic channels and pores, and can be imaged from either side. A silicon layer is bonded to an underlying borosilicate glass substrate and thinned to the desired height of the microfluidic channels and pores. The silicon is then patterned and through-etched by deep reactive ion etching (DRIE), with the underlying glass serving as an etch stop. After bonding on a transparent glass cover plate, one obtains a micromodel in oxygen impermeable materials with water wet surfaces where the microfluidic channels are transparent and structural elements such as the pillars creating the pore network are opaque. The micromodel can be imaged from either side. The advantageous features of this approach in a chemical imaging application are demonstrated by incorporating a Pt porphyrin fluorophore in a PDMS film serving as the oxygen sensing layer and a bonding surface, or in a polystyrene film coated with a PDMS layer for bonding. The sensing of a dissolved oxygen gradient was demonstrated using fluorescence lifetime imaging, and it is shown that different matrix polymers lead to optimal use in different ranges dissolved oxygen concentration. Imaging with the opaque pillars in between the observation direction and the continuous fluorophore film yields images that retain spatial information in the sensor image.

Grate, Jay W.; Kelly, Ryan T.; Suter, Jonathan D.; Anheier, Norman C.

2012-11-21T23:59:59.000Z

311

Metal-Pyrrolide Complexes in Three-fold Symmetry: Synthesis, Structure, Reactivity and Magnetism  

E-Print Network [OSTI]

Structure, Reactivity and Magnetism by William Hill Harman AStructure, Reactivity and Magnetism by William Hill Harmanlost time. Dave taught me magnetism and what it takes to win

Harman, William Hill

2010-01-01T23:59:59.000Z

312

Synthesis, characterization, and reactivity studies of iridium complexes bearing the ligand diphenylphosphidoboratabenzene  

E-Print Network [OSTI]

The synthesis, structure, and reactivity properties of three iridium square planar complexes bearing the anionic phosphine ligand diphenylphosphidoboratabenzene (DPB) are described. Reactivity studies show a rate enhancement ...

Arizpe, Luis (Luis Alfredo)

2011-01-01T23:59:59.000Z

313

Reactivity of iron-bearing minerals and CO2 sequestration: A...  

Office of Scientific and Technical Information (OSTI)

Reactivity of iron-bearing minerals and CO2 sequestration: A multi-disciplinary experimental approach Re-direct Destination: The reactivity of sandstones was studied under...

314

Nitric oxide inhibition of soot oxidation by oxygen atoms at 298K  

SciTech Connect (OSTI)

Nitric oxide is observed to inhibit the rate of soot oxidation by oxygen atoms at 298K. Small amounts of added NO reduce the rates of production of CO/sub 2/ and CO by up to 35%. The authors show experimentally that NO is not reducing the gas phase O atom concentration. Thermal desorption mass spectrometry shows a small adsorption of NO on the soot; this NO adsorption corresponds to 1.5% of the carbon atoms on the surface of the individual soot spheres. This inhibition is interpreted in terms of a relatively small number of reactive sites on the soot at which soot gasification occurs and which are effectively blocked by NO.

Wicke, B.G.; Grady, K.A.

1987-08-01T23:59:59.000Z

315

Reactive Blast Waves from Composite Charges  

SciTech Connect (OSTI)

Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuing Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track/resolve reaction zones. Numerical simulations of the explosion fields from 1.5-g and 10-kg composite charges were performed. Computed pressure histories (red curve) are compared with measured waveforms (black curves) in Fig. 1. Comparison of these results with a waveform for a non-combustion case in nitrogen (blue curve) demonstrates that a reactive blast wave was formed. Cross-sectional views of the temperature field at various times are presented in Fig. 2, which shows that the flow is turbulent. Initially, combustion occurs at the fuel-air interface, and the energy release rate is controlled by the rate of turbulent mixing. Eventually, oxidizer becomes distributed throughout the cloud via ballistic mixing of the particles with air; energy release then occurs in a distributed combustion mode, and Al particle kinetics controls the energy release rate. Details of the Heterogeneous Continuum Model and results of the numerical simulations of composite charge explosions will be described in the paper.

Kuhl, A L; Bell, J B; Beckner, V E

2009-10-16T23:59:59.000Z

316

The Economics of Oxygen Enriched Air Production Via Membranes  

E-Print Network [OSTI]

Oxygen enriched air combustion is a recognized approach to energy conservation. Conventional methods of producing oxygen enriched air: Pressure Swing Adsorption and Cryogenics, are energy-intensive and expensive. In this paper the economics of using...

Gollan, A.; Kleper, M. H.

1984-01-01T23:59:59.000Z

317

Breath is a mixture of nitrogen, oxygen, carbon dioxide, water  

E-Print Network [OSTI]

12 SCIENCE Breath is a mixture of nitrogen, oxygen, carbon dioxide, water vapour, inert gases. On the basis of proton affinity, the major constituents of air and breath (nitrogen, oxygen, carbon dioxide

318

OXYGEN TRANSFER IN TRICKLING FILTERS By BruceE. Logan~  

E-Print Network [OSTI]

OXYGEN TRANSFER IN TRICKLING FILTERS By BruceE. Logan~ ABSTRACT: Insufficientoxygen transfer can result in anaerobic biofilmsand odor generation during biochemicaloxygen demand (BOD) removal plastic media trickling filters occurs by diffusion of oxygen through thin fluid films, previous models

319

Design, measurement, and analysis of oxygenated fluid pump system  

E-Print Network [OSTI]

The author sought out the opportunity to design and implement a system for pumping oxygenated fluid and mixing it with saline, for the purpose of providing sufficient levels of oxygen for patients undergoing forms of ...

Mason, Alexander M., IV (Alexander Martin)

2012-01-01T23:59:59.000Z

320

Label-free oxygen-metabolic photoacoustic microscopy in vivo  

E-Print Network [OSTI]

tomography (PET) using radioactively labeled oxy- gen. Many other pathological and physiological functions of oxygen consumption instead of the static oxygen concentration.11 If the region of interest has well

Wang, Lihong

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optimization of Oxygen Purity for Coal Conversion Energy Reduction  

E-Print Network [OSTI]

The conversion of coal into gaseous and liquid fuels and chemical feedstock will require large quantities of oxygen. This oxygen will be produced in large multi-train air separation plants which will consume about 350 kilowatt hours of energy...

Baker, C. R.; Pike, R. A.

1982-01-01T23:59:59.000Z

322

Optical Perfusion and Oxygenation Characterization in a Liver Phantom  

E-Print Network [OSTI]

Continuous monitoring of blood perfusion and oxygenation is essential in assessing the health of a transplanted organ. Particularly, monitoring the perfusion and oxygenation of the organ during the two-week period after the transplant procedure...

King, Travis J.

2012-02-14T23:59:59.000Z

323

Methane Adsorption and Dissociation and Oxygen Adsorption and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Methane Adsorption and Dissociation and Oxygen Adsorption and Reaction with CO on Pd Nanoparticles on MgO(100) and on Pd(111). Methane Adsorption and Dissociation and Oxygen...

324

Inhibitive Influence of Oxygen Vacancies for Photoactivity on...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Inhibitive Influence of Oxygen Vacancies for Photoactivity on TiO2(110). Inhibitive Influence of Oxygen Vacancies for Photoactivity on TiO2(110). Abstract: Scanning tunneling...

325

Oxygen-induced magnetic properties and metallic behavior of a...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxygen-induced magnetic properties and metallic behavior of a BN sheet. Oxygen-induced magnetic properties and metallic behavior of a BN sheet. Abstract: In this paper, ab initio...

326

Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Separation, Cation Ordering, and Surface Oxygen Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries. Nanoscale Phase Separation, Cation Ordering, and Surface Oxygen...

327

On the reduction of oxygen from dispersed media  

E-Print Network [OSTI]

The reduction of oxygen from an organic phase dispersed in a concentrated electrolyte is investigated. Dispersed organic phases are used to enhance oxygen transport in fermenters and artificial blood substitutes. This work ...

Roushdy, Omar H., 1977-

2007-01-01T23:59:59.000Z

328

The Safe Storage Study for Autocatalytic Reactive Chemicals  

E-Print Network [OSTI]

In the U.S. Chemical Safety and Hazard Investigation Board (CSB) report, Improving Reactive Hazard Management, there are 37 out of 167 accidents, which occurred in a storage tank or a storage area. This fact demonstrates that thermal runaway...

Liu, Lijun

2010-10-12T23:59:59.000Z

329

Reactivity of the Quinone Methide of Butylated hydroxytoluene in Solution  

E-Print Network [OSTI]

BHT is a common antioxidant in pharmaceutical formulations and when oxidized it forms a quinone methide (QM). QM is a highly reactive electrophilic species which can undergo nucleophilic addition. This research investigated ...

Willcockson, Maren Gulsrud

2011-08-31T23:59:59.000Z

330

Evaluation of Methods to Predict Reactivity of Gold Nanoparticles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

relationship to the concept of frontier molecular orbital theory. The d-band theory of Hammer and Nørskov is perhaps the most widely used predictor of reactivity on metallic...

331

Pre-plated reactive diffusion-bonded battery electrode plaques  

DOE Patents [OSTI]

A high strength, metallic fiber battery plaque is made using reactive diffusion bonding techniques, where a substantial amount of the fibers are bonded together by an iron-nickel alloy.

Maskalick, Nicholas J. (Pittsburgh, PA)

1984-01-01T23:59:59.000Z

332

Dynamic Reactive Power Control of Isolated Power Systems  

E-Print Network [OSTI]

This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

Falahi, Milad

2012-10-03T23:59:59.000Z

333

Mechanical properties of amorphous Lix Si alloys: a reactive...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was downloaded on 08102013 at 15:46 Please note that terms and conditions apply. Mechanical properties of amorphous Li x Si alloys: a reactive force field study View the table...

334

Local Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the re...

Turitsyn, Konstantin S; Backhaus, Scott; Chertkov, Misha

2010-01-01T23:59:59.000Z

335

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the second quarter July--September 2000 in the following task areas: Task 1-Oxygen Enhanced Combustion, Task 2-Oxygen Transport Membranes and Task 4-Program Management. The program is proceeding in accordance with the objectives for the first year. OTM tube characterization is well underway, the design and assembly of the high pressure permeation test facility is complete and the facility will be in full operation during the next quarter. Combustion testing has been initiated at both the University of Arizona and Praxair. Testing at the University of Arizona has experienced some delays; steps have been take to get the test work back on schedule. Completion of the first phase of the testing is expected in next quarter. Combustion modeling has been started at both REI and Praxair, preliminary results are expected in the next quarter.

Lawrence E. Bool; Jack C. Chen; David R. Thompson

2000-10-01T23:59:59.000Z

336

Electrical insulator assembly with oxygen permeation barrier  

DOE Patents [OSTI]

A high-voltage electrical insulator for electrically insulating a thermoelectric module in a spacecraft from a niobium-1% zirconium alloy wall of a heat exchanger filled with liquid lithium while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator has a single crystal alumina layer (SxAl[sub 2]O[sub 3], sapphire) with a niobium foil layer bonded thereto on the surface of the alumina crystal facing the heat exchanger wall, and a molybdenum layer bonded to the niobium layer to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface. 3 figures.

Van Der Beck, R.R.; Bond, J.A.

1994-03-29T23:59:59.000Z

337

(Electronic structure and reactivities of transition metal clusters)  

SciTech Connect (OSTI)

The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

Not Available

1992-01-01T23:59:59.000Z

338

Study of optical properties of asymmetric bipolar pulse DC magnetron sputtered Ta{sub 2}O{sub 5} thin film as a function of oxygen content in deposition ambient  

SciTech Connect (OSTI)

Tantalum penta-oxide thin films have been deposited by reactive sputtering technique using asymmetric bipolar pulsed DC source at various oxygen percentage viz. 0 to 50 %. The optical properties of the films have been studied by spectroscopic ellipsometry measurements. It has been observed that compact films with low void fraction, high refractive index and band gap can be obtained by the above technique with oxygen percentage in the range of 30–40%. The films deposited with zero or very low oxygen content have high deposition rate and yield metal rich films with large voids, defects, low band gap and high refractive index. Similarly films deposited with >40% oxygen content again contain voids and defects due to the presence of large amount of gas molecules in the sputtering ambient.

Haque, S. Maidul, E-mail: skmaidulhaque@gmail.com; Shinde, D. D., E-mail: skmaidulhaque@gmail.com; Misal, J. S., E-mail: skmaidulhaque@gmail.com [Photonics and Nano-technology Section, Atomic and Molecular Physics Division, BARC, Visakhapatnam-530012 (India); Bhattacharyya, D.; Sahoo, N. K. [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai - 400085 (India)

2014-04-24T23:59:59.000Z

339

A miniature inexpensive, oxygen sensing element  

SciTech Connect (OSTI)

An exhaustive study was conducted to determine the feasibility of Nernst-type oxygen sensors based on ceramics containing Bi{sub 2}O{sub 3}. The basic sensor design consisted of a ceramic sensing module sealed into a metal tube. The module accommodated an internal heater and thermocouple. Thermal-expansion-matched metals, adhesives, and seals were researched and developed, consistent with sequential firings during sensor assembly. Significant effort was devoted to heater design/testing and to materials' compatibility with Pt electrodes. A systematic approach was taken to develop all sensor components which led to several design modifications. Prototype sensors were constructed and exhaustively tested. It is concluded that development of Nerst-type oxygen sensors based on Bi{sub 2}O{sub 3} will require much further effort and application of specialized technologies. However, during the course of this 3-year program much progress was reported in the literature on amperometric-type oxygen sensors, and a minor effort was devoted here to this type of sensor based on Bi{sub 2}O{sub 3}. These studies were made on Bi{sub 2}O{sub 3}-based ceramic samples in a multilayer-capacitor-type geometry and amperometric-type oxygen sensing was demonstrated at very low temperatures ({approximately} 160{degree}C). A central advantage here is that these types of sensors can be mass-produced very inexpensively ({approximately} 20--50 cents per unit). Research is needed, however, to develop an optimum diffusion-limiting barrier coating. In summary, the original goals of this program were not achieved due to unforeseen problems with Bi{sub 2}O{sub 3}-based Nernst sensors. However, a miniature amperometric sensor base on Bi{sub 2}O{sub 3} was demonstrated in this program, and it is now seen that this latter sensor is far superior to the originally proposed Nernst sensor. 6 refs., 24 figs.

Arenz, R.W.

1991-10-07T23:59:59.000Z

340

Oxygen stabilized zirconium vanadium intermetallic compound  

DOE Patents [OSTI]

An oxygen stabilized intermetallic compound having the formula Zr.sub.x OV.sub.y where x=0.7 to 2.0 and y=0.18 to 0.33. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 450.degree. C. at pressures down to 10.sup.-6 Torr. The compound is also capable of selectively sorbing hydrogen from gaseous mixtures in the presence of CO and CO.sub.2.

Mendelsohn, Marshall H. (Woodridge, IL); Gruen, Dieter M. (Downers Grove, IL)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Application of the ''reactivity constraint approach'' to automatic reactor control  

SciTech Connect (OSTI)

The ''reactivity constraint approach'' is described and demonstrated to be an effective and reliable means for the automatic control of power in nuclear reactors. This approach functions by restricting the effect of the delayed neutron populations to that which can be balanced by an induced change in the prompt population. This is done by limiting the net reactivity to the amount that can be offset by reversing the direction of motion of the automated control mechanism. The necessary reactivity constraints are obtained from the dynamic period equation, which gives the instantaneous reactor period as a function of the reactivity and the rate of change of reactivity. The derivation of this equation is described with emphasis on the recently obtained ''alternate'' formulation. Following a discussion of the behavior of each term of this alternate equation as a function of reactivity, its use in the design and operation of a nonlinear, closed-loop, digital controller for reactor power is in the design and operation of a nonlinear, closed-loop, digital controller for reactor power is described. Details of the initial experimental trials of the resulting controller are given.

Bernard, J.A.; Henry, A.F.; Lanning, D.D.

1988-02-01T23:59:59.000Z

342

OXYGEN ENHANCED COMBUSTION FOR NOx CONTROL  

SciTech Connect (OSTI)

This quarterly technical progress report will summarize work accomplished for the Program through the ninth quarter April-June 2002 in the following task areas: Task 1--Oxygen Enhanced Combustion, Task 2--Oxygen Transport Membranes, Task 3--Economic Evaluation and Task 4--Program Management. The program is proceeding in accordance with the objectives for the third year. Full-scale testing using the Industrial Boiler Simulation Facility (ISBF) at Alstom Power was completed. The pilot scale experiments to evaluate the effect of air preheat and transport air stoichiometric ratio (SR) on NOx emissions were conducted at the University of Utah. Combustion modeling activities continued with full-scale combustion test furnace simulations. An OTM element was tested in Praxair's single tube high-pressure test facility and two thermal cycles were completed. PSO1d elements of new dimension were tested resulting in a lower flux than previous PSO1d elements of different dimensions, however, no element deformation was observed. Economic evaluation has confirmed the advantage of oxygen-enhanced combustion. Two potential host beta sites have been identified and proposals submitted.

David R. Thompson; Lawrence E. Bool; Jack C. Chen

2002-08-01T23:59:59.000Z

343

DME-to-oxygenates process studies  

SciTech Connect (OSTI)

The feasibility of the production of hydrocarbons from dimethyl ether (DNM) has been illustrated in a fixed bed micro-reactor as well as a bench scale fluidized bed reactor by the University of Akron/EPRI DME-to-Hydrocarbon (DTG) Process. The DTG process has distinct advantages over its methanol based counterpart. Specifically, the DTG process excels in the area of higher productivity, higher per-pass conversion, and lower heat duties than the MTG process. Also of special importance is the production of oxygenates -- including MTBE, ETBE, and TAME. DME may be reacted with isobutylene to produce a mixture of MTBE and ETBE. The properties of ETBE excel over MTBE in the areas of lower RVP and higher RON. According to industrial reports, MTBE is the fastest growing chemical (1992 US capacity 135,350 BPD, with expected growth of 34%/year to 1997). Also, recent renewed interest as an octane-enhancer and as a source of oxygen has spurred a growing interest in nonrefinery synthesis routes to ETBE. TAME, with its lower RVP and higher RON has proven useful as a gasoline blending agent and octane enhancer and may also be produced directly from DME. DME, therefore, serves as a valuable feedstock in the conversion of may oxygenates with wide-scale industrial importance. It should be also noted that the interest in the utilization of DME as process feedstock is based on the favorable process economics of EPRI/UA`s liquid phase DME process.

Tartamella, T.L.; Sardesai, A.; Lee, S. [Univ. of Akron, OH (United States); Kulik, C.J. [Electric Power Research Inst., Palo Alto, CA (United States)

1994-12-31T23:59:59.000Z

344

Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films  

E-Print Network [OSTI]

MRSEC Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films NSF Grant # 1121262 A. U. Adler of varying oxygen partial pressure. Oxygen exchange was confirmed by 18O tracer diffusion (time of carrier content vs. pO2) analysis should be applicable for studying the underlying carrier generation

Shahriar, Selim

345

Oxygen Reduction DOI: 10.1002/anie.201403264  

E-Print Network [OSTI]

Oxygen Reduction DOI: 10.1002/anie.201403264 Dramatic Increase in the Oxygen Reduction Reaction solvation) is used to predict how the energies and barriers for the mechanistic steps of the oxygen. In these electro- chemical devices, H2 (generated e.g. from solar energy conversion) reacts with O2 to produce

Goddard III, William A.

346

IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS  

E-Print Network [OSTI]

1 IMPROVEMENTS IN MODELLING DISSOLVED OXYGEN IN ACTIVATED SLUDGE SYSTEMS Jacek Makinia*, Scott A in a full-scale activated sludge reactor. The Activated Sludge Model No. 1 was used to describe for dissolved oxygen. KEYWORDS Activated sludge; dispersion; dissolved oxygen dynamics; mass transfer

Wells, Scott A.

347

Oceanic oxygen changes as a bellwether of climate change  

E-Print Network [OSTI]

Oceanic oxygen changes as a bellwether of climate change Term paper in Biogeochemistry@ethz.ch] Tutor: Prof. Dr. Nicholas Gruber [nicholas.gruber@env.ethz.ch] Abstract The response of oceanic oxygen of climate change. Recent publications indicate that the oceanic oxygen outgassing is substaintially larger

Fischlin, Andreas

348

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence  

E-Print Network [OSTI]

Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence Ruby N. Ghosh,a) Gregory L on a reflection-mode fiber-optic oxygen sensor based on the 3 O2 quenching of the red emission from hexanuclear molybdenum chloride clusters. Measurements of the probe operating in a 0%­21% gaseous oxygen environment have

Ghosh, Ruby N.

349

THE OXYGEN REQUIREMENTS OF SHELLFISH By Philip H. Mitchell  

E-Print Network [OSTI]

THE OXYGEN REQUIREMENTS OF SHELLFISH ~ By Philip H. Mitchell 2°7 #12;Blank page retained for pagination #12;THE OXYGEN REQUIREMENTS OF SHELLFISH. By PHILIP H. MITCHELL. J1, The respiratory exchanges to temperature changes, a smaller utili- zation of oxygen in proportion to the body weight with increase in size

350

E-Print Network 3.0 - acute oxygen sensing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dissolved oxygen with global warming. In coastal regimes oxygen deficits represent acute ecosystem... Ocean oxygen minima expansions and their biological impacts Lothar Stramma...

351

Oxygen-driven relaxation processes in pre-irradiated Ar cryocrystals  

E-Print Network [OSTI]

Excitations of Solid Oxygen ?in Russian?, B. I. Verkin andNUMBER 11 NOVEMBER 2006 Oxygen-driven relaxation processes? Relaxation processes in oxygen-containing Ar cryocrystals

Savchenko, E. V; Belov, A. G; Gumenchuk, G. B; Ponomaryov, A. N; Bondybey, V. E

2006-01-01T23:59:59.000Z

352

OXYGEN REDUCTION WITH CARBON SUPPORTED METALLIC CLUSTER CATALYSTS IN ALKALINE ELECTROLYTE  

E-Print Network [OSTI]

be published in the Proceedings OXYGEN REDUCTION WITH CARBONof California. LBL-11891 Oxygen Reduction with Carbonof Pt interacts with both oxygen and water more strongly

Ross Jr., Philip N.

2013-01-01T23:59:59.000Z

353

Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.  

E-Print Network [OSTI]

Oxygen isotope fractionation in the vacuum ultravioletmeasurement of the associated oxygen isotopic composition ofwavelength dependency of the oxygen isotopic composition in

Chakraborty, Subrata

2013-01-01T23:59:59.000Z

354

E-Print Network 3.0 - active oxygen control Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: active oxygen control Page: << < 1 2 3 4 5 > >> 1 Oxygen Modulation via Microfluidic Devices Oxygen...

355

Proceedings of Healthy Buildings 2009 Paper 336 Time-Scale Analysis for Reactive Deposition of Ozone via Passive Reactive  

E-Print Network [OSTI]

Proceedings of Healthy Buildings 2009 Paper 336 Time-Scale Analysis for Reactive Deposition) homogeneous reactions with indoor pollutants. The #12;Proceedings of Healthy Buildings 2009 Paper 336 latter

Siegel, Jeffrey

356

Dilute Oxygen Combustion Phase IV Final Report  

SciTech Connect (OSTI)

Novel furnace designs based on Dilute Oxygen Combustion (DOC) technology were developed under subcontract by Techint Technologies, Coraopolis, PA, to fully exploit the energy and environmental capabilities of DOC technology and to provide a competitive offering for new furnace construction opportunities. Capital cost, fuel, oxygen and utility costs, NOx emissions, oxide scaling performance, and maintenance requirements were compared for five DOC-based designs and three conventional air5-fired designs using a 10-year net present value calculation. A furnace direct completely with DOC burners offers low capital cost, low fuel rate, and minimal NOx emissions. However, these benefits do not offset the cost of oxygen and a full DOC-fired furnace is projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The incremental cost of the improved NOx performance is roughly $6/lb NOx, compared with an estimated $3/lb. NOx for equ8pping a conventional furnace with selective catalytic reduction (SCCR) technology. A furnace fired with DOC burners in the heating zone and ambient temperature (cold) air-fired burners in the soak zone offers low capital cost with less oxygen consumption. However, the improvement in fuel rate is not as great as the full DOC-fired design, and the DOC-cold soak design is also projected to cost $1.30 per ton more to operate than a conventional air-fired furnace. The NOx improvement with the DOC-cold soak design is also not as great as the full DOC fired design, and the incremental cost of the improved NOx performance is nearly $9/lb NOx. These results indicate that a DOC-based furnace design will not be generally competitive with conventional technology for new furnace construction under current market conditions. Fuel prices of $7/MMBtu or oxygen prices of $23/ton are needed to make the DOC furnace economics favorable. Niche applications may exist, particularly where access to capital is limited or floor space limitations are critical. DOC technology will continue to have a highly competitive role in retrofit applications requiring increases in furnace productivity.

Riley, M.F.

2003-04-30T23:59:59.000Z

357

Selective reduction of NOx in oxygen rich environments with plasma...  

Broader source: Energy.gov (indexed) [DOE]

synthesis and reactivity * What is the optimum catalyst composition? * Some optimization of catalyst synthesis * Studies of the reaction mechanism * Differences in rates of...

358

Application of Partial-Order Methods to Reactive Programs with Event Memorization  

E-Print Network [OSTI]

with event memorization. The reactive systems are specified with an asynchronous reactive language Electre, 3 (2001) 287-316" #12;2 Electre: an Asynchronous Reactive Language with Event Memorization 3 2 of a semantic model of an asyn- chronous reactive language: Electre [PRH92, CR95]. Indeed, this language

Paris-Sud XI, Université de

359

Development and Evaluation of a State-of-the-Science Reactive Plume  

E-Print Network [OSTI]

for plume rise, plume visibility, and stack opacity (5). Examples of other reactive plume models include

Zhang, Yang

360

Magnetic interaction in oxygenated alpha Fe-phthalocyanines  

SciTech Connect (OSTI)

Alpha iron phthalocyanines (?-FePc) oxygenated at low temperatures were investigated with the help of {sup 57}Fe Mössbauer spectroscopy, magnetization measurements (SQUID) and X-ray diffractometry (XRD). Mössbauer spectroscopy revealed that upon oxygenation of ?-FePc, new species were formed which could be associated with Fe{sup III}Pc oxygen adducts. Unexpectedly, magnetically split spectrum of oxygenated ?-FePc was observed below 20 K. In-field Mössbauer spectra in a 5 T external magnetic field at 5K and magnetization measurements indicate antiferromagnetic coupling in oxygenated ?-FePc.

Kuzmann, Ern?, E-mail: kuzmann@caesar.elte.hu; Homonnay, Zoltán; Horváth, Attila [Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, 1512 Budapest (Hungary); Pechousek, Jiri; Cuda, Jan; Machala, Libor; Zoppellaro, Giorgio; Zboril, Radek [Regional Centre of Advanced Technologies and Materials, Departments of Experimental Physics and Physical Chemistry, Faculty of Science Palacky University, 17. Listopadu 1192/12, 771 46 Olomouc (Czech Republic); Yin, Houping; Wei, Yen [Department of Chemistry, Drexel University, Philadelphia, PA 19104 (United States); Klencsár, Zoltán [Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117 (Hungary); Kubuki, Shiro [Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachi-Oji, Tokyo 192-0397 (Japan); Nath, Amar [Department of Chemistry, University of North Carolina, Asheville, NC 28804 (United States)

2014-10-27T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters the water by diffusion from air, as a by-product of photosynthesis and  

E-Print Network [OSTI]

Dissolved Oxygen in Allen CreekDissolved Oxygen in Allen Creek Dissolved oxygen (DO) enters and rapids. There is an inverse relationship between temperature and DO, i.e. colder water holds more oxygen it supplies oxygen to aquatic organisms. Higher DO levels also give the water a better taste. Figure 2. During

Tyler, Christy

362

FORMATION OF MOLECULAR OXYGEN AND OZONE ON AMORPHOUS SILICATES  

SciTech Connect (OSTI)

Oxygen in the interstellar medium is seen in the gas phase, in ices (incorporated in H{sub 2}O, CO, and CO{sub 2}), and in grains such as (Mg{sub x} Fe{sub 1-x} )SiO{sub 3} or (Mg{sub x} Fe{sub 1-x} ){sub 2}SiO{sub 4}, 0 < x < 1. In this investigation, we study the diffusion of oxygen atoms and the formation of oxygen molecules and ozone on the surface of an amorphous silicate film. We find that ozone is formed at low temperature (<30 K), and molecular oxygen forms when the diffusion of oxygen atoms becomes significant, at around 60 K. This experiment, besides being the first determination of the diffusion energy barrier (1785 {+-} 35 K) for oxygen atoms on a silicate surface, suggests bare silicates as a possible storage place for oxygen atoms in low-A{sub v} environments.

Jing Dapeng; He Jiao; Vidali, Gianfranco [Physics Department, Syracuse University, Syracuse, NY 13244 (United States); Brucato, John Robert; Tozzetti, Lorenzo [Osservatorio Astrofisico di Arcetri, INAF, I-50125 Florence (Italy); De Sio, Antonio [Department of Physics and Astronomy, University of Florence, I-50125 Florence (Italy)

2012-09-01T23:59:59.000Z

363

Early maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive force field on Morwell Brown coal structures  

E-Print Network [OSTI]

for each source rock. This allowed the bulk rate of oil and gas generation for a source rockEarly maturation processes in coal. Part 2: Reactive dynamics simulations using the ReaxFF reactive

Goddard III, William A.

364

The Mechanisms of Oxygen Reduction and Evolution Reactions in Nonaqueous Lithium-Oxygen Batteries  

SciTech Connect (OSTI)

The oxygen reduction/evolution reaction (ORR/OER) mechanisms in nonaqueous Li-O2 batteries have been investigated by using electron paramagnetic resonance spectroscopy in this work. We identified the superoxide radical anion (O2•-) as an intermediate in the ORR process using 5,5-dimethyl-pyrroline N-oxide as a spin trap, while no O2•- in OER was detected during the charge process. These findings provide insightful understanding on the fundamental oxygen reaction mechanisms in rechargeable nonaqueous Li-O2 batteries.

Cao, Ruiguo; Walter, Eric D.; Xu, Wu; Nasybulin, Eduard N.; Bhattacharya, Priyanka; Bowden, Mark E.; Engelhard, Mark H.; Zhang, Jiguang

2014-09-30T23:59:59.000Z

365

How Plants Do It: Light, Oxygen, Action!  

SciTech Connect (OSTI)

Plants have been doing it with ease for millions of years, and yet science has yet to fully comprehend how: Photosynthesis. It's a fundamental process of all plant life on Earth, using the simple and abundant ingredients of water and light to create food and enrich the planet's atmosphere with life-giving oxygen. In this talk, Professor Yachandra discusses how understanding the process of photosynthesis holds the key to a whole new level of mastery of how energy is produced, with enormous implications for the economy and the environment.

Yachandra, Vittal (University of California, Berkeley) [University of California, Berkeley

2008-08-26T23:59:59.000Z

366

SUPPORTED DENSE CERAMIC MEMBRANES FOR OXYGEN SEPARATION  

SciTech Connect (OSTI)

Mixed-conducting membranes have the ability to conduct oxygen with perfect selectivity at elevated temperatures, which makes them an extremely attractive alternative for oxygen separation and membrane reactor applications. The ability to reliably fabricate these membranes in thin or thick films would enable solid-state divisional limitations to be minimized, thus providing higher oxygen flux. Based on that motivation, the overall objective for this project is to develop and demonstrate a strategy for the fabrication of supported Wick film ceramic mixed conducting membranes, and improve the understanding of the fundamental issues associated with reliable fabrication of these membranes. The project has focused on the mixed-conducting ceramic composition SrCo{sub 0.5}FeO{sub x} because of its superior permeability and stability in reducing atmospheres. The fabrication strategy employed involves the deposition of SrCo{sub 0.5}FeO{sub x} thick films onto porous supports of the same composition. In the second year of this project, we completed characterization of the sintering and phase behavior of the porous SrCo{sub 0.5}FeO{sub x} supports, leading to a standard support fabrication methodology. Using a doctor blade method, pastes made from aerosol-derived SrCo{sub 0.5}FeO{sub x} powder dispersed with polyethylene glycol were applied to the supports, and the sintering behavior of the thick film membranes was examined in air and nitrogen atmospheres. It has been demonstrated that the desired crystalline phase content can be produced in the membranes, and that the material in the membrane layer can be highly densified without densifying the underlying support. However, considerable cracking and opening of the film occurred when films densified to a high extent. The addition of MgO into the SrCo{sub 0.5}FeO{sub x} supports was shown to inhibit support sintering so that temperatures up to 1300 C, where significant liquid formation occurs, could be used for film sintering. This successfully reduced cracking, however the films retained open porosity. The investigation of this concept will be continued in the final year of the project. Investigation of a metal organic chemical vapor deposition (MOCVD) method for defect mending in dense membranes was also initiated. An appropriate metal organic precursor (iron tetramethylheptanedionate) was identified whose deposition can be controlled by access to oxygen at temperatures in the 280-300 C range. Initial experiments have deposited iron oxide, but only on the membrane surface; thus refinement of this method will continue.

Timothy L. Ward

2000-06-30T23:59:59.000Z

367

Oxygen stabilized zirconium-vanadium-iron alloy  

DOE Patents [OSTI]

An oxygen stabilized intermetallic compound having the formula (Zr.sub.1-x Ti.sub.x).sub.2-u (V.sub.1-y Fe.sub.y)O.sub.z where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196.degree. C. to 200.degree. C. at pressures down to 10.sup.-6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices.

Mendelsohn, Marshall H. (Woodridge, IL); Gruen, Dieter M. (Downers Grove, IL)

1982-01-01T23:59:59.000Z

368

Jupiter Oxygen Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCounty isJupiter Oxygen Corporation

369

Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants  

SciTech Connect (OSTI)

Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

Manohar S. Sohal; J. Stephen Herring

2008-07-01T23:59:59.000Z

370

Improved Wetting of Mixed Ionic/Electronic Conductors Used in Electrochemical Devices with Ternary Reactive Air Braze Filler Metals  

SciTech Connect (OSTI)

This paper reports on the wetting behavior, reactivity, and long-term electrical conductance of a series of ternary filler metals being considered for brazing lanthanum strontium cobalt ferrite (LSCF) based oxygen separation membranes. Mixed ionic/electronic conducting perovskite oxides such as LSCF and various doped barium cerates are currently being considered for use in high-temperature electrochemical devices such as oxygen and hydrogen concentrators and solid oxide fuel cells. However to take full advantage of the unique properties of these materials, reliable joining techniques need to be developed. Furthermore, if the proposed joining technique were to yield a hermetic ceramic-to-metal junction that was also electrically conductive, it would additionally benefit the device by allowing current to be drawn from or carried to the electrochemically active mixed conducting oxide component without requiring an separate current collector. A newly developed brazing technique known as air brazing is one such method of joining. In its present form, air brazing uses a silver-copper oxide based filler metal that can be melted directly in air to form a compliant joint that is electrically conductive. Recently, it has been shown that the addition of titania can enhance the wetting behavior of Ag-CuO filler metals on alumina. Here the effect of this wetting agent on the surface wettability, long-term electrical resistance at 750°C, and reactivity with La0.6Sr0.4Co0.2Fe0.8O3-? (LSCF-6428 or LSCF) substrates is discussed.

Hardy, John S.; Kim, Jin Yong Y.; Thomsen, Ed C.; Weil, K. Scott

2007-01-19T23:59:59.000Z

371

Apparatus for making environmentally stable reactive alloy powders  

DOE Patents [OSTI]

Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

1996-12-31T23:59:59.000Z

372

Environmentally stable reactive alloy powders and method of making same  

DOE Patents [OSTI]

Apparatus and method are disclosed for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloys needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment. 7 figs.

Anderson, I.E.; Lograsso, B.K.; Terpstra, R.L.

1998-09-22T23:59:59.000Z

373

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

374

Oxygen Abundance Measurements of SHIELD Galaxies  

E-Print Network [OSTI]

We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{\\rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{\\odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$\\alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $\\lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used ins...

Haurberg, Nathalie C; Cannon, John M; Marshall, Melissa V

2015-01-01T23:59:59.000Z

375

OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN  

SciTech Connect (OSTI)

This paper assesses the implications of a recent discovery that atomic oxygen is being depleted from diffuse interstellar gas at a rate that cannot be accounted for by its presence in silicate and metallic oxide particles. To place this discovery in context, the uptake of elemental O into dust is considered over a wide range of environments, from the tenuous intercloud gas and diffuse clouds sampled by the depletion observations to dense clouds where ice mantles and gaseous CO become important reservoirs of O. The distribution of O in these contrasting regions is quantified in terms of a common parameter, the mean number density of hydrogen (n{sub H}). At the interface between diffuse and dense phases (just before the onset of ice-mantle growth) as much as {approx}160 ppm of the O abundance is unaccounted for. If this reservoir of depleted oxygen persists to higher densities it has implications for the oxygen budget in molecular clouds, where a shortfall of the same order is observed. Of various potential carriers, the most plausible appears to be a form of O-bearing carbonaceous matter similar to the organics found in cometary particles returned by the Stardust mission. The 'organic refractory' model for interstellar dust is re-examined in the light of these findings, and it is concluded that further observations and laboratory work are needed to determine whether this class of material is present in quantities sufficient to account for a significant fraction of the unidentified depleted oxygen.

Whittet, D. C. B. [New York Center for Astrobiology, and Department of Physics, Applied Physics and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States)

2010-02-20T23:59:59.000Z

376

Dilute Oxygen Combustion Phase I Final Report  

SciTech Connect (OSTI)

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300°F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

1997-10-31T23:59:59.000Z

377

Dilute Oxygen Combustion Phase 2 Final Report  

SciTech Connect (OSTI)

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NOx) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NOx through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NOx production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature (~1366 K) oxidant (7-27% O2 vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d+ scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d+ scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW (~0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NOx emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NOx emissions below 5-10-3 g/MJ (10 ppm-air equivalent at 3% O2 dry) were obtained for furnace temperatures below 1533 K (2300?F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in-furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, wit6h increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of lower utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, required additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

Ryan, H.M.; Riley, M.F.; Kobayashi, H.

2005-09-30T23:59:59.000Z

378

Dilute oxygen combustion. Phase I report  

SciTech Connect (OSTI)

A novel burner, in which fuel (natural gas) and oxidant (oxygen or air) are separately injected into a furnace, shows promise for achieving very low nitrogen oxide(s) (NO{sub x}) emissions for commercial furnace applications. The dilute oxygen combustion (DOC) burner achieves very low NO{sub x} through in-furnace dilution of the oxidant stream prior to combustion, resulting in low flame temperatures, thus inhibiting thermal NO{sub x} production. The results of a fundamental and applied research effort on the development of the DOC burner are presented. In addition, the results of a market survey detailing the potential commercial impact of the DOC system are disclosed. The fundamental aspects of the burner development project involved examining the flame characteristics of a natural gas turbulent jet in a high-temperature ({approximately}1366 K) oxidant (7-27% O{sub 2} vol. wet). Specifically, the mass entrainment rate, the flame lift-off height, the velocity field and major species field of the jet were evaluated as a function of surrounding-gas temperature and composition. The measured entrainment rate of the fuel jet decreased with increasing oxygen content in the surrounding high-temperature oxidant, and was well represented by the d{sup +} scaling correlation found in the literature. The measured flame lift-off height decreased with increasing oxygen content and increasing temperature of the surrounding gas. An increase in surrounding-gas oxygen content and/or temperature inhibited the velocity decay within the jet periphery as a function of axial distance as compared to isothermal turbulent jets. However, the velocity measurements were only broadly represented by the d{sup +} scaling correlation. Several DOC burner configurations were tested in a laboratory-scale furnace at a nominal firing rate of 185 kW ({approximately}0.63 MMBtu/h). The flue gas composition was recorded as a function of furnace nitrogen content, furnace temperature, burner geometric arrangement, firing rate, and fuel injection velocity. NO{sub x} emissions increased with increasing furnace nitrogen content and furnace temperature, but remained relatively insensitive to variations in fuel injection velocity and firing rate. NO{sub x} emissions below 5{times}10{sup -3} g/MJ (10 ppm-air equivalent at 3% O{sub 2} dry) were obtained for furnace temperatures below 1533 K (2300{degree}F) and furnace nitrogen levels between 1 and 40%. CO emissions were typically low (<35 ppm). Detailed in- furnace species measurements revealed the importance of the interior furnace circulation patterns, as influenced by fuel and oxidant injection schemes, on pollutant emissions. The combustion stability traits of several DOC burner arrangements were ascertained through furnace pressure measurements, with increased stability occurring as furnace temperature increased and as the separation distance between fuel and oxidant inputs decreased. Based on current market conditions, oxy-fuel conversion of batch steel reheat furnaces with a DOC burner is justified on the basis of utility costs alone. However, conversion of continuous steel reheat furnaces, which are responsible for most steel production, requires additional economic incentives, such as further fuel savings, increased furnace productivity, or emission credits.

NONE

1997-10-01T23:59:59.000Z

379

Electrochemical oxygen pumps. Final CRADA report.  

SciTech Connect (OSTI)

All tasks of the Work Plan of ISTC Project 2277p have been completed, thus: (1) techniques of chemical synthesis were developed for more than ten recipes of electrolyte based on cerium oxide doped with 20 mole% of gadolinium (CeGd)O{sub 2}, doped by more than 10 oxide systems including 6 recipes in addition to the Work Plan; (2) electric conductivity and mechanical strength of CeGd specimens with additions of oxide systems were performed, two candidate materials for the electrolyte of electrochemical oxygen pump (pure CeGd and CeGd doped by 0.2 wt% of a transition metal) were chosen; (3) extended studies of mechanical strength of candidate material specimens were performed at room temperature and at 400, 600, 800 C; (4) fixtures for determination of mechanical strength of tubes by external pressure above 40 atmospheres at temperature up to 700 C were developed and fabricated; and (5) technology of slip casting of tubes from pure (Ce,Gd)O{sub 2} and of (Ce,Gd)O{sub 2} doped by 0.2 wt% of a transition metal, withstanding external pressure of minimum 40 atmospheres at temperature up to 700 C was developed, a batch of tubes was sent for testing to Argonne National Laboratory; (6) technology of making nanopowder from pure (Ce,Gd)O{sub 2} was developed based on chemical synthesis and laser ablation techniques, a batch of nanopowder with the weight 1 kg was sent for testing to Argonne National Laboratory; (7) a business plan for establishing a company for making powders of materials for electrochemical oxygen pump was developed; and (8) major results obtained within the Project were reported at international conferences and published in the Russian journal Electrochemistry. In accordance with the Work Plan a business trip of the following project participants was scheduled for April 22-29, 2006, to Tonawanda, NY, USA: Manager Victor Borisov; Leader of technology development Gennady Studenikin; Leader of business planning Elena Zadorozhnaya; Leader of production Vasily Lepalovsky; and Translator Vladimir Litvinov. During this trip project participants were to discuss with the project Technical Monitor J.D. Carter and representative of Praxair Inc. J. Chen the results of project activities (prospects of transition metal-doped material application in oxygen pumps), as well as the prospects of cooperation with Praxair at the meeting with the company management in the following fields: (1) Deposition of thin films of oxide materials of complex composition on support by magnetron and ion sputtering, research of coatings properties; (2) Development of block-type structure technology (made of porous and dense ceramics) for oxygen pump. The block-type structure is promising because when the size of electrolyte block is 2 x 2 inches and assembly height is 10 inches (5 blocks connected together) the area of active surface is ca. 290 square inches (in case of 8 slots), that roughly corresponds to one tube with diameter 1 inch and height 100 inches. So performance of the system made of such blocks may be by a factor of two or three higher than that of tube-based system. However one month before the visit, J. Chen notified us of internal changes at Praxair and the cancellation of the visit to Tonawanda, NY. During consultations with the project Technical Monitor J.D. Carter and Senior Project Manager A. Taylor a decision was made to extend the project term by 2 quarters to prepare proposals for follow-on activities during this extension (development of block-type structures made of dense and porous oxide ceramics for electrochemical oxygen pumps) using the funds that were not used for the trip to the US.

Carter, J. D.

2009-10-01T23:59:59.000Z

380

Plasma & reactive ion etching to prepare ohmic contacts  

DOE Patents [OSTI]

A method of making a low-resistance electrical contact between a metal and a layer of p-type CdTe surface by plasma etching and reactive ion etching comprising: a) placing a CdS/CdTe layer into a chamber and evacuating said chamber; b) backfilling the chamber with Argon or a reactive gas to a pressure sufficient for plasma ignition; and c) generating plasma ignition by energizing a cathode which is connected to a power supply to enable the plasma to interact argon ions alone or in the presence of a radio-frequency DC self-bias voltage with the p-CdTe surface.

Gessert, Timothy A. (Conifer, CO)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dielectric covered hairpin probe for its application in reactive plasmas  

SciTech Connect (OSTI)

The hairpin probe is a well known technique for measuring local electron density in low temperature plasmas. In reactive plasmas, the probe characteristics are affected by surface sputtering, contamination, and secondary electron emission. At higher densities, the plasma absorbs the entire electromagnetic energy of hairpin and hence limits the density measurements. These issues can be resolved by covering the hairpin surface with a thin layer of dielectric. In this letter, the dielectric contribution to the probe characteristics is incorporated in a theory which is experimentally verified. The dielectric covering improves the performance of probe and also allows the hairpin tip to survive in reactive plasma where classical electrical probes are easily damaged.

Gogna, G. S.; Gaman, C.; Turner, M. M. [NCPST, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Karkari, S. K. [Institute for Plasma Research Center, Bhat Gandhinagar, Gujarat 382428 (India)

2012-07-23T23:59:59.000Z

382

Coal combustion: Effect of process conditions on char reactivity. Final technical report, September 1, 1991--May 31, 1995  

SciTech Connect (OSTI)

Coal utilization involves two major stages: coal pyrolysis and char combustion. Figure 1.1 summarizes the steps of these processes. During the pyrolysis stage, heated particles from plastic coals soften, swell and release their volatiles before resolidifying again. During the combustion or gasification stage, char particles may ignite and fragment as the carbon is consumed leaving behind a solid ash residue. Process conditions such as pyrolysis heating rate, heat treatment temperature, pyrolysis atmosphere, and particle size are shown to chemically and physically affect the coal during pyrolysis and the resulting char. Consequently, these pyrolysis conditions as well as the combustion conditions such as the oxygen concentration and combustion temperature affect the char reactivity and ignition phenomena during the combustion stage. Better understanding of the fundamental mechanisms of coal pyrolysis and char combustion is needed to achieve greater and more efficient utilization of coal. Furthermore, this knowledge also contributes to the development of more accurate models that describe the transient processes involved in coal combustion. The project objectives were to investigate the effect of pyrolysis conditions on the macropore structure and subsequent reactivity of chars.

Zygourakis, K.

1996-02-01T23:59:59.000Z

383

Cladding metallurgy and fracture behavior during reactivity-initiated accidents at high burnup  

SciTech Connect (OSTI)

High-burnup fuel failure during a reactivity-initiated accident has been the subject of safety-related concern. Because of wide variations in metallurgical and simulation test conditions, it has been difficult to understand the complex failure behavior from major tests in NSRR and CABRI reactors. In this paper, a failure model based on fracture toughness and microstructural characteristics is proposed in which fracture toughness of high-burnup cladding is assumed to be sensitive to temperature and exhibit ductile-brittle transition phenomena similar to those of irradiated bcc alloys. Significant effects of temperature and shape of the pulse are predicted when a simulated test is conducted near the material`s transition temperature. Temperature dependence of fracture toughness is, in turn, sensitive to cladding microstructure such as density, distribution, and orientation of hydrides, oxygen distribution in the metallic phase, and irradiation-induced damage. Because all these factors are strongly influenced by corrosion, the key parameters that influence susceptibility to failure are oxide layer thickness and hydriding behavior. Therefore, fuel failure is predicted to be strongly dependent on cladding axial location as well as on burnup. 10 figs, 21 refs.

Chung, H.M.; Kassner, T.F.

1996-12-01T23:59:59.000Z

384

Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.  

SciTech Connect (OSTI)

Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

2011-09-01T23:59:59.000Z

385

Direct observation of both contact and remote oxygen scavenging of GeO{sub 2} in a metal-oxide-semiconductor stack  

SciTech Connect (OSTI)

In the path to incorporating Ge based metal-oxide-semiconductor into modern nano-electronics, one of the main issues is the oxide-semiconductor interface quality. Here, the reactivity of Ti on Ge stacks and the scavenging effect of Ti were studied using synchrotron X-ray photoelectron spectroscopy measurements, with an in-situ metal deposition and high resolution transmission electron microscopy imaging. Oxygen removal from the Ge surface was observed both in direct contact as well as remotely through an Al{sub 2}O{sub 3} layer. The scavenging effect was studied in situ at room temperature and after annealing. We find that the reactivity of Ti can be utilized for improved scaling of Ge based devices.

Fadida, S., E-mail: sivanfa@tx.technion.ac.il; Shekhter, P.; Eizenberg, M. [Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa (Israel); Cvetko, D. [Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste (Italy); Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Floreano, L.; Verdini, A. [Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste (Italy); Nyns, L.; Van Elshocht, S. [Imec, Kapeldreef 75, B-3001 Leuven (Belgium); Kymissis, I. [Department of Electrical Engineering, Columbia University, New York, New York 10027 (United States)

2014-10-28T23:59:59.000Z

386

Non-Energetic Reactive Armor (NERA) and Semi-Energetic Reactive Armor (SERA) FY13 Final Report  

SciTech Connect (OSTI)

INL researchers have proposed prototypes for future lightweight armor systems that reside in a technology gap between explosive reactive armor and passive armor. The targets were designed to react under impact and throw a steel front plate into the path of the projectile, forcing the projectile to engage more of the front plate during its penetration process. These prototypes are intended to exhibit the enhanced efficiency of explosive reactive armor without the collateral damage often associated with explosive reactive armor. One of the prototype systems, Semi Energetic Reactive Armor (SERA), functions similarly to explosive reactive armor, but features a reactive material that reacts much slower than explosive reactive armor. Two different SERA test groups were built and featuring different ratios of aluminum Teflon(copyright) powders pressed into 0.5 in. thick energetic tiles and sandwiched between 0.25 in. thick RHA plates. The other prototype system, Non Energetic Reactive Armor (NERA), utilizes the strain energy in compressed rubber to launch a front flyer plate into the path of an incoming projectile. It is comprised of a 1 in. thick rubber layer sandwiched between two 0.25 in. thick RHA plates with bolt holes around the perimeter. Bolts are inserted through the entire target and tightened to compress the rubber sheet to significant strain levels (approximately 40%). A fourth group of targets was tested as a control group. It featured a 0.5 in. thick rubber sheet sandwiched between two 0.25 in. thick RHA plates, similar to the NERA test articles, but the rubber is uncompressed. The four test groups (uncompressed rubber, compressed rubber, 70/30 Al/PTFE, 50/50 Al/PTFE) were each fabricated with three identical test articles in each group. All twelve targets were subjected to ballistic testing at the National Security Test Range on July 17, 2013. They were tested with 0.5 in. diameter steel rods shot at a consistent velocity at each target. In order to characterize the energetic materials, break wires were embedded in the targets and burn velocities were measured. The residual mass method was used to compare the target performance of each group and final performance data is presented below.

Ben Langhorst; Nikki Rasmussen; Andrew Robinson

2013-08-01T23:59:59.000Z

387

The effect of monomolecular films on oxygen transfer across an air-water interface  

E-Print Network [OSTI]

Rate 8. Effect of Aquasave Monolayer on Oxygen Uptake Rate 9. Effect of Isopropyl Alcohol on Oxygen Uptake Rate 10. Effect of Isopropyl Alcohol on Oxygen Uptake Rate 11. Effect of Isopropyl Alcohol on Oxygen Uptake Rate 12. Effect of Kerosene... on Oxygen Uptake Rate 13. Effect of Kerosene on Oxygen Uptake Rate 14. Effect of n-Pentanol on Oxygen Uptake Rate 15. Effect of n-Pentanol on Oxygen Uptake Rate 16. Effect of Hexane on Oxygen Uptake Rate 17. Effect of Hexane on Oxygen Uptake Rate 18...

Mahmoud, Tariq Ahmad

1967-01-01T23:59:59.000Z

388

Oxygen-Enriched Combustion for Military Diesel Engine Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion for Military Diesel Engine Generators Oxygen-Enriched Combustion for Military Diesel Engine Generators Substantial increases in brake power and considerably lower peak...

389

Palladium-Cobalt Particles As Oxygen-Reduction Electrocatalysts...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Palladium-Cobalt Particles As Oxygen-Reduction Electrocatalysts Brookhaven National Laboratory...

390

Catalytic reduction system for oxygen-rich exhaust  

DOE Patents [OSTI]

Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

1999-04-13T23:59:59.000Z

391

Lattice Distortions and Oxygen Vacancies Produced in Au+-Irradiated...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the efficiency of solid oxide fuel cells can be improved. Citation: Edmondson PD, WJ Weber, F Namavar, and Y Zhang.2011."Lattice Distortions and Oxygen Vacancies Produced in...

392

active oxygen probe: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERN Preprints Summary: I present here the results of the first principles studies of the adsorption energetics of the intermediates of the oxygen electro-reduction reaction (ORR)...

393

Optical dissolved oxygen sensor utilizing molybdenum chloride cluster phosphorescence  

E-Print Network [OSTI]

in oxygen atmospheres 0%­21% were obtained with a signal to noise ratio better than 150. Photobleaching physical principles, electrochemistry or luminescence. Electrochemical devices result in analyte

Ghosh, Ruby N.

394

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

395

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

396

Microbial metatranscriptomics in a permanent marine oxygen minimum zone  

E-Print Network [OSTI]

Simultaneous characterization of taxonomic composition, metabolic gene content and gene expression in marine oxygen minimum zones (OMZs) has potential to broaden perspectives on the microbial and biogeochemical dynamics ...

Stewart, Frank J.

397

Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...  

Broader source: Energy.gov (indexed) [DOE]

2009 - Poster Session August 3 rd , Hyatt Regency Dearborn Hotel Virtual Oxygen Sensor Innovative NOx and PM Emission Control Technologies J. Seebode, E. Stlting,...

398

Modeling Oxygen Transport in Three-Dimensional Capillary Networks.  

E-Print Network [OSTI]

??The purpose of this thesis was to examine how the use of real 3-dimensional (3D) capillary network geometries affect models of oxygen transport to tissue.… (more)

Fraser, Graham M

2012-01-01T23:59:59.000Z

399

Electron-Stimulated Production of Molecular Oxygen in Amorphous...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Precursor Transport Through the Hydrogen Electron-Stimulated Production of Molecular Oxygen in Amorphous Solid Water on Pt(111): Precursor Transport Through the Hydrogen...

400

Dopant Distribution, Oxygen Stoichiometry and Magnetism of Nanoscale...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dopant Distribution, Oxygen Stoichiometry and Magnetism of Nanoscale Sn0.99Co0.01O. Abstract: In a recent work, we have shown that chemically synthesized...

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria...

402

Korean oxygenates rule sparks MTBE capacity plans  

SciTech Connect (OSTI)

The Korean government`s strict standard for gasoline sold domestically is expected to have a significant impact on the methyl tert-butyl ether (MTBE) market. The mandate-requiring gasoline oxygen content of 0.5% this year, 0.75% by 1996, and 1.0% by 1998-has sparked a rush by Korean refineries to build new MTBE plants. If expansion plans are carried out, Korea`s MTBE capacity will increase from 280,000 m.t./year to 650,000 m.t./year by 1996, far surpassing predicted demand. Honam Oil, part of the Lucky Group, plans startup of a 100,000-m.t./year unit at Yeochon by early 1996. In addition, by the end of 1996 Ssangyong Oil will bring a 100,000-m.t./year unit onstream.

Kim, Hyung-Jin

1994-06-15T23:59:59.000Z

403

Dilute Oxygen Combustion - Phase 3 Report  

SciTech Connect (OSTI)

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good, and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel's standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion on furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, Michael F.

2000-05-31T23:59:59.000Z

404

Dilute Oxygen Combustion Phase 3 Final Report  

SciTech Connect (OSTI)

Dilute Oxygen Combustion (DOC) burners have been successfully installed and operated in the reheat furnace at Auburn Steel Co., Inc., Auburn, NY, under Phase 3 of the Dilute Oxygen Combustion project. Two new preheat zones were created employing a total of eight 6.5 MMBtu/hr capacity burners. The preheat zones provide a 30 percent increase in maximum furnace production rate, from 75 tph to 100 tph. The fuel rate is essentially unchanged, with the fuel savings expected from oxy-fuel combustion being offset by higher flue gas temperatures. When allowance is made for the high nitrogen level and high gas phase temperature in the furnace, measured NOx emissions are in line with laboratory data on DOC burners developed in Phase 1 of the project. Burner performance has been good and there have been no operating or maintenance problems. The DOC system continues to be used as part of Auburn Steel?s standard reheat furnace practice. High gas phase temperature is a result of the high firing density needed to achieve high production rates, and little opportunity exists for improvement in that area. However, fuel and NOx performance can be improved by further conversion of furnace zones to DOC burners, which will lower furnace nitrogen levels. Major obstacles are cost and concern about increased formation of oxide scale on the steel. Oxide scale formation may be enhanced by exposure of the steel to higher concentrations of oxidizing gas components (primarily products of combustion) in the higher temperature zones of the furnace. Phase 4 of the DOC project will examine the rate of oxide scale formation in these higher temperature zones and develop countermeasures that will allow DOC burners to be used successfully in these furnace zones.

Riley, M.F.; Ryan, H.M.

2000-05-31T23:59:59.000Z

405

MARKETS FOR REACTIVE POWER AND RELIABILITY: A WHITE PAPER  

E-Print Network [OSTI]

1 MARKETS FOR REACTIVE POWER AND RELIABILITY: A WHITE PAPER Engineering and Economics of Electricity Research Group (E3 RG) CORNELL UNIVERSITY E3 RG contributing authors: Robert Thomas, Director the Consortium for Electric Reliability Technology Solutions (CERTS) and in part by the National Science

406

Surface tension in a reactive binary mixture of incompressible fluids  

E-Print Network [OSTI]

Surface tension in a reactive binary mixture of incompressible fluids Henning Struchtrup Institute with a distributed form of surface tension. The model describes chemistry, diffusion, viscosity and heat transfer tension at the front. Keywords: Binary mixtures, Surface tension, Irreversible thermodynamics, Hele

Struchtrup, Henning

407

Dependency Analysis for Control Flow Cycles in Reactive Communicating Processes  

E-Print Network [OSTI]

of the system. The way in which cycle executions are combined is not ar- bitrary since cycles may depend are combined is certainly not arbitrary. For instance, the repetition of one cycle may rely on the repetitionsDependency Analysis for Control Flow Cycles in Reactive Communicating Processes Stefan Leue1 , Alin

Leue, Stefan

408

Dependency Analysis for Control Flow Cycles in Reactive Communicating Processes  

E-Print Network [OSTI]

processes of the system. The way in which cycle executions are combined is not ar- bitrary since cycles may in which cycle executions are combined is certainly not arbitrary. For instance, the repetition of oneDependency Analysis for Control Flow Cycles in Reactive Communicating Processes Stefan Leue1 , Alin

Reiterer, Harald

409

Active and reactive power in stochastic resonance for energy harvesting  

E-Print Network [OSTI]

A power allocation to active and reactive power in stochastic resonance is discussed for energy harvesting from mechanical noise. It is confirmed that active power can be increased at stochastic resonance, in the same way of the relationship between energy and phase at an appropriate setting in resonance.

Kubota, Madoka; Hikihara, Takashi

2015-01-01T23:59:59.000Z

410

Permeable Reactive Biobarriers for the Containment of Heavy Metal  

E-Print Network [OSTI]

. Heavy metals are leached as ground water reaches the exposed ores. Arizona has a rich historyPermeable Reactive Biobarriers for the Containment of Heavy Metal Contamination in Acid Mine) is defined as the presence heavy metals, increased acidity, and sulfate as a direct result of mining

Fay, Noah

411

Reactive materials can quickly form plugs for blowout control  

SciTech Connect (OSTI)

Various types of reactive materials, or gunk, can react directly with produced fluids (oil, condensate, or brine) or with an additionally injected fluid to form a plug to kill blowout wells or shut off large flow paths. Several recent blowouts were successfully controlled with reactive plugs; other conventional methods would have been more difficult operationally and cost more. Several plug mixtures are available on the market and can be made to suit the type of application and any particular environmental concerns. With proper planning and application, reactive plugs should be considered as a prime well control method when injection into the blowout flow path is available. This method of blowout control can save significant time and expense. The paper discusses the two basic methods of using reactive fluids depending on the flow path available, the use of cements, application steps, environmental concerns, and three case histories: a horizontal well in Texas, a high pressure, high temperature well offshore Louisiana, and a gas blowout in Argentina.

Flak, L.H. [Wright Boots and Coots, Houston, TX (United States)

1995-04-17T23:59:59.000Z

412

Toward a new paradigm for reactive flow modeling.  

SciTech Connect (OSTI)

Traditional reactive flow modeling provides a computational representation of shock initiation of energetic materials. Most reactive flow models require ad hoc assumptions to obtain robust simulations, assumptions that result from partitioning energy and volume change between constituents in a reactive mixture. For example, most models assume pressure and/or temperature equilibrium for the mixture. Many mechanical insults to energetic materials violate these approximations. Careful analysis is required to ensure that the model assumptions and limitations are not exceeded. One limitation is that the shock to detonation transition is replicated only for strong planar shocks. Many models require different parameters to match data from thin pulse, ramp wave, or multidimensional loading, an approach that fails for complex loading. To accurately simulate reaction under non-planar shock impact scenarios a new formalism is required. The continuum mixture theory developed by Baer and Nunziato is used to eliminate ad hoc assumptions and limitations of current reactive flow models. This modeling paradigm represents the multiphase nature of reacting condensed/gas mixtures. Comparisons between simulations and data are presented.

Schmitt, Robert Gerard

2005-08-01T23:59:59.000Z

413

Substituent Effects on the Reactivity of the Silicon-Carbon  

E-Print Network [OSTI]

Canada L8S 4M1 Received April 28, 2000 ABSTRACT Laser flash photolysis of various organosilicon compounds as a reactive intermediate in the high-temperature pyrolysis of a silacyclobutane deriva- tive.9 Hundreds describes our efforts to employ these techniquess laser flash photolysis methods in particularsto study

Leigh, William J.

414

Author's personal copy Reactivity of lithium exposed graphite surface  

E-Print Network [OSTI]

on the surface [18]. Hence the effect of lithium on plasma­wall interactions is expected to dependAuthor's personal copy Reactivity of lithium exposed graphite surface S.S. Harilal a, *, J in fusion devices [1­5]. For example, wall conditioning with thin lithium layers gives rise to low hydrogen

Harilal, S. S.

415

A REACTIVE APPROACH FOR MINING PROJECT EVALUATION UNDER PRICE UNCERTAINTY  

E-Print Network [OSTI]

deterministic forward commodity price which, in most cases, historical data demonstrates to be quite volatileA REACTIVE APPROACH FOR MINING PROJECT EVALUATION UNDER PRICE UNCERTAINTY Meimei Zhang and operating cash flow. This industry is usually considered high risk because of historically volatile

Duffy, Ken

416

Neutron economic reactivity control system for light water reactors  

DOE Patents [OSTI]

A neutron reactivity control system for a LWBR incorporating a stationary seed-blanket core arrangement. The core arrangement includes a plurality of contiguous hexagonal shaped regions. Each region has a central and a peripheral blanket area juxapositioned an annular seed area. The blanket areas contain thoria fuel rods while the annular seed area includes seed fuel rods and movable thoria shim control rods.

Luce, Robert G. (Glenville, NY); McCoy, Daniel F. (Latham, NY); Merriman, Floyd C. (Rotterdam, NY); Gregurech, Steve (Scotia, NY)

1989-01-01T23:59:59.000Z

417

Stability, electronic structure and reactivity of the polymerized fullerite forms  

E-Print Network [OSTI]

Stability, electronic structure and reactivity of the polymerized fullerite forms V.V. Belavina , L density distribution from selected crystal orbitals of polymerized C60 forms was carried out. Linear chain with the highest occupied (HO) and lowest unoccupied (LU) bands. The polymerized C60 forms were found to be less

418

Field, Laboratory, and Modeling Study of Reactive Transport of  

E-Print Network [OSTI]

University of New York, Flushing, New York 11367, Department of Marine Chemistry and Geochemistry, Woods Hole Bay, MA, shed light on coupled control of chemistry and hydrology on reactive transport), phosphate (5), and oxyanions of molybdenum (6) and uranium (7, 8) in aquifers. In addition

419

Effect of Number of Fractionating Trays on Reactive Distillation Performance  

E-Print Network [OSTI]

Effect of Number of Fractionating Trays on Reactive Distillation Performance Muhammad A. Al and rectifying sec- tions of a reacti®e distillation column can degrade performance. This effect, if true®e distillation columns cannot use conser®ati®e estimates of tray numbers, that is, we cannot simply add excess

Al-Arfaj, Muhammad A.

420

Towards Energy-Efficient Reactive Thermal Management in Instrumented Datacenters  

E-Print Network [OSTI]

Towards Energy-Efficient Reactive Thermal Management in Instrumented Datacenters Ivan Rodero, Eun techniques used to alleviate thermal anomalies (i.e., hotspots) in cloud datacenter's servers of by reducing such as voltage scaling that also can be applied to reduce the temperature of the servers in datacenters. Because

Pompili, Dario

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Generalized Chemical Reactivity of Curved Surfaces: Carbon Nanotubes  

E-Print Network [OSTI]

. Following the decomposition, the total reaction energy Etotal, which is the index of chemical reactivity, can be divided into three terms: strain energy Estrain, C-X binding energy EC-X, and global relaxation in a CNT can enhance the hydrogenation energy at the location of the excess deformation so

Srivastava, Deepak

422

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect (OSTI)

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

423

Reactive Phosphorus Removal from Aquaculture and Poultry Productions  

E-Print Network [OSTI]

Reactive Phosphorus Removal from Aquaculture and Poultry Productions Systems Using Polymeric and poultry production wastewater effluents. The sorbent used was a cross-linked polyamine (PAA,HCl) polymeric poultry and aquaculture wastewater effluents. Upon treatment, phosphorus anion concentrations were reduced

Rubloff, Gary W.

424

Abduction with Negation as Failure for Active and Reactive Rules  

E-Print Network [OSTI]

Abduction with Negation as Failure for Active and Reactive Rules Fariba Sadri and Francesca Toni suggested abductive logic programming as a suitable formalism to represent active databases and intelligent agents. In particular, abducibles in abductive logic programs can be used to repre- sent actions

Toni, Francesca

425

Nitrogen dynamics in flow-through microcosms of reactive media.  

E-Print Network [OSTI]

wastewater inputs to estuaries is similarly an important issue. Individual wastewater treatments have been University, Worcester MA December 19, 2005 Marine Biological Laboratory 1 #12;Abstract There have been many, the Marine Biological Laboratory is currently testing two experimental permeable reactive barriers along

Vallino, Joseph J.

426

Interaction of carbon monoxide with oxygen in the adsorbed layer on Pd, Ce, Pd-Ce catalysts supported on /gamma/-Al/sub 2/O/sub 3/  

SciTech Connect (OSTI)

The adsorption of CO and the interaction of CO/sub ads/ with O/sub 2/ on Pd, Ce, and Pd-Ce//gamma/-Al/sub 2/O/sub 3/ (0.5 wt. % Pd, 2.0 wt. % Ce) has been studied using the methods of IR spectroscopy and differential scanning calorimetry. The identity of the adsorbed CO complexes, the temperature ranges over which they desorb, and their reactivity with O/sub 2/ have been established. The interaction of bridging and carbonate - carboxylate CO complexes and carbon (disproportionation and dissociation products) with O/sub 2/ on Pd and Pd-Ce catalysts is preceded by the coadsorption of oxygen and the evolution of heat. During the oxidation of CO, autooscillation, heat evolution, and the concentration of oxygen in the flow are observed.

Savel'eva, G.A.; Sass, A.S.; Speranskaya, G.V.; Tenchev, K.K.; Petrov, L.A.; Vozdvizhenskii, V.F.; Galeev, T.K.; Popova, N.M.

1989-01-01T23:59:59.000Z

427

The structure and reactivity of adsorbates on stepped Rh and Pt surfaces investigated by LEED, HREELS, TPD, XPS and STM  

SciTech Connect (OSTI)

Defects on surfaces such as steps play an important role in surface chemistry. In order to obtain an understanding of the influence of steps in surface chemical reactions, the structure and reactivity of small molecules (O{sub 2}, CO, H{sub 2}S, and C{sub 2}H{sub 4}) on atomically stepped surfaces of RH and Pt have been investigated. The detailed structures of CO and oxygen bonded to the Rh(110) surface were determined. The CO molecules bond near the short bridge sites with the CO molecular axis tilted approximately 24{degree} from the surface normal. Oxygen atoms are bound asymmetrically in the 3-fold fcc hollow-sites to the (111) facets of the steps. The interactions of CO and oxygen on the Rh(311) surface were examined. The reaction of CO with the ordered phases of O shows two distinct reaction channels, a low temperature reaction limited channel (200 K) and a high temperature diffusion limited channel (350 K). Models of the reaction geometry and dynamics are proposed. The thermal decomposition of ethylene was examined on the Rh(311) surface. The stable decomposition species (C{sub 2}H, CH and C{sub 2}) are formed near 300 K, approximately 100 K lower on the stepped Rh(311) than on the flatter Rh(111) surface. The formation of these species at lower temperatures is attributed to the stepped nature of the surface. Finally, in situ STM was used to examine surface structural changes of a stepped Pt(111) crystal under coadsorption of sulfur and CO. This is the first direct evidence for a new mechanism by which a surface covered with an unreactive, strongly chemisorbed overlayer can form new sites, for bonding and reactions to occur, by massive surface restructuring at the step edges. This new surface phenomenon answers some of the puzzles of metal surface catalysis and its implications are described. 278 refs.

Batteas, J.D. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Materials Science Div.

1995-06-01T23:59:59.000Z

428

Theoretical Study of the Structure, Stability and Oxygen Reduction...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

stability and catalytic reactivity between ultrathin, 0.5- 1.0 nm diameter, platinum nanotubes and nanowires. Model nanowires were formed by inserting an inner chain of platinum...

429

Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale  

E-Print Network [OSTI]

Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale Vikranth scale using a combination of reactive transport modeling and geophysical imaging tools (EM & seismic Sacramento basin, California; the model well (Citizen Green #1) was characterized using sonic, electrical

Hubbard, Susan

430

An Aircraft Electric Power Testbed for Validating Automatically Synthesized Reactive Control Protocols  

E-Print Network [OSTI]

An Aircraft Electric Power Testbed for Validating Automatically Synthesized Reactive Control reactive synthesis; testbed; aircraft electric power system 1. INTRODUCTION AND MOTIVATION Aircraft of Pennsylvania utopcu@seas.upenn.edu ABSTRACT Modern aircraft increasingly rely on electric power for sub

Xu , Huan

431

Stabilization of liquid crystal photoaligning layers by reactive mesogens O. Yaroshchuk,1  

E-Print Network [OSTI]

Stabilization of liquid crystal photoaligning layers by reactive mesogens O. Yaroshchuk,1 V photoaligning layers by thin layers of reactive mesogens, strong enhancement in LC alignment stability layer, the photoalignment technique minimizes me- chanical damage and electric charging, provides

432

Pollution-enhanced reactive chlorine chemistry in the eastern tropical Atlantic boundary layer  

E-Print Network [OSTI]

doi:10.1029/2008GL036666, 2009 Pollution-enhanced reactiveE. S. Saltzman (2009), Pollution-enhanced reactive chlorine5 L08810 LAWLER ET AL. : POLLUTION-ENHANCED CLX IN THE MBL

2009-01-01T23:59:59.000Z

433

Solution-mediated strategies for synthesizing metal oxides, borates and phosphides using nanocrystals as reactive precursors  

E-Print Network [OSTI]

Because of their high surface area (and hence, increased reactivity) nanocrystals can be used as reactive precursors in the low-temperature synthesis of solid state materials. When nanocrystals are used as reactants, the temperatures needed...

Henkes, Amanda Erin

2009-05-15T23:59:59.000Z

434

E-Print Network 3.0 - atom-diatom reactive scattering Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

diatom reactive scattering Search Powered by Explorit Topic List Advanced Search Sample search results for: atom-diatom reactive scattering Page: << < 1 2 3 4 5 > >> 1 Eur. Phys....

435

Bioinformatic analysis of xenobiotic reactive metabolite target proteins and their interacting partners  

E-Print Network [OSTI]

Background Protein covalent binding by reactive metabolites of drugs, chemicals and natural products can lead to acute cytotoxicity. Recent rapid progress in reactive metabolite target protein identification has shown ...

Hanzlik, Robert P.; Fang, Jianwen; Koen, Yakov M.

2009-06-12T23:59:59.000Z

436

Hypolimnetic Oxygen Depletion in Eutrophic Lakes Beat Muller,*,  

E-Print Network [OSTI]

Hypolimnetic Oxygen Depletion in Eutrophic Lakes Beat Muller,*, Lee D. Bryant,, Andreas Matzinger obtained from 11 eutrophic lakes and suggests a model describing the consumption of dissolved oxygen (O2) in the hypolimnia of eutrophic lakes as a result of only two fundamental processes: O2 is consumed (i) by settled

Wehrli, Bernhard

437

Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age  

E-Print Network [OSTI]

Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth's middle age D. T photosynthesis to overall primary production would have influ- enced oceanic redox and the Proterozoic O2 budget time in Earth's history, complete dominance of oxygenic photosynthesis in the oceans. This paved

Macalady, Jenn

438

Unexpected Nondissociative Binding of N2O on Oxygen Vacancies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nondissociative Binding of N2O on Oxygen Vacancies on a Rutile TiO2(110)-1×1 . Unexpected Nondissociative Binding of N2O on Oxygen Vacancies on a Rutile TiO2(110)-1×1 ....

439

Singlet oxygen luminescence detection with a fibre-coupled superconducting  

E-Print Network [OSTI]

Singlet oxygen luminescence detection with a fibre-coupled superconducting nanowire single luminescence detection Fibre-based singlet oxygen luminescence detection References Superconducting Detector, is an intermediate in many biological processes. We employ a superconducting nanowire single-photon detector (SNSPD

Greenaway, Alan

440

Palladium-cobalt particles as oxygen-reduction electrocatalysts  

DOE Patents [OSTI]

The present invention relates to palladium-cobalt particles useful as oxygen-reducing electrocatalysts. The invention also relates to oxygen-reducing cathodes and fuel cells containing these palladium-cobalt particles. The invention additionally relates to methods for the production of electrical energy by using the palladium-cobalt particles of the invention.

Adzic, Radoslav (East Setauket, NY); Huang, Tao (Manorville, NY)

2009-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Instructions for use Removal of Oxygen and Nitrogen from Niobium  

E-Print Network [OSTI]

Instructions for use #12;------ Removal of Oxygen and Nitrogen from Niobium by External Gettering of Energy Science and Technology, Kyoto University Yoshida-Honmachi, Sakyo-ku, Kyoto 606-01 Japan Keywords External Gettering, Purification of Niobium, Thermodynamics of Impurities, Oxygen Diffusion, Purity

Tachizawa, Kazuya

442

HERSCHEL MEASUREMENTS OF MOLECULAR OXYGEN IN ORION  

SciTech Connect (OSTI)

We report observations of three rotational transitions of molecular oxygen (O{sub 2}) in emission from the H{sub 2} Peak 1 position of vibrationally excited molecular hydrogen in Orion. We observed the 487 GHz, 774 GHz, and 1121 GHz lines using the Heterodyne Instrument for the Far Infrared on the Herschel Space Observatory, having velocities of 11 km s{sup -1} to 12 km s{sup -1} and widths of 3 km s{sup -1}. The beam-averaged column density is N(O{sub 2}) = 6.5 x 10{sup 16} cm{sup -2}, and assuming that the source has an equal beam-filling factor for all transitions (beam widths 44, 28, and 19''), the relative line intensities imply a kinetic temperature between 65 K and 120 K. The fractional abundance of O{sub 2} relative to H{sub 2} is (0.3-7.3) x 10{sup -6}. The unusual velocity suggests an association with a {approx}5'' diameter source, denoted Peak A, the Western Clump, or MF4. The mass of this source is {approx}10 M{sub sun} and the dust temperature is {>=}150 K. Our preferred explanation of the enhanced O{sub 2} abundance is that dust grains in this region are sufficiently warm (T {>=} 100 K) to desorb water ice and thus keep a significant fraction of elemental oxygen in the gas phase, with a significant fraction as O{sub 2}. For this small source, the line ratios require a temperature {>=}180 K. The inferred O{sub 2} column density {approx_equal}5 x 10{sup 18} cm{sup -2} can be produced in Peak A, having N(H{sub 2}) {approx_equal} 4 x 10{sup 24} cm{sup -2}. An alternative mechanism is a low-velocity (10-15 km s{sup -1}) C-shock, which can produce N(O{sub 2}) up to 10{sup 17} cm{sup -2}.

Goldsmith, Paul F.; Chen, Jo-Hsin; Li Di [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Liseau, Rene; Black, John H. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92 Onsala (Sweden); Bell, Tom A. [Centro de Astrobiologia, CSIC-INTA, 28850 Madrid (Spain); Hollenbach, David [SETI Institute, Mountain View, CA 94043 (United States); Kaufman, Michael J. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192 (United States); Lis, Dariusz C. [California Institute of Technology, Cahill Center for Astronomy and Astrophysics 301-17, Pasadena, CA 91125 (United States); Melnick, Gary [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 66, Cambridge, MA 02138 (United States); Neufeld, David [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Pagani, Laurent; Encrenaz, Pierre [LERMA and UMR8112 du CNRS, Observatoire de Paris, 61 Av. de l'Observatoire, 75014 Paris (France); Snell, Ronald [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Benz, Arnold O.; Bruderer, Simon [Institute of Astronomy, ETH Zurich, Zurich (Switzerland); Bergin, Edwin [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Caselli, Paola [School of Physics and Astronomy, University of Leeds, Leeds (United Kingdom); Caux, Emmanuel [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Falgarone, Edith, E-mail: Paul.F.Goldsmith@jpl.nasa.gov [LRA/LERMA, CNRS, UMR8112, Observatoire de Paris and Ecole Normale Superieure, 24 rue Lhomond, 75231 Paris Cedex 05 (France)

2011-08-20T23:59:59.000Z

443

Direct tuyere injection of oxygen for enhanced coal combustion  

SciTech Connect (OSTI)

Injecting oxygen directly into the tuyere blowpipe can enhance the ignition and combustion of injected pulverized coal, allowing the efficient use of higher coal rates at high furnace production levels. The effects of direct oxygen injection have been estimated from an analysis of the factors controlling the dispersion, heating, ignition, and combustion of injected coal. Injecting ambient temperature oxygen offers mechanical improvements in the dispersion of coal but provides little thermochemical benefit over increased blast enrichment. Injecting hot oxygen through a novel, patented thermal nozzle lance offers both mechanical and thermochemical benefits over increased enrichment or ambient oxygen injection. Plans for pilot-scale and commercial-scale testing of this new lance are described.

Riley, M.F. [Praxair, Inc., Tarrytown, NY (United States)

1996-12-31T23:59:59.000Z

444

Using Reactive Rules to Guide a Forward-Chaining Murray Shanahan  

E-Print Network [OSTI]

1 Using Reactive Rules to Guide a Forward-Chaining Planner Murray Shanahan Department of Electrical.shanahan@ic.ac.uk Keywords: planning and execution, reactive planning, robot planning Abstract This paper presents a planning technique in which a flawed set of reactive rules is used to guide a stochastic forward-chaining search

Shanahan, Murray

445

A pulser for medium-frequency modulated direct-current reactive sputter deposition of insulators  

E-Print Network [OSTI]

for medium-frequency modulated direct-current dc reactive sputter deposition of electrical insulators at the target surface inherent to high- deposition-rate reactive sputtering of electrical insulators. TypicallyA pulser for medium-frequency modulated direct-current reactive sputter deposition of insulators G

Cao, Hui

446

Abstract This paper reviews specific issues and challenges in reactive power management within the competitive electricity  

E-Print Network [OSTI]

and physical considerations and so depends on the market players and the electricity market rules. Reactive local nature of reactive power restricts its ability to be transmitted over electrically large distancesAbstract ­ This paper reviews specific issues and challenges in reactive power management within

Gross, George

447

TO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on  

E-Print Network [OSTI]

, generator capability curves, maximum loadability, voltage stability, electrical energy markets, reactive- active power in electric power systems. Although there are other important reactive power sourcesTO APPEAR IN IEEE TRANSACTION ON POWER SYSTEMS 1 Effect of Reactive Power Limit Modeling on Maximum

Cañizares, Claudio A.

448

CARIBBEAN COLLOQUIUM ON POWER QUALITY (CCPQ), JUNE 2003 100 Defining Reactive Power in Circuit Transients via  

E-Print Network [OSTI]

CARIBBEAN COLLOQUIUM ON POWER QUALITY (CCPQ), JUNE 2003 100 Defining Reactive Power in Circuit the notion of reactive power during circuit transients. The definition we propose is based on the concept, namely Short- Time Fourier Coefficients and Haar Wavelets. We illustrate this "dynamic" reactive power

Stankoviæ, Aleksandar

449

Finite Bisimulation of Reactive Untimed Infinite State Systems Modeled as Automata with Variables  

E-Print Network [OSTI]

1 Finite Bisimulation of Reactive Untimed Infinite State Systems Modeled as Automata with Variables for reactive untimed infinite state systems called input- output extended finite automaton (I/O-EFA), which of a finite bisimilar abstraction. The results are illustrated through examples that model reactive software

Kumar, Ratnesh

450

Toward Optimized Bioclogging and Biocementation Through Combining Advanced Geophysical Monitoring and Reactive Transport Modeling  

E-Print Network [OSTI]

and electrical techniques); (ii) developing and using a reactive transport simulator capable of predicting and Reactive Transport Modeling Approaches Christopher G Hubbard1 , Susan S. Hubbard1 , Yuxin Wu1 , Vikranth heterogeneities at the field scale. Optimization of these strategies requires advances in mechanistic reactive

Hubbard, Susan

451

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power  

E-Print Network [OSTI]

Voltage Control of Distribution Networks with Distributed Generation using Reactive Power to control voltage of distribution networks with DG using reactive power compensation approach. In this paper profile within the specified limits, it is essential to regulate the reactive power of the compensators

Pota, Himanshu Roy

452

Design of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process  

E-Print Network [OSTI]

, methanol recovery 1. Introduction A process of producing TAME via reactive distillation has been presented the bulk of the reaction between C5 and methanol to produce TAME and a reactive distillation. MethanolDesign of Extraction Column Methanol Recovery System for the TAME Reactive Distillation Process

Al-Arfaj, Muhammad A.

453

Analytical solutions for sequentially coupled one-dimensional reactive transport problems Part I: Mathematical derivations  

E-Print Network [OSTI]

Analytical solutions for sequentially coupled one-dimensional reactive transport problems ­ Part I-species reactive transport equations coupled through sorption and sequential first-order reactions are commonly. Although researchers have been attempting to solve various forms of these reactive transport equations

Clement, Prabhakar

454

VOF-BASED SIMULATION OF REACTIVE MASS TRANSFER ACROSS DEFORMABLE INTERFACES  

E-Print Network [OSTI]

. of the bubbles is there- fore of fundamental importance for effective design of the reactor. In case of fast-based approach for the Direct Numerical Simulation of reactive mass transfer in gas-liquid flows is described simulation results are presented for non reactive and reactive mass transfer from rising gas bubbles

Bothe, Dieter

455

Nanoparticulate-catalyzed oxygen transfer processes  

DOE Patents [OSTI]

Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

Hunt, Andrew T. (Atlanta, GA); Breitkopf, Richard C. (Dunwoody, GA)

2009-12-01T23:59:59.000Z

456

Relaxation behavior of oxygen deficient strontium manganite  

SciTech Connect (OSTI)

Conduction behavior of nanocrystalline oxygen deficient ceramic-SrMnO{sub 3–?}(??0.14) has been studied. The structural analysis of nano-SrMnO{sub 2.86} follows hexagonal unit cell structure with P6{sub 3}/mmc (194) space group belonging to 6/mmm point group with 4H – layered type hexagonal-cubic layers. The system have lattice parameters; a = 5.437(92) Å, c = 9.072(92) Å, c/a?1.66 (85) with ? =90° ?= 120° and cell volume, V= 232.35(18). The relaxation times estimated from complex impedance and modulus relaxation spectrum, show the thermally activated system with corresponding activation energies as 0.66 eV and 0.51 eV The stretching factor ‘?’ from the scaled modulus spectrum shows the poly-dispersive non-Debye nature of the system. The hopping number ‘n’ shows the influence of ionic charge carriers which controls the conduction mechanism of nano-SrMnO{sub 2.86}.

Pandey, Namita, E-mail: namita205@gmail.com; Thakur, Awalendra Kumar, E-mail: namita205@gmail.com [Department of Physics, Indian Institute of Technology-Patna, Patna- 800013 (India)

2014-04-24T23:59:59.000Z

457

Faraday Discuss., 1997, 108, 115130 Excited state dynamics in clusters of oxygen  

E-Print Network [OSTI]

Faraday Discuss., 1997, 108, 115�130 Excited state dynamics in clusters of oxygen Runjun Li, Karl A clusters of oxygen. Oxygen clusters and liquid oxygen have a com- plicated chemistry due to numerous low) dynamics of small anionic clusters of oxygen. We Ðnd that the dynamics of the neutral DPD pathway

Continetti, Robert E.

458

The Kinetics of Dissociations of Aluminum - Oxygen Bonds in Aqueous Complexes - An NMR Study  

SciTech Connect (OSTI)

OAK B262 The Kinetics of Dissociations of Aluminum--Oxygen Bonds in Aqueous Complexes--An NMR Study. In this project we determined rates and mechanisms of Al(III)-O bond rupture at mineral surfaces and in dissolved aluminum complexes. We then compared the experimental results to simulations in an attempt to predict rate coefficients. Most of the low-temperature reactions that are geochemically important involve a bonded atom or molecule that is replaced with another. We probe these reactions at the most fundamental level in order to establish a model to predict rates for the wide range of reactions that cannot be experimentally studied. The chemistry of small aluminum cluster (Figure) provides a window into the hydrolytic processes that control rates of mineral formation and the transformation of adsorbates into extended structures. The molecule shown below as an example exposes several types of oxygens to the bulk solution including seven structurally distinct sets of bridging hydroxyls. This molecule is a rich model for the aqueous interface of aluminum (hydr)oxide minerals, since it approaches colloidal dimensions in size, yet is a dissolved complex with +18 charge. We have conducted both {sup 17}O- {sup 27}Al- and {sup 19}F-NMR experiments to identify the reactive sites and to determine the rates of isotopic exchange between these sites and the bulk solution. The research was enormously successful and led to a series of papers that are being used as touchstones for assessing the accuracy of computer models of bond ruptures in water.

Dr. William Casey

2003-09-03T23:59:59.000Z

459

Tracking thermal fronts with temperature-sensitive, chemically reactive tracers  

SciTech Connect (OSTI)

Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts in fractured geothermal reservoirs. If a nonadsorbing tracer flowing from the injection to production well chemically reacts, its reaction rate will be a strong function of temperature. Thus the extent of chemical reaction will be greatest early in the lifetime of the system, and less as the thermal front progresses from the injection to production well. Early laboratory experiments identified tracers with chemical kinetics suitable for reservoirs in the temperature range of 75 to 100/sup 0/C. Recent kinetics studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene. This class of reactions can be used in reservoirs ranging in temperature from 150 to 275/sup 0/C, which is of greater interest to the geothermal industry. Future studies will include laboratory adsorption experiments to identify possibly unwanted adsorption on granite, development of sensitive analytical techniques, and a field demonstration of the reactive tracer concept.

Robinson, B.A.; Birdsell, S.A.

1987-01-01T23:59:59.000Z

460

Reactivity impact of delayed neutron spectra on MCNP calculations  

SciTech Connect (OSTI)

The new features in MCNP4C, the latest version of the MCNP Monte Carlo code, include the capability to sample from delayed as well as prompt fission emission spectra. Previous versions of MCNP all have sampled exclusively from prompt spectra. Delayed neutrons typically account for <1% of all neutrons emitted from fission, but the emission spectra for delayed neutrons are somewhat softer than those for prompt neutrons. Because of the softer spectrum, delayed neutrons are less likely to leak from the system, and they also are less likely to cause fission in isotopes that have an effective threshold for fission (e.g., {sup 238}U and {sup 240}Pu). Consequently, the inclusion of delayed neutron spectra can have a small but significant effect on reactivity calculations. This study performs MCNP4C calculations for a series of established benchmarks and quantifies the reactivity impact of the delayed neutron spectra.

Mosteller, R.D.; Werner, C.J.

2000-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol-borne reactive oxygen" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Engine combustion control at low loads via fuel reactivity stratification  

DOE Patents [OSTI]

A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2014-10-07T23:59:59.000Z

462

Reactive Membrane Barriers for Containment of Subsurface Contamination  

SciTech Connect (OSTI)

The overall goal of this project was to develop reactive membrane barriers--a new and flexible technique to contain and stabilize subsurface contaminants. Polymer membranes will leak once a contaminant is able to diffuse through the membrane. By incorporating a reactive material in the polymer, however, the contaminant is degraded or immobilized within the membrane. These processes increase the time for contaminants to breakthrough the barrier (i.e. the lag time) and can dramatically extend barrier lifetimes. In this work, reactive barrier membranes containing zero-valent iron (Fe{sup 0}) or crystalline silicotitanate (CST) were developed to prevent the migration of chlorinated solvents and cesium-137, respectively. These studies were complemented by the development of models quantifying the leakage/kill time of reactive membranes and describing the behavior of products produced via the reactions within the membranes. First, poly(vinyl alcohol) (PVA) membranes containing Fe{sup 0} and CST were prepared and tested. Although PVA is not useful in practical applications, it allows experiments to be performed rapidly and the results to be compared to theory. For copper ions (Cu{sup 2+}) and carbon tetrachloride, the barrier was effective, increasing the time to breakthrough over 300 times. Even better performance was expected, and the percentage of the iron used in the reaction with the contaminants was determined. For cesium, the CST laden membranes increased lag times more than 30 times, and performed better than theoretical predictions. A modified theory was developed for ion exchangers in reactive membranes to explain this result. With the PVA membranes, the effect of a groundwater matrix on barrier performance was tested. Using Hanford groundwater, the performance of Fe{sup 0} barriers decreased compared to solutions containing a pH buffer and high levels of chloride (both of which promote iron reactivity). For the CST bearing membrane, performance improved by a factor of three when groundwater was used in place of deionized water. The performance of high density polyethylene (HDPE) membranes containing Fe{sup 0} was then evaluating using carbon tetrachloride as the target contaminant. Only with a hydrophilic additive (glycerol), was the iron able to extend lag times. Lag times were increased by a factor of 15, but only 2-3% of the iron was used, likely due to formation of oxide precipitates on the iron surface, which slowed the reaction. With thicker membranes and lower carbon tetrachloride concentrations, it is expected that performance will improve. Previous models for reactive membranes were also extended. The lag time is a measurement of when the barrier is breached, but contaminants do slowly leak through prior to the lag time. Thus, two parameters, the leakage and the kill time, were developed to determine when a certain amount of pollutant has escaped (the kill time) or when a given exposure (concentration x time) occurs (the leakage). Finally, a model was developed to explain the behavior of mobile reaction products in reactive barrier membranes. Although the goal of the technology is to avoid such products, it is important to be able to predict how these products will behave. Interestingly, calculations show that for any mobile reaction products, one half of the mass will diffuse into the containment area and one half will escape, assuming that the volumes of the containment area and the surrounding environment are much larger than the barrier membrane. These parameters/models will aid in the effective design of barrier membranes.

William A. Arnold; Edward L. Cussler

2007-02-26T23:59:59.000Z

463

Catalytic destruction of groundwater contaminants in reactive extraction wells  

DOE Patents [OSTI]

A system for remediating groundwater contaminated with halogenated solvents, certain metals and other inorganic species based on catalytic reduction reactions within reactive well bores. The groundwater treatment uses dissolved hydrogen as a reducing agent in the presence of a metal catalyst, such a palladium, to reduce halogenated solvents (as well as other substituted organic compounds) to harmless species (e.g., ethane or methane) and immobilize certain metals to low valence states. The reactive wells function by removing water from a contaminated water-bearing zone, treating contaminants with a well bore using catalytic reduction, and then reinjecting the treated effluent into an adjacent water-bearing zone. This system offers the advantages of a compact design with a minimal surface footprint (surface facilities) and the destruction of a broad suite of contaminants without generating secondary waste streams.

McNab, Jr., Walt W. (Concord, CA); Reinhard, Martin (Stanford, CA)

2002-01-01T23:59:59.000Z

464

Oxygen diffusion, surface exchange and oxygen semi-permeation performances of Ln2NiO4+ membranes (Ln = La, Pr and Nd)  

E-Print Network [OSTI]

Oxygen diffusion, surface exchange and oxygen semi-permeation performances of Ln2NiO4+ membranes the rate determining step (rds) in oxygen semi-permeation of dense Ln2NiO4+ membranes (with Ln = La, Pr and Nd), a specific setup has been designed, which allowed measuring the oxygen semi-permeation flux

Paris-Sud XI, Université de

465

Oxygen Modulation via Microfluidic Devices Oxygen is a key but under-studied metabolic variable. It influences biological phenomena as diverse as  

E-Print Network [OSTI]

Oxygen Modulation via Microfluidic Devices Oxygen is a key but under-studied metabolic variable methods to modulate oxygen are crude and inefficient. Our lab has developed a suite of devices which can rapidly alter oxygen conditions surrounding cells in both position and time.[1-3]. Moreover, because

Ben-Arie, Jezekiel

466

Dynamics of inelastic and reactive gas-surface collisions  

SciTech Connect (OSTI)

The dynamics of inelastic and reactive collisions in atomic beam-surface scattering are presented. The inelastic scattering of hyperthermal rare gaseous atoms from three alkali halide surfaces (LiF, NaCl, GI)was studied to understand mechanical energy transfer in unreactive systems. The dynamics of the chemical reaction in the scattering of H(D) atoms from the surfaces of LIF(001) and the basal plane of graphite were also studied.

Smoliar, L.A.

1995-04-01T23:59:59.000Z

467

Reactive Distillation for Esterification of Bio-based Organic Acids  

SciTech Connect (OSTI)

The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.

Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

2008-09-23T23:59:59.000Z

468

Parallel computation of multigroup reactivity coefficient using iterative method  

SciTech Connect (OSTI)

One of the research activities to support the commercial radioisotope production program is a safety research target irradiation FPM (Fission Product Molybdenum). FPM targets form a tube made of stainless steel in which the nuclear degrees of superimposed high-enriched uranium. FPM irradiation tube is intended to obtain fission. The fission material widely used in the form of kits in the world of nuclear medicine. Irradiation FPM tube reactor core would interfere with performance. One of the disorders comes from changes in flux or reactivity. It is necessary to study a method for calculating safety terrace ongoing configuration changes during the life of the reactor, making the code faster became an absolute necessity. Neutron safety margin for the research reactor can be reused without modification to the calculation of the reactivity of the reactor, so that is an advantage of using perturbation method. The criticality and flux in multigroup diffusion model was calculate at various irradiation positions in some uranium content. This model has a complex computation. Several parallel algorithms with iterative method have been developed for the sparse and big matrix solution. The Black-Red Gauss Seidel Iteration and the power iteration parallel method can be used to solve multigroup diffusion equation system and calculated the criticality and reactivity coeficient. This research was developed code for reactivity calculation which used one of safety analysis with parallel processing. It can be done more quickly and efficiently by utilizing the parallel processing in the multicore computer. This code was applied for the safety limits calculation of irradiated targets FPM with increment Uranium.

Susmikanti, Mike [Center for Development of Nuclear Informatics, National Nuclear Energy Agency of Indonesia PUSPIPTEK Area, Tangerang (Indonesia)] [Center for Development of Nuclear Informatics, National Nuclear Energy Agency of Indonesia PUSPIPTEK Area, Tangerang (Indonesia); Dewayatna, Winter [Center for Nuclear Fuel Technology, National Nuclear Energy Agency of Indonesia PUSPIPTEK Area, Tangerang (Indonesia)] [Center for Nuclear Fuel Technology, National Nuclear Energy Agency of Indonesia PUSPIPTEK Area, Tangerang (Indonesia)

2013-09-09T23:59:59.000Z

469

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network [OSTI]

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

2010-08-04T23:59:59.000Z

470

Flammability of selected heat resistant alloys in oxygen gas mixtures  

SciTech Connect (OSTI)

Within recent years, the use of oxygen has increased in applications where elevated temperatures and corrosion may be significant factors. In such situations, traditional alloys used in oxygen systems will not be adequate. Where alternative alloys must be utilized, based upon environmental requirements, it is essential that they may be characterized with respect to their ignition and combustion resistance in oxygen. Promoted ignition and promoted ignition-combustion are terms which have been used to describe a situation where a substance with low oxygen supports the combustion of a compatibility ignites and more ignition resistant material. In this paper, data will be presented on the promoted ignition-combustion behavior of selected heat resistant engineering alloys that may be considered for gaseous oxygen applications in severe environments. In this investigation, alloys have been evaluated via both flowing and static (fixed volume) approaches using a rod configuration. Oxygen-nitrogen gas mixtures with compositions ranging from approximately 40 to 99.7% oxygen at pressures of 3.55 to 34.6 MPa were used in the comparative studies.

Zawierucha, R.; McIlroy, K.; Million, J.F. [Praxair, Inc., Tonawanda, NY (United States)

1995-12-31T23:59:59.000Z

471

Increased intrapulmonary retention of radiolabeled neutrophils in early oxygen toxicity  

SciTech Connect (OSTI)

Sequential lung injuries, such as oxygen toxicity followed by septicemia, are common during the adult respiratory distress syndrome (ARDS). As these forms of vascular injury may be mediated in part by polymorphonuclear leukocytes (PMN), aberrant interactions between PMN and previously injured pulmonary endothelium are of both theoretical interest and clinical importance. The present study was undertaken to test the hypothesis that early oxygen toxicity at a dose that injuries pulmonary endothelium relatively selectively alters intrapulmonary neutrophil kinetics. Unanesthetized rats breathing 1.0 atmospheres oxygen for 36 h showed ultrastructural endothelial damage but no edema, injury, or neutrophilic inflammation by histologic criteria. However, in these oxygen-toxic animals, whereas initial accumulation of radiolabeled PMN in lungs was normal, washout of PMN was abnormal at 120 min after infusion, at which point the pulmonary retention of radiolabeled PMN in the lungs of oxygen-treated animals was significantly higher than in control animals (139% of control, p less than 0.0096). Features of our methodology, including avoidance of osmotic stress and use of paired control animals, appear to have greatly enhanced the sensitivity of radiolabeled neutrophils for detecting a subtle abnormality of neutrophil-endothelial interactions. Our studies in the oxygen toxicity model provide the first demonstration in vivo of abnormal intrapulmonary neutrophil kinetics in early oxygen toxicity prior to the onset of histologic evidence of lung injury or inflammation.

Rinaldo, J.E.; English, D.; Levine, J.; Stiller, R.; Henson, J.

1988-02-01T23:59:59.000Z

472

Measuring oxygen reduction/evolution reactions on the nanoscale  

SciTech Connect (OSTI)

The efficiency of fuel cells and metal-air batteries is significantly limited by the activation of oxygen reduction and evolution reactions (ORR/OER). Despite the well-recognized role of oxygen reaction kinetics on the viability of energy technologies, the governing mechanisms remain elusive and until now addressable only by macroscopic studies. This lack of nanoscale understanding precludes optimization of material architecture. Here we report direct measurements of oxygen reduction/evolution reactions and oxygen vacancy diffusion on oxygen-ion conductive solid surfaces with sub-10 nanometer resolution. In electrochemical strain microscopy (ESM), the biased scanning probe microscopy tip acts as a moving, electrocatalytically active probe exploring local electrochemical activity. The probe concentrates an electric field in a nanometer-scale volume of material, and bias-induced, picometer-level surface displacements provide information on local electrochemical processes. Systematic mapping of oxygen activity on bare and Pt-functionalized yttria-stabilized zirconia (YSZ) surfaces is demonstrated. This approach allows directly visualization of ORR/OER activation process at the triple-phase boundary, and can be extended to broad spectrum of oxygen-conductive and electrocatalytic materials.

Kalinin, Sergei V [ORNL; Jesse, Stephen [ORNL; Kumar, Amit [ORNL; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Ciucci, Francesco [Harvard-Smithsonian Center for Astrophysics

2011-01-01T23:59:59.000Z

473

Influence of geometry on liquid oxygen magnetohydrodynamics  

SciTech Connect (OSTI)

Magnetic fluid actuators have performed well in industrial applications, but have a limited temperature range due to the freezing point of the carrier fluid. Liquid oxygen (LOX) presents a pure, paramagnetic fluid suitable for use in a cryogenic magnetic fluid system; therefore, it is a potential solution to increasing the thermal range of magnetic fluid technology without the need for magnetic particles. The current study presents experimental work regarding the influence of geometry on the dynamics of a LOX slug in a 1.9 mm quartz tube when pulsed by a solenoid in a closed volume. A numerical analysis calculated the optimal solenoid geometry and balanced the magnetic, damping, and pressure forces to determine optimal slug lengths. Three configurations comprised the experiment: (1) a 24-gauge wire solenoid with an optimized 2.7 cm length slug, (2) a 30-gauge wire solenoid with an optimized 1.3 cm length slug, and (3) a 30-gauge wire solenoid with a nonoptimized 2.5 cm length slug. Typically, the hydrodynamic breakdown limit is calculated and used to determine the system range; however the experiment showed that the hydrodynamic breakdown limit was never reached by the slug. This implied that, instead, the system range should factor in a probabilistic risk of failure calculated as a function of the induced pressure change from its oscillations. The experimental data were also used to establish a nondimensional relationship between the maximum displacement and initial magnetic pressure on the slug. The average initial velocity of the slug was found to be proportional to the initial magnetic pressure, Mason number, and slug length. The results of this study can be used in the design and optimization of a LOX fluid system for space or low-temperature applications. (author)

Boulware, Jeffrey C.; Ban, Heng [Department of Mechanical and Aerospace Engineering, Utah State University, 4130 Old Main Hill, Logan, UT 84322-4130 (United States); Jensen, Scott; Wassom, Steve [Space Dynamics Laboratory, Utah State University Research Foundation, 1695 North Research Park Way, North Logan, UT 84341 (United States)

2010-11-15T23:59:59.000Z

474

Ionic Liquids: Radiation Chemistry, Solvation Dynamics and Reactivity Patterns  

SciTech Connect (OSTI)

Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs generally have low volatilities and are combustion-resistant, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of primary radiation chemistry, charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of reactions and product distributions. We study these issues by characterization of primary radiolysis products and measurements of their yields and reactivity, quantification of electron solvation dynamics and scavenging of electrons in different states of solvation. From this knowledge we wish to learn how to predict radiolytic mechanisms and control them or mitigate their effects on the properties of materials used in nuclear fuel processing, for example, and to apply IL radiation chemistry to answer questions about general chemical reactivity in ionic liquids that will aid in the development of applications listed above. Very early in our radiolysis studies it became evident that the slow solvation dynamics of the excess electron in ILs (which vary over a wide viscosity range) increase the importance of pre-solvated electron reactivity and consequently alter product distributions and subsequent chemistry. This difference from conventional solvents has profound effects on predicting and controlling radiolytic yields, which need to be quantified for the successful use under radiolytic conditions. Electron solvation dynamics in ILs are measured directly when possible and estimated using proxies (e.g. coumarin-153 dynamic emission Stokes shifts or benzophenone anion solvation) in other cases. Electron reactivity is measured using ultrafast kinetics techniques for comparison with the solvation process.

Wishart, J.F.

2011-06-12T23:59:59.000Z

475

Boron nitride nanosheets as oxygen-atom corrosion protective coatings  

SciTech Connect (OSTI)

The research of two-dimensional nanomaterials for anticorrosion applications is just recently burgeoning. Herein, we demonstrate the boron nitride nanosheets (BNNSs) coatings for protecting polymer from oxygen-atom corrosion. High-quality BNNSs, which are produced by an effective fluid dynamics method with multiple exfoliation mechanisms, can be assembled into coatings with controlled thickness by vacuum filtration. After exposed in atom oxygen, the naked polymer is severely corroded with remarkable mass loss, while the BNNSs-coated polymer remains intact. Barrier and bonding effects of the BNNSs are responsible for the coating's protective performance. These preliminary yet reproducible results pave a way for resisting oxygen-atom corrosion.

Yi, Min [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Shen, Zhigang, E-mail: shenzhg@buaa.edu.cn [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Zhao, Xiaohu [Plasma Laboratory, Ministry-of-Education Key Laboratory of Fluid Mechanics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Liang, Shuaishuai [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Liu, Lei [Beijing Key Laboratory for Powder Technology Research and Development, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); School of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China)

2014-04-07T23:59:59.000Z

476

THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS  

SciTech Connect (OSTI)

At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

Ramasamy, Karthikeyan K.; Wang, Yong

2013-06-01T23:59:59.000Z

477

Production of Ultra-Cold-Neutrons in Solid ?-Oxygen  

E-Print Network [OSTI]

Our recent neutron scattering measurements of phonons and magnons in solid \\alpha-oxygen have led us to a new understanding of the production mechanismen of ultra-cold-neutrons (UCN) in this super-thermal converter. The UCN production in solid \\alpha-oxygen is dominated by the excitation of phonons. The contribution of magnons to UCN production becomes only slightly important above E >10 meV and at E >4 meV. Solid \\alpha-oxygen is in comparison to solid deuterium less effcient in the down-scattering of thermal or cold neutrons into the UCN energy regime.

E. Gutsmiedl; A. Frei; F. Boehle; A. Maier; S. Paul; H. Schober; A. Orecchini

2010-07-30T23:59:59.000Z

478

Hydrogen Production Using Hydrogenase-Containing Oxygenic Photosynthetic Organisms  

DOE Patents [OSTI]

A reversible physiological process provides for the temporal separation of oxygen evolution and hydrogen production in a microorganism, which includes the steps of growing a culture of the microorganism in medium under illuminated conditions to accumulate an endogenous substrate, depleting from the medium a nutrient selected from the group consisting of sulfur, iron, and/or manganese, sealing the culture from atmospheric oxygen, incubating the culture in light whereby a rate of light-induced oxygen production is equal to or less than a rate of respiration, and collecting an evolved gas. The process is particularly useful to accomplish a sustained photobiological hydrogen gas production in cultures of microorganisms, such as Chlamydomonas reinhardtii.

Melis, A.; Zhang, L.; Benemann, J. R.; Forestier, M.; Ghirardi, M.; Seibert, M.

2006-01-24T23:59:59.000Z

479

Solid phases of spatially nanoconfined oxygen: A neutron scattering study  

SciTech Connect (OSTI)

We present a comprehensive neutron scattering study on solid oxygen spatially confined in 12 nm wide alumina nanochannels. Elastic scattering experiments reveal a structural phase sequence known from bulk