Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing  

SciTech Connect (OSTI)

Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

Ghan, Steven J.

2013-10-09T23:59:59.000Z

2

E-Print Network 3.0 - aerosol radiative forcing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No. DE- Summary: : WHY MEASUREMENTS ALONE CANNOT QUANTIFY AEROSOL RADIATIVE FORCING OF CLIMATE CHANGE Stephen E. Schwartz... of radiative forcing of climate change by aerosols,...

3

Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?  

SciTech Connect (OSTI)

Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

2013-06-17T23:59:59.000Z

4

Contrasting the direct radiative effect and direct radiative forcing of aerosols  

E-Print Network [OSTI]

The direct radiative effect (DRE) of aerosols, which is the instantaneous radiative impact of all atmospheric particles on the Earth's energy balance, is sometimes confused with the direct radiative forcing (DRF), which ...

Heald, Colette L.

5

Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing  

Science Journals Connector (OSTI)

The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic ...

S. J. Ghan; X. Liu; R. C. Easter; R. Zaveri; P. J. Rasch; J.-H. Yoon; B. Eaton

2012-10-01T23:59:59.000Z

6

Indirect radiative forcing by ion-mediated nucleation of aerosol  

SciTech Connect (OSTI)

A clear understanding of particle formation mechanisms is critical for assessing aerosol indirect radiative forcing and associated climate feedback processes. Recent studies reveal the importance of ion-mediated nucleation (IMN) in generating new particles and cloud condensation nuclei (CCN) in the atmosphere. Here we implement for the first time a physically based treatment of IMN into the Community Atmosphere Model version 5. Our simulations show that, compared to globally averaged results based on binary homogeneous nucleation (BHN), the presence of ionization (i.e., IMN) halves H2SO4 column burden, but increases the column integrated nucleation rate by around one order of magnitude, total particle number burden by a factor of ~ 3, CCN burden by ~ 10% (at 0.2% supersaturation) to 65% (at 1.0% supersaturation), and cloud droplet number burden by ~ 18%. Compared to BHN, IMN increases cloud liquid water path by 7.5%, decreases precipitation by 1.1%, and increases total cloud cover by 1.9%. This leads to an increase of total shortwave cloud radiative forcing by 3.67 W/m2 (more negative) and longwave cloud forcing by 1.78 W/m2 (more positive), resulting in a -1.9 W/m2 net change in cloud radiative forcing associated with IMN. The significant impacts of ionization on global aerosol formation, CCN abundance, and cloud radiative forcing may provide an important physical mechanism linking the global energy balance to various processes affecting atmospheric ionization, which should be properly represented in climate models.

Yu, Fangqun; Luo, Gan; Liu, Xiaohong; Easter, Richard C.; Ma, Xiaoyan; Ghan, Steven J.

2012-12-03T23:59:59.000Z

7

Direct Aerosol Forcing Uncertainty  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

Mccomiskey, Allison

8

The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing  

SciTech Connect (OSTI)

Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

Ricchiazzi, P.; O'Hirok, W.; Gautier, C.

2005-03-18T23:59:59.000Z

9

Aerosol Radiative Forcing Under Cloudless Conditions.in Winter ZCAREX-2001  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forcing Under Cloudless Conditions Forcing Under Cloudless Conditions in Winter ZCAREX-2001 G. S. Golitsyn, I. A. Gorchakova, and I. I. Mokhov Institute of Atmospheric Physic Moscow, Russia Introduction Aerosol radiative forcing (ARF) is estimated for winter clear-sky conditions from measurements during ZCAREX-2001-Cloud-Aerosol-Radiation Experiment in February-March, 2001 at the Zvenigorod Scientific Station (ZSS) of the A.M. Obukhov Institute of Atmospheric Physics RAS. ARF in the shortwave range is determined by the difference between the net fluxes of the solar radiation, calculated with and without the aerosol component of the atmosphere. The estimates of ARF are made for conditions with high surface albedo. Data Used The following data of atmospheric characteristics observed during winter are used for the

10

Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing  

SciTech Connect (OSTI)

A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2012-07-25T23:59:59.000Z

11

Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing  

SciTech Connect (OSTI)

Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energys (DOEs) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

2013-11-01T23:59:59.000Z

12

Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval  

E-Print Network [OSTI]

, New Mexico, USA Michael Mishchenko Goddard Institute for Space Studies, NASA, New York, New York, USA between t = 0.1 and t = 0.8. The Department of Energy research satellite instrument, the Multispectral [Hobbs et al., 1997]. The aerosols' direct effect involves their interaction with solar and terrestrial

13

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

14

Linking future aerosol radiative forcing to shifts in source activities Dorothy Koch,1  

E-Print Network [OSTI]

because of economic growth, or the desire to mitigate climate effects or improve air quality, affect all or 'black carbon' (BC) that also absorb incoming solar radiation, exert a positive radiative forcing depend upon fuels burned and technologies used in various energy- related activities. Actions that occur

15

Response of the NCAR Community Climate Model to the Radiative Forcing by the Naturally Occurring Tropospheric Aerosol  

Science Journals Connector (OSTI)

We insert the effect of naturally occurring tropospheric aerosols on solar radiation into the NCAR Community Climate Model (CCM). The effect of the aerosol depends on concentration and type (continental, maritime), surface albedo, solar zenith ...

James A. Coakley Jr.; Robert D. Cess

1985-08-01T23:59:59.000Z

16

CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan  

SciTech Connect (OSTI)

Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-05-27T23:59:59.000Z

17

Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia  

SciTech Connect (OSTI)

Biomass burning is a major source of aerosols and air pollutants during the springtime in Southeast Asia. At Lulin mountain background station (elevation 2862 m) in Taiwan, the concentrations of carbon monoxide (CO), ozone (O3) and particulate matter particles with diameter less than 10 ?m (PM10), were measured around 150-250 ppb, 40-60 ppb, and 10-30?g/m3, respectively at spring time (February-April) during 2006 and 2009, which are about 2~3 times higher than those in other seasons. Observations and simulation results indicate that the higher concentrations during the spring time are clearly related to biomass burning plumes transported from the Indochina Peninsula of Southeast Asia. The spatial distribution of high aerosols optical depth (AOD) were identified by the satellite measurement and Aerosol Robotic Network (AERONET) ground observation, and could be reasonably captured by the WRF-Chem model during the study period of 15-18 March, 2008. AOD reached as high as 0.8-1.0 in Indochina ranging from 10 to 22N and 95 to 107E. Organic carbon (OC) is a major contributor of AOD over Indochina according to simulation results. The contributor of AOD from black carbon (BC) is minor when compared with OC over the Indochina. However, the direct absorption radiative forcing of BC in the atmosphere could reach 35-50 W m-2, which is about 8-10 times higher than that of OC. The belt shape of radiation reduction at surface from Indochina to Taiwan could be as high 20-40 W m-2 during the study period. The implication of the radiative forcing from biomass burning aerosols and their impact on the regional climate in East Asia is our major concern.

Lin, Chuan-Yao; Zhao, Chun; Liu, Xiaohong; Lin, Neng-Huei; Chen, Wei-Nei

2014-10-12T23:59:59.000Z

18

Carbonaceous Aerosols and Radiative...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and absorption of light by aerosols. At the ground sites, a new Humidigraph, a Cloud Condensation Nuclei Counter, a Scanning Mobility Particle Sizer, and an upgraded 915-MHz...

19

Direct Aerosol Forcing in the Infrared at the SGP Site?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

20

ARM - Measurement - Aerosol backscattered radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

backscattered radiation backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System MPL : Micropulse Lidar NEPHELOMETER : Nephelometer

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

SciTech Connect (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

22

E-Print Network 3.0 - aerosol code comparisons Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Ecology 4 Estimates of global radiative forcing derived from the GlobAEROSOL dataset Summary: -sky direct aerosol radiative forcing. The Edwards and Slingo (1996)...

23

ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) Campaign Links CARES Website Related Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding 2010.05.26, Zaveri, OSC Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light Absorption and Scattering 2010.05.26, Arnott, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES): SMPS & CCN counter deployment during CARES/Cal-NEx 2010.05.04, Wang, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES) Ground Based Instruments 2010.04.01, Cziczo, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiative Effects Study (CARES)

24

Radiative forcing in the ACCMIP historical and future climate simulations  

SciTech Connect (OSTI)

The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) ?0.26Wm?2; ?0.06 to ?0.49Wm?2. Screening based on model skill in capturing observed AOD yields a best estimate of ?0.42Wm?2; ?0.33 to ?0.50Wm?2, including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to ?58 %) to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is ?1.17Wm?2; ?0.71 to ?1.44Wm?2. Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF peaks in most models around 1980, declining thereafter with only weak sensitivity to the Representative Concentration Pathway (RCP). One model, however, projects approximately stable RF levels, while two show increasingly negative RF due to nitrate (not included in most models). Aerosol ERF, in contrast, becomes more negative during 1980 to 2000. During this period, increased Asian emissions appear to have a larger impact on aerosol ERF than European and North American decreases due to their being upwind of the large, relatively pristine Pacific Ocean. There is no clear relationship between historical aerosol ERF and climate sensitivity in the CMIP5 subset of ACCMIP models. In the ACCMIP/CMIP5 models, historical aerosol ERF of about ?0.8 to ?1.5Wm?2 is most consistent with observed historical warming. Aerosol ERF masks a large portion of greenhouse forcing during the late 20th and early 21st century at the global scale. Regionally, aerosol ERF is so large that net forcing is negative over most industrialized and biomass burning regions through 1980, but remains strongly negative only over east and southeast Asia by 2000. Net forcing is strongly positive by 1980 over most deserts, the Arctic, Australia, and most tropical oceans. Both the magnitude of and area covered by positive forcing expand steadily thereafter.

Shindell, Drew; Lamarque, J.-F.; Schulz, M.; Flanner, M. G.; Jiao, C.; Chin, Mian; Young, P. J.; Lee, Y. H.; Rotstayn, Leon; Mahowald, N. M.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, Andrew; Dalsoren, S.; Easter, Richard C.; Ghan, Steven J.; Horowitz, L.; Liu, Xiaohong; Myhre, G.; Nagashima, T.; Naik, Vaishali; Rumbold, S.; Skeie, R. B.; Sudo, K.; Szopa, S.; Takemura, T.; Voulgarakis, A.; Yoon, Jin-Ho; Lo, Fiona

2013-03-15T23:59:59.000Z

25

E-Print Network 3.0 - aerosol condensation model Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science Collection: Environmental Sciences and Ecology 8 DETERMINING AEROSOL RADIATIVE FORCING AT ARM SITES Summary: OF AEROSOL DIRECT FORCING By linear model and by...

26

Mechanisms of aerosol-forced AMOC variability in a state of the art climate model  

E-Print Network [OSTI]

with a new state-of-the-art Earth system model. Anthropogenic aerosols have previously been highlighted anthropogenic aerosols force a strengthening of the AMOC by up to 20% in our state-of-the-art Earth system model

27

ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP Campaign Links Science Plan AMF Point Reyes Website AMF Point Reyes Data Plots Related Campaigns MASRAD: Pt. Reyes Stratus Cloud and Drizzle Study 2005.07.07, Coulter, AMF MASRAD: Cloud Condensate Nuclei Chemistry Measurements 2005.07.01, Berkowitz, AMF MASRAD - Aerosol Optical Properties 2005.06.29, Strawa, AMF MASRAD:Sub-Micron Aerosol Measurements 2005.06.20, Wang, AMF MASRAD: Cloud Study from the 2NFOV at Pt. Reyes Field Campaign 2005.06.02, Wiscombe, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : MArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP 2005.03.14 - 2005.09.14 Website : http://www.arm.gov/sites/amf/pye/ Lead Scientist : Mark Miller

28

ARM - Field Campaign - Shortwave Radiation and Aerosol Intensive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsShortwave Radiation and Aerosol Intensive Observation govCampaignsShortwave Radiation and Aerosol Intensive Observation Periods Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Shortwave Radiation and Aerosol Intensive Observation Periods 1998.08.03 - 1998.08.28 Lead Scientist : Warren Wiscombe For data sets, see below. Summary Wednesday, August 5, 1998: IOP Opening Activities: The IOP updates for the Shortwave/Aerosol/BDRF will be composed from notes taken during briefing sessions lead by Don Cahoon and company each night at the Marland Mansion in Ponca City. IOP Status as of 8/4/98 Weather forecasts indicate that cloudy conditions will prevail for the next few days. The Helicopter is on standby for clear sky conditions. Model output indicates clear sky's may move in later this week.

29

Radiative forcing due to changes in ozone and methane caused by the transport sector  

E-Print Network [OSTI]

., 2008). This switch for SHIP is partly due to the strong direct and indirect aerosol effect from SHIP in revised form 27 September 2010 Accepted 4 October 2010 Keywords: Radiative forcing GWP GTP Shipping SHIPping and AIRcraft) are calculated using results from five global atmospheric chemistry models. Using

Haak, Hein

30

Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Aerosol Models for Radiative Flux Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology E. Andrews Cooperative Institute for Research in the Environment University of Colorado Boulder, Colorado E. Andrews, J. A. Ogren, P. J. Sheridan, and J. M. Harris Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. K. Quinn Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington Abstract The uncertainties associated with assumptions of generic aerosol properties in radiative transfer codes are unknown, which means that these uncertainties are frequently invoked when models and

31

Reflective 'cool' roofs under aerosol-burdened skies: radiative benefits across selected Indian cities  

Science Journals Connector (OSTI)

The use of reflective surfaces offers one low-cost solution for reducing solar loading to urban environments and the Earth that should be considered as part of sustainable urban design. Here, we characterize the radiative benefits, i.e. the additional shortwave radiation leaving the atmosphere, from the installation of highly reflective 'cool' roofs in urban areas in India that face relatively large local aerosol burdens. We use a previously tested column radiative transfer model to estimate the energy per unit area reflected to space from increasing the surface albedo at six cities within India. The model is used to characterize radiative transfer each day over five years (20082012) based on mid-day satellite retrievals of MODIS aerosol depth, cloud water path, and average surface albedo and MERRA atmospheric profiles of temperature and composition. Compared against ten months of field observations in two cities, the model derived incoming surface shortwave radiation estimates relative to observations show small biases (0.5% and ?2.6%, at Pantnagar and Nainital, respectively). Despite the high levels of local aerosols we found cool roofs provided significant radiative benefits at all locations. Averaged over the five year period we found that increasing the albedo of 1 m2 of roof area by 0.5 would reflect to space 0.91.2 kWh daily from 08:3015:30 LST, depending on location. This is equivalent to a constant forcing of 3750 W m?2 (equivalent to reducing CO2 emissions by 74 to 101 kg CO2 m?2 roof area). Last, we identify a co-benefit of improving air quality, in that removing aerosols from the atmosphere could increase the radiative benefits from cool roofs by 2374%, with the largest potential increase found at Delhi and the smallest change found at Nainital.

D E Millstein; M L Fischer

2014-01-01T23:59:59.000Z

32

Anthropogenic NO2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Anthropogenic NO Anthropogenic NO 2 in the Atmosphere: Estimates of the Column Content and Radiative Forcing A. N. Rublev Institution of Molecular Physics Russian Research Center Kurchatov Institute Moscow, Russia N Chubarova Meteorological Observatory of Moscow State University Moscow, Russia G. Gorchakov Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia Introduction The work summarizes the different methodical aspects, firstly, the use of atmosphere optical depths presented in Aerosol Robotic Network (AERONET) data for NO 2 column retrievals, and, secondly, its radiative forcing calculated as difference between integral solar fluxes absorbed in the atmosphere with and without NO 2 under given air mass or the sun zenith angle.

33

Assessment of Aerosol Radiative Impact over Oceanic Regions Adjacent to Indian Subcontinent using Multi-Satellite Analysis  

SciTech Connect (OSTI)

Using data from Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, we have retrieved regional distribution of aerosol column single scattering albedo (parameter indicative of the relative dominance of aerosol absorption and scattering effects), a most important, but least understood aerosol property in assessing its climate impact. Consequently we provide improved assessment of short wave aerosol radiative forcing (ARF) (on both regional and seasonal scales) estimates over this region. Large gradients in north-south ARF were observed as a consequence of gradients in single scattering albedo as well as aerosol optical depth. The highest ARF (-37 W m-2 at the surface) was observed over the northern Arabian Sea during June to August period (JJA). In general, ARF was higher over northern Bay of Bengal (NBoB) during winter and pre-monsoon period, whereas the ARF was higher over northern Arabian Sea (NAS) during the monsoon and post- monsoon period. The largest forcing observed over NAS during JJA is the consequence of large amounts of desert dust transported from the west Asian dust sources. High as well as seasonally invariant aerosol single scattering albedos (~0.98) were observed over the southern Indian Ocean region far from continents. The ARF estimates based on direct measurements made at a remote island location, Minicoy (8.3N, 73E) in the southern Arabian Sea are in good agreement with the estimates made following multisatellite analysis.

Satheesh, S. K.; Vinoj, V.; Krishnamoorthy, K.

2010-10-01T23:59:59.000Z

34

Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols  

Science Journals Connector (OSTI)

... The global model that I used was GATOR-GCMM, which treated gas, aerosol, radiative, meteorological and transport processes (see Supplementary ...

Mark Z. Jacobson

2001-02-08T23:59:59.000Z

35

Radiative Effects of Dust Aerosols, Natural Cirrus Clouds and Contrails: Broadband Optical Properties and Sensitivity Studies  

E-Print Network [OSTI]

This dissertation aims to study the broadband optical properties and radiative effects of dust aerosols and ice clouds. It covers three main topics: the uncertainty of dust optical properties and radiative effects from the dust particle shape...

Yi, Bingqi

2013-07-09T23:59:59.000Z

36

Direct radiative effect of aerosols emitted by transport from road, shipping and  

E-Print Network [OSTI]

Direct radiative effect of aerosols emitted by transport from road, shipping and aviation 1234567.0 License. Atmospheric Chemistry and Physics Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation Y. Balkanski1, G. Myhre2,3, M. Gauss2,*, G. R�adel4, E. J. Highwood4, and K

Wirosoetisno, Djoko

37

Updated radiative forcing estimates of 65 halocarbons and nonmethane  

E-Print Network [OSTI]

Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons 1234567 89A64BC7,493-20,505,SEPTEMBER 16,2001 Updated radiative forcing estimates of 65 halocarbons and nonmethane hydrocarbons Kamaljit representhemisphericdifferencesin water vapor, ozoneconcentrations,and cloud cover. Instantaneous,clear-skyradiative forcing

Wirosoetisno, Djoko

38

Direct and semi-direct radiative effects of anthropogenic aerosols in the Western United States: Seasonal  

E-Print Network [OSTI]

a regional climate model (RCM) in conjunction with the aerosol fields from a GEOS-Chem chemical- transport emissions and the seasonal low-level winds. The RCM-simulated anthropogenic aerosol radiative effects vary, respectively, following the seasonal AOD. In Arizona-New Mexico (AZNM), the effect of anthropogenic sulfates

Liou, K. N.

39

Aerosol optical properties and their radiative effects in northern Zhanqing Li,1,2,3  

E-Print Network [OSTI]

and may also affect the hydrologic cycle. By scattering and absorbing solar radiative energy, aerosols regions. The East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE on climate over China. This study presents some preliminary results using continuous high-quality

Dickerson, Russell R.

40

Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

Sedlacek, Art

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Aerosol Radiative Effects and Single-Scattering Properties in the Tropical Western Pacific  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects and Single-Scattering Properties Effects and Single-Scattering Properties in the Tropical Western Pacific A. M. Vogelmann and P. J. Flatau Center for Atmospheric Sciences Scripps Institution of Oceanography University of California San Diego, California M. A. Miller, M. J. Bartholomew, and R. M. Reynolds Brookhaven National Laboratory Upton, New York P. J. Flatau University Corporation for Atmospheric Research Naval Research Laboratory Monterey, California K. M. Markowicz Institute of Geophysics University of Warsaw Warsaw, Poland Introduction The Atmospheric Radiation Measurement (ARM) Tropical Western Pacific (TWP) sites are downwind from Southeast Asia where biomass burning occurs and can advect over the tropical warm pool. Previous research (Vogelmann 2001, 2002, 2003) indicates that aerosol forcing was particularly large

42

Acoustic radiation force-based elasticity imaging methods  

Science Journals Connector (OSTI)

...Wells Acoustic radiation force-based elasticity imaging...lesions. Acoustic radiation force-based elasticity imaging...properties of soft tissue. In Handbook of elastic properties of solids...W. , Trahey, G. 1995 A fundamental limit on delay estimation using...

2011-01-01T23:59:59.000Z

43

Radiative forcing from aircraft NOx emissions: Mechanisms and seasonal dependence  

E-Print Network [OSTI]

dependence. The long-term globally integrated annual mean net forcing calculated here is approximately zero, related to the annual cycle in photochemistry; the O3 radiative forcing calculations also have a seasonal, although earlier work suggests a small net positive forcing. The model design (e.g., upper tropospheric

44

Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

45

Will black carbon mitigation dampen aerosol indirect forcing?1 W.-T. Chen1  

E-Print Network [OSTI]

.J. Adams3 , A. Nenes4 , and J.H. Seinfeld5,* 2 1 Jet Propulsion Laboratory, Pasadena, CA, USA3 2 Department carbonaceous sources (fossil fuel, domestic biofuel, and20 biomass burning) (termed HC). Radiative forcing

Nenes, Athanasios

46

Nonlinear Effects of Coexisting Surface and Atmospheric Forcing of Anthropogenic Absorbing Aerosols: Impact on the South Asian Monsoon Onset  

E-Print Network [OSTI]

The direct radiative effect of absorbing aerosols consists of absorption-induced atmospheric heating together with scattering- and absorption-induced surface cooling. It is thus important to understand whether some of the ...

Lee, Shao-Yi

47

BNL | Aerosol, Cloud, Precipitation Interactions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud-Aerosol-Precipitation Interactions Cloud-Aerosol-Precipitation Interactions Atmospheric aerosols exert important "indirect effects" on clouds and climate by serving as cloud condensation nuclei (CCN) and ice nuclei that affect cloud radiative and microphysical properties. For example, an increase in CCN increases the number concentration of droplets enhances cloud albedo, and suppresses precipitation that alters cloud coverage and lifetime. However, in the case of moist and strong convective clouds, increasing aerosols may increase precipitation and enhance storm development. Although aerosol-induced indirect effects on climate are believed to have a significant impact on global climate change, estimating their impact continues to be one of the most uncertain climate forcings.

48

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Policy Applications Speaker(s): Susanne Bauer Date: December 6, 2011 - 4:00pm Location: 90-4133 Seminar Host/Point of Contact: Surabi Menon The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, However, understanding the net effect of multi-source emitting sectors and the involved cloud feedbacks is

49

Aerosol Observing System (AOS) Handbook  

SciTech Connect (OSTI)

The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earths radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

Jefferson, A

2011-01-17T23:59:59.000Z

50

Aerosol Radiative Forcing During Spring-Summer 2002 from Measurements...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A. M. Obukohov Institute of Atmospheric Physics Russian Academy of Science Moscow, Russia A. N. Rublev Russian Research Center Kurchatov Institute Moscow, Russia Introduction...

51

Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)  

SciTech Connect (OSTI)

Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes in climate models.

Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

2012-08-22T23:59:59.000Z

52

CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan  

SciTech Connect (OSTI)

The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-07-12T23:59:59.000Z

53

JANUARY 1998 5L I Influence of Absorbing Aerosols on the Inference of Solar Surface Radiation Budget  

E-Print Network [OSTI]

JANUARY 1998 5L I Influence of Absorbing Aerosols on the Inference of Solar Surface Radiation Budget and Cloud Absorption ZHANQING LI Canada Centre for Remote Sensing, Ottawa, Ontario, Canada of absorbing aerosols on the retrieval of the solar surface radiation budget (SSRB) and on the inference

Li, Zhanqing

54

Sensitivity of Clear-Sky Diffuse Radiation to In Situ Aerosol Scattering Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sensitivity of Clear-Sky Diffuse Radiation to In Situ Sensitivity of Clear-Sky Diffuse Radiation to In Situ Aerosol Scattering Parameters P. J. Ricchiazzi and C. Gautier University of California Santa Barbara, California Introduction Recent studies of clear-sky radiation indicate that current radiative transfer (RT) models underestimate atmospheric absorption when standard aerosol properties are used. This so-called clear-sky anomaly is manifested in predicted levels of diffuse radiation significantly below those observed at Southern Great Plains (SGP) and other sites in the continental United States (e.g., Halthore et al. 1998 GRL). Other observations at pristine sites do not show a discrepancy (Barnard and Powell 2001, 2001; Kato et al. 1997; Halthore 1998). These results may indicate that the clear-sky anomaly is only observed at sites

55

ARM - Publications: Science Team Meeting Documents: Cloud Radiative Forcing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Cloud Radiative Forcing at the ARM Climate Research Facility: Part 2. The Vertical Redistribution of Radiant Energy by Clouds. Mace, Gerald University of Utah Benson, Sally University of Utah Kato, Seiji Hampton University/NASA Langley Research Center Documentation with data of the effects of clouds on the radiant energy balance of the surface and atmosphere represent a critical shortcoming in the set of observations that are needed to ascertain the validity of model simulations of the earth's climate. While clouds are known to cool the climate system from TOA radiation budget studies, the redistribution of energy between the surface and atmosphere and within the atmosphere by clouds has not been examined in detail. Using data collected at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP)

56

AEROSOL DIRECT RADIATIVE EFFECTS OVER THE NORTHWEST ATLANTIC, NORTHWEST PACIFIC, AND NORTH INDIAN OCEANS  

E-Print Network [OSTI]

AEROSOL DIRECT RADIATIVE EFFECTS OVER THE NORTHWEST ATLANTIC, NORTHWEST PACIFIC, AND NORTH INDIAN, NORTHWEST PACIFIC, AND NORTH INDIAN OCEANS: ESTIMATES BASED ON IN-SITU CHEMICAL AND OPTICAL MEASUREMENTS, Y.24 , Tang, Y.25 , Weber, R. J.26 , and Wu, Y.27 1 NOAA/PMEL, 7600 Sand Point Way NE, Seattle, WA

57

Net radiative effect of dust aerosols from satellite measurements over Sahara  

E-Print Network [OSTI]

's Radiant Energy System (CERES) to calculate the top-of-atmosphere SW and LW flux radiative effect due to oceans where the shortwave effect dominates. Citation: Yang, E.-S., P. Gupta, and S. A. Christopher (2009 of aerosols, space-borne sensors use information from the ultraviolet (UV) to the visible and thermal infrared

Christopher, Sundar A.

58

ARM - Evaluation Product - Organic Aerosol Component VAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsOrganic Aerosol Component VAP ProductsOrganic Aerosol Component VAP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Organic Aerosol Component VAP 2011.01.08 - 2012.03.24 Site(s) SGP General Description Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10-90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties. This deficiency represents a large source of uncertainty in the quantification of aerosol direct and indirect effects and the prediction of future climate change. The Organic Aerosol Component (OACOMP) value-added product (VAP) uses

59

Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site  

SciTech Connect (OSTI)

Although shallow cumuli are common over large areas of the globe, their impact on the surface radiative forcing has not been carefully evaluated. This study addresses this shortcoming by analyzing data from days with shallow cumuli collected over eight summers (2000-2007) at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (collectively ACRF) Southern Great Plains site. During periods with clouds, the average shortwave and longwave radiative forcings are 45.5 W m-2 and +11.6 W m-2, respectively. The forcing has been defined so that a negative (positive) forcing indicates a surface cooling (warming). On average, the shortwave forcing is negative, however, instances with positive shortwave forcing are observed approximately 20% of the time. These positive values of shortwave forcing are associated with three-dimensional radiative effects of the clouds. The three-dimensional effects are shown to be largest for intermediate cloud amounts. The magnitude of the three-dimensional effects decreased with averaging time, but it is not negligibly small even for large averaging times as long as four hours.

Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Mills Jr., David L.

2011-01-08T23:59:59.000Z

60

Shortwave Spectral Radiative Forcing of Cumulus Clouds from Surface Observations  

SciTech Connect (OSTI)

The spectral changes of the total cloud radiative forcing (CRF) and its diffuse and direct components are examined by using spectrally resolved (visible spectral range) all-sky surface irradiances measured by Multi-Filter Rotating Shadowband Radiometer. We demonstrate: (i) the substantial contribution of the diffuse component to the total CRF, (ii) the well-defined spectral variations of total CRF in the visible spectral region, and (iii) the strong statistical relationship between spectral (500 nm) and shortwave broadband values of total CRF. Our results suggest that the framework based on the visible narrowband fluxes can provide important radiative quantities for rigorous evaluation of radiative transfer parameterizations and can be applied for estimation of the shortwave total CRF.

Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Long, Charles N.; Flynn, Connor J.

2011-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Direct Insertion of MODIS Radiances in a Global Aerosol Transport Model CLARK WEAVER,* ARLINDO DA SILVA, MIAN CHIN,# PAUL GINOUX,@ OLEG DUBOVIK,&,@@  

E-Print Network [OSTI]

is directly inserted into the Goddard Chemistry and Aerosol Radiation Transport model (GOCART), which aerosol radiative forcing in the thermody- namic equation of GCMs, 3) to account for the reduc- tionDirect Insertion of MODIS Radiances in a Global Aerosol Transport Model CLARK WEAVER,* ARLINDO DA

Chin, Mian

62

Effects of aerosols on deep convective cumulus clouds  

E-Print Network [OSTI]

This work investigates the effects of anthropogenic aerosols on deep convective clouds and the associated radiative forcing in the Houston area. The Goddard Cumulus Ensemble model (GCE) coupled with a spectral-bin microphysics is employed...

Fan, Jiwen

2009-05-15T23:59:59.000Z

63

Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site During the May 2003 Aerosol IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement and Modeling Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site During the May 2003 Aerosol IOP B. Schmid and J. Redemann Bay Area Environmental Research Institute National Aeronautics and Space Administration Ames Research Center Moffett Field, California W. P. Arnott Desert Research Institute Reno, Nevada A. Bucholtz and J. Reid Naval Research Laboratory Monterey, California P. Colarco Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland D. Covert and R. Elleman University of Washington Seattle, Washington J. Eilers, P. Pilewskie, and A. Strawa National Aeronautics and Space Administration Ames, Research Center Moffett Field, California R. A. Ferrare

64

Uncertainty in Modeling Dust Mass Balance and Radiative Forcing from Size Parameterization  

SciTech Connect (OSTI)

This study examines the uncertainties in simulating mass balance and radiative forcing of mineral dust due to biases in the aerosol size parameterization. Simulations are conducted quasi-globally (180oW-180oE and 60oS-70oN) using the WRF24 Chem model with three different approaches to represent aerosol size distribution (8-bin, 4-bin, and 3-mode). The biases in the 3-mode or 4-bin approaches against a relatively more accurate 8-bin approach in simulating dust mass balance and radiative forcing are identified. Compared to the 8-bin approach, the 4-bin approach simulates similar but coarser size distributions of dust particles in the atmosphere, while the 3-mode pproach retains more fine dust particles but fewer coarse dust particles due to its prescribed og of each mode. Although the 3-mode approach yields up to 10 days longer dust mass lifetime over the remote oceanic regions than the 8-bin approach, the three size approaches produce similar dust mass lifetime (3.2 days to 3.5 days) on quasi-global average, reflecting that the global dust mass lifetime is mainly determined by the dust mass lifetime near the dust source regions. With the same global dust emission (~6000 Tg yr-1), the 8-bin approach produces a dust mass loading of 39 Tg, while the 4-bin and 3-mode approaches produce 3% (40.2 Tg) and 25% (49.1 Tg) higher dust mass loading, respectively. The difference in dust mass loading between the 8-bin approach and the 4-bin or 3-mode approaches has large spatial variations, with generally smaller relative difference (<10%) near the surface over the dust source regions. The three size approaches also result in significantly different dry and wet deposition fluxes and number concentrations of dust. The difference in dust aerosol optical depth (AOD) (a factor of 3) among the three size approaches is much larger than their difference (25%) in dust mass loading. Compared to the 8-bin approach, the 4-bin approach yields stronger dust absorptivity, while the 3-mode approach yields weaker dust absorptivity. Overall, on quasi-global average, the three size parameterizations result in a significant difference of a factor of 2~3 in dust surface cooling (-1.02~-2.87 W m-2) and atmospheric warming (0.39~0.96 W m-2) and in a tremendous difference of a factor of ~10 in dust TOA cooling (-0.24~-2.20 W m-2). An uncertainty of a factor of 2 is quantified in dust emission estimation due to the different size parameterizations. This study also highlights the uncertainties in modeling dust mass and number loading, deposition fluxes, and radiative forcing resulting from different size parameterizations, and motivates further investigation of the impact of size parameterizations on modeling dust impacts on air quality, climate, and ecosystem.

Zhao, Chun; Chen, Siyu; Leung, Lai-Yung R.; Qian, Yun; Kok, Jasper; Zaveri, Rahul A.; Huang, J.

2013-11-05T23:59:59.000Z

65

Temperature rise and safety considerations for radiation force ultrasound imaging  

Science Journals Connector (OSTI)

Current models for estimating temperature increase during ultrasound exposure calculate the steady?state rise using time?averaged acoustic output as the worst case for safety consideration. While valid for the typically very short (microsecond) pulses used by conventional diagnostic techniques this analysis does not necessarily correspond to a worst case scenario for the longer pulses or pulse bursts used by a new method radiation force imaging. Radiation force imaging employing ultrasound pulse durations up to hundreds of milliseconds produces and detects motion in solid tissue or acoustic streaming in fluids via a high intensity beam. Models that calculate the transient temperature rise from these pulses are developed for both the bone at focus and soft tissue cases. Based on accepted timetemperature dose criteria it is shown that for pulse lengths and intensities utilized by this technique temperature may increase to levels that raise safety concerns for bone at the focus of the ultrasound beam. Also the impact on this modality of the current U.S. Food and Drug Administration output limits for diagnostic ultrasound devices is discussed.

Bruce A. Herman; Gerald R. Harris

2002-01-01T23:59:59.000Z

66

Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation  

SciTech Connect (OSTI)

Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR)'s Community Atmosphere Model (CAM5) with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7). Emissions of marine primary organic aerosols (POA), phytoplanktonproduced isoprene- and monoterpenes-derived secondary organic aerosols (SOA) and methane sulfonate (MS{sup -}) are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr{sup -1}, for the Gantt et al. (2011) and Vignati et al. (2010) emission parameterizations, respectively. Marine sources of SOA and particulate MS{sup -} (containing both sulfur and carbon atoms) contribute an additional 0.2 and 5.1 Tg yr{sup -1}, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ngm{sup -3}, with values up to 400 ngm{sup -3} over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM) with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2), both Gantt et al. (2011) and Vignati et al. (2010) formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011) parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN). The largest increases (up to 20 %) in CCN (at a supersaturation (S) of 0.2 %) number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming marine organics are internally-mixed with sea-salt provides diverse results with increases and decreases in the concentration of CCN over different parts of the ocean. The sign of the CCN change due to the addition of marine organics to seasalt aerosol is determined by the relative significance of the increase in mean modal diameter due to addition of mass, and the decrease in particle hygroscopicity due to compositional changes in marine aerosol. Based on emerging evidence for increased CCN concentration over biologically active surface ocean areas/periods, our study suggests that treatment of sea spray in global climate models (GCMs) as an internal mixture of marine organic aerosols and sea-salt will likely lead to an underestimation in CCN number concentration.

Meskhidze, N.; Xu, J.; Gantt, Brett; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

2011-11-23T23:59:59.000Z

67

Aerosol Modeling at LLNL - Our capability, results, and perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Indirect Effects to Cloud Aerosol Indirect Effects to Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 Over the Southern Great Plains during May 2003 IOP Lawrence Livermore National Laboratory This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Catherine Chuang, James Boyle Shaocheng Xie and James Kelly LLNL-POST-401948 March 11, 2008 Why are aerosol/cloud interactions important? The greatest uncertainty in the assessment of radiative forcing arises from the interactions of aerosols with clouds. Radiative forcing of climate between 1750 and 2005 (IPCC, 2007) Sources of uncertainty Emissions Gas to particle conversion Aerosol size distribution Linkage between aerosols

68

Global Warming Potential and Global Warming Commitment Concepts in the Assessment of Climate Radiative Forcing Effects  

Science Journals Connector (OSTI)

The Global Warming Potential (GWP) and Radiative Forcing (RF ... CS) and Individual (IS) schemes. The Global Warming Commitment (GWC) is calculated by the...

Igor L. Karol; Victor A. Frolkis

2000-01-01T23:59:59.000Z

69

Atmospheric Radiation Measurement (ARM) Data from Cape Cod, Massachusetts for the Two-Column Aerosol Project (TCAP)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Two-Column Aerosol Project (TCAP) was designed to provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the ARM Mobile Facility and the Mobile Aerosol Observing System were deployed on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations were supplemented by two aircraft intensive observation periods, one in the summer and a second in the winter.

70

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect (OSTI)

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earth??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

71

Atmospheric Radiation Measurment (ARM) Data from the Ganges Valley, India for the Ganges Valley Aerosol Experiment (GVAX)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In 2011 and 2012, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective was to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region. During the Indian Ocean Experiment (INDOEX) field studies, aerosols from the Ganges Valley region were shown to affect cloud formation and monsoon activity over the Indian Ocean. The complex field study used the ARM Mobile Facility (AMF) to measure radiative, cloud, convection, and aerosol characteristics over the mainland. The resulting data set captured pre-monsoon to post-monsoon conditions to establish a comprehensive baseline for advancements in the study of the effects of atmospheric conditions of the Ganges Valley.

72

Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)  

SciTech Connect (OSTI)

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar; WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere which then can be entrained into the growing boundary layer the subsequent day.

Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

2012-02-17T23:59:59.000Z

73

Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)  

SciTech Connect (OSTI)

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar. WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere that are then entrained into the growing boundary layer the subsequent day.

Fast J. D.; Springston S.; GustafsonJr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

2012-02-17T23:59:59.000Z

74

SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE VARIATION  

E-Print Network [OSTI]

SURFACE CLOUD RADIATIVE FORCING, CLOUD FRACTION AND CLOUD ALBEDO: THEIR RELATIONSHIP AND MULTISCALE/Atmospheric Sciences Division Brookhaven National Laboratory P.O. Box, Upton, NY www.bnl.gov ABSTRACT Cloud-induced climate change. Cloud-radiative forcing, cloud fraction, and cloud albedo are three key quantities

75

Quantification of the Aerosol Direct Radiative Effect from Smoke over Clouds Using Passive Space-borne Spectrometry  

E-Print Network [OSTI]

, Wilhelminalaan 30, 3732 GK, De Bilt, The Netherlands email: graafdem@knmi.nl Abstract. The solar radiative the South Atlantic Ocean west of Africa on 13 August 2006, when a huge plume of smoke was present over: 92.70.Cp, 92.60.Mt, 92.60.Nv INTRODUCTION Aerosols play an important role in the global energy

Tilstra, Gijsbert

76

Observations of x-ray radiation pressure force on individual gold nanocrystals  

SciTech Connect (OSTI)

We report observations of x-ray radiation pressure force on individual single nanocrystals using an x-ray single molecular methodology. The observed gold nanocrystals are linked to the adsorbed protein molecules. We observed the directed Brownian motion of individual linked nanocrystals. The observed force is estimated at about 0.13-0.63 aN. We will be able to control and measure dynamics of micro- or nanocrystalline materials using x-ray radiation pressure force.

Sasaki, Yuji C.; Okumura, Yasuaki; Miyazaki, Takuya; Higurashi, Takashi; Oishi, Noboru [Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayou, Hyogo 679-5198, Japan and CREST Sasaki-team, Japan Science and Technology Corporation (JST), Tachikawa 190-0012 (Japan); Biotechnology Research Center, Teikyo University, Miyamae, Kawasaki 216-0001, Japan and CREST Sasaki-team, Japan Science and Technology Corporation (JST), Tachikawa 190-0012 (Japan)

2006-07-31T23:59:59.000Z

77

Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy`s (DOE`s) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM`s highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM`s experimental approach, and recent activities within the ARM program.

Patrinos, A.A. [USDOE, Washington, DC (United States); Renne, D.S.; Stokes, G.M. [Pacific Northwest Lab., Richland, WA (United States); Ellingson, R.G. [Maryland Univ., College Park, MD (United States)

1991-01-01T23:59:59.000Z

78

Atmospheric radiation measurement: A program for improving radiative forcing and feedback in general circulation models  

SciTech Connect (OSTI)

The Atmospheric Radiation Measurement (ARM) Program is a key element of the Department of Energy's (DOE's) global change research strategy. ARM represents a long-term commitment to conduct comprehensive studies of the spectral atmospheric radiative energy balance profile for a wide range of cloud conditions and surface types, and to develop the knowledge necessary to improve parameterizations of radiative processes under various cloud regimes for use in general circulation models (GCMs) and related models. The importance of the ARM program is a apparent from the results of model assessments of the impact on global climate change. Recent studies suggest that radiatively active trace gas emissions caused by human activity can lead to a global warming of 1.5 to 4.5 degrees Celsius and to important changes in water availability during the next century (Cess, et al. 1989). These broad-scale changes can be even more significant at regional levels, where large shifts in temperature and precipitation patterns are shown to occur. However, these analyses also indicate that considerable uncertainty exists in these estimates, with the manner in which cloud radiative processes are parameterized among the most significant uncertainty. Thus, although the findings have significant policy implications in assessment of global and regional climate change, their uncertainties greatly influence the policy debate. ARM's highly focused observational and analytical research is intended to accelerate improvements and reduce key uncertainties associated with the way in which GCMs treat cloud cover and cloud characteristics and the resulting radiative forcing. This paper summarizes the scientific context for ARM, ARM's experimental approach, and recent activities within the ARM program.

Patrinos, A.A. (USDOE, Washington, DC (United States)); Renne, D.S.; Stokes, G.M. (Pacific Northwest Lab., Richland, WA (United States)); Ellingson, R.G. (Maryland Univ., College Park, MD (United States))

1991-01-01T23:59:59.000Z

79

DOE/SC-ARM-10-018 CARES: Carbonaceous Aerosol and Radiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan June 2010 RA Zaveri Principal Investigator WJ Shaw DJ Cziczo DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or

80

Dynamical and radiative response to the massive injection of aerosol from Kuwait oil burning fires  

SciTech Connect (OSTI)

The effects of the injection of large amount of soot comparable to that produced in the burning of oil wells in Kuwait were studied using a 2-D mesoscale model. During the three day numerical simulation the ground-atmosphere system appears to be strongly perturbed. A surface cooling is produced in the first two days above and downwind of the sources. The cooling, between -10 C over the desert and -0.5 C over the sea is dependent on the surface characteristics. The temperature decrease at the ground results in a stratified troposphere which inhibits convection and perturbs the normal diurnal variability of the boundary layer while the upper levels are driven by the radiative warming of the aerosol layer. In this region after few hours the simulation produces a warming of 0.8 C reaching a maximum of 6 C is after 60 hours. During the last 2 days of simulation the long wave radiation emitted by the low altitude atmospheric layers contribute to mitigate the surface cooling. A detailed discussion of the radiative and the dynamical interactions is given and it is shown that beside the specific interest in the short term effects these results may be useful to parameterize the smoke source for a General Circulation Model (GCM) simulation.

Ferretti, R.; Visconti, G. [Univ. L`Aquila (Italy)

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Analysis of radiation exposure, Task Force RAZOR. Exercise Desert Rock VI, Operation Teapot. Technical report  

SciTech Connect (OSTI)

The radiation dose to Task Force RAZOR personnel participating in Shot Apple II of Operation Teapot, Exercise Desert Rock VI, is reconstructed. Task force personnel were exposed to initial radiation while in their vehicles or in trenches at the time of Apple II detonation. They were also exposed to residual radiation during their subsequent manuever and during an inspection of the equipment display area. The calculated total gamma doses to fully-participating Task Force RAZOR personnel range from about 0.8 rem to 1.8 rem. The highest dose was received by personnel of the armored infantry platoon on right flank nearest ground zero. Internal radiation dose commitments to maximally exposed personnel inside vehicles are estimated to be about 0.4 rem to the thyroid, 0.003 rem to the whole body, and 0.002 rem to the bone.

Edwards, R.; Goetz, J.; Klemm, J.

1983-07-15T23:59:59.000Z

82

Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing: Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing: An Example from M-PACE Title Using Surface Remote Sensors to Derive Mixed-Phase Cloud Radiative Forcing: An Example from M-PACE Publication Type Journal Article Year of Publication 2011 Authors de Boer, Gijs, William D. Collins, Surabi Menon, and Charles N. Long Journal Atmospheric Chemistry and Physics Volume 11 Start Page 11937 Pagination 11937-11949 Abstract Measurements from ground-based cloud radar, high spectral resolution lidar and microwave radiometer are used in conjunction with a column version of the Rapid Radiative Transfer Model (RRTMG) and radiosonde measurements to derive the surface radiative properties under mixed-phase cloud conditions. These clouds were observed during the United States Department of Energy (US DOE) Atmospheric Radiation Measurement (ARM) Mixed-Phase Arctic Clouds Experiment (M-PACE) between September and November of 2004. In total, sixteen half hour time periods are reviewed due to their coincidence with radiosonde launches. Cloud liquid (ice) water paths are found to range between 11.0-366.4 (0.5-114.1) gm-2, and cloud physical thicknesses fall between 286-2075 m. Combined with temperature and hydrometeor size estimates, this information is used to calculate surface radiative flux densities using RRTMG, which are demonstrated to generally agree with measured flux densities from surface-based radiometric instrumentation. Errors in longwave flux density estimates are found to be largest for thin clouds, while shortwave flux density errors are generally largest for thicker clouds. A sensitivity study is performed to understand the impact of retrieval assumptions and uncertainties on derived surface radiation estimates. Cloud radiative forcing is calculated for all profiles, illustrating longwave dominance during this time of year, with net cloud forcing generally between 50 and 90 Wm-2.

83

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

SciTech Connect (OSTI)

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

84

Synthetic Lorentz force in classical atomic gases via Doppler effect and radiation pressure  

E-Print Network [OSTI]

We theoretically predict a novel type of synthetic Lorentz force for classical (cold) atomic gases, which is based on the Doppler effect and radiation pressure. A fairly uniform and strong force can be constructed for gases in macroscopic volumes of several cubic millimeters and more. This opens the possibility to mimic classical charged gases in magnetic fields, such as those in a tokamak, in cold atom experiments.

Dub?ek, T; Juki?, D; Aumiler, D; Ban, T; Buljan, H

2014-01-01T23:59:59.000Z

85

Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)  

E-Print Network [OSTI]

Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting ...

Cziczo, Daniel James

86

Vibration and acoustic radiation from inhomogeneous structures: Effect of motion of forcing function  

Science Journals Connector (OSTI)

Homogeneous structures are known to radiate only for supersonic structural wavenumbers. The presence of inhomogeneities such as boundaries discrete stiffeners and variable stiffness has been shown to introduce additional modes that will radiate if the structural wavenumbers are supersonic. The radiation pattern for an infinite plate with evenly spaced stiffness gives rise to a stop?passband spectrum. The plate with a continuously varying stiffness also gives rise to similar conditions. All of the previous analyses have always considered stationary forcing functions. In this paper the analyses for the fixed forcing function will be reviewed and then they will be generalized to the case of the forcing function moving along the plate at speeds up to and greater than the wave speeds in the solid. The results presented will show that for certain values of the frequency rib spacings and forcing function velocity traveling wave modes may change direction decaying modes may become traveling modes and modes may change from subsonic to supersonic and vice versa depending upon the relative motion of the forcing function. The effect of the motion may thus enhance or reduce the acoustic radiation.

Mauro Pierucci

1988-01-01T23:59:59.000Z

87

Quantifying the Aerosol Indirect Effect Using Ground-Based Remote Sensors and Models  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Quantifying the Aerosol Indirect Effect Quantifying the Aerosol Indirect Effect Using Ground-Based Remote Sensors and Models G. Feingold National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. E. Lane Rutgers University Camden, New Jersey Q.-L. Min Atmospheric Sciences Research Center State University of New York Albany, New York Introduction The effect of aerosols on cloud microphysical and radiative properties (the "indirect effect") has the greatest uncertainty of all known climate-forcing mechanisms. Increases in aerosol concentrations result in higher concentrations of cloud condensation nuclei (CCN), increased cloud droplet concentrations, and smaller droplet sizes (Twomey 1974). A possible secondary effect is the suppression of rainfall.

88

RCP4.5: A Pathway for Stabilization of Radiative Forcing by 2100  

SciTech Connect (OSTI)

Representative Concentration Pathway (RCP) 4.5 is a scenario that stabilizes radiative forcing at 4.5 W m{sup -2} in the year 2100 without ever exceeding that value. Simulated with the Global Change Assessment Model (GCAM), RCP4.5 includes long-term, global emissions of greenhouse gases, short-lived species, and land-use-land-cover in a global economic framework. RCP4.5 was updated from earlier GCAM scenarios to incorporate historical emissions and land cover information common to the RCP process and follows a cost-minimizing pathway to reach the target radiative forcing. The imperative to limit emissions in order to reach this target drives changes in the energy system, including shifts to electricity, to lower emissions energy technologies and to the deployment of carbon capture and geologic storage technology. In addition, the RCP4.5 emissions price also applies to land use emissions; as a result, forest lands expand from their present day extent. The simulated future emissions and land use were downscaled from the regional simulation to a grid to facilitate transfer to climate models. While there are many alternative pathways to achieve a radiative forcing level of 4.5 W m{sup -2}, the application of the RCP4.5 provides a common platform for climate models to explore the climate system response to stabilizing the anthropogenic components of radiative forcing.

Thomson, Allison M.; Calvin, Katherine V.; Smith, Steven J.; Kyle, G. Page; Volke, April C.; Patel, Pralit L.; Delgado Arias, Sabrina; Bond-Lamberty, Benjamin; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.

2011-07-29T23:59:59.000Z

89

Estimate of Solar Radiative Forcing by Polluted Clouds Using OMI and SCIAMACHY Satellite Data  

E-Print Network [OSTI]

. This range of 280-1750 nm contains 92 % of the solar energy. Therefore, SCIAMACHY can be used to determineEstimate of Solar Radiative Forcing by Polluted Clouds Using OMI and SCIAMACHY Satellite Data P. These events we call polluted clouds. Next we zoom in on SW-Africa, where polluted clouds occur most frequently

Graaf, Martin de

90

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract: A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic...

91

Limits to the Aerosol Indirect Radiative Effect Derived from Observations of Ship Tracks  

E-Print Network [OSTI]

reflectivities. #12;3 In recent years, simulations of the aerosol indirect effect in general circulation models in satellite imagery data. Images at 3.7 µm are used in a semi-automated procedure for identifying polluted concentrations of cloud condensation nuclei (CCN) and more cloud droplets. Because droplet formation is rapid

92

E-Print Network 3.0 - aerosol chemical vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical and microphysical properties influence aerosol optical properties and radiative effects... distribution of aerosol extensive and intensive properties will aid ......

93

Long-term Statistics of Continental Cumuli: Does Aerosol Trigger Cumulus Variability?  

SciTech Connect (OSTI)

Atmospheric aerosols may control the formation, maintenance, and dissipation of cumuli by changing their microphysics. Recent observational and modeling results exist both in support and against strong potential impacts of aerosol [1-3]. Typically, the aerosol impact on water clouds has been investigated for regions with high aerosol loading and/or large atmospheric moisture [4]. Can we provide observational evidence of the aerosol-cloud relationship for a relatively dry continental region with low/moderate aerosol burden? To address this question, we revisit the aerosol-cloud relationship at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. In comparison with highly polluted regions, the SGP site is characterized by relatively small-to-moderate aerosol loading. Also, moisture content is small-to-moderate (compared to marine and coastal regions) for the SGP site. Because cumulus clouds have important impacts on climate forcing estimations [5] and are susceptible to aerosol effects [6], we focus on fair-weather cumuli (FWC) and their association with aerosol concentration and other potentially important factors. This association is investigated using a new 8-year aerosol and cloud climatology (2000-2007) developed with collocated and coincident surface and satellite observations.

Kassianov, Evgueni I.; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Turner, David D.

2009-02-01T23:59:59.000Z

94

The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors  

SciTech Connect (OSTI)

Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

Bartlett, W.T.; Walker, B.A.

1996-01-01T23:59:59.000Z

95

Multi-Dimensional Effects in Longwave Radiative Forcing of PBL Clouds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multi-Dimensional Effects in Longwave Radiative Forcing of PBL Clouds D. B. Mechem and Y. L. Kogan Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma M. Ovtchinnikov Pacific Northwest National Laboratory Richland, Washington K. F. Evans University of Colorado Boulder, Colorado A. B. Davis Los Alamos National Laboratory Los Alamos, New Mexico R. F. Cahalan National Aeronautic and Space Administration Goddard Space Flight Center Greenbelt, Maryland E. E. Takara and R. G. Ellingson Florida State University Tallahassee, Florida 1. Introduction Numerical cloud models nearly universally employ one-dimensional (1D) treatments of radiative transfer (RT). Radiative transfer is typically implemented as a 2- or 4-stream approximation to the

96

Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model  

SciTech Connect (OSTI)

Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

2014-05-13T23:59:59.000Z

97

Resolving the internal structure of individual atmospheric aerosol particle by the combination of Atomic Force Microscopy, ESEMEDX, Raman and ToFSIMS imaging  

Science Journals Connector (OSTI)

Abstract In this study, internal structures of individual aerosol particles were resolved by using micro-analytical techniques in combination. We demonstrated the practical applicability of the combined use of Atomic Force Microscopy (AFM), Environmental Scanning Electron Microscopy coupled with Energy-Dispersive X-ray analysis (ESEMEDX), Raman Microspectrometry (RMS) and Time-of-Flight Secondary Ion Mass Spectrometry (ToFSIMS) to provide morphological, elemental, molecular and outer surface imaging of the same individual airborne particles for the first time. The characterization of single particles collected in the industrial atmosphere influenced by marine air masses demonstrated the physicochemical evolution of the particles in a short time period. The marine-derived particles were mainly encountered as genuine sea salts internally mixed with reacted sea salts such as NaNO3 and liquid NO3? which are covered by an organic thin layer. The particles collected downwind the industrial area were solid particles composed of an internal mixture of iron oxides and of marine-derived particles coated with an organic layer. The formation of these particles is a result of coalescence, agglomeration and drying processes occurring in the atmosphere during the transport of particles in a short time period (~15min). It is demonstrated that the combined use of the different types of spectral and imaging data from the same individual particles in atmospheric aerosol sample provides richer information on their physicochemical characteristics than when those techniques were used alone or when two techniques in combination.

S. Sobanska; G. Falgayrac; J. Rimetz-Planchon; E. Perdrix; C. Brmard; J. Barbillat

2014-01-01T23:59:59.000Z

98

Two-Column Aerosol Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

help find the answer, the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is conducting the Two-Column Aerosol Project (TCAP) at Cape Cod...

99

The Two-Column Aerosol Project Definitions TCAP Educational  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What's the big deal about aerosols? The Two-Column Aerosol Project Definitions TCAP Educational Outreach Activity About ARM: The Atmospheric Radiation Measurement (ARM) Climate...

100

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect (OSTI)

We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: ? Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. ? Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. ? Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

2011-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ARM - Measurement - Aerosol absorption  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

absorption absorption ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The process in which radiation energy is retained by aerosols. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) PSAP : Particle Soot Absorption Photometer PASS : Photoacoustic Soot Spectrometer External Instruments OMI : Ozone Monitoring Instrument

102

Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data  

SciTech Connect (OSTI)

Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterizes aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (Ta) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd) compares relatively well to the satellite data at least over the ocean. The relationship between Ta and liquid water path is simulated much too strongly by the models. It is shown that this is partly related to the representation of the second aerosol indirect effect in terms of autoconversion. A positive relationship between total cloud fraction (fcld) and Ta as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld - Ta relationship, our results indicate that none can be identified as unique explanation. Relationships similar to the ones found in satellite data between Ta and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - Ta relationship show a strong positive correlation between Ta and fcld The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of Ta, and parameterisation assumptions such as a lower bound on Nd. Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of -1.5+-0.5 Wm-2. An alternative estimate obtained by scaling the simulated clear- and cloudy-sky forcings with estimates of anthropogenic Ta and satellite-retrieved Nd - Ta regression slopes, respectively, yields a global annual mean clear-sky (aerosol direct effect) estimate of -0.4+-0.2 Wm-2 and a cloudy-sky (aerosol indirect effect) estimate of -0.7+-0.5 Wm-2, with a total estimate of -1.2+-0.4 Wm-2.

Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E.; Gettelman, Andrew; Lohmann, Ulrike; Bellouin, Nicolas; Boucher, Olivier; Sayer, Andrew M.; Thomas, Gareth E.; McComiskey, Allison; Feingold, Graham; Hoose, Corinna; Kristjansson, Jon Egill; Liu, Xiaohong; Balkanski, Yves; Donner, Leo J.; Ginoux, Paul A.; Stier, Philip; Feichter, Johann; Sednev, Igor; Bauer, Susanne E.; Koch, Dorothy; Grainger, Roy G.; Kirkevag, Alf; Iversen, Trond; Seland, Oyvind; Easter, Richard; Ghan, Steven J.; Rasch, Philip J.; Morrison, Hugh; Lamarque, Jean-Francois; Iacono, Michael J.; Kinne, Stefan; Schulz, Michael

2009-04-10T23:59:59.000Z

103

Constraining cloud lifetime effects of aerosols using A-Train satellite observations  

SciTech Connect (OSTI)

Aerosol indirect effects have remained the largest uncertainty in estimates of the radiative forcing of past and future climate change. Observational constraints on cloud lifetime effects are particularly challenging since it is difficult to separate aerosol effects from meteorological influences. Here we use three global climate models, including a multi-scale aerosol-climate model PNNL-MMF, to show that the dependence of the probability of precipitation on aerosol loading, termed the precipitation frequency susceptibility (S{sub pop}), is a good measure of the liquid water path response to aerosol perturbation ({lambda}), as both Spop and {lambda} strongly depend on the magnitude of autoconversion, a model representation of precipitation formation via collisions among cloud droplets. This provides a method to use satellite observations to constrain cloud lifetime effects in global climate models. S{sub pop} in marine clouds estimated from CloudSat, MODIS and AMSR-E observations is substantially lower than that from global climate models and suggests a liquid water path increase of less than 5% from doubled cloud condensation nuclei concentrations. This implies a substantially smaller impact on shortwave cloud radiative forcing (SWCF) over ocean due to aerosol indirect effects than simulated by current global climate models (a reduction by one-third for one of the conventional aerosol-climate models). Further work is needed to quantify the uncertainties in satellite-derived estimates of S{sub pop} and to examine S{sub pop} in high-resolution models.

Wang, Minghuai; Ghan, Steven J.; Liu, Xiaohong; Ecuyer, Tristan L.; Zhang, Kai; Morrison, H.; Ovchinnikov, Mikhail; Easter, Richard C.; Marchand, Roger; Chand, Duli; Qian, Yun; Penner, Joyce E.

2012-08-15T23:59:59.000Z

104

Absorption of Visible Radiation by Aerosols in the Volcanic Plume of Mount St. Helens  

Science Journals Connector (OSTI)

...extent absorption of solar radia-tion might reduce...front of an opal glass slab, which acts as a Lambert...surface as both particle collector and optical integrator...micro-scopic analyses of the collectors, which for the 19 May...a single pass of the solar beam through an optically...

J. A. OGREN; R. J. CHARLSON; L. F. RADKE; S. K. DOMONKOS

1981-02-20T23:59:59.000Z

105

Observational bounds on atmospheric heating by aerosol absorption: Radiative signature of transatlantic dust  

E-Print Network [OSTI]

of transatlantic dust Amit Davidi,1 Alex B. Kostinski,2 Ilan Koren,1 and Yoav Lehahn1,3 Received 14 November 2011: Radiative signature of transatlantic dust, Geo- phys. Res. Lett., 39, L04803, doi:10.1029/2011GL050358. 1

Kostinski, Alex

106

Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo  

SciTech Connect (OSTI)

This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surface-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fraction, and cloud albedo. The analytical expression is then used to deduce a new approach for inferring cloud albedo from concurrent surface-based measurements of downwelling surface shortwave radiation and cloud fraction. High-resolution decade-long data on cloud albedos are obtained by use of this surface-based approach over the US Department of Energy's Atmospheric Radiaton Measurement (ARM) Program at the Great Southern Plains (SGP) site. The surface-based cloud albedos are further compared against those derived from the coincident GOES satellite measurements. The three long-term (1997-2009) sets of hourly data on shortwave cloud radiative forcing, cloud fraction and cloud albedo collected over the SGP site are analyzed to explore the multiscale (diurnal, annual and inter-annual) variations and covariations. The analytical formulation is useful for diagnosing deficiencies of cloud-radiation parameterizations in climate models.

Liu, Y.; Wu, W.; Jensen, M. P.; Toto, T.

2011-07-21T23:59:59.000Z

107

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network [OSTI]

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

108

State-Space Realization of the Wave-Radiation Force within FAST: Preprint  

SciTech Connect (OSTI)

Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.

Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.

2013-06-01T23:59:59.000Z

109

Radiative forcing due to changes in ozone and methane caused by the transport sector  

E-Print Network [OSTI]

and indirect aerosol effect from SHIP (Balkanski et al. ,effect of O 3 and CH 4 amounting to 42 mW m 2 for ROAD, 11 mW m 2 for SHIP and

2011-01-01T23:59:59.000Z

110

aerosols | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosols aerosols Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

111

Multi-Dimensional Broadband IR Radiative Forcing of Marine Stratocumulus in a Large Eddy Simulation Model  

SciTech Connect (OSTI)

In order to address the interactive and evolutionary nature of the cloud-radiation interaction, we have coupled to a Large Eddy Simulation (LES) model the sophisticated multi-dimensional radiative transfer (MDRT) scheme of Evans (Spherical Harmonics Discrete Ordinate Method; 1998). Because of computational expense, we are at this time only able to run 2D experiments. Preliminary runs consider only the broadband longwave component, in large part because IR cloud top cooling is the significant forcing mechanism for marine stratocumulus. Little difference is noted in the evolution of unbroken stratocumulus between three-hour runs using MDRT and independent pixel approximation (IPA) for 2D domains of 50 km in the horizontal and 1.5 km in the vertical. Local heating rates differ slightly near undulating regions of cloud top, and a slight bias in mean heating rate from 1 to 3 h is present, yet the differences are never strong enough to result in a pronounced evolutionary bias in typical boundary layer metrics (e.g. inversion height, vertical velocity variance, TKE). Longer integration times may eventually produce a physical response to the bias in radiative cooling rates. A low-CCN case, designed to produce significant drizzle and induce cloud breakup does show subtle differences between MDRT and IPA. Over the course of the 6 hour simulations, entrainment is slightly less in the MDRT case, and the transition to the surface-based trade cumulus regime is delayed. Mean cooling rates appear systematically weaker in the MDRT case, indicative of a less energetic PBL and reflected in profiles of vertical velocity variance and TKE.

Mechem, David B.; Ovtchinnikov, Mikhail; Kogan, Y. L.; Davis, Anthony B; Cahalan, Robert F.; Takara, Ezra E.; Ellingson, Robert G.

2002-06-03T23:59:59.000Z

112

E-Print Network 3.0 - aerosol light absorption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND Summary: population centers were used to calculate the aerosol forcing due to light scattering and absorption. Directly... , NY www.bnl.gov ABSTRACT Aerosols influence...

113

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network [OSTI]

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

114

A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5  

SciTech Connect (OSTI)

In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model uncertainty via calibration of uncertain model parameters with the largest sensitivity.

Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

2013-11-08T23:59:59.000Z

115

Fast and Slow Responses of the South Asian Monsoon System to Anthropogenic Aerosols  

SciTech Connect (OSTI)

Using a global climate model with fully predictive aerosol life cycle, we investigate the fast and slow responses of the South Asian monsoon system to anthropogenic aerosol forcing. Our results show that the feedbacks associated with sea surface temperature (SST) change caused by aerosols play a more important role than the aerosol's direct impact on radiation, clouds and land surface (rapid adjustments) in shaping the total equilibrium climate response of the monsoon system to aerosol forcing. Inhomogeneous SST cooling caused by anthropogenic aerosols eventually reduces the meridional tropospheric temperature gradient and the easterly shear of zonal winds over the region, slowing down the local Hadley cell circulation, decreasing the northward moisture transport, and causing a reduction in precipitation over South Asia. Although total responses in precipitation are closer to the slow responses in general, the fast component dominates over land areas north of 25N. Our results also show an east-west asymmetry in the fast responses to anthropogenic aerosols causing increases in precipitation west of 80E but decreases east of it.

Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

2012-09-25T23:59:59.000Z

116

Priorities for In-situ Aerosol Measurements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Priorities for In-situ Priorities for In-situ Aerosol Measurements Parameters * Aerosol light absorption coefficient - spectral, including UV, vis, and IR - as f(RH), and at ambient RH * Phase function - or relevant integral properties (how many?) * Ice nuclei * Scattering vs. RH, for RH>90% * CCN, as f(S, D p ) * Size distribution * Chemical composition - for determining climate forcing, vs. radiative effect Calibration * Number concentration * Size and shape * Light absorption reference method Characterization * Accuracy and precision - need well-understood error bars * Algorithm comparisons * Closure studies * Facilities for method testing - aircraft time Methods * Inlets - shattering/splashing - location on airplane - passing efficiency - inletless analyzers/samplers * Packaging - modular/portable "pods" for multiple a/c

117

Evaluation of Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Sa...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud Type Occurrences Cloud Type Occurrences and Radiative Forcings Simulated by a Cloud Resolving Model Using Observations from Satellite and Cloud Radar Y. Luo and S. K. Krueger University of Utah Salt Lake City, Utah Introduction Because of both the various effects clouds exert on the earth-atmospheric system and the cloud feedback, correct representations of clouds in numerical models are critical for accurate climate modeling and weather forecast. Unfortunately, determination of clouds and their radiative feedback processes is still the weakest component of current general circulation models (e.g., Senior and Mitchell 1993, Cess et al. 1996). Using radiative fluxes at the top of atmosphere (TOA) available from satellite observations made by the Earth Radiation Budget Experiment (ERBE; Barkstrom 1984), one could assess cloud radiative effects

118

EMSL: Science: Atmospheric Aerosol Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

119

4, 58315854, 2004 Fluorescing aerosol  

E-Print Network [OSTI]

released by combustion into the atmosphere absorbs radiation and therefore heats the climate counteracting such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores) or by combustion processes (soot), or they form in situ by gas to particle conversion, like sulphate aerosol. While

Paris-Sud XI, Université de

120

Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction  

SciTech Connect (OSTI)

This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS high sampling resolution to study the twilight zone around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARMs 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARMs operational data processing.

Chiu, Jui-Yuan Christine [University of Reading] [University of Reading

2014-04-10T23:59:59.000Z

122

Final Report for LDRD Project ''A New Era of Research in Aerosol/Cloud/Climate Interactions at LLNL''  

SciTech Connect (OSTI)

Observations of global temperature records seem to show less warming than predictions of global warming brought on by increasing concentrations of CO{sub 2} and other greenhouse gases. One of the reasonable explanations for this apparent inconsistency is that the increasing concentrations of anthropogenic aerosols may be partially counteracting the effects of greenhouse gases. Aerosols can scatter or absorb the solar radiation, directly change the planetary albedo. Aerosols, unlike CO{sub 2}, may also have a significant indirect effect by serving as cloud condensation nuclei (CCN). Increases in CCN can result in clouds with more but smaller droplets, enhancing the reflection of solar radiation. Aerosol direct and indirect effects are a strong function of the distributions of all aerosol types and the size distribution of the aerosol in question. However, the large spatial and temporal variabilities in the concentration, chemical characteristics, and size distribution of aerosols have made it difficult to assess the magnitude of aerosol effects on atmospheric radiation. These variabilities in aerosol characteristics as well as their effects on clouds are the leading sources of uncertainty in predicting future climate variation. Inventory studies have shown that the present-day anthropogenic emissions contribute more than half of fine particle mass primarily due to sulfate and carbonaceous aerosols derived from fossil fuel combustion and biomass burning. Parts of our earlier studies have been focused on developing an understanding of global sulfate and carbonaceous aerosol abundances and investigating their climate effects [Chuang et al., 1997; Penner et al., 1998]. We have also modeled aerosol optical properties to account for changes in the refractive indices with relative humidity and dry aerosol composition [Grant et al., 1999]. Moreover, we have developed parameterizations of cloud response to aerosol abundance for use in global models to evaluate the importance of aerosol/cloud interactions on climate forcing [Chuang and Penner, 1995]. Our research has been recognized as one of a few studies attempting to quantify the effects of anthropogenic aerosols on climate in the IPCC Third Assessment Report [IPCC, 2001]. Our previous assessments of aerosol climate effects were based on a general circulation model (NCAR CCM1) fully coupled to a global tropospheric chemistry model (GRANTOUR). Both models, however, were developed more than a decade ago. The lack of advanced physics representation and techniques in our current models limits us from further exploring the interrelationship between aerosol, cloud, and climate variation. Our objective is to move to a new era of aerosol/cloud/climate modeling at LLNL by coupling the most advanced chemistry and climate models and by incorporating an aerosol microphysics module. This modeling capability will enable us to identify and analyze the responsible processes in aerosol/cloud/climate interactions and therefore, to improve the level of scientific understanding for aerosol climate effects. This state-of-the-art coupled models will also be used to address the relative importance of anthropogenic and natural emissions in the spatial pattern of aerosol climate forcing in order to assess the potential of human induced climate change.

Chuang, C; Bergman, D J; Dignon, J E; Connell, P S

2002-01-31T23:59:59.000Z

123

O{sub 3} and stratospheric H{sub 2}O radiative forcing resulting from a supersonic jet transport emission scenario  

SciTech Connect (OSTI)

The tropospheric radiative forcing has been calculated for ozone and water vapor perturbations caused by a realistic High Speed Civil Transport (HSCT) aircraft emission scenario. Atmospheric profiles of water vapor and ozone were obtained using the LLNL 2-D chemical-radiative-transport model (CRT) of the global troposphere and stratosphere. IR radiative forcing calculations were made with the LLNL correlated k-distribution radiative transfer model. UV-Visible-Near IR radiative forcing calculations were made with the LLNL two stream solar radiation model. For the case of water vapor the IR and Near IR radiative forcing was determined at five different latitudes and then averaged using an appropriate latitudinal average to obtain the global average value. Global average values of radiative forcing were approximately 1.2--2.6 10{sup {minus}3} W/m{sup 2}, depending on the background atmospheric water vapor profile. This result is consistent with prior published values for a similar aircraft scenario and supports the conclusion that the water vapor climate forcing effect is very small. The radiative forcing in the IR and UV-Visible spectral ranges, due to the ozone perturbation, was calculated for the globally averaged atmosphere. Global average values of the radiative forcing were 0.034 W/m{sup 2} for the UV-Visible spectral range and 0.006 W/m{sup 2} for the IR spectral range (0.04 W/m{sup 2} total). This result is also consistent with the range of published values obtained for a similar HSCT scenario. As was the case for water vapor, the ozone forcing is too small to be of major consequence.

Grossman, A.S.; Kinnison, D.E.; Penner, J.E.; Grant, K.E.; Tamaresis, J.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Research Div.

1996-01-01T23:59:59.000Z

124

Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations  

E-Print Network [OSTI]

Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database Applications and Research, Camp Spring, MD 20746, USA a r t i c l e i n f o Article history: Received 14 Optical properties Database a b s t r a c t This paper presents a user-friendly database software package

Liou, K. N.

125

Satellite-based assessment of cloud-free net radiative effect of dust aerosols over the Atlantic Ocean  

E-Print Network [OSTI]

and the Earth's Radiant Energy System (CERES) data from the Terra satellite over the Atlantic Ocean [10W­60W, 0 Ocean Sundar A. Christopher1 and Thomas Jones1 Received 7 August 2006; revised 8 November 2006; accepted effect (+1.44 ± 0.57 Wm?2 ) indicating the importance of the dust aerosols in the thermal portion

Christopher, Sundar A.

126

Three-body radiative heat transfer and Casimir-Lifshitz force out of thermal equilibrium for arbitrary bodies  

E-Print Network [OSTI]

We study the Casimir-Lifshitz force and the radiative heat transfer in a system consisting of three bodies held at three independent temperatures and immersed in a thermal environment, the whole system being in a stationary configuration out of thermal equilibrium. The theory we develop is valid for arbitrary bodies, i.e. for any set of temperatures, dielectric and geometrical properties, and describes each body by means of its scattering operators. For the three-body system we provide a closed-form unified expression of the radiative heat transfer and of the Casimir-Lifshitz force (both in and out of thermal equilibrium). This expression is thus first applied to the case of three planar parallel slabs. In this context we discuss the non-additivity of the force at thermal equilibrium, as well as the equilibrium temperature of the intermediate slab as a function of its position between two external slabs having different temperatures. Finally, we consider the force acting on an atom inside a planar cavity. We show that, differently from the equilibrium configuration, the absence of thermal equilibrium admits one or more positions of minima for the atomic potential. While the corresponding atomic potential depths are very small for typical ground state atoms, they may become particularly relevant for Rydberg atoms, becoming a promising tool to produce an atomic trap.

Riccardo Messina; Mauro Antezza

2014-02-11T23:59:59.000Z

127

Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements  

Science Journals Connector (OSTI)

The Georgia Institute of TechnologyGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the aerosol optical thickness ? for major types of tropospheric aerosols including sulfate, dust, organic carbon ...

Mian Chin; Paul Ginoux; Stefan Kinne; Omar Torres; Brent N. Holben; Bryan N. Duncan; Randall V. Martin; Jennifer A. Logan; Akiko Higurashi; Teruyuki Nakajima

2002-02-01T23:59:59.000Z

128

Dynamic Effects on the Tropical Cloud Radiative Forcing and Radiation Budget JIAN YUAN, DENNIS L. HARTMANN, AND ROBERT WOOD  

E-Print Network [OSTI]

in the tropics, using the methodology suggested by Bony et al. Cloud and radiation budget quantities source of uncertainty in pre- dicting future climate (Cess et al. 2001b; Stephens 2005; Solomon et al

Wood, Robert

129

Atomic Force and Scanning Electron Microscopy of Atmospheric Particles  

E-Print Network [OSTI]

conducted so as to characterize atmospheric aerosols from anthropogenic (pollution) and natural (sea saltAtomic Force and Scanning Electron Microscopy of Atmospheric Particles ZAHAVA BARKAY,1 * AMIT 69978, Israel KEY WORDS atmospheric aerosols; atomic force microscopy; scanning electron microscopy

Shapira, Yoram

130

Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction  

SciTech Connect (OSTI)

Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the ?¢????solar-background?¢??? mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM?¢????s zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS?¢???? 1 Hz sampling to study the ?¢????twilight zone?¢??? around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM?¢????s 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM?¢????s operational data processing.

D. Jui-Yuan Chiu

2010-10-19T23:59:59.000Z

131

Assessment of sea-ice albedo radiative forcing and feedback over the Northern Hemisphere from 1982 to 2009 using satellite and reanalysis data  

Science Journals Connector (OSTI)

The decreasing surface albedo caused by continously retreating sea ice over Arctic plays a critical role in Arctic warming amplification. However, the quantification of the change in radiative forcing at top of atmosphere (TOA) introduced by the ...

Yunfeng Cao; Shunlin Liang; Xiaona Chen; Tao He

132

Correlation between present-day model simulation of Arctic cloud radiative forcing and sea ice consistent with positive winter convective cloud feedback  

E-Print Network [OSTI]

A positive feedback on winter sea-ice loss, based on warming due to radiative forcing caused by the onset of convective clouds in response to sea-ice loss, has recently been proposed. This feedback has thus far been ...

Emanuel, Kerry Andrew

133

Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon  

E-Print Network [OSTI]

Atmospheric black carbon (BC) is a leading climate warming agent, yet uncertainties on the global direct radiative forcing (DRF) remain large. Here we expand a global model simulation (GEOS-Chem) of BC to include the ...

Schwarz, J. P.

134

UNDERSTANDING THE INFLUENCES OF ATMOSPHERIC AEROSOLS ON CLIMATE AND CLIMATE CHANGE  

E-Print Network [OSTI]

.ecd.bnl.gov/steve BOB BRAWDY / AP #12;OVERVIEW Aerosol influences on climate and climate change Earth's energy balance remarks #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS AS SEEN FROM SPACE Fire plumes from southern

Schwartz, Stephen E.

135

Current Status and Recommendations for the Future of Research, Teaching, and Testing in the Biological Sciences of Radiation Oncology: Report of the American Society for Radiation Oncology Cancer Biology/Radiation Biology Task Force, Executive Summary  

SciTech Connect (OSTI)

In early 2011, a dialogue was initiated within the Board of Directors (BOD) of the American Society for Radiation Oncology (ASTRO) regarding the future of the basic sciences of the specialty, primarily focused on the current state and potential future direction of basic research within radiation oncology. After consideration of the complexity of the issues involved and the precise nature of the undertaking, in August 2011, the BOD empanelled a Cancer Biology/Radiation Biology Task Force (TF). The TF was charged with developing an accurate snapshot of the current state of basic (preclinical) research in radiation oncology from the perspective of relevance to the modern clinical practice of radiation oncology as well as the education of our trainees and attending physicians in the biological sciences. The TF was further charged with making suggestions as to critical areas of biological basic research investigation that might be most likely to maintain and build further the scientific foundation and vitality of radiation oncology as an independent and vibrant medical specialty. It was not within the scope of service of the TF to consider the quality of ongoing research efforts within the broader radiation oncology space, to presume to consider their future potential, or to discourage in any way the investigators committed to areas of interest other than those targeted. The TF charge specifically precluded consideration of research issues related to technology, physics, or clinical investigations. This document represents an Executive Summary of the Task Force report.

Wallner, Paul E., E-mail: pwallner@theabr.org [21st Century Oncology, LLC, and the American Board of Radiology, Bethesda, Maryland (United States); Anscher, Mitchell S. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Barker, Christopher A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Bassetti, Michael [Department of Human Oncology, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin (United States); Bristow, Robert G. [Departments of Radiation Oncology and Medical Biophysics, Princess Margaret Cancer Center/University of Toronto, Toronto, Ontario (Canada); Cha, Yong I. [Department of Radiation Oncology, Norton Cancer Center, Louisville, Kentucky (United States); Dicker, Adam P. [Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania (United States); Formenti, Silvia C. [Department of Radiation Oncology, New York University, New York, New York (United States); Graves, Edward E. [Departments of Radiation Oncology and Radiology, Stanford University, Stanford, California (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania (United States); Hei, Tom K. [Center for Radiation Research, Columbia University, New York, New York (United States); Kimmelman, Alec C. [Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Kirsch, David G. [Department of Radiation Oncology, Duke University, Durham, North Carolina (United States); Kozak, Kevin R. [Department of Human Oncology, University of Wisconsin (United States); Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan (United States); Marples, Brian [Department of Radiation Oncology, Oakland University, Oakland, California (United States); and others

2014-01-01T23:59:59.000Z

136

ARM - Field Campaign - Fall 1997 Aerosol IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol IOP Aerosol IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Aerosol IOP 1997.09.15 - 1997.10.05 Lead Scientist : Stephen Schwartz For data sets, see below. Summary The Aerosol IOP was highlighted by the Gulfstream-1 aircraft flying clear-sky aerosol missions over the Central Facility to study the effect of aerosol loading on clear sky radiation fields, with weather particularly favorable for these flights during the first and third weeks of the IOP. A secondary but important goal of this IOP was to fly cloudy-sky missions over the Central Facility to study the effect of aerosol loading on cloud microphysics, and the effect of the microphysics on cloud optical properties. The Gulfstream obtained aerosol data in support of some of the

137

Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701  

SciTech Connect (OSTI)

It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D. [Hadley Center for Climate Predictions & Research, Exeter (United Kingdom)

2005-07-16T23:59:59.000Z

138

Axial and transverse acoustic radiation forces on a fluid sphere placed arbitrarily in Bessel beam standing wave tweezers  

SciTech Connect (OSTI)

The axial and transverse radiation forces on a fluid sphere placed arbitrarily in the acoustical field of Bessel beams of standing waves are evaluated. The three-dimensional components of the time-averaged force are expressed in terms of the beam-shape coefficients of the incident field and the scattering coefficients of the fluid sphere using a partial-wave expansion (PWE) method. Examples are chosen for which the standing wave field is composed of either a zero-order (non-vortex) Bessel beam, or a first-order Bessel vortex beam. It is shown here, that both transverse and axial forces can push or pull the fluid sphere to an equilibrium position depending on the chosen size parameter ka (where k is the wave-number and a the spheres radius). The corresponding results are of particular importance in biophysical applications for the design of lab-on-chip devices operating with Bessel beams standing wave tweezers. Moreover, potential investigations in acoustic levitation and related applications in particle rotation in a vortex beam may benefit from the results of this study. -- Highlights: The axial and transverse forces on a fluid sphere in acoustical Bessel beams tweezers are evaluated. The attraction or repulsion to an equilibrium position in the standing wave field is examined. Potential applications are in particle manipulation using standing waves.

Mitri, F.G., E-mail: mitri@chevron.com

2014-03-15T23:59:59.000Z

139

Phononic-Crystal-Based Acoustic Sieve for Tunable Manipulations of Particles by a Highly Localized Radiation Force  

Science Journals Connector (OSTI)

The ability to manipulate microscale and nanoscale particles is highly desirable for various applications ranging from targeting drug delivery to additive manufacturing. Here we report an acoustic sieve that is capable of aligning, trapping, sorting, and transferring a large number of particles according to their size or mass density, all in a tunable manner. The concept is based on the highly localized periodic radiation force induced by the resonance transmission of an acoustic wave across a phononic crystal plate, a phenomenon analogous to the surface-phonon-enhanced optical force, yet the physical concept has not been explored in acoustics. The acoustic sieve demonstrates the effective manipulation of massive particles using an artificially engineered acoustic field by a phononic crystal, and it has potential application for a wide range of applications.

Fei Li; Feiyan Cai; Zhengyou Liu; Long Meng; Ming Qian; Chen Wang; Qian Cheng; Menglu Qian; Xin Liu; Junru Wu; Jiangyu Li; Hairong Zheng

2014-06-11T23:59:59.000Z

140

Study of cloud properties from single-scattering, radiative forcing, and retrieval perspectives  

E-Print Network [OSTI]

This dissertation reports on three different yet related topics in light scattering computation, radiative transfer simulation, and remote sensing implementation, regarding the cloud properties and the retrieval of cloud properties from satellite...

Lee, Yong-Keun

2009-06-02T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A MODEL STUDY ON THE ABSORBED DOSE OF RADIATION FOLLOWING RESPIRATORY INTAKE OF 238U3O8 AEROSOLS  

Science Journals Connector (OSTI)

......A review of depleted uranium biological effects...Forces: no evidence of depleted uranium absorption in combat...Hamdan M., Ariabi E. Cancer, infant mortality and...and health effects of depleted uranium (DU): a general overview......

Carlo Canepa

2014-02-01T23:59:59.000Z

142

On surface temperature, greenhouse gases, and aerosols: models and observations  

SciTech Connect (OSTI)

The effect of changes in atmospheric carbon dioxide concentrations and sulphate aerosols on near-surface temperature is investigated using a version of the Hadley Centre atmospheric model coupled to a mixed layer ocean. The scattering of sunlight by sulphate aerosols is represented by appropriately enhancing the surface albedo. On doubling atmospheric carbon dioxide concentrations, the global mean temperature increases by 5.2 K. An integration with a 39% increase in CO{sub 2}, giving the estimated change in radiative heating due to increases in greenhouse gases since 1900, produced an equilibrium warming of 2.3 K, which, even allowing for oceanic inertia, is significantly higher than the observed warming over the same period. Furthermore, the simulation suggests a substantial warming everywhere, whereas the observations indicate isolated regions of cooling, including parts of the northern midlatitude continents. The addition of an estimate of the effect of scattering by current industrial aerosols (uncertain by a factor of at least 3) leads to improved agreement with the observed pattern of changes over the northern continents and reduces the global mean warming by about 30%. Doubling the aerosol forcing produces patterns that are still compatible with the observations, but further increase leads to unrealistically extensive cooling in the midlatitudes. The diurnal range of surface temperature decreases over most of the northern extratropics on increasing CO{sub 2}, in agreement with recent observations. The addition of the current industrial aerosol had little detectable effect on the diurnal range in the model because the direct effect of reduced solar heating at the surface is approximately balanced by the indirect effects of cooling. Thus, the ratio of the reduction in diurnal range to the mean warming is increased, in closer agreement with observations. Results from further sensitivity experiments with larger increases in aerosol and CO{sub 2} are presented.

Mitchell, J.F.B.; Davis, R.A.; Ingram, W.J.; Senior, C.A. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

1995-10-01T23:59:59.000Z

143

DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?  

E-Print Network [OSTI]

AS SEEN FROM SPACE Fire plumes from southern Mexico transported north into Gulf of Mexico. #12;CLOUD IPCC AR4 (2007) 3210-1-2 Forcing, W m-2 CO2 CH4 CFCs N2O Long Lived Greenhouse Gases Tropospheric;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL

Schwartz, Stephen E.

144

Parameterizations of Cloud Microphysics and Indirect Aerosol Effects  

SciTech Connect (OSTI)

1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

2014-05-19T23:59:59.000Z

145

Retrieval of Intensive Aerosol Properties from MFRSR observations: Partly Cloudy Cases  

SciTech Connect (OSTI)

An approach for the obtaining column intensive aerosol properties, namely the single scattering albedo (SSA) and asymmetry parameter (ASP), from the Multi-Filter Rotating Shadowband Radiometer (MFRSR) spectral observations under partly cloudy conditions is described. The approach involves the MFRSR-based aerosol retrieval for clear-sky periods and an interpolation of the retrieved column aerosol properties for cloudy periods. The observed weak diurnal variability of SSA and ASP at the surface and the close association of the surface intensive aerosol properties with their column counterparts form the basis of such interpolation. The approach is evaluated by calculating the corresponding clear-sky total, direct and diffuse fluxes at five wavelengths (415, 500, 615, 673 and 870 nm) and compare them with the observed fluxes. The aerosol properties provided by this approach are applied for (i) an examination of the statistical relationship between spectral (visible spectral range) and broadband values of the total normalized cloud radiative forcing and (ii) an estimation of the fractional sky cover. Data collected during 13 days with single-layer cumulus clouds observed at U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site during summer 2007 are applied to illustrate the performance and application of this approach.

Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Flynn, Connor J.; Long, Charles N.

2010-09-30T23:59:59.000Z

146

E-Print Network 3.0 - aerosol biokinetics concentrations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

147

Effective Radius of Cloud Droplets by Ground-Based Remote Sensing: Relationships to Aerosol?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effective Radius of Cloud Droplets by Ground-Based Effective Radius of Cloud Droplets by Ground-Based Remote Sensing: Relationships to Aerosol? B.-G. Kim, S. E. Schwartz, and M. A. Miller Environmental Sciences Department Brookhaven National Laboratory Upton, New York Q.-L. Min Atmospheric Science Research Center State University of New York Albany, New York Introduction Aerosol Indirect Effect Increases in anthropogenic sources of cloud condensation nuclei can increase cloud albedo by increasing the concentration and reducing the size of cloud droplets, usually referred to as the indirect effect of aerosol on climate (Twomey 1977). However, the magnitudes of the various kinds of indirect forcing are particularly uncertain, because they involve subtle changes in cloud radiative properties and lifetimes

148

IX. IMPACT OF AEROSOLS FROM THE ERUPTION OF EL CHICHN ON BEAM RADIATION IN THE PACIFIC NORTHWEST  

E-Print Network [OSTI]

by the eruption of El Chichón was over 140 times denser. Utilizing the scattering of laser light by the material temperature as well as solar radia- tion [3]. One analysis suggests that a maxi- mum drop of 0.2º in clear day transmission values of beam and global solar radiation from several different sites

Oregon, University of

149

ARM AOS Processing Status and Aerosol Intensive Properties VAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS)...

150

Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure  

Science Journals Connector (OSTI)

In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescenceX-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34pg in aerosols which were collected for 1h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20min each. The particles were collected in four and ten size fractions of 10.08.0?m, 8.02.0?m, 2.00.13?m 0.130.015?m (aerodynamic particle size) and 1530nm, 3060nm, 60130nm, 130250nm, 250500nm, 0.51?m, 12?m, 24?m, 48?m, 816?m. Prior to the sampling bounce off effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 110% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions.

U.E.A. Fittschen; F. Meirer; C. Streli; P. Wobrauschek; J. Thiele; G. Falkenberg; G. Pepponi

2008-01-01T23:59:59.000Z

151

E-Print Network 3.0 - annually occurring aerosol Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Radiative Transfer Encyclopedia of Atmospheric Science Summary: system. Naturally occurring aerosols reflect some of the incident solar radiation back to space before... in...

152

Tethered balloon-based soundings of ozone, aerosols, and solar radiation near Mexico City during MIRAGE-MEX  

Science Journals Connector (OSTI)

A tethered balloon sampling system was used to measure vertical profiles of ozone, particles, and solar radiation in the atmospheric boundary layer on the northern edge of Mexico City, in March 2006 as part of the Megacity Impact on Regional and Global Environment-Mexico experiment. Several commercial sensors, designed for surface applications, were deployed on a tethered balloon platform. Profiles indicate that for these 3 scalars the boundary layer (surface up to 700m) was well mixed in the period 10:0016:00 LST. Good agreement was observed for median surface and balloon ozone and particle number concentrations. For most profiles, the surface deposition of ozone was not significant compared to median profile concentrations. Particle number concentration (0.3, 0.5, 1.0 and 5.0?m) also showed little variation with attitude. Radiatprofiles showed a monotonic increase in diffuse radiation from the maximum altitude of profiles to the surface. Consequently, it was inferred that surface measurements of these likely were representative of lower boundary layer values during this time period.

J.P. Greenberg; A.B. Guenther; A. Turnipseed

2009-01-01T23:59:59.000Z

153

FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations  

SciTech Connect (OSTI)

The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (1020 km) until 510 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

Koch, D

2011-03-20T23:59:59.000Z

154

The near future availability of photovoltaic energy in Europe and Africa in climate-aerosol modeling experiments  

Science Journals Connector (OSTI)

Abstract The near future change in productivity of photovoltaic energy (PVE) in Europe and Africa is assessed by using the climate variables simulated by the ECHAM5-HAM aerosol-climate model, and a model for the performance of photovoltaic systems. The climate simulations are forced by green-house gases emissions from the IPCC SRES B2 scenario. In addition, different scenarios for future anthropogenic aerosols emissions are applied. Thus, the sensitivity of the future PVE productivity to changes in aerosol atmospheric burdens between 2000 and 2030 is analyzed. The analysis indicates that reductions in aerosols emissions in the near future result in an increase of global warming, and a significant response in surface solar radiation and associated PVE productivity. A statistically significant reduction in PVE productivity up to 7% is observed in eastern Europe and northern Africa, while a significant increase up to 10% is observed in western Europe and eastern Mediterranean. The changes in surface solar radiation and PVE productivity are related to global effects of aerosols reduction on the large scale circulation and associated cloud cover pattern, rather than to local effects on the atmospheric optical properties. PVE assessment is then discussed in the frame of the present situation and next decades evolution of the photovoltaic market, highlighting that the effects on productivity induced by industrial and public policies, and technological development are comparable to climate related effects. The presented results encourage the improvement and further use of climate models in assessment of future renewable energies availability.

Marco Gaetani; Thomas Huld; Elisabetta Vignati; Fabio Monforti-Ferrario; Alessandro Dosio; Frank Raes

2014-01-01T23:59:59.000Z

155

A Sensitivity Study on Modeling Black Carbon in Snow and its Radiative Forcing over the Arctic and Northern China  

SciTech Connect (OSTI)

Black carbon in snow (BCS) simulated in the Community Atmosphere Model (CAM5) is evaluated against measurements over Northern China and the Arctic, and its sensitivity to atmospheric deposition and two parameters that affect post-depositional enrichment is explored. The BCS concentration is overestimated (underestimated) by a factor of two in Northern China (Arctic) in the default model, but agreement with observations is good over both regions in the simulation with improvements in BC transport and deposition. Sensitivity studies indicate that uncertainty in the melt-water scavenging efficiency (MSE) parameter substantially affects BCS and its radiative forcing (by a factor of 2-7) in the Arctic through post-depositional enrichment. The MSE parameter has a relatively small effect on the magnitude of BCS seasonal cycle but can alter its phase in Northern China. The impact of the snow aging scaling factor (SAF) on BCS, partly through the post-depositional enrichment effect, shows more complex latitudinal and seasonal dependence. Similar to MSE, SAF affects more significantly the magnitude (phase) of BCS season cycle over the Arctic (Northern China). While uncertainty associated with the representation of BC transport and deposition processes in CAM5 is more important than that associated with the two snow model parameters in Northern China, the two uncertainties have comparable effect in the Arctic.

Qian, Yun; Wang, Hailong; Zhang, Rudong; Flanner, M. G.; Rasch, Philip J.

2014-06-02T23:59:59.000Z

156

Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 2: Long-term monitoring and modeling  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. This is the second volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. The first volume described the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. This second volume updates and completes the presentation of data to compare performance of fresh coatings with weathered coatings.

Petrie, T.W.; Childs, P.W.

1998-06-01T23:59:59.000Z

157

Climatology of aerosol optical depth in northcentral Oklahoma: 19922008  

E-Print Network [OSTI]

of aerosol models; for identification of aerosols from spe- cific events (e.g., the Central American fires Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most dimming; that is, the decrease in solar radiation reaching Earth's surface. Additionally, the wavelength

158

In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates  

Science Journals Connector (OSTI)

...of fresh soot emissions from diesel trucks (24). Temporal Characteristics...Asian climate and hydrological cycle . Proc Natl Acad Sci USA 102 : 5326...Edwards JM Shine KP ( 1997 ) General circulation model calculations of the direct...mode particles from heavy duty diesel vehicles using aerosol time-of-flight...

Ryan C. Moffet; Kimberly A. Prather

2009-01-01T23:59:59.000Z

159

Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study  

SciTech Connect (OSTI)

In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

Andreae, M.O.; Crutzen, P.J. [Max Planck Institute for Chemistry, Mainz (Germany); Cofer, W.R. III; Hollande, J.M. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Division] [and others

1995-06-01T23:59:59.000Z

160

E-Print Network 3.0 - affect radiation response Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

12;Radiative Forcings: Shortwave Forcings... What about gases that affect the greenhouse effect? Radiative forcing for greenhouse gases: Instantly... ;Radiative Forcings In ......

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Linearity of Climate Response to Increases in Black Carbon Aerosols  

SciTech Connect (OSTI)

The impact of absorbing aerosols on global climate are not completely understood. Here, we present results of idealized experiments conducted with the Community Atmosphere Model (CAM4) coupled to a slab ocean model (CAM4-SOM) to simulate the climate response to increases in tropospheric black carbon aerosols (BC) by direct and semi-direct effects. CAM4-SOM was forced with 0, 1x, 2x, 5x and 10x an estimate of the present day concentration of BC while maintaining their estimated present day global spatial and vertical distribution. The top of the atmosphere (TOA) radiative forcing of BC in these experiments is positive (warming) and increases linearly as the BC burden increases. The total semi-direct effect for the 1x experiment is positive but becomes increasingly negative for higher BC concentrations. The global average surface temperature response is found to be a linear function of the TOA radiative forcing. The climate sensitivity to BC from these experiments is estimated to be 0.42 K $\\textnormal W^{-1} m^{2}$ when the semi-direct effects are accounted for and 0.22 K $\\textnormal W^{-1} m^{2}$ with only the direct effects considered. Global average precipitation decreases linearly as BC increases, with a precipitation sensitivity to atmospheric absorption of 0.4 $\\%$ $\\textnormal W^{-1} \\textnormal m^{2}$ . The hemispheric asymmetry of BC also causes an increase in southward cross-equatorial heat transport and a resulting northward shift of the inter-tropical convergence zone in the simulations at a rate of 4$^{\\circ}$N $\\textnormal PW^{-1}$. Global average mid- and high-level clouds decrease, whereas the low-level clouds increase linearly with BC. The increase in marine stratocumulus cloud fraction over the south tropical Atlantic is caused by increased BC-induced diabatic heating of the free troposphere.

Mahajan, Salil [ORNL; Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR)

2013-01-01T23:59:59.000Z

162

Model analysis of the anthropogenic aerosol effect on clouds over East Asia  

SciTech Connect (OSTI)

A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (PI) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm{sup -3} over the ocean and East China, 400 cm{sup -3} over Central and Southwest China, and less than 200 cm{sup -3} over North China. The cloud liquid water path (LWP) increased by 40-60 g m{sup -2} over the ocean and Southeast China and 30 g m{sup -2} over Central China; the LWP increased less than 5 g m{sup -2} or decreased by 5 g m{sup -2} over North China. The effective radius (Re) decreased by more than 4 {mu}m over Southwest, Central, and Southeast China and 2 {mu}m over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250-400 cm{sup -3}, the LWP increased by approximately 30-50 g m{sup -2}, and Re decreased by approximately 3 {mu}m over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative forcing strengthened by 30 W m{sup -2} over the ocean and 10 W m{sup -2} over Southeast China, and it weakened slightly by approximately 2-10 W m{sup -2} over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m{sup -2} over Southeast and North China and weakened by 10 W m{sup -2} over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.

Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Zhao, Chun

2012-01-16T23:59:59.000Z

163

Aerosol delivery of beclin1 enhanced the anti-tumor effect of radiation in the lungs of K-rasLA1 mice  

Science Journals Connector (OSTI)

......similar effects to using mTOR inhibitors (Fig.-3b, c). Akt1...Urocanic acid-modified chitosan-mediated PTEN delivery via...aerosol-delivered folate-chitosan-graft-polyethylenimine...Z-VAD, a pan-caspase inhibitor. Mol Cancer Ther (2009......

Ji-Young Shin; Hwang-Tae Lim; Arash Minai-Tehrani; Mi-Suk Noh; Ji-Eun Kim; Ji-Hye Kim; Hu-Lin Jiang; Rohidas Arote; Doo-Yeol Kim; Chanhee Chae; Kee-Ho Lee; Mi-Sook Kim; Myung-Haing Cho

2012-07-01T23:59:59.000Z

164

Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: insight from observations of aerosol and clouds during ISDAC  

SciTech Connect (OSTI)

Aircraft measurements during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 are used to investigate aerosol indirect effects in Arctic clouds. Two aerosol-cloud regimes are considered in this analysis: single-layer stratocumulus cloud with below-cloud aerosol concentrations (N{sub a}) below 300 cm{sup -3} on April 8 and April 26-27 (clean cases); and inhomogeneous layered cloud with N{sub a} > 500 cm{sup -3} below cloud base on April 19-20, concurrent with a biomass burning episode (polluted cases). Vertical profiles through cloud in each regime are used to determine average cloud microphysical and optical properties. Positive correlations between the cloud droplet effective radius (Re) and cloud optical depth ({tau}) are observed for both clean and polluted cases, which are characteristic of optically-thin, non-precipitating clouds. Average Re values for each case are {approx} 6.2 {mu}m, despite significantly higher droplet number concentrations (Nd) in the polluted cases. The apparent independence of Re and Nd simplifies the description of indirect effects, such that {tau} and the cloud albedo (A) can be described by relatively simple functions of the cloud liquid water path. Adiabatic cloud parcel model simulations show that the marked differences in Na between the regimes account largely for differences in droplet activation, but that the properties of precursor aerosol also play a role, particularly for polluted cases where competition for vapour amongst the more numerous particles limits activation to larger and/or more hygroscopic particles. The similarity of Re for clean and polluted cases is attributed to compensating droplet growth processes for different initial droplet size distributions.

Earle, Michael; Liu, Peter S.; Strapp, J. Walter; Zelenyuk, Alla; Imre, D.; McFarquhar, Greg; Shantz, Nicole C.; Leaitch, W. R.

2011-11-04T23:59:59.000Z

165

Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms  

E-Print Network [OSTI]

In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within...

Tang, Yingjie

2012-07-16T23:59:59.000Z

166

A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements  

SciTech Connect (OSTI)

Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

Brown, G.S. (Sandia National Labs., Albuquerque, NM (USA)); Weiss, R.E. (Radiance Research, Seattle, WA (USA))

1990-08-01T23:59:59.000Z

167

E-Print Network 3.0 - aerosol program program Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHAPSCLASIC Summary: Observations of Cloud-Aerosol Halos During CHAPSCLASIC Funded by NASA HQ Science Mission... Directorate Radiation Sciences Program Funded by Department of...

168

E-Print Network 3.0 - atmospheric aerosol processes Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Applied Science Collection: Environmental Sciences and Ecology 3 Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Measurements...

169

E-Print Network 3.0 - aerosol wastes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Schwartz Proc. Aerosols and Atmospheric Optics Radiation Balance... and Visual Air Quality, Snowbird, UT, Sept. 26-30, pp. 403-409, Air and Waste Management Association... ,...

170

E-Print Network 3.0 - aerosol properties in-canopy Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in-canopy Page: << < 1 2 3 4 5 > >> 1 Quantitative Assessments of Radiative and Optical Properties of Marine Biogenic Aerosol PI: N. Meskhidze (NCSU) Summary: Quantitative...

171

E-Print Network 3.0 - atmospheric aerosol characterisation Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and... of the U.S. Department of Energy under Contract No....

172

Aerosol Best Estimate Value-Added Product  

SciTech Connect (OSTI)

The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

2012-07-19T23:59:59.000Z

173

The Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance of Radiative Feedbacks and Convective Parameterization  

E-Print Network [OSTI]

) atmospheric energy transport per unit mass transport] of the model tropics converts the energy flux change 25% between the imposed oceanic flux and the resulting response in the atmospheric energy transportThe Tropical Response to Extratropical Thermal Forcing in an Idealized GCM: The Importance

Miami, University of

174

Impact of aerosols on convective clouds and precipitation  

E-Print Network [OSTI]

: Massachusetts Institute of Technology 77 Massachusetts Avenue, E19-411 Cambridge, MA 02139 (USA) Location to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current

175

Improved solid aerosol generator  

DOE Patents [OSTI]

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

176

Interannual Tropospheric Aerosol Variability in the Late Twentieth Century and Its Impact on Tropical Atlantic and West African Climate by Direct and Semidirect Effects  

Science Journals Connector (OSTI)

A new high-resolution global tropospheric aerosol dataset with monthly resolution is generated using version 4 of the Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the ...

Salil Mahajan; Katherine J. Evans; John E. Truesdale; James J. Hack; Jean-Franois Lamarque

2012-12-01T23:59:59.000Z

177

ARM - Measurement - Backscattered radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govMeasurementsBackscattered radiation govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights)

178

Effects of aerosol and horizontal inhomogeneity on the broadband albedo of marine stratus: Numerical simulations  

SciTech Connect (OSTI)

Recent estimates of the effect of increasing of anthropogenic sulfate aerosol on the radiative forcing of the atmosphere have indicated that its impact may be comparable in magnitude to the effect from increases in CO{sub 2}. Much of this impact is expected from the effects of the aerosol on cloud microphysics and the subsequent impact on cloud albedo. A solar broadband version of a 2D radiative transfer model was used to quantify the impact of enhanced aerosol concentrations and horizontal inhomogeneity on the solar broadband albedo of marine stratus. The results of the radiative transfer calculations indicated that in unbroken marine stratus clouds the net horizontal transport of photons over a domain of a few kilometers was nearly zero, and the domain-average broadband albedo computed in a 2D cross section was nearly identical to the domain average calculated from a series of independent pixel approximation (IPA) calculations of the same cross section. However, the horizontal inhomogeneity does affect the cloud albedo compared to plane-parallel approximation (PPA) computations due to the nonlinear relationship between albedo and optical depth. The reduction in cloud albedo could be related to the variability of the distribution of log (cloud optical depth). These results extend the finding of Cahalan et al. to broadband solar albedos in a more realistic cloud model and suggest that accurate computation of domain-averaged broadband albedos in unbroken (or nearly unbroken) marine stratus can be made using IPA calculations with 1D radiative transfer models. Computations of the mean albedo over portions of the 3D RAMS domain show the relative increase in cloud albedo due to a 67% increase in the boundary-layer average CCN concentration was between 6% and 9%. The effects of cloud inhomogeneity on the broadband albedo as measured from the PPA bias ranged from 3% to 5%. 25 refs., 8 figs., 4 tabs.

Duda, D.P.; Stephens, G.L.; Stevens, B.; Cotton, W.R. [Colorado State Univ., Fort Collins, CO (United States)] [Colorado State Univ., Fort Collins, CO (United States)

1996-12-15T23:59:59.000Z

179

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

SciTech Connect (OSTI)

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 OctNov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

2012-09-28T23:59:59.000Z

180

Global observations and spectral characteristics of desert dust and biomass burning aerosols  

E-Print Network [OSTI]

quantity, but a radiation difference in the UV. Its main advantages are its insensitivity to scattering in climate physics today is the effect of aerosols on the global energy budget. The amount and sign of the effect of aerosols on the incoming solar radiation are unknown and produce a large uncertainty

Graaf, Martin de

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

On modification of global warming by sulfate aerosols  

SciTech Connect (OSTI)

There is increasing evidence that the response of climate to increasing greenhouse gases may be modified by accompanying increases in sulfate aerosols. In this study, the patterns of response in the surface climatology of a coupled ocean-atmosphere general circulation model forced by increases in carbon dioxide alone is compared with those obtained by increasing carbon dioxide and aerosol forcing. The simulations are run from early industrial times using the estimated historical forcing and continued to the end of the twenty-first century assuming a nonintervention emissions scenario for greenhouse gases and aerosols. The comparison is made for the period 2030-2050 when the aerosol forcing is a maximum. In winter, the cooling due to aerosols merely tends to reduce the response to carbon dioxide, whereas in summer, it weakens the monsoon circulations and reverses some of the changes in the hydrological cycle on increasing carbon dioxide. This response is in some respects similar to that found in simulations with changed orbital parameters, as between today and the middle Holocene. The hydrological response in the palaeosimulations is supported by palaeoclimatic reconstructions. The results of changes in aerosol concentrations of the magnetic projected in the scenarios would have a major effect on regional climate, especially over Europe and Southeast Asia. 74 refs., 12 figs., 6 tabs.

Mitchell, J.F.B.; Johns, T.C. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

1997-02-01T23:59:59.000Z

182

The Two-Column Aerosol Project (TCAP) Science Plan  

SciTech Connect (OSTI)

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

183

ARM - Measurement - Aerosol concentration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concentration concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol concentration A measure of the amount of aerosol particles (e.g. number, mass, volume) per unit volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer CPC : Condensation Particle Counter IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) TDMA : Tandem Differential Mobility Analyzer

184

A high-spectral-resolution radiative transfer model for simulating multi-layered clouds and aerosols in the infrared spectral region  

Science Journals Connector (OSTI)

A fast and flexible model is developed to simulate the transfer of thermal infrared radiation at wavenumbers from 700 to 1300 cm?1 with a spectral resolution of 0.1 cm?1 for scattering/absorbing atmospheres. In a single run and at multiple user-...

Chenxi Wang; Ping Yang; Xu Liu

185

V444 Cyg X-ray and polarimetric variability: Radiative and Coriolis forces shape the wind collision region  

E-Print Network [OSTI]

We present results from a study of the eclipsing, colliding-wind binary V444 Cyg that uses a combination of X-ray and optical spectropolarimetric methods to describe the 3-D nature of the shock and wind structure within the system. We have created the most complete X-ray light curve of V444 Cyg to date using 40 ksec of new data from Swift, and 200 ksec of new and archived XMM-Newton observations. In addition, we have characterized the intrinsic, polarimetric phase-dependent behavior of the strongest optical emission lines using data obtained with the University of Wisconsin's Half-Wave Spectropolarimeter. We have detected evidence of the Coriolis distortion of the wind-wind collision in the X-ray regime, which manifests itself through asymmetric behavior around the eclipses in the system's X-ray light curves. The large opening angle of the X-ray emitting region, as well as its location (i.e. the WN wind does not collide with the O star, but rather its wind) are evidence of radiative braking/inhibition occurri...

Lomax, Jamie R; Hoffman, Jennifer L; Russell, Christopher M P; De Becker, Michael; Corcoran, Michael F; Davidson, James W; Neilson, Hilding R; Owocki, Stan; Pittard, Julian M; Pollock, Andy M T

2014-01-01T23:59:59.000Z

186

Indirect and Semi-Direct Aerosol Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Campaign Campaign For the month of April, researchers are descending on and above Barrow, Alaska, to obtain data from the atmosphere that will help them understand the impacts that aerosols have on Arctic clouds and climate. Scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility are using a heavily instrumented aircraft to collect data from the sky, while instruments based at surface sites in Barrow and Atqasuk, Alaska, are obtaining measurements from the ground. Information obtained during the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, will help scientists analyze the role of aerosols in climate, and represents a key contribution to Arctic climate research during International Polar Year.

187

Radiation control coatings installed on federal buildings at Tyndall Air Force Base. Volume 1: Pre-coating monitoring and fresh coating results  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE`s) Federal Energy Management Program (FEMP) supports efforts to reduce energy use and associated expenses in the federal sector. One such effort, the New Technology Demonstration Program (NTDP), seeks to evaluate new energy-saving US technologies and secure their more timely adoption by the US government. Through a partnership with a federal site, the utility serving the site, a manufacturer of an energy-related technology, and other organizations associated with these interests, DOE can evaluate a new technology. The results of the program give federal agency decision makers more hands-on information with which to validate a decision to utilize a new technology in their facilities. The partnership of these interests is secured through a cooperative research and development agreement (CRADA), in this case between Lockheed Martin Energy Research Corporation, the manager of the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, and ThermShield International, Ltd., the manufacturer of the technology. This is the first volume of a two-volume report that describes the effects of radiation control coatings installed on federal buildings at Tyndall Air Force Base (AFB) in Florida by ThermShield International. ORNL`s Buildings Technology Center (BTC) was assigned the responsibility for gathering, analyzing, and reporting on the data to describe the effects of the coatings. This volume describes the monitoring plan and its implementation, the results of pre-coating monitoring, the coating installation, results from fresh coatings compared to pre-coating results, and a plan to decommission the monitoring equipment. By including results from roofs at Tyndall AFB and from an outdoor test facility at the BTC, the data cover the range from poorly insulated to well-insulated roofs and two kinds of radiation control coatings on various roof membranes.

Petrie, T.W.; Childs, P.W.

1997-02-01T23:59:59.000Z

188

A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform Clouds Gijs de Boer, Tempei Hashino, Edwin W. Eloranta and Gregory J. Tripoli The University of Wisconsin - Madison (1) Introduction (1) Introduction Mixed-phase stratiform clouds are commonly observed at high latitudes (Shupe et al., 2006; de Boer et al., 2009a). These clouds significaly impact the atmospheric radiative

189

BNL | Aerosol Lifecycle IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Program Aerosol Life Cycle IOP The primary objectives that make up the Aerosol Life Cycle IOP can be broken down into three categories: Scientific; Logistical; and GVAX preparation. Scientific Objectives The science goals are to conduct intensive aerosol observations in a region exposed to anthropogenic, biogenic, and marine emissions with atmospheric processing times depending on air mass trajectories and time of day. Take advantage of new instruments in the MAOS (e.g., SP2, HR-PTRMS, ACSM, Trace Gas Suite, PASS-3, Aethelometer, UHSAS). Within this broad umbrella are embedded three main foci: Aerosol light absorption: How does the aerosol mass absorption coefficient (absorption per unit mass of BC) vary with atmospheric processing? Do observations agree with a shell-core model?

190

Light Absorption by Secondary Organic Aerosol from ?-Pinene: Effects of Oxidants, Seed Aerosol Acidity, and Relative Humidity  

SciTech Connect (OSTI)

It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOA) generated from ozonolysis or NO3 oxidation of ?-pinene in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532 and 870 nm. Light absorption at 355 and 405 nm was observed by SOA generated from oxidation of ?-pinene in the presence of acidic sulfate seed aerosols, under dry conditions. No absorption was observed when the relative humidity was elevated to greater than 27%, or in the presence of neutral sulfate seed aerosols. The light-absorbing compounds are speculated to be aldol condensation oligomers with organosulfate and organic nitrate groups. The results of this study also indicate that organic nitrates from ?-pinene SOA formed in the presence of neutral sulfate seed aerosols do not appear to absorb near-UV and UV radiation.

Song, Chen; Gyawali, Madhu S.; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

2013-10-25T23:59:59.000Z

191

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents [OSTI]

A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

Postma, Arlin K. (Halfway, OR)

1986-01-01T23:59:59.000Z

192

Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements  

SciTech Connect (OSTI)

This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex real-world aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

Dr. Timothy Onasch

2009-09-09T23:59:59.000Z

193

Climate forcing Climate forcing  

E-Print Network [OSTI]

parameters (solar distance factors) solar luminosity moon orbit volcanoes and other geothermal sources,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores (symbols forcings are shown on the right hand axes of the large panels. {Figure 6.4} !"#$#%&'(!&#)$&*$+#$,-.$/0

MacKinnon, Jennifer

194

Application of Improved Radiation Modeling to General Circulation Models  

SciTech Connect (OSTI)

This research has accomplished its primary objectives of developing accurate and efficient radiation codes, validating them with measurements and higher resolution models, and providing these advancements to the global modeling community to enhance the treatment of cloud and radiative processes in weather and climate prediction models. A critical component of this research has been the development of the longwave and shortwave broadband radiative transfer code for general circulation model (GCM) applications, RRTMG, which is based on the single-column reference code, RRTM, also developed at AER. RRTMG is a rigorously tested radiation model that retains a considerable level of accuracy relative to higher resolution models and measurements despite the performance enhancements that have made it possible to apply this radiation code successfully to global dynamical models. This model includes the radiative effects of all significant atmospheric gases, and it treats the absorption and scattering from liquid and ice clouds and aerosols. RRTMG also includes a statistical technique for representing small-scale cloud variability, such as cloud fraction and the vertical overlap of clouds, which has been shown to improve cloud radiative forcing in global models. This development approach has provided a direct link from observations to the enhanced radiative transfer provided by RRTMG for application to GCMs. Recent comparison of existing climate model radiation codes with high resolution models has documented the improved radiative forcing capability provided by RRTMG, especially at the surface, relative to other GCM radiation models. Due to its high accuracy, its connection to observations, and its computational efficiency, RRTMG has been implemented operationally in many national and international dynamical models to provide validated radiative transfer for improving weather forecasts and enhancing the prediction of global climate change.

Michael J Iacono

2011-04-07T23:59:59.000Z

195

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate  

E-Print Network [OSTI]

aerosols from fossil fuel, bio fuel and biomass sources) andof natural gas to replace bio fuels, etc. ) than that forTotal (fossil- and bio fuel, biomass) Direct forcing (W m )

Menon, Surabi

2008-01-01T23:59:59.000Z

196

Aerosol Cans? -Aerosol cans use a pressurized  

E-Print Network [OSTI]

? - The waste generated in the processing of images/photos contains silver. Silver is a toxic heavy metal the product. Propellants are often flammable and/or toxic. Therefore, never store aerosol cans near ignition of this pamphlet. -Carefully transfer the old paint thinner from the one gallon closable can to the 30 gallon metal

Jia, Songtao

197

ARM - Measurement - Aerosol particle size  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particle size particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass Spectrometer CPI : Cloud Particle Imager DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments DRUM-AEROSOL : Drum Aerosol Sampler AEROSOL-TOWER-EML : EML Tower based Aerosol Measurements

198

A World-wide Stratospheric Aerosol Layer  

Science Journals Connector (OSTI)

...Massachusetts An aerosol layer has been identified by a stratospheric balloon and aircraft aerosol collection program. Measurements...Abstract. An aerosol layer has been identified by a stratospheric balloon and aircraft aerosol collection program. Meas-urements...

Christian E. Junge; Charles W. Chagnon; James E. Manson

1961-05-12T23:59:59.000Z

199

Cloud/Aerosol Parameterizations: Application and Improvement of General Circulation Models  

SciTech Connect (OSTI)

One of the biggest uncertainties associated with climate models and climate forcing is the treatment of aerosols and their effects on clouds. The effect of aerosols on clouds can be divided into two components: The first indirect effect is the forcing associated with increases in droplet concentrations; the second indirect effect is the forcing associated with changes in liquid water path, cloud morphology, and cloud lifetime. Both are highly uncertain. This project applied a cloud-resolving model to understand the response of clouds under a variety of conditions to changes in aerosols. These responses are categorized according to the large-scale meteorological conditions that lead to the response. Meteorological conditions were sampled from various fields, which, together with a global aerosol model determination of the change in aerosols from present day to pre-industrial conditions, was used to determine a first order estimate of the response of global cloud fields to changes in aerosols. The response of the clouds in the NCAR CAM3 GCM coupled to our global aerosol model were tested by examining whether the response is similar to that of the cloud resolving model and methods for improving the representation of clouds and cloud/aerosol interactions were examined.

Penner, Joyce

2012-06-30T23:59:59.000Z

200

Discrimination between thin cirrus and and tropospheric aerosol using  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Discrimination between thin cirrus and and tropospheric aerosol using Discrimination between thin cirrus and and tropospheric aerosol using multiple measurements from Darwin ARCS Mitchell, Ross CSIRO Category: Aerosols Thin cirrus cloud occurs frequently in the tropics, and is often difficult to distinguish from tropospheric aerosol on the basis of temporal variations in ground based measurements, since both can be rather spatially uniform. In this study we investigate their discrimination by combining data from three instruments at the Darwin Atmospheric Radiation and Cloud Station (ARCS): the Cimel sun photometer (CSP), the micropulse lidar (MPL), and the total sky imager (TSI). The study was carried out over the dry season of 2005, with the usual widespread burning of tropical savanna leading to extensive smoke plumes. It is shown that the locus of data in

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A New Assessment of the Aerosol First Indirect Effect  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Assessment of the Aerosol First Indirect Effect New Assessment of the Aerosol First Indirect Effect Shao, Hongfei Florida State University Liu, Guosheng Florida State University Category: Aerosols The aerosol first indirect effect is known to cool the Earth radiatively. However, its magnitude is very uncertain; large discrepancies exist among the observed values published in the literature. In this study, we first survey the published values of those parameters used for describing the first indirect effect. By analyzing the discrepancies among these values, we show that the first indirect effect has been overestimated by many investigators due to an improper parameter being used. Therefore, we introduce a more meaningful parameter to measure this effect. We estimated the first indirect effect using the new parameter based on observational

202

MELCOR 1. 8. 1 assessment: LACE aerosol experiment LA4  

SciTech Connect (OSTI)

The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.

Kmetyk, L.N.

1991-09-01T23:59:59.000Z

203

Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter Relationships  

E-Print Network [OSTI]

comparison of mineral dust aerosol retrievals from two instruments, MODIS and CALIPSO lidar. And, we implement and evaluate a new mineral dust detection algorithm based on the analysis of thin dust radiative signature. In comparison, three commonly used...

Cho, Hyoun-Myoung

2012-02-14T23:59:59.000Z

204

E-Print Network 3.0 - aerosol particle concentration Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and absorb shortwave (solar) radiation and... of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. AEROSOLS AND CLIMATE CHANGE... -5000 October 2004 Presented at...

205

E-Print Network 3.0 - aerosol particles originating Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. Summary: incoming solar radiation, either directly or indirectly as cloud particles, aerosols exert a cooling...

206

E-Print Network 3.0 - affect atmospheric aerosols Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and absorb shortwave (solar) radiation and... of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886. AEROSOLS AND CLIMATE CHANGE... : A TUTORIAL S. E. Schwartz...

207

ARM - Field Campaign - 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 MAX-Mex-Megacity Aerosol eXperiment - Mexico City 6 MAX-Mex-Megacity Aerosol eXperiment - Mexico City Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico City 2006.03.03 - 2006.03.28 Lead Scientist : Jeffrey Gaffney For data sets, see below. Description A 4-week field campaign was conducted in and downwind of Mexico City during March 2006. The Megacity Aerosol eXperiment - MEXico City (MAX-MEX) characterized aerosol formation and changes in aerosol composition, size distribution, light scattering coefficient, absorption coefficient, optical depth, soot-specific absorption, and radiative fluxes at selected vertical and horizontal locations in the outflow from a well-characterized urban core. Detailed analyses were made of the meteorological conditions during

208

Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data  

SciTech Connect (OSTI)

In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)???¢????????s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9???????°????????2.5???????° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate configuration of physics options in GWRF for global scale modeling in 2001 at a horizontal grid resolution of 1???????° x 1???????°. GU-WRF model output was evaluated using observational datasets from a variety of sources including surface based observations (NCDC and BSRN), model reanalysis (NCEP/ NCAR Reanalysis and CMAP), and remotely-sensed data (TRMM) to evaluate the ability of GU-WRF to simulate atmospheric variables at the surface as well as aloft. Explicit treatment of nanoparticles produced from new particle formation in GU-WRF/Chem-MADRID was achieved by expanding particle size sections from 8 to 12 to cover particles with the size range of 1.16 nm to 11.6 ???????µm. Simulations with two different nucleation parameterizations were conducted for August 2002 over a global domain at a 4???????º by 5???????º horizontal resolution. The results are evaluated against field measurement data from the 2002 Aerosol Nucleation and Real Time Characterization Experiment (ANARChE) in Atlanta, Georgia, as well as satellite and reanalysis data. We have also explored the relationship between ???¢????????clean marine???¢??????? aerosol optical properties and ocean surface wind speed using remotely sensed data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the CALIPSO satellite and the Advanced Microwave Scanning Radiometer (AMSR-E) on board the AQUA satellite. Detailed data analyses

Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

2012-03-28T23:59:59.000Z

209

Aerosol Data Sources and Their Roles within PARAGON  

SciTech Connect (OSTI)

We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote-sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected in the near future. Emphasis must be given to combining remote sensing, in situ, active and passive observations, and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture having sufficient detail to address current climate-forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal.

Kahn, Ralph A.; Ogren, J. A.; Ackerman, Thomas P.; Bosenberg, Jens; Charlson, Robert J.; Diner, David J.; Holben, B. N.; Menzies, Robert T.; Miller, Mark A.; Seinfeld, John H.

2004-10-01T23:59:59.000Z

210

Nuclear forces  

SciTech Connect (OSTI)

These lectures present an introduction into the theory of nuclear forces. We focus mainly on the modern approach, in which the forces between nucleons emerge from low-energy QCD via chiral effective field theory.

Machleidt, R. [Department of Physics, University of Idaho, Moscow, Idaho 83844 (United States)

2013-06-10T23:59:59.000Z

211

A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation  

SciTech Connect (OSTI)

The impact of anthropogenic aerosol on the East Asian summer monsoon (EASM) is investigated with NCAR CAM5, a state-of-the-art climate model with aerosols direct and indirect effects. Results indicate that anthropogenic aerosol tends to cause a weakened EASM with a southward shift of precipitation in East Asia mostly by its radiative effect. Anthropogenic aerosol induced surface cooling stabilizes the boundary layer, suppresses the convection and latent heat release in northern China, and reduces the tropospheric temperature over land and land-sea thermal contrast, thus leading to a weakened EASM. Meanwhile, acting as cloud condensation nuclei (CCN), anthropogenic aerosol can significantly increase the cloud droplet number concentration but decrease the cloud droplet effective radius over Indochina and Indian Peninsulas as well as over southwestern and northern China, inhibiting the precipitation in these regions. Thus, anthropogenic aerosol tends to reduce Southeast and South Asian summer monsoon precipitation by its indirect effect.

Jiang, Yiquan; Liu, Xiaohong; Yang, Xiuqun; Wang, Minghuai

2013-05-01T23:59:59.000Z

212

Geometrical Optics of Dense Aerosols  

SciTech Connect (OSTI)

Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

2013-04-24T23:59:59.000Z

213

Jankovic Aerosol Characterization.ppt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization, Characterization, Aerosol Characterization, Interpretation, and Interpretation, and Application of Data Application of Data NSRC Symposium NSRC Symposium July 8, 2008 John Jankovic, CIH CIH Center for Nanophase Materials Sciences Center for Nanophase Materials Sciences Aerosol Characterization, Interpretation, and Aerosol Characterization, Interpretation, and Application of Data Application of Data Department of Energy (DOE) Nanoscale Science Research Centers (NSRC) developing Approach to Nanomaterial ES&H - The CNMS Approach * Establish Exposure Control Guideline (ECG) - Characterize Aerosol * Collect and interpret data * Assign Process to a Control Band Aerosol Particle Characterization * Size distribution (geometric mean and geometric standard deviation related to either mass, surface, or number)

214

Radiative and climate impacts of absorbing aerosols  

E-Print Network [OSTI]

fossil fuel, biofuel and biomass combustion, organic carbonincomplete combustion of fossil fuel and biomass burning. BCof incomplete combustion of fossil fuels and biomass, black

Zhu, Aihua

2010-01-01T23:59:59.000Z

215

DOE research on atmospheric aerosols  

SciTech Connect (OSTI)

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

216

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect (OSTI)

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 912 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 612 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundancein the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

217

aerosols and climate : uncertainties  

E-Print Network [OSTI]

contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

218

Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations  

SciTech Connect (OSTI)

Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

2013-06-11T23:59:59.000Z

219

INSTITUTE OF NUCLEAR TECHNOLOGY RADIATION PROTECTION  

E-Print Network [OSTI]

of the impact of ionizing radiation on several types of ecosystems, atmospheric aerosol, and heavy metal. Stubos Computer Simulation of Atmospheric Pollution S. Andronopoulos Analyses & Assessment of Environmental Pollutants S. Andronopoulos ENVIRONMENTAL RESEARCH LABORATORY A. Stubos Diagnostics of Boundary

220

Distinguishing Aerosol Impacts on Climate Over the Past Century  

SciTech Connect (OSTI)

Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

2008-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ARM - Mobile Aerosol Observing System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FacilitiesMobile Aerosol Observing System FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Aerosol Observing System Intensive aerosol observations conducted on the campus of Brookhaven National Laboratory on Long Island, New York, using the ARM Mobile Aerosol Observing System. Intensive aerosol observations conducted on the campus of Brookhaven

222

Experimental study of nuclear workplace aerosol samplers  

E-Print Network [OSTI]

LITERATURE REVIEW Aerosol Losses in an Inlet . Aerosol Losses in a Transport System Aerosol Losses in CAMs Critical Flow Venturi 8 13 15 16 EXPERIMENT PROCEDURE 18 CAM Evaluation Consideration FAS Evaluation Consideration Test Protocol Mixing... Chamber Setup High Speed Aerosol Wind Tunnel Setup Low Speed Aerosol Wind Tunnel Setup Critical Flow Venturi 18 19 21 22 24 25 27 RESULTS AND DISCUSSION Page 28 Aerosol Penetration through Transport Systems and CAM Areal Uniformity Deposits...

Parulian, Antony

2012-06-07T23:59:59.000Z

223

ARM Cloud Aerosol Precipitation Experiment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Satellite Observation CAS Cloud Aerosol Spectrometer CCN Cloud Condensation Nuclei CIP Cloud Imaging Probe CPC Condensation Particle Counter CSPHOT Cimel sunphotometer CVI...

224

ARM - Publications: Science Team Meeting Documents: Effects of Aerosol Size  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Effects of Aerosol Size Distribution and Vertical Profile on the Effects of Aerosol Size Distribution and Vertical Profile on the Polarization in the Oxygen A-Band Duan, Minzheng State University of New York at Albany Min, Qilong State University of New York at Albany A vector radiative transfer code with successive order of scattering method was used to simulate the high-resolution polarization spectra in the oxygen A-band. The effects of aerosol size distribution and vertical profile on the radiance and polarization at the top and bottom of the atmosphere were analyzed. The impacts of instrument specification on information content are also analyzed. Polarized radiances were dominated (>95%) by the first and second orders of scattering. The contributions of scattering from different levels to the TOA and surface observation are analyzed. The

225

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

226

The dependence of cloud particle size and precipitation probability on non-aerosol-loading related variables  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explaining and reducing the uncertainties in the first aerosol i Explaining and reducing the uncertainties in the first aerosol i Explaining and reducing the uncertainties in the first aerosol indirect effect ndirect effect Hongfei Shao and Guosheng Liu Meteorology Department, Florida State University INTRODUCTION INTRODUCTION Anthropogenic aerosols enhance cloud reflectance of solar radiation by increasing the cloud droplet number concentrations. This so-called first Aerosol Indirect Effect (AIE) has a potentially large cooling tendency on our planet. However, discrepancies of more than a factor of 2 have been reported among observations 1 as well as model simulations 2 of the AIE. Our recent study 3 shows that the discrepancies will be reduced greatly if the entrainment-mixing evaporation of cloud drops is taken into account.

227

The Uncertainty of Dosimetry of Radioactive and Non-Radiactive Aerosols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Uncertainty of Dosimetry of Radioactive and Non-Radiactive Aerosols The Uncertainty of Dosimetry of Radioactive and Non-Radiactive Aerosols Speaker(s): Lev Ruzer Date: September 27, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: David Faulkner Radioactive aerosols are a substantial risk factor in radiation safety in the atomic industry, mining industry, nuclear warhead depository and nuclear waste storage, as well as the natural radioactivity in houses. Assessment of the exposure, dose and health effect is very important for workers and the general population. In the last 5-10 years the problem of dosimetry of non-radioactive aerosols has become a "hot" topic in environmental health science with emphasis on submicron and even nanometer-sized particles. Both radioactive and non-radioactive aerosols

228

Analyzing Surface Solar Flux Data in Oregon for Changes Due to Aerosols Laura D. Riihimaki1, Frank E. Vignola1, Charles N. Long2, James A. Coakley Jr.3 1 University of Oregon Solar Radiation Monitoring Lab 2 Pacific Northwest National Laboratory 3 Oregon State University, College of Oceanic and Atmospheric Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

76 76 1980 1984 1988 1992 1996 2000 2004 2008 100 150 200 250 Direct Normal Irradiance (W/m 2 ) Eugene Hermiston Burns 3. All-sky direct normal irradiance increases 5% per decade Eppley NIP Conclusions Annual average all-sky total and direct normal irradiance measurements show an overall increase in Oregon between 1980 and 2007. Two measurement sites show statistically significant increases in clear- sky direct normal irradiance in background periods before and after the eruption of Mt. Pinatubo [6] (1987- 2008), consistent with the hypothesis that a reduction in anthropogenic aerosols may contribute to the increase in surface irradiance. References 1. Long, C.N. and T. P. Ackerman, 2000: J. Geophys. Res., 105(D12), 15,609-15,626. 2. Long, C.N., and K.L. Gaustad, 2004: Atmospheric Radiation

229

Organic carbon and non-refractory aerosol over the remote1 Southeast Pacific: oceanic and combustion sources2  

E-Print Network [OSTI]

-salt particles30 from wave breaking and bubble bursting, as well as gas to particle conversion of vapors31/SO4 ratio of 0.19.22 23 1 Introduction24 Aerosols play an important role in the radiative balance

Wood, Robert

230

Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant  

SciTech Connect (OSTI)

This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment ?? Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

Weinstein-Lloyd, Judith B

2009-05-04T23:59:59.000Z

231

Protective Force  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes requirements for management and operation of the DOE Protective Force (PF), establishes requirements for firearms operations and defines the firearms courses of fire. Cancels: DOE M 473.2-1A DOE M 473.2-2

2005-08-26T23:59:59.000Z

232

About EffectiveŽ Height of the Aerosol Atmosphere in Visible and IR Wavelength Range  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Effective" Height of the Aerosol Atmosphere in "Effective" Height of the Aerosol Atmosphere in Visible and IR Wavelength Range V. N. Uzhegov, D. M. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, and S. M. Sakerin Institute of Atmospheric Optics Tomsk, Russia Introduction Aerosol component of the atmosphere is one of the important factors affecting the radiation budget of the space - atmosphere - underlying surface system in visible and infrared (IR) wavelength ranges. It is extremely important to take into account the contribution of this component into the extinction of solar radiation under cloudless sky conditions. Sometimes it is important to know not only the total value of the aerosol component of extinction, but also to have the possibility to estimate the "effective" height of

233

Protective Force  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual establishes requirements for management and operation of the DOE Protective Force, establishes requirements for firearms operations and defines the firearms courses of fire. Chg 1 dated 3/7/06. DOE M 470.4-3A cancels DOE M 470.4-3, Chg 1, Protective Force, dated 3-7-06, Attachment 2, Contractor Requirement Document (CRD) only (except for Section C). Chg 1, dated 3-7-06, cancels DOE M 470.4-3

2006-03-07T23:59:59.000Z

234

Clear Skies A Study of Longwave Radiation Codes for Climate Studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the outcome of this approach will provide both a better longwave radiative forcing algorithm and a better understanding of how longwave radiative forcing influences the...

235

Aerosol Laboratory - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Aerosol Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Aerosol Laboratory The Aerosol Laboratory (AL) houses equipment to measure and record the physical parameters necessary to characterize the formation and transport of aerosols. Bookmark and Share The Aerosol Laboratory (AL) has extensive analytic and experimental capabilities to characterize the formation and transport of aerosols formed from the condensation of vapors. Computer codes have been developed to

236

Climate response of the South Asian monsoon system to anthropogenic aerosols  

SciTech Connect (OSTI)

The equilibrium climate response to the total effects (direct, indirect and semi-direct effects) of aerosols arising from anthropogenic and biomass burning emissions on the South Asian summer monsoon system is studied using a coupled atmosphere-slab ocean model. Our results suggest that anthropogenic and biomass burning aerosols generally induce a reduction in mean summer monsoon precipitation over most parts of the Indian subcontinent, strongest along the western coastline of the Indian peninsula and eastern Nepal region, but modest increases also occur over the north western part of the subcontinent. While most of the noted reduction in precipitation is triggered by increased emissions of aerosols from anthropogenic activities, modest increases in the north west are mostly associated with decreases in local emissions of aerosols from forest fire and grass fire sources. Anthropogenic aerosols from outside Asia also contribute to the overall reduction in precipitation but the dominant contribution comes from aerosol sources within Asia. Local emissions play a more important role in the total rainfall response to anthropogenic aerosol sources during the early monsoon period, whereas both local as well as remote emissions of aerosols play almost equally important roles during the later part of the monsoon period. While precipitation responses are primarily driven by local aerosol forcing, regional surface temperature changes over the region are strongly influenced by anthropogenic aerosols from sources further away (non-local changes). Changes in local anthropogenic organic and black carbon emissions by as much as a factor of two (preserving their ratio) produce the same basic signatures in the model's summer monsoon temperature and precipitation responses.

Ganguly, Dilip; Rasch, Philip J.; Wang, Hailong; Yoon, Jin-Ho

2012-07-13T23:59:59.000Z

237

Toward the Development of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Development of Multi-Year Total and Special the Development of Multi-Year Total and Special Solar Radiation Budgets at the Three ARM Locales Z. Li and M. C. Cribb Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Over the past decade, an unprecedented amount of high-quality observational data pertaining to atmospheric and surface parameters has been collected at Atmospheric Radiation Measurement (ARM) locales around the globe. These data have been critical in the development and validation of models used to study the complex interaction of cloud, aerosols, and the surface on the solar radiative budget (SRB), the primary force driving atmospheric circulation. As the next step forward, the challenge of

238

Evidence that the spectral dependence of light absorption by aerosols is  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evidence that the spectral dependence of light absorption by aerosols is Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon Title Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon Publication Type Journal Article LBNL Report Number LBNL-55056 Year of Publication 2004 Authors Kirchstetter, Thomas W., Tihomir Novakov, and Peter V. Hobbs Journal Journal of Geophysical Research: Atmospheres Volume 109 Issue D21 Keywords aerosol light absorption, biomass burning, organic carbon Abstract The wavelength dependence of light absorption by aerosols collected on filters is investigated throughout the near-ultraviolet to near-infrared spectral region. Measurements were made using an optical transmission method. Aerosols produced by biomass combustion, including wood and savanna burning, and by motor vehicles, including diesel trucks, are included in the analysis. These aerosol types were distinguished by different wavelength (λ) dependences in light absorption. Light absorption by the motor vehicle aerosols exhibited relatively weak wavelength dependence; absorption varied approximately as λ-1, indicating that black carbon (BC) was the dominant absorbing aerosol component. By contrast, the biomass smoke aerosols had much stronger wavelength dependence, approximately λ-2. The stronger spectral dependence was the result of enhanced light absorption at wavelengths shorter than 600 nm and was largely reduced when much of the sample organic carbon (OC) was extracted by dissolution in acetone. This indicates that OC in addition to BC in the biomass smoke aerosols contributed significantly to measured light absorption in the ultraviolet and visible spectral regions and that OC in biomass burning aerosols may appreciably absorb solar radiation. Estimated absorption efficiencies and imaginary refractive indices are presented for the OC extracted from biomass burning samples and the BC in motor vehicle-dominated aerosol samples. The uncertainty of these constants is discussed. Overall, results of this investigation show that low-temperature, incomplete combustion processes, including biomass burning, can produce light-absorbing aerosols that exhibit much stronger spectral dependence than high-temperature combustion processes, such as diesel combustion.

239

CARES Helps Explain Secondary Organic Aerosols  

ScienceCinema (OSTI)

What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

Zaveri, Rahul

2014-06-02T23:59:59.000Z

240

ARM - Surface Aerosol Observing System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FacilitiesSurface Aerosol Observing System FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Surface Aerosol Observing System The ARM Mobile Facility (AMF) is equipped to quantify the interaction between clouds and aerosol particles. A counter-flow virtual impactor (CVI) is used to selectively sample cloud drops. The CVI takes advantage of the

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Influence of local waste burning on atmospheric aerosol properties in urban environment  

Science Journals Connector (OSTI)

Aerosols affect the radiative energy budget on both the regional and global scales. The wavelength-dependent aerosol optical depth (AOD) is a fundamental determinant of the amount by which extra-terrestrial incoming sunlight and outgoing terrestrial radiation are being attenuated in the atmosphere. The present study addresses the influence of local waste burning on aerosol characteristics, black carbon (BC) aerosol mass concentration and spectral solar irradiance using ground-based measurements over the tropical urban environment of Hyderabad, India. AOD has been observed to be maximum during burning days compared to normal days. Aerosol size spectra suggest bimodal distributions during pre-and post-burning periods and trimodal distributions during burning periods. Angstrom wavelength exponent estimated from spectral variation of AOD suggested dominance of accumulation mode particle loading during burning days compared to normal days. Diurnal variation of BC on normal days showed a broad nocturnal peak during ?20:00 to ?24:00h with a maximum value of BC aerosol concentration of ?14,000ngm?3 whereas on local waste burning days enormous increases in BC concentrations have been observed with a peak at ?60,000ngm?3. Relative attenuation of global solar irradiance during burning days has been found to be of the order of 30% in the visible and 28% in the near-infrared regions. The results are discussed in detail in this paper.

K. Madhavi Latha; K.V.S. Badarinath

2006-01-01T23:59:59.000Z

242

Particles and People: Aerosol Movement Into and Around the Human Body  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Particles and People: Aerosol Movement Into and Around the Human Body Particles and People: Aerosol Movement Into and Around the Human Body Speaker(s): Miriam Byrne Date: April 14, 2006 - 12:00pm Location: Bldg. 90 Miriam Byrne is a participating guest in the Airflow and Pollutant Transport Group at LBL. She is an academic member of staff in the Physics Department at the National University of Galway, Ireland. Her research interests, primarily funded by European Commission radiation protection programs, focus on the mechanisms of aerosol transport to and from human body surfaces. Over the last ten years, she has been involved in tracer aerosol experiments to determine rates of particle deposition and resuspension from skin, hair and clothing, as well as studying particle transport into skin pores and hair follicles, and contact transfer from

243

Evaluation of GCM Column Radiation Models Under Cloudy Conditions with The Arm BBHRP Value Added Product  

SciTech Connect (OSTI)

The overarching goal of the project was to improve the transfer of solar and thermal radiation in the most sophisticated computer tools that are currently available for climate studies, namely Global Climate Models (GCMs). This transfer can be conceptually separated into propagation of radiation under cloudy and under cloudless conditions. For cloudless conditions, the factors that affect radiation propagation are gaseous absorption and scattering, aerosol particle absorption and scattering and surface albedo and emissivity. For cloudy atmospheres the factors are the various cloud properties such as cloud fraction, amount of cloud condensate, the size of the cloud particles, and morphological cloud features such as cloud vertical location, cloud horizontal and vertical inhomogeneity and cloud shape and size. The project addressed various aspects of the influence of the above contributors to atmospheric radiative transfer variability. In particular, it examined: (a) the quality of radiative transfer for cloudless and non-complex cloudy conditions for a substantial number of radiation algorithms used in current GCMs; (b) the errors in radiative fluxes from neglecting the horizontal variabiity of cloud extinction; (c) the statistical properties of cloud horizontal and vertical cloud inhomogeneity that can be incorporated into radiative transfer codes; (d) the potential albedo effects of changes in the particle size of liquid clouds; (e) the gaseous radiative forcing in the presence of clouds; and (f) the relative contribution of clouds of different sizes to the reflectance of a cloud field. To conduct the research in the various facets of the project, data from both the DOE ARM project and other sources were used. The outcomes of the project will have tangible effects on how the calculation of radiative energy will be approached in future editions of GCMs. With better calculations of radiative energy in GCMs more reliable predictions of future climate states will be attainable, thus affecting public policy decisions with great impact to public life.

Dr. Lazaros Oreopoulos and Dr. Peter M. Norris

2010-03-14T23:59:59.000Z

244

Nuclear Forces  

Science Journals Connector (OSTI)

One-meson-exchange Feynman diagrams are nonrelativistically reduced and unitarized via Schrdinger's equation. Properties of nucleon-nucleon scattering are calculated at incident laboratory energies of 25-310 MeV. Bound-state properties of the deuteron and of nuclear matter are also calculated. Mesons included are the ?, ?, ?, ?, ?, and ?. Very good over-all agreement with the experimental data is obtained. Important features of this "potential" include its momentum dependence, properly treated, and the contribution of the ? "meson," which qualitatively changes the central/tensor force ratio from that of previous phenomenological potentials.

Lester Ingber

1968-10-20T23:59:59.000Z

245

Gordon Research Conference on Radiation & Climate in 2009, July 5 -10  

SciTech Connect (OSTI)

The 2009 Gordon Research Conference on Radiation and Climate will present cutting-edge research on the outstanding issues in global climate change with focus on the radiative forcing and sensitivity of the climate system and associated physical processes. The Conference will feature a wide range of topics, including grand challenges in radiation and climate, radiative forcing, climate feedbacks, cloud processes in climate system, hydrological cycle in changing climate, absorbing aerosols and Asian monsoon, recent climate changes, and geo-engineering. The invited speakers will present the recent most important advances and future challenges in these areas. The Conference will bring together a collection of leading investigators who are at the forefront of their field, and will provide opportunities for scientists especially junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented.

Quiang Fu

2009-07-10T23:59:59.000Z

246

Reflective Aerosols and the Greenhouse Effect  

Science Journals Connector (OSTI)

The contributions of atmospheric aerosols to add to either a climate-warming effect or climate-cooling effect depend on the chemical composition of the aerosol and the local environment. The best estimation is...

Kathryn E. Kautzman

2014-07-01T23:59:59.000Z

247

Antiviral therapy with small particle aerosols  

Science Journals Connector (OSTI)

The generation and use of small particle aqueous aerosols (1.23 m aerodynamic mass median diameter, GSD=2.0 m) containing ribavirin is described. Administered via aerosol, ribavirin will be deposited rather ...

V. Knight; B. Gilbert

1988-12-01T23:59:59.000Z

248

E-Print Network 3.0 - airborne aerosol prediction Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

profiles of aerosol extinction and optical depth Evaluate predictions from aerosol transport... aerosol measurements. Comparison of AOT ... Source: Brookhaven National...

249

Effects of Black Carbon Aerosols on the Indian Monsoon GERALD A. MEEHL, JULIE M. ARBLASTER,* AND WILLIAM D. COLLINS  

E-Print Network [OSTI]

of the ABC on longwave radiation are contributed primarily by natural aerosols and are not appreciable combine with naturally occurring dust loading over the Tibetan Plateau to ac- centuate the elevated heat radiation reaching the surface during the dry season, as noted in previous studies. The increased meridional

Meehl, Gerald A.

250

Investigations of the Absorption Properties of Near-Ground Aerosol by the Methods of Optical-Acoustic Spectrometry and Diff...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Investigations of the Absorption Properties of Investigations of the Absorption Properties of Near-Ground Aerosol by the Methods of Optical-Acoustic Spectrometry and Diffuse Extinction V. S. Kozlov, M. V. Panchenko, A. B. Tikhomirov, and B. A. Tikhomirov Institute of Atmospheric Optics Tomsk, Russia Introduction Aerosol absorption is an important factor in the formation of non-selective radiation extinction in the visible wavelength range, and plays a great role in solving many radiative and climatic problems. The principal absorbing substance in atmospheric aerosol is soot (crystal carbon), which strongly affects the atmospheric transparency, albedo of clouds, and snow cover. The non-selective absorption by finely dispersed soot aerosol is considered to be one of the most plausible reasons for the appearance of

251

Techniques and Methods Used to Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility C. Sivaraman, D. D. Turner, and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington Objective Profiles of aerosol optical properties are needed for radiative closure exercises such as the broadband heating rate profile (BBHRP) project (Mlawer et al. 2002) and the Shortwave Quality Measurement Experiment (QME). Retrieving cloud microphysical properties using radiation measurements in the shortwave, such as the spectral retrieval technique described in Daniel et al. (2002), also require the optical properties of the aerosols so that they can be accounted for in the retrieval process. The objective of the aerosol best estimate (ABE) value-added procedure (VAP) is to provide profiles of

252

2, 20952131, 2002 Below-cloud aerosol  

E-Print Network [OSTI]

). In addition, the understanding of wet removal processes remains crucial in local and regional pollutionACPD 2, 2095­2131, 2002 Below-cloud aerosol removal C. Andronache Title Page Abstract Introduction-cloud aerosol removal by rainfall for observed aerosol size distributions C. Andronache Boston College, Chestnut

Paris-Sud XI, Université de

253

6, 93519388, 2006 Aerosol-cloud  

E-Print Network [OSTI]

ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

Paris-Sud XI, Université de

254

Multi-year Satellite and Surface Observations of AOD in support of Two-Column Aerosol Project (TCAP) Field Campaign  

SciTech Connect (OSTI)

We use combined multi-year measurements from the surface and space for assessing the spatial and temporal distribution of aerosol properties within a large (~400x400 km) region centered on Cape Cod, Massachusetts, along the East Coast of the United States. The ground-based Aerosol Robotic Network (AERONET) measurements at Marthas Vineyard Coastal Observatory (MVCO) site and Moderate Resolution Imaging Spectrometer (MODIS) sensors on board the Terra and Aqua satellites provide horizontal and temporal variations of aerosol optical depth, while the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) offers the altitudes of aerosol-layers. The combined ground-based and satellite measurements indicated several interesting features among which were the large differences in the aerosol properties observed in July and February. We applied the climatology of aerosol properties for designing the Two-Column Aerosol Project (TCAP), which is supported by the U.S. Department of Energys (DOEs) Atmospheric Radiation Measurement (ARM) Program. The TCAP field campaign involves 12-month deployment (started July 1, 2012) of the ground-based ARM Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) on Cape Cod and complimentary aerosol observations from two research aircraft: the DOE Gulfstream-1 (G-1) and the National Aeronautics and Space Administration (NASA) B200 King Air. Using results from the coordinated G-1 and B200 flights during the recent (July, 2012) Intensive Observation Period, we demonstrated that the G-1 in situ measurements and B200 active remote sensing can provide complementary information on the temporal and spatial changes of the aerosol properties off the coast of North America.

Kassianov, Evgueni I.; Chand, Duli; Berg, Larry K.; Fast, Jerome D.; Tomlinson, Jason M.; Ferrare, R.; Hostetler, Chris A.; Hair, John

2012-11-01T23:59:59.000Z

255

Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem  

SciTech Connect (OSTI)

This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.

Yang Q.; Lee Y.; GustafsonJr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

2011-12-02T23:59:59.000Z

256

ARM - Measurement - Aerosol optical depth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

257

ARM - Measurement - Aerosol optical properties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties properties ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter fraction. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer NEPHELOMETER : Nephelometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

258

Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 Posters Scanning Raman Lidar Measurements of Atmospheric Water Vapor and Aerosols R. A. Ferrare and K. D. Evans (a) Hughes STX Corporation Lanham, Maryland S. H. Melfi and D. N. Whiteman NASA/Goddard Space Flight Center Greenbelt, Maryland The principal objective of the Department of Energy's (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general circulation models (GCMs) which are used to study climate change. Meeting this objective requires detailed measurements of both water vapor and aerosols since these atmospheric constituents affect the radiation balance directly, through scattering and absorption of solar and

259

INTRODUCTION Aerosol information derived from geostationary remote sensing instruments can comple-  

E-Print Network [OSTI]

- ments those obtained from polar orbiting sensors (e.g. MODIS, MERIS, or AVHRR). The high scanning, and a background aero- sol (AOD=0.05) using meteorological auxiliary data and the radiative transfer code SMAC , assuming continental aerosol model. Compilation of background composites (clear sky image) of the lowest

Wunderle, Stefan

260

Review of models applicable to accident aerosols  

SciTech Connect (OSTI)

Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

Glissmeyer, J.A.

1983-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The Global Carbon Cycle Radiative forcing  

E-Print Network [OSTI]

, solubility defined Effective partial pressure in surface water Gas exchange between air and water driven" of carbon Cooling of high latitude surface waters increases solubility of CO2 and saturation DIC Induces in deep ocean Carbon, nitrogen, phosphorus, iron, etc. returned to inorganic form in the deep waters

Follows, Mick

262

The Global Carbon Cycle Radiative forcing  

E-Print Network [OSTI]

water Gas exchange between air and water driven by partial pressure difference Ko = CO2 * / pCO2 pCO2 waters increases solubility of CO2 and saturation DIC Induces uptake of CO2 from atmosphere and increase Solubility pump Carbonate chemistry Biological pump Photosynthesis and respiration Causes of glacial

Follows, Mick

263

Investigation of Aerosol Indirect Effects using a Cumulus Microphysics Parameterization in a Regional Climate Model  

SciTech Connect (OSTI)

A new Zhang and McFarlane (ZM) cumulus scheme includes a two-moment cloud microphysics parameterization for convective clouds. This allows aerosol effects to be investigated more comprehensively by linking aerosols with microphysical processes in both stratiform clouds that are explicitly resolved and convective clouds that are parameterized in climate models. This new scheme is implemented in the Weather Research and Forecasting (WRF) model, which is coupled with the physics and aerosol packages from the Community Atmospheric Model version 5 (CAM5). A test case of July 2008 during the East Asian summer monsoon is selected to evaluate the performance of the new ZM scheme and to investigate aerosol effects on monsoon precipitation. The precipitation and radiative fluxes simulated by the new ZM scheme show a better agreement with observations compared to simulations with the original ZM scheme that does not include convective cloud microphysics and aerosol convective cloud interactions. Detailed analysis suggests that an increase in detrained cloud water and ice mass by the new ZM scheme is responsible for this improvement. To investigate precipitation response to increased anthropogenic aerosols, a sensitivity experiment is performed that mimics a clean environment by reducing the primary aerosols and anthropogenic emissions to 30% of that used in the control simulation of a polluted environment. The simulated surface precipitation is reduced by 9.8% from clean to polluted environment and the reduction is less significant when microphysics processes are excluded from the cumulus clouds. Ensemble experiments with ten members under each condition (i.e., clean and polluted) indicate similar response of the monsoon precipitation to increasing aerosols.

Lim, Kyo-Sun; Fan, Jiwen; Leung, Lai-Yung R.; Ma, Po-Lun; Singh, Balwinder; Zhao, Chun; Zhang, Yang; Zhang, Guang; Song, Xiaoliang

2014-01-29T23:59:59.000Z

264

Radiological Risk Assessment of Capstone Depleted Uranium Aerosols  

SciTech Connect (OSTI)

Assessment of the health risk from exposure to aerosols of depleted uranium (DU) is an important outcome of the Capstone aerosol studies that established exposure ranges to personnel in armored combat vehicles perforated by DU munitions. Although the radiation exposure from DU is low, there is concern that DU deposited in the body may increase cancer rates. Radiation doses to various organs of the body resulting from the inhalation of DU aerosols measured in the Capstone studies were calculated using International Commission on Radiological Protection (ICRP) models. Organs and tissues with the highest calculated committed equivalent 50-yr doses were lung and extrathoracic tissues (nose and nasal passages, pharynx, larynx, mouth and thoracic lymph nodes). Doses to the bone surface and kidney were about 5 to 10% of the doses to the extrathoracic tissues. The methodologies of the ICRP International Steering Committee on Radiation Standards (ISCORS) were used for determining the whole body cancer risk. Organ-specific risks were estimated using ICRP and U.S. Environmental Protection Agency (EPA) methodologies. Risks for crewmembers and first responders were determined for selected scenarios based on the time interval of exposure and for vehicle and armor type. The lung was the organ with the highest cancer mortality risk, accounting for about 97% of the risks summed from all organs. The highest mean lifetime risk for lung cancer for the scenario with the longest exposure time interval (2 h) was 0.42%. This risk is low compared with the natural or background risk of 7.35%. These risks can be significantly reduced by using an existing ventilation system (if operable) and by reducing personnel time in the vehicle immediately after perforation.

Hahn, Fletcher; Roszell, Laurie E.; Daxon, Eric G.; Guilmette, Ray A.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

265

Applications of Capstone Depleted Uranium Aerosol Risk Data to Military Combat Risk Management  

SciTech Connect (OSTI)

Risks to personnel engaged in military operations include not only the threat of enemy firepower but also risks from exposure to other hazards such as radiation. Combatant commanders of the U. S. Army carefully weigh risks of casualties before implementing battlefield actions using an established paradigm that take these risks into consideration. As a result of the inclusion of depleted uranium (DU) anti-armor ammunition in the conventional (non-nuclear) weapons arsenal, the potential for exposure to DU aerosols and its associated chemical and radiological effects becomes an element of the commanders risk assessment. The Capstone DU Aerosol Study measured the range of likely DU oxide aerosol concentrations created inside a combat vehicle perforated with a DU munition, and the Capstone Human Health Risk Assessment (HHRA) estimated the associated doses and calculated risks. This paper focuses on the development of a scientific approach to adapt the risks from DUs non uniform dose distribution within the body using the current U.S. Department of Defense (DoD) radiation risk management approach. The approach developed equates the Radiation Exposure Status (RES) categories to the estimated radiological risks of DU and makes use of the Capstone-developed Renal Effects Group (REG) as a measure of chemical risk from DU intake. Recommendations are provided for modifying Army guidance and policy in order to better encompass the potential risks from DU aerosol inhalation during military operations.

Daxon, Eric G.; Parkhurst, MaryAnn; Melanson, Mark A.; Roszell, Laurie E.

2009-03-01T23:59:59.000Z

266

Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol  

E-Print Network [OSTI]

of this research is to examine sea salt aerosols and their impact on polluted environments. Sea salt aerosols act as Cloud Condensation Nuclei (CCN) as well as providing a surface for heterogeneous reactions. Such reactions have implications for trace gases...

Benoit, Mark David

2013-02-06T23:59:59.000Z

267

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

First Observation-Based Estimates of Cloud-Free Aerosol Radiative Forcing First Observation-Based Estimates of Cloud-Free Aerosol Radiative Forcing Across China Download a printable PDF Submitter: Li, Z., University of Maryland Area of Research: Aerosol Properties Working Group(s): Aerosol Life Cycle Journal Reference: N/A Mean annual shortwave aerosol radiative forcing (SWARF) averaged across China. Spatial variation of the annual mean SW aerosol radiative forcing. Heavy loading of aerosols in China is widely known, but little is known about their impact on regional radiation budgets, which is often expressed as aerosol radiative forcing (ARF). Depending on their composition, aerosols can absorb a substantial amount of solar radiation, leading to a warming of the atmosphere and cooling of the surface. Many investigations have been made to characterize atmospheric aerosols and their radiative

268

ARM - Field Campaign - Two-Column Aerosol Project (TCAP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsTwo-Column Aerosol Project (TCAP) govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction Measurements 2012.07.15, Dubey, AMF Two-Column Aerosol Project (TCAP): Aerial Campaign 2012.07.07, Berg, AAF Two-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer 2012.07.01, Berg, AMF Two-Column Aerosol Project (TCAP): KASPRR Engineering Tests 2012.07.01, Mead, AMF Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements

269

Impact of Aerosols on Tropical Cyclones: An Investigation Using Convection-permitting Model Simulation  

SciTech Connect (OSTI)

The role of aerosols effect on two tropical cyclones over Bay of Bengal are investigated using a convection permitting model with two-moment mixed-phase bulk cloud microphysics scheme. The simulation results show the role of aerosol on the microphysical and dynamical properties of cloud and bring out the change in efficiency of the clouds in producing precipitation. The tracks of the TCs are hardly affected by the changing aerosol types, but the intensity exhibits significant sensitivity due to the change in aerosol contribution. It is also clearly seen from the analyses that higher heating in the middle troposphere within the cyclone center is in response to latent heat release as a consequence of greater graupel formation. Greater heating in the middle level is particularly noticeable for the clean aerosol regime which causes enhanced divergence in the upper level which, in turn, forces the lower level convergence. As a result, the cleaner aerosol perturbation is more unstable within the cyclone core and produces a more intense cyclone as compared to other two perturbations of aerosol. All these studies show the robustness of the concept of TC weakening by storm ingestion of high concentrations of CCN. The consistency of these model results gives us confidence in stating there is a high probability that ingestion of high CCN concentrations in a TC will lead to weakening of the storm but has little impact on storm direction. Moreover, as pollution is increasing over the Indian sub-continent, this study suggests pollution may be weakening TCs over the Bay of Bengal.

Hazra, Anupam; Mukhopadhyay, P.; Taraphdar, Sourav; Chen, J. P.; Cotton, William R.

2013-07-16T23:59:59.000Z

270

Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx  

SciTech Connect (OSTI)

We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

Saide, Pablo; Spak, S. N.; Carmichael, Gregory; Mena-Carrasco, M. A.; Yang, Qing; Howell, S. G.; Leon, Dolislager; Snider, Jefferson R.; Bandy, Alan R.; Collett, Jeffrey L.; Benedict, K. B.; de Szoeke, S.; Hawkins, Lisa; Allen, Grant; Crawford, I.; Crosier, J.; Springston, S. R.

2012-03-30T23:59:59.000Z

271

Separating Cloud Forming Nuclei from Interstitial Aerosol  

SciTech Connect (OSTI)

It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

Kulkarni, Gourihar R.

2012-09-12T23:59:59.000Z

272

Carbonaceous Aerosol Study Using Advanced Particle Instrumentation  

E-Print Network [OSTI]

particles from the combustion of biomass fuels. Environ.range transport of biomass combustion aerosols. Environ.during the open combustion of biomass in the laboratory, J.

Qi, Li

2010-01-01T23:59:59.000Z

273

Active Spectral Nephelometry in Studies of the Condensational Activity of Submicron Aerosol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Active Spectral Nephelometry in Studies of the Active Spectral Nephelometry in Studies of the Condensational Activity of Submicron Aerosol M. V. Panchenko, S. A. Terpugova, and V. S. Kozlov Institute of Atmospheric Optics Russian Academy of Sciences Tomsk, Russia M. A. Sviridenkov A. M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia A. S. Kozlov Institute of Chemical Kinetics and Combustion Russian Academy of Sciences Novosibirsk, Russia Introduction Water vapor condensation and evaporation are among the main processes of the atmospheric aerosol transformation essentially affecting its optical and radiative characteristics. Most of the known methods for investigating the aerosol condensation activity are based on measurements of only the changes in the

274

Comparative Analysis of Urban Atmospheric Aerosol by Particle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

275

Reduction in biomass burning aerosol light absorption upon humidificat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

276

The Indirect and Semi-Direct Aerosol Campaign  

SciTech Connect (OSTI)

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-03-24T23:59:59.000Z

277

Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties of orographically induced clouds and how do these depend on dynamics, thermodynamics, and aerosol microphysics? * What is the role of aerosols and changing cloud...

278

Molecular Chemistry of Organic Aerosols Through the Application...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

279

Optical, physical, and chemical properties of springtime aerosol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in...

280

Low Dose Radiation Program: Links - Organizations Conducting Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conducting Low Dose Radiation Research Conducting Low Dose Radiation Research DOE Low Dose Radiation Research Program DoReMi Integrating Low Dose Research High Level Expert Group (HLEG) on European Low Dose Risk Research Multidisciplinary European Low Dose Initiative (MELODI) RISC-RAD Radiosensitivity of Individuals and Susceptibility to Cancer induced by Ionizing Radiation United States Transuranium & Uranium Registries Organizations Conducting other Radiation Research Argonne National Laboratory (ANL) Armed Forces Radiology Research Institute (AFRRI) Atmospheric Radiation Measurement (ARM) Program Brookhaven National Laboratory (BNL) Center for Devices and Radiological Health (CDRH) Central Research Institute of Electric Power Industry (CRIEPI) Colorado State University Columbia University

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PARAGON - An Integrated Approach for Characterizing Aerosol Climate Impacts and Environmental Interactions  

SciTech Connect (OSTI)

Aerosols exert myriad influences on the Earth?s environment and climate and on human health. The complexity of aerosol-related processes requires that information gathered to improve our understanding of climate change must originate from multiple sources, and that effective strategies for data integration need to be established. Currently, the aerosol community lacks the necessary tools and infrastructure to reap maximum scientific benefit from a vast array of observed and modeled data. Spatial and temporal sampling differences among a diverse set of sensors, nonuniform data qualities, aerosol mesoscale variabilities, and difficulties in separating cloud effects are some of the challenges that need to be addressed. A sustained, long-term program also requires maintaining consistently well-understood accuracies as measurement approaches evolve and improve. Achieving a comprehensive understanding of how aerosol physical, chemical, and radiative processes impact the Earth system can only be achieved through a multidisciplinary, interagency, and international initiative capable of dealing with these issues. A systematic approach, capitalizing on modern measurement and modeling techniques, geospatial statistics methodologies, and high-performance information technologies can provide the necessary machinery to support this objective. We outline a framework for integrating and interpreting observations and models and establishing an accurate, consistent and cohesive long-term record, following a strategy whereby information and tools of progressively greater sophistication are incorporated as problems of increasing complexity are tackled. This concept is named the Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON). To encompass the breadth of effort required, we present a set of recommendations dealing with data interoperability, integration, synergy, summarization and mining, model evaluation, calibration and validation, augmentation of surface and in situ measurements, advances in passive and active remote sensing, and design of satellite missions. Without an initiative of this nature, the scientific and policy communities will continue to struggle with understanding the quantitative impact of complex aerosol processes on regional and global climate change and air quality.

Diner, David J.; Ackerman, Thomas P.; Anderson, Theodore L.; Bosenberg, Jens; Braverman, Amy J.; Charlson, Robert J.; Collins, William D.; Davies, Roger; Holben, B. N.; Hostetler, Chris A.; Kahn, Ralph A.; Martonchik, John V.; Menzies, Robert T.; Miller, Mark A.; Ogren, J. A.; Penner, Joyce E.; Rasch, P; Schwartz, Stephen E.; Seinfeld, John H.; Stephens, Graeme L.; Torres, Omar; Travis, Larry D.; Wielicki, Bruce A.; Yu, Bin

2004-10-01T23:59:59.000Z

282

Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging in Central California  

SciTech Connect (OSTI)

Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (June 27-29, 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research.

Moffet, Ryan C.; Rodel, Tobias; Kelly, Stephen T.; Yu, Xiao-Ying; Carroll, Gregory; Fast, Jerome D.; Zaveri, Rahul A.; Laskin, Alexander; Gilles, Mary K.

2013-10-29T23:59:59.000Z

283

Multi-dimensional Longwave Forcing of Boundary Layer Cloud Systems  

SciTech Connect (OSTI)

The importance of multi-dimensional (MD) longwave radiative effects on cloud dynamics is evaluated in a large eddy simulation (LES) framework employing multi-dimensional radiative transfer (Spherical Harmonics Discrete Ordinate Method SHDOM). Simulations are performed for a case of unbroken, marine boundary layer stratocumulus and a broken field of trade cumulus. Snapshot calculations of MD and IPA (independent pixel approximation 1D) radiative transfer applied to LES cloud fields show that the total radiative forcing changes only slightly, although the MD effects significantly modify the spatial structure of the radiative forcing. Simulations of each cloud type employing MD and IPA radiative transfer, however, differ little. For the solid cloud case, relative to using IPA, the MD simulation exhibits a slight reduction in entrainment rate and boundary layer TKE relative to the IPA simulation. This reduction is consistent with both the slight decrease in net radiative forcing and a negative correlation between local vertical velocity and radiative forcing, which implies a damping of boundary layer eddies. Snapshot calculations of the broken cloud case suggest a slight increase in radiative cooling, though few systematic differences are noted in the interactive simulations. We attribute this result to the fact that radiative cooling is a relatively minor contribution to the total energetics. For the cloud systems in this study, the use of IPA longwave radiative transfer is sufficiently accurate to capture the dynamical behavior of BL clouds. Further investigations are required in order to generalize this conclusion for other cloud types and longer time integrations. 1

Mechem, David B.; Kogan, Y. L.; Ovtchinnikov, Mikhail; Davis, Anthony B; Evans, K. F.; Ellingson, Robert G.

2008-12-20T23:59:59.000Z

284

Integrated Study of MFRSR-derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facili...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Study of MFRSR-Derived Parameters of Integrated Study of MFRSR-Derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facilities - Comparison with Satellite and Other Ground-Based Measurements M. D. Alexandrov and B. Cairns Columbia University National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. A. Lacis and B. E. Carlson National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Comparison of SGP MFRSR Network Aerosol Retrievals with MODIS Aerosol Product The network of Multi-filter Rotating Shadowband Radiometers (MFRSRs) at the Atmospheric Radiation Measurement (ARM) Program Cloud and Radiation Testbed (CART) site consists of 21 instrument sites

285

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect (OSTI)

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09T23:59:59.000Z

286

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect (OSTI)

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09T23:59:59.000Z

287

BNL | Mobile Aerosol Observing System (MAOS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mobile Aerosol Observing System (MAOS) Mobile Aerosol Observing System (MAOS) The Mobile Aerosol Observing System (MAOS) is a platform and instrument suite for Intensive Operation Periods (IOPs) to conduct in situ measurements of aerosols and their precursors. MAOS is part of the ARM Climate Research Facility. Physically MAOS is contained in two 20' SeaTainers custom adapted to provide a sheltered laboratory environment for operators and instruments even under harsh conditions. The two structures are designated MAOS-A and MAOS-C for Aerosol and Chemistry respectively. Although independent, with separate data systems, inlets and power distribution, the two structures are normally a single operating unit. The two enclosures comprising MAOS are designed for rapid deployment. All components (except for the Radar Wind Profiler) are transported internally

288

The Opposed Migration Aerosol Classifier (OMAC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Opposed Migration Aerosol Classifier (OMAC) The Opposed Migration Aerosol Classifier (OMAC) Speaker(s): Harmony Gates Date: February 22, 2007 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Melissa Lunden A new differential mobility classifier will be described. The instrument classifies aerosol particles in a channel flow between porous (or screen) electrodes. The aerosol enters the channel parallel to the porous electrodes, while a larger, particle-free cross-flow enters through one of the porous electrode. A potential difference between electrodes causes the charged aerosol particles to migrate upstream against the cross-flow. Only particles whose upward migration velocity balances the cross flow will be transmitted along the path of the classifier. Simulations of the OMAC show that it should give the same resolution at the traditional

289

An Aerosol Condensation Model for Sulfur Trioxide  

SciTech Connect (OSTI)

This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

Grant, K E

2008-02-07T23:59:59.000Z

290

Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008  

SciTech Connect (OSTI)

The Importance of Clouds and Radiation for Climate Change: The Earths surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earths energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

LR Roeder

2008-12-01T23:59:59.000Z

291

Global observations of desert dust and biomass burning aerosols  

E-Print Network [OSTI]

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

292

Atmospheric aerosol light scattering and surface wetness influence the diurnal pattern of net ecosystem exchange in a semi-arid  

E-Print Network [OSTI]

and can enhance terrestrial carbon sequestration (Gu et al., 1999, 2002, 2003; Roderick et al., 2001 observational evidence of a link between routine aerosol variability, diffuse radiation and carbon sequestration.g. Baldocchi, 1997). Relation- ships using these variables have been used to model carbon exchange between

Cohen, Ronald C.

293

Preface to special section on East Asian Studies of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE)  

E-Print Network [OSTI]

that reduced daily mean surface solar radiation by $30­40 W m?2 , but barely changed solar reflection second highest in the world next to Africa (Table 1). Coexistence of dust, industrial pollutants Asia. [3] Increasing evidence suggests that the influence of aerosols on the energy and water cycles

Li, Zhanqing

294

Assessment of the Effect of Air Pollution Controls on Trends in Shortwave Radiation over the United States from 1995 through 2010 from Multiple Observation Networks  

SciTech Connect (OSTI)

Long term datasets of total (all-sky) and clear-sky downwelling shortwave (SW) radiation, cloud cover fraction (cloudiness) and aerosol optical depth (AOD) are analyzed together with aerosol concentration from several networks (e.g. SURFRAD, CASTNET, IMPROVE and ARM) in the United States (US). Seven states with varying climatology are selected to better understand the effect of aerosols and clouds on SW radiation. This analysis aims to test the hypothesis that the reductions in anthropogenic aerosol burden resulting from substantial reductions in emissions of sulfur dioxide and nitrogen oxides over the past 15 years across the US has caused an increase in surface SW radiation. We show that the total and clear-sky downwelling SW radiation from seven sites have increasing trends except Penn State which shows no tendency in clear-sky SW radiation. After investigating several confounding factors, the causes can be due to the geography of the site, aerosol distribution, heavy air traffic and increasing cloudiness. Moreover, we assess the relationship between total column AOD with surface aerosol concentration to test our hypothesis. In our findings, the trends of clear-sky SW radiation, AOD, and aerosol concentration from the sites in eastern US agree well with our hypothesis. However, the sites in western US demonstrate increasing AOD associated with mostly increasing trends in surface aerosol concentration. At these sites, the changes in aerosol burden and/or direct aerosol effects alone cannot explain the observed changes in SW radiation, but other factors need to be considered such as cloudiness, aerosol vertical profiles and elevated plumes.

Gan, Chuen-Meei; Pleim, Jonathan; Mathur, Rohit; Hogrefe, Christian; Long, Charles N.; Xing, Jia; Roselle, Shawn; Wei, Chao

2014-02-14T23:59:59.000Z

295

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2  

E-Print Network [OSTI]

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME the resulting time series, we use tropospheric NO2 data as a reference in the regions dominated by biomass sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

Tilstra, Gijsbert

296

On the Correlation between Forcing and Climate Sensitivity  

E-Print Network [OSTI]

The possible correlation between climate sensitivity and radiative forcing is studied using versions of the NCAR Community Atmospheric Model (CAM) model with different climate sensitivities. No such correlation was found ...

Sokolov, Andrei

297

E-Print Network 3.0 - aerosol chemical composition Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol on Clouds Summary: chemical composition and mixing stateTime-Resolved Aerosol Collector CCSEMEDX (ASP) Single particle... Sizer CCN spectrum Aerosol absorptionDRI...

298

E-Print Network 3.0 - aerosol number distributions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

inorganic composition PILS-IC Summary: 3563 nephelometers Aerosol number concentration CNC (TSI 3010, 3025) Aerosol size distribution DMA... and APS Non-volatile aerosol size...

299

E-Print Network 3.0 - aerosol jet system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-controlled laminar aerosol jets and their application for studying aerosol combustion processes Author(s): Shoshin Y... 2002 Times Cited: 6 48. Title: Exhaust aerosol of a...

300

Hickam Air Force Base  

Broader source: Energy.gov [DOE]

Hickam Air Force Base spans 2,850 acres in Honolulu, Hawaii. The military base is home to the 15th Airlift Wing, the Hawaii Air National Guard, and the Pacific Air Forces headquarters.

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Protective Force Program Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides detailed requirements to supplement DOE O 473.2, Protective Force Program, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Does not cancel other directives.

2000-06-30T23:59:59.000Z

302

2007 Radiation & Climate GRC ( July 29-August 3, 2007)  

SciTech Connect (OSTI)

The theme of the fifth Gordon Research Conference on Radiation and Climate is 'Integrating multiscale measurements and models for key climate questions'. The meeting will feature lectures, posters, and discussion regarding these issues. The meeting will focus on insights from new types of satellite and in situ data and from new approaches to modeling processes in the climate system. The program on measurements will highlight syntheses of new satellite data on cloud, aerosols, and chemistry and syntheses of satellite and sub-orbital observations from field programs. The program on modeling will address both the evaluation of cloud-resolving and regional aerosol models using new types of measurements and the evidence for processes and physics missing from global models. The Conference will focus on two key climate questions. First, what factors govern the radiative interactions of clouds and aerosols with regional and global climate? Second, how well do we understand the interaction of radiation with land surfaces and with the cryosphere?

William Collins

2008-06-01T23:59:59.000Z

303

Fluid force transducer  

DOE Patents [OSTI]

An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

Jendrzejczyk, Joseph A. (Warrenville, IL)

1982-01-01T23:59:59.000Z

304

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

305

Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses  

SciTech Connect (OSTI)

One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.

Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

306

Damping of glacial-interglacial cycles from anthropogenic forcing  

E-Print Network [OSTI]

Climate variability over the past million years shows a strong glacial-interglacial cycle of ~100,000 years as a combined result of Milankovitch orbital forcing and climatic resonance. It has been suggested that anthropogenic contributions to radiative forcing may extend the length of the present interglacial, but the effects of anthropogenic forcing on the periodicity of glacial-interglacial cycles has received little attention. Here I demonstrate that moderate anthropogenic forcing can act to damp this 100,000 year cycle and reduce climate variability from orbital forcing. Future changes in solar insolation alone will continue to drive a 100,000 year climate cycle over the next million years, but the presence of anthropogenic warming can force the climate into an ice-free state that only weakly responds to orbital forcing. Sufficiently strong anthropogenic forcing that eliminates the glacial-interglacial cycle may serve as an indication of an epoch transition from the Pleistocene to the Anthropocene.

Haqq-Misra, Jacob

2014-01-01T23:59:59.000Z

307

ARM - Field Campaign - Carbonaceous Aerosol and Radiation Effects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

William Shaw Campaign Data Sets IOP Participant Data Source Description Final Data Berg Surface Meteorology- T1 Site Order Data Jobson Surface Meteorology- T0 Site Order Data...

308

Overview of the 2010 Carbonaceous Aerosols and Radiative Effects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RJ Alvarez, WP Arnott, D Atkinson, S Baidar, RM Banta, JC Barnard, J Beranek, LK Berg, FJ Brechtel, WA Brewer, JF Cahill, B Cairns, CD Cappa, D Chand, S China, JM Comstock,...

309

The Persistently Variable Background Stratospheric Aerosol Layer and Global Climate Change  

Science Journals Connector (OSTI)

...in global radiative forcing (Fig. 3) over the past decade. The model has been extensively compared to other Earth system models of intermediate complexity as well as to Atmosphere-Ocean General Circulation Models [AOGCMs, see (28...

S. Solomon; J. S. Daniel; R. R. Neely III; J.-P. Vernier; E. G. Dutton; L. W. Thomason

2011-08-12T23:59:59.000Z

310

Southern hemisphere tropospheric aerosol microphysics  

SciTech Connect (OSTI)

Aerosol particle size distribution data have been obtained in the southern hemisphere from approximately 4{degree}S to 44{degree}S and between ground level and 6 km, in the vicinity of eastern Australia. The relative shape of the free-tropospheric size distribution for particles with radii larger than approximately 0.04 {mu}m was found to be remarkably stable with time, altitude, and location for the autumn-winter periods considered. This was despite some large concentration changes which were found to be typical of the southeastern Australian coastal region. The majority of free-troposphere large particles were found to have sulfuric acid or lightly ammoniated sulfate morphology. Large particles in the boundary layer almost exclusively had a sea-salt morphology.

Gras, J.L. (Commonwealth Scientific and Industrial Research Organization, Aspendale (Australia))

1991-03-20T23:59:59.000Z

311

Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report  

SciTech Connect (OSTI)

This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

Phillips, Vaughan T. J.

2013-10-18T23:59:59.000Z

312

Composition and Reactions of Atmospheric Aerosol Particles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composition and Reactions of Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

313

ARM - Measurement - Aerosol particle size distribution  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

particle size distribution particle size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size distribution The number of aerosol particles present in any given volume of air within a specificied size range Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

314

Composition and Reactions of Atmospheric Aerosol Particles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

315

BNL | Two-Column Aerosol Program (TCAP)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two-Column Aerosol Project (TCAP) Two-Column Aerosol Project (TCAP) There remain many key knowledge gaps despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. Many climatically important processes depend on particles that undergo continuous changes within a size range spanning a few nanometers to a few microns, and with compositions that consist of a variety of carbonaceous materials, soluble inorganic salts and acids and insoluble mineral dust. Primary particles, which are externally-mixed when emitted, are subject to coagulation and chemical changes associated with the condensation of semi-volatile gases to their surface resulting in a spectrum of compositions or mixing-states with a range of climate-affecting optical and hygroscopic properties. The numerical treatments of aerosol transformation

316

NASA's Aerosol-Cloud-Ecosystems (ACE) Mission  

Science Journals Connector (OSTI)

Plans for NASAs Aerosol-Cloud-Ecosystem (ACE) mission is described. Recommended by Earth Science Decadal Survey in 2007, ACE is nominally planned for a 2021 launch. ACE is...

Starr, David O'C

317

Composition and Reactions of Atmospheric Aerosol Particles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

318

ARM - Field Campaign - Aerosol Life Cycle IOP at BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsAerosol Life Cycle IOP at BNL govCampaignsAerosol Life Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News, June 14, 2011: Next-generation Aerosol-sampling Stations to Head for India Related Campaigns Aerosol Life Cycle: Chemical Ionization Mass Spectrometer - CIMS 2011.07.10, Lee, OSC Aerosol Life Cycle: HR-ToF-AMS 2011.06.15, Zhang, OSC Aerosol Life Cycle: ARM Mobile Facility 2 Aerosol Observing System 2011.06.15, Sedlacek, OSC Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10, Hallar, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle IOP at BNL 2011.06.01 - 2011.08.31 Lead Scientist : Arthur Sedlacek For data sets, see below.

319

ARM - Publications: Science Team Meeting Documents: A decade long aerosol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A decade long aerosol and cloud statistics and aerosol indirect effect at A decade long aerosol and cloud statistics and aerosol indirect effect at the ARM SGP site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Twelve-year data of MFRSR and MWR have been used to derive aerosol and cloud optical properties at the ARM SGP. Diurnal, monthly, seasonal and interannual variability of aerosol (optical depth and Angstrom coefficient) and cloud (optical depth and effective radius) have been analyzed. We specially focused on aerosol-cloud interactions. We found a signature of indirect aerosol effect for summer data: increased aerosol index has a statistically-significant anti-correlation with mean effective radius. No

320

Inter-annual Tropospheric Aerosol Variability in Late Twentieth Century and its Impact on Tropical Atlantic and West African Climate by Direct and Semi-direct Effects  

SciTech Connect (OSTI)

A new high-resolution (0.9$^{\\circ}$x1.25$^{\\circ}$ in the horizontal) global tropospheric aerosol dataset with monthly resolution is generated using the finite-volume configuration of Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the latter part of twentieth century. The surface emissions dataset is constructed from Coupled Model Inter-comparison Project (CMIP5) decadal-resolution surface emissions dataset to include REanalysis of TROpospheric chemical composition (RETRO) wildfire monthly emissions dataset. Experiments forced with the new tropospheric aerosol dataset and conducted using the spectral configuration of CAM4 with a T85 truncation (1.4$^{\\circ}$x1.4$^{\\circ}$) with prescribed twentieth century observed sea surface temperature, sea-ice and greenhouse gases reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the inter-annual timescales. Regression analyses over tropical Atlantic and Africa reveal that increasing dust aerosols can cool the North African landmass and shift convection southwards from West Africa into the Gulf of Guinea in the spring season in the simulations. Further, we find that increasing carbonaceous aerosols emanating from the southwestern African savannas can cool the region significantly and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present day aerosols can shift the ITCZ southwards over the tropical Atlantic and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.

Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR); Mahajan, Salil [ORNL; Lamarque, J-F [University Center for Atmospheric Research

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL SIZE DISTRIBUTION FROM MEASUREMENTS OF LIGHT TRANSMITTANCE AND SCATTERING Ernie R. Lewis and Stephen E. Schwartz Brookhaven National Laboratory, Upton, NY 11933 ses@bnl.gov elewis@bnl.gov MOMENTS FROM MEASUREMENTS As each of the measured quantities is linear in the size distribution dn/dr, it is possible to construct linear combinations of measurements that yield

322

Aerosol fabrication methods for monodisperse nanoparticles  

DOE Patents [OSTI]

Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

Jiang, Xingmao; Brinker, C Jeffrey

2014-10-21T23:59:59.000Z

323

Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect (OSTI)

The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

2003-01-28T23:59:59.000Z

324

Development of plutonium aerosol fractionation system  

E-Print Network [OSTI]

DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

Mekala, Malla R.

1993-01-01T23:59:59.000Z

325

Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

Mroz, E.J.; Olivares, J.; Kok, G.

1996-04-01T23:59:59.000Z

326

An Instrumentation Complex for Atmospheric Radiation Measurements in Siberia  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Instrumentation Complex for Atmospheric Radiation Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. Polkin, V. P. Shmargunov, S. A. Terpugova, S. A. Turchinovich, and V. N. Uzhegov Institute of Atmospheric Optics Tomsk, Russia Introduction The instrumentation complex is described, which has been prepared for radiative experiments in the region of Tomsk (West Siberia). The complex consists of three groups of devices to measure (a) the characteristics of the total downward radiation; (b) the most variable components of the atmospheric transparency directly affecting the income of radiation (aerosol optical depth [AOD], total content of water vapor, ozone, etc.); and (c) aerosol and meteorological parameters of the near-ground layer of the

327

Photometric Variations as Small Perturbations in Aerosol Content  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Photometric Variations as Photometric Variations as Small Perturbations in Aerosol Content I. Musat Department of Meteorology University of Maryland College Park, Maryland R. G. Ellingson Department of Meteorology Florida State University Tallahassee, Florida Abstract The quality of profile fitting of resolved stars depends ultimately upon the accuracy with which spectral differences of the sources are retrievable within the data, because the radiation color of well-separated known sources can serve as an indicator of the origin of the optical depth variations one observes during the night. The particularities of the whole sky imager (WSI) detector and optical system are such that the data suffer from lack of the spatial resolution required in a common astronomical observation.

328

E-Print Network 3.0 - aerosol microphysical characteristics Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new particle formation, aerosol microphysical evolution, three-dimensional transport, and wet... of aerosol microphysical properties. Some of ... Source: Brookhaven...

329

Aerosol penetration through transport lines  

E-Print Network [OSTI]

, which is given below: A = 1+ 1 1 ] + 1. 05 . ')rk (cos r( + 4 /'(" sin'" (r) where Stk is Stokes number (Stk=Cp J3, 'U. /9pd, ), c( is the angle between the axis of the inlet nozzle and the free stream, R is the ratio of free stream velocity... is the Froude number (U?, '/gR), R, represents the coupled effects of drag force (Stk) and lift force (Pl) (2Stk/Pl '), Stk is the Stokes number (rU?, /R, ), Pl is the particle lifl number (rdUm/R, ), r = Cp J3, ' / 1 gpd, , t, = 0. 3246(p Jp)D, /(uk?r)", k...

Dileep, V.R.

2012-06-07T23:59:59.000Z

330

Cloud Formation and Acceleration in a Radiative Environment  

E-Print Network [OSTI]

In a radiatively heated and cooled medium, the thermal instability is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field's theory to self-consistently account for a radiation force resulting from bound-free and bound-bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one and two-dimensional (1-D/2-D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1-D simulations demonstrate that the thermal instability can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to ...

Proga, Daniel

2015-01-01T23:59:59.000Z

331

Coulomb force as an entropic force  

SciTech Connect (OSTI)

Motivated by Verlinde's theory of entropic gravity, we give a tentative explanation to the Coulomb's law with an entropic force. When trying to do this, we find the equipartition rule should be extended to charges and the concept of temperature should be reinterpreted. If one accepts the holographic principle as well as our generalizations and reinterpretations, then Coulomb's law, the Poisson equation, and the Maxwell equations can be derived smoothly. Our attempt can be regarded as a new way to unify the electromagnetic force with gravity, from the entropic origin. Possibly some of our postulates are related to the D-brane picture of black hole thermodynamics.

Wang Tower [Center for High-Energy Physics, Peking University, Beijing 100871 (China)

2010-05-15T23:59:59.000Z

332

Unbalanced electromagnetic forces  

E-Print Network [OSTI]

) . I :, jazdz g (Member) (Member) August 1974 -" ~ 5:. -. 62 ABSTRACT Unbalanced Electromagnetic Forces (August 1974) Craig Martin Hansen, B. S. , Texas A&M University Directed by: Dr. Attilio J. Giaroia Electromagnetic forces from moving... be deduced from the history of the development of an under- standing of electromagnetic forces. This is a relatively short history (starting in the late 1800's) filled with misunderstandings and pre]udices. This history can be divided into two eras: non...

Hansen, Craig Martin

2012-06-07T23:59:59.000Z

333

Geochemistry Atomic Force Microscopy | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

imaging modes: contact, intermittent contact, phase imaging, magnetic force microscopy, electric force microscopy, surface potential microscopy, scanning capacitance microscopy,...

334

NUCLEAR PROXIMITY FORCES  

E-Print Network [OSTI]

One might summarize of nuclear potential energy has beendegree of freedom) for the nuclear interaction between anyUniversity of California. Nuclear Proximity Forces 'I< at

Randrup, J.

2011-01-01T23:59:59.000Z

335

acute radiation rectal: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net...

336

Alpha Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basics of Radiation Basics of Radiation Gamma Radiation and X-Rays Beta Radiation Alpha Radiation Irradiation Radioactive Contamination Definitions Detection Measurement Safety Around Radiation Sources Types of Radiation Exposure Managing Radiation Emergencies Basics of Radiation Characteristics of Alpha Radiation 1. Alpha radiation is not able to penetrate skin. 2. Alpha-emitting materials can be harmful to humans if the materials are inhaled, swallowed, or absorbed through open wounds. 3. A variety of instruments have been designed to measure alpha radiation. Special training in use of these instruments is essential for making accurate measurements. 4. A civil defense instrument (CD V-700) cannot detect the presence of radioactive materials that produce alpha radiation unless the radioactive materials also produce beta and/or gamma radiation.

337

ARM - Evaluation Product - CMWG Data - SCM-Forcing Data, Cloud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsCMWG Data - SCM-Forcing Data, Cloud ProductsCMWG Data - SCM-Forcing Data, Cloud Microphysical Properties and Radiative Heating Profiles Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : CMWG Data - SCM-Forcing Data, Cloud Microphysical Properties and Radiative Heating Profiles Site(s) GAN HFE NSA SGP TWP General Description SCM-forcing data are derived from the ARM Program observational data using the constrained variational analysis approach (Zhang and Lin 1997 and Zhang et al. 2001). The resulting products include both the large-scale forcing terms and the evaluation fields, which can be used for driving the Single-Column Models (SCMs) and Cloud Resolving Models (CRMs) and validating model simulations. Results from our studies are then used to

338

Radiation: Radiation Control (Indiana)  

Broader source: Energy.gov [DOE]

It is the policy of the state to encourage the constructive uses of radiation and to control its harmful effects. This section contains regulations pertaining to the manufacture, use,...

339

ARM Aerosol Working Group Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and MFRSR Measurements ARM STM 2008 Norfolk, VA Connor Flynn 1 , Annette Koontz 1 , Anne Jefferson 2 , Jim Barnard 1 , Sally McFarlane 1 1 Pacific Northwest National Laboratory 2 CIRES, University of Colorado, Boulder Progress towards ARM DOE 2008 Performance Metric 3 & 4 * Produce and make available new continuous time series of aerosol total column depth, based on results from the AMF deployment in Niger, Africa. * Produce and make available new continuous time series of retrieved dust properties, based on results from the AMF deployment in Niger, Africa. 0 100 200 300 400 0 20 40 60 80 100 ITF movement and surface RH % RH day of year (2006) 0 100 200 300 400 0 50 100 150 200 250 300 350 day of year wind direction (N = 0, E = 90) 2 4 6 8 10 12 14 Wind speed m/s 0 100 200 300 1.4 1.6 1.8 2 MFRSR Vo for filter2, Niamey

340

Distinguishing Aerosol Impacts on Climate over the Past Century  

Science Journals Connector (OSTI)

Aerosol direct (DE), indirect (IE), and black carbonsnow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosolclimate simulations in the Goddard Institute for Space Studies General Circulation Model ...

Dorothy Koch; Surabi Menon; Anthony Del Genio; Reto Ruedy; Igor Alienov; Gavin A. Schmidt

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Atmospheric Aerosol Optical Properties in the Persian Gulf  

Science Journals Connector (OSTI)

Aerosol optical depth measurements over Bahrain acquired through the ground-based Aerosol Robotic Network (AERONET) are analyzed. Optical depths obtained from ground-based sun/sky radiometers showed a pronounced temporal trend, with a maximum ...

Alexander Smirnov; Brent N. Holben; Oleg Dubovik; Norm T. O'Neill; Thomas F. Eck; Douglas L. Westphal; Andreas K. Goroch; Christophe Pietras; Ilya Slutsker

2002-02-01T23:59:59.000Z

342

Protective Force Program Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Provides detailed requirements to supplement DOE O 473.2, PROTECTIVE FORCE PROGRAM, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Change 1 revised pages in Chapters IV and VI on 12/20/2001.

2001-12-20T23:59:59.000Z

343

ILC Citizens' Task Force  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Fermilab ILC Citizens' Task Force June 2008 Report of the Fermilab ILC Citizens' Task Force 3 Contents 1 Executive Summary 3 Chapter 1 Purpose 7 Chapter 2 Origins and Purpose of the Fermilab Citizens' Task Force 15 Chapter 3 Setting the Stage 19 Chapter 4 Current Status of High Energy Physics Research 25 Chapter 5 Bringing the Next-Generation Accelerator to Fermilab 31 Chapter 6 Learning from Past Projects 37 Chapter 7 Location, Construction and Operation of Facilities Beyond Fermilab's Borders 45 Chapter 8 Health and Safety 49 Chapter 9 Environment 53 Chapter 10 Economics 59 Chapter 11 Political Considerations 65 Chapter 12 Community Engagement 77 Chapter 13 Summary 81 Appendices Appendix A. Task Force Members Appendix B. Task Force Meetings and Topics

344

Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model  

Science Journals Connector (OSTI)

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying ...

Philip Stier; Johann Feichter; Silvia Kloster; Elisabetta Vignati; Julian Wilson

2006-08-01T23:59:59.000Z

345

Implications of the In?Situ Measured Mass Absorption Cross Section of Organic Aerosols in Mexico City on the Atmospheric Energy Balance, Satellite Retrievals, and Photochemistry  

Science Journals Connector (OSTI)

The absorption of short wave incoming solar radiation by the organic component of aerosols has been examined by using data from the MCMA?2003 and the 2006 MILAGRO field campaigns. Both field efforts took place in and around Mexico City. Single Scattering Albedo (SSA) was derived as a function of wavelength (300870 nm) by combining irradiance measurements from a Multi?Filter Rotating Shadowband Radiometer (MFRSR) and spectrally resolved actinic flux measurements by spectroradiometry with a radiative transfer model (TUV). In addition organic aerosol mass measured by a surface deployed aerodyne aerosol mass spectrometer was used to estimate the Mass Absorption Cross?section (MAC) of Organic Carbon (OC). It was found that the MAC for OC is about 10.5? m 2 / g at 300 nm and falls close to zero at about 500 nm; these values are roughly consistent with previous MAC estimates of OC and present first in?situ observations of this quantity.

B. Dix; J. C. Barnard; R. Volkamer

2009-01-01T23:59:59.000Z

346

Nonequilibrium atmospheric secondary organic aerosol formation and growth  

Science Journals Connector (OSTI)

...Mexico City area are shown...inorganic atmospheric aerosols...2005 ) A large organic aerosol source...photochemical and thermal studies of...Characteristic Group FrequenciesTables and...particle thermal speed...phase-equilibrium in the atmospheric system: Aerosol...Support, Non-U.S...Determination by plasma-based...implications for atmospheric chemistry...2002) A thermal disso-ciation...

Vronique Perraud; Emily A. Bruns; Michael J. Ezell; Stanley N. Johnson; Yong Yu; M. Lizabeth Alexander; Alla Zelenyuk; Dan Imre; Wayne L. Chang; Donald Dabdub; James F. Pankow; Barbara J. Finlayson-Pitts

2012-01-01T23:59:59.000Z

347

Organic and Inorganic Aerosol Below-Cloud Scavenging by  

E-Print Network [OSTI]

concentrations, with an average gravimetric PM1.0 of 8.2 ( 1.6 µg m-3 and an average Fourier transform infrared-rinsing behavior was unaffected by source type. The aerosol OM was hydrophilic throughout the sampling period the description of aerosol lifetimes in global models. Introduction Wet and dry deposition of aerosol particles

Russell, Lynn

348

Project of Aerosol Optical Depth Change in South America  

E-Print Network [OSTI]

AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Paraguay Uruguay #12;Statistics of Aerosol M ean D ec 01 to 06 Mean Month AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela

Frank, Thomas D.

349

Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ocean Aerosols: The Marine Fast-Rotating Ocean Aerosols: The Marine Fast-Rotating Shadow-Band Radiometer Network M. A. Miller, R. M. Reynolds, and J. J. Bartholomew Brookhaven National Laboratory Upton, New York Introduction A network of ship-mounted marine fast-rotating shadow-band radiometers (FRSRs) and broadband radiometers have been deployed over the fast four years on several backbone ships, funded jointly by Atmospheric Radiation Measurement (ARM) and National Aeronautic and Space Administration's (NASA's) Sensor Intercomparison and Merger for Biological and Interdisciplinary Studies (SIMBIOS). These radiometers operate continuously and automatically during daylight hours. There fundamental measurements made by the FRSRs in the network are the direct-normal irradiance

350

NUCLEAR NON-PROLIFERATION-TASK 1: Deployable Plume and Aerosol Release Prediction and Tracking System  

SciTech Connect (OSTI)

This contract was awarded in response to a proposal in which a deployable plume and aerosol release prediction and tracking system would be designed, fabricated, and tested. The system would gather real time atmospheric data and input it into a real time atmospheric model that could be used for plume predition and tracking. The system would be able to be quickly deployed by aircraft to points of interest or positioned for deployment by vehicles. The system would provide three dimensional (u, v, and w) wind vector data, inversion height measurements, surface wind information, classical weather station data, and solar radiation. The on-board real time computer model would provide the prediction of the behavior of plumes and released aerosols.

John Kleppe, Ph.D., William Norris, Ph.D., Mehdi Etezada, Ph.D., P.E.

2006-07-19T23:59:59.000Z

351

Studying the feedback effects of aerosols on ozone and temperatures in Los Angeles with an Eulerian air pollution model  

SciTech Connect (OSTI)

An Eulerian air pollution model (GATOR/MMTD) was used to study the effects of aerosols on surface solar radiation, surface air temperatures, and ozone mixing ratios. Model results were also compared to data from the Southern California Air Quality Study (SCAQS) period of August 27-29, 1987. Gross errors for sulfate, sodium, light absorption, temperature, surface solar radiation, sulfur dioxide gas, formaldehyde gas, and ozone were lowest among parameters compared (1-40%). Gross errors for elemental carbon, organic carbon, total particulate mass, ammonium, ammonia gas, nitric acid gas, and light scattering, were larger (40-61%). Gross errors for particulate nitrate were largest (65-70%). Doubling of the land-based particulate emissions inventory caused gross errors of total particulate mass and elemental carbon to increase by factors of more than two. Also, setting lateral boundary inflow concentrations of particles to zero caused slight (< 1%) erosion of results for most species, large erosion (10%) for sodium and chloride, but slight improvement (< 1%) for a few species. Spinning up the meteorological model 24 hours in advance caused most gross errors to increase. Finally, model predictions for several parameters, with and without the inclusion of aerosols, were compared to data. The presence of aerosols reduced peak daytime surface solar radiation by approximately 6.4% (55 W m-2), increased night-time temperatures by about 0.77 K, decreased daytime temperatures by about 0.08 K, and increased overall temperatures (day plus night during the two day simulation period) by 0.43 K. The relatively small cooling during the day was due to heat trapping by elemental carbon-containing aerosols. The presence of aerosols also caused ozone mixing ratios to decrease by 2%.

Jacobson, M. [Stanford Univ., CA (United States)

1996-12-31T23:59:59.000Z

352

Researchers Model Impact of Aerosols Over California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Researchers Model Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu, lvu@lbl.gov, (510) 495-2404 LosAngelesSmogv1.jpg Smog over downtown Los Angeles. Aerosols are microscopic particles-like dust, pollen and soot-that ubiquitously float around in our atmosphere. Despite their tiny stature, these particles can have a huge impact on human health, climate and the environment. So scientists from the Pacific Northwest National Laboratory (PNNL), Colorado State University and the California Air Resources Board have set out to characterize the roles of various particles as atmospheric change agents on a regional scale.

353

Characterizing the formation of secondary organic aerosols  

SciTech Connect (OSTI)

Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

Lunden, Melissa; Black, Douglas; Brown, Nancy

2004-02-01T23:59:59.000Z

354

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE  

SciTech Connect (OSTI)

Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

2012-08-14T23:59:59.000Z

355

Aerodynamic Focusing Of High-Density Aerosols  

SciTech Connect (OSTI)

High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

Ruiz, D. E.; Fisch, Nathaniel

2014-02-24T23:59:59.000Z

356

Near real time vapor detection and enhancement using aerosol adsorption  

SciTech Connect (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

357

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

Novick, V.J.; Johnson, S.A.

1999-08-03T23:59:59.000Z

358

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

1999-01-01T23:59:59.000Z

359

Protective Force Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe Department of Energy policy, responsibilities, and requirements for the management and operation of the Protective Force Program. Chg 1 dated 2-13-95. Cancels DOE O 5632.7 and DOE O 5632.8.

1995-02-13T23:59:59.000Z

360

ATLAS Metadata Task Force  

E-Print Network [OSTI]

ATLAS Metadata Task Force D. Costanzo, J. Cranshaw, S.provided and approved by the ATLAS TDAQ and DCS Connectinformation, go to http://atlas-connect-forum.web.cern.ch/

Costanzo, D.; ATLAS Collaboration

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Federal Protective Force  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes requirements for the management and operation of the Department of Energy (DOE) Federal protective forces (FPFs). Cancels DOE M 470.4-3, Chg 1. Canceled by DOE O 473.3.

2009-07-15T23:59:59.000Z

362

Constraint and Restoring Force  

E-Print Network [OSTI]

Long-lived sensor network applications must be able to self-repair and adapt to changing demands. We introduce a new approach for doing so: Constraint and Restoring Force. CRF is a physics-inspired framework for computing ...

Beal, Jacob

2007-08-24T23:59:59.000Z

363

Aerosol Science and Technology, 41:202216, 2007 Copyright c American Association for Aerosol Research  

E-Print Network [OSTI]

processes, such as con- densation, coagulation, gas-to-particle conversion (Reid et al. 1998), and particle Aerosol size distribution is, along with particle refractive in- dex and shape, one of important

364

Weak nuclear forces cause the strong nuclear force  

E-Print Network [OSTI]

We determine the strength of the weak nuclear force which holds the lattices of the elementary particles together. We also determine the strength of the strong nuclear force which emanates from the sides of the nuclear lattices. The strong force is the sum of the unsaturated weak forces at the surface of the nuclear lattices. The strong force is then about ten to the power of 6 times stronger than the weak force between two lattice points.

E. L. Koschmieder

2007-12-11T23:59:59.000Z

365

Understanding Brown Carbon Aerosols and Their Role in Climate Change  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brown Carbon Aerosols Brown Carbon Aerosols Tiny aerosol particles in the atmosphere are a possible cause of climate change. Among the many contributors to climate change are aerosols in the atmosphere. These tiny particles suspended in the air come from many sources, some natural and some man-made. Some aerosols are organic (containing carbon), while others are inorganic (such as sea salt and sulfates). Most aerosols reflect sunlight, and some also absorb it. Many of these nanoparticles have severe health effects in addition to climate effects. Human activities that produce aerosols include transportation, industry, and agriculture. Black carbon particles (a component of soot) originating from combustion processes have been known for some time to absorb sunlight and warm the

366

Response of California temperature to regional anthropogenic aerosol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Response of California temperature to regional anthropogenic aerosol Response of California temperature to regional anthropogenic aerosol changes Title Response of California temperature to regional anthropogenic aerosol changes Publication Type Journal Article Year of Publication 2008 Authors Novakov, Tihomir, Thomas W. Kirchstetter, Surabi Menon, and Jeffery Aguiar Journal Geophysical Research Letters Volume 35 Issue 19 Abstract In this paper, we compare constructed records of concentrations of black carbon (BC) - an indicator of anthropogenic aerosols - with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

367

Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia  

SciTech Connect (OSTI)

The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.

Protat, Alain; Young, Stuart; McFarlane, Sally A.; L'Ecuyer, Tristan; Mace, Gerald G.; Comstock, Jennifer M.; Long, Charles N.; Berry, Elizabeth; Delanoe, Julien

2014-02-01T23:59:59.000Z

368

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect (OSTI)

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

369

Source Apportionment of Carbonaceous Aerosols using  

E-Print Network [OSTI]

are different than the collection of particles from water Filtration has high efficiency for all sizes Size Condensation Nuclei (CCN) Human health Carbonaceous aerosol implicated as important for toxicity and adverse of particulate matter Again, agreement between these two approaches would give a high level of confidence

Einat, Aharonov

370

Photophoretic levitation of engineered aerosols for geoengineering  

Science Journals Connector (OSTI)

...W. Keith Energy and Environmental...space-based solar scattering...The salient advantage of sulfate aerosols...instrument. Disadvantages of sulfates...concentrating solar power systems...higher energy than molecules...solving the energy balance equation...ratio of solar-spectrum to thermal-spectrum...two of the disadvantages of stratospheric...

David W. Keith

2010-01-01T23:59:59.000Z

371

Modeling Semivolatile Organic Aerosol Mass Emissions from  

E-Print Network [OSTI]

in diluted diesel and wood combustion exhaust are interpreted using a two-component absorptive with dilution of both wood smoke and diesel exhaust can be described by two lumped compounds in roughly equal. Introduction Sources of organic aerosol such as diesel engines and wood stoves emit semivolatile organic

Stanier, Charlie

372

ADEPT. aerosol deposition in cylindrical pipes  

SciTech Connect (OSTI)

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C (Burns and Roe, Oradell, NJ (United States))

1985-01-01T23:59:59.000Z

373

ADEPT. Aerosol Deposition in Cylindrical Pipes  

SciTech Connect (OSTI)

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C [Burns and Roe, Oradell, NJ (United States)

1985-01-01T23:59:59.000Z

374

3, 59195976, 2003 The nitrate aerosol  

E-Print Network [OSTI]

ACPD 3, 5919­5976, 2003 The nitrate aerosol field over Europe M. Schaap et al. Title Page Abstract of Utrecht, Institute of Marine and Atmospheric Science, PO Box 80005, 3508 TA, Utrecht, The Netherlands 2, The Netherlands 3 Netherlands Energy Research Foundation (ECN), PO Box 1, 1755 LE Petten, The Netherlands 4 Joint

Paris-Sud XI, Université de

375

Work Force Restructuring Activities  

Broader source: Energy.gov (indexed) [DOE]

Force Restructuring Activities Force Restructuring Activities December 10, 2008 Note: Current updates are in bold # Planned Site/Contractor HQ Approved Separations Status General * LM has finalized the compilation of contractor management team separation data for the end of FY07 actuals and end of FY08 and FY09 projections. LM has submitted to Congress the FY 2007 Annual Report on contractor work force restructuring activities. The report has been posted to the LM website. *LM conducted a DOE complex-wide data call to the Field and Operations offices for DOE Contractor Management teams to provide, by program, actual contractor separation data for the end of FY 2008 and projections for the end of FY 2009 and FY 2010. The data will be used to keep senior management informed of upcoming large WFR actions.

376

Ambient measurements of light-absorption by agricultural waste burning organic aerosols  

Science Journals Connector (OSTI)

Absorption properties (absorption ngstrom exponent and mass absorption efficiency) of agricultural waste burning organic aerosols (AWB-OA) and their impact on total absorption were investigated in Cairo (Egypt) during the post-harvest rice straw burning autumn season. At 370nm, AWB-OA were found to account for more than 25% of total absorption on average for the period of study (and for ?50% during intense biomass burning events), pointing out the major role potentially played by such particles on light absorption at short wavelengths. The absorption exponent obtained for AWB-OA (?3.5) is consistent with values previously reported for biomass burning brown carbon. In addition, AWB-OA were found to exhibit high mass absorption efficiencies at the near ultraviolet/mid-visible regions (e.g. 3.21.6m2g?1 at 370nm and 0.80.4m2g?1 at 520nm). Such findings clearly illustrate the need to take light absorption by organic aerosols into account for a better estimate of the radiative impact of biomass burning aerosols.

Olivier Favez; Stphane C. Alfaro; Jean Sciare; Hlne Cachier; Magdy M. Abdelwahab

2009-01-01T23:59:59.000Z

377

Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics  

SciTech Connect (OSTI)

Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

2013-10-01T23:59:59.000Z

378

About Radiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Radiation What is radiation? Radiation is a form of energy that is a part of our everyday lives. All of us receive a "dose" of radiation each day. Most of the dose comes from naturally occurring radioactive materials such as uranium, thorium, radon, and certain forms of potassium and carbon. The air we breathe contains radon, the food we eat contains uranium and thorium from the soil, and our bodies contain radioactive forms of potassium and carbon. Cosmic radiation from the sun also contributes to our natural radiation dose. We also receive radiation doses from man-made sources such as X-rays, nuclear medical procedures, power plants, smoke detectors and older television sets. Some people, such as nuclear plant operators, flight crews, and nuclear medicine staff may also receive an occupational radiation dose.

379

Aerosol preparation of intact lipoproteins  

DOE Patents [OSTI]

A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

Benner, W. Henry (Danville, CA); Krauss, Ronald M (Berkeley, CA); Blanche, Patricia J (Berkeley, CA)

2012-01-17T23:59:59.000Z

380

Protective Force Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes policy, requirements, responsibilities, and authorities, for the management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Extended until 7-7-06 by DOE N 251.64, dated 7-7-05 Cancels: DOE 5632.7A

2000-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Work Force Discipline  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order provides guidance and procedures and states responsibilities for maintaining work force discipline in DOE. Chg 1, dated 3-11-85; Chg 2, dated 1-6-86; Chg 3, dated 3-21-89; Chg 4, dated 8-2-90; Chg 5, dated 3-9-92; Chg 6, dated 8-21-92, cancels Chg 5.

1983-03-23T23:59:59.000Z

382

Contractor Protective Force  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual establishes requirements for the management and operation of the U.S. Department of Energy contractor protective forces. Cancels: DOE M 470.4-3 Chg 1, CRD (Attachment 2) only, except for Section C. Canceled by DOE O 473.3.

2008-11-05T23:59:59.000Z

383

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 2014.04.01 - 2014.06.01 Lead Scientist : Joel Thornton Description The ultimate goal of this work is to connect field and laboratory observations of organic aerosol chemical and physical properties during the nascent growth stage to the diurnal and vertical distributions of aerosol abundance measured over the boreal forest by the ARM Mobile Facility 2

384

ARM - Field Campaign - 2007 Cumulus Humilis Aerosol Process Study (CHAPS)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Cumulus Humilis Aerosol Process Study (CHAPS) 7 Cumulus Humilis Aerosol Process Study (CHAPS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2007 Cumulus Humilis Aerosol Process Study (CHAPS) 2007.06.04 - 2007.06.25 Lead Scientist : Carl Berkowitz For data sets, see below. Description The primary goal of this campaign was to characterize and contrast freshly emitted aerosols above, within and below fields of cumulus humilis (or fair-weather cumulus, FWC) and to use these observations to address how below-cloud and above-cloud aerosol optical and cloud nucleating properties differ downwind of a mid-size city relative to similar aerosols in air less affected by emissions. The observations from this campaign can also be used to aid in the development and evaluation of parameterizations of the

385

AEROgui: A graphical user interface for the optical properties of aerosols  

Science Journals Connector (OSTI)

Atmospheric aerosols have an uncertain effect on climate, and serious impact on human health. The uncertainty in the aerosols role on climate has several sources. First, aerosols present a great spatial and temporal variability. The spatial variability ...

R. Pedrs; J.L. Gmez-Amo; C.R. Marcos; M.P. Utrillas; S. Ganda; F. Tena; J.A. Martinez Lozano

386

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III (SAGE III)  

E-Print Network [OSTI]

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas extinction. We retrieve ozone and nitrogen dioxide number densities and aerosol extinction from transmission), Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III

387

Aerosol climate effects and air quality impacts from 1980 to 2030  

E-Print Network [OSTI]

Aerosol climate e?ects and air quality impacts from 1980 toAerosol climate e?ects and air quality impacts from 1980 toAerosol climate e?ects and air quality impacts from 1980 to

Menon, Surabi

2008-01-01T23:59:59.000Z

388

Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago  

E-Print Network [OSTI]

possible pollutant sources. Keywords Atmospheric aerosols . Canonical correlation analysis . Chicago air pollution studies involve collection and anal- ysis of atmospheric aerosols and concurrent meteorol- ogy) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations

O'Brien, Timothy E.

389

Aerosol and graphitic carbon content of snow  

SciTech Connect (OSTI)

Snow samples from southern New Mexico, west Texas, Antarctica, and Greenland were analyzed for aerosol and graphitic carbon. Graphitic carbon contents were found to be between 2.2 and 25 ..mu..g L/sup -1/ of snow meltwater; water-insoluble aerosol content varied between 0.62 and 8.5 mg L/sup -1/. For comparison, two samples of Camp Century, Greenland, ice core, having approximate ages of 4,000 and 6,000 years, were also analyzed. Ice core graphitic carbon contents were found to be 2.5 and 1.1 ..mu..g L/sup -1/. copyrightAmerican Geophysical Union 1987

Chy-acute-accentlek, P.; Srivastava, V.; Cahenzli, L.; Pinnick, R.G.; Dod, R.L.; Novakov, T.; Cook, T.L.; Hinds, B.D.

1987-08-20T23:59:59.000Z

390

Danger radiations  

ScienceCinema (OSTI)

Le confrencier Mons.Hofert parle des dangers et risques des radiations, le contrle des zones et les prcautions prendre ( p.ex. film badge), comment mesurer les radiations etc.

None

2011-04-25T23:59:59.000Z

391

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

392

Aerosol generation and entrainment model for cough simulations.  

E-Print Network [OSTI]

??The airborne transmission of diseases is of great concern to the public health community. The possible spread of infectious disease by aerosols is of particular (more)

Ersahin, Cem.

2007-01-01T23:59:59.000Z

393

Method of Preparing Super-Concentrated Jets From Dense Aerosol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Michael J. Hay, Ernest J. Valeo, and Nathaniel J. Fisch This is improvement in aerodynamic focusing of dilute aerosol suspensions. All previous work on this subject has...

394

ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties during the winter-spring transition. Opportunity to investigate fire and automobile emission interactions with biogenic aerosols will also harnessed MAOS will be...

395

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements  

Science Journals Connector (OSTI)

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements ... diesel engines have received increasing attention due to their potential health effects. ...

Tero Lhde; Topi Rnkk; Annele Virtanen; Tanja J. Schuck; Liisa Pirjola; Kaarle Hmeri; Markku Kulmala; Frank Arnold; Dieter Rothe; Jorma Keskinen

2008-12-09T23:59:59.000Z

396

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

modifications reduced but could not eliminate these adverse effects. The Raman lidar water vapor (aerosol extinction) measurements produced by these modified algorithms were,...

397

aerosol influenza transmission: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Information Sciences Websites Summary: . In preliminary work, we used artificial neural networks (ANNs) to construct global aerosol predictors by learningIntegration...

398

Atmospheric radiation measurement program facilities newsletter, June 2002.  

SciTech Connect (OSTI)

ARM Intensive Operational Period Scheduled to Validate New NASA Satellite--Beginning in July, all three ARM sites (Southern Great Plains [SGP], North Slope of Alaska, and Tropical Western Pacific; Figure 1) will participate in the AIRS Validation IOP. This three-month intensive operational period (IOP) will validate data collected by the satellite-based Atmospheric Infrared Sounder (AIRS) recently launched into space. On May 4, the National Aeronautics and Space Administration (NASA) launched Aqua, the second spacecraft in the Earth Observing System (EOS) series. The EOS satellites monitor Earth systems including land surfaces, oceans, the atmosphere, and ice cover. The first EOS satellite, named Terra, was launched in December 1999. The second EOS satellite is named Aqua because its primary focus is understanding Earth's water cycle through observation of atmospheric moisture, clouds, temperature, ocean surface, precipitation, and soil moisture. One of the instruments aboard Aqua is the AIRS, built by the Jet Propulsion Laboratory, a NASA agency. The AIRS Validation IOP complements the ARM mission to improve understanding of the interactions of clouds and atmospheric moisture with solar radiation and their influence on weather and climate. In support of satellite validation IOP, ARM will launch dedicated radiosondes at all three ARM sites while the Aqua satellite with the AIRS instrument is orbiting overhead. These radiosonde launches will occur 45 minutes and 5 minutes before selected satellite overpasses. In addition, visiting scientists from the Jet Propulsion Laboratory will launch special radiosondes to measure ozone and humidity over the SGP site. All launches will generate ground-truth data to validate satellite data collected simultaneously. Data gathered daily by ARM meteorological and solar radiation instruments will complete the validation data sets. Data from Aqua-based instruments, including AIRS, will aid in weather forecasting, climate modeling, and greenhouse gas studies. These instruments will provide more accurate, detailed global observations of weather and atmospheric parameters that will, in turn, improve the accuracy and quality of weather forecasts. A satellite-based instrument is cost-effective because it can provide continuous global measurements, eliminating isolated yet costly weather balloon releases. Aqua, launched from Vandenberg Air Force Base in California (Figure 2), carries six state-of-the-art instruments that measure various water vapor parameters: (1) AIRS, which measures atmospheric temperature and humidity, land and sea surface temperatures, cloud properties, and radiative energy flux; (2) Advanced Microwave Sounding Unit, which measures atmospheric temperature and humidity during both cloudy and cloud-free periods; (3) Advanced Microwave Scanning Radiometer, which measures cloud properties, radiative energy flux, precipitation rates, land surface wetness, sea ice, snow cover, sea surface temperature, and wind fields; (4) Clouds and the Earth's Radiant Energy System, which measures radiative energy flux; (5) Humidity Sounder for Brazil, which measures atmospheric humidity by using a passive scanning microwave radiometer; and (6) Moderate Resolution Imaging Spectroradiometer, which measures cloud properties, radiative energy flux, aerosol properties, land cover and land use change, vegetation dynamics, land surface temperature, fire occurrence, volcanic effects, sea surface temperature, ocean color, snow cover, atmospheric temperature and humidity, and sea ice. The data-gathering capabilities of the Aqua instruments will provide an unprecedented view of atmosphere-land interactions (Figure 3). The availability of more frequent, more accurate global measurements of important atmospheric parameters will both improve our capabilities for short-term weather forecasting and lead to a better understanding of climate variability and climate change. Simultaneous measurements of many parameters will allow scientists to study complicated forcings and feedbacks of the atmosphere, which can be

Holdridge, D. J.

2002-07-03T23:59:59.000Z

399

E-Print Network 3.0 - aerosol particle size Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of aerosol over many orders-of-magnitude of particle size range, from subcritical clusters on the molecular... to modeling aerosol dynamics under conditions of new...

400

E-Print Network 3.0 - aerosol modeling decadal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geosciences 8 Absorbing aerosols and pre-summer monsoon hydroclimate variability over the Indian subcontinent: The challenge in investigating links Summary: in the aerosol-monsoon...

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - aerosols nanometriques application Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is studying how aerosol particles affect everything from Summary: of aerosol particles on climate change, public health, and renewable energy applications. In particular, he......

402

E-Print Network 3.0 - aerosol lung inhalation Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosolized by means... is aerosolized upon inhalation by utilizing the ... Source: Groningen, Rijksuniversiteit - Centre for Ecological and Evolutionary Studies, Department of...

403

Aerosol-Cloud-Precipitation Interactions in the Trade Wind Boundary Layer.  

E-Print Network [OSTI]

??This dissertation includes an overview of aerosol, cloud, and precipitation properties associated with shallow marine cumulus clouds observed during the Barbados Aerosol Cloud Experiment (BACEX, (more)

Jung, Eunsil

2012-01-01T23:59:59.000Z

404

E-Print Network 3.0 - aerosols harbor diverse Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cloud & Aerosol Process Group CSDESRLNOAA Presented at: NIST... Aerosol Metrology for Climate Workshop 15th March, 2011 12;Deposition Snow Darkens and Warms BC...

405

Large Aerosols Play Unexpected Role in Ganges Valley | U.S. DOE...  

Office of Science (SC) Website

The data have revealed that large aerosols in this region absorb a greater amount of light than expected. The Science Aerosol particles in the atmosphere may absorb solar...

406

E-Print Network 3.0 - aerosol atmospheric interactions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Climate Summary: order estimates of aerosol-climate interaction But... only Earth System Models can include all... of the interactions (in theory at least) 12;Aerosols <>...

407

E-Print Network 3.0 - alkali sulfate aerosol Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Formation during... " and "Mechanism of Alkali Sulfate Aerosols Formation during Biomass Combustion" describe the development... the ... Source: Ris National Laboratory...

408

E-Print Network 3.0 - atmospheric aerosol size Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for about ten percent of all aerosols in the atmosphere. We... , can actually absorb solar energy and warm the atmosphere. Atmospheric aerosols are very important... by...

409

ARMY SERVICE FORCES  

Office of Legacy Management (LM)

ARMY SERVICE FORCES ARMY SERVICE FORCES ' -, 1 MANHATTAN ENGINEER DISTRICT --t 4 IN "LPLI RC,' LR io EIDM CIS INTELLIGENCE AND SECURITY DIVISION CHICAGO BRANCH OFFICE i ., -,* - P. 0. Box 6770-A I ' 1 .' CHICAGO 80. ILLINOIS /lvb 15 February 1945 Subject: shipment Security Survey at &Uinckrodt Chemical Works. MEMORANDUM to the Officer in Charge. 1. The Mallinckrodt Chemical Works, St. Louis, Missouri, was contacted by the undersigned on 16 November 1944, for the purpose of -king an investigation to determine security provided shipments of interest to the Manhattan Engineer District. The investigation in- cluded shipments of vital materials originating with the Mallinckrodt Company and those received by them. Particular attention has been given to the future production and shipment schedules of these materials.

410

Scale-free Universal Spectrum for Atmospheric Aerosol Size Distribution for Davos, Mauna Loa and Izana  

E-Print Network [OSTI]

Atmospheric flows exhibit fractal fluctuations and inverse power law form for power spectra indicating an eddy continuum structure for the selfsimilar fluctuations. A general systems theory for fractal fluctuations developed by the author is based on the simple visualisation that large eddies form by space-time integration of enclosed turbulent eddies, a concept analogous to Kinetic Theory of Gases in Classical Statistical Physics. The ordered growth of atmospheric eddy continuum is in dynamical equilibrium and is associated with Maximum Entropy Production. The model predicts universal (scale-free) inverse power law form for fractal fluctuations expressed in terms of the golden mean. Atmospheric particulates are held in suspension in the fractal fluctuations of vertical wind velocity. The mass or radius (size) distribution for homogeneous suspended atmospheric particulates is expressed as a universal scale-independent function of the golden mean, the total number concentration and the mean volume radius. Model predicted spectrum is in agreement (within two standard deviations on either side of the mean) with total averaged radius size spectra for the AERONET (aerosol inversions) stations Davos and Mauna Loa for the year 2010 and Izana for the year 2009 daily averages. The general systems theory model for aerosol size distribution is scale free and is derived directly from atmospheric eddy dynamical concepts. At present empirical models such as the log normal distribution with arbitrary constants for the size distribution of atmospheric suspended particulates are used for quantitative estimation of earth-atmosphere radiation budget related to climate warming/cooling trends. The universal aerosol size spectrum will have applications in computations of radiation balance of earth-atmosphere system in climate models.

A. M. Selvam

2014-08-14T23:59:59.000Z

411

Photolytic processing of secondary organic aerosols dissolved in cloud droplets  

SciTech Connect (OSTI)

The effect of UV irradiation on the molecular composition of aqueous extracts of secondary organic aerosol (SOA) was investigated. SOA was prepared by the dark reaction of ozone and d-limonene at 0.05 - 1 ppm precursor concentrations and collected with a particle-into-liquid sampler (PILS). The PILS extracts were photolyzed by 300 - 400 nm radiation for up to 24 hours. Water-soluble SOA constituents were analyzed using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) at different stages of photolysis for all SOA precursor concentrations. Exposure to UV radiation increased the average O/C ratio and decreased the average double bond equivalent (DBE) of the dissolved SOA compounds. Oligomeric compounds were significantly reduced by photolysis relative to the monomeric compounds. Direct pH measurements showed that compounds containing carboxylic acids increased upon photolysis. Methanol reactivity analysis revealed significant photodissociation of molecules containing carbonyl groups and formation of carboxylic acids. Aldehydes, such as limononaldehyde, were almost completely removed. The removal of carbonylswas confirmed by the UV-Vis absorption spectroscopy of the SOA extracts where the absorbance in the carbonyl n??* band decreased significantly upon photolysis. The effective quantum yield (the number of carbonyls destroyed per photon absorbed) was estimated as ~ 0.03. The concentration of peroxides did not change significantly during photolysis as quantified with an iodometric test. Although organic peroxides were photolyzed, the likely end products of photolysis were smaller peroxides, including hydrogen peroxide, resulting in a no net change in the peroxide content.

Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

2011-05-26T23:59:59.000Z

412

Modified entropic force  

SciTech Connect (OSTI)

The theory of statistical thermodynamics tells us the equipartition law of energy does not hold in the limit of very low temperatures. It is found the Debye model is very successful in explaining the experimental results for most of the solid objects. Motivated by this fact, we modify the entropic force formula which is proposed very recently. Since the Unruh temperature is proportional to the strength of the gravitational field, so the modified entropic force formula is an extension of the Newtonian gravity to the weak field. On the contrary, general relativity extends Newtonian gravity to the strong field case. Corresponding to Debye temperature, there exists a Debye acceleration g{sub D}. It is found the Debye acceleration is g{sub D}=10{sup -15} N kg{sup -1}. This acceleration is very much smaller than the gravitational acceleration 10{sup -4} N kg{sup -1} which is felt by Neptune and the gravitational acceleration 10{sup -10} N kg{sup -1} felt by the Sun. Therefore, the modified entropic force can be very well approximated by the Newtonian gravity in the Solar System and in the Galaxy. With this Debye acceleration, we find the current cosmic speeding up can be explained without invoking any kind of dark energy.

Gao Changjun [National Astronomical Observatories, Chinese Academy of Sciences, Key Laboratory of Optical Astronomy, NAOC, CAS, Beijing, 100012 and Kavli Institute for Theoretical Physics China, CAS, Beijing 100190 (China)

2010-04-15T23:59:59.000Z

413

E-Print Network 3.0 - affect radiation sensitivity Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

F A T M O S P H E R I C S C I E N C E S Summary: What about gases that affect the greenhouse effect? Radiative forcing for greenhouse gases: Instantly... shortwave forcings next...

414

Ocean temperature forcing by aerosols across the Atlantic tropical cyclone development region  

E-Print Network [OSTI]

; Accepted 12 February 2008; Published 29 May 2008. Evan, A. T., A. K. Heidinger, R. Bennartz, V. Bennington T. Evan Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin Research, N-0318 Oslo, Norway James P. Kossin Cooperative Institute for Meteorological Satellite Studies

Kossin, James P.

415

Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100  

E-Print Network [OSTI]

´andreis · D. Hauglustaine · A. Idelkadi · J. Lathie`re · F. Lefevre · M. Marchand · R. Vuolo · N. Yan · J F. Lefevre Á M. Marchand LATMOS-IPSL, UPMC-UVSQ-CNRS, Paris, France S. Turquety Á A. Idelkadi Á J

416

Forcing of anthropogenic aerosols on temperature trends of the sub-thermocline  

E-Print Network [OSTI]

in the extratropics (,40uS­50uS) (Fig. 1). The opposite has occurred in the thermocline and sub-thermocline waters to a depth of around 900 m, which has coincided with a decrease in sea-level in the southern tropical IO8 GHG emissions and natural variability15,16 . However, while some modelling studies suggest the Pacific

England, Matthew

417

Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size  

SciTech Connect (OSTI)

During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

2009-03-01T23:59:59.000Z

418

CLOUD PHYSICS From aerosol-limited to invigoration  

E-Print Network [OSTI]

CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

Napp, Nils

419

Deposition of Biological Aerosols on HVAC Heat Exchangers  

E-Print Network [OSTI]

LBNL-47669 Deposition of Biological Aerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain Walker of Biological Aerosols on HVAC Heat Exchangers Jeffrey A. Siegel Iain S. Walker, Ph.D. ASHRAE Student Member that are found in commercial and residential HVAC systems of 1 - 6 m/s (200 - 1200 ft/min), particle diameters

420

E-Print Network 3.0 - anthropogenic radiation sources Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

: Ts F Equation 1 The largest radiative forcing is due to the anthropogenic greenhouse effect... impact" of an anthropogenic perturbation. This is defined as the difference...

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

E-Print Network 3.0 - assessing radiation feedbacks Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

content from the whole quarter Summary: . Overview 2. Solar radiation and the Greenhouse effect 3. Forcings and feedbacks 4. Who's responsible 5... . Overview 2. Solar...

422

Determination of vertical profiles of aerosol extinction, single scatter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determination of vertical profiles of aerosol extinction, single scatter Determination of vertical profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Category: Aerosols Efforts are currently underway to run and evaluate the Broadband Heating Rate Profile project at the ARM North Slope of Alaska (NSA) Barrow site for the time period March 2004 - February 2005. The Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide continuous estimates of vertical profiles of aerosol extinction, single-scatter albedo, and asymmetry parameter above the Northern Slopes of Alaska (NSA) facility. In the interest of temporal continuity, we have developed an algorithm that

423

Aerosol Retrievals under Partly Cloudy Conditions: Challenges and Perspectives  

SciTech Connect (OSTI)

There are lots of interesting and intriguing features of aerosols near clouds many of which can be quite engaging, as well being useful and climate-related. Exploring aerosol with the aid of the remote sensing, in situ observations and numerical modeling has piqued our curiosity and led to improve insights into the nature of aerosol and clouds and their complex relationship. This chapter conveys the outstanding issues of cloudy-sky aerosol retrievals of important climate properties and outlines their fruitful connections to other research areas such as in situ measurements and model simulations. The chapter focuses mostly on treating the inverse problems in the context of the passive satellite remote sensing and how they can improve our understanding of the cloud-aerosol interactions. The presentation includes a basis in the inverse problem theory, reviews available approaches and discusses their applications to partly cloudy situations. Potential synergy of observations and model simulations is described as well.

Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; Flynn, Connor J.

2011-06-01T23:59:59.000Z

424

Atmospheric aerosol monitoring at the Pierre Auger Observatory  

SciTech Connect (OSTI)

For a ground based cosmic-ray observatory the atmosphere is an integral part of the detector. Air fluorescence detectors (FDs) are particularly sensitive to the presence of aerosols in the atmosphere. These aerosols, consisting mainly of clouds and dust, can strongly affect the propagation of fluorescence and Cherenkov light from cosmic-ray induced extensive air showers. The Pierre Auger Observatory has a comprehensive program to monitor the aerosols within the atmospheric volume of the detector. In this paper the aerosol parameters that affect FD reconstruction will be discussed. The aerosol monitoring systems that have been deployed at the Pierre Auger Observatory will be briefly described along with some measurements from these systems.

Cester, R.; Chiosso, M.; Chirin, J.; Clay, R.; Dawson, B.; Fick, B.; Filipcic, A.; Garcia, B.; Grillo, A.; Horvat, M.; Iarlori, M.; Malek, M.; Matthews, J.; Matthews,; Melo, D.; Meyhandan, R.; Mostafa, M.; Mussa, R.; Prouza, M.; Raefert, B.; Rizi, V.

2005-07-01T23:59:59.000Z

425

Experiments related to the resuspension of aerosols during hydrogen burns  

SciTech Connect (OSTI)

We have performed seven ''add-on'' experiments in two large combustion facilities to investigate the capability of hydrogen burns to remove simulated structural and fission product aerosols previously deposited on small metal discs that have surfaces prototypical of those found in nuclear reactor containments. Our results suggest that hydrogen combustion provides an especially effective mechanism for removal (and, presumably, resuspension) of sedimented aerosols produced in a hypothetical nuclear reactor core-degradation or core-melting accident. The presence of condensing steam does not seem to assure adhesion of sedimented aerosols during hydrogen burns. Differences are exhibited between different surfaces as well as between types of aerosol. In-depth studies will be required to assess the impact exposure of sedimented aerosols to hydrogen burns might have on the radiological source term.

Nelson, L.S.; Guay, K.P.

1987-01-01T23:59:59.000Z

426

Norms of Presentational Force  

E-Print Network [OSTI]

://www.americanforensics.org/uploaded-files/tc_41_3_w05.pdf. Open Access version: http://kuscholarworks.ku.edu/dspace/. 15 hope to illustrate the close connection between emotional appeal and premise adequacy. After arguing that the Declaration of Independence and Constitution secure...Innocenti Manolescu, Beth. "Norms of Presentational Force." Argumentation and Advocacy 41 (2005): 139-51. Official publishers version: http://www.americanforensics.org/uploaded-files/tc_41_3_w05.pdf. 1 Citation: Innocenti Manolescu, Beth...

Innocenti, Beth

2005-01-01T23:59:59.000Z

427

Atomic Force Microscope  

SciTech Connect (OSTI)

The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

Day, R.D.; Russell, P.E.

1988-12-01T23:59:59.000Z

428

Optimization of aerosol penetration through transport lines  

E-Print Network [OSTI]

, F is the numerical reading from the fluorometer , L is the liquid volume of the measured (23) solution, 8 is the testing time for each filter, and V is the filter flow rate during the sample period. Penetration, P, of aerosol through... defined maxima on the penetration versus Reynolds number (or flow rate, since the diameter is constant for a given tube) curves for each tube size. Also, in order to observe an optimum tube diameter , a (10) fixed flow rate of 86 L/min was tested for a...

Wong Luque, Fermin Samuel

2012-06-07T23:59:59.000Z

429

A shrouded probe aerosol sampling cyclone  

E-Print Network [OSTI]

the air stream. In the present design, three concentric shrouds and a probe will be attached to the entrance of the cyclone. The shroud concept was first used in an aircraft-horne sampling device for collecting tropospheric aerosol particles... by A. R. McFarland and S. A. Batterman. College Station, Texas: 1989. 5. Strauss, W. and S. J. Nainwaring: Air Pollution. London, Baltimore, Maryland: Edward Arnold, 1984. pp. 95-96. 6. Moore, N. E. , and A. R. NcFarland: Stairmand-Type Sampling...

Little, Stewart Craig

2012-06-07T23:59:59.000Z

430

Method of dispersing particulate aerosol tracer  

DOE Patents [OSTI]

A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

O'Holleran, Thomas P. (Belleville, MI)

1988-01-01T23:59:59.000Z

431

Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols in our Atmosphere  

E-Print Network [OSTI]

;Carnegie Mellon University Smog Chamber Air supply Computer Temperature control Clean air 10 m3 Teflon spectrometer Aerosol mass spectrometerOzone monitor Air supply Computer Temperature control Clean air 10 m3 on temperature Hevap also needed Assumes no interactions among organic aerosol species or with inorganics. #12

Einat, Aharonov

432

Low Dose Radiation Program: Links - Online Literature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Online Literature Online Literature Journals, Books and other Publications Armed Forces Radiobiology Research Institute Chornobyl Center for Nuclear Safety Radioactive Waste and Radioecology "Insight" Magazine Central Research Institute of the Electric Power Industry (CRIEPI) News: Aiming at an information center on low dose radiation research Health Physics International Journal of Radiation Biology Iranian Journal of Radiation Research Journal of Radiological Protection National Council on Radiation Protection and Measurements Radiation Research U.S. Department of Energy (DOE) Information Bridge Reports Animal Cancer Tests and Human Cancer Risk Assessment: A Broad Perspective Effects of Ionizing Radiation: Atomic Bomb Survivors and Their Children (1945-1995) Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR

433

Beryllium Carcinogenesis. I. Inhalation Exposure of Rats to Beryllium Sulfate Aerosol  

Science Journals Connector (OSTI)

...aerosol at a mean atmospheric concentration of...aerosol at a mean atmospheric concentration of...in the drinking water) for 2 weeks...a glass aerosol generator, with an airflow...chamber, distilled water was disseminated...aerosol generation, atmospheric concentration control...

Andrew L. Reeves; Daniel Deitch; and Arthur J. Vorwald

1967-03-01T23:59:59.000Z

434

Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number  

Science Journals Connector (OSTI)

...remainder of the map to the...distributions for mass, number, composition...such as vertical velocity and aerosol composition...updated aerosol mass for each compound...aerosols in trade wind cumulus observed by...spectrum of updraft velocities and the internally...Starting from aerosol mass (M) and number...

Pablo E. Saide; Gregory R. Carmichael; Scott N. Spak; Patrick Minnis; J. Kirk Ayers

2012-01-01T23:59:59.000Z

435

spectra from size-resolved particle samples col-lected from the Southeastern Aerosol Visibility  

E-Print Network [OSTI]

and acrolein aerosols. We believe that these transformations are due to acid-catalyzed heterogeneous reac

Bishop, James K.B.

436

Research Highlight  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing Download a printable PDF Submitter: Bergmann, D., U.S. Department of EnergyLawrence...

437

Plasma Radiation  

Science Journals Connector (OSTI)

... JUST over ten years ago the first book on plasma physics as a subject in its own right appeared; in a gradually swelling stream ... been surprisingly few monographs. One topic which has had scant coverage in any form is plasma radiation (except for spectral-line radiation which has been dealt with very fully in ...

T. J. M. BOYD

1967-07-01T23:59:59.000Z

438

Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect (OSTI)

4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the worlds first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STARs spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2013-11-13T23:59:59.000Z

439

Sulfate aerosols and polar stratospheric cloud formation  

SciTech Connect (OSTI)

Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most important heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underline the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.

Tolbert, M.A. (Univ. of Colorado, Boulder, CO (United States))

1994-04-22T23:59:59.000Z

440

TEXT Pro Force Training  

Broader source: Energy.gov (indexed) [DOE]

Basic Protective Basic Protective Force Training Program DOE/IG-0641 March 2004 * None of the 10 sites included instruction in rappelling even though it was part of the special response team core curriculum and continued to be offered by the Nonprolif- eration and National Security Institute; * Only one site conducted basic training on use of a shotgun, despite the fact that a num- ber of sites used the weapon for breaching exercises and other purposes; and, * Seven of the sites modified prescribed training techniques by reducing the intensity or delivery method for skills that some security experts characterized as critical, such as handcuffing, hand-to- hand combat, and vehicle assaults. We found that the Department's facilities were not required to report departures from the core

Note: This page contains sample records for the topic "aerosol radiative forcing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry  

SciTech Connect (OSTI)

The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension.

Bohne, J.E. Jr.; Cohen, B.S.

1985-02-01T23:59:59.000Z

442

Satellite-Based Techniques for the Retrieval of Solar Radiation Data A Review of Current European  

E-Print Network [OSTI]

Meteosat satellite generation MSG which will be launched in 2002. This platform will show resolutions will be the availability of more detailed information on atmospheric constituents affecting the atmospheric transmittance of solar radiation (clouds, water vapor, aerosols, ozone) through the use of twelve spectral radiometer

Heinemann, Detlev

443

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even though the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, Richard J. (Oak Ridge, TN)

1983-01-01T23:59:59.000Z

444

Radiation dosimeter  

DOE Patents [OSTI]

A radiation detector readout circuit is provided which produces a radiation dose-rate readout from a detector even through the detector output may be highly energy dependent. A linear charge amplifier including an output charge pump circuit amplifies the charge signal pulses from the detector and pumps the charge into a charge storage capacitor. The discharge rate of the capacitor through a resistor is controlled to provide a time-dependent voltage which when integrated provides an output proportional to the dose-rate of radiation detected by the detector. This output may be converted to digital form for readout on a digital display.

Fox, R.J.

1981-09-01T23:59:59.000Z

445

A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols  

SciTech Connect (OSTI)

For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with 5 UV lamps has been constructed and characterized experimentally. The total flow system length 6 is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m 7 transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an inert gas (CO2) and particles (atomized NaNO3). Instruments interfaced directly to this flow system include a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from ?-pinene reactions (NOx photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.

Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Perraud, Veronique; Bruns, Emily; Alexander, M. L.; Zelenyuk, Alla; Dabdub, Donald; Finlayson-Pitts, Barbara J.

2010-05-01T23:59:59.000Z

446

Protective Force Firearms Qualification Courses  

Broader source: Energy.gov (indexed) [DOE]

PROTECTIVE FORCE PROTECTIVE FORCE FIREARMS QUALIFICATION COURSES U.S. DEPARTMENT OF ENERGY Office of Health, Safety and Security AVAILABLE ONLINE AT: INITIATED BY: http://www.hss.energy.gov Office of Health, Safety and Security Protective Force Firearms Qualification Courses July 2011 i TABLE OF CONTENTS SECTION A - APPROVED FIREARMS QUALIFICATION COURSES .......................... I-1 CHAPTER I . INTRODUCTION ................................................................................... I-1 1. Scope .................................................................................................................. I-1 2. Content ............................................................................................................... I-1

447

Microsoft PowerPoint - ARM2008_Poster_KHLee [Compatibility Mode]  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zhanqing Li Zhanqing Li kwonlee@umd.edu, zli@atmos.umd.edu Aerosol radiative forcing and heating rate by absorbing aerosol during EAST-AIRE 2005 Earth System Science Interdisciplinary Center (ESSIC), Univ. of Maryland (UMD), College Park, MD 20742 Atmospheric Heating Rate Aerosol Radiative Forcing East-AIRE 2005 The objectives of theEast Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE) are (Li et al., 2007) ; aerosol non aerosol Surf TOA L L F - Δ - Δ = , ( ) ( ) Shortwave aerosol radiative forcing (SARF) can be determined by SBDART simulations; Heating rates by absorbing aerosol using Micro pulse LIDAR measurement data; (1) to acquire and understand the physical, chemical and optical properties of dominant natural and anthropogenic aerosols and

448

New weakly coupled forces hidden in low-energy QCD  

Science Journals Connector (OSTI)

Is it possible to detect a new weakly coupled force at the QCD scale that interacts primarily with quarks? This work investigates experimental signatures of a new MeVGeV gauge boson that couples to the baryon number, with attention to the 100MeVGeV mass range that is the regime of nonperturbative QCD. Such a state can be searched for in rare radiative decays of light mesons (?,??,?,?) as a ?0? resonance, which is its leading decay mode from 140 to 620MeV. This is a new discovery window for forces beyond the Standard Model that is not covered by existing dark photon searches.

Sean Tulin

2014-06-05T23:59:59.000Z

449

Air Force Renewable Energy Programs  

Broader source: Energy.gov [DOE]

Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

450

Aerosol-Based Duct Sealing Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 8 Aerosol-Based Duct Sealing Technology During the past five years, research has quantified the impacts of residential duct system leakage on HVAC energy consumption and peak electricity demand. A typical house with ducts located in the attic or crawlspace wastes approximately 20% of heating and cooling energy through duct leaks and draws approximately 0.5 KW more electricity during peak cooling periods. A 1991 study indicated that sealing leaks could save close to one Quadrillion Btus per year. (see also Commercializing a New Technology) Because the major cost of sealing leaks in existing air distribution systems is the labor for the location and sealing process, reducing the labor could greatly improve the cost-effectiveness of such a retrofit. Field studies of duct sealing programs performed by HVAC contractors show

451

Aerosol mass spectrometry systems and methods  

DOE Patents [OSTI]

A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

Fergenson, David P.; Gard, Eric E.

2013-08-20T23:59:59.000Z

452

Appendix G. Radiation Appendix G. Radiation  

E-Print Network [OSTI]

-made sources. People are exposed to naturally occurring radiation constantly. For example, cosmic radiation of radiation and its effects on the environment and biological systems. Radiation comes from natural and humanAppendix G. Radiation #12;#12;Appendix G. Radiation This appendix presents basic facts about

Pennycook, Steve

453

Retrieval of Aerosol Optical Depth in Vicinity of Broken Clouds from Reflectance Ratios: Case Study  

SciTech Connect (OSTI)

A recently developed reflectance ratio (RR) method for the retrieval of aerosol optical depth (AOD) is evaluated using extensive airborne and ground-based data sets collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS), which took place in June 2007 over the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains site. A detailed case study is performed for a field of single-layer shallow cumuli observed on June 12, 2007. The RR method is applied to retrieve the spectral values of AOD from the reflectance ratios measured by the MODIS Airborne Simulator (MAS) for two pairs of wavelengths (660 and 470 nm and 870 and 470 nm) collected at a spatial resolution of 0.05 km. The retrieval is compared with an independent AOD estimate from three ground-based Multi-filter Rotating Shadowband Radiometers (MFRSRs). The interpolation algorithm that is used to project MFRSR point measurements onto the aircraft flight tracks is tested using AOD derived from NASA Langley High Spectral Resolution Lidar (HSRL). The RR AOD estimates are in a good agreement (within 5%) with the MFRSR-derived AOD values for the 660-nm wavelength. The AODs obtained from MAS reflectance ratios overestimate those derived from MFRSR measurements by 15-30% for the 470-nm wavelength and underestimate the 870-nm AOD by the same amount.

Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Ferrare, Richard; Hostetler, Chris A.; Alexandrov, Mikhail

2010-10-06T23:59:59.000Z

454

Mobile Climate Observatory for Atmospheric Aerosols in India  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Atmospheric Aerosols in India Atmospheric Aerosols in India Nainital, India, was the site chosen for deployment of a portable climate research laboratory to study how aerosols impact clouds and energy transfer in the atmosphere. The well-being of hundreds of millions of residents in northeastern India depends on the fertile land around the Ganges River, which is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Any disturbance to the monsoon rains could threaten the population. In the same region, increased industrial activities due to economic growth are releasing small aerosol particles, such as soot and dust, that absorb and scatter sunlight and thus can change cloud formation processes and the heat distribution in the atmosphere. Such changes could greatly increase or