Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Skills Profile and Training Delivery Review for Engineering Production Support - Cessna Aircraft  

E-Print Network (OSTI)

was the generic training plan which the supervisor/trainer/coach was to modify to meet the needs of the new hire including consideration for the learning style that suits the new hire. The handbook also contains a ?roadmap? which lists subjects... November 2005 5 Field Project Carl Tosh EMGT 835 Fall 2005 2.0 LITERATURE REVIEW Cessna defines Engineering-On-The-Job-Training (EOJT) as ??a structured, Coach-led training methodology, based on a Roadmap of skill proficiencies and process...

Tosh, Carl

2005-12-16T23:59:59.000Z

2

ARM - Measurement - Aerosol absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

absorption absorption ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The process in which radiation energy is retained by aerosols. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) PSAP : Particle Soot Absorption Photometer PASS : Photoacoustic Soot Spectrometer External Instruments OMI : Ozone Monitoring Instrument

3

ARM - Measurement - Aerosol concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

concentration concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol concentration A measure of the amount of aerosol particles (e.g. number, mass, volume) per unit volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer CPC : Condensation Particle Counter IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) TDMA : Tandem Differential Mobility Analyzer

4

Determination of vertical profiles of aerosol extinction, single scatter  

NLE Websites -- All DOE Office Websites (Extended Search)

Determination of vertical profiles of aerosol extinction, single scatter Determination of vertical profiles of aerosol extinction, single scatter albedo and asymmetry parameter at Barrow. Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Turner, David University of Wisconsin-Madison Category: Aerosols Efforts are currently underway to run and evaluate the Broadband Heating Rate Profile project at the ARM North Slope of Alaska (NSA) Barrow site for the time period March 2004 - February 2005. The Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide continuous estimates of vertical profiles of aerosol extinction, single-scatter albedo, and asymmetry parameter above the Northern Slopes of Alaska (NSA) facility. In the interest of temporal continuity, we have developed an algorithm that

5

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network (OSTI)

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

6

NASA multipurpose airborne DIAL system and measurements of ozone and aerosol profiles  

Science Journals Connector (OSTI)

An airborne differential absorption lidar (DIAL) system has been developed for the remote measurement of gas and aerosol profiles in the troposphere and lower stratosphere. The...

Browell, E V; Carter, A F; Shipley, S T; Allen, R J; Butler, C F; Mayo, M N; Siviter, J H; Hall, W M

1983-01-01T23:59:59.000Z

7

Raman lidar profiling of water vapor and aerosols over the ARM SGP Site  

SciTech Connect

The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

Ferrare, R.A.

2000-01-09T23:59:59.000Z

8

RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE.  

SciTech Connect

We have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. This Raman lidar system is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols (Goldsmith et al., 1998). These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. We have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES) (Feltz et al., 1998; Turner et al., 1999). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

FERRARE,R.A.

2000-01-09T23:59:59.000Z

9

Certification of the Cessna 152 on 100% ethanol  

SciTech Connect

In June 1996, the Renewable Aviation Fuels Development Center (RAFDC) at Baylor University in Waco, Texas, received a Supplemental Type Certificate (STC) for the use of 100% ethanol as a fuel for the Cessna 152, the most popular training aircraft in the world. This is the first certification granted by the Federal Aviation Administration (FAA) for a non-petroleum fuel. Certification of an aircraft on a new fuel requires a certification of the engine followed by a certification of the airframe/engine combination. This paper will describe the FAA airframe certification procedure, the tests required and their outcome using ethanol as an aviation fuel in a Cessna 152.

Shauck, M.E.; Zanin, M.G.

1997-12-31T23:59:59.000Z

10

ARM - Measurement - Longwave broadband upwelling irradiance  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiation IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) IRT : Infrared Thermometer MFRIRT : Multifilter Radiometer and Infrared Thermometer RAD : Radiation...

11

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

Bigger, Better Cessna Ready to Record Aerosol and Carbon Cycle Data Bigger, Better Cessna Ready to Record Aerosol and Carbon Cycle Data Bookmark and Share Replacing the smaller Cessna 172, the new turbo-charged Cessna 206 prepares for departure to Ponca City, Oklahoma, where it will be managed by Greenwood Aviation. Replacing the smaller Cessna 172, the new turbo-charged Cessna 206 prepares for departure to Ponca City, Oklahoma, where it will be managed by Greenwood Aviation. To meet new requirements in the airborne aerosol and carbon-cycle measurements taken over ARM's Southern Great Plains (SGP) site, a new Cessna Turbo 206 is replacing the smaller Cessna 172XP. The new aircraft has been contracted by ARM to conduct combined in situ aerosol profiling and airborne carbon measurements for the next two years. Airborne measurements of carbon cycle trace gases at the SGP will provide data to

12

E-Print Network 3.0 - airborne aerosol prediction Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

profiles of aerosol extinction and optical depth Evaluate predictions from aerosol transport... aerosol measurements. Comparison of AOT ... Source: Brookhaven National...

13

2.1 RAMAN LIDAR PROFILING OF WATER VAPOR AND AEROSOLS OVER THE ARM SGP SITE  

E-Print Network (OSTI)

with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors with the use of narrowband (~0.4 nm bandpass) filters, reduces the background skylight and, therefore

14

aerosols | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

aerosols aerosols Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

15

BNL | Mobile Aerosol Observing System (MAOS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Aerosol Observing System (MAOS) Mobile Aerosol Observing System (MAOS) The Mobile Aerosol Observing System (MAOS) is a platform and instrument suite for Intensive Operation Periods (IOPs) to conduct in situ measurements of aerosols and their precursors. MAOS is part of the ARM Climate Research Facility. Physically MAOS is contained in two 20' SeaTainers custom adapted to provide a sheltered laboratory environment for operators and instruments even under harsh conditions. The two structures are designated MAOS-A and MAOS-C for Aerosol and Chemistry respectively. Although independent, with separate data systems, inlets and power distribution, the two structures are normally a single operating unit. The two enclosures comprising MAOS are designed for rapid deployment. All components (except for the Radar Wind Profiler) are transported internally

16

Aerosol Best Estimate Value-Added Product  

SciTech Connect

The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

2012-07-19T23:59:59.000Z

17

Improved solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

18

Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements  

SciTech Connect

This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

Dr. Timothy Onasch

2009-09-09T23:59:59.000Z

19

Carbonaceous Aerosols and Radiative...  

NLE Websites -- All DOE Office Websites (Extended Search)

and absorption of light by aerosols. At the ground sites, a new Humidigraph, a Cloud Condensation Nuclei Counter, a Scanning Mobility Particle Sizer, and an upgraded 915-MHz...

20

ARM - Publications: Science Team Meeting Documents: Effects of Aerosol Size  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of Aerosol Size Distribution and Vertical Profile on the Effects of Aerosol Size Distribution and Vertical Profile on the Polarization in the Oxygen A-Band Duan, Minzheng State University of New York at Albany Min, Qilong State University of New York at Albany A vector radiative transfer code with successive order of scattering method was used to simulate the high-resolution polarization spectra in the oxygen A-band. The effects of aerosol size distribution and vertical profile on the radiance and polarization at the top and bottom of the atmosphere were analyzed. The impacts of instrument specification on information content are also analyzed. Polarized radiances were dominated (>95%) by the first and second orders of scattering. The contributions of scattering from different levels to the TOA and surface observation are analyzed. The

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Direct Aerosol Forcing Uncertainty  

DOE Data Explorer (OSTI)

Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

Mccomiskey, Allison

22

BNL | Aerosol Lifecycle IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Aerosol Life Cycle IOP The primary objectives that make up the Aerosol Life Cycle IOP can be broken down into three categories: Scientific; Logistical; and GVAX preparation. Scientific Objectives The science goals are to conduct intensive aerosol observations in a region exposed to anthropogenic, biogenic, and marine emissions with atmospheric processing times depending on air mass trajectories and time of day. Take advantage of new instruments in the MAOS (e.g., SP2, HR-PTRMS, ACSM, Trace Gas Suite, PASS-3, Aethelometer, UHSAS). Within this broad umbrella are embedded three main foci: Aerosol light absorption: How does the aerosol mass absorption coefficient (absorption per unit mass of BC) vary with atmospheric processing? Do observations agree with a shell-core model?

23

ARM Aerosol Working Group Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of the An Overview of the C Overview of the An Overview of the C C loud and loud and La La nd nd S S urface urface I I nteractions nteractions C C ampaign ampaign (CLASIC) (CLASIC) ARM Science Team Meeting March 13 th , 2008 Norfolk, VA Jason Tomlinson Pacific Northwest National Laboratory Introduction Archive Website WIKI Overview * The primary goal of CLASIC is to improve understanding of the physics of the early stages of cumulus cloud convection as it relates to land surface conditions, and to translate this new understanding into improved representations in GCMs and regional climate models 1 Overview * ARM Southern Great Plains Climate Research Facility - June 8-July 2, 2007 * Nine participating aircraft - In-situ * CIRPAS Twin Otter * Cessna 206 * Duke University Helicopter Observation Platform

24

Aerosol Cans? -Aerosol cans use a pressurized  

E-Print Network (OSTI)

? - The waste generated in the processing of images/photos contains silver. Silver is a toxic heavy metal the product. Propellants are often flammable and/or toxic. Therefore, never store aerosol cans near ignition of this pamphlet. -Carefully transfer the old paint thinner from the one gallon closable can to the 30 gallon metal

Jia, Songtao

25

ARM - Measurement - Aerosol particle size  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass Spectrometer CPI : Cloud Particle Imager DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments DRUM-AEROSOL : Drum Aerosol Sampler AEROSOL-TOWER-EML : EML Tower based Aerosol Measurements

26

A World-wide Stratospheric Aerosol Layer  

Science Journals Connector (OSTI)

...Massachusetts An aerosol layer has been identified by a stratospheric balloon and aircraft aerosol collection program. Measurements...Abstract. An aerosol layer has been identified by a stratospheric balloon and aircraft aerosol collection program. Meas-urements...

Christian E. Junge; Charles W. Chagnon; James E. Manson

1961-05-12T23:59:59.000Z

27

Geometrical Optics of Dense Aerosols  

SciTech Connect

Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

2013-04-24T23:59:59.000Z

28

BNL | Aerosol, Cloud, Precipitation Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Aerosol-Precipitation Interactions Cloud-Aerosol-Precipitation Interactions Atmospheric aerosols exert important "indirect effects" on clouds and climate by serving as cloud condensation nuclei (CCN) and ice nuclei that affect cloud radiative and microphysical properties. For example, an increase in CCN increases the number concentration of droplets enhances cloud albedo, and suppresses precipitation that alters cloud coverage and lifetime. However, in the case of moist and strong convective clouds, increasing aerosols may increase precipitation and enhance storm development. Although aerosol-induced indirect effects on climate are believed to have a significant impact on global climate change, estimating their impact continues to be one of the most uncertain climate forcings.

29

Jankovic Aerosol Characterization.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization, Characterization, Aerosol Characterization, Interpretation, and Interpretation, and Application of Data Application of Data NSRC Symposium NSRC Symposium July 8, 2008 John Jankovic, CIH CIH Center for Nanophase Materials Sciences Center for Nanophase Materials Sciences Aerosol Characterization, Interpretation, and Aerosol Characterization, Interpretation, and Application of Data Application of Data Department of Energy (DOE) Nanoscale Science Research Centers (NSRC) developing Approach to Nanomaterial ES&H - The CNMS Approach * Establish Exposure Control Guideline (ECG) - Characterize Aerosol * Collect and interpret data * Assign Process to a Control Band Aerosol Particle Characterization * Size distribution (geometric mean and geometric standard deviation related to either mass, surface, or number)

30

aerosols and climate : uncertainties  

E-Print Network (OSTI)

contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

31

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Policy Applications Speaker(s): Susanne Bauer Date: December 6, 2011 - 4:00pm Location: 90-4133 Seminar Host/Point of Contact: Surabi Menon The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, However, understanding the net effect of multi-source emitting sectors and the involved cloud feedbacks is

32

ARM - Mobile Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesMobile Aerosol Observing System FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Aerosol Observing System Intensive aerosol observations conducted on the campus of Brookhaven National Laboratory on Long Island, New York, using the ARM Mobile Aerosol Observing System. Intensive aerosol observations conducted on the campus of Brookhaven

33

Aerosol Observing System (AOS) Handbook  

SciTech Connect

The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

Jefferson, A

2011-01-17T23:59:59.000Z

34

Experimental study of nuclear workplace aerosol samplers  

E-Print Network (OSTI)

LITERATURE REVIEW Aerosol Losses in an Inlet . Aerosol Losses in a Transport System Aerosol Losses in CAMs Critical Flow Venturi 8 13 15 16 EXPERIMENT PROCEDURE 18 CAM Evaluation Consideration FAS Evaluation Consideration Test Protocol Mixing... Chamber Setup High Speed Aerosol Wind Tunnel Setup Low Speed Aerosol Wind Tunnel Setup Critical Flow Venturi 18 19 21 22 24 25 27 RESULTS AND DISCUSSION Page 28 Aerosol Penetration through Transport Systems and CAM Areal Uniformity Deposits...

Parulian, Antony

2012-06-07T23:59:59.000Z

35

EMSL: Science: Atmospheric Aerosol Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

36

Two-Column Aerosol Project  

NLE Websites -- All DOE Office Websites (Extended Search)

help find the answer, the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is conducting the Two-Column Aerosol Project (TCAP) at Cape Cod...

37

ARM Cloud Aerosol Precipitation Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Observation CAS Cloud Aerosol Spectrometer CCN Cloud Condensation Nuclei CIP Cloud Imaging Probe CPC Condensation Particle Counter CSPHOT Cimel sunphotometer CVI...

38

Molecular Characterization of Biomass Burning Aerosols Using...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

39

Techniques and Methods Used to Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility C. Sivaraman, D. D. Turner, and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington Objective Profiles of aerosol optical properties are needed for radiative closure exercises such as the broadband heating rate profile (BBHRP) project (Mlawer et al. 2002) and the Shortwave Quality Measurement Experiment (QME). Retrieving cloud microphysical properties using radiation measurements in the shortwave, such as the spectral retrieval technique described in Daniel et al. (2002), also require the optical properties of the aerosols so that they can be accounted for in the retrieval process. The objective of the aerosol best estimate (ABE) value-added procedure (VAP) is to provide profiles of

40

4, 58315854, 2004 Fluorescing aerosol  

E-Print Network (OSTI)

released by combustion into the atmosphere absorbs radiation and therefore heats the climate counteracting such as polycyclic aromatic hydrocarbons sticking to the aerosol particles, or bioaerosol such as bacteria, spores) or by combustion processes (soot), or they form in situ by gas to particle conversion, like sulphate aerosol. While

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Aerosol Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Aerosol Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Aerosol Laboratory The Aerosol Laboratory (AL) houses equipment to measure and record the physical parameters necessary to characterize the formation and transport of aerosols. Bookmark and Share The Aerosol Laboratory (AL) has extensive analytic and experimental capabilities to characterize the formation and transport of aerosols formed from the condensation of vapors. Computer codes have been developed to

42

Cloud Condensation Nuclei Profile Value-Added Product  

SciTech Connect

The cloud condensation nuclei (CCN) concentration at cloud base is the most relevant measure of the aerosol that influences droplet formation in clouds. Since the CCN concentration depends on supersaturation, a more general measure of the CCN concentration is the CCN spectrum (values at multiple supersaturations). The CCN spectrum is now measured at the surface at several fixed ARM sites and by the ARM Mobile Facility (AMF), but is not measured at the cloud base. Rather than rely on expensive aircraft measurements for all studies of aerosol effects on clouds, a way to project CCN measurements at the surface to cloud base is needed. Remote sensing of aerosol extinction provides information about the vertical profile of the aerosol, but cannot be directly related to the CCN concentration because the aerosol extinction is strongly influenced by humidification, particularly near cloud base. Ghan and Collins (2004) and Ghan et al. (2006) propose a method to remove the influence of humidification from the extinction profiles and tie the “dry extinction” retrieval to the surface CCN concentration, thus estimating the CCN profile. This methodology has been implemented as the CCN Profile (CCNPROF) value-added product (VAP).

McFarlane, S; Sivaraman, C; Ghan, S

2012-10-08T23:59:59.000Z

43

Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect

4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2013-11-13T23:59:59.000Z

44

Comparison of temperature and humidity profiles with elastic-backscatter lidar data  

SciTech Connect

This contribution analyzes elastic-backscatter lidar data and temperature and humidity profiles from radiosondes acquired in Barcelona in July 1992. Elastic-backscatter lidar data reveal the distribution of aerosols within the volume of atmosphere scanned. By comparing this information with temperature and humidity profiles of the atmosphere at a similar time, we are able to asses de relationship among aerosol distribution and atmospheric stability or water content, respectively. Comparisons have shown how lidar`s revealed layers of aerosols correspond to atmospheric layers with different stability condition and water content.

Soriano, C. [Universidad Politecnica de Cataluna, Barcelona (Spain)]|[Los Alamos National Lab., NM (United States); Buttler, W.T. [Los Alamos National Lab., NM (United States); Baldasano, J.M. [Universidad Politecnica de Cataluna, Barcelona (Spain)

1995-04-01T23:59:59.000Z

45

ARM - Surface Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesSurface Aerosol Observing System FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Surface Aerosol Observing System The ARM Mobile Facility (AMF) is equipped to quantify the interaction between clouds and aerosol particles. A counter-flow virtual impactor (CVI) is used to selectively sample cloud drops. The CVI takes advantage of the

46

A Four-Year Lidar–Sun Photometer Aerosol Study at São Paulo, Brazil  

Science Journals Connector (OSTI)

A backscattering lidar system, the first of this kind in Brazil, has been used to provide the vertical profile of the aerosol backscatter coefficient at 532 nm up to an altitude of 4–6 km above sea level (ASL), in a suburban area in the city of ...

Eduardo Landulfo; Alexandros Papayannis; Ani Sobral Torres; Sandro Toshio Uehara; Lucila Maria Viola Pozzetti; Caio Alencar de Matos; Patricia Sawamura; Walter Morinobu Nakaema; Wellington de Jesus

2008-08-01T23:59:59.000Z

47

People Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

What Is NIF? How NIF Works Seven Wonders Beamline NIF Construction Who Works for NIF & PS? People Profiles Management Awards Honors Fellows Who Partners with NIF? FAQs Visit Us...

48

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network (OSTI)

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

49

ARM - Evaluation Product - Organic Aerosol Component VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsOrganic Aerosol Component VAP ProductsOrganic Aerosol Component VAP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Organic Aerosol Component VAP 2011.01.08 - 2012.03.24 Site(s) SGP General Description Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10-90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties. This deficiency represents a large source of uncertainty in the quantification of aerosol direct and indirect effects and the prediction of future climate change. The Organic Aerosol Component (OACOMP) value-added product (VAP) uses

50

ARM - Field Campaign - Fall 1997 Aerosol IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol IOP Aerosol IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Aerosol IOP 1997.09.15 - 1997.10.05 Lead Scientist : Stephen Schwartz For data sets, see below. Summary The Aerosol IOP was highlighted by the Gulfstream-1 aircraft flying clear-sky aerosol missions over the Central Facility to study the effect of aerosol loading on clear sky radiation fields, with weather particularly favorable for these flights during the first and third weeks of the IOP. A secondary but important goal of this IOP was to fly cloudy-sky missions over the Central Facility to study the effect of aerosol loading on cloud microphysics, and the effect of the microphysics on cloud optical properties. The Gulfstream obtained aerosol data in support of some of the

51

Reflective Aerosols and the Greenhouse Effect  

Science Journals Connector (OSTI)

The contributions of atmospheric aerosols to add to either a climate-warming effect or climate-cooling effect depend on the chemical composition of the aerosol and the local environment. The best estimation is...

Kathryn E. Kautzman

2014-07-01T23:59:59.000Z

52

Antiviral therapy with small particle aerosols  

Science Journals Connector (OSTI)

The generation and use of small particle aqueous aerosols (1.23 µm aerodynamic mass median diameter, GSD=2.0 µm) containing ribavirin is described. Administered via aerosol, ribavirin will be deposited rather ...

V. Knight; B. Gilbert

1988-12-01T23:59:59.000Z

53

2, 20952131, 2002 Below-cloud aerosol  

E-Print Network (OSTI)

). In addition, the understanding of wet removal processes remains crucial in local and regional pollutionACPD 2, 2095­2131, 2002 Below-cloud aerosol removal C. Andronache Title Page Abstract Introduction-cloud aerosol removal by rainfall for observed aerosol size distributions C. Andronache Boston College, Chestnut

Paris-Sud XI, Université de

54

6, 93519388, 2006 Aerosol-cloud  

E-Print Network (OSTI)

ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

Paris-Sud XI, Université de

55

ARM - Measurement - Aerosol optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

56

ARM - Measurement - Aerosol optical properties  

NLE Websites -- All DOE Office Websites (Extended Search)

properties properties ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter fraction. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer NEPHELOMETER : Nephelometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

57

ARM - Measurement - Aerosol backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

backscattered radiation backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System MPL : Micropulse Lidar NEPHELOMETER : Nephelometer

58

DUAL ORIGIN OF AEROSOLS IN TITAN'S DETACHED HAZE LAYER  

SciTech Connect

We have analyzed scattered light profiles from the Cassini Imaging Science Subsystem, taken at the limb and at several large phase angles. We also used results from an occultation observed by Ultraviolet Imaging Spectrograph in the ultraviolet. We found that particles responsible for the scattering in the detached haze have an effective radius around 0.15 {mu}m and the aerosol size distribution follows a power law (exponent about -4.5). We discuss these results along with microphysical constraints and thermal equilibrium of the detached haze, and we conclude that only a strong interaction with atmospheric dynamics can explain such a structure.

Cours, T.; Burgalat, J.; Rannou, P. [Groupe de Spectrometrie Moleculaire et Atmospherique (GSMA), CNRS UMR-6089, Universite de Reims Champagne-Ardenne, 51687 Reims Cedex 2 (France); Rodriguez, S.; Brahic, A. [Laboratoire AIM, Universite Paris 7, CNRS UMR-7158, CEA-Saclay/DSM/IRFU/SAp, 91191 Gif/Yvette (France); West, R. A., E-mail: thibaud.cours@univ-reims.fr [Jet Propulsion Laboratory M/S 169-237, Pasadena, CA 91109 (United States)

2011-11-10T23:59:59.000Z

59

Review of models applicable to accident aerosols  

SciTech Connect

Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

Glissmeyer, J.A.

1983-07-01T23:59:59.000Z

60

Mentee Profile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentee Profile Mentee Profile The information you provide on this form will assist us in providing you with a list of prospective mentor from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Are you student or intern? Do you have a preference on mentor? For example, male, female, particular career field, specific person or other? If so, what or who? Do you want a mentor in your career field? What are your career goals?

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mentor Profile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mentor Profile Mentor Profile The information you provide on this form will assist us in providing you with a list of prospective mentee from which to choose the most appropriate match. Once you've completed the form, please email it to doementoringprogram@hq.doe.gov . Thank you for your interest in the DOE Mentoring Program. Name (last/first): Phone Number: Job Title/Series/Grade: Organization (indicate HQ or field - complete address): Email Address: Are you a Veteran? If yes, do want a veteran mentee? If yes, which branch of the service? Do you want a student or intern mentee? Do you have a preference on mentee? For example, male, female, particular career field or other? If so, what or state name of pre selected mentee? Do you want a mentee in your career field? What are your hobbies?

62

Source Attribution of Light Absorbing Aerosol in Arctic Snow  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Attribution of Light Absorbing Source Attribution of Light Absorbing Aerosol in Arctic Snow (Preliminary analysis of 2008-2009 data) Outline * Receptor modeling overview * Results from 2007 data set * New goals arising from analysis of 2007 data * New data for 2008 * New data for 2009 * Tentative conclusions * Future analysis i Factor profiles from 2007 analysis Source attribution of Black Carbon from 2007 analysis Goals/Issues suggested by the analysis of the 2007 data set * Are there seasonal differences in the source strengths? * Are there other LAA chemical components besides black carbon. What are their sources? * Can the various data sets available (e.g., 2007, 2008, 2009) be combined in a single large PMF analysis 2008 Data Set For Receptor Analysis * 42 samples from Eastern Siberia including 4 depth profiles

63

Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol  

E-Print Network (OSTI)

of this research is to examine sea salt aerosols and their impact on polluted environments. Sea salt aerosols act as Cloud Condensation Nuclei (CCN) as well as providing a surface for heterogeneous reactions. Such reactions have implications for trace gases...

Benoit, Mark David

2013-02-06T23:59:59.000Z

64

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

65

ARM - Field Campaign - Two-Column Aerosol Project (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsTwo-Column Aerosol Project (TCAP) govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction Measurements 2012.07.15, Dubey, AMF Two-Column Aerosol Project (TCAP): Aerial Campaign 2012.07.07, Berg, AAF Two-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer 2012.07.01, Berg, AMF Two-Column Aerosol Project (TCAP): KASPRR Engineering Tests 2012.07.01, Mead, AMF Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements

66

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network (OSTI)

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

67

ARM - Measurement - Backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

govMeasurementsBackscattered radiation govMeasurementsBackscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols, Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights)

68

Separating Cloud Forming Nuclei from Interstitial Aerosol  

SciTech Connect

It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

Kulkarni, Gourihar R.

2012-09-12T23:59:59.000Z

69

Carbonaceous Aerosol Study Using Advanced Particle Instrumentation  

E-Print Network (OSTI)

particles from the combustion of biomass fuels. Environ.range transport of biomass combustion aerosols. Environ.during the open combustion of biomass in the laboratory, J.

Qi, Li

2010-01-01T23:59:59.000Z

70

Comparative Analysis of Urban Atmospheric Aerosol by Particle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

71

The Two-Column Aerosol Project Definitions TCAP Educational  

NLE Websites -- All DOE Office Websites (Extended Search)

What's the big deal about aerosols? The Two-Column Aerosol Project Definitions TCAP Educational Outreach Activity About ARM: The Atmospheric Radiation Measurement (ARM) Climate...

72

Reduction in biomass burning aerosol light absorption upon humidificat...  

NLE Websites -- All DOE Office Websites (Extended Search)

in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

73

The Indirect and Semi-Direct Aerosol Campaign  

SciTech Connect

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-03-24T23:59:59.000Z

74

Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...  

NLE Websites -- All DOE Office Websites (Extended Search)

properties of orographically induced clouds and how do these depend on dynamics, thermodynamics, and aerosol microphysics? * What is the role of aerosols and changing cloud...

75

Molecular Chemistry of Organic Aerosols Through the Application...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

76

Optical, physical, and chemical properties of springtime aerosol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in...

77

ARM - Evaluation Product - Broadband Heating Rate Profile Project (BBHRP)  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsBroadband Heating Rate Profile Project ProductsBroadband Heating Rate Profile Project (BBHRP) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Broadband Heating Rate Profile Project (BBHRP) 2000.03.01 - 2006.02.28 Site(s) SGP General Description The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties

78

The Opposed Migration Aerosol Classifier (OMAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

The Opposed Migration Aerosol Classifier (OMAC) The Opposed Migration Aerosol Classifier (OMAC) Speaker(s): Harmony Gates Date: February 22, 2007 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Melissa Lunden A new differential mobility classifier will be described. The instrument classifies aerosol particles in a channel flow between porous (or screen) electrodes. The aerosol enters the channel parallel to the porous electrodes, while a larger, particle-free cross-flow enters through one of the porous electrode. A potential difference between electrodes causes the charged aerosol particles to migrate upstream against the cross-flow. Only particles whose upward migration velocity balances the cross flow will be transmitted along the path of the classifier. Simulations of the OMAC show that it should give the same resolution at the traditional

79

Global observations of desert dust and biomass burning aerosols  

E-Print Network (OSTI)

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

80

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2  

E-Print Network (OSTI)

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME the resulting time series, we use tropospheric NO2 data as a reference in the regions dominated by biomass sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

Tilstra, Gijsbert

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

E-Print Network 3.0 - aerosol chemical composition Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol on Clouds Summary: chemical composition and mixing stateTime-Resolved Aerosol Collector CCSEMEDX (ASP) Single particle... Sizer CCN spectrum Aerosol absorptionDRI...

82

E-Print Network 3.0 - aerosol number distributions Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

inorganic composition PILS-IC Summary: 3563 nephelometers Aerosol number concentration CNC (TSI 3010, 3025) Aerosol size distribution DMA... and APS Non-volatile aerosol size...

83

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract: A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic...

84

E-Print Network 3.0 - aerosol jet system Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

-controlled laminar aerosol jets and their application for studying aerosol combustion processes Author(s): Shoshin Y... 2002 Times Cited: 6 48. Title: Exhaust aerosol of a...

85

CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan  

SciTech Connect

Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-05-27T23:59:59.000Z

86

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

87

Photometric Variations as Small Perturbations in Aerosol Content  

NLE Websites -- All DOE Office Websites (Extended Search)

Photometric Variations as Photometric Variations as Small Perturbations in Aerosol Content I. Musat Department of Meteorology University of Maryland College Park, Maryland R. G. Ellingson Department of Meteorology Florida State University Tallahassee, Florida Abstract The quality of profile fitting of resolved stars depends ultimately upon the accuracy with which spectral differences of the sources are retrievable within the data, because the radiation color of well-separated known sources can serve as an indicator of the origin of the optical depth variations one observes during the night. The particularities of the whole sky imager (WSI) detector and optical system are such that the data suffer from lack of the spatial resolution required in a common astronomical observation.

88

Modeling LIDAR Detection of Biological Aerosols to Determine Optimum Implementation Strategy  

SciTech Connect

This report summarizes work performed for a larger multi-laboratory project named the Background Interferent Measurement and Standards project. While originally tasked to develop algorithms to optimize biological warfare agent detection using UV fluorescence LIDAR, the current uncertainties in the reported fluorescence profiles and cross sections the development of any meaningful models. It was decided that a better approach would be to model the wavelength-dependent elastic backscattering from a number of ambient background aerosol types, and compare this with that generated from representative sporulated and vegetative bacterial systems. Calculations in this report show that a 266, 355, 532 and 1064 nm elastic backscatter LIDAR experiment will allow an operator to immediately recognize when sulfate, VOC-based or road dust (silicate) aerosols are approaching, independent of humidity changes. It will be more difficult to distinguish soot aerosols from biological aerosols, or vegetative bacteria from sporulated bacteria. In these latter cases, the elastic scattering data will most likely have to be combined with UV fluorescence data to enable a more robust categorization.

Sheen, David M.; Aker, Pam M.

2007-09-19T23:59:59.000Z

89

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy...

90

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw)...

91

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

92

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer...

93

Southern hemisphere tropospheric aerosol microphysics  

SciTech Connect

Aerosol particle size distribution data have been obtained in the southern hemisphere from approximately 4{degree}S to 44{degree}S and between ground level and 6 km, in the vicinity of eastern Australia. The relative shape of the free-tropospheric size distribution for particles with radii larger than approximately 0.04 {mu}m was found to be remarkably stable with time, altitude, and location for the autumn-winter periods considered. This was despite some large concentration changes which were found to be typical of the southeastern Australian coastal region. The majority of free-troposphere large particles were found to have sulfuric acid or lightly ammoniated sulfate morphology. Large particles in the boundary layer almost exclusively had a sea-salt morphology.

Gras, J.L. (Commonwealth Scientific and Industrial Research Organization, Aspendale (Australia))

1991-03-20T23:59:59.000Z

94

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

95

ARM - Measurement - Aerosol particle size distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size distribution particle size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size distribution The number of aerosol particles present in any given volume of air within a specificied size range Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

96

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

97

BNL | Two-Column Aerosol Program (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Column Aerosol Project (TCAP) Two-Column Aerosol Project (TCAP) There remain many key knowledge gaps despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. Many climatically important processes depend on particles that undergo continuous changes within a size range spanning a few nanometers to a few microns, and with compositions that consist of a variety of carbonaceous materials, soluble inorganic salts and acids and insoluble mineral dust. Primary particles, which are externally-mixed when emitted, are subject to coagulation and chemical changes associated with the condensation of semi-volatile gases to their surface resulting in a spectrum of compositions or mixing-states with a range of climate-affecting optical and hygroscopic properties. The numerical treatments of aerosol transformation

98

NASA's Aerosol-Cloud-Ecosystems (ACE) Mission  

Science Journals Connector (OSTI)

Plans for NASA’s Aerosol-Cloud-Ecosystem (ACE) mission is described. Recommended by Earth Science Decadal Survey in 2007, ACE is nominally planned for a 2021 launch. ACE is...

Starr, David O'C

99

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

100

ARM - Field Campaign - Aerosol Life Cycle IOP at BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAerosol Life Cycle IOP at BNL govCampaignsAerosol Life Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News, June 14, 2011: Next-generation Aerosol-sampling Stations to Head for India Related Campaigns Aerosol Life Cycle: Chemical Ionization Mass Spectrometer - CIMS 2011.07.10, Lee, OSC Aerosol Life Cycle: HR-ToF-AMS 2011.06.15, Zhang, OSC Aerosol Life Cycle: ARM Mobile Facility 2 Aerosol Observing System 2011.06.15, Sedlacek, OSC Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10, Hallar, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle IOP at BNL 2011.06.01 - 2011.08.31 Lead Scientist : Arthur Sedlacek For data sets, see below.

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

ARM - Publications: Science Team Meeting Documents: A decade long aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

A decade long aerosol and cloud statistics and aerosol indirect effect at A decade long aerosol and cloud statistics and aerosol indirect effect at the ARM SGP site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Twelve-year data of MFRSR and MWR have been used to derive aerosol and cloud optical properties at the ARM SGP. Diurnal, monthly, seasonal and interannual variability of aerosol (optical depth and Angstrom coefficient) and cloud (optical depth and effective radius) have been analyzed. We specially focused on aerosol-cloud interactions. We found a signature of indirect aerosol effect for summer data: increased aerosol index has a statistically-significant anti-correlation with mean effective radius. No

102

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL  

NLE Websites -- All DOE Office Websites (Extended Search)

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL SIZE DISTRIBUTION FROM MEASUREMENTS OF LIGHT TRANSMITTANCE AND SCATTERING Ernie R. Lewis and Stephen E. Schwartz Brookhaven National Laboratory, Upton, NY 11933 ses@bnl.gov elewis@bnl.gov MOMENTS FROM MEASUREMENTS As each of the measured quantities is linear in the size distribution dn/dr, it is possible to construct linear combinations of measurements that yield

103

Aerosol fabrication methods for monodisperse nanoparticles  

DOE Patents (OSTI)

Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

Jiang, Xingmao; Brinker, C Jeffrey

2014-10-21T23:59:59.000Z

104

Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect

The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

2003-01-28T23:59:59.000Z

105

Development of plutonium aerosol fractionation system  

E-Print Network (OSTI)

DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

Mekala, Malla R.

1993-01-01T23:59:59.000Z

106

Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility  

SciTech Connect

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

Mroz, E.J.; Olivares, J.; Kok, G.

1996-04-01T23:59:59.000Z

107

E-Print Network 3.0 - aerosol microphysical characteristics Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

new particle formation, aerosol microphysical evolution, three-dimensional transport, and wet... of aerosol microphysical properties. Some of ... Source: Brookhaven...

108

E-Print Network 3.0 - aerosol chemical vapor Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical and microphysical properties influence aerosol optical properties and radiative effects... distribution of aerosol extensive and intensive properties will aid ......

109

User_TalentProfile  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accessing and Modifying Talent Profile Accessing and Modifying Talent Profile © 2011 SuccessFactors, Inc. - 1 - SuccessFactors Learning Confidential. All rights reserved. Job Aid: Accessing and Modifying Talent Profile Purpose The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile information. Task A. Access Talent Profile Enter the web address (URL) of the user application into your browser Address field and press the Enter key. Enter your user ID in the User ID textbox. Enter your password in the Password textbox. Click Sign In. Access Talent Profile 4 Steps Task A Add Information to Talent Profile Sections 5 Steps Task B Edit Talent Profile Sections

110

An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling  

SciTech Connect

One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by turbulence. But, simulated horizontal variability indicates that trace gases and aerosols are not well mixed horizontally in the PBL. During nighttime the SGV for trace gases is maximum at the surface, and quickly decreases with height. Unlike the trace gases, the SGV of BC and secondary aerosols reaches a maximum at the PBL top during the day. The SGV decreases with distance away from the polluted urban area, has a more rapid decrease for long-lived trace gases and aerosols than for secondary ones, and is greater during daytime than nighttime. The SGV of trace gases and aerosols is generally larger than for meteorological quantities. Emissions can account for up to 50% of the SGV over urban areas such as Mexico City during daytime for less-reactive trace gases and aerosols, such as CO and BC. The impact of emission spatial variability on SGV decays with altitude in the PBL and is insignificant in the free troposphere. The emission variability affects SGV more significantly during daytime (rather than nighttime) and over urban (rather than rural or remote) areas. The terrain, through its impact on meteorological fields such as wind and the PBL structure, affects dispersion and transport of trace gases and aerosols and their SGV.

Qian, Yun; Gustafson, William I.; Fast, Jerome D.

2010-07-29T23:59:59.000Z

111

Generated using version 3.0 of the official AMS LATEX template A remotely-operated lidar for aerosol, temperature, and water  

E-Print Network (OSTI)

Generated using version 3.0 of the official AMS LATEX template A remotely-operated lidar for aerosol, temperature, and water vapor profiling in the High Arctic. G. J. Nott, T. J. Duck, J. G. Doyle, M. E. W. Coffin, C. Perro, C. P. Thackray, and J. R. Drummond Department of Physics and Atmospheric

Duck, Thomas J.

112

DOE research on atmospheric aerosols  

SciTech Connect

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

113

ARM Aerosol Working Group Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

and MFRSR Measurements ARM STM 2008 Norfolk, VA Connor Flynn 1 , Annette Koontz 1 , Anne Jefferson 2 , Jim Barnard 1 , Sally McFarlane 1 1 Pacific Northwest National Laboratory 2 CIRES, University of Colorado, Boulder Progress towards ARM DOE 2008 Performance Metric 3 & 4 * Produce and make available new continuous time series of aerosol total column depth, based on results from the AMF deployment in Niger, Africa. * Produce and make available new continuous time series of retrieved dust properties, based on results from the AMF deployment in Niger, Africa. 0 100 200 300 400 0 20 40 60 80 100 ITF movement and surface RH % RH day of year (2006) 0 100 200 300 400 0 50 100 150 200 250 300 350 day of year wind direction (N = 0, E = 90) 2 4 6 8 10 12 14 Wind speed m/s 0 100 200 300 1.4 1.6 1.8 2 MFRSR Vo for filter2, Niamey

114

ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) Campaign Links CARES Website Related Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding 2010.05.26, Zaveri, OSC Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light Absorption and Scattering 2010.05.26, Arnott, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES): SMPS & CCN counter deployment during CARES/Cal-NEx 2010.05.04, Wang, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES) Ground Based Instruments 2010.04.01, Cziczo, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiative Effects Study (CARES)

115

Distinguishing Aerosol Impacts on Climate over the Past Century  

Science Journals Connector (OSTI)

Aerosol direct (DE), indirect (IE), and black carbon–snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol–climate simulations in the Goddard Institute for Space Studies General Circulation Model ...

Dorothy Koch; Surabi Menon; Anthony Del Genio; Reto Ruedy; Igor Alienov; Gavin A. Schmidt

2009-05-01T23:59:59.000Z

116

Atmospheric Aerosol Optical Properties in the Persian Gulf  

Science Journals Connector (OSTI)

Aerosol optical depth measurements over Bahrain acquired through the ground-based Aerosol Robotic Network (AERONET) are analyzed. Optical depths obtained from ground-based sun/sky radiometers showed a pronounced temporal trend, with a maximum ...

Alexander Smirnov; Brent N. Holben; Oleg Dubovik; Norm T. O'Neill; Thomas F. Eck; Douglas L. Westphal; Andreas K. Goroch; Christophe Pietras; Ilya Slutsker

2002-02-01T23:59:59.000Z

117

Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model  

Science Journals Connector (OSTI)

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying ...

Philip Stier; Johann Feichter; Silvia Kloster; Elisabetta Vignati; Julian Wilson

2006-08-01T23:59:59.000Z

118

Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing  

Science Journals Connector (OSTI)

The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic ...

S. J. Ghan; X. Liu; R. C. Easter; R. Zaveri; P. J. Rasch; J.-H. Yoon; B. Eaton

2012-10-01T23:59:59.000Z

119

Nonequilibrium atmospheric secondary organic aerosol formation and growth  

Science Journals Connector (OSTI)

...Mexico City area are shown...inorganic atmospheric aerosols...2005 ) A large organic aerosol source...photochemical and thermal studies of...Characteristic Group Frequencies—Tables and...particle thermal speed...phase-equilibrium in the atmospheric system: Aerosol...Support, Non-U.S...Determination by plasma-based...implications for atmospheric chemistry...2002) A thermal disso-ciation...

Véronique Perraud; Emily A. Bruns; Michael J. Ezell; Stanley N. Johnson; Yong Yu; M. Lizabeth Alexander; Alla Zelenyuk; Dan Imre; Wayne L. Chang; Donald Dabdub; James F. Pankow; Barbara J. Finlayson-Pitts

2012-01-01T23:59:59.000Z

120

Organic and Inorganic Aerosol Below-Cloud Scavenging by  

E-Print Network (OSTI)

concentrations, with an average gravimetric PM1.0 of 8.2 ( 1.6 µg m-3 and an average Fourier transform infrared-rinsing behavior was unaffected by source type. The aerosol OM was hydrophilic throughout the sampling period the description of aerosol lifetimes in global models. Introduction Wet and dry deposition of aerosol particles

Russell, Lynn

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Project of Aerosol Optical Depth Change in South America  

E-Print Network (OSTI)

AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Paraguay Uruguay #12;Statistics of Aerosol M ean D ec 01 to 06 Mean Month AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela

Frank, Thomas D.

122

DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?  

E-Print Network (OSTI)

AS SEEN FROM SPACE Fire plumes from southern Mexico transported north into Gulf of Mexico. #12;CLOUD IPCC AR4 (2007) 3210-1-2 Forcing, W m-2 CO2 CH4 CFCs N2O Long Lived Greenhouse Gases Tropospheric;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL

Schwartz, Stephen E.

123

Indirect and Semi-Direct Aerosol Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Campaign For the month of April, researchers are descending on and above Barrow, Alaska, to obtain data from the atmosphere that will help them understand the impacts that aerosols have on Arctic clouds and climate. Scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility are using a heavily instrumented aircraft to collect data from the sky, while instruments based at surface sites in Barrow and Atqasuk, Alaska, are obtaining measurements from the ground. Information obtained during the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, will help scientists analyze the role of aerosols in climate, and represents a key contribution to Arctic climate research during International Polar Year.

124

Researchers Model Impact of Aerosols Over California  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Model Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu, lvu@lbl.gov, (510) 495-2404 LosAngelesSmogv1.jpg Smog over downtown Los Angeles. Aerosols are microscopic particles-like dust, pollen and soot-that ubiquitously float around in our atmosphere. Despite their tiny stature, these particles can have a huge impact on human health, climate and the environment. So scientists from the Pacific Northwest National Laboratory (PNNL), Colorado State University and the California Air Resources Board have set out to characterize the roles of various particles as atmospheric change agents on a regional scale.

125

Characterizing the formation of secondary organic aerosols  

SciTech Connect

Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

Lunden, Melissa; Black, Douglas; Brown, Nancy

2004-02-01T23:59:59.000Z

126

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE  

SciTech Connect

Cloud and aerosol data acquired by the National Research Council of Canada (NRC) Convair-580 aircraft in, above, and below single-layer arctic stratocumulus cloud during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 were used to test three aerosol indirect effects hypothesized to act in mixed-phase clouds: the riming indirect effect, the glaciation indirect effect, and the cold second indirect effect. The data showed a correlation of R= 0.75 between liquid drop number concentration, Nliq, inside cloud and ambient aerosol number concentration NPCASP below cloud. This, combined with increasing liquid water content LWC with height above cloud base and the nearly constant profile of Nliq, suggested that liquid drops were nucleated from aerosol at cloud base. No strong evidence of a riming indirect effect was observed, but a strong correlation of R = 0.69 between ice crystal number concentration Ni and NPCASP above cloud was noted. Increases in ice nuclei (IN) concentration with NPCASP above cloud combined with the subadiabatic LWC profiles suggest possible mixing of IN from cloud top consistent with the glaciation indirect effect. The higher Nice and lower effective radius rel for the more polluted ISDAC cases compared to data collected in cleaner single-layer stratocumulus conditions during the Mixed-Phase Arctic Cloud Experiment is consistent with the operation of the cold second indirect effect. However, more data in a wider variety of meteorological and surface conditions, with greater variations in aerosol forcing, are required to identify the dominant aerosol forcing mechanisms in mixed-phase arctic clouds.

Jackson, Robert C.; McFarquhar, Greg; Korolev, Alexei; Earle, Michael; Liu, Peter S.; Lawson, R. P.; Brooks, Sarah D.; Wolde, Mengistu; Laskin, Alexander; Freer, Matthew

2012-08-14T23:59:59.000Z

127

Aerodynamic Focusing Of High-Density Aerosols  

SciTech Connect

High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

Ruiz, D. E.; Fisch, Nathaniel

2014-02-24T23:59:59.000Z

128

Near real time vapor detection and enhancement using aerosol adsorption  

SciTech Connect

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

129

Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing  

SciTech Connect

Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

Ghan, Steven J.

2013-10-09T23:59:59.000Z

130

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

Novick, V.J.; Johnson, S.A.

1999-08-03T23:59:59.000Z

131

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

1999-01-01T23:59:59.000Z

132

Aerosol Science and Technology, 41:202216, 2007 Copyright c American Association for Aerosol Research  

E-Print Network (OSTI)

processes, such as con- densation, coagulation, gas-to-particle conversion (Reid et al. 1998), and particle Aerosol size distribution is, along with particle refractive in- dex and shape, one of important

133

A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements  

SciTech Connect

Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

Brown, G.S. (Sandia National Labs., Albuquerque, NM (USA)); Weiss, R.E. (Radiance Research, Seattle, WA (USA))

1990-08-01T23:59:59.000Z

134

Understanding Brown Carbon Aerosols and Their Role in Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown Carbon Aerosols Brown Carbon Aerosols Tiny aerosol particles in the atmosphere are a possible cause of climate change. Among the many contributors to climate change are aerosols in the atmosphere. These tiny particles suspended in the air come from many sources, some natural and some man-made. Some aerosols are organic (containing carbon), while others are inorganic (such as sea salt and sulfates). Most aerosols reflect sunlight, and some also absorb it. Many of these nanoparticles have severe health effects in addition to climate effects. Human activities that produce aerosols include transportation, industry, and agriculture. Black carbon particles (a component of soot) originating from combustion processes have been known for some time to absorb sunlight and warm the

135

Response of California temperature to regional anthropogenic aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

Response of California temperature to regional anthropogenic aerosol Response of California temperature to regional anthropogenic aerosol changes Title Response of California temperature to regional anthropogenic aerosol changes Publication Type Journal Article Year of Publication 2008 Authors Novakov, Tihomir, Thomas W. Kirchstetter, Surabi Menon, and Jeffery Aguiar Journal Geophysical Research Letters Volume 35 Issue 19 Abstract In this paper, we compare constructed records of concentrations of black carbon (BC) - an indicator of anthropogenic aerosols - with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

136

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

137

Source Apportionment of Carbonaceous Aerosols using  

E-Print Network (OSTI)

are different than the collection of particles from water Filtration has high efficiency for all sizes Size Condensation Nuclei (CCN) Human health Carbonaceous aerosol implicated as important for toxicity and adverse of particulate matter Again, agreement between these two approaches would give a high level of confidence

Einat, Aharonov

138

Photophoretic levitation of engineered aerosols for geoengineering  

Science Journals Connector (OSTI)

...W. Keith Energy and Environmental...space-based solar scattering...The salient advantage of sulfate aerosols...instrument. Disadvantages of sulfates...concentrating solar power systems...higher energy than molecules...solving the energy balance equation...ratio of solar-spectrum to thermal-spectrum...two of the disadvantages of stratospheric...

David W. Keith

2010-01-01T23:59:59.000Z

139

Modeling Semivolatile Organic Aerosol Mass Emissions from  

E-Print Network (OSTI)

in diluted diesel and wood combustion exhaust are interpreted using a two-component absorptive with dilution of both wood smoke and diesel exhaust can be described by two lumped compounds in roughly equal. Introduction Sources of organic aerosol such as diesel engines and wood stoves emit semivolatile organic

Stanier, Charlie

140

ADEPT. aerosol deposition in cylindrical pipes  

SciTech Connect

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C (Burns and Roe, Oradell, NJ (United States))

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ADEPT. Aerosol Deposition in Cylindrical Pipes  

SciTech Connect

ADEPT calculates the deposition of aerosols in straight cylindrical pipes during turbulent air flow. Aerosol deposition is calculated in a time-dependent manner based on empirical correlations for turbulent flow in pipes. The calculated deposition during a single time interval is cumulative with that of previous time intervals and results in a decreasing inner diameter of the pipe. The calculated deposition is assumed uniform over the length of the pipe. The entering aerosol distribution is specified by the user in the form of a log-normal distribution of accumulated mass versus particle size and may be time dependent. Entering flow conditions are also specified by the user and may also be time dependent. For simplicity and generality, the geometry implicit in the program is that of a cylindrical pipe with no bends or fittings. The flow is turbulent and monodirectional; only one set of inlet conditions may be applied at a given time. The flow parameters are not calculated along the length of pipe; therefore, the dynamic behavior of the aerosol within the pipe as well as the effects of reentrainment cannot be determined explicitly. A typical problem requires 2 minutes of CPU time.

Fazekas, P.; Tewarson, S.C [Burns and Roe, Oradell, NJ (United States)

1985-01-01T23:59:59.000Z

142

3, 59195976, 2003 The nitrate aerosol  

E-Print Network (OSTI)

ACPD 3, 5919­5976, 2003 The nitrate aerosol field over Europe M. Schaap et al. Title Page Abstract of Utrecht, Institute of Marine and Atmospheric Science, PO Box 80005, 3508 TA, Utrecht, The Netherlands 2, The Netherlands 3 Netherlands Energy Research Foundation (ECN), PO Box 1, 1755 LE Petten, The Netherlands 4 Joint

Paris-Sud XI, Université de

143

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

SciTech Connect

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

144

UNDERSTANDING THE INFLUENCES OF ATMOSPHERIC AEROSOLS ON CLIMATE AND CLIMATE CHANGE  

E-Print Network (OSTI)

.ecd.bnl.gov/steve BOB BRAWDY / AP #12;OVERVIEW Aerosol influences on climate and climate change Earth's energy balance remarks #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS AS SEEN FROM SPACE Fire plumes from southern

Schwartz, Stephen E.

145

Reflective 'cool' roofs under aerosol-burdened skies: radiative benefits across selected Indian cities  

Science Journals Connector (OSTI)

The use of reflective surfaces offers one low-cost solution for reducing solar loading to urban environments and the Earth that should be considered as part of sustainable urban design. Here, we characterize the radiative benefits, i.e. the additional shortwave radiation leaving the atmosphere, from the installation of highly reflective 'cool' roofs in urban areas in India that face relatively large local aerosol burdens. We use a previously tested column radiative transfer model to estimate the energy per unit area reflected to space from increasing the surface albedo at six cities within India. The model is used to characterize radiative transfer each day over five years (2008–2012) based on mid-day satellite retrievals of MODIS aerosol depth, cloud water path, and average surface albedo and MERRA atmospheric profiles of temperature and composition. Compared against ten months of field observations in two cities, the model derived incoming surface shortwave radiation estimates relative to observations show small biases (0.5% and ?2.6%, at Pantnagar and Nainital, respectively). Despite the high levels of local aerosols we found cool roofs provided significant radiative benefits at all locations. Averaged over the five year period we found that increasing the albedo of 1 m2 of roof area by 0.5 would reflect to space 0.9–1.2 kWh daily from 08:30–15:30 LST, depending on location. This is equivalent to a constant forcing of 37–50 W m?2 (equivalent to reducing CO2 emissions by 74 to 101 kg CO2 m?2 roof area). Last, we identify a co-benefit of improving air quality, in that removing aerosols from the atmosphere could increase the radiative benefits from cool roofs by 23–74%, with the largest potential increase found at Delhi and the smallest change found at Nainital.

D E Millstein; M L Fischer

2014-01-01T23:59:59.000Z

146

Plutonium-aerosol emission rates and human pulmonary deposition calculations for Nuclear Site 201, Nevada Test Site  

SciTech Connect

This study determined the plutonium-aerosol fluxes from the soil to quantify (1) the extent of potential human exposure by deep-lung retention of alpha-emitting particles; (2) the source term should there be any significant, long-term, transport of plutonium aerosols; and (3) the resuspension factor and rate so that, for the first time at any nuclear site, one may calculate how long it will take for wind erosion to carry away a significant amount of the contaminated soil. High-volume air samplers and cascade impactors were used to characterize the plutonium aerosols. Meteorological flux-profile methods were used to calculate dust and plutonium aerosol emission rates. A floorless wind tunnel (10-m long) was used to examine resuspension under steady-state, high wind speed. The resuspension factor was two orders of magnitude lower than the other comparable sites at NTS and elsewhere, and the average resuspension rate of 5.3 x 10/sup -8//d was also very low, so that the half-time for resuspension by wind erosion was about 36,000 y.

Shinn, J.H.; Homan, D.N.

1982-06-21T23:59:59.000Z

147

LANSCE | News & Media | Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Profiles Shea Mosby: Lighting the way for nuclear science discoveries By Diana Del Mauro ADEPS Communications Photos by Richard Robinson, IRM-CAS Shea Mosby Cradling a heavy...

148

EIA - State Electricity Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity (megawatts)...

149

Management's Discussion & Analysis Profile  

NLE Websites -- All DOE Office Websites (Extended Search)

7-26-2013. Management's Discussion & Analysis Profile The Bonneville Power Administration is a federal agency under the Department of Energy. BPA markets wholesale electrical power...

150

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERCSPP Primary Energy Source Coal Net Summer Capacity...

151

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 2014.04.01 - 2014.06.01 Lead Scientist : Joel Thornton Description The ultimate goal of this work is to connect field and laboratory observations of organic aerosol chemical and physical properties during the nascent growth stage to the diurnal and vertical distributions of aerosol abundance measured over the boreal forest by the ARM Mobile Facility 2

152

Aerosol Modeling at LLNL - Our capability, results, and perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effects to Cloud Aerosol Indirect Effects to Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 Over the Southern Great Plains during May 2003 IOP Lawrence Livermore National Laboratory This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Catherine Chuang, James Boyle Shaocheng Xie and James Kelly LLNL-POST-401948 March 11, 2008 Why are aerosol/cloud interactions important? The greatest uncertainty in the assessment of radiative forcing arises from the interactions of aerosols with clouds. Radiative forcing of climate between 1750 and 2005 (IPCC, 2007) Sources of uncertainty Emissions Gas to particle conversion Aerosol size distribution Linkage between aerosols

153

ARM - Field Campaign - 2007 Cumulus Humilis Aerosol Process Study (CHAPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Cumulus Humilis Aerosol Process Study (CHAPS) 7 Cumulus Humilis Aerosol Process Study (CHAPS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2007 Cumulus Humilis Aerosol Process Study (CHAPS) 2007.06.04 - 2007.06.25 Lead Scientist : Carl Berkowitz For data sets, see below. Description The primary goal of this campaign was to characterize and contrast freshly emitted aerosols above, within and below fields of cumulus humilis (or fair-weather cumulus, FWC) and to use these observations to address how below-cloud and above-cloud aerosol optical and cloud nucleating properties differ downwind of a mid-size city relative to similar aerosols in air less affected by emissions. The observations from this campaign can also be used to aid in the development and evaluation of parameterizations of the

154

AEROgui: A graphical user interface for the optical properties of aerosols  

Science Journals Connector (OSTI)

Atmospheric aerosols have an uncertain effect on climate, and serious impact on human health. The uncertainty in the aerosols role on climate has several sources. First, aerosols present a great spatial and temporal variability. The spatial variability ...

R. Pedrós; J.L. Gómez-Amo; C.R. Marcos; M.P. Utrillas; S. Gandía; F. Tena; J.A. Martinez Lozano

155

Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements  

Science Journals Connector (OSTI)

The Georgia Institute of Technology–Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the aerosol optical thickness ? for major types of tropospheric aerosols including sulfate, dust, organic carbon ...

Mian Chin; Paul Ginoux; Stefan Kinne; Omar Torres; Brent N. Holben; Bryan N. Duncan; Randall V. Martin; Jennifer A. Logan; Akiko Higurashi; Teruyuki Nakajima

2002-02-01T23:59:59.000Z

156

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III (SAGE III)  

E-Print Network (OSTI)

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas extinction. We retrieve ozone and nitrogen dioxide number densities and aerosol extinction from transmission), Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III

157

Aerosol climate effects and air quality impacts from 1980 to 2030  

E-Print Network (OSTI)

Aerosol climate e?ects and air quality impacts from 1980 toAerosol climate e?ects and air quality impacts from 1980 toAerosol climate e?ects and air quality impacts from 1980 to

Menon, Surabi

2008-01-01T23:59:59.000Z

158

Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago  

E-Print Network (OSTI)

possible pollutant sources. Keywords Atmospheric aerosols . Canonical correlation analysis . Chicago air pollution studies involve collection and anal- ysis of atmospheric aerosols and concurrent meteorol- ogy) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations

O'Brien, Timothy E.

159

Priorities for In-situ Aerosol Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Priorities for In-situ Priorities for In-situ Aerosol Measurements Parameters * Aerosol light absorption coefficient - spectral, including UV, vis, and IR - as f(RH), and at ambient RH * Phase function - or relevant integral properties (how many?) * Ice nuclei * Scattering vs. RH, for RH>90% * CCN, as f(S, D p ) * Size distribution * Chemical composition - for determining climate forcing, vs. radiative effect Calibration * Number concentration * Size and shape * Light absorption reference method Characterization * Accuracy and precision - need well-understood error bars * Algorithm comparisons * Closure studies * Facilities for method testing - aircraft time Methods * Inlets - shattering/splashing - location on airplane - passing efficiency - inletless analyzers/samplers * Packaging - modular/portable "pods" for multiple a/c

160

Aerosol and graphitic carbon content of snow  

SciTech Connect

Snow samples from southern New Mexico, west Texas, Antarctica, and Greenland were analyzed for aerosol and graphitic carbon. Graphitic carbon contents were found to be between 2.2 and 25 ..mu..g L/sup -1/ of snow meltwater; water-insoluble aerosol content varied between 0.62 and 8.5 mg L/sup -1/. For comparison, two samples of Camp Century, Greenland, ice core, having approximate ages of 4,000 and 6,000 years, were also analyzed. Ice core graphitic carbon contents were found to be 2.5 and 1.1 ..mu..g L/sup -1/. copyrightAmerican Geophysical Union 1987

Chy-acute-accentlek, P.; Srivastava, V.; Cahenzli, L.; Pinnick, R.G.; Dod, R.L.; Novakov, T.; Cook, T.L.; Hinds, B.D.

1987-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

162

Aerosol generation and entrainment model for cough simulations.  

E-Print Network (OSTI)

??The airborne transmission of diseases is of great concern to the public health community. The possible spread of infectious disease by aerosols is of particular… (more)

Ersahin, Cem.

2007-01-01T23:59:59.000Z

163

ARM AOS Processing Status and Aerosol Intensive Properties VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS)...

164

Method of Preparing Super-Concentrated Jets From Dense Aerosol...  

NLE Websites -- All DOE Office Websites (Extended Search)

Michael J. Hay, Ernest J. Valeo, and Nathaniel J. Fisch This is improvement in aerodynamic focusing of dilute aerosol suspensions. All previous work on this subject has...

165

ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems...  

NLE Websites -- All DOE Office Websites (Extended Search)

properties during the winter-spring transition. Opportunity to investigate fire and automobile emission interactions with biogenic aerosols will also harnessed MAOS will be...

166

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements  

Science Journals Connector (OSTI)

Heavy Duty Diesel Engine Exhaust Aerosol Particle and Ion Measurements ... diesel engines have received increasing attention due to their potential health effects. ...

Tero Lähde; Topi Rönkkö; Annele Virtanen; Tanja J. Schuck; Liisa Pirjola; Kaarle Hämeri; Markku Kulmala; Frank Arnold; Dieter Rothe; Jorma Keskinen

2008-12-09T23:59:59.000Z

167

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

NLE Websites -- All DOE Office Websites (Extended Search)

modifications reduced but could not eliminate these adverse effects. The Raman lidar water vapor (aerosol extinction) measurements produced by these modified algorithms were,...

168

aerosol influenza transmission: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

and Information Sciences Websites Summary: . In preliminary work, we used artificial neural networks (ANNs) to construct global aerosol predictors by learningIntegration...

169

E-Print Network 3.0 - aerosol particle size Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: of aerosol over many orders-of-magnitude of particle size range, from subcritical clusters on the molecular... to modeling aerosol dynamics under conditions of new...

170

E-Print Network 3.0 - aerosol modeling decadal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geosciences 8 Absorbing aerosols and pre-summer monsoon hydroclimate variability over the Indian subcontinent: The challenge in investigating links Summary: in the aerosol-monsoon...

171

E-Print Network 3.0 - aerosol radiative forcing Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

No. DE- Summary: : WHY MEASUREMENTS ALONE CANNOT QUANTIFY AEROSOL RADIATIVE FORCING OF CLIMATE CHANGE Stephen E. Schwartz... of radiative forcing of climate change by aerosols,...

172

E-Print Network 3.0 - aerosols nanometriques application Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

is studying how aerosol particles affect everything from Summary: of aerosol particles on climate change, public health, and renewable energy applications. In particular, he......

173

E-Print Network 3.0 - aerosol lung inhalation Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

aerosolized by means... is aerosolized upon inhalation by utilizing the ... Source: Groningen, Rijksuniversiteit - Centre for Ecological and Evolutionary Studies, Department of...

174

E-Print Network 3.0 - aerosol condensation model Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Applied Science Collection: Environmental Sciences and Ecology 8 DETERMINING AEROSOL RADIATIVE FORCING AT ARM SITES Summary: OF AEROSOL DIRECT FORCING By linear model and by...

175

E-Print Network 3.0 - aerosol code comparisons Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Ecology 4 Estimates of global radiative forcing derived from the GlobAEROSOL dataset Summary: -sky direct aerosol radiative forcing. The Edwards and Slingo (1996)...

176

Aerosol-Cloud-Precipitation Interactions in the Trade Wind Boundary Layer.  

E-Print Network (OSTI)

??This dissertation includes an overview of aerosol, cloud, and precipitation properties associated with shallow marine cumulus clouds observed during the Barbados Aerosol Cloud Experiment (BACEX,… (more)

Jung, Eunsil

2012-01-01T23:59:59.000Z

177

E-Print Network 3.0 - aerosols harbor diverse Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud & Aerosol Process Group CSDESRLNOAA Presented at: NIST... Aerosol Metrology for Climate Workshop 15th March, 2011 12;Deposition Snow Darkens and Warms BC...

178

E-Print Network 3.0 - aerosol light absorption Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

AND Summary: population centers were used to calculate the aerosol forcing due to light scattering and absorption. Directly... , NY www.bnl.gov ABSTRACT Aerosols influence...

179

Large Aerosols Play Unexpected Role in Ganges Valley | U.S. DOE...  

Office of Science (SC) Website

The data have revealed that large aerosols in this region absorb a greater amount of light than expected. The Science Aerosol particles in the atmosphere may absorb solar...

180

E-Print Network 3.0 - aerosol atmospheric interactions Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Climate Summary: order estimates of aerosol-climate interaction But... only Earth System Models can include all... of the interactions (in theory at least) 12;Aerosols <>...

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

E-Print Network 3.0 - alkali sulfate aerosol Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Formation during... " and "Mechanism of Alkali Sulfate Aerosols Formation during Biomass Combustion" describe the development... the ... Source: Ris National Laboratory...

182

E-Print Network 3.0 - atmospheric aerosol size Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

for about ten percent of all aerosols in the atmosphere. We... , can actually absorb solar energy and warm the atmosphere. Atmospheric aerosols are very important... by...

183

Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Aerosol Models for Radiative Flux Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology E. Andrews Cooperative Institute for Research in the Environment University of Colorado Boulder, Colorado E. Andrews, J. A. Ogren, P. J. Sheridan, and J. M. Harris Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. K. Quinn Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington Abstract The uncertainties associated with assumptions of generic aerosol properties in radiative transfer codes are unknown, which means that these uncertainties are frequently invoked when models and

184

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

185

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

186

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

187

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

188

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Electricity Profile 2010 Arizona profile Arizona Electricity Profile 2010 Arizona profile Table 1. 2010 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,392 15 Electric Utilities 20,115 14 Independent Power Producers & Combined Heat and Power 6,277 16 Net Generation (megawatthours) 111,750,957 12 Electric Utilities 91,232,664 11 Independent Power Producers & Combined Heat and Power 20,518,293 17 Emissions (thousand metric tons) Sulfur Dioxide 33 33 Nitrogen Oxide 57 17 Carbon Dioxide 55,683 15 Sulfur Dioxide (lbs/MWh) 0.7 43 Nitrogen Oxide (lbs/MWh) 1.1 31 Carbon Dioxide (lbs/MWh) 1,099 35 Total Retail Sales (megawatthours) 72,831,737 21 Full Service Provider Sales (megawatthours) 72,831,737 20

189

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

190

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

191

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

192

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

193

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

194

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

195

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

196

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

197

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

198

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

199

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

200

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mexico Electricity Profile 2010 New Mexico profile Mexico Electricity Profile 2010 New Mexico profile Table 1. 2010 Summary Statistics (New Mexico) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 8,130 36 Electric Utilities 6,345 33 Independent Power Producers & Combined Heat and Power 1,785 36 Net Generation (megawatthours) 36,251,542 37 Electric Utilities 30,848,406 33 Independent Power Producers & Combined Heat and Power 5,403,136 37 Emissions (thousand metric tons) Sulfur Dioxide 15 38 Nitrogen Oxide 56 19 Carbon Dioxide 29,379 31 Sulfur Dioxide (lbs/MWh) 0.9 42 Nitrogen Oxide (lbs/MWh) 3.4 5 Carbon Dioxide (lbs/MWh) 1,787 11 Total Retail Sales (megawatthours) 22,428,344 39 Full Service Provider Sales (megawatthours) 22,428,344 38

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

202

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Ohio Electricity Profile 2010 Ohio profile Ohio Electricity Profile 2010 Ohio profile Table 1. 2010 Summary Statistics (Ohio) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 33,071 8 Electric Utilities 20,179 13 Independent Power Producers & Combined Heat and Power 12,892 7 Net Generation (megawatthours) 143,598,337 7 Electric Utilities 92,198,096 10 Independent Power Producers & Combined Heat and Power 51,400,241 7 Emissions (thousand metric tons) Sulfur Dioxide 610 1 Nitrogen Oxide 122 3 Carbon Dioxide 121,964 4 Sulfur Dioxide (lbs/MWh) 9.4 1 Nitrogen Oxide (lbs/MWh) 1.9 17 Carbon Dioxide (lbs/MWh) 1,872 8 Total Retail Sales (megawatthours) 154,145,418 4 Full Service Provider Sales (megawatthours) 105,329,797 9

203

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Electricity Profile 2010 Arkansas profile Arkansas Electricity Profile 2010 Arkansas profile Table 1. 2010 Summary Statistics (Arkansas) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 15,981 25 Electric Utilities 11,488 23 Independent Power Producers & Combined Heat and Power 4,493 24 Net Generation (megawatthours) 61,000,185 25 Electric Utilities 47,108,063 20 Independent Power Producers & Combined Heat and Power 13,892,122 27 Emissions (thousand metric tons) Sulfur Dioxide 74 22 Nitrogen Oxide 40 29 Carbon Dioxide 34,018 28 Sulfur Dioxide (lbs/MWh) 2.7 22 Nitrogen Oxide (lbs/MWh) 1.5 24 Carbon Dioxide (lbs/MWh) 1,229 29 Total Retail Sales (megawatthours) 48,194,285 29 Full Service Provider Sales (megawatthours) 48,194,285 27

204

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

205

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

206

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

West Virginia Electricity Profile 2010 West Virginia profile West Virginia Electricity Profile 2010 West Virginia profile Table 1. 2010 Summary Statistics (West Virginia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 16,495 24 Electric Utilities 11,719 21 Independent Power Producers & Combined Heat and Power 4,775 19 Net Generation (megawatthours) 80,788,947 20 Electric Utilities 56,719,755 18 Independent Power Producers & Combined Heat and Power 24,069,192 13 Emissions (thousand metric tons) Sulfur Dioxide 105 20 Nitrogen Oxide 49 23 Carbon Dioxide 74,283 12 Sulfur Dioxide (lbs/MWh) 2.9 20 Nitrogen Oxide (lbs/MWh) 1.3 25 Carbon Dioxide (lbs/MWh) 2,027 5 Total Retail Sales (megawatthours) 32,031,803 34 Full Service Provider Sales (megawatthours) 32,031,803 33

207

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont Electricity Profile 2010 Vermont profile Vermont Electricity Profile 2010 Vermont profile Table 1. 2010 Summary Statistics (Vermont) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 1,128 50 Electric Utilities 260 45 Independent Power Producers & Combined Heat and Power 868 43 Net Generation (megawatthours) 6,619,990 49 Electric Utilities 720,853 44 Independent Power Producers & Combined Heat and Power 5,899,137 35 Emissions (thousand metric tons) Sulfur Dioxide * 51 Nitrogen Oxide 1 50 Carbon Dioxide 8 51 Sulfur Dioxide (lbs/MWh) * 51 Nitrogen Oxide (lbs/MWh) 0.2 51 Carbon Dioxide (lbs/MWh) 3 51 Total Retail Sales (megawatthours) 5,594,833 51 Full Service Provider Sales (megawatthours) 5,594,833 48 Direct Use (megawatthours) 19,806 47

208

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Electricity Profile 2010 Mississippi profile Mississippi Electricity Profile 2010 Mississippi profile Table 1. 2010 Summary Statistics (Mississippi) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 15,691 26 Electric Utilities 10,858 26 Independent Power Producers & Combined Heat and Power 4,833 18 Net Generation (megawatthours) 54,487,260 28 Electric Utilities 40,841,436 27 Independent Power Producers & Combined Heat and Power 13,645,824 28 Emissions (thousand metric tons) Sulfur Dioxide 59 26 Nitrogen Oxide 31 32 Carbon Dioxide 26,845 32 Sulfur Dioxide (lbs/MWh) 2.4 26 Nitrogen Oxide (lbs/MWh) 1.2 30 Carbon Dioxide (lbs/MWh) 1,086 36 Total Retail Sales (megawatthours) 49,687,166 28 Full Service Provider Sales (megawatthours) 49,687,166 26

209

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin Electricity Profile 2010 Wisconsin profile Wisconsin Electricity Profile 2010 Wisconsin profile Table 1. 2010 Summary Statistics (Wisconsin) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 17,836 23 Electric Utilities 13,098 19 Independent Power Producers & Combined Heat and Power 4,738 20 Net Generation (megawatthours) 64,314,067 24 Electric Utilities 45,579,970 22 Independent Power Producers & Combined Heat and Power 18,734,097 18 Emissions (thousand metric tons) Sulfur Dioxide 145 12 Nitrogen Oxide 49 25 Carbon Dioxide 47,238 19 Sulfur Dioxide (lbs/MWh) 5.0 9 Nitrogen Oxide (lbs/MWh) 1.7 20 Carbon Dioxide (lbs/MWh) 1,619 16 Total Retail Sales (megawatthours) 68,752,417 22 Full Service Provider Sales (megawatthours) 68,752,417 21

210

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

211

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Electricity Profile 2010 New Hampshire profile Hampshire Electricity Profile 2010 New Hampshire profile Table 1. 2010 Summary Statistics (New Hampshire) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 4,180 43 Electric Utilities 1,132 41 Independent Power Producers & Combined Heat and Power 3,048 32 Net Generation (megawatthours) 22,195,912 42 Electric Utilities 3,979,333 41 Independent Power Producers & Combined Heat and Power 18,216,579 19 Emissions (thousand metric tons) Sulfur Dioxide 34 32 Nitrogen Oxide 6 46 Carbon Dioxide 5,551 43 Sulfur Dioxide (lbs/MWh) 3.4 17 Nitrogen Oxide (lbs/MWh) 0.6 46 Carbon Dioxide (lbs/MWh) 551 47 Total Retail Sales (megawatthours) 10,890,074 47 Full Service Provider Sales (megawatthours) 7,712,938 45

212

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

213

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

214

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

215

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

216

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Electricity Profile 2010 Missouri profile Missouri Electricity Profile 2010 Missouri profile Table 1. 2010 Summary Statistics (Missouri) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 21,739 18 Electric Utilities 20,360 12 Independent Power Producers & Combined Heat and Power 1,378 39 Net Generation (megawatthours) 92,312,989 18 Electric Utilities 90,176,805 12 Independent Power Producers & Combined Heat and Power 2,136,184 46 Emissions (thousand metric tons) Sulfur Dioxide 233 8 Nitrogen Oxide 56 18 Carbon Dioxide 78,815 10 Sulfur Dioxide (lbs/MWh) 5.6 6 Nitrogen Oxide (lbs/MWh) 1.3 26 Carbon Dioxide (lbs/MWh) 1,882 7 Total Retail Sales (megawatthours) 86,085,117 17 Full Service Provider Sales (megawatthours) 86,085,117 15

217

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

218

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

219

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

220

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

222

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Dakota Electricity Profile 2010 North Dakota profile Dakota Electricity Profile 2010 North Dakota profile Table 1. 2010 Summary Statistics (North Dakota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 6,188 40 Electric Utilities 4,912 34 Independent Power Producers & Combined Heat and Power 1,276 40 Net Generation (megawatthours) 34,739,542 39 Electric Utilities 31,343,796 32 Independent Power Producers & Combined Heat and Power 3,395,746 41 Emissions (thousand metric tons) Sulfur Dioxide 116 17 Nitrogen Oxide 52 21 Carbon Dioxide 31,064 30 Sulfur Dioxide (lbs/MWh) 7.3 3 Nitrogen Oxide (lbs/MWh) 3.3 6 Carbon Dioxide (lbs/MWh) 1,971 6 Total Retail Sales (megawatthours) 12,956,263 42 Full Service Provider Sales (megawatthours) 12,956,263 41

223

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

224

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Electricity Profile 2010 Minnesota profile Minnesota Electricity Profile 2010 Minnesota profile Table 1. 2010 Summary Statistics (Minnesota) Item Value U.S. Rank NERC Region(s) MRO Primary Energy Source Coal Net Summer Capacity (megawatts) 14,715 27 Electric Utilities 11,547 22 Independent Power Producers & Combined Heat and Power 3,168 31 Net Generation (megawatthours) 53,670,227 29 Electric Utilities 45,428,599 23 Independent Power Producers & Combined Heat and Power 8,241,628 32 Emissions (thousand metric tons) Sulfur Dioxide 57 27 Nitrogen Oxide 44 27 Carbon Dioxide 32,946 29 Sulfur Dioxide (lbs/MWh) 2.3 27 Nitrogen Oxide (lbs/MWh) 1.8 18 Carbon Dioxide (lbs/MWh) 1,353 21 Total Retail Sales (megawatthours) 67,799,706 23 Full Service Provider Sales (megawatthours) 67,799,706 22

225

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Electricity Profile 2010 Maryland profile Maryland Electricity Profile 2010 Maryland profile Table 1. 2010 Summary Statistics (Maryland) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 12,516 33 Electric Utilities 80 47 Independent Power Producers & Combined Heat and Power 12,436 9 Net Generation (megawatthours) 43,607,264 33 Electric Utilities 2,996 48 Independent Power Producers & Combined Heat and Power 43,604,268 9 Emissions (thousand metric tons) Sulfur Dioxide 45 28 Nitrogen Oxide 25 34 Carbon Dioxide 26,369 33 Sulfur Dioxide (lbs/MWh) 2.3 29 Nitrogen Oxide (lbs/MWh) 1.3 29 Carbon Dioxide (lbs/MWh) 1,333 24 Total Retail Sales (megawatthours) 65,335,498 24 Full Service Provider Sales (megawatthours) 36,082,473 31

226

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

York Electricity Profile 2010 New York profile York Electricity Profile 2010 New York profile Table 1. 2010 Summary Statistics (New York) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 39,357 6 Electric Utilities 11,032 25 Independent Power Producers & Combined Heat and Power 28,325 5 Net Generation (megawatthours) 136,961,654 9 Electric Utilities 34,633,335 31 Independent Power Producers & Combined Heat and Power 102,328,319 5 Emissions (thousand metric tons) Sulfur Dioxide 62 25 Nitrogen Oxide 44 28 Carbon Dioxide 41,584 22 Sulfur Dioxide (lbs/MWh) 1.0 40 Nitrogen Oxide (lbs/MWh) 0.7 44 Carbon Dioxide (lbs/MWh) 669 42 Total Retail Sales (megawatthours) 144,623,573 7 Full Service Provider Sales (megawatthours) 79,119,769 18

227

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 North Carolina profile Carolina Electricity Profile 2010 North Carolina profile Table 1. 2010 Summary Statistics (North Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,674 12 Electric Utilities 25,553 6 Independent Power Producers & Combined Heat and Power 2,121 34 Net Generation (megawatthours) 128,678,483 10 Electric Utilities 121,251,138 3 Independent Power Producers & Combined Heat and Power 7,427,345 34 Emissions (thousand metric tons) Sulfur Dioxide 131 14 Nitrogen Oxide 57 16 Carbon Dioxide 73,241 13 Sulfur Dioxide (lbs/MWh) 2.2 31 Nitrogen Oxide (lbs/MWh) 1.0 34 Carbon Dioxide (lbs/MWh) 1,255 28 Total Retail Sales (megawatthours) 136,414,947 9 Full Service Provider Sales (megawatthours) 136,414,947 5

228

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

229

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Iowa Electricity Profile 2010 Iowa profile Iowa Electricity Profile 2010 Iowa profile Table 1. 2010 Summary Statistics (Iowa) Item Value U.S. Rank NERC Region(s) MRO/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 14,592 28 Electric Utilities 11,282 24 Independent Power Producers & Combined Heat and Power 3,310 30 Net Generation (megawatthours) 57,508,721 26 Electric Utilities 46,188,988 21 Independent Power Producers & Combined Heat and Power 11,319,733 30 Emissions (thousand metric tons) Sulfur Dioxide 108 18 Nitrogen Oxide 50 22 Carbon Dioxide 47,211 20 Sulfur Dioxide (lbs/MWh) 4.1 11 Nitrogen Oxide (lbs/MWh) 1.9 14 Carbon Dioxide (lbs/MWh) 1,810 10 Total Retail Sales (megawatthours) 45,445,269 31 Full Service Provider Sales (megawatthours) 45,445,269 28

230

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Electricity Profile 2010 Illinois profile Illinois Electricity Profile 2010 Illinois profile Table 1. 2010 Summary Statistics (Illinois) Item Value U.S. Rank NERC Region(s) MRO/RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 44,127 5 Electric Utilities 4,800 35 Independent Power Producers & Combined Heat and Power 39,327 3 Net Generation (megawatthours) 201,351,872 5 Electric Utilities 12,418,332 35 Independent Power Producers & Combined Heat and Power 188,933,540 3 Emissions (thousand metric tons) Sulfur Dioxide 232 9 Nitrogen Oxide 83 8 Carbon Dioxide 103,128 6 Sulfur Dioxide (lbs/MWh) 2.5 25 Nitrogen Oxide (lbs/MWh) 0.9 38 Carbon Dioxide (lbs/MWh) 1,129 34 Total Retail Sales (megawatthours) 144,760,674 6 Full Service Provider Sales (megawatthours) 77,890,532 19

231

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Louisiana Electricity Profile 2010 Louisiana profile Louisiana Electricity Profile 2010 Louisiana profile Table 1. 2010 Summary Statistics (Louisiana) Item Value U.S. Rank NERC Region(s) SERC/SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 26,744 14 Electric Utilities 16,471 17 Independent Power Producers & Combined Heat and Power 10,272 10 Net Generation (megawatthours) 102,884,940 16 Electric Utilities 51,680,682 19 Independent Power Producers & Combined Heat and Power 51,204,258 8 Emissions (thousand metric tons) Sulfur Dioxide 126 15 Nitrogen Oxide 75 11 Carbon Dioxide 58,706 14 Sulfur Dioxide (lbs/MWh) 2.7 21 Nitrogen Oxide (lbs/MWh) 1.6 21 Carbon Dioxide (lbs/MWh) 1,258 27 Total Retail Sales (megawatthours) 85,079,692 18 Full Service Provider Sales (megawatthours) 85,079,692 16

232

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

233

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Dakota Electricity Profile 2010 South Dakota profile Dakota Electricity Profile 2010 South Dakota profile Table 1. 2010 Summary Statistics (South Dakota) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,623 45 Electric Utilities 2,994 37 Independent Power Producers & Combined Heat and Power 629 48 Net Generation (megawatthours) 10,049,636 46 Electric Utilities 8,682,448 36 Independent Power Producers & Combined Heat and Power 1,367,188 47 Emissions (thousand metric tons) Sulfur Dioxide 12 43 Nitrogen Oxide 12 43 Carbon Dioxide 3,611 47 Sulfur Dioxide (lbs/MWh) 2.6 23 Nitrogen Oxide (lbs/MWh) 2.6 8 Carbon Dioxide (lbs/MWh) 792 41 Total Retail Sales (megawatthours) 11,356,149 46 Full Service Provider Sales (megawatthours) 11,356,149 42

234

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

235

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Electricity Profile 2010 Massachusetts profile Massachusetts Electricity Profile 2010 Massachusetts profile Table 1. 2010 Summary Statistics (Massachusetts) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 13,697 31 Electric Utilities 937 42 Independent Power Producers & Combined Heat and Power 12,760 8 Net Generation (megawatthours) 42,804,824 34 Electric Utilities 802,906 43 Independent Power Producers & Combined Heat and Power 42,001,918 10 Emissions (thousand metric tons) Sulfur Dioxide 35 31 Nitrogen Oxide 17 38 Carbon Dioxide 20,291 36 Sulfur Dioxide (lbs/MWh) 1.8 34 Nitrogen Oxide (lbs/MWh) 0.9 39 Carbon Dioxide (lbs/MWh) 1,045 38 Total Retail Sales (megawatthours) 57,123,422 26 Full Service Provider Sales (megawatthours) 31,822,942 34

236

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Electricity Profile 2010 Nebraska profile Nebraska Electricity Profile 2010 Nebraska profile Table 1. 2010 Summary Statistics (Nebraska) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 7,857 38 Electric Utilities 7,647 30 Independent Power Producers & Combined Heat and Power 210 50 Net Generation (megawatthours) 36,630,006 36 Electric Utilities 36,242,921 30 Independent Power Producers & Combined Heat and Power 387,085 50 Emissions (thousand metric tons) Sulfur Dioxide 65 24 Nitrogen Oxide 40 30 Carbon Dioxide 24,461 34 Sulfur Dioxide (lbs/MWh) 3.9 12 Nitrogen Oxide (lbs/MWh) 2.4 9 Carbon Dioxide (lbs/MWh) 1,472 19 Total Retail Sales (megawatthours) 29,849,460 36 Full Service Provider Sales (megawatthours) 29,849,460 35

237

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Montana Electricity Profile 2010 Montana profile Montana Electricity Profile 2010 Montana profile Table 1. 2010 Summary Statistics (Montana) Item Value U.S. Rank NERC Region(s) MRO/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 5,866 41 Electric Utilities 2,340 38 Independent Power Producers & Combined Heat and Power 3,526 27 Net Generation (megawatthours) 29,791,181 41 Electric Utilities 6,271,180 39 Independent Power Producers & Combined Heat and Power 23,520,001 14 Emissions (thousand metric tons) Sulfur Dioxide 22 35 Nitrogen Oxide 21 35 Carbon Dioxide 20,370 35 Sulfur Dioxide (lbs/MWh) 1.6 35 Nitrogen Oxide (lbs/MWh) 1.6 22 Carbon Dioxide (lbs/MWh) 1,507 18 Total Retail Sales (megawatthours) 13,423,138 41 Full Service Provider Sales (megawatthours) 10,803,422 43

238

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maine Electricity Profile 2010 Maine profile Maine Electricity Profile 2010 Maine profile Table 1. 2010 Summary Statistics (Maine) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Gas Net Summer Capacity (megawatts) 4,430 42 Electric Utilities 19 49 Independent Power Producers & Combined Heat and Power 4,410 25 Net Generation (megawatthours) 17,018,660 43 Electric Utilities 1,759 49 Independent Power Producers & Combined Heat and Power 17,016,901 22 Emissions (thousand metric tons) Sulfur Dioxide 12 42 Nitrogen Oxide 8 44 Carbon Dioxide 4,948 44 Sulfur Dioxide (lbs/MWh) 1.6 36 Nitrogen Oxide (lbs/MWh) 1.1 33 Carbon Dioxide (lbs/MWh) 641 44 Total Retail Sales (megawatthours) 11,531,568 45 Full Service Provider Sales (megawatthours) 151,588 51 Energy-Only Provider Sales (megawatthours) 11,379,980 10

239

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

240

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Electricity Profile 2010 Florida profile Florida Electricity Profile 2010 Florida profile Table 1. 2010 Summary Statistics (Florida) Item Value U.S. Rank NERC Region(s) FRCC/SERC Primary Energy Source Gas Net Summer Capacity (megawatts) 59,147 3 Electric Utilities 50,853 1 Independent Power Producers & Combined Heat and Power 8,294 13 Net Generation (megawatthours) 229,095,935 3 Electric Utilities 206,062,185 1 Independent Power Producers & Combined Heat and Power 23,033,750 15 Emissions (thousand metric tons) Sulfur Dioxide 160 11 Nitrogen Oxide 101 5 Carbon Dioxide 123,811 2 Sulfur Dioxide (lbs/MWh) 1.5 37 Nitrogen Oxide (lbs/MWh) 1.0 35 Carbon Dioxide (lbs/MWh) 1,191 31 Total Retail Sales (megawatthours) 231,209,614 3 Full Service Provider Sales (megawatthours) 231,209,614 3

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Electricity Profile 2010 Hawaii profile Hawaii Electricity Profile 2010 Hawaii profile Table 1. 2010 Summary Statistics (Hawaii) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Petroleum Net Summer Capacity (megawatts) 2,536 47 Electric Utilities 1,828 40 Independent Power Producers & Combined Heat and Power 708 47 Net Generation (megawatthours) 10,836,036 45 Electric Utilities 6,416,068 38 Independent Power Producers & Combined Heat and Power 4,419,968 38 Emissions (thousand metric tons) Sulfur Dioxide 17 36 Nitrogen Oxide 21 36 Carbon Dioxide 8,287 42 Sulfur Dioxide (lbs/MWh) 3.4 16 Nitrogen Oxide (lbs/MWh) 4.3 2 Carbon Dioxide (lbs/MWh) 1,686 13 Total Retail Sales (megawatthours) 10,016,509 48 Full Service Provider Sales (megawatthours) 10,016,509 44

242

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

243

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

244

profiles | OpenEI  

Open Energy Info (EERE)

profiles profiles Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

245

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

246

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Electricity Profile 2010 California profile California Electricity Profile 2010 California profile Table 1. 2010 Summary Statistics (California) Item Value U.S. Rank NERC Region(s) SPP/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 67,328 2 Electric Utilities 28,689 2 Independent Power Producers & Combined Heat and Power 38,639 4 Net Generation (megawatthours) 204,125,596 4 Electric Utilities 96,939,535 8 Independent Power Producers & Combined Heat and Power 107,186,061 4 Emissions (thousand metric tons) Sulfur Dioxide 3 47 Nitrogen Oxide 80 9 Carbon Dioxide 55,406 16 Sulfur Dioxide (lbs/MWh) * 49 Nitrogen Oxide (lbs/MWh) 0.9 41 Carbon Dioxide (lbs/MWh) 598 46 Total Retail Sales (megawatthours) 258,525,414 2 Full Service Provider Sales (megawatthours) 240,948,673 2

247

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

248

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia Electricity Profile 2010 District of Columbia profile District of Columbia Electricity Profile 2010 District of Columbia profile Table 1. 2010 Summary Statistics (District of Columbia) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Petroleum Net Summer Capacity (megawatts) 790 51 Independent Power Producers & Combined Heat and Power 790 46 Net Generation (megawatthours) 199,858 51 Independent Power Producers & Combined Heat and Power 199,858 51 Emissions (thousand metric tons) Sulfur Dioxide 1 49 Nitrogen Oxide * 51 Carbon Dioxide 191 50 Sulfur Dioxide (lbs/MWh) 8.8 2 Nitrogen Oxide (lbs/MWh) 4.0 3 Carbon Dioxide (lbs/MWh) 2,104 1 Total Retail Sales (megawatthours) 11,876,995 43 Full Service Provider Sales (megawatthours) 3,388,490 50 Energy-Only Provider Sales (megawatthours) 8,488,505 12

249

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia Electricity Profile 2010 Virginia profile Virginia Electricity Profile 2010 Virginia profile Table 1. 2010 Summary Statistics (Virginia) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 24,109 16 Electric Utilities 19,434 15 Independent Power Producers & Combined Heat and Power 4,676 21 Net Generation (megawatthours) 72,966,456 21 Electric Utilities 58,902,054 16 Independent Power Producers & Combined Heat and Power 14,064,402 25 Emissions (thousand metric tons) Sulfur Dioxide 120 16 Nitrogen Oxide 49 24 Carbon Dioxide 39,719 25 Sulfur Dioxide (lbs/MWh) 3.6 15 Nitrogen Oxide (lbs/MWh) 1.5 23 Carbon Dioxide (lbs/MWh) 1,200 30 Total Retail Sales (megawatthours) 113,806,135 10 Full Service Provider Sales (megawatthours) 113,806,135 7

250

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware Electricity Profile 2010 Delaware profile Delaware Electricity Profile 2010 Delaware profile Table 1. 2010 Summary Statistics (Delaware) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Gas Net Summer Capacity (megawatts) 3,389 46 Electric Utilities 55 48 Independent Power Producers & Combined Heat and Power 3,334 29 Net Generation (megawatthours) 5,627,645 50 Electric Utilities 30,059 46 Independent Power Producers & Combined Heat and Power 5,597,586 36 Emissions (thousand metric tons) Sulfur Dioxide 13 41 Nitrogen Oxide 5 47 Carbon Dioxide 4,187 45 Sulfur Dioxide (lbs/MWh) 5.2 7 Nitrogen Oxide (lbs/MWh) 1.9 16 Carbon Dioxide (lbs/MWh) 1,640 15 Total Retail Sales (megawatthours) 11,605,932 44 Full Service Provider Sales (megawatthours) 7,582,539 46

251

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Colorado Electricity Profile 2010 Colorado profile Colorado Electricity Profile 2010 Colorado profile Table 1. 2010 Summary Statistics (Colorado) Item Value U.S. Rank NERC Region(s) RFC/WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 13,777 30 Electric Utilities 9,114 28 Independent Power Producers & Combined Heat and Power 4,662 22 Net Generation (megawatthours) 50,720,792 30 Electric Utilities 39,584,166 28 Independent Power Producers & Combined Heat and Power 11,136,626 31 Emissions (thousand metric tons) Sulfur Dioxide 45 29 Nitrogen Oxide 55 20 Carbon Dioxide 40,499 24 Sulfur Dioxide (lbs/MWh) 2.0 32 Nitrogen Oxide (lbs/MWh) 2.4 10 Carbon Dioxide (lbs/MWh) 1,760 12 Total Retail Sales (megawatthours) 52,917,786 27 Full Service Provider Sales (megawatthours) 52,917,786 24

252

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Electricity Profile 2010 Kansas profile Kansas Electricity Profile 2010 Kansas profile Table 1. 2010 Summary Statistics (Kansas) Item Value U.S. Rank NERC Region(s) MRO/SPP Primary Energy Source Coal Net Summer Capacity (megawatts) 12,543 32 Electric Utilities 11,732 20 Independent Power Producers & Combined Heat and Power 812 45 Net Generation (megawatthours) 47,923,762 32 Electric Utilities 45,270,047 24 Independent Power Producers & Combined Heat and Power 2,653,716 44 Emissions (thousand metric tons) Sulfur Dioxide 41 30 Nitrogen Oxide 46 26 Carbon Dioxide 36,321 26 Sulfur Dioxide (lbs/MWh) 1.9 33 Nitrogen Oxide (lbs/MWh) 2.1 13 Carbon Dioxide (lbs/MWh) 1,671 14 Total Retail Sales (megawatthours) 40,420,675 32 Full Service Provider Sales (megawatthours) 40,420,675 30

253

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

254

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Electricity Profile 2010 Pennsylvania profile Pennsylvania Electricity Profile 2010 Pennsylvania profile Table 1. 2010 Summary Statistics (Pennsylvania) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 45,575 4 Electric Utilities 455 44 Independent Power Producers & Combined Heat and Power 45,120 2 Net Generation (megawatthours) 229,752,306 2 Electric Utilities 1,086,500 42 Independent Power Producers & Combined Heat and Power 228,665,806 2 Emissions (thousand metric tons) Sulfur Dioxide 387 3 Nitrogen Oxide 136 2 Carbon Dioxide 122,830 3 Sulfur Dioxide (lbs/MWh) 3.7 13 Nitrogen Oxide (lbs/MWh) 1.3 27 Carbon Dioxide (lbs/MWh) 1,179 32 Total Retail Sales (megawatthours) 148,963,968 5 Full Service Provider Sales (megawatthours) 114,787,417 6

255

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Electricity Profile 2010 Wyoming profile Wyoming Electricity Profile 2010 Wyoming profile Table 1. 2010 Summary Statistics (Wyoming) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,986 37 Electric Utilities 6,931 31 Independent Power Producers & Combined Heat and Power 1,056 41 Net Generation (megawatthours) 48,119,254 31 Electric Utilities 44,738,543 25 Independent Power Producers & Combined Heat and Power 3,380,711 42 Emissions (thousand metric tons) Sulfur Dioxide 67 23 Nitrogen Oxide 61 15 Carbon Dioxide 45,703 21 Sulfur Dioxide (lbs/MWh) 3.1 19 Nitrogen Oxide (lbs/MWh) 2.8 7 Carbon Dioxide (lbs/MWh) 2,094 2 Total Retail Sales (megawatthours) 17,113,458 40 Full Service Provider Sales (megawatthours) 17,113,458 39

256

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kentucky Electricity Profile 2010 Kentucky profile Kentucky Electricity Profile 2010 Kentucky profile Table 1. 2010 Summary Statistics (Kentucky) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 20,453 21 Electric Utilities 18,945 16 Independent Power Producers & Combined Heat and Power 1,507 38 Net Generation (megawatthours) 98,217,658 17 Electric Utilities 97,472,144 7 Independent Power Producers & Combined Heat and Power 745,514 48 Emissions (thousand metric tons) Sulfur Dioxide 249 7 Nitrogen Oxide 85 7 Carbon Dioxide 93,160 7 Sulfur Dioxide (lbs/MWh) 5.6 5 Nitrogen Oxide (lbs/MWh) 1.9 15 Carbon Dioxide (lbs/MWh) 2,091 3 Total Retail Sales (megawatthours) 93,569,426 14 Full Service Provider Sales (megawatthours) 93,569,426 12

257

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Electricity Profile 2010 Michigan profile Michigan Electricity Profile 2010 Michigan profile Table 1. 2010 Summary Statistics (Michigan) Item Value U.S. Rank NERC Region(s) MRO/RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 29,831 11 Electric Utilities 21,639 10 Independent Power Producers & Combined Heat and Power 8,192 14 Net Generation (megawatthours) 111,551,371 13 Electric Utilities 89,666,874 13 Independent Power Producers & Combined Heat and Power 21,884,497 16 Emissions (thousand metric tons) Sulfur Dioxide 254 6 Nitrogen Oxide 89 6 Carbon Dioxide 74,480 11 Sulfur Dioxide (lbs/MWh) 5.0 8 Nitrogen Oxide (lbs/MWh) 1.8 19 Carbon Dioxide (lbs/MWh) 1,472 20 Total Retail Sales (megawatthours) 103,649,219 12 Full Service Provider Sales (megawatthours) 94,565,247 11

258

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Electricity Profile 2010 Alabama profile Alabama Electricity Profile 2010 Alabama profile Table 1. 2010 Summary Statistics (Alabama) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 32,417 9 Electric Utilities 23,642 7 Independent Power Producers & Combined Heat and Power 8,775 12 Net Generation (megawatthours) 152,150,512 6 Electric Utilities 122,766,490 2 Independent Power Producers & Combined Heat and Power 29,384,022 12 Emissions (thousand metric tons) Sulfur Dioxide 218 10 Nitrogen Oxide 66 14 Carbon Dioxide 79,375 9 Sulfur Dioxide (lbs/MWh) 3.2 18 Nitrogen Oxide (lbs/MWh) 1.0 36 Carbon Dioxide (lbs/MWh) 1,150 33 Total Retail Sales (megawatthours) 90,862,645 15 Full Service Provider Sales (megawatthours) 90,862,645 13

259

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 26,837 14...

260

EIA - State Electricity Profiles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electricity Profile 2012 Table 1. 2012 Summary Statistics (Arizona) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,587...

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Profiling for Performance  

Science Journals Connector (OSTI)

Performance and profiling are critical words in our everyday conversations in the office where I work, in our engagements with clients, and in our teaching. Both words apply equally well to all aspec...

Ron Crisco

2011-01-01T23:59:59.000Z

262

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Electricity Profile 2010 Connecticut profile Connecticut Electricity Profile 2010 Connecticut profile Table 1. 2010 Summary Statistics (Connecticut) Item Value U.S. Rank NERC Region(s) NPCC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 8,284 35 Electric Utilities 160 46 Independent Power Producers & Combined Heat and Power 8,124 15 Net Generation (megawatthours) 33,349,623 40 Electric Utilities 65,570 45 Independent Power Producers & Combined Heat and Power 33,284,053 11 Emissions (thousand metric tons) Sulfur Dioxide 2 48 Nitrogen Oxide 7 45 Carbon Dioxide 9,201 41 Sulfur Dioxide (lbs/MWh) 0.1 48 Nitrogen Oxide (lbs/MWh) 0.5 49 Carbon Dioxide (lbs/MWh) 608 45 Total Retail Sales (megawatthours) 30,391,766 35 Full Service Provider Sales (megawatthours) 13,714,958 40

263

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Utah Electricity Profile 2010 Utah profile Utah Electricity Profile 2010 Utah profile Table 1. 2010 Summary Statistics (Utah) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Coal Net Summer Capacity (megawatts) 7,497 39 Electric Utilities 6,648 32 Independent Power Producers & Combined Heat and Power 849 44 Net Generation (megawatthours) 42,249,355 35 Electric Utilities 39,522,124 29 Independent Power Producers & Combined Heat and Power 2,727,231 43 Emissions (thousand metric tons) Sulfur Dioxide 25 34 Nitrogen Oxide 68 13 Carbon Dioxide 35,519 27 Sulfur Dioxide (lbs/MWh) 1.3 38 Nitrogen Oxide (lbs/MWh) 3.6 4 Carbon Dioxide (lbs/MWh) 1,853 9 Total Retail Sales (megawatthours) 28,044,001 37 Full Service Provider Sales (megawatthours) 28,044,001 36

264

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Carolina Electricity Profile 2010 South Carolina profile Carolina Electricity Profile 2010 South Carolina profile Table 1. 2010 Summary Statistics (South Carolina) Item Value U.S. Rank NERC Region(s) SERC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 23,982 17 Electric Utilities 22,172 9 Independent Power Producers & Combined Heat and Power 1,810 35 Net Generation (megawatthours) 104,153,133 14 Electric Utilities 100,610,887 6 Independent Power Producers & Combined Heat and Power 3,542,246 39 Emissions (thousand metric tons) Sulfur Dioxide 106 19 Nitrogen Oxide 30 33 Carbon Dioxide 41,364 23 Sulfur Dioxide (lbs/MWh) 2.2 30 Nitrogen Oxide (lbs/MWh) 0.6 45 Carbon Dioxide (lbs/MWh) 876 40 Total Retail Sales (megawatthours) 82,479,293 19 Full Service Provider Sales (megawatthours) 82,479,293 17

265

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Electricity Profile 2010 Alaska profile Alaska Electricity Profile 2010 Alaska profile Table 1. 2010 Summary Statistics (Alaska) Item Value U.S. Rank NERC Region(s) -- Primary Energy Source Gas Net Summer Capacity (megawatts) 2,067 48 Electric Utilities 1,889 39 Independent Power Producers & Combined Heat and Power 178 51 Net Generation (megawatthours) 6,759,576 48 Electric Utilities 6,205,050 40 Independent Power Producers & Combined Heat and Power 554,526 49 Emissions (thousand metric tons) Sulfur Dioxide 3 46 Nitrogen Oxide 16 39 Carbon Dioxide 4,125 46 Sulfur Dioxide (lbs/MWh) 1.0 41 Nitrogen Oxide (lbs/MWh) 5.2 1 Carbon Dioxide (lbs/MWh) 1,345 23 Total Retail Sales (megawatthours) 6,247,038 50 Full Service Provider Sales (megawatthours) 6,247,038 47

266

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nevada Electricity Profile 2010 Nevada profile Nevada Electricity Profile 2010 Nevada profile Table 1. 2010 Summary Statistics (Nevada) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 11,421 34 Electric Utilities 8,713 29 Independent Power Producers & Combined Heat and Power 2,708 33 Net Generation (megawatthours) 35,146,248 38 Electric Utilities 23,710,917 34 Independent Power Producers & Combined Heat and Power 11,435,331 29 Emissions (thousand metric tons) Sulfur Dioxide 7 44 Nitrogen Oxide 15 40 Carbon Dioxide 17,020 38 Sulfur Dioxide (lbs/MWh) 0.4 46 Nitrogen Oxide (lbs/MWh) 1.0 37 Carbon Dioxide (lbs/MWh) 1,068 37 Total Retail Sales (megawatthours) 33,772,595 33 Full Service Provider Sales (megawatthours) 32,348,879 32

267

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington Electricity Profile 2010 Washington profile Washington Electricity Profile 2010 Washington profile Table 1. 2010 Summary Statistics (Washington) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 30,478 10 Electric Utilities 26,498 5 Independent Power Producers & Combined Heat and Power 3,979 26 Net Generation (megawatthours) 103,472,729 15 Electric Utilities 88,057,219 14 Independent Power Producers & Combined Heat and Power 15,415,510 23 Emissions (thousand metric tons) Sulfur Dioxide 14 39 Nitrogen Oxide 21 37 Carbon Dioxide 13,984 39 Sulfur Dioxide (lbs/MWh) 0.3 47 Nitrogen Oxide (lbs/MWh) 0.4 50 Carbon Dioxide (lbs/MWh) 298 49 Total Retail Sales (megawatthours) 90,379,970 16 Full Service Provider Sales (megawatthours) 88,116,958 14

268

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Oregon Electricity Profile 2010 Oregon profile Oregon Electricity Profile 2010 Oregon profile Table 1. 2010 Summary Statistics (Oregon) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 14,261 29 Electric Utilities 10,846 27 Independent Power Producers & Combined Heat and Power 3,415 28 Net Generation (megawatthours) 55,126,999 27 Electric Utilities 41,142,684 26 Independent Power Producers & Combined Heat and Power 13,984,316 26 Emissions (thousand metric tons) Sulfur Dioxide 16 37 Nitrogen Oxide 15 42 Carbon Dioxide 10,094 40 Sulfur Dioxide (lbs/MWh) 0.6 44 Nitrogen Oxide (lbs/MWh) 0.6 47 Carbon Dioxide (lbs/MWh) 404 48 Total Retail Sales (megawatthours) 46,025,945 30 Full Service Provider Sales (megawatthours) 44,525,865 29

269

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Texas Electricity Profile 2010 Texas profile Texas Electricity Profile 2010 Texas profile Table 1. 2010 Summary Statistics (Texas) Item Value U.S. Rank NERC Region(s) SERC/SPP/TRE/WECC Primary Energy Source Gas Net Summer Capacity (megawatts) 108,258 1 Electric Utilities 26,533 4 Independent Power Producers & Combined Heat and Power 81,724 1 Net Generation (megawatthours) 411,695,046 1 Electric Utilities 95,099,161 9 Independent Power Producers & Combined Heat and Power 316,595,885 1 Emissions (thousand metric tons) Sulfur Dioxide 430 2 Nitrogen Oxide 204 1 Carbon Dioxide 251,409 1 Sulfur Dioxide (lbs/MWh) 2.3 28 Nitrogen Oxide (lbs/MWh) 1.1 32 Carbon Dioxide (lbs/MWh) 1,346 22 Total Retail Sales (megawatthours) 358,457,550 1 Full Service Provider Sales (megawatthours) 358,457,550 1

270

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Indiana Electricity Profile 2010 Indiana profile Indiana Electricity Profile 2010 Indiana profile Table 1. 2010 Summary Statistics (Indiana) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Coal Net Summer Capacity (megawatts) 27,638 13 Electric Utilities 23,008 8 Independent Power Producers & Combined Heat and Power 4,630 23 Net Generation (megawatthours) 125,180,739 11 Electric Utilities 107,852,560 5 Independent Power Producers & Combined Heat and Power 17,328,179 20 Emissions (thousand metric tons) Sulfur Dioxide 385 4 Nitrogen Oxide 120 4 Carbon Dioxide 116,283 5 Sulfur Dioxide (lbs/MWh) 6.8 4 Nitrogen Oxide (lbs/MWh) 2.1 12 Carbon Dioxide (lbs/MWh) 2,048 4 Total Retail Sales (megawatthours) 105,994,376 11 Full Service Provider Sales (megawatthours) 105,994,376 8

271

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Oklahoma Electricity Profile 2010 Oklahoma profile Oklahoma Electricity Profile 2010 Oklahoma profile Table 1. 2010 Summary Statistics (Oklahoma) Item Value U.S. Rank NERC Region(s) SPP Primary Energy Source Gas Net Summer Capacity (megawatts) 21,022 20 Electric Utilities 16,015 18 Independent Power Producers & Combined Heat and Power 5,006 17 Net Generation (megawatthours) 72,250,733 22 Electric Utilities 57,421,195 17 Independent Power Producers & Combined Heat and Power 14,829,538 24 Emissions (thousand metric tons) Sulfur Dioxide 85 21 Nitrogen Oxide 71 12 Carbon Dioxide 49,536 17 Sulfur Dioxide (lbs/MWh) 2.6 24 Nitrogen Oxide (lbs/MWh) 2.2 11 Carbon Dioxide (lbs/MWh) 1,512 17 Total Retail Sales (megawatthours) 57,845,980 25 Full Service Provider Sales (megawatthours) 57,845,980 23

272

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Electricity Profile 2010 New Jersey profile Jersey Electricity Profile 2010 New Jersey profile Table 1. 2010 Summary Statistics (New Jersey) Item Value U.S. Rank NERC Region(s) RFC Primary Energy Source Nuclear Net Summer Capacity (megawatts) 18,424 22 Electric Utilities 460 43 Independent Power Producers & Combined Heat and Power 17,964 6 Net Generation (megawatthours) 65,682,494 23 Electric Utilities -186,385 50 Independent Power Producers & Combined Heat and Power 65,868,878 6 Emissions (thousand metric tons) Sulfur Dioxide 14 40 Nitrogen Oxide 15 41 Carbon Dioxide 19,160 37 Sulfur Dioxide (lbs/MWh) 0.5 45 Nitrogen Oxide (lbs/MWh) 0.5 48 Carbon Dioxide (lbs/MWh) 643 43 Total Retail Sales (megawatthours) 79,179,427 20 Full Service Provider Sales (megawatthours) 50,482,035 25

273

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Idaho Electricity Profile 2010 Idaho profile Idaho Electricity Profile 2010 Idaho profile Table 1. 2010 Summary Statistics (Idaho) Item Value U.S. Rank NERC Region(s) WECC Primary Energy Source Hydroelectric Net Summer Capacity (megawatts) 3,990 44 Electric Utilities 3,035 36 Independent Power Producers & Combined Heat and Power 955 42 Net Generation (megawatthours) 12,024,564 44 Electric Utilities 8,589,208 37 Independent Power Producers & Combined Heat and Power 3,435,356 40 Emissions (thousand metric tons) Sulfur Dioxide 7 45 Nitrogen Oxide 4 48 Carbon Dioxide 1,213 49 Sulfur Dioxide (lbs/MWh) 1.2 39 Nitrogen Oxide (lbs/MWh) 0.8 43 Carbon Dioxide (lbs/MWh) 222 50 Total Retail Sales (megawatthours) 22,797,668 38 Full Service Provider Sales (megawatthours) 22,797,668 37

274

Physicochemical Characterization of Capstone Depleted Uranium Aerosols I: Uranium Concentration in Aerosols as a Function of Time and Particle Size  

SciTech Connect

During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing depleted uranium were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time particularly within the first minute after the shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% 30 min after perforation. In the Bradley vehicle, the initial (and maximum) uranium concentration was lower than those observed in the Abrams tank and decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in the cyclone samplers, which collected aerosol continuously for 2 h post perforation. The percentages of uranium mass in the cyclone separator stages from the Abrams tank tests ranged from 38% to 72% and, in most cases, varied with particle size, typically with less uranium associated with the smaller particle sizes. Results with the Bradley vehicle ranged from 18% to 29% and were not specifically correlated with particle size.

Parkhurst, MaryAnn; Cheng, Yung-Sung; Kenoyer, Judson L.; Traub, Richard J.

2009-03-01T23:59:59.000Z

275

Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval  

E-Print Network (OSTI)

, New Mexico, USA Michael Mishchenko Goddard Institute for Space Studies, NASA, New York, New York, USA between t = 0.1 and t = 0.8. The Department of Energy research satellite instrument, the Multispectral [Hobbs et al., 1997]. The aerosols' direct effect involves their interaction with solar and terrestrial

276

CLOUD PHYSICS From aerosol-limited to invigoration  

E-Print Network (OSTI)

CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

Napp, Nils

277

Deposition of Biological Aerosols on HVAC Heat Exchangers  

E-Print Network (OSTI)

LBNL-47669 Deposition of Biological Aerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain Walker of Biological Aerosols on HVAC Heat Exchangers Jeffrey A. Siegel Iain S. Walker, Ph.D. ASHRAE Student Member that are found in commercial and residential HVAC systems of 1 - 6 m/s (200 - 1200 ft/min), particle diameters

278

Climatology of aerosol optical depth in northcentral Oklahoma: 19922008  

E-Print Network (OSTI)

of aerosol models; for identification of aerosols from spe- cific events (e.g., the Central American fires Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most dimming; that is, the decrease in solar radiation reaching Earth's surface. Additionally, the wavelength

279

ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP Campaign Links Science Plan AMF Point Reyes Website AMF Point Reyes Data Plots Related Campaigns MASRAD: Pt. Reyes Stratus Cloud and Drizzle Study 2005.07.07, Coulter, AMF MASRAD: Cloud Condensate Nuclei Chemistry Measurements 2005.07.01, Berkowitz, AMF MASRAD - Aerosol Optical Properties 2005.06.29, Strawa, AMF MASRAD:Sub-Micron Aerosol Measurements 2005.06.20, Wang, AMF MASRAD: Cloud Study from the 2NFOV at Pt. Reyes Field Campaign 2005.06.02, Wiscombe, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : MArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP 2005.03.14 - 2005.09.14 Website : http://www.arm.gov/sites/amf/pye/ Lead Scientist : Mark Miller

280

Aerosol Retrievals under Partly Cloudy Conditions: Challenges and Perspectives  

SciTech Connect

There are lots of interesting and intriguing features of aerosols near clouds – many of which can be quite engaging, as well being useful and climate-related. Exploring aerosol with the aid of the remote sensing, in situ observations and numerical modeling has piqued our curiosity and led to improve insights into the nature of aerosol and clouds and their complex relationship. This chapter conveys the outstanding issues of cloudy-sky aerosol retrievals of important climate properties and outlines their fruitful connections to other research areas such as in situ measurements and model simulations. The chapter focuses mostly on treating the inverse problems in the context of the passive satellite remote sensing and how they can improve our understanding of the cloud-aerosol interactions. The presentation includes a basis in the inverse problem theory, reviews available approaches and discusses their applications to partly cloudy situations. Potential synergy of observations and model simulations is described as well.

Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; Flynn, Connor J.

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?  

SciTech Connect

Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

2013-06-17T23:59:59.000Z

282

Atmospheric aerosol monitoring at the Pierre Auger Observatory  

SciTech Connect

For a ground based cosmic-ray observatory the atmosphere is an integral part of the detector. Air fluorescence detectors (FDs) are particularly sensitive to the presence of aerosols in the atmosphere. These aerosols, consisting mainly of clouds and dust, can strongly affect the propagation of fluorescence and Cherenkov light from cosmic-ray induced extensive air showers. The Pierre Auger Observatory has a comprehensive program to monitor the aerosols within the atmospheric volume of the detector. In this paper the aerosol parameters that affect FD reconstruction will be discussed. The aerosol monitoring systems that have been deployed at the Pierre Auger Observatory will be briefly described along with some measurements from these systems.

Cester, R.; Chiosso, M.; Chirin, J.; Clay, R.; Dawson, B.; Fick, B.; Filipcic, A.; Garcia, B.; Grillo, A.; Horvat, M.; Iarlori, M.; Malek, M.; Matthews, J.; Matthews,; Melo, D.; Meyhandan, R.; Mostafa, M.; Mussa, R.; Prouza, M.; Raefert, B.; Rizi, V.

2005-07-01T23:59:59.000Z

283

Experiments related to the resuspension of aerosols during hydrogen burns  

SciTech Connect

We have performed seven ''add-on'' experiments in two large combustion facilities to investigate the capability of hydrogen burns to remove simulated structural and fission product aerosols previously deposited on small metal discs that have surfaces prototypical of those found in nuclear reactor containments. Our results suggest that hydrogen combustion provides an especially effective mechanism for removal (and, presumably, resuspension) of sedimented aerosols produced in a hypothetical nuclear reactor core-degradation or core-melting accident. The presence of condensing steam does not seem to assure adhesion of sedimented aerosols during hydrogen burns. Differences are exhibited between different surfaces as well as between types of aerosol. In-depth studies will be required to assess the impact exposure of sedimented aerosols to hydrogen burns might have on the radiological source term.

Nelson, L.S.; Guay, K.P.

1987-01-01T23:59:59.000Z

284

Optimization of aerosol penetration through transport lines  

E-Print Network (OSTI)

, F is the numerical reading from the fluorometer , L is the liquid volume of the measured (23) solution, 8 is the testing time for each filter, and V is the filter flow rate during the sample period. Penetration, P, of aerosol through... defined maxima on the penetration versus Reynolds number (or flow rate, since the diameter is constant for a given tube) curves for each tube size. Also, in order to observe an optimum tube diameter , a (10) fixed flow rate of 86 L/min was tested for a...

Wong Luque, Fermin Samuel

2012-06-07T23:59:59.000Z

285

A shrouded probe aerosol sampling cyclone  

E-Print Network (OSTI)

the air stream. In the present design, three concentric shrouds and a probe will be attached to the entrance of the cyclone. The shroud concept was first used in an aircraft-horne sampling device for collecting tropospheric aerosol particles... by A. R. McFarland and S. A. Batterman. College Station, Texas: 1989. 5. Strauss, W. and S. J. Nainwaring: Air Pollution. London, Baltimore, Maryland: Edward Arnold, 1984. pp. 95-96. 6. Moore, N. E. , and A. R. NcFarland: Stairmand-Type Sampling...

Little, Stewart Craig

2012-06-07T23:59:59.000Z

286

Method of dispersing particulate aerosol tracer  

DOE Patents (OSTI)

A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

O'Holleran, Thomas P. (Belleville, MI)

1988-01-01T23:59:59.000Z

287

Light Absorption by Secondary Organic Aerosol from ?-Pinene: Effects of Oxidants, Seed Aerosol Acidity, and Relative Humidity  

SciTech Connect

It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOA) generated from ozonolysis or NO3 oxidation of ?-pinene in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532 and 870 nm. Light absorption at 355 and 405 nm was observed by SOA generated from oxidation of ?-pinene in the presence of acidic sulfate seed aerosols, under dry conditions. No absorption was observed when the relative humidity was elevated to greater than 27%, or in the presence of neutral sulfate seed aerosols. The light-absorbing compounds are speculated to be aldol condensation oligomers with organosulfate and organic nitrate groups. The results of this study also indicate that organic nitrates from ?-pinene SOA formed in the presence of neutral sulfate seed aerosols do not appear to absorb near-UV and UV radiation.

Song, Chen; Gyawali, Madhu S.; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

2013-10-25T23:59:59.000Z

288

Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols in our Atmosphere  

E-Print Network (OSTI)

;Carnegie Mellon University Smog Chamber Air supply Computer Temperature control Clean air 10 m3 Teflon spectrometer Aerosol mass spectrometerOzone monitor Air supply Computer Temperature control Clean air 10 m3 on temperature Hevap also needed Assumes no interactions among organic aerosol species or with inorganics. #12

Einat, Aharonov

289

Beryllium Carcinogenesis. I. Inhalation Exposure of Rats to Beryllium Sulfate Aerosol  

Science Journals Connector (OSTI)

...aerosol at a mean atmospheric concentration of...aerosol at a mean atmospheric concentration of...in the drinking water) for 2 weeks...a glass aerosol generator, with an airflow...chamber, distilled water was disseminated...aerosol generation, atmospheric concentration control...

Andrew L. Reeves; Daniel Deitch; and Arthur J. Vorwald

1967-03-01T23:59:59.000Z

290

Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number  

Science Journals Connector (OSTI)

...remainder of the map to the...distributions for mass, number, composition...such as vertical velocity and aerosol composition...updated aerosol mass for each compound...aerosols in trade wind cumulus observed by...spectrum of updraft velocities and the internally...Starting from aerosol mass (M) and number...

Pablo E. Saide; Gregory R. Carmichael; Scott N. Spak; Patrick Minnis; J. Kirk Ayers

2012-01-01T23:59:59.000Z

291

spectra from size-resolved particle samples col-lected from the Southeastern Aerosol Visibility  

E-Print Network (OSTI)

and acrolein aerosols. We believe that these transformations are due to acid-catalyzed heterogeneous reac

Bishop, James K.B.

292

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

Performance Profiles of Major Energy Producers 2009 Performance Profiles of Major Energy Producers 2009 vii Major Findings This edition of Performance Profiles reviews financial and operating data for the calendar year 2009 and discusses important trends and emerging issues relevant to U.S. energy company operations. Major U.S.-based oil and natural gas producers and petroleum refiners submit the data in this report annually on Form EIA-28, the Financial Reporting System (FRS). FRS companies' net income declined to the lowest level since 2002.  Net income fell 66 percent (in constant 2009 dollars) to $30 billion in 2009 from $88 billion in 2008. Substantial reductions in oil and natural gas prices in 2009 slowed revenue growth. FRS companies cut operating costs but by less than the decline in revenue, resulting in a 69-percent drop in operating income.

293

State Nuclear Profiles 2010  

U.S. Energy Information Administration (EIA) Indexed Site

State Nuclear Profiles 2010 State Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | State Nuclear Profiles 2010 i Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

294

Sulfate aerosols and polar stratospheric cloud formation  

SciTech Connect

Before the discovery of the Antarctic ozone hole, it was generally assumed that gas-phase chemical reactions controlled the abundance of stratospheric ozone. However, the massive springtime ozone losses over Antarctica first reported by Farman et al in 1985 could not be explained on the basis of gas-phase chemistry alone. In 1986, Solomon et al suggested that chemical reactions occurring on the surfaces of polar stratospheric clouds (PSCs) could be important for the observed ozone losses. Since that time, an explosion of laboratory, field, and theoretical research in heterogeneous atmospheric chemistry has occurred. Recent work has indicated that the most important heterogeneous reaction on PSCs is ClONO[sub 2] + HCl [yields] Cl[sub 2] + HNO[sub 3]. This reaction converts inert chlorine into photochemically active Cl[sub 2]. Photolysis of Cl[sub 2] then leads to chlorine radicals capable of destroying ozone through very efficient catalytic chain reactions. New observations during the second Airborne Arctic Stratospheric Expedition found stoichiometric loss of ClONO[sub 2] and HCl in air processed by PSCs in accordance with reaction 1. Attention is turning toward understanding what kinds of aerosols form in the stratospheric, their formation mechanism, surface area, and specific chemical reactivity. Some of the latest findings, which underline the importance of aerosols, were presented at a recent National Aeronautics and Space Administration workshop in Boulder, Colorado.

Tolbert, M.A. (Univ. of Colorado, Boulder, CO (United States))

1994-04-22T23:59:59.000Z

295

CARES Helps Explain Secondary Organic Aerosols  

ScienceCinema (OSTI)

What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

Zaveri, Rahul

2014-06-02T23:59:59.000Z

296

The Two-Column Aerosol Project (TCAP) Science Plan  

SciTech Connect

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

297

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

298

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

299

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

300

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

302

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

303

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031 22.1 296 0.7 Total 13,697 100.0 42,805 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

304

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

305

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Florida Nuclear Profile 2010 Florida profile Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3 9,122 4.0 Total 59,147 100.0 229,096 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

306

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

307

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

308

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

309

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

310

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

311

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

312

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

North Carolina Nuclear Profile 2010 North Carolina profile North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6 Petroleum 573 2.1 293 0.2 Total 27,674 100.0 128,678 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

313

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Hampshire Nuclear Profile 2010 New Hampshire profile Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0 72 0.3 Total 4,180 100.0 22,196 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

314

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Nuclear Profile 2010 Georgia profile Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5 Total 36,636 100.0 128,698 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

315

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Michigan Nuclear Profile 2010 Michigan profile Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3 Total 29,831 100.0 111,551 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

316

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Louisiana Nuclear Profile 2010 Louisiana profile Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

317

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Illinois Nuclear Profile 2010 Illinois profile Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110 0.1 Total 44,127 100.0 201,352 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

318

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

319

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Iowa Nuclear Profile 2010 Iowa profile Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

320

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Minnesota Nuclear Profile 2010 Minnesota profile Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31 0.1 Total 14,715 100.0 53,670 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

322

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

323

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Mississippi Nuclear Profile 2010 Mississippi profile Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

324

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Arkansas Nuclear Profile 2010 Arkansas profile Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total 15,981 100.0 61,000 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable * = Absolute percentage less than 0.05.

325

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

326

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8 Petroleum 4,534 9.9 571 0.2 Total 45,575 100.0 229,752 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

327

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Ohio Nuclear Profile 2010 Ohio profile Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total 33,071 100.0 143,598 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

328

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Arizona Nuclear Profile 2010 Arizona profile Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total 26,392 100.0 111,751 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

329

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Kansas Nuclear Profile 2010 Kansas profile Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05. Notes: Totals may not equal sum of components due to independent rounding.

330

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Jersey Nuclear Profile 2010 New Jersey profile Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235 0.4 Total 18,424 100.0 65,682 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

331

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

332

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Nuclear Profile 2010 Alabama profile Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200 0.1 Total 32,417 100.0 152,151 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

333

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Missouri Nuclear Profile 2010 Missouri profile Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total 21,739 100.0 92,313 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

334

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

California Nuclear Profile 2010 California profile California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum 701 1.0 1,059 0.5 Total 63,328 100.0 204,126 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

335

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Maryland Nuclear Profile 2010 Maryland profile Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322 0.7 Total 12,516 100.0 43,607 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

336

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Connecticut Nuclear Profile 2010 Connecticut profile Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409 1.2 Total 8,284 100.0 33,350 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

337

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

York Nuclear Profile 2010 New York profile York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3 2,005 1.5 Total 39,357 100.0 136,962 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable.

338

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Nebraska Nuclear Profile 2010 Nebraska profile Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

339

A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols  

SciTech Connect

For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with 5 UV lamps has been constructed and characterized experimentally. The total flow system length 6 is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m 7 transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an inert gas (CO2) and particles (atomized NaNO3). Instruments interfaced directly to this flow system include a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from ?-pinene reactions (NOx photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.

Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Perraud, Veronique; Bruns, Emily; Alexander, M. L.; Zelenyuk, Alla; Dabdub, Donald; Finlayson-Pitts, Barbara J.

2010-05-01T23:59:59.000Z

340

Aerosol-Based Duct Sealing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Aerosol-Based Duct Sealing Technology During the past five years, research has quantified the impacts of residential duct system leakage on HVAC energy consumption and peak electricity demand. A typical house with ducts located in the attic or crawlspace wastes approximately 20% of heating and cooling energy through duct leaks and draws approximately 0.5 KW more electricity during peak cooling periods. A 1991 study indicated that sealing leaks could save close to one Quadrillion Btus per year. (see also Commercializing a New Technology) Because the major cost of sealing leaks in existing air distribution systems is the labor for the location and sealing process, reducing the labor could greatly improve the cost-effectiveness of such a retrofit. Field studies of duct sealing programs performed by HVAC contractors show

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Aerosol mass spectrometry systems and methods  

DOE Patents (OSTI)

A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

Fergenson, David P.; Gard, Eric E.

2013-08-20T23:59:59.000Z

342

Discrimination between thin cirrus and and tropospheric aerosol using  

NLE Websites -- All DOE Office Websites (Extended Search)

Discrimination between thin cirrus and and tropospheric aerosol using Discrimination between thin cirrus and and tropospheric aerosol using multiple measurements from Darwin ARCS Mitchell, Ross CSIRO Category: Aerosols Thin cirrus cloud occurs frequently in the tropics, and is often difficult to distinguish from tropospheric aerosol on the basis of temporal variations in ground based measurements, since both can be rather spatially uniform. In this study we investigate their discrimination by combining data from three instruments at the Darwin Atmospheric Radiation and Cloud Station (ARCS): the Cimel sun photometer (CSP), the micropulse lidar (MPL), and the total sky imager (TSI). The study was carried out over the dry season of 2005, with the usual widespread burning of tropical savanna leading to extensive smoke plumes. It is shown that the locus of data in

343

Mobile Climate Observatory for Atmospheric Aerosols in India  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosols in India Atmospheric Aerosols in India Nainital, India, was the site chosen for deployment of a portable climate research laboratory to study how aerosols impact clouds and energy transfer in the atmosphere. The well-being of hundreds of millions of residents in northeastern India depends on the fertile land around the Ganges River, which is fed by monsoon rains and runoff from the nearby Himalayan Mountains. Any disturbance to the monsoon rains could threaten the population. In the same region, increased industrial activities due to economic growth are releasing small aerosol particles, such as soot and dust, that absorb and scatter sunlight and thus can change cloud formation processes and the heat distribution in the atmosphere. Such changes could greatly increase or

344

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: Snowfall govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: Snowfall Experiment Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: Snowfall Experiment 2014.02.01 - 2014.04.30 Lead Scientist : Dmitri Moisseev Description The snowfall measurement campaign, which will take place during AMF2 deployment in Finland, will focus on understanding snowfall microphysics and characterizing performance of surface based snowfall measurement instruments. This will be achieved by combining triple frequency (X, Ka, W -band) radar observations of vertical structure of the precipitation,

345

PNNL-MILAGRO Aerosol Modeling in Mexico | Open Energy Information  

Open Energy Info (EERE)

PNNL-MILAGRO Aerosol Modeling in Mexico PNNL-MILAGRO Aerosol Modeling in Mexico Jump to: navigation, search Name PNNL-MILAGRO Aerosol Modeling in Mexico Agency/Company /Organization Pacific Northwest National Laboratory Topics Co-benefits assessment Resource Type Dataset, Maps Website http://www.pnl.gov/atmospheric Country Mexico UN Region Latin America and the Caribbean References PNNL-MILAGRO Aerosol Modeling in Mexico[1] "MILGARO surface data includes measurements from Supersites, RAMA (Red Automatica de Monitoreo Atmosferico), Mobile, and Other sites. A description of each site type follows along with a plot of the site locations. Supersites Supersites provide detailed atmospheric chemistry and meteorological measurements; these sites included: T0 (located at the Instituto Mexicano

346

A New Assessment of the Aerosol First Indirect Effect  

NLE Websites -- All DOE Office Websites (Extended Search)

New Assessment of the Aerosol First Indirect Effect New Assessment of the Aerosol First Indirect Effect Shao, Hongfei Florida State University Liu, Guosheng Florida State University Category: Aerosols The aerosol first indirect effect is known to cool the Earth radiatively. However, its magnitude is very uncertain; large discrepancies exist among the observed values published in the literature. In this study, we first survey the published values of those parameters used for describing the first indirect effect. By analyzing the discrepancies among these values, we show that the first indirect effect has been overestimated by many investigators due to an improper parameter being used. Therefore, we introduce a more meaningful parameter to measure this effect. We estimated the first indirect effect using the new parameter based on observational

347

Effects of operating conditions on a heat transfer fluid aerosol  

E-Print Network (OSTI)

are made over ranges of temperature, pressure and orifice diameters. Aerosol drop size distributions of a HTF are measured by a non-intrusive method of analysis using a Malvern Laser Diffraction Particle Analyzer (Malvern laser). The Malvern laser employs...

Sukmarg, Passaporn

2012-06-07T23:59:59.000Z

348

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Ground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

349

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Winter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

350

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

351

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne...  

NLE Websites -- All DOE Office Websites (Extended Search)

Discovery Browse Data Related Campaigns Two-Column Aerosol Project (TCAP) 2012.07.01, Berg, AMF Comments? We would love to hear from you Send us a note below or call us at...

352

Application of computational fluid dynamics to aerosol sampling and concentration  

E-Print Network (OSTI)

, FLUENT 6 is used to analyze the performance of aerosol sampling and concentration devices including inlet components (impactors), cyclones, and virtual impactors. The ? ? k model was used to predict particle behavior in Inline Cone Impactor (ICI) and Jet...

Hu, Shishan

2009-05-15T23:59:59.000Z

353

Pressure-flow reducer for aerosol focusing devices  

DOE Patents (OSTI)

A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

Gard, Eric (San Francisco, CA); Riot, Vincent (Oakland, CA); Coffee, Keith (Diablo Grande, CA); Woods, Bruce (Livermore, CA); Tobias, Herbert (Kensington, CA); Birch, Jim (Albany, CA); Weisgraber, Todd (Brentwood, CA)

2008-04-22T23:59:59.000Z

354

Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides  

E-Print Network (OSTI)

We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

Kharol, S. K.

355

MELCOR 1. 8. 1 assessment: LACE aerosol experiment LA4  

SciTech Connect

The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.

Kmetyk, L.N.

1991-09-01T23:59:59.000Z

356

Distinguishing Aerosol Impacts on Climate Over the Past Century  

E-Print Network (OSTI)

Figure 8a). The IE cooling increases snow/ice by about 10% (Their cooling e?ect on surface temperatures promotes ice androw), cooling from the aerosol DE increases snow/ice cover

Koch, Dorothy

2009-01-01T23:59:59.000Z

357

Linearity of Climate Response to Increases in Black Carbon Aerosols  

Science Journals Connector (OSTI)

The impacts of absorbing aerosols on global climate are not completely understood. This paper presents the results of idealized experiments conducted with the Community Atmosphere Model, version 4 (CAM4), coupled to a slab ocean model (CAM4–SOM) ...

Salil Mahajan; Katherine J. Evans; James J. Hack; John E. Truesdale

2013-10-01T23:59:59.000Z

358

Effects of aerosols on deep convective cumulus clouds  

E-Print Network (OSTI)

This work investigates the effects of anthropogenic aerosols on deep convective clouds and the associated radiative forcing in the Houston area. The Goddard Cumulus Ensemble model (GCE) coupled with a spectral-bin microphysics is employed...

Fan, Jiwen

2009-05-15T23:59:59.000Z

359

Impact of aerosols on convective clouds and precipitation  

E-Print Network (OSTI)

: Massachusetts Institute of Technology 77 Massachusetts Avenue, E19-411 Cambridge, MA 02139 (USA) Location to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current

360

Continuous air monitor for alpha-emitting aerosol particles  

SciTech Connect

A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

McFarland, A.R.; Ortiz, C.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chemical Composition and Cloud Nucleation Ability of Marine Aerosol  

E-Print Network (OSTI)

This study is focused on the chemical composition and cloud nucleation ability of marine aerosol based on two cruise researches over Pacific Ocean and North Atlantic Ocean respectively. Implications of CLAW hypothesis and the factors influencing its...

Deng, Chunhua

2013-12-12T23:59:59.000Z

362

Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms  

E-Print Network (OSTI)

In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within...

Tang, Yingjie

2012-07-16T23:59:59.000Z

363

Aerosol-Cloud interactions : a new perspective in precipitation enhancement  

E-Print Network (OSTI)

Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation ...

Gunturu, Udaya Bhaskar

2010-01-01T23:59:59.000Z

364

Atmospheric Aerosol Chemistry, Climate Change, and Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

607 Atmospheric Aerosol Chemistry, Climate Change, and Air Quality An EMSL Science Theme Advisory Panel Workshop Workshop Date: January 30, 2013 Prepared for the U.S. Department of...

365

ARM - Field Campaign - Shortwave Radiation and Aerosol Intensive  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsShortwave Radiation and Aerosol Intensive Observation govCampaignsShortwave Radiation and Aerosol Intensive Observation Periods Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Shortwave Radiation and Aerosol Intensive Observation Periods 1998.08.03 - 1998.08.28 Lead Scientist : Warren Wiscombe For data sets, see below. Summary Wednesday, August 5, 1998: IOP Opening Activities: The IOP updates for the Shortwave/Aerosol/BDRF will be composed from notes taken during briefing sessions lead by Don Cahoon and company each night at the Marland Mansion in Ponca City. IOP Status as of 8/4/98 Weather forecasts indicate that cloudy conditions will prevail for the next few days. The Helicopter is on standby for clear sky conditions. Model output indicates clear sky's may move in later this week.

366

Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study  

SciTech Connect

In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

Andreae, M.O.; Crutzen, P.J. [Max Planck Institute for Chemistry, Mainz (Germany); Cofer, W.R. III; Hollande, J.M. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Division] [and others

1995-06-01T23:59:59.000Z

367

EIA - State Electricity Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

368

Performance profiles style sheet  

Gasoline and Diesel Fuel Update (EIA)

06) 06) Distribution Category UC-950 Performance Profiles of Major Energy Producers 2006 December 2007 Energy Information Administration Office of Energy Markets and End Use U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts Performance Profiles of Major Energy Producers 2006 is prepared by the Energy Information Administration, Office of Energy Markets and End Use, Energy Markets and Contingency Information Division, Financial

369

EIA - State Electricity Profiles  

Gasoline and Diesel Fuel Update (EIA)

Tennessee Electricity Profile 2010 Tennessee full report Tennessee Electricity Profile 2010 Tennessee full report Table 1. 2010 Summary Statistics (Tennessee) Item Value U.S. Rank NERC Region(s) RFC/SERC Primary Energy Source Coal Net Summer Capacity (megawatts) 21,417 19 Electric Utilities 20,968 11 Independent Power Producers & Combined Heat and Power 450 49 Net Generation (megawatthours) 82,348,625 19 Electric Utilities 79,816,049 15 Independent Power Producers & Combined Heat and Power 2,532,576 45 Emissions (thousand metric tons) Sulfur Dioxide 138 13 Nitrogen Oxide 33 31 Carbon Dioxide 48,196 18 Sulfur Dioxide (lbs/MWh) 3.7 14 Nitrogen Oxide (lbs/MWh) 0.9 40 Carbon Dioxide (lbs/MWh) 1,290 26 Total Retail Sales (megawatthours) 103,521,537 13 Full Service Provider Sales (megawatthours) 103,521,537 10

370

Chemical profiles of switchgrass  

NLE Websites -- All DOE Office Websites (Extended Search)

profiles profiles of switchgrass Zhoujian Hu a,b , Robert Sykes a,c , Mark F. Davis a,c , E. Charles Brummer a,d , Arthur J. Ragauskas a,b,e, * a BioEnergy Science Center, USA b School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, Atlanta, GA 30332, USA c National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401, USA d Institute for Plant Breeding, Genetics, and Genomics, Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, USA e Forest Products and Chemical Engineering Department, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden a r t i c l e i n f o Article history: Received 15 April 2009 Received in revised form 10 December 2009 Accepted 10 December 2009 Available online 13 January 2010 Keywords: Switchgrass Morphological components Chemical

371

Temperature profile detector  

DOE Patents (OSTI)

Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

Tokarz, R.D.

1983-10-11T23:59:59.000Z

372

A Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing  

NLE Websites -- All DOE Office Websites (Extended Search)

Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing Numerical Sensitivity Study of Aerosol Influence on Immersion Freezing in Mixed-Phase Stratiform Clouds Gijs de Boer, Tempei Hashino, Edwin W. Eloranta and Gregory J. Tripoli The University of Wisconsin - Madison (1) Introduction (1) Introduction Mixed-phase stratiform clouds are commonly observed at high latitudes (Shupe et al., 2006; de Boer et al., 2009a). These clouds significaly impact the atmospheric radiative

373

Representing Cloud Processing of Aerosol in Numerical Models  

SciTech Connect

The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

Mechem, D.B.; Kogan, Y.L.

2005-03-18T23:59:59.000Z

374

Non-intrusive characterization of heat transfer fluid aerosol formation  

E-Print Network (OSTI)

providing an ignition source for the fine aerosol droplets. TI&e Malvern Laser Diffraction Particle Analyzer RING DIODE ARRAY DETECTOR BEAM EXPANDER/ SPATIAL FILTER HE- NE LASER FOURIER TRANSFORM LENS Figure II-Z. Diffraction particle analyzer... providing an ignition source for the fine aerosol droplets. TI&e Malvern Laser Diffraction Particle Analyzer RING DIODE ARRAY DETECTOR BEAM EXPANDER/ SPATIAL FILTER HE- NE LASER FOURIER TRANSFORM LENS Figure II-Z. Diffraction particle analyzer...

Krishna, Kiran

2012-06-07T23:59:59.000Z

375

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

SciTech Connect

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

376

On modification of global warming by sulfate aerosols  

SciTech Connect

There is increasing evidence that the response of climate to increasing greenhouse gases may be modified by accompanying increases in sulfate aerosols. In this study, the patterns of response in the surface climatology of a coupled ocean-atmosphere general circulation model forced by increases in carbon dioxide alone is compared with those obtained by increasing carbon dioxide and aerosol forcing. The simulations are run from early industrial times using the estimated historical forcing and continued to the end of the twenty-first century assuming a nonintervention emissions scenario for greenhouse gases and aerosols. The comparison is made for the period 2030-2050 when the aerosol forcing is a maximum. In winter, the cooling due to aerosols merely tends to reduce the response to carbon dioxide, whereas in summer, it weakens the monsoon circulations and reverses some of the changes in the hydrological cycle on increasing carbon dioxide. This response is in some respects similar to that found in simulations with changed orbital parameters, as between today and the middle Holocene. The hydrological response in the palaeosimulations is supported by palaeoclimatic reconstructions. The results of changes in aerosol concentrations of the magnetic projected in the scenarios would have a major effect on regional climate, especially over Europe and Southeast Asia. 74 refs., 12 figs., 6 tabs.

Mitchell, J.F.B.; Johns, T.C. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

1997-02-01T23:59:59.000Z

377

Characterisation and dissolution of depleted uranium aerosols produced during impacts of kinetic energy penetrators against a tank  

Science Journals Connector (OSTI)

......Characterisation and dissolution of depleted uranium aerosols produced during impacts...Aerosols produced during impacts of depleted uranium (DU) penetrators against the...Characterisation and dissolution of depleted uranium aerosols produced during impacts......

V. Chazel; P. Gerasimo; V. Debouis; P. Laroche; F. Paquet

2003-07-01T23:59:59.000Z

378

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

379

NOTES ON NEUTRON DEPTH PROFILING  

E-Print Network (OSTI)

NOTES ON NEUTRON DEPTH PROFILING by J.K. Shultis Department of Mechanical and Nuclear Engineering College of Engineering Kansas State University Manhattan, Kansas 66506 Dec. 2003 #12;Notes on Neutron Depth Profiling J. Kenneth Shultis December 2003 1 Introduction The purpose of neutron depth profiling

Shultis, J. Kenneth

380

An Aerosol Condensation Model for Sulfur Trioxide  

SciTech Connect

This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

Grant, K E

2008-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project Cost Profile Spreadsheet | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet Project Cost Profile Spreadsheet.xlsx More Documents & Publications Statement of Work (SOW) Template (Combined...

382

Direct measurements of marine aerosols to examine the influence of biological activity, anthropogenic emissions, and secondary processing on particle chemistry  

E-Print Network (OSTI)

from a low-speed marine diesel engine, Aerosol Sci. Tech. ,from a low-speed marine diesel engine, Aerosol Sci. Tech. ,

Gaston, Cassandra Jayne

2012-01-01T23:59:59.000Z

383

Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.  

SciTech Connect

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage--aerosol test program, performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission, had significant inputs from, and is strongly supported and coordinated by both the U.S. and international program participants in Germany, France, and the U.K., as part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC.

Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

2006-10-01T23:59:59.000Z

384

Texas Crop Profile: Potatoes  

E-Print Network (OSTI)

175 pounds of nitrogen, 80 pounds of phosphorus, and 80 pounds of potassium. Potassium is generally not needed in the High Plains, although many growers apply it. Texas Crop Profile P O T A T O E S E-19 3-00 Prepared by Kent D. Hall, Rodney L. Holloway..., following drag-off or after potato plants have fully emerged. Controls weeds by disrupting growth process during germination. Does not control established weeds. State Contacts Rodney L. Holloway Extension Specialist 2488 TAMU College Station, Texas 77843...

Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

2000-04-12T23:59:59.000Z

385

Factors influencing the microphysics and radiative properties of liquid-dominated Arctic clouds: insight from observations of aerosol and clouds during ISDAC  

SciTech Connect

Aircraft measurements during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 are used to investigate aerosol indirect effects in Arctic clouds. Two aerosol-cloud regimes are considered in this analysis: single-layer stratocumulus cloud with below-cloud aerosol concentrations (N{sub a}) below 300 cm{sup -3} on April 8 and April 26-27 (clean cases); and inhomogeneous layered cloud with N{sub a} > 500 cm{sup -3} below cloud base on April 19-20, concurrent with a biomass burning episode (polluted cases). Vertical profiles through cloud in each regime are used to determine average cloud microphysical and optical properties. Positive correlations between the cloud droplet effective radius (Re) and cloud optical depth ({tau}) are observed for both clean and polluted cases, which are characteristic of optically-thin, non-precipitating clouds. Average Re values for each case are {approx} 6.2 {mu}m, despite significantly higher droplet number concentrations (Nd) in the polluted cases. The apparent independence of Re and Nd simplifies the description of indirect effects, such that {tau} and the cloud albedo (A) can be described by relatively simple functions of the cloud liquid water path. Adiabatic cloud parcel model simulations show that the marked differences in Na between the regimes account largely for differences in droplet activation, but that the properties of precursor aerosol also play a role, particularly for polluted cases where competition for vapour amongst the more numerous particles limits activation to larger and/or more hygroscopic particles. The similarity of Re for clean and polluted cases is attributed to compensating droplet growth processes for different initial droplet size distributions.

Earle, Michael; Liu, Peter S.; Strapp, J. Walter; Zelenyuk, Alla; Imre, D.; McFarquhar, Greg; Shantz, Nicole C.; Leaitch, W. R.

2011-11-04T23:59:59.000Z

386

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

387

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

388

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Texas profile Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0 411,695 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

389

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

390

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Vermont profile Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported. Notes: Totals may not equal sum of components due to independent rounding. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind.

391

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Tennessee profile Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

392

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Virginia profile Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

393

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

394

EIA - State Nuclear Profiles  

Gasoline and Diesel Fuel Update (EIA)

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

395

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Washington profile Washington profile Washington total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,097 3.6 9,241 8.9 Coal 1,340 4.4 8,527 8.2 Hydro and Pumped Storage 21,495 70.5 68,342 66.0 Natural Gas 3,828 12.6 10,359 10.0 Other 1 - - 354 0.3 Other Renewable1 2,703 8.9 6,617 6.4 Petroleum 15 * 32 * Total 30,478 100.0 103,473 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. * = Absolute percentage less than 0.05.

396

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

South Carolina profile South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982 100.0 104,153 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. - = No data reported.

397

EIA - State Nuclear Profiles  

U.S. Energy Information Administration (EIA) Indexed Site

Wisconsin profile Wisconsin profile Wisconsin total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,584 8.9 13,281 20.7 Coal 8,063 45.2 40,169 62.5 Hydro and Pumped Storage 492 2.8 2,112 3.3 Natural Gas 6,110 34.3 5,497 8.5 Other 1 21 0.1 63 0.1 Other Renewable1 775 4.3 2,474 3.8 Petroleum 790 4.4 718 1.1 Total 17,836 100.0 64,314 100.0 1Municipal Solid Waste net generation is allocated according to the biogenic and non-biogenic components of the fuel; however, all Municipal Solid Waste summer capacity is classified as Renewable. Notes: Totals may not equal sum of components due to independent rounding.

398

E-Print Network 3.0 - aerosols apports du Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: Regional Impact of Inter-Continental Aerosol Transport Leona Charles*a,b , Barry Grossa, Fred... to study the interaction of aerosols in the PBL with long range...

399

Organic Aerosol Formation from Photochemical Oxidation of Diesel Exhaust in a Smog Chamber  

Science Journals Connector (OSTI)

Diluted exhaust from a diesel engine was photo-oxidized in a smog chamber to investigate secondary organic aerosol (SOA) production. Photochemical aging rapidly produces significant SOA, almost doubling the organic aerosol contribution of primary ...

Emily A. Weitkamp; Amy M. Sage; Jeffrey R. Pierce; Neil M. Donahue; Allen L. Robinson

2007-09-11T23:59:59.000Z

400

Comparison of Carbonaceous Aerosols in Tokyo before and after Implementation of Diesel Exhaust Restrictions  

Science Journals Connector (OSTI)

Comparison of Carbonaceous Aerosols in Tokyo before and after Implementation of Diesel Exhaust Restrictions ... (5)?Albert, R. E. Comparative carcinogenic potencies of particulates from diesel engine exhausts, coke oven emissions, roofing tar aerosols and cigarette smoke. ...

Naomichi Yamamoto; Atsushi Muramoto; Jun Yoshinaga; Ken Shibata; Michio Endo; Osamu Endo; Motohiro Hirabayashi; Kiyoshi Tanabe; Sumio Goto; Minoru Yoneda; Yasuyuki Shibata

2007-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - aerosol lidar profilometer Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

CLASIC Summary: Lidar RH Changes in aerosol properties and RH near clouds Airborne NASA LaRC HSRL, ARM SGP ground... ) RamanLidar RelativeHumidityRamanLidar Aerosol Extensive...

402

The Evolution of the Physicochemical Properties of Aerosols in the Atmosphere  

E-Print Network (OSTI)

campaign investigated the evolution of the physicochemical properties of the Asian aerosol plume after 3 to 7 days of transport. The Asian aerosol within the free troposphere exhibited a bimodal growth distribution roughly 50 percent of the time. The more...

Tomlinson, Jason

2011-02-22T23:59:59.000Z

403

Aerodynamic Focusing of High-Density Aerosols D.E. Ruiza,  

E-Print Network (OSTI)

Aerodynamic Focusing of High-Density Aerosols D.E. Ruiza, , L. Gundersona , M.J. Haya , E. Merinob-density aerosol focusing for 1µm silica spheres. Preliminary results recover previous findings on aerodynamic

404

Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols  

E-Print Network (OSTI)

properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types...

Lee, Yong Seob

2006-08-16T23:59:59.000Z

405

Climate effects of seasonally varying Biomass Burning emitted Carbonaceous Aerosols (BBCA)  

E-Print Network (OSTI)

The climate impact of the seasonality of Biomass Burning emitted Carbonaceous Aerosols (BBCA) is studied using an aerosol-climate model coupled with a slab ocean model in a set of 60-year long simulations, driven by BBCA ...

Jeong, Gill-Ran

406

E-Print Network 3.0 - aerosolized red tide Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

characteristics of desert dust and biomass burning aerosols Summary: in the right panel of Fig. 6. The aerosol scenes spectra are drawn in green, the clear sky scenes in...

407

CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate  

E-Print Network (OSTI)

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. ...

Rosenfeld, Daniel

408

Estimating the lung burden from exposure to aerosols of depleted uranium  

Science Journals Connector (OSTI)

......from exposure to aerosols of depleted uranium Marcelo Valdes * * Corresponding...Following exposure to aerosols of depleted uranium (DU), biological samples...uranyl phosphates. INTRODUCTION Depleted uranium (DU) is a waste product of......

Marcelo Valdés

2009-02-01T23:59:59.000Z

409

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network (OSTI)

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

410

Investigation of the aerosol-cloud interaction using the WRF framework  

E-Print Network (OSTI)

In this dissertation, a two-moment bulk microphysical scheme with aerosol effects is developed and implemented into the Weather Research and Forecasting (WRF) model to investigate the aerosol-cloud interaction. Sensitivities of cloud properties...

Li, Guohui

2009-05-15T23:59:59.000Z

411

E-Print Network 3.0 - aerosol flame deposition Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

search results for: aerosol flame deposition Page: << < 1 2 3 4 5 > >> 1 Flame aerosol nano-technology has been developed to preparation of thin and defect-free porous membrane...

412

Mechanisms of aerosol-forced AMOC variability in a state of the art climate model  

E-Print Network (OSTI)

with a new state-of-the-art Earth system model. Anthropogenic aerosols have previously been highlighted anthropogenic aerosols force a strengthening of the AMOC by up to 20% in our state-of-the-art Earth system model

413

The Sensitivity of a Numerically Simulated Idealized Squall Line to the Vertical Distribution of Aerosols  

Science Journals Connector (OSTI)

Changes in the aerosol number concentration are reflected by changes in raindrop size and number concentration that ultimately affect the strength of cold pools via evaporation. Therefore, aerosol perturbations can potentially alter the balance ...

Zachary J. Lebo

2014-12-01T23:59:59.000Z

414

Parameterizations of Cloud Microphysics and Indirect Aerosol Effects  

SciTech Connect

1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

2014-05-19T23:59:59.000Z

415

Approximate Stokes Drift Profiles in Deep Water  

Science Journals Connector (OSTI)

A deep-water approximation of the Stokes drift velocity profile is explored as an alternative to the monochromatic profile. The alternative profile investigated relies on the same two quantities required for the monochromatic profile, namely, the ...

Øyvind Breivik; Peter A. E. M. Janssen; Jean-Raymond Bidlot

2014-09-01T23:59:59.000Z

416

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_001b.htm06/07/2004 13:02:41 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_001d.htm06/07/2004 13:02:52 #12;5 Year

417

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities http://www.fin.mmu.ac.uk/f18_0029.htm06/07/2004 13:01:23 #12;5 Year Financial Profile - Charts - Income 5 Year Financial Profile Charts Income Back http://www.fin.mmu.ac.uk/f18 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_002d.htm06/07/2004 13:01:34 #12;5 Year

418

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0067.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_006b.htm06/07/2004 13:04:46 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

419

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities & Reserves http://www.fin.mmu.ac.uk/f18_0079.htm06/07/2004 13 Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_007b.htm06/07/2004 13:05:59 #12;5 Year Financial Profile - Charts - Assets 5 Year Financial Profile Charts Assets Back http://www.fin.mmu.ac.uk/f18

420

CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan  

SciTech Connect

The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-07-12T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Aerosol Data Sources and Their Roles within PARAGON  

SciTech Connect

We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote-sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected in the near future. Emphasis must be given to combining remote sensing, in situ, active and passive observations, and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture having sufficient detail to address current climate-forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal.

Kahn, Ralph A.; Ogren, J. A.; Ackerman, Thomas P.; Bosenberg, Jens; Charlson, Robert J.; Diner, David J.; Holben, B. N.; Menzies, Robert T.; Miller, Mark A.; Seinfeld, John H.

2004-10-01T23:59:59.000Z

422

Calculating Capstone Depleted Uranium Aerosol Concentrations from Beta Activity Measurements  

SciTech Connect

Beta activity measurements were used as surrogate measurements of uranium mass in aerosol samples collected during the field testing phase of the Capstone Depleted Uranium (DU) Aerosol Study. These aerosol samples generated by the perforation of armored combat vehicles were used to characterize the depleted uranium (DU) source term for the subsequent human health risk assessment (HHRA) of Capstone aerosols. Establishing a calibration curve between beta activity measurements and uranium mass measurements is straightforward if the uranium isotopes are in equilibrium with their immediate short-lived, beta-emitting progeny. For DU samples collected during the Capstone study, it was determined that the equilibrium between the uranium isotopes and their immediate short lived, beta-emitting progeny had been disrupted when penetrators had perforated target vehicles. Adjustments were made to account for the disrupted equilibrium and for wall losses in the aerosol samplers. Correction factors for the disrupted equilibrium ranged from 0.16 to 1, and the wall loss correction factors ranged from 1 to 1.92.

Szrom, Fran; Falo, Gerald A.; Parkhurst, MaryAnn; Whicker, Jeffrey J.; Alberth, David P.

2009-03-01T23:59:59.000Z

423

Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant  

SciTech Connect

This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment â?? Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

Weinstein-Lloyd, Judith B

2009-05-04T23:59:59.000Z

424

E-Print Network 3.0 - arctic aerosol burden Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and surface... generally exhibits low aerosol ... Source: National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Atmopsheric Chemistry and...

425

E-Print Network 3.0 - aerosol generation characterization Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: , Brookhaven National Laboratory: "Characterization of Aerosol Organic Matter: Detection, Formation and Optical... : "Atmospheric Formation, Transformation, and...

426

E-Print Network 3.0 - aerosol biokinetics concentrations Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

427

Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods  

Energy.gov (U.S. Department of Energy (DOE))

Advanced aerosol analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends.

428

Beam Profile Monitor With Accurate Horizontal And Vertical Beam Profiles  

DOE Patents (OSTI)

A widely used scanner device that rotates a single helically shaped wire probe in and out of a particle beam at different beamline positions to give a pair of mutually perpendicular beam profiles is modified by the addition of a second wire probe. As a result, a pair of mutually perpendicular beam profiles is obtained at a first beamline position, and a second pair of mutually perpendicular beam profiles is obtained at a second beamline position. The simple modification not only provides more accurate beam profiles, but also provides a measurement of the beam divergence and quality in a single compact device.

Havener, Charles C [Knoxville, TN; Al-Rejoub, Riad [Oak Ridge, TN

2005-12-26T23:59:59.000Z

429

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES  

E-Print Network (OSTI)

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES: WHY ARE THE MODELS SO of Energy under Contract No. DE-AC02-98CH10886. #12;PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW will present a study of the properties of ammoniated sulfate aerosols ((NH4)2SO4, NH4HSO4, and in- between

430

REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS  

E-Print Network (OSTI)

understanding of the key processes that govern the aerosol size distribution: · Gas-to-particle conversion--conversion, suspensions of solid or liquid particles, are an important multi- phase system. Aerosols scatter and absorb retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes

431

Surface based remote sensing of aerosol-cloud interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface based remote sensing of aerosol-cloud interactions Surface based remote sensing of aerosol-cloud interactions Feingold, Graham NOAA/Environmental Technology Laboratory Frisch, Shelby NOAA/Environmental Technology Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties We will present an analysis of the effect of aerosol on clouds at the Southern Great Plains ARM site. New methods for retrieving cloud droplet effective radius with radar (MMCR), multifilter rotating shadowband radiometer (MFRSR), and microwave radiometer (MWR) will be discussed. Relationships based on adiabatic clouds will be used to constrain retrievals. We will investigate the use of a range of proxies for cloud condensation nuclei, ranging from surface measurements of light scattering and accumulation mode number concentration, to lidar-measured extinction or

432

ARM - Evaluation Product - Aerosol Optical Depths from SASHE  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAerosol Optical Depths from SASHE ProductsAerosol Optical Depths from SASHE Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Aerosol Optical Depths from SASHE Site(s) PVC SGP General Description The Shortwave Array Spectroradiometer Hemispheric (SASHE) is a ground-based instrument that measures both direct and diffuse shortwave irradiance. In this regard, the instrument is similar to the multifilter rotating shadowband radiometer (MFRSR)-an instrument that has been in the ARM Facility stable for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the SASHE provides hyperspectral measurements from about 350 nm to 1700 nm at a wavelength resolution from 1 to several nanometers, while the MFRSR only

433

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

2414 2414 1 Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles M. P. Modera, O. Brzozowski ** , F. R. Carrié * , D. J. Dickerhoff, W. W. Delp, W. J. Fisk, R. Levinson, D. Wang Abstract Electricity energy savings potential by eliminating air leakage from ducts in large commercial buildings is on the order of 10 kWh/m 2 per year (1 kWh/ft 2 ). We have tested, in two large commercial buildings, a new technology that simultaneously seals duct leaks and measures effective leakage area of ducts. The technology is based upon injecting a fog of aerosolized sealant particles into a pressurized duct system. In brief, this process involves blocking all of the intentional openings in a duct system (e.g., diffusers). Therefore, when the system is pressurized, the only place for the air carrying the aerosol

434

Direct Aerosol Forcing in the Infrared at the SGP Site?  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

435

ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsGanges Valley Aerosol Experiment (GVAX) govCampaignsGanges Valley Aerosol Experiment (GVAX) Campaign Links Science Plan AMF India Deployment Website Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ganges Valley Aerosol Experiment (GVAX) 2011.06.13 - 2012.03.31 Website : http://www.arm.gov/sites/amf/pgh/ Lead Scientist : V. Rao Kotamarthi Description The Ganges valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoon. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers could be immense. Recent satellite-based measurements have indicated that

436

Lognormal Size Distribution Theory for Deposition of Polydisperse Aerosol Particles  

SciTech Connect

The moments method of the lognormal size distribution theory was applied to the deposition equation of a radioactive aerosol within a liquid-metal fast breeder reactor for analysis of postulated accidents. The deposition coefficient of Crump and Seinfeld was utilized to represent the Brownian and turbulent diffusions and the gravitational sedimentation. The deposition equation was converted into a set of three ordinary differential equations. This approach takes the view point that the size distribution of an aerosol is represented by a time-dependent lognormal size distribution function during the deposition process. Numerical calculations have been performed, and the results were found to be in good agreement with the exact solution. The derived model for aerosol deposition is convenient to use in a numerical general dynamic equation solution routine based on the moments method, where nucleation, condensation, coagulation, and deposition need to be solved simultaneously.

Park, S.H.; Lee, K.W. [Kwangju Institute of Science and Technology (Korea, Republic of)

2000-07-15T23:59:59.000Z

437

Aerosols and Clouds: In Cahoots to Change Climate  

ScienceCinema (OSTI)

Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

Berg, Larry

2014-06-02T23:59:59.000Z

438

ARM - PI Product - Aerosol Retrievals from ARM SGP MFRSR Data  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsAerosol Retrievals from ARM SGP MFRSR Data ProductsAerosol Retrievals from ARM SGP MFRSR Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Aerosol Retrievals from ARM SGP MFRSR Data 2000.01.01 - 2000.12.31 Site(s) SGP General Description The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670

439

Scholarship Search Profile Personal Information  

E-Print Network (OSTI)

Scholarship Search Profile Personal Information Name: ____________________________________ Address) ________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________ Work Experience: List most recent job first Employer/Company Name _______________________________________________________________ Reference: Name and telephone _____________________________________________ Employer/Company Name

Mather, Patrick T.

440

Evaluate Greenhouse Gas Emissions Profile  

Energy.gov (U.S. Department of Energy (DOE))

Evaluating a Federal agency's greenhouse gas (GHG) emissions profile means getting a solid understanding of the organization's largest emission categories, largest emission sources, and its potential for improvement.

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Airborne measurements of carbonaceous aerosols in southern Africa during  

NLE Websites -- All DOE Office Websites (Extended Search)

Airborne measurements of carbonaceous aerosols in southern Africa during Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season Title Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season Publication Type Journal Article LBNL Report Number LBNL-50880 Year of Publication 2003 Authors Kirchstetter, Thomas W., Tihomir Novakov, and Peter V. Hobbs Journal Journal of Geophysical Research - Atmospheres Keywords black carbon, evolved gas analysis, light absorption, organic carbon, positive sampling artifact, SAFARI Abstract Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18±0.06) is lower than that of samples collected in the regional haze (0.25±0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

442

Distinguishing Aerosol Impacts on Climate Over the Past Century  

SciTech Connect

Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

2008-08-22T23:59:59.000Z

443

On surface temperature, greenhouse gases, and aerosols: models and observations  

SciTech Connect

The effect of changes in atmospheric carbon dioxide concentrations and sulphate aerosols on near-surface temperature is investigated using a version of the Hadley Centre atmospheric model coupled to a mixed layer ocean. The scattering of sunlight by sulphate aerosols is represented by appropriately enhancing the surface albedo. On doubling atmospheric carbon dioxide concentrations, the global mean temperature increases by 5.2 K. An integration with a 39% increase in CO{sub 2}, giving the estimated change in radiative heating due to increases in greenhouse gases since 1900, produced an equilibrium warming of 2.3 K, which, even allowing for oceanic inertia, is significantly higher than the observed warming over the same period. Furthermore, the simulation suggests a substantial warming everywhere, whereas the observations indicate isolated regions of cooling, including parts of the northern midlatitude continents. The addition of an estimate of the effect of scattering by current industrial aerosols (uncertain by a factor of at least 3) leads to improved agreement with the observed pattern of changes over the northern continents and reduces the global mean warming by about 30%. Doubling the aerosol forcing produces patterns that are still compatible with the observations, but further increase leads to unrealistically extensive cooling in the midlatitudes. The diurnal range of surface temperature decreases over most of the northern extratropics on increasing CO{sub 2}, in agreement with recent observations. The addition of the current industrial aerosol had little detectable effect on the diurnal range in the model because the direct effect of reduced solar heating at the surface is approximately balanced by the indirect effects of cooling. Thus, the ratio of the reduction in diurnal range to the mean warming is increased, in closer agreement with observations. Results from further sensitivity experiments with larger increases in aerosol and CO{sub 2} are presented.

Mitchell, J.F.B.; Davis, R.A.; Ingram, W.J.; Senior, C.A. [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)] [Hadley Centre for Climate Prediction and Research, Berkshire (United Kingdom)

1995-10-01T23:59:59.000Z

444

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant  

NLE Websites -- All DOE Office Websites (Extended Search)

Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles Title Sealing Ducts in Large Commercial Buildings with Aerosolized Sealant Particles Publication Type Journal Article LBNL Report Number LBNL-42414 Year of Publication 2001 Authors Modera, Mark P., Olivier Brzozowski, François Rémi Carrié, Darryl J. Dickerhoff, William W. Delp, William J. Fisk, Ronnen M. Levinson, and Duo Wang Journal Energy & Buildings Volume 34 Start Page Chapter Pagination 705-714 Abstract Electricity energy savings potential by eliminating air leakage from ducts in large commercial buildings is on the order of 10 kWh/m2 per year (1 kWh/ft2). We have tested, in two large commercial buildings, a new technology that simultaneously seals duct leaks and measures effective leakage area of ducts. The technology is based upon injecting a fog of aerosolized sealant particles into a pressurized duct system. In brief, this process involves blocking all of the intentional openings in a duct system (e.g., diffusers). Therefore, when the system is pressurized, the only place for the air carrying the aerosol particles to exit the system is through the leaks. The key to the technology is to keep the particles suspended within the airstream until they reach the leaks, and then to have them leave the airstream and deposit on the leak sites. The principal finding from this field study was that the aerosol technology is capable of sealing the leaks in a large commercial building duct system within a reasonable time frame. In the first building, 66% of the leakage area was sealed within 2.5 hours of injection, and in the second building 86% of the leakage area was sealed within 5 hours. We also found that the aerosol could be blown through the VAV boxes in the second building without impacting their calibrations or performance. Some remaining questions are (1) how to achieve sealing rates comparable to those experienced in smaller residential systems; and (2) what tightness level these ducts systems can be brought to by means of aerosol sealing.

445

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents (OSTI)

A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

Postma, Arlin K. (Halfway, OR)

1986-01-01T23:59:59.000Z

446

Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol  

SciTech Connect

The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.

John A. Ogren

2010-04-05T23:59:59.000Z

447

Flattening coefficient of aerosols collected on treated slides  

E-Print Network (OSTI)

collected from oleic acid and DOP (dioctylphthalate) aerosols, The microscope slides were made oilphobic by immersion in a widely used fluorocarbon sur- factant (NYE BAR Type CT 2X or 3' Co. Chemical FC-721). The mean value of F f' or oleic acid... was found to be 1. 338, and for DOP, 1. 354. There is no apparent variation of F with particle diameter for aerosols in the 2. 7-29. 1 um range. The slightly lower value of F for oleic acid suggests that the contact angle of oleic acid with respect...

Olan-Figueroa, Excel

2012-06-07T23:59:59.000Z

448

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents (OSTI)

This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

Postma, A.K.

1984-09-07T23:59:59.000Z

449

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

SciTech Connect

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

450

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

SciTech Connect

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

2014-11-05T23:59:59.000Z

451

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane  

DOE Data Explorer (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

452

Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane  

DOE Data Explorer (OSTI)

The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

Riihimaki, Laura; Shippert, Timothy

453

Long-term Statistics of Continental Cumuli: Does Aerosol Trigger Cumulus Variability?  

SciTech Connect

Atmospheric aerosols may control the formation, maintenance, and dissipation of cumuli by changing their microphysics. Recent observational and modeling results exist both in support and against strong potential impacts of aerosol [1-3]. Typically, the aerosol impact on water clouds has been investigated for regions with high aerosol loading and/or large atmospheric moisture [4]. Can we provide observational evidence of the aerosol-cloud relationship for a relatively dry continental region with low/moderate aerosol burden? To address this question, we revisit the aerosol-cloud relationship at the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. In comparison with highly polluted regions, the SGP site is characterized by relatively small-to-moderate aerosol loading. Also, moisture content is small-to-moderate (compared to marine and coastal regions) for the SGP site. Because cumulus clouds have important impacts on climate forcing estimations [5] and are susceptible to aerosol effects [6], we focus on fair-weather cumuli (FWC) and their association with aerosol concentration and other potentially important factors. This association is investigated using a new 8-year aerosol and cloud climatology (2000-2007) developed with collocated and coincident surface and satellite observations.

Kassianov, Evgueni I.; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Turner, David D.

2009-02-01T23:59:59.000Z

454

Ground-truth aerosol lidar observations: can the Klett solutions obtained from ground and space be equal for the same aerosol case?  

Science Journals Connector (OSTI)

Upcoming multiyear satellite lidar aerosol observations need strong support by a worldwide ground-truth lidar network. In this context the question arises as to whether the ground...

Ansmann, Albert

2006-01-01T23:59:59.000Z

455

Downstream Heat Flux Profile vs. Midplane T Profile in Tokamaks  

SciTech Connect

The relationship between the midplane scrape-off-layer electron temperature profile and the parallel heat flux profile at the divertor in tokamaks is investigated. A model is applied which takes into account anisotropic thermal diffusion, in a rectilinear geometry with constant density. Eigenmode analysis is applied to the simplified problem with constant thermal diffusivities. A self-similar nonlinear solution is found for the more realistic problem with anisotropically temperature-dependent thermal diffusivities. Numerical solutions are developed for both cases, with spatially dependent heat flux emerging from the plasma. For both constant and temperature-dependent thermal diffusivities it is found that, below about one-half of its peak, the heat flux profile shape at the divertor, compared with the midplane temperature profile shape, is robustly described by the simplest two-point model. However the physical processes are not those assumed in the simplest two-point model, nor is the numerical coefficient relating q||div to Tmp ?||mp/L|| as predicted. For realistic parameters the peak in the heat flux, moreover, can be reduced by a factor of two or more from the two-point model scaling which fits the remaining profile. For temperature profiles in the SOL region above the x-point set by marginal stability, the heat flux profile to the divertor can be largely decoupled from the prediction of the two-point model. These results suggest caveats for data interpretation, and possibly favorable outcomes for divertor configurations with extended field lines.

Robert J. Goldston

2009-08-20T23:59:59.000Z

456

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

Charts Income Back http://www.fin.mmu.ac.uk/f18_004b.htm06/07/2004 12:57:08 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_004c.htm06 http://www.fin.mmu.ac.uk/f18_004d.htm06/07/2004 12:57:19 #12;5 Year Financial Profile - Charts - zoom 5

457

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

Charts Income Back http://www.fin.mmu.ac.uk/f18_008b.htm06/07/2004 12:51:21 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_008c.htm06 http://www.fin.mmu.ac.uk/f18_008d.htm06/07/2004 12:51:31 #12;5 Year Financial Profile - Charts - zoom 5

458

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

Charts Income Back http://www.fin.mmu.ac.uk/f18_010b.htm06/07/2004 10:57:23 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_010c.htm06 http://www.fin.mmu.ac.uk/f18_010d.htm06/07/2004 12:40:15 #12;5 Year Financial Profile - Charts - zoom 5

459

Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study  

SciTech Connect

The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to simulate relationships between aerosols and clouds in the vicinity of Oklahoma City during the June 2007 Cumulus Humilis Aerosol Processing Study (CHAPS). The regional scale simulation completed using 2 km horizontal grid spacing evaluates four important relationships between aerosols and shallow cumulus clouds observed during CHAPS. First, the model reproduces the trends of higher nitrate volume fractions in cloud droplet residuals compared to interstitial non-activated aerosols, as measured using the Aerosol Mass Spectrometer. Comparing simulations with cloud chemistry turned on and off, we show that nitric acid vapor uptake by cloud droplets explains the higher nitrate content of cloud droplet residuals. Second, as documented using an offline code, both aerosol water and other inorganics (OIN), which are related to dust and crustal emissions, significantly affect predicted aerosol optical properties. Reducing the OIN content of wet aerosols by 50% significantly improves agreement of model predictions with measurements of aerosol optical properties. Third, the simulated hygroscopicity of aerosols is too high as compared to their hygroscopicity derived from cloud condensation nuclei and particle size distribution measurements, indicating uncertainties associated with simulating size-dependent chemical composition and treatment of aerosol mixing state within the model. Fourth, the model reasonably represents the observations of the first aerosol indirect effect where pollutants in the vicinity of Oklahoma City increase cloud droplet number concentrations and decrease the droplet effective radius. While previous studies have often focused on cloud-aerosol interactions in stratiform and deep convective clouds, this study highlights the ability of regional-scale models to represent some of the important aspects of cloud-aerosol interactions associated with fields of short-lived shallow cumuli.

Shrivastava, ManishKumar B.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Laskin, Alexander; Chapman, Elaine G.; Gustafson, William I.; Liu, Ying; Berkowitz, Carl M.

2013-02-07T23:59:59.000Z

460

Water content and morphology of sodium chloride aerosol particles  

E-Print Network (OSTI)

to explain the H2O content. The model in which the NaCl particles contain pockets of aqueous NaCl solution was found to be most consistent with the spectroscopic observations. The relevance of salt particle morphology and water content to atmospheric aerosol...

Weis, David D.; Ewing, George E.

1999-09-20T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

HEMISPHERIC-SCALE CHEMICAL AND MICROPHYSICAL AEROSOL MODEL  

E-Print Network (OSTI)

Dignon Bates/Lamb DRY DEPOSITION Wesely WET DEPOSITION Berkowitz/Hales CHEMISTRY Gas Aqueous SO2 + OH [OH dependent Size Resolved Wesely WET DEPOSITION Berkowitz/Hales CHEMISTRY Gas Phase Aqueous Phase SO2 AEROSOL;Anthropogenic Anthropogenic #12;by Production Mechanism Gas phase Aqueous Phase Primary October 15, 1986 at 6 UT

Schwartz, Stephen E.

462

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

SciTech Connect

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

2012-03-16T23:59:59.000Z

463

Building America Webinar: Sealing of Home Enclosures with Aerosol Particles  

Energy.gov (U.S. Department of Energy (DOE))

This webinar was presented by research team Building Industry Research Alliance (BIRA), and provided information about a project that uses existing aerosol duct sealing technology to seal the entire building enclosure in order to achieve greater airtightness and energy and cost savings.

464

LESSONS LEARNED IN AEROSOL MONITORING WITH THE RASA  

SciTech Connect

The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory (PNNL) in the 1990's and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The RASA operates unattended, save for regularly scheduled maintenance, iterating samples through a three-step process on a 24-hour interval. In its 15-year history, much has been learned from the operation and maintenance of the RASA that can benefit engineering updates or future aerosol systems. On 11 March 2011, a 9.0 magnitude earthquake and tsunami rocked the eastern coast of Japan, resulting in power loss and cooling failures at the Daiichi nuclear power plants in Fukushima Prefecture. Aerosol collections were conducted with the RASA in Richland, WA. We present a summary of the lessons learned over the history of the RASA, including lessons taken from the Fukushima incident, regarding the RASA IMS stations operated by the United States.

Forrester, Joel B.; Bowyer, Ted W.; Carty, Fitz; Comes, Laura; Eslinger, Paul W.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Kirkham, Randy R.; Lepel, Elwood A.; Litke, Kevin E.; Miley, Harry S.; Morris, Scott J.; Schrom, Brian T.; Van Davelaar, Peter; Woods, Vincent T.

2011-09-14T23:59:59.000Z

465

An overview of geoengineering of climate using stratospheric sulphate aerosols  

Science Journals Connector (OSTI)

...prior to mixing with turbine bypass air, through...and infrastructure development effort needed to...sulphate aerosol strategy is imperfect. The...with greenhouse gases. Furthermore...reductions in greenhouse gas emissions must take...geoengineering mitigation strategy occurring in the...

2008-01-01T23:59:59.000Z

466

CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES  

E-Print Network (OSTI)

CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES STEPHEN E. SCHWARTZ Environmental in cloud-free conditions and indirectly, by increasing concentratiol1S of cloud droplets thereby enhancing cloud shortwave reflectivity. These effecls are thought to be significant in the context of changes

467

DISSERTATION THE OPTICAL, CHEMICAL, AND PHYSICAL PROPERTIES OF AEROSOLS AND  

E-Print Network (OSTI)

AND GASES EMITTED BY THE LABORATORY COMBUSTION OF WILDLAND FUELS Biomass burning is a major source of trace BY THE LABORATORY COMBUSTION OF WILDLAND FUELS Submitted by Gavin R. McMeeking Department of Atmospheric Science PROPERTIES OF AEROSOL AND GASES EMITTED BY THE LABORATORY COMBUSTION OF WILDLAND FUELS BE ACCEPTED

Pierce, Jeffrey

468

AT631, Spring 2011 Introduction to Atmospheric Aerosols  

E-Print Network (OSTI)

. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, Wiley-Interscience, 2006AT631, Spring 2011 Introduction to Atmospheric Aerosols Tuesdays 9-9:50 AM, 212B ACRC Wednesdays, Lab, 1-4 PM, ACB 10 Instructor: Prof. Sonia Kreidenweis Atmospheric Chemistry Bldg., Room 19 491

469

Correction to “Hyperspectral Aerosol Optical Depths from TCAP Flights”  

SciTech Connect

In the paper “Hyperspectral aerosol optical depths from TCAP flights” by Y. Shinozuka et al. (Journal of Geophysical Research: Atmospheres, 118, doi:10.1002/2013JD020596, 2013), Tables 1 and 2 were published with the column heads out of order. Tables 1 and 2 are published correctly here. The publisher regrets the error.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2014-02-16T23:59:59.000Z

470

5 Year Financial Profile -Charts 5 Year Financial Profile Charts  

E-Print Network (OSTI)

. Income Expenditure Assets Liabilities Income Breakdown Expenditure Breakdown http://www.fin.mmu.ac.uk/f18 Charts Income Back http://www.fin.mmu.ac.uk/f18_005b.htm06/07/2004 13:00:29 #12;5 Year Financial Profile - Charts - zoom 5 Year Financial Profile Charts Expenditure Back http://www.fin.mmu.ac.uk/f18_005c.htm06

471

Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol  

E-Print Network (OSTI)

by diesel-fueled mobile sources and from the numerous coal- fired industries and power generation stations August thru 11 September 2006) with a number of gas and aerosol instru- ments deployed to measure air and power plants, with emissions rich in reactive volatile organic compounds (VOCs) and NOX [Ryerson et al

472

FY 2011 Second Quarter: Demonstration of New Aerosol Measurement Verification Testbed for Present-Day Global Aerosol Simulations  

SciTech Connect

The regional-scale Weather Research and Forecasting (WRF) model is being used by a DOE Earth System Modeling (ESM) project titled “Improving the Characterization of Clouds, Aerosols and the Cryosphere in Climate Models” to evaluate the performance of atmospheric process modules that treat aerosols and aerosol radiative forcing in the Arctic. We are using a regional-scale modeling framework for three reasons: (1) It is easier to produce a useful comparison to observations with a high resolution model; (2) We can compare the behavior of the CAM parameterization suite with some of the more complex and computationally expensive parameterizations used in WRF; (3) we can explore the behavior of this parameterization suite at high resolution. Climate models like the Community Atmosphere Model version 5 (CAM5) being used within the Community Earth System Model (CESM) will not likely be run at mesoscale spatial resolutions (10–20 km) until 5–10 years from now. The performance of the current suite of physics modules in CAM5 at such resolutions is not known, and current computing resources do not permit high-resolution global simulations to be performed routinely. We are taking advantage of two tools recently developed under PNNL Laboratory Directed Research and Development (LDRD) projects for this activity. The first is the Aerosol Modeling Testbed (Fast et al., 2011b), a new computational framework designed to streamline the process of testing and evaluating aerosol process modules over a range of spatial and temporal scales. The second is the CAM5 suite of physics parameterizations that have been ported into WRF so that their performance and scale dependency can be quantified at mesoscale spatial resolutions (Gustafson et al., 2010; with more publications in preparation).

Koch, D

2011-03-20T23:59:59.000Z

473

SPEAK UP, EPPING! COMMUNITY PROFILE  

E-Print Network (OSTI)

SPEAK UP, EPPING! COMMUNITY PROFILE REPORT Epping, New Hampshire April 14, 2007 #12;TABLE ............................................................................................. 21 6. Community Services, Facilities and Utilities........................................................................................................................... 38 1. Natural Resources & Environment 2. Communication 3. Infrastructure & Public Safety 4

New Hampshire, University of

474

Profile of Alec J. Jeffreys  

Science Journals Connector (OSTI)

Profile of Alec J. Jeffreys 10.1073/pnas.0603953103 Nick Zagorski As one of the great contributors to modern genetics...the forensic sciences. That achievement alone is worthy of merit, contributing to Jeffreys' receiving three high distinctions...

Nick Zagorski

2006-01-01T23:59:59.000Z

475

Neuropsychological Profile of Stuttering Children  

Science Journals Connector (OSTI)

The purpose of this study was to analyze the cognitive profile of stuttering children. A sample of 290 children was ... classified as stutterers. In general, performance in stuttering children was similar to the ...

Alfredo Ardila; Mónica Rosselli…

2000-06-01T23:59:59.000Z

476

Energy Consumption Profile for Energy  

E-Print Network (OSTI)

317 Chapter 12 Energy Consumption Profile for Energy Harvested WSNs T. V. Prabhakar, R Venkatesha.............................................................................................318 12.2 Energy Harvesting ...................................................................................318 12.2.1 Motivations for Energy Harvesting...............................................319 12

Langendoen, Koen

477

Vibration of Tethered Microstructure Profilers  

Science Journals Connector (OSTI)

Although loosely tethered turbulence profilers have many advantages, they are prone to resonant vibrations at frequencies in the dissipation range when they are falling rapidly or when the tether is strummed. Using the Advanced Microstructure ...

Jack B. Miller; M. C. Gregg; Vernon W. Miller; Gordon L. Welsh

1989-12-01T23:59:59.000Z

478

JOBAID-ACCESSING AND MODIFYING TALENT PROFILE  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile...

479

An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a  

NLE Websites -- All DOE Office Websites (Extended Search)

An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a An Observed Signature of Aerosol Effect on Cloud Droplet Radii from a Decade of Observations at a Mid-Continental Site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Category: Aerosols Continuing observations of aerosol and cloud optical property have been made using MFRSR and MWR at the ARM SGP site since 1993. Diurnal, monthly, seasonal and interannual variability of aerosol (optical depth and Angstrom coefficient) and cloud (optical depth and effective radius) have been analyzed. We have correlated an "aerosol index" computed from clear-sky observations of MFRSR with cloud droplet mean effective radius to study the

480

Use of Aeronet Aerosol Retrievals to Calculate Clear-Sky Irradiance at the Surface  

NLE Websites -- All DOE Office Websites (Extended Search)

AERONET Aerosol Retrievals to AERONET Aerosol Retrievals to Calculate Clear-Sky Irradiance at the Surface G. L. Schuster National Aeronautics and Space Administration Langley Research Center Hampton, Virginia O. Dubovik National Aeronautics and Space Administration Goddard Space Flight Center Laboratory for Terrestrial Physics Greenbelt, Maryland Motivation The worldwide aerosol robotic network (AERONET) of ground-based radiometers was developed (in part) as a satellite validation tool (Holben et al. 1998). These sites utilize spectral sky-scanning radiometers, providing more information for aerosol retrievals than conventional sunphotometer measurements. The use of the almucantar sky radiance scans in conjunction with the aerosol optical thicknesses are the basis of the AERONET Dubovik retrievals, which provide the aerosol size

Note: This page contains sample records for the topic "aerosol profiles cessna" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

ARM - Field Campaign - 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

6 MAX-Mex-Megacity Aerosol eXperiment - Mexico City 6 MAX-Mex-Megacity Aerosol eXperiment - Mexico City Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico City 2006.03.03 - 2006.03.28 Lead Scientist : Jeffrey Gaffney For data sets, see below. Description A 4-week field campaign was conducted in and downwind of Mexico City during March 2006. The Megacity Aerosol eXperiment - MEXico City (MAX-MEX) characterized aerosol formation and changes in aerosol composition, size distribution, light scattering coefficient, absorption coefficient, optical depth, soot-specific absorption, and radiative fluxes at selected vertical and horizontal locations in the outflow from a well-characterized urban core. Detailed analyses were made of the meteorological conditions during

482

Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of  

NLE Websites -- All DOE Office Websites (Extended Search)

Importance of Iron Mineralogy to Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of Aerosol Source on Ocean Photosynthesis figure 1 Figure 1. Dust storm blowing glacial dusts from the Copper River Basin of southeast Alaska into the North Pacific Ocean, which depends on this and other external iron sources to support its biological communities. (Image: NASA MODIS satellite image, Nov. 1, 2006. http://earthobservatory.nasa.gov/IOTD/view.php?id=7094) Iron is one of the most important elements to life. Despite its paramount importance and relative abundance, dissolved iron concentrations are often very low, in part due to the formation of very stable iron minerals in most oxidizing environments. Since soluble iron is available to living organisms, iron deficiencies are widespread, and the factors that influence

483

Observations of the first aerosol indirect effect in shallow cumuli  

SciTech Connect

Data from the Cumulus Humilis Aerosol Processing Study (CHAPS) are used to estimate the impact of both aerosol indirect effects and cloud dynamics on the microphysical and optical properties of shallow cumuli observed in the vicinity of Oklahoma City, Oklahoma. Not surprisingly, we find that the amount of light scattered by the clouds is dominated by their liquid water content (LWC), which in turn is driven by cloud dynamics. However, removing the effect of cloud dynamics by examining the scattering normalized by LWC shows a strong sensitivity of scattering to pollutant loading. These results suggest that even moderately sized cities, like Oklahoma City, can have a measureable impact on the optical properties of shallow cumuli.

Berg, Larry K.; Berkowitz, Carl M.; Barnard, James C.; Senum, Gunar; Springston, Stephen R.

2011-02-08T23:59:59.000Z

484

Enhancement factors for resuspended aerosol radioactivity: Effects of topsoil disturbance  

SciTech Connect

The enhancement factor for airborne radionuclides resuspended by wind is defined as the ratio of the activity density (Bq g{sup {minus}1}) in the aerosol to the activity density in the underlying surface of contaminated soil. Enhancement factors are useful for assessment of worst-case exposure scenarios and transport conditions, and are one of the criteria for setting environmental standards for radioactivity in soil. This paper presents results of experimental studies where resuspension of {sup 239}Pu was measured when air concentrations were equilibrated to the soil surface. Enhancement factors were observed for several types of man-made disturbances (bulldozer-blading, soil raking, vacuum-cleaning) and natural disturbances (springtime thaw, soil-drying, wildfire). For some cases, enhancement factors are compared over range of geographical locations (Bikini Atoll, California, Nevada, and South Carolina). The particle-size distributions of aerosol activity are compared to particle-size distributions of the underlying soil.

Shinn, J.H.

1991-11-01T23:59:59.000Z

485

Laboratory Testing of Aerosol for Enclosure Air Sealing  

SciTech Connect

Space conditioning energy use can be significantly reduced by addressing uncontrolled infiltration and exfiltration through the envelope of a building. A process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology is presented. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

Harrington, C.; Modera, M.

2012-05-01T23:59:59.000Z

486

Aerosol nucleation in coal-fired power-plant plumes  

Science Journals Connector (OSTI)

New-particle nucleation within coal-fired power-plant plumes can have large effects on particle number concentrations particularly near source regions with implications for human health and climate. In order to resolve the formation and growth of particles in these plumes we have integrated TwO-Moment Aerosol Sectional (TOMAS) microphysics in the System for Atmospheric Modelling (SAM) a large-eddy simulation/cloud-resolving model (LES/CRM). We have evaluated this model against aircraft observations for three case studies and the model reproduces well the major features of each case. Using this model we have shown that meteorology and background aerosol concentrations can have strong effects on new-particle formation and growth in coal-fired power-plant plumes even if emissions are held constant. We subsequently used the model to evaluate the effects of SO 2 and NOx pollution controls on newparticle formation in coal-fired power-plant plumes. We found that strong reductions in NOx emissions without concurrent reductions in SO 2 emissions may increase new-particle formation due to increases in OH formation within the plume. We predicted the change in new-particle formation due to changes in emissions between 1997 and 2010 for 330 coal-fired power plants in the US and we found a median decrease of 19% in new-particle formation. However the magnitude and sign of the aerosol changes depend greatly on the relative reductions in NOx and SO 2 emissions in each plant. More extensive plume measurements for a range of emissions of SO 2 and NOx and in varying background aerosol conditions are needed however to better quantify these effects.

2013-01-01T23:59:59.000Z

487

Thermophoresis and its thermal parameters for aerosol collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermophoresis and its thermal parameters for aerosol collection Thermophoresis and its thermal parameters for aerosol collection Title Thermophoresis and its thermal parameters for aerosol collection Publication Type Journal Article Year of Publication 2007 Authors Huang, Zhuo, Michael G. Apte, and Lara A. Gundel Journal U.S. Department of Energy Journal of Undergraduate Research Volume 7 Pagination 37-42 Abstract The particle collection effi ciency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler's heating element was made of three sets of thermophoretic (TP) wires 25µm in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised

488

Large historical changes of fossil-fuel black carbon aerosols  

SciTech Connect

Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

2002-09-26T23:59:59.000Z

489

Aerosol-Derived Bimetallic Alloy Powders: Bridging the Gap  

SciTech Connect

We present aerosol-derived alloy powders as a uniquely useful platform for studying the contribution of the metal phase to multifunctional supported catalysts. Multimetallic heterogeneous catalysts made by traditional methods are usually nonhomogenous while UHV-based methods, such as mass selected clusters or metal vapor deposited on single crystals, lead to considerably more homogeneous, well-defined samples. However, these well-defined samples have low surface areas and do not lend themselves to catalytic activity tests in flow reactors under industrially relevant conditions. Bimetallic alloy powders derived by aerosol synthesis are homogeneous and single phase and can have surface areas ranging 1-10 m2/g, making them suitable for use in conventional flow reactors. The utility of aerosol-derived alloy powders as model catalysts is illustrated through the synthesis of single phase PdZn which was used to derive the specific reactivity of the L10 tetragonal alloy phase for methanol steam reforming. Turnover frequencies on unsupported PdZn were determined from the experimentally determined metal surface area to be 0.21 molecules of methanol reacted per surface Pd at 250 °C and 0.06 molecules of CO oxidized to CO2 per surface Pd at 185 °C. The experimentally measured activation energies for MSR and CO-oxidation on PdZn are 48 and 87 kJ/mol, respectively.

Halevi, Barr; Peterson, Eric; DelaRiva, Andrew; Jeroro, E.; Lebarbier, Vanessa MC; Wang, Yong; Vohs, John M.; Kiefer, Boris; Kunkes, Edward L.; Havecker , Michael; Behrens, Malte; Schlogl, Robert; Datye, Abhaya K.

2010-09-03T23:59:59.000Z

490

Source terms for plutonium aerosolization from nuclear weapon accidents  

SciTech Connect

The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

Stephens, D.R.

1995-07-01T23:59:59.000Z

491

Quantifying the Aerosol Indirect Effect Using Ground-Based Remote Sensors and Models  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantifying the Aerosol Indirect Effect Quantifying the Aerosol Indirect Effect Using Ground-Based Remote Sensors and Models G. Feingold National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado D. E. Lane Rutgers University Camden, New Jersey Q.-L. Min Atmospheric Sciences Research Center State University of New York Albany, New York Introduction The effect of aerosols on cloud microphysical and radiative properties (the "indirect effect") has the greatest uncertainty of all known climate-forcing mechanisms. Increases in aerosol concentrations result in higher concentrations of cloud condensation nuclei (CCN), increased cloud droplet concentrations, and smaller droplet sizes (Twomey 1974). A possible secondary effect is the suppression of rainfall.

492

E-Print Network 3.0 - aerosol mass spectrometry Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

used in health effects studies by aerosol mass spectrometry Wingen, L... and heats of sublimation using atmospheric solids analysis probe mass spectrometry (ASAP-MS) Bruns E......

493

Ultraclean Two-Stage Aerosol Reactor for Production of Oxide-Passivated Silicon Nanoparticles for Novel  

E-Print Network (OSTI)

as an aerosol by pyrolysis of silane3 or disilane4 or by thermal evaporation of Si.5 In studies of Si

Atwater, Harry

494

E-Print Network 3.0 - aerosol measurements importance Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

38 Absorbing aerosols and pre-summer monsoon hydroclimate variability over the Indian subcontinent: The challenge in investigating links Summary: for the importance of...

495

Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California  

E-Print Network (OSTI)

of scale, in Air Pollution and Health in Rapidly Developingfor particulate air pollution health standards, Aerosolfor particulate air pollution health standards, Aerosol

Shields, Laura Grace

2008-01-01T23:59:59.000Z

496

E-Print Network 3.0 - aerosol program program Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

CHAPSCLASIC Summary: Observations of Cloud-Aerosol Halos During CHAPSCLASIC Funded by NASA HQ Science Mission... Directorate Radiation Sciences Program Funded by Department of...

497

E-Print Network 3.0 - ammonium nitrate aerosols Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

ON MINERAL DUSTS: CRYSTALLINE OR AQUEOUS? Summary: 02138, USA Keywords: Phase transition; Atmospheric Aerosols; Ammonium sulfate; Ammonium nitrate... that of ammonium...

498

Evolution of the optical properties of biomass-burning aerosol during the 2003 southeast Australian bushfires  

Science Journals Connector (OSTI)

During January and February 2003, drought conditions led to major bushfires across southeast Australia, causing considerable damage. We have examined aerosol optical depth (AOD) data...

Radhi, Majed; Box, Michael A; Box, Gail P; Gupta, Pawan; Christopher, Sundar A

2009-01-01T23:59:59.000Z

499

E-Print Network 3.0 - atmospheric aerosol limb Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Big Influence... Aerosols play an important role in our planet's dynamic ... Source: Jet Propulsion Laboratory, Machine Learning Systems Group Collection: Computer Technologies...

500

Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?  

E-Print Network (OSTI)

fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z