National Library of Energy BETA

Sample records for aerosol chemistry imaging

  1. The coupling of winds, aerosols and chemistry in Titan's atmosphere

    E-Print Network [OSTI]

    Hourdin, Chez Frédéric

    REVIEW The coupling of winds, aerosols and chemistry in Titan's atmosphere BY SEBASTIEN LEBONNOIS 1'Ae´ronomie, IPSL, CNRS, BP3, 91371 Verrie`res le Buisson, France The atmosphere of Titan is a complex system, where the observed atmospheric structure of Titan's lower atmosphere (mainly in the stratosphere and troposphere

  2. Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions

    E-Print Network [OSTI]

    Moore, Keith

    , the aerosolassociated water depends on the composition of the #12;3 particles, which is determined by gas in a three dimensional chemical transport model to understand the roles of ammonia chemistry and natural precursors among modeled aerosol species selfconsistently with ambient relative humidity and natural

  3. A VIBRATIONAL SPECTROSCOPIC STUDY OF AQUEOUS HYDROGEN HALIDE SOLUTIONS: APPLICATION TO ATMOSPHERIC AEROSOL CHEMISTRY

    E-Print Network [OSTI]

    Heterogeneous reactions on the surfaces of atmospheric aerosols play an important role in atmospheric chemistryA VIBRATIONAL SPECTROSCOPIC STUDY OF AQUEOUS HYDROGEN HALIDE SOLUTIONS: APPLICATION TO ATMOSPHERIC AEROSOL CHEMISTRY A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master

  4. Modeling aerosol growth by aqueous chemistry in nonprecipitating stratiform cloud

    SciTech Connect (OSTI)

    Ovchinnikov, Mikhail; Easter, Richard C.

    2010-07-29

    A new microphysics module based on a two-dimensional (2D) joint size distribution function representing both interstitial and cloud particles is developed and applied to studying aerosol processing in non-precipitating stratocumulus clouds. The module is implemented in a three-dimensional dynamical framework of a large-eddy simulation (LES) model and in a trajectory ensemble model (TEM). Both models are used to study the modification of sulfate aerosol by the activation - aqueous chemistry - resuspension cycle in shallow marine stratocumulus clouds. The effect of particle mixing and different size-distribution representations on modeled aerosol processing are studied in a comparison of the LES and TEM simulations with the identical microphysics treatment exposes and a comparison of TEM simulations with a 2D fixed and moving bin microphysics. Particle mixing which is represented in LES and neglected in the TEM leads to the mean relative per particle dry mass change in the TEM simulations being about 30% lower than in analogous subsample of LES domain. Particles in the final LES spectrum are mixed in from different “parcels”, some of which have experienced longer in-cloud residence times than the TEM parcels, all of which originated in the subcloud layer, have. The mean relative per particle dry mass change differs by 14% between TEM simulations with fixed and moving bin microphysics. Finally, the TEM model with the moving bin microphysics is used to evaluate assumptions about liquid water mass partitioning among activated cloud condensation nuclei (CCN) of different dry sizes. These assumptions are used in large-scale models to map the bulk aqueous chemistry sulfate production, which is largely proportional to the liquid water mass, to the changes in aerosol size distribution. It is shown that the commonly used assumptions that the droplet mass is independent of CCN size or that the droplet mass is proportional to the CCN size to the third power do not perform well in the considered case. The explicitly predicted water partitioning indicates that the mean mass of droplets participating in the models aqueous chemistry calculations is proportional to the dry CCN size.

  5. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater 3. Lead

    SciTech Connect (OSTI)

    Maring, H.B.; Duce, R.A. )

    1990-04-15

    Atmospheric aerosols collected at Enewetak Atoll in the tropical North Pacific were exposed to seawater in laboratory experiments to assess the impact of atmospheric aerosols on lead chemistry in surface seawater. The net atmospheric flux of soluble lead to the ocean is between 16 and 32 pmol cm{sup {minus}2}/yr at Enewetak. The stable lead isotopic composition of soluble aerosol lead indicates that it is of anthropogenic origin. Anthropogenic aerosol lead from Central and North America appears to be less soluble and/or to dissolve less rapidly than that from Asia. Dissolved organic matter and possibly lower pH appear to increase the nonaluminosilicate aerosol lead solubility and/or dissolution rate. The isotopic composition of lead in air, seawater and dry deposition suggests that after deposition in the ocean, nonaluminosilicate particulate lead can be reinjected into the atmosphere during sea salt aerosol production.

  6. Atomic Scale Imaging of the Electronic Structure and Chemistry...

    Office of Scientific and Technical Information (OSTI)

    Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces Re-direct Destination: Executive Summary of Final Report for Award...

  7. Surface Electric Fields of Aqueous Solutions of NH4NO3, Mg(NO3)2, NaNO3, and LiNO3: Implications for Atmospheric Aerosol Chemistry

    E-Print Network [OSTI]

    for Atmospheric Aerosol Chemistry Wei Hua, Dominique Verreault, and Heather C. Allen* Department of Chemistry aerosol processes and potential impact on atmospheric chemistry. However, there is sparse surface data heterogeneous chemistry of atmospheric aerosols.1-7 Yet, surface propensity, or surface activity, of ions

  8. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    SciTech Connect (OSTI)

    Keene, William C.; Long, Michael S.

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

  9. Toxicity of atmospheric aerosols on marine phytoplankton

    E-Print Network [OSTI]

    2009-01-01

    address: Center for Atmospheric Chemistry Study, Departmenttween phytoplankton, atmospheric chemistry, and climate areno. 12 ? 4601– 4605 CHEMISTRY Atmospheric aerosol deposition

  10. Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl radicals to the atmosphere

    E-Print Network [OSTI]

    Goldstein, Allen

    Gas-phase chemistry dominates O3 loss to a forest, implying a source of aerosols and hydroxyl into its major loss pathways; stomatal uptake, non-stomatal surface deposition, and gas-phase chemistry. Total O3 flux was dominated by gas-phase chemistry during the summer and by stomatal uptake during

  11. Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties

    E-Print Network [OSTI]

    Moore, Meagan Julia Kerry

    2011-01-01

    detection efficiency, Analytical Chemistry, 76, 712-719,Portable ATOFMS, Analytical Chemistry, 69, 4083-4091, 1997.Network, ART-2A, Analytical Chemistry, 71 (4), 860-865,

  12. Environmental Chamber Study of Atmospheric Chemistry and Secondary Organic Aerosol Formation Using Cavity Enhanced Absorption Spectroscopy

    E-Print Network [OSTI]

    Liu, Yingdi

    2011-01-01

    modelling: a review. Atmospheric Chemistry and Physics,emerging issues. Atmospheric Chemistry and Physics, 2009. 9:aqueous phase. Atmospheric Chemistry and Physics, 2009. 9:

  13. Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties

    E-Print Network [OSTI]

    Moore, Meagan Julia Kerry

    2011-01-01

    for CCN activation, Atmospheric Chemistry and Physics, 10,and precipitation, Atmospheric Chemistry and Physics, 9,dust particles. Atmospheric Chemistry and Physics, 2009, 9,

  14. Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties

    E-Print Network [OSTI]

    Moore, Meagan Julia Kerry

    2011-01-01

    CCN activation, Atmospheric Chemistry and Physics, 10, 5241-precipitation, Atmospheric Chemistry and Physics, 9, 3223-particles. Atmospheric Chemistry and Physics, 2009, 9, A. P.

  15. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight (CXIDB ID 16)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Loh, N. Duane

    2012-06-20

    This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

  16. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight (CXIDB ID 16)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Loh, N. Duane

    This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

  17. Extending the physicochemical characterization of aerosol particles in California

    E-Print Network [OSTI]

    Zauscher, Melanie Dorothy

    2012-01-01

    Combustion Aerosol, Atmospheric Chemistry and Physics, 11 (Based Receptor Modeling, Atmospheric Chemistry and Physics,Aerosols, Journal of Atmospheric Chemistry, 22 (1-2), 19-39.

  18. Chemistry of Secondary Organic Aerosol Formation From the Reaction of Hydroxyl Radicals With Aromatic Compounds

    E-Print Network [OSTI]

    Strollo Gordon, Christen Michelle

    2013-01-01

    and Pandis S.N. , Atmospheric Chemistry and Physics, Firstand Pitts J.N.Jr. , 2000. Chemistry of the upper and lowerPandis S.N. , 1998. Atmospheric Chemistry and Physics, First

  19. Gaseous Chemistry and Aerosol Mechanism Developments for Version 3.5.1 of the Online Regional Model, WRF-Chem

    SciTech Connect (OSTI)

    Archer-Nicholls, Scott; Lowe, Douglas; Utembe, Steve; Allan, James D.; Zaveri, Rahul A.; Fast, Jerome D.; Hodnebrog, Oivind; Denier van der Gon, Hugo; McFiggans, Gordon

    2014-11-08

    We have made a number of developments in the regional coupled model WRF-Chem, with the aim of making the model more suitable for prediction of atmospheric composition and of interactions between air quality and weather. We have worked on the European domain, with a particular focus on making the model suitable for the study of night time chemistry and oxidation by the nitrate radical in the UK atmosphere. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been implemented to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas phase scheme. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments is illustrated in order to demonstrate the impact that these changes have in the North-West European domain. These developments are now part of the freely available WRF-Chem distribution.

  20. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Young, D. E.; Kim, H.; Parworth, C.; Zhou, S.; Zhang, X.; Cappa, C. D.; Seco, R.; Kim, S.; Zhang, Q.

    2015-12-15

    The San Joaquin Valley (SJV) in California experiences persistent air quality problems associated with elevated particulate matter (PM) concentrations due to anthropogenic emissions, topography, and meteorological conditions. Thus it is important to unravel the various sources and processes that affect the physico-chemical properties of PM in order to better inform pollution abatement strategies and improve parameterizations in air quality models. more »Aerosol Mass Spectrometer (HR-ToF-AMS) and an Ionicon Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-TOF-MS) as part of the NASA Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign. The average submicron aerosol (PM1) concentration was 31.0 ?g m?3 and the total mass was dominated by organic aerosols (OA, 55 %), followed by ammonium nitrate (35 %). High PM pollution events were commonly associated with elevated OA concentrations, mostly from primary sources. Organic aerosols had average atomic oxygen-to-carbon (O / C), hydrogen-to-carbon (H / C), and nitrogen-to-carbon (N / C) ratios of 0.42, 1.70, and 0.017, respectively. Six distinct sources of organic aerosol were identified from positive matrix factorization (PMF) analysis of the AMS data: hydrocarbon-like OA (HOA; 9 % of total OA; O / C = 0.09) associated with local traffic, cooking OA (COA; 28 % of total OA; O / C = 0.19) associated with food cooking activities, two biomass burning OAs (BBOA1; 13 % of total OA; O / C = 0.33 and BBOA2; 20 % of total OA; O / C = 0.60) most likely associated with residential space heating from wood combustion, and semi-volatile oxygenated OA (SV-OOA; 16 % of total OA; O / C = 0.63) and low volatility oxygenated OA (LV-OOA; 24 % of total OA; O / C = 0.90) formed via chemical reactions in the atmosphere. Large differences in aerosol chemistry at Fresno were observed between the current campaign (winter 2013) and a~previous wintertime campaign (winter 2010), most notably that PM1 concentrations were nearly three times higher in 2013 than in 2010. These variations were attributed to differences in the meteorological conditions, which influenced primary emissions and secondary aerosol formation. In particular, COA and BBOA concentrations were greater in 2013 than 2010, where colder temperatures in 2013 likely resulted in increased biomass burning activities. The influence from a nighttime formed residual layer that mixed down in the morning was found to be much more intense in 2013 than 2010, leading to sharp increases in ground-level concentrations of secondary aerosol species including nitrate, sulfate, and OOA, in the morning between 08:00 to 12:00 PST. This is an indication that nighttime chemistry might also be higher in 2013. As solar radiation was stronger in 2013 the higher nitrate and OOA concentrations in 2013 could also be partly due to greater photochemical production of secondary aerosol species. The greater solar radiation and larger range in temperature in 2013 also likely led to both SV-OOA and LV-OOA being observed in 2013 whereas only a single OOA factor was identified in 2010.« less

  1. Chemistry of carbonaceous aerosols : studies of atmospheric processing and OH-initiated oxidation

    E-Print Network [OSTI]

    Johnson, Kirsten S. (Kirsten Sue)

    2008-01-01

    Carbonaceous aerosols are among the most prevalent yet least understood constituents of the atmosphere, particularly in urban environments. We have performed analyses of field samples and laboratory studies to probe the ...

  2. Air Pollution Physics and Chemistry EAS 6790 Home Work Assignment No. 5, Aerosols: CMB Modeling

    E-Print Network [OSTI]

    Weber, Rodney

    information about Fij for four primary aerosol sources: automobile tailpipe emissions, flyash, soildust of these primary sources are underlined. Is it a good assumption that ambient loadings of the tracer species derive solely from the associated primary source? Under this assumption, estimate the contributions (in percent

  3. AEROSOL COMPOSITION, CHEMISTRY, AND SOURCE CHARACTERIZATION DURING THE 2008 VOCALS EXPERIMENT

    E-Print Network [OSTI]

    an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits, CH3SO3-, were very low (i.e., 40 parts per trillion and

  4. AEROSOL COMPOSITION, CHEMISTRY, AND SOURCE CHARACTERIZATION DURING THE 2008 VOCALS EXPERIMENT

    E-Print Network [OSTI]

    an Aerodyne Aerosol Mass Spectrometer, and SO4 2- , NO3 - , NH4 + , Na+ , Cl- , CH3SO3 - , Mg2+ , Ca2+ , and K - , and NH4 + , in decreasing importance; CH3SO3 - , Ca2+ , and K+ rarely exceeded their respective limits, CH3SO3 - , were very low (i.e., 40 parts per trillion and

  5. Description and Evaluation of Tropospheric Chemistry and Aerosols in the Community Earth System Model (CESM1.2)

    SciTech Connect (OSTI)

    Tilmes, S.; Lamarque, J.-F.; Emmons, L.; Kinnison, Douglas E.; Ma, Po-Lun; Liu, Xiaohong; Ghan, Steven J.; Bardeen, C.; Arnold, S.; Deeter, M.; Vitt, Francis; Ryerson, T. B.; Elkins, J. W.; Moore, F.; Spackman, R.; Martin, M. V.

    2015-01-01

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived “free running” (FR) meteorology, or “specified dynamics” (SD). The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-day methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx) produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.

  6. Description and Evaluation of Tropospheric Chemistry and Aerosols in the Community Earth System Model (CESM1.2)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tilmes, S.; Lamarque, J. -F.; Emmons, L.; Kinnison, Douglas E.; Ma, Po-Lun; Liu, Xiaohong; Ghan, Steven J.; Bardeen, C.; Arnold, S.; Deeter, M.; et al

    2015-05-13

    The Community Atmosphere Model (CAM), version 5, is now coupled to extensive tropospheric and stratospheric chemistry, called CAM5-chem, and is available in addition to CAM4-chem in the Community Earth System Model (CESM) version 1.2. Both configurations are well suited as tools for atmospheric-chemistry modeling studies in the troposphere and lower stratosphere, whether with internally derived “free running” (FR) meteorology, or “specified dynamics” (SD). The main focus of this paper is to compare the performance of these configurations against observations from surface, aircraft, and satellite, as well as understand the origin of the identified differences. We particularly focus on comparing present-daymore »methane lifetime estimates within the different model configurations, which range between 7.8 years in the SD configuration of CAM5-chem and 8.8 years in the FR configuration of CAM4-chem. We find that tropospheric surface area density is an important factor in controlling the burden of the hydroxyl radical (OH), which causes differences in tropical methane lifetime of about half a year between CAM4-chem and CAM5-chem. In addition, different distributions of nitrogen oxides (NOx) produced from lightning production explain about half of the difference between SD and FR model versions in both CAM4-chem and CAM5-chem. Remaining differences in the tropical OH burden are due to enhanced tropical ozone burden in SD configurations compared to the FR versions, which are not only caused by differences in chemical production or loss, but also by transport and mixing. For future studies, we recommend the use of CAM5-chem, due to improved aerosol description and inclusion of aerosol-cloud interactions. However, smaller tropospheric surface area density in the current version of CAM5-chem compared to CAM4-chem results in larger oxidizing capacity in the troposphere and therefore a shorter methane lifetime.« less

  7. Unique oceanderived particles serve as a proxy for changes in ocean chemistry

    E-Print Network [OSTI]

    on atmospheric aerosol chemistry, simultaneous realtime measurements were made of atmospheric aerosol size.76). Time series correlations between ocean measurements and atmospheric aerosol chemistry suggest such realtime correlations are shown between ocean chemistry and atmospheric aerosol mixingstate. The reasons

  8. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    SciTech Connect (OSTI)

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  9. Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Chemistry Top Journals Journal of the American Chemical Society Angewandte Chemie & Angewandte Chemie, international edition in English Chemical Communications Chemical...

  10. Formation mechanisms and quantification of organic nitrates in atmospheric aerosol

    E-Print Network [OSTI]

    Rollins, Andrew Waite

    2010-01-01

    and J. Viidanoja, Atmospheric chemistry of c 3 -c 6organic nitrates, Atmospheric Chemistry and Physics, 9 (4),organic aerosol yields, Atmospheric Chemistry and Physics

  11. Sensitivity of Tropospheric Chemical Composition to Halogen-Radical Chemistry Using a Fully Coupled Size-Resolved Multiphase Chemistry-Global Climate System: Halogen Distributions, Aerosol Composition, and Sensitivity of Climate-Relevant Gases

    SciTech Connect (OSTI)

    Long, M.; Keene, W. C.; Easter, Richard C.; Sander, Rolf; Liu, Xiaohong; Kerkweg, A.; Erickson, D.

    2014-04-07

    Observations and model studies suggest a significant but highly non-linear role for halogens, primarily Cl and Br, in multiphase atmospheric processes relevant to tropospheric chemistry and composition, aerosol evolution, radiative transfer, weather, and climate. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was tested using a size-resolved multiphase coupled chemistry/global climate model (National Center for Atmospheric Research’s Community Atmosphere Model (CAM); v3.6.33). Simulation results showed strong meridional and vertical gradients in Cl and Br species. The simulation reproduced most available observations with reasonable confidence permitting the formulation of potential mechanisms for several previously unexplained halogen phenomena including the enrichment of Br- in submicron aerosol, and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile Br mixing ratios were generally high in the troposphere. Br in the stratosphere was lower than observed due to the lack of long-lived organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrated a significant temporal and spatial sensitivity of primary atmospheric oxidants (O3, HOx, NOx), CH4, and non-methane hydrocarbons (NMHC’s) to halogen cycling. Simulated O3 and NOx were globally lower (65% and 35%, respectively, less in the planetary boundary layer based on median values) in simulations that included halogens. Globally, little impact was seen in SO2 and non-sea-salt SO42- processing due to halogens. Significant regional differences were evident: The lifetime of nss-SO42- was extended downwind of large sources of SO2. The burden and lifetime of DMS (and its oxidation products) were lower by a factor of 5 in simulations that included halogens, versus those without, leading to a 20% reduction in nss-SO42- in the southern hemisphere planetary boundary layer based on median values.

  12. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore »the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  13. The impact of pathological ventilation on aerosol deposition : imaging, insight and intervention

    E-Print Network [OSTI]

    Greenblatt, Elliot (Elliot Eliyahu)

    2015-01-01

    Aerosol therapies are often used to treat lung diseases in which ventilation is distributed heterogeneously throughout the lung. As therapeutic aerosols are transported by the inhaled air, it is likely that deposition is ...

  14. Real time in situ detection of organic nitrates in atmospheric aerosols

    E-Print Network [OSTI]

    Rollins, Andrew W.

    2011-01-01

    +NO 3 reaction. Atmospheric Chemistry and Physics 2009, 9,radicals (NO 3 ). Atmospheric Chemistry and Physics 2008, 8,aerosol yields. Atmospheric Chemistry and Physics 2009, 9,

  15. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO? radical chemistry, and N?O? heterogeneous hydrolysis

    SciTech Connect (OSTI)

    Zaveri, Rahul A.; Berkowitz, Carl M.; Brechtel, Fred J.; Gilles, Marry K.; Hubbe, John M.; Jayne, J. T.; Kleinman, Lawrence I.; Laskin, Alexander; Madronich, Sasha; Onasch, Timothy B.; Pekour, Mikhail S.; Springston, Stephen R.; Thornton, Joel A.; Tivanski, Alexei V.; Worsnop, Douglas R.

    2010-06-22

    Chemical evolution of aerosols and trace gases in the Salem Harbor power plant plume was monitored with the DOE G-1 aircraft on the night of July 30-31, 2002. Quasi-Lagrangian sampling in the plume at increasing downwind distances/processing times was guided by a constant-volume tetroon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the nearby background air. These species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred to be as secondary organic aerosol, possibly formed from the NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. The enhanced particulate sulfate concentrations observed in the plume were attributed to direct emissions of gaseous SO3/H2SO4 from the power plant. Furthermore, concentration of nucleation mode particles was significantly higher in the plume than in background air, suggesting that some of the emitted H2SO4 had nucleated to form new particles. Spectromicroscopic analyses of particle samples suggested that some sulfate was likely in the form of organosulfates. Constrained Lagrangian model analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several scientific and regulatory issues related to the impacts of power plant emissions on atmospheric chemistry, air quality, visibility, and climate.

  16. Chemistry of ?-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of ?-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm?3 s, corresponding to approximately 1.0 to 7.5 daysmore »of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  17. Aerosol properties, in-canopy gradients, turbulent fluxes and VOC concentrations at a pristine forest site in Amazonia

    E-Print Network [OSTI]

    Rizzo, LV; Artaxo, P; Karl, T; Guenther, AB; Greenberg, J

    2010-01-01

    wet season. Atmospheric Chemistry and Physics Discussions 9,carbonaceous aerosols. Atmospheric Chemistry and Physics 6,of the EU project OSOA. Atmospheric Chemistry and Physics 4,

  18. Thermal Imaging in the Chemistry Laboratory Thermal imaging devices take advantage of the fact that all objects with a temperature above absolute

    E-Print Network [OSTI]

    Short, Daniel

    Thermal Imaging in the Chemistry Laboratory Thermal imaging devices take advantage of the fact that all objects with a temperature above absolute zero have thermal energy and will emit various wavelengths of thermal radiation (visible, infrared and ultra violet radiation). Thermal cameras convert

  19. Inductively coupled plasma chemistry examinations with visible acousto-optic tunable filter hyperspectral imaging{

    E-Print Network [OSTI]

    Duffin, Kirk

    to be a powerful tool for plasma chemistry research. Introduction Inductively coupled plasma optical emission

  20. CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: Towards non-invasive diagnosis and treatment of respiratory obstructive diseases

    SciTech Connect (OSTI)

    Xi, Jinxiang [Central Michigan Univ., Mount Pleasant, MI (United States); Kim, JongWon [Central Michigan Univ., Mount Pleasant, MI (United States); Si, Xiuhua A. [California Baptist Univ., Riverside, CA (United States); Corley, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kabilan, Senthil [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Shengyu [First Affiliated Hospital of Xi'an Medical Univ., Shaanxi (China); Mayo Clinic, Rochester, MN (United States)

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treat the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 ?m at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.

  1. CFD modeling and image analysis of exhaled aerosols due to a growing bronchial tumor: Towards non-invasive diagnosis and treatment of respiratory obstructive diseases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xi, Jinxiang; Kim, JongWon; Si, Xiuhua A.; Corley, Richard A.; Kabilan, Senthil; Wang, Shengyu

    2015-01-01

    Diagnosis and prognosis of tumorigenesis are generally performed with CT, PET, or biopsy. Such methods are accurate, but have the limitations of high cost and posing additional health risks to patients. In this study, we introduce an alternative computer aided diagnostic tool that can locate malignant sites caused by tumorigenesis in a non-invasive and low-cost way. Our hypothesis is that exhaled aerosol distribution is unique to lung structure and is sensitive to airway structure variations. With appropriate approaches, it is possible to locate the disease site, determine the disease severity, and subsequently formulate a targeted drug delivery plan to treatmore »the disease. This study numerically evaluated the feasibility of the proposed breath test in an image-based lung model with varying pathological stages of a bronchial squamous tumor. Large eddy simulations and a Lagrangian tracking approach were used to model respiratory airflows and aerosol dynamics. Respirations of tracer aerosols of 1 ?m at a flow rate of 20 L/min were simulated, with the distributions of exhaled aerosols recorded on a filter at the mouth exit. Aerosol patterns were quantified with multiple analytical techniques such as concentration disparity, spatial scanning and fractal analysis. We demonstrated that a growing bronchial tumor induced notable variations in both the airflow and exhaled aerosol distribution. These variations became more apparent with increasing tumor severity. The exhaled aerosols exhibited distinctive pattern parameters such as spatial probability, fractal dimension, and multifractal spectrum. Results of this study show that morphometric measures of the exhaled aerosol pattern can be used to detect and monitor the pathological states of respiratory diseases in the upper airway. The proposed breath test also has the potential to locate the site of the disease, which is critical in developing a personalized, site-specific drug delivery protocol.« less

  2. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth...

  3. Stratospheric Albedo Modification by Aerosol Injection

    E-Print Network [OSTI]

    Katz, J I

    2009-01-01

    This paper reviews and develops the proposal, widely discussed but not examined in detail, to use stratospheric aerosols to increase the Earth's albedo to Solar radiation in order to control climate change. The potential of this method has been demonstrated by the "natural experiments" of volcanic injection of sulfate aerosols into the stratosphere that led to subsequent observed global cooling. I consider several hygroscopic oxides as possible aerosol materials in addition to oxides of sulfur. Aerosol chemistry, dispersion and transport have been the subject of little study and are not understood, representing a significant scientific risk. Even the optimal altitude of injection and aerosol size distribution are poorly known. Past attention focused on guns and airplanes as means of lofting aerosols or their chemical precursors, but large sounding rockets are cheap, energetically efficient, can be designed to inject aerosols at any required altitude, and involve little technical risk. Sophisticated, mass-opti...

  4. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore »and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  5. A geostatistical data fusion technique for merging remote sensing and groundbased observations of aerosol optical thickness

    E-Print Network [OSTI]

    Michalak, Anna M.

    that aerosols contrib- ute significantly to reflected solar radiation (the aerosol direct effect) and modify of aerosols in climate and atmospheric chemistry. To date, however, there have been only limited attempts of the growing concentrations of CO2 and other greenhouse gases. Although the radiative forcing of aerosols

  6. An aerosol-mediated magnetic colloid: Study of nickel nanoparticles Department of Chemistry, The University at Buffalo, The State University of New York, Buffalo,

    E-Print Network [OSTI]

    Swihart, Mark T.

    of Chemistry, The University at Buffalo, The State University of New York, Buffalo, New York 14260 York, Buffalo, New York 14260 Y. He and M. T. Swihart Department of Chemical and Biological Engineering, The University at Buffalo, The State University of New York, Buffalo, New York 14260 and Institute for Lasers

  7. Chemistry of Atmospheric Brown Carbon Alexander Laskin,*,

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Chemistry of Atmospheric Brown Carbon Alexander Laskin,*, Julia Laskin,*, and Sergey A. Nizkorodov fraction of atmospheric aerosol and has profound effects on air quality, atmospheric chemistry, and climate of radiation through Earth's atmosphere. The cloud albedo effect, Special Issue: 2015 Chemistry in Climate

  8. Shortwave aerosol radiative forcing over cloud-free oceans from Terra: 1. Angular models for aerosols

    E-Print Network [OSTI]

    Christopher, Sundar A.

    Sensor Microwave Imager (SSM/I) data to obtain near surface wind speed. The new aerosol ADMs are built to obtain aerosol properties within a Clouds and Earth Radiant Energy System (CERES) footprint and Special as functions of near-surface ocean wind speed and MODIS aerosol optical depth at 0.55 mm (t0.55). Among the new

  9. ARM - Measurement - Aerosol image

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Room NewsgovMeasurementsAdvectiveeffective radiusimage

  10. Marine aerosols

    E-Print Network [OSTI]

    Saltzman, ES

    2009-01-01

    proper- ties found in the marine boundary layer over theand R. E. Larson (1994), Marine boundary layer measurementsand T. Hoffmann (2002), Marine aerosol formation from

  11. Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and Its Precursors on Metal Surfaces

    SciTech Connect (OSTI)

    Flynn, George W

    2015-02-16

    Executive Summary of Final Report for Award DE-FG02-88ER13937 Project Title: Atomic Scale Imaging of the Electronic Structure and Chemistry of Graphene and its Precursors on Metal Surfaces Applicant/Institution: Columbia University Principal Investigator: George W. Flynn Objectives: The objectives of this project were to reveal the mechanisms and reaction processes that solid carbon materials undergo when combining with gases such as oxygen, water vapor and hydrocarbons. This research was focused on fundamental chemical events taking place on single carbon sheets of graphene, a two-dimensional, polycyclic carbon material that possesses remarkable chemical and electronic properties. Ultimately, this work is related to the role of these materials in mediating the formation of polycyclic aromatic hydrocarbons (PAH’s), their reactions at interfaces, and the growth of soot particles. Our intent has been to contribute to a fundamental understanding of carbon chemistry and the mechanisms that control the formation of PAH’s, which eventually lead to the growth of undesirable particulates. We expect increased understanding of these basic chemical mechanisms to spur development of techniques for more efficient combustion of fossil fuels and to lead to a concomitant reduction in the production of undesirable solid carbon material. Project Description: Our work treated specifically the surface chemistry aspects of carbon reactions by using proximal probe (atomic scale imaging) techniques to study model systems of graphene that have many features in common with soot forming reactions of importance in combustion flames. Scanning tunneling microscopy (STM) is the main probe technique that we used to study the interfacial structure and chemistry of graphene, mainly because of its ability to elucidate surface structure and dynamics with molecular or even atomic resolution. Scanning tunneling spectroscopy (STS), which measures the local density of quantum states over a single atom, provides information about the electronic structure of graphene and is particularly sensitive to the sign and magnitude of the charge transfer between graphene and any surface adsorbed species. Results: (A) Graphene on SiO2 In an effort designed to unravel aspects of the mechanisms for chemistry on graphene surfaces, STM and STS were employed to show that graphene on SiO2 is oxidized at lower temperatures than either graphite or multi-layer graphene. Two independent factors control this charge transfer: (1) the degree of graphene coupling to the substrate, and (2) exposure to oxygen and moisture. (B) Graphene on Copper In the case of graphene grown on copper surfaces, we found that the graphene grows primarily in registry with the underlying copper lattice for both Cu(111) and Cu(100). On Cu(111) the graphene has a hexagonal superstructure with a significant electronic component, whereas it has a linear superstructure on Cu(100). (C) Nitrogen Doped Graphene on Copper Using STM we have also studied the electronic structure and morphology of graphene films grown on a copper foil substrate in which N atoms substitute for carbon in the 2-D graphene lattice. The salient features of the results of this study were: (1) Nitrogen doped graphene on Cu foil exhibits a triangular structure with an “apparent” slight elevation of ~ 0.8 Ĺ at N atom substitution sites; (2) Nitrogen doping results in ~0.4 electrons per N atom donated to the graphene lattice; (3) Typical N doping of graphene on Cu foil shows mostly single site Carbon atom displacement (~ 3N/1000C); (4) Some multi-site C atom displacement is observed (<10% of single site events). (D) Boron Doped Graphene on Copper We also used scanning tunneling microscopy and x-ray spectroscopy to characterize the atomic and electronic structure of boron-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 free carriers into the graphene sheet per dopa

  12. Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science

    E-Print Network [OSTI]

    Levine, Alex J.

    Department of Chemistry & Biochemistry UCLA Chemistry, Biochemistry & Chemistry Material Science ...........................................................................................................................................4 Chemistry & Biochemistry Undergraduate Office..............................................................................................6 Majors in Chemistry & Biochemistry

  13. Do biomass burning aerosols intensify drought in equatorial Asia during El Nińo?

    E-Print Network [OSTI]

    Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

    2010-01-01

    fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

  14. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    SciTech Connect (OSTI)

    Yang Q.; Lee Y.; Gustafson Jr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

    2011-12-02

    This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.

  15. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    E-Print Network [OSTI]

    Lambe, A. T.

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous ...

  16. Observational Insights into Aerosol Formation from Isoprene David R. Worton,*,,

    E-Print Network [OSTI]

    Goldstein, Allen

    , Ronald C. Cohen, John H. Seinfeld, and Allen H. Goldstein,$ Department of Environmental Science, Policy and Management, Department of Chemistry, University of California, Berkeley, California 94720, United States Aerosol Dynamics Inc., Berkeley, California 94710, United States § Department of Environmental Sciences

  17. In situ flame chemistry tracing by imaging photoelectron photoion coincidence spectroscopy

    SciTech Connect (OSTI)

    Oßwald, P.; Köhler, M.; Hemberger, P.; Bodi, A.; Gerber, T.; Bierkandt, T.; Akyildiz, E.; Kasper, T.

    2014-02-15

    Adaptation of a low-pressure flat flame burner with a flame-sampling interface to the imaging photoelectron photoion coincidence spectrometer (iPEPICO) of the VUV beamline at the Swiss Light Source is presented. The combination of molecular-beam mass spectrometry and iPEPICO provides a new powerful analytical tool for the detailed investigation of reaction networks in flames. First results demonstrate the applicability of the new instrument to comprehensive flame diagnostics and the potentially high impact for reaction mechanism development for conventional and alternative fuels. Isomer specific identification of stable and radical flame species is demonstrated with unrivaled precision. Radical detection and identification is achieved for the initial H-abstraction products of fuel molecules as well as for the reaction controlling H, O, and OH radicals. Furthermore, quantitative evaluation of changing species concentrations during the combustion process and the applicability of respective results for kinetic model validation are demonstrated. Utilization of mass-selected threshold photoelectron spectra is shown to ensure precise signal assignment and highly reliable spatial profiles.

  18. Atmospheric Chemistry

    E-Print Network [OSTI]

    Finlayson-Pitts, B. J

    2010-01-01

    in our understanding of important chemistry and highlightedin our knowledge. In summary, the chemistry occurring in theBJ, Pitts JN, Jr (2000) Chemistry of the Upper and Lower

  19. CLUSTER CHEMISTRY

    E-Print Network [OSTI]

    Muetterties, Earl L.

    2013-01-01

    Advanced Inorganic Chemistry, 11 Wiley Huetterties and C. M.Submitted to the Journal of Organometallic ChemistryCLUSTER CHEMISTRY Earl L. Muetterties TWO-WEEK LOAN COPY May

  20. THE ROLE OF SOOT IN AEROSOL CHEMISTRY

    E-Print Network [OSTI]

    Novakov, T.

    2010-01-01

    importance of sul- catalytic oxidation of sulfur dioxide onand T. Novakov, "Catalytic oxidation of S02 on carbon inof liquid water and the catalytic oxidation occurs at the

  1. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  2. Measurement of two-dimensional concentration fields of a glycol-based tracer aerosol using laser light sheet illumination and microcomputer video image acquisition and processing

    E-Print Network [OSTI]

    Revi, Frank

    1992-01-01

    The use of a tracer aerosol with a bulk density close to that of air is a convenient way to study the dispersal of pollutants in ambient room air flow. Conventional point measurement techniques do not permit the rapid and ...

  3. Organic Aerosol Component (OACOMP) Value-Added Product Report

    SciTech Connect (OSTI)

    Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

    2013-08-23

    Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

  4. Speciation of Fe in ambient aerosol and cloudwater

    SciTech Connect (OSTI)

    Siefert, L. [California Institute of Technology, Pasadena, CA (United States)

    1996-08-15

    Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the worlds oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry.

  5. Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters

    SciTech Connect (OSTI)

    Sacci, Robert L; Black, Jennifer M; Wisinger, Nina; Dudney, Nancy J.; More, Karren Leslie; Unocic, Raymond R

    2015-01-01

    The performance characteristics of Li-ion batteries are intrinsically linked to evolving nanoscale interfacial electrochemical reactions. To probe the mechanisms of solid electrolyte interphase formation and Li electrodeposition from a standard battery electrolyte, we use in situ electrochemical scanning transmission electron microscopy for controlled potential sweep-hold electrochemical measurements with simultaneous BF and ADF STEM image acquisition. Through a combined quantitative electrochemical measurement and quantitative STEM imaging approach, based upon electron scattering theory, we show that chemically sensitive ADF STEM imaging can be used to estimate the density of evolving SEI constituents and distinguish contrast mechanisms of Li-bearing components in the liquid cell.

  6. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian (Port Jefferson, NY); Kulkarni, Pramod (Port Jefferson Station, NY)

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  7. Chemical Imaging Analysis of Environmental Particles Using the Focused Ion Beam/Scanning Electron Microscopy Technique: Microanalysis Insights into Atmospheric Chemistry of Fly Ash

    SciTech Connect (OSTI)

    Chen, Haihan; Grassian, Vicki H.; Saraf, Laxmikant V.; Laskin, Alexander

    2013-01-21

    Airborne fly ash from coal combustion may represent a source of bioavailable iron (Fe) in the open ocean. However, few studies have been made focusing on Fe speciation and distribution in coal fly ash. In this study, chemical imaging of fly ash has been performed using a dual-beam FIB/SEM (focused ion beam/scanning electron microscope) system for a better understanding of how simulated atmospheric processing modify the morphology, chemical compositions and element distributions of individual particles. A novel approach has been applied for cross-sectioning of fly ash specimen with a FIB in order to explore element distribution within the interior of individual particles. Our results indicate that simulated atmospheric processing causes disintegration of aluminosilicate glass, a dominant material in fly ash particles. Aluminosilicate-phase Fe in the inner core of fly ash particles is more easily mobilized compared with oxide-phase Fe present as surface aggregates on fly ash spheres. Fe release behavior depends strongly on Fe speciation in aerosol particles. The approach for preparation of cross-sectioned specimen described here opens new opportunities for particle microanalysis, particular with respect to inorganic refractive materials like fly ash and mineral dust.

  8. The aging of organic aerosol in the atmosphere : chemical transformations by heterogeneous oxidation

    E-Print Network [OSTI]

    Kessler, Sean Herbert

    2013-01-01

    The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase ...

  9. Formation of ozone and growth of aerosols in young smoke plumes from biomass burning

    E-Print Network [OSTI]

    Alvarado, Matthew James

    2008-01-01

    The combustion of biomass is a major source of atmospheric trace gases and aerosols. Regional and global-scale models of atmospheric chemistry and climate take estimates for these emissions and arbitrarily "mix" them into ...

  10. Implementing marine organic aerosols into the GEOS-Chem model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2015-03-17

    Marine-sourced organic aerosols (MOAs) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem (Global Earth Observing System Chemistry) model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Modelmore »predictions were also in good agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOAs observed during the summertime at an inland site near Paris, France. Our study shows that MOAs have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having >10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  11. Solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  12. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  13. Thermal Imaging of Single Living Cells Using Semiconductor Quantum Dots

    E-Print Network [OSTI]

    Yang, Jui-Ming

    2009-01-01

    lifetime imaging," Analytical Chemistry, vol. 78, pp. 2272-Chinese Journal of Analytical Chemistry, vol. 30, pp. 1130-high temperatures," Analytical Chemistry, vol. 77, pp. 4810-

  14. Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study

    SciTech Connect (OSTI)

    Shrivastava, ManishKumar B.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Laskin, Alexander; Chapman, Elaine G.; Gustafson, William I.; Liu, Ying; Berkowitz, Carl M.

    2013-02-07

    The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to simulate relationships between aerosols and clouds in the vicinity of Oklahoma City during the June 2007 Cumulus Humilis Aerosol Processing Study (CHAPS). The regional scale simulation completed using 2 km horizontal grid spacing evaluates four important relationships between aerosols and shallow cumulus clouds observed during CHAPS. First, the model reproduces the trends of higher nitrate volume fractions in cloud droplet residuals compared to interstitial non-activated aerosols, as measured using the Aerosol Mass Spectrometer. Comparing simulations with cloud chemistry turned on and off, we show that nitric acid vapor uptake by cloud droplets explains the higher nitrate content of cloud droplet residuals. Second, as documented using an offline code, both aerosol water and other inorganics (OIN), which are related to dust and crustal emissions, significantly affect predicted aerosol optical properties. Reducing the OIN content of wet aerosols by 50% significantly improves agreement of model predictions with measurements of aerosol optical properties. Third, the simulated hygroscopicity of aerosols is too high as compared to their hygroscopicity derived from cloud condensation nuclei and particle size distribution measurements, indicating uncertainties associated with simulating size-dependent chemical composition and treatment of aerosol mixing state within the model. Fourth, the model reasonably represents the observations of the first aerosol indirect effect where pollutants in the vicinity of Oklahoma City increase cloud droplet number concentrations and decrease the droplet effective radius. While previous studies have often focused on cloud-aerosol interactions in stratiform and deep convective clouds, this study highlights the ability of regional-scale models to represent some of the important aspects of cloud-aerosol interactions associated with fields of short-lived shallow cumuli.

  15. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect (OSTI)

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

  16. On the relationship between stratospheric aerosols and nitrogen dioxide

    SciTech Connect (OSTI)

    Mills, M.J.; Langford, A.O.; O'Leary, T.J.; Arpag, K.; Miller, H.L.; Proffitt, M.H.; Sanders, R.W.; Solomon, S. (Aeronomy Laboratory, NOAA, Boulder, CO (United States) Univ. of Colorado, Boulder (United States))

    1993-06-18

    The authors report measurements of stratospheric column abundances of nitrogen dioxide above the Colorado mountains during Jan, Feb, and Mar 1992, following the arrival of the aerosol loading injected by Mt. Pinatubo. The column abundance data was correlated with concurrent lidar measurements which provided vertical aerosol profiles at the same site. Chemical reactions within polar stratospheric clouds have been shown to play a major role in ozone chemistry in the polar regions, and one could ask whether such clouds at mid latitudes could play a similar role. The sulfur dioxide loading due to the volcanic eruption provides an abrupt increase in sulfuric acid aerosol surface area in mid latitude areas, providing a convenient test of this question. Column NO[sub 2] densities are observed to fall, but also found to saturate at a certain stratospheric aerosol density.

  17. Implementing marine organic aerosols into the GEOS-Chem model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gantt, B.; Johnson, M. S.; Crippa, M.; Prévôt, A. S. H.; Meskhidze, N.

    2014-09-09

    Marine organic aerosols (MOA) have been shown to play an important role in tropospheric chemistry by impacting surface mass, cloud condensation nuclei, and ice nuclei concentrations over remote marine and coastal regions. In this work, an online marine primary organic aerosol emission parameterization, designed to be used for both global and regional models, was implemented into the GEOS-Chem model. The implemented emission scheme improved the large underprediction of organic aerosol concentrations in clean marine regions (normalized mean bias decreases from -79% when using the default settings to -12% when marine organic aerosols are added). Model predictions were also in goodmore »agreement (correlation coefficient of 0.62 and normalized mean bias of -36%) with hourly surface concentrations of MOA observed during the summertime at an inland site near Paris, France. Our study shows that MOA have weaker coastal-to-inland concentration gradients than sea-salt aerosols, leading to several inland European cities having > 10% of their surface submicron organic aerosol mass concentration with a marine source. The addition of MOA tracers to GEOS-Chem enabled us to identify the regions with large contributions of freshly-emitted or aged aerosol having distinct physicochemical properties, potentially indicating optimal locations for future field studies.« less

  18. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  19. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  20. Sandia Energy - Chemistry of Autoignition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry of Autoignition Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Combustion Kinetics Chemistry of Autoignition Chemistry of...

  1. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1998-03-01

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  2. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  3. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  4. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  5. FACULTY OF CHEMISTRY AND PHARMACY CHEMISTRY & PHARMACY

    E-Print Network [OSTI]

    Schubart, Christoph

    FACULTY OF CHEMISTRY AND PHARMACY Faculty of CHEMISTRY & PHARMACY People and their research #12;PD Dr. Denis Usvyat Theoretical Chemistry PD Dr. Sabine Amslinger Organic Chemistry Dr. Ferdinand Brandl Pharmaceutical Technology Dr. Robert Kretschmer Inorganic Chemistry Dr. Christoph Dorn Clinical Pharmacy Our

  6. Department of Chemistry "Supramolecular Chemistry in Polymeric

    E-Print Network [OSTI]

    Mark, James E.

    Department of Chemistry "Supramolecular Chemistry in Polymeric Systems: From Nanoassemblies Colloquium Friday, May 15, 2009 3:00 p.m. 502 Rieveschl #12;Supramolecular Chemistry in Polymeric Systems.rowan@case.edu The utilization of supramolecular chemistry, the chemistry of the non-covalent bond, in the polymeric realm has

  7. Green Chemistry and Workers

    E-Print Network [OSTI]

    2009-01-01

    of green chemistry and green engineering and by consideringResearch, Green Chemistry and Green Engineering Center, YaleOF GREEN CHEMISTRY AND GREEN ENGINEERING Julie Zimmerman By

  8. Green Chemistry and Workers

    E-Print Network [OSTI]

    2009-01-01

    J. Warner. 1998. Green Chemistry: Theory and Practice. NewNew Science, Green Chemistry and Environmental Health.abstract.html 5. American Chemistry Council. 2003. Guide to

  9. DEPARTMENT OF CHEMISTRY DEPARTMENT OF CHEMISTRY

    E-Print Network [OSTI]

    Lennard, William N.

    i DEPARTMENT OF CHEMISTRY HANDBOOK 2008-2009 DEPARTMENT OF CHEMISTRY HANDBOOK 2014-2015 Revised TABLE OF CONTENTS I. WELCOME TO THE DEPARTMENT OF CHEMISTRY AND WESTERN UNIVERSITY... 1 1. MESSAGE FROM

  10. Sandia Energy - Flame Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flame Chemistry Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Flame Chemistry Flame ChemistryAshley Otero2015-10-28T02:43:31+00:00 Research in...

  11. RACORO aerosol data processing

    SciTech Connect (OSTI)

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  12. Synthetic and Mechanistic Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    isotopes for biological applications Aaron S. Anderson: Synthetic chemistry of biosensors Andrew M. Dattelbaum: Synthetic chemistry and nanoparticles Sponsors, Funding...

  13. UCLA CHEMISTRY & BIOCHEMISTRY

    E-Print Network [OSTI]

    Levine, Alex J.

    UCLA CHEMISTRY & BIOCHEMISTRY ORIENTATION HANDBOOK 2012-2013 #12;Table of Contents Introduction .............................................................................................................................................2 Chemistry & Biochemistry Undergraduate Office ................................................................................................................................................4 Biochemistry

  14. Chemistry & Biology Brief Communication

    E-Print Network [OSTI]

    Zhao, Huimin

    Chemistry & Biology Brief Communication Cloning, IL 61801, USA 3Department of Chemistry 4Department of Chemical and Biomolecular Engineering

  15. The SPECTRa Project: A Wider Chemistry View

    E-Print Network [OSTI]

    Downing, Jim; Tonge, Alan

    2006-10-20

    services computational chemistry determined by interview and survey The Problem Science depends upon data Experimental chemistry data is a resource / asset … Proprietary spectra formats (NMR, IR, UV) : 5-year shelf life PDF image files (supplementary... ="-1.547700"/>

  16. Aerosols and Clouds: In Cahoots to Change Climate

    ScienceCinema (OSTI)

    Berg, Larry

    2014-06-02

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  17. Aerosols and Clouds: In Cahoots to Change Climate

    SciTech Connect (OSTI)

    Berg, Larry

    2014-03-29

    Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

  18. CHEMISTRY 1010 CHEMISTRY, HUMANITY AND ENVIRONMENT

    E-Print Network [OSTI]

    Simons, Jack

    : Chemistry 1010 aims to promote understanding of the basic environmental ingredients, energy, atomsCHEMISTRY 1010 CHEMISTRY, HUMANITY AND ENVIRONMENT Spring 2006 Instructor: Dr. Laya Kesner, HEB - 002 H ST 205 11:50 a.m.-12:40 p.m. Teaching Assistant: Chem 1010-002 Michelle Taliaferro, michelle@chemistry

  19. CHEMISTRY, B.S. CHEMISTRY (CHEM)

    E-Print Network [OSTI]

    Hamburger, Peter

    CHEMISTRY, B.S. CHEMISTRY (CHEM) (Fall 2015-Summer 2016) IPFW Residency Requirements: ____ 32 CHEMISTRY BS COURSES & SUPPORTING COURSES (66 credits) *Note: 2.0 CHM GPA required/2.0 CHM GPA in 300+ courses *The Bachelor of Science with a major in chemistry program is appropriate for premedical

  20. Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area

    E-Print Network [OSTI]

    Tsimpidi, A. P.

    New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new ...

  1. Aerosol collection characteristics of ambient aerosol samplers 

    E-Print Network [OSTI]

    Ortiz, Carlos A

    1978-01-01

    when the sampler is not in operation, both as functions of particle size and wind speed. Wind velocity was a major cause of bias for the four samplers when collecting aerosol particles & 10 um. Characteristic curves were very similar for the 0. 38 m... x 0. 38 m ( 15" x 15") Hi-Vol and the 0. 29 m x 0. 36 m (11&" x 14") Hi-Vol. At 28 um and wind speeds of 2, 8, and 24 km/hr, sampling effectiveness values respectively were 70, 43, and 43 percent for the 0. 38 m x 0. 38 m Hi-Vol and 81, 56, and 43...

  2. Sandia Energy - High Pressure Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Pressure Chemistry Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Combustion Kinetics High Pressure Chemistry High Pressure ChemistryAshley...

  3. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    SciTech Connect (OSTI)

    Tilmes, S. [National Center for Atmospheric Research, Boulder, CO (United States); Mills, Mike [National Center for Atmospheric Research, Boulder, CO (United States); Niemeier, Ulrike [Max Planck Inst. for Meteorology, Hamburg (Germany); Schmidt, Hauke [Max Planck Inst. for Meteorology, Hamburg (Germany); Robock, Alan [Rutgers Univ., New Brunswick, NJ (United States). Dept. of Environmental Sciences; Kravitz, Benjamin S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lamarque, J. F. [National Center for Atmospheric Research, Boulder, CO (United States); Pitari, G. [Univ. L'Aquila (Italy). Dept. of Physical and Chemical Sciences; English, J. M. [Univ. of Colorado, Boulder, CO (United States)

    2015-01-01

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO?) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO? yr?ą. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at aerosol-data-set\\">https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  4. Combustion chemistry

    SciTech Connect (OSTI)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  5. Green Chemistry and Workers

    E-Print Network [OSTI]

    2009-01-01

    chemistry as it produces green, sustainable union jobs; •jobs and industries, green remediation, and green chemistry.jobs—including those connected to the emerging field of green chemistry—and

  6. Sandia Energy - Materials Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Chemistry Home Transportation Energy Predictive Simulation of Engines Clean FuelsPower Materials Chemistry Materials ChemistryAshley Otero2015-10-28T02:42:21+00:00...

  7. Biology 3515/Chemistry 3515 Biological Chemistry Laboratory

    E-Print Network [OSTI]

    Simons, Jack

    Biology 3515/Chemistry 3515 Biological Chemistry Laboratory Spring 2013 (Draft Syllabus, 23 August 2012) Course Description and Objectives: This course is intended for students who have taken Biology and function, particularly for enzymes. Prerequisites: Biology 3510 or Chemistry 3510 Instructor: David P

  8. Maritime Aerosol Network as a component of Aerosol Robotic A. Smirnov,1,2

    E-Print Network [OSTI]

    Maritime Aerosol Network as a component of Aerosol Robotic Network A. Smirnov,1,2 B. N. Holben,2 I of the Maritime Aerosol Network (MAN), which has been developed as a component of the Aerosol Robotic Network), Maritime Aerosol Network as a component of Aerosol Robotic Network, J. Geophys. Res., 114, D06204, doi:10

  9. EVALUATING TREATMENTS OF AEROSOL OPTICAL PROPERTIES AND THEIR EFFECT ON RADIATIVE FORCING USING MILAGRO MEASUREMENTS

    E-Print Network [OSTI]

    at the American Geophysical Union Fall Meeting San Francisco, CA December 10-14, 2007 Environmental Sciences-chemistry-aerosol model, WRF-chem, to evaluate the predicted optical properties and downwind of Mexico City using both-averaging", "shell-core" and other approaches that employ Mie theory. The impact of the various approaches

  10. Aerosol Observing System (AOS) Handbook

    SciTech Connect (OSTI)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  11. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2010-12-15

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  12. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  13. CHEMISTRY 499 UNDERGRADUATE RESEARCH

    E-Print Network [OSTI]

    Hamburger, Peter

    1 CHEMISTRY 499 UNDERGRADUATE RESEARCH Chemistry 499 provides a mechanism whereby undergraduate chemistry majors may participate in the research of the faculty and receive academic credit for the instructor, and one to be kept on file in the Chemistry Office (specified by the American Chemical Society

  14. 128 Department of Chemistry Graduate Catalogue 201415

    E-Print Network [OSTI]

    ; cage compounds; coordination and organometallic chemistry; supramolecular chemistry; photocatalysis

  15. From molecular chemistry to supramolecular chemistry to superdupermolecular chemistry. Controlling covalent bond formation

    E-Print Network [OSTI]

    Turro, Nicholas J.

    From molecular chemistry to supramolecular chemistry to superdupermolecular chemistry. Controlling covalent bond formation through non-covalent and magnetic interactions Nicholas J. Turro Chemistry. Introduction Carbon centered radicals are among the most reactive species encountered in organic chemistry

  16. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  17. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO?) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annualmore »tropical emission of 8 Tg SO? yr?ą. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.« less

  18. Legendre Functions Quantum Chemistry: Chemistry 180-345A

    E-Print Network [OSTI]

    Ronis, David M.

    Legendre Functions Quantum Chemistry: Chemistry 180-345A In class we showed that the the angular Fall 2003 #12;Quantum Chemistry -2- Chemistry 180-345A which is divergent at x = ±1 (i.e., at = 0 Chemistry -3- Chemistry 180-345A Hydrogen orbitals for l = 0, 1 Fall 2003 #12;Quantum Chemistry -4

  19. School of Chemistry CHEM3100: Chemistry at a Molecular Level

    E-Print Network [OSTI]

    Rzepa, Henry S.

    School of Chemistry CHEM3100: Chemistry at a Molecular Level Tutorial Groups 2014/15 Name Programme Tutor Arif, Saboor Chemistry Armstrong, Sam W. Chemistry Beaumont, Jack P. Chemistry Dwayne Heard Bennett, Niall C. Chemistry Room 1.28a Betts, Samuel A. Chemistry D.E.Heard@leeds.ac.uk Booth, Natalie L

  20. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    SciTech Connect (OSTI)

    Lee, Jae-Min; Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K.; Heng, Kevin

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 ?m. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 ?m that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 ?m and an optical depth in the range 0.002-0.02 at 1 ?m provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 ?m, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 ?m as well as longward of 8 ?m, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  1. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    SciTech Connect (OSTI)

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  2. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeat Pumps Heat Pumpsfacility doe logo CH2M-WG logoImaging

  3. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdahoImaging Print The

  4. Imaging

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.FoodHydropower,PrincipalIdahoImaging Print

  5. Aerosol Observing System Upgraded

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E R N A NA LY S IDOE Office2 Aerosol

  6. Computational Chemistry | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Chemistry SHARE Computational Chemistry Computational Chemistry at ORNL uses principles of computer science and mathematics and the results of theoretical physics and...

  7. Atmospheric chemistry and global change

    E-Print Network [OSTI]

    Prather, MJ

    1999-01-01

    and particles. Thus Atmospheric Chemistry and Global Changethe future of atmospheric chemistry. BROWSINGS Tornadothe complexity of atmospheric chemistry well, but trips a

  8. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region

    SciTech Connect (OSTI)

    Steiner, A. L.; Tawfik, A. B.; Shalaby, A.; Zakey, A. S.; Abdel Wahab, M. M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, Rahul A.

    2014-04-16

    An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on Greater Cairo (GC) region. The densley populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjuction with natural sources such as dust and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average-ground-based NO2 observations of 40-60 ppb are substantially higher than modeled estimates (5-10 ppb), likely due to model grid resolution, improper boundary layer representation, and poor emissions inventories. Observed ozone concentrations range from 35 ppb (winter) to 80 ppb (summer). The model reproduces the seasonal cycle fairly well, but modeled summer ozone is understimated by approximately 15 ppb and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7-1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta, yet the model underestimates this fall observed AOD peak, as standard emissions inventories underestimate this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities are needed to improve air quality simulations in this region.

  9. Chemistry and Biochemistry Scholarships

    E-Print Network [OSTI]

    Almor, Amit

    Chemistry and Biochemistry Scholarships Complete Scholarship Name Application Deadline Date Contact to Chemistry and Biochemistry entering graduate students who have asked for consideration to serve as research senior in the Department of Chemistry and Biochemistry based on faculty recommendation for undergraduate

  10. Chemistry and Biochemistry Scholarships

    E-Print Network [OSTI]

    Almor, Amit

    Chemistry and Biochemistry Scholarships Complete Scholarship Name Application Deadline Date Contact Endowment Fund To provide support for undergraduate biomedical research in the Department of Chemistry/or the purchase of supplies. Yes w/recommendation s from faculty Call goes out in February to all chemistry

  11. AERONET: The Aerosol Robotic Network

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  12. eDPS Aerosol Collection

    SciTech Connect (OSTI)

    Venzie, J.

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  13. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect (OSTI)

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they will be included in a future public release of WRF-Chem.

  14. Chemflex Overview: Common Chemistry core

    E-Print Network [OSTI]

    Gilchrist, James F.

    Advanced chemistry laboratory I CHM 335 3 Advanced chemistry laboratory II Mat 33 3 Engineering materialsChemflex Overview: Common Chemistry core CHM 40, 41 (or CHM 30, 31) 8 Introductory chemistry CHM 110,111,112,113 8 Organic chemistry CHM 332 3 Analytical chemistry CHM 201*** 2 Technical writing CHM

  15. Aerosol penetration through transport lines 

    E-Print Network [OSTI]

    Dileep, V.R.

    1996-01-01

    It is very important to minimize the losses in aerosol transport systems for the Continuous Air Monitors (CAM) to have a prompt and a meaningful alarm and the U.S. Environmental Protection Agency (EPA) also Currently mandates continuous emissions...

  16. Simulation of size-segregated aerosol chemical composition over northern Italy in clear sky and wind calm conditions

    E-Print Network [OSTI]

    Curci, Gabriele

    %, for the urban site during summer. In addition, the model is able to capture both the daily evolution of the bulk and wind calm conditions T.C. Landi a, , G. Curci b , C. Carbone a , L. Menut c , B. Bessagnet d , L-D regional chemistry-transport model (CTM) CHIMERE against observations of the size-resolved aerosol

  17. Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles

    E-Print Network [OSTI]

    Beaucage, Gregory

    changes which are evidenced by changes in the temperature of the oceans and rapid melting of the polar and glacial ice packs. Of pollution sources, aerosols represent the least understood and could potentially

  18. Chemical and Physical Characteristics of Diesel Aerosol | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Physical Characteristics of Diesel Aerosol Chemical and Physical Characteristics of Diesel Aerosol 2002 DEER Conference Presentation: University of Minnesota...

  19. CHEMISTRY, B.S.C. CHEMISTRY OPTION (CHEC)

    E-Print Network [OSTI]

    Hamburger, Peter

    CHEMISTRY, B.S.C. CHEMISTRY OPTION (CHEC) (Fall 2015-Summer 2016) IPFW Residency Requirements of the American Chemical Society (ACS), and B.S.C. graduates are certified. ______ 1 CHM 19400 Freshman Chemistry Orientation ______ 4 CHM 11500 General Chemistry ______ 4 CHM 11600 General Chemistry ______ 4 CHM 24100 Intro

  20. B.A. DEGREE REQUIREMENTS FOR CHEMISTRY (CHEMISTRY TRACK)

    E-Print Network [OSTI]

    Doyle, Robert

    B.A. DEGREE REQUIREMENTS FOR CHEMISTRY (CHEMISTRY TRACK) Requirements include 36 credits in chemistry core courses, 32 of which are taken in specific courses. Each student's course of study includes the following: 1.) Required Chemistry Core Courses CHE 106: General Chemistry Lecture I (3) CHE 116: General

  1. CHEMISTRY, B. S. WITH TEACHER CERTIFICATE CHEMISTRY OPTION (CHMT)

    E-Print Network [OSTI]

    Hamburger, Peter

    CHEMISTRY, B. S. WITH TEACHER CERTIFICATE CHEMISTRY OPTION (CHMT) (Fall 2015-Summer 2016) IPFW- or above in Gen Ed Chemistry BS Courses (62 credits) *Note: 3.0 CHM GPA required/2.0 CHM GPA in 300+ courses ______ 1 CHM 19400 Freshman Chemistry Orientation ______ 4 CHM 11500 General Chemistry ______ 4

  2. Virginia Tech Department of Chemistry Instructor Position / General Chemistry Program

    E-Print Network [OSTI]

    entail teaching courses in analytical or physical chemistry lecture or lab as needed. Applicants should Virginia Tech Department of Chemistry Instructor Position / General Chemistry Program The Department of Chemistry is seeking an Instructor to teach classes in its General Chemistry Program to start

  3. TCD-IISc Symposium "Chemistry & Chemical Biology"

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    actinide chemistry, with a focus on coordination and organometallic uranium chemistry. Paula ColavitaTCD-IISc Symposium "Chemistry & Chemical Biology" Trinity College Clive Williams, Dean of Chemistry. Research areas include supramolecular organic and inorganic chemistry and medicinal chemistry

  4. DOE fundamentals handbook: Chemistry

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids).

  5. Chemistry 455 Chemical Nanotechnology

    E-Print Network [OSTI]

    Rohs, Remo

    , and superconductivity. Prerequisite: CHEM 453 Advanced Inorganic Chemistry. Required Texts: Owens & Poole, The Physics. Superconductivity (15) Statement for Students with Disabilities: Any student requesting academic accommodations

  6. Teaching Assistants Department of Chemistry

    E-Print Network [OSTI]

    Guide for Teaching Assistants Department of Chemistry The University of Chicago #12;© 2012 Department of Chemistry, The University of Chicago (2nd edition) #12;i Preface Welcome to the Chemistry to familiarize you with your teaching responsibilities for General Chemistry and Organic Chemistry and to provide

  7. Medicinal Chemistry and Enzyme Kinetics

    E-Print Network [OSTI]

    Truhlar, Donald G

    Prof. Donald G. Truhlar, Department of Chemistry, February 2007 Recent Results ·Novel analytic functionMedicinal Chemistry and Enzyme Kinetics Elizabeth Amin and C. R. Wagner, Medicinal Chemistry Jiali Gao, Chemistry Don Truhlar, Chemistry February 2007 #12;Zn Metalloprotein Force Field Design ·Zn

  8. 4, 20552088, 2004 Aerosol-ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 4, 2055­2088, 2004 Aerosol-ozone correlations during dust transport episodes P. Bonasoni et al and Physics Discussions Aerosol-ozone correlations during dust transport episodes P. Bonasoni1 , P.bonasoni@isac.cnr.it) 2055 #12;ACPD 4, 2055­2088, 2004 Aerosol-ozone correlations during dust transport episodes P. Bonasoni

  9. TU KAISERSLAUTERN DEPARTMENT OF CHEMISTRY

    E-Print Network [OSTI]

    Berns, Karsten

    TU KAISERSLAUTERN DEPARTMENT OF CHEMISTRY - STUDY GUIDE - H Rb Sr K Ca ...Mn Fe... ONC He P S Br Kr .................................................................................................22 FOOD CHEMISTRY AND TOXICOLOGY: JUN.-Prof. Dr. M. Esselen...............................................................................24 FOOD CHEMISTRY AND TOXICOLOGY: Prof. Dr. E. Richling

  10. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  11. The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test

    SciTech Connect (OSTI)

    Kaiser, J. C.; Hendricks, J.; Righi, M.; Riemer, Nicole; Zaveri, Rahul A.; Metzger, S.; Aquila, Valentino

    2014-06-17

    We introduce MADE3 (Modal Aerosol Dynamics for Europe, adapted for global applications, version 3), an aerosol dynamics submodel for application in a global chemistry general circulation model, that builds on the predecessor aerosol submodels MADE and MADE-in. The main new features of MADE3 are the explicit representation of coarse particle interactions with fine particles and gases, and the inclusion of the hydrochloric acid (HCl)/chloride (Cl􀀀) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new model as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess MADE3’s performance we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model application. MADE3 and MADE results are very similar, except when the aerosol is dominated by sea spray particles. In such cases, Cl􀀀 concentrations are lower in MADE3 than in MADE due to the HCl/Cl􀀀 partitioning. Additionally, the aerosol nitrate concentration is higher in MADE3 due to the uptake on coarse particles. MADE3 and PartMCMOSAIC show substantial differences in the fine particle size distributions (sizes . 2?m) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.

  12. Stratospheric Aerosol Geoengineering ALAN ROBOCK

    E-Print Network [OSTI]

    Robock, Alan

    hydrologic responses, whitening of the skies, reduction of solar power, and impacts of diffuse radiation Project, conducting climate model experiments with standard stratospheric aerosol in- jection scenarios, which stated that ``It is extremely likely that human in- fluence has been the dominant cause

  13. DOE fundamentals handbook: Chemistry

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems.

  14. Chemistry 1010 -090 (Online) Chemistry, Humanity, and Environment

    E-Print Network [OSTI]

    Simons, Jack

    chemistry to environmental questions such as energy sources, air quality, water quality, mineral resourcesChemistry 1010 -090 (Online) Chemistry, Humanity, and Environment 1. Course Content The Online version of Chemistry 1010 (1010-090) supports the aims of the University of Utah General Education Mission

  15. B.A. DEGREE REQUIREMENTS FOR CHEMISTRY (BIOLOGICAL CHEMISTRY TRACK)

    E-Print Network [OSTI]

    Doyle, Robert

    B.A. DEGREE REQUIREMENTS FOR CHEMISTRY (BIOLOGICAL CHEMISTRY TRACK) Requirements include 21 credits from chemistry core courses, 6 credits from the list, (2) below, of approved biology/biochemistry core's course of study must include the following: 1.) Required Chemistry Core Courses CHE 106: General

  16. CHEMISTRY 243: Introductory Physical Chemistry II. General Information

    E-Print Network [OSTI]

    Ronis, David M.

    CHEMISTRY 243: Introductory Physical Chemistry II. General Information Lectures: Monday & Wednesday, Inc., 2006) J.R. Barrante, Applied Mathematics for Physical Chemistry, 3rd edition (Pearson Education, Inc., 2004) Supplementary Texts 1. G. W. Castellan, Physical Chemistry 3rd edition (Benjamin Cummings

  17. CHEMISTRY, B.S. CHEMISTRY PRE-DENTAL (CHPD)

    E-Print Network [OSTI]

    Hamburger, Peter

    CHEMISTRY, B.S. CHEMISTRY PRE-DENTAL (CHPD) (Fall 2015-Summer 2016) IPFW Residency Requirements in Gen Ed CHEMISTRY BS COURSES & SUPPORTING COURSES (81 credits) *Note: 2.0 CHM GPA required/2.0 CHM GPA in 300+ courses *The Bachelor of Science with a major in chemistry program is appropriate for premedical

  18. CHEMISTRY, B. S. CHEMISTRY PRE-MEDICINE (CHPM)

    E-Print Network [OSTI]

    Hamburger, Peter

    CHEMISTRY, B. S. CHEMISTRY PRE-MEDICINE (CHPM) (Fall 2015-Summer 2016) IPFW Residency Requirements in Gen Ed CHEMISTRY BS COURSES & SUPPORTING COURSES (85 credits) *Note: 2.0 CHM GPA required/2.0 CHM GPA in 300+ courses *The Bachelor of Science with a major in chemistry program is appropriate for premedical

  19. Analytical Chemistry Applied Mathematics

    E-Print Network [OSTI]

    Heller, Barbara

    Architecture Information Technology & Management Integrated Building Delivery Landscape Architecture ManagementAnalytical Chemistry Applied Mathematics Architectural Engineering Architecture Architecture Electricity Markets Environmental Engineering Food Process Engineering Food Safety & Technology

  20. Green Chemistry and Workers

    E-Print Network [OSTI]

    2009-01-01

    AND GREEN CHEMISTRY IN THE CLEAN-ENERGY ECONOMY Michael P.rapid development of clean-energy technologies—of the greenof economic growth in clean-energy technologies and energy

  1. UNIVERSITY OF MARYLAND Department of Chemistry & Biochemistry

    E-Print Network [OSTI]

    Thirumalai, Devarajan

    , physical chemistry and analytical chemistry. The study program in Biochemistry should have included as laboratory courses in Organic Chemistry, Biochemistry, and Analytical Chemistry. These requirements represent, Analytical) are required of all applicants; the Advanced Subject examination (Chemistry, Biochemistry

  2. DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL AS SEEN FROM SPACE Fire plumes from southern Mexico transported north into Gulf of Mexico. #12;CLOUD

  3. Optical Properties of Secondary Organic Aerosols

    E-Print Network [OSTI]

    Kim, Hwajin

    2012-01-01

    J. H. Journal of Atmospheric Chemistry 1997 , 26, 189-193. (induced ageing, Atmospheric Chemistry and Physics, 11(21),emerging issues, Atmospheric Chemistry and Physics, 9(14),

  4. Secondary Organic Aerosol Formation From Aromatic Hydrocarbon

    E-Print Network [OSTI]

    Tang, Ping

    2013-01-01

    Sources and Role in Atmospheric Chemistry. Science 276,2.5. Journal of Atmospheric Chemistry 47, 79–100. Kleinman,toluene and benzene. Atmospheric Chemistry and Physics 7,

  5. Atmospheric Chemistry Theodore S. Dibble

    E-Print Network [OSTI]

    Dibble, Theodore

    SYLLABUS FOR Atmospheric Chemistry FCH 511 Fall 2014 Theodore S. Dibble Professor of Chemistry 421 in Required Text Seinfeld, J. H. and Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution nineteenth year at ESF, and my seventeenth year teaching FCH 511 (Atmospheric Chemistry). I have done a lot

  6. CHEMISTRY 3100 FALL SEMESTER 2005

    E-Print Network [OSTI]

    Simons, Jack

    CHEMISTRY 3100 FALL SEMESTER 2005 TEXT: "Chemistry 3100 Notes," (Parts 1-3 and 4-8) Ernst (required) "Inorganic Chemistry," Housecroft and Sharpe (recommended) CLASS: M W F: 8:05 - 9:25 PM, ROOM 140 JTB RECOMMENDED REFERENCES: *F. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry" *F. Cotton, G. Wilkinson

  7. CHEMISTRY SENIORS ANNUAL PRIZE COMPETITIONS

    E-Print Network [OSTI]

    Vertes, Akos

    (Analytical, Inorganic, Organic, and Physical) in chemistry. The Byrne Thurtell Burns Memorial PrizeCHEMISTRY SENIORS ANNUAL PRIZE COMPETITIONS Each spring the Chemistry Department sponsors a competition for two large monetary prizes to be awarded to graduating chemistry majors on Commencement weekend

  8. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    SciTech Connect (OSTI)

    Unger, N.; Menon, S.; Shindell, D. T.; Koch, D. M.

    2009-02-02

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  9. Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol 

    E-Print Network [OSTI]

    Benoit, Mark David

    2013-02-06

    of this research is to examine sea salt aerosols and their impact on polluted environments. Sea salt aerosols act as Cloud Condensation Nuclei (CCN) as well as providing a surface for heterogeneous reactions. Such reactions have implications for trace gases...

  10. Aerosol climate effects and air quality impacts from 1980 to 2030

    SciTech Connect (OSTI)

    Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim; Sednev, Igor; Shindell, Drew; Streets, David

    2007-11-26

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggest that future climate projections warrant particular scrutiny.

  11. Aerosol Science and Technology, 43:641652, 2009 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 43:641­652, 2009 Copyright © American Association for Aerosol Differential Mobility Analyzer for Measurement of the Irreversibility of the Hygroscopic Growth Factor T is the irreversibility of the hygroscopic growth fac- tor of aerosol particles. The instrument uses the hysteresis

  12. Pathways of sulfate enhancement by natural and anthropogenic mineral aerosols in China

    SciTech Connect (OSTI)

    Huang, Xin [Peking Univ., Beijing (China); Song, Yu [Peking Univ., Beijing (China); Zhao, Chun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Mengmeng [Peking Univ., Beijing (China); Zhu, Tong [Peking Univ., Beijing (China); Zhang, Qiang [Tsinghua Univ., Beijing (China); Zhang, Xiaoye [Chinese Academy of Meteorological Sciences, CMA, Beijing (China)

    2014-12-27

    China, the world’s largest consumer of coal, emits approximately 30 million tons of sulfur dioxide (SO?) per year. SO? is subsequently oxidized to sulfate in the atmosphere. However, large gaps exist between model-predicted and measured sulfate levels in China. Long-term field observations and numerical simulations were integrated to investigate the effect of mineral aerosols on sulfate formation. We found that mineral aerosols contributed a nationwide average of approximately 22% to sulfate production in 2006. The increased sulfate concentration was approximately 2 ?g m?ł in the entire China. In East China and the Sichuan Basin, the increments reached 6.3 ?g m?ł and 7.3 ?g m?ł, respectively. Mineral aerosols led to faster SO? oxidation through three pathways. First, more SO? was dissolved as cloud water alkalinity increased due to water-soluble mineral cations. Sulfate production was then enhanced through the aqueous-phase oxidation of S(IV) (dissolved sulfur in oxidation state +4). The contribution to the national sulfate production was 5%. Second, sulfate was enhanced through S(IV) catalyzed oxidation by transition metals. The contribution to the annual sulfate production was 8%, with 19% during the winter that decreased to 2% during the summer. Third, SO? reacts on the surface of mineral aerosols to produce sulfate. The contribution to the national average sulfate concentration was 9% with 16% during the winter and a negligible effect during the summer. The inclusion of mineral aerosols does resolve model discrepancies with sulfate observations in China, especially during the winter. These three pathways, which are not fully considered in most current chemistry-climate models, will significantly impact assessments regarding the effects of aerosol on climate change in China.

  13. Researchers Model Impact of Aerosols Over California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu,...

  14. Aerosol Retrieval Using Remote-sensed Observations

    E-Print Network [OSTI]

    Wang, Yueqing

    2012-01-01

    4.1.2 Baltimore and the DRAGONaround Baltimore . . . . . . . . . . . . . . . . . . . 4.1.4component aerosol 1 for Baltimore-Washington region on June

  15. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    they can have either cooling or warming effects. Lighter-colored organic carbon particles cool regions of the planet by scattering sunlight back into space. Other aerosol particles...

  16. Chemistry Student Handbook College of Science

    E-Print Network [OSTI]

    Hickman, Mark

    Chemistry Student Handbook College of Science React. Science #12;Contents 2 Welcome to the Department of Chemistry 2 Course Advice 3 What is Chemistry? 4 Career Profiles in Chemistry 5 An Undergraduate Degree in Chemistry 6 Chemistry Streams 13 Chemistry Honours Programme 14 Research

  17. Reaction chemistry of cerium

    SciTech Connect (OSTI)

    1997-01-01

    It is truly ironic that a synthetic organic chemist likely has far greater knowledge of the reaction chemistry of cerium(IV) than an inorganic colleague. Cerium(IV) reagents have long since been employed as oxidants in effecting a wide variety of organic transformations. Conversely, prior to the late 1980s, the number of well characterized cerium(IV) complexes did not extend past a handful of known species. Though in many other areas, interest in the molecular chemistry of the 4f-elements has undergone an explosive growth over the last twenty years, the chemistry of cerium(IV) has for the most part been overlooked. This report describes reactions of cerium complexes and structure.

  18. Building America Webinar: Sealing of Home Enclosures with Aerosol...

    Energy Savers [EERE]

    Sealing of Home Enclosures with Aerosol Particles Building America Webinar: Sealing of Home Enclosures with Aerosol Particles This webinar was presented by research team Building...

  19. The Indirect and Semi-Direct Aerosol Campaign

    SciTech Connect (OSTI)

    Ghan, Steve

    2014-03-24

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  20. ARM - Field Campaign - Aerosol and Cloud Experiments in the Eastern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    horizontal variabilities of aerosol, trace gases, cloud, drizzle, and atmospheric thermodynamics are critically needed for understanding and quantifying the budget of MBL aerosol,...

  1. The Indirect and Semi-Direct Aerosol Campaign

    ScienceCinema (OSTI)

    Ghan, Steve

    2014-06-12

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  2. Computational Chemistry Robots

    E-Print Network [OSTI]

    Townsend, Joseph A; Murray-Rust, Peter; Tyrrell, Simon M; Zhang, Yong

    stream_source_info ACS2005_final.ppt.txt stream_content_type text/plain stream_size 6280 Content-Encoding UTF-8 stream_name ACS2005_final.ppt.txt Content-Type text/plain; charset=UTF-8 Computational Chemistry Robots ACS Sep 2005... Computational Chemistry Robots J. A. Townsend, P. Murray-Rust, S. M. Tyrrell, Y. Zhang jat45@cam.ac.uk Can high-throughput computation provide a reliable “experimental” resource for molecular properties? Can protocols be automated? Can we believe the results...

  3. Laser ablation in analytical chemistry - A review

    E-Print Network [OSTI]

    Russo, Richard E.; Mao, Xianglei; Liu, Haichen; Gonzalez, Jhanis; Mao, Samuel S.

    2001-01-01

    Encyclopedia of Analytical Chemistry, John Wiley & Sons,applications in analytical chemistry. Matrix independentLaser Ablation in Analytical Chemistry - A Review Richard E.

  4. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  5. Lifetimes and eigenstates in atmospheric chemistry

    E-Print Network [OSTI]

    Prather, Michael J

    1994-01-01

    Perturbation dynamics in atmospheric chemistry. J. Geophys.isotopic variations in atmospheric chemistry. Geophys. Res.M. et al. 2001 Atmospheric chemistry and greenhouse gases (

  6. Atmospheric chemistry of an Antarctic volcanic plume

    E-Print Network [OSTI]

    2010-01-01

    L. , et al. (2010), Atmospheric chemistry results from theI. , et al. (2006), Atmospheric chemistry of a 33 – 34 hourvolcanic eruptions on atmospheric chemistry, Chem. Geol. ,

  7. “Greening Up” Cross-Coupling Chemistry

    E-Print Network [OSTI]

    Lipshutz, Bruce H.; Abela, Alexander R.; Boškovi?, Žarko V.; Nishikata, Takashi; Duplais, Christophe; Krasovskiy, Arkady

    2010-01-01

    today. Insofar as green chemistry is concerned, however,Handbook of organopalladium chemistry for organic synthesis.Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH,

  8. CMR: Chemistry and Metallurgy Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CMR: Chemistry and Metallurgy Research Facility CMR: Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR)...

  9. Atmospheric chemistry of an Antarctic volcanic plume

    E-Print Network [OSTI]

    2010-01-01

    ET AL. : EREBUS PLUME CHEMISTRY Horrocks, L. A. , C.et al. (2010), Atmospheric chemistry results from the ANTCI2007), Reactive halogen chemistry in volca- nic plumes, J.

  10. Chemistry at the Dirac Point of Graphene

    E-Print Network [OSTI]

    Sarkar, Santanu

    2013-01-01

    Haddon, R. C. Covalent Chemistry for Graphene Electronics.P. K. ; Yang, J. X. The Chemistry of Graphene. J. Mater.R. C. Organometallic Chemistry of Extended Periodic ?-

  11. Home / Chemistry / Chemistry (general) Angewandte Chemie International Edition

    E-Print Network [OSTI]

    Jo, Moon-Ho

    JOURNALS Home / Chemistry / Chemistry (general) Angewandte Chemie International Edition See Also: Angewandte Chemie Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim View all previous titles

  12. Zach Harmon Air Chemistry

    E-Print Network [OSTI]

    Toohey, Darin W.

    in the Troposphere Summary of Problem/Impact United States dependency on foreign oil and increased energy consumptionZach Harmon 810907207 Air Chemistry Natural Gas Production Impacts on levels of ozone administration to encourage fast growth to reduce dependency of foreign oil and be energy independent. It

  13. Chemistry & Biology Brief Communication

    E-Print Network [OSTI]

    Herschlag, Dan

    . In each of these cases the native hydroxyl group interacts with a purine exocy- clic amine. Our resultsChemistry & Biology Brief Communication 20 -Fluoro Substituents Can Mimic Native 20 -Hydroxyls signature for tertiary interac- tions between 20 -hydroxyl groups and exocyclic amino groups within RNA

  14. Chemistry & Biology Perspective

    E-Print Network [OSTI]

    Williams, Loren

    Chemistry & Biology Perspective The Origin of RNA and ``My Grandfather's Axe'' Nicholas V. Hud,1 *Correspondence: hud@gatech.edu http://dx.doi.org/10.1016/j.chembiol.2013.03.012 The origin of RNA is one

  15. CHEMISTRY AND TOXICITY OF

    E-Print Network [OSTI]

    ) primary treated domestic sewage from greater Vancouver (Annacis Island Wastewater Treatment Plant); (2#12;CHEMISTRY AND TOXICITY OF THREE WASTEWATERS DOE FRAP 1993-08 Prepared for Environment Canada wastewater characterization study in April and May 1992. Three representative effluent types were sampled: (1

  16. Recovery Boiler Corrosion Chemistry

    E-Print Network [OSTI]

    Das, Suman

    11/13/2014 1 Recovery Boiler Corrosion Chemistry Sandy Sharp and Honghi Tran Symposium on Corrosion of a recovery boiler each cause their own forms of corrosion and cracking Understanding the origin of the corrosive conditions enables us to operate a boiler so as to minimize corrosion and cracking select

  17. Chemistry and Chemical Biology

    E-Print Network [OSTI]

    Linhardt, Robert J.

    /polymeric materials for electronics or energy storage, and polyelectrolyte membranes for fuel cell applications. http projects in emerging fields of science and technology that lie at the intersection between chemistry Biology at Rensselaer invites applications from students interested in pursuing a Ph.D. degree

  18. Chemistry 2B Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2B Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  19. Chemistry 2A Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2A Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  20. Chemistry 2C Laboratory Manual

    E-Print Network [OSTI]

    Guo, Ting

    Chemistry 2C Laboratory Manual Standard Operating Procedures Department of Chemistry University # ____________ Laboratory Information Teaching Assistant's Name _______________________ Laboratory Section Number _______________________ Laboratory Room Number _______________________ Dispensary Room Number 1060 Sciences Lab Building Location

  1. Carbonaceous Aerosol Study Using Advanced Particle Instrumentation

    E-Print Network [OSTI]

    Qi, Li

    2010-01-01

    6 6.1 Introduction Biomass combustion emissions contributeEmissions of trace gases and aerosols during the open combustion of biomassbiomass burning work explored the evolution of organic aerosol emissions as a function of modified combustion efficiency with correlations drawn between levoglucosan emissions

  2. Optimal Estimation Retrieval Aerosol Microphysical Properties

    E-Print Network [OSTI]

    Oxford, University of

    ) the validation of this algorithm on the basis of synthetic extinction data, and (3) application of the new algorithm to SAGE II measurements of stratospheric background aerosol. The validation results indicate that the new method is able to retrieve the particle size of typical background aerosols reasonably well

  3. Atmospheric aerosol light scattering and polarization peculiarities

    E-Print Network [OSTI]

    Patlashenko, Zh I

    2015-01-01

    This paper considers environmental problems of natural and anthropogenic atmospheric aerosol pollution and its global and regional monitoring. Efficient aerosol investigations may be achieved by spectropolarimetric measurements. Specifically second and fourth Stokes parameters spectral dependencies carry information on averaged refraction and absorption indexes and on particles size distribution functions characteristics.

  4. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    SciTech Connect (OSTI)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  5. ARM Cloud Aerosol Precipitation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation Data Management Facility PlotsProducts (VAP) VAP38 ARM6Aerosol

  6. Department of Chemistry Undergraduate Thesis

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    Department of Chemistry Undergraduate Thesis Timeline and Requirements (Updated October, 2013) Requirement for Application to the Chemistry Thesis Program 1. Must have at least one semester or summer of Undergraduate Education to waive the Dean's List requirement. 3. To write a thesis in chemistry, the student

  7. Chemistry Department Colloquium: Spring, 2012

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Chemistry Department Colloquium: Spring, 2012 Friday, March 16; 3:30 Seminar Hall (room 1315 Chemistry) Lost in Translation: How Regulators Use Science and How Scientists Can Help Bridge Gaps Stephanie to combine her Chemistry background with a legal education to improve the use of science in environmental

  8. Marquette University Department of Chemistry

    E-Print Network [OSTI]

    Reid, Scott A.

    Marquette University Department of Chemistry #12;Do You Want A Career that will.... Directly your ideas with others? A Marquette Chemistry degree will prepare you for advanced study or for a job right after graduation! #12;Career Possibilities for Chemistry Students Health professions Industry

  9. RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL

    Office of Scientific and Technical Information (OSTI)

    The early days Richards, P. 38 RADIATION CHEMISTRY, RADIOCHEMISTRY, AND NUCLEAR CHEMISTRY; NUCLEAR MEDICINE; HISTORICAL ASPECTS; TECHNETIUM 99; COLLOIDS; MOLYBDENUM...

  10. AEROSOL ABSORPTION IN CLOUDY SCENES USING PASSIVE SATELLITE INSTRUMENTS

    E-Print Network [OSTI]

    Graaf, Martin de

    AEROSOL ABSORPTION IN CLOUDY SCENES USING PASSIVE SATELLITE INSTRUMENTS M. de Graaf, L.G. Tilstra information has become available from active space-based sensors and some dedicated field campaigns on aerosol-absorption, is the Absorbing Aerosol Index (AAI), which can indicate absorbing aerosols overlying clouds. The AAI is available

  11. NEAR-FIELD IMAGING OF OBSTACLES Peijun Li and Yuliang ...

    E-Print Network [OSTI]

    2015-01-15

    applications in modern science and technology, such as nanotechnology, biology, information storage, and surface chemistry. Using near-field imaging, we

  12. Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2

    E-Print Network [OSTI]

    Tilstra, Gijsbert

    Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME the resulting time series, we use tropospheric NO2 data as a reference in the regions dominated by biomass sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

  13. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect (OSTI)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  14. Boundary Layer Aerosol Chemistry during TexAQS/GoMACCS 2006: Insights into Aerosol Sources and Transformation Processes

    E-Print Network [OSTI]

    atmosphere and thus have a substantial impact on the radiative energy balance over the Gulf of Mexico3,4 , S.C. Tucker3,4 , W.A. Brewer3 , and A. Stohl5 1 Pacific Marine Environmental Laboratory, NOAA of Washington, Seattle, Washington, USA 3 Cooperative Institute for Research in the Environmental Sciences

  15. Solid State Chemistry Chemistry 3130 & 7130 FallB 2013 Oct 21Dec 13, 2013

    E-Print Network [OSTI]

    Simons, Jack

    -5784) Inorganic Chemistry Majors Organic Chemistry Majors Physical Chemistry Majors Analytical Chemistry MajorsSolid State Chemistry Chemistry 3130 & 7130 FallB 2013 Oct 21­Dec 13, 2013 Prof. Joel S. Miller information by email) Text: Solid State Chemistry, 4th Ed. L. E. Smart and E. A. Moore I. Overview of solid

  16. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  17. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore »cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated that they will be included in a future public release of WRF-Chem.« less

  18. Extending the physicochemical characterization of aerosol particles in California

    E-Print Network [OSTI]

    Zauscher, Melanie Dorothy

    2012-01-01

    Cloud Formation, Analytical Chemistry, 83 (6), 2271-2278.Portable Atofms, Analytical Chemistry, 69 (20), 4083- Gard,Mass Spectrometer, Analytical Chemistry, 81 (5), 1792-1800.

  19. OH-initiated heterogeneous aging of highly oxidized organic aerosol

    E-Print Network [OSTI]

    Kessler, Sean H.

    2013-01-01

    Abbatt, J. P. D. Atmospheric Chemistry and Physics 2007, 7,Wilson, K. R. Atmospheric Chemistry and Physics DiscussionsKanakidou, M. et al. Atmospheric Chemistry and Physics 2005,

  20. Chemical and Physical Investigation of Secondary Organic Aerosol Formation

    E-Print Network [OSTI]

    Nakao, Shunsuke

    2012-01-01

    Saunders, R. W. : Atmospheric Chemistry of Iodine, Chemicalmodelling: a review, Atmospheric Chemistry and Physics, 5,emerging issues, Atmospheric Chemistry and Physics, 9, 5155-

  1. Group Report: Connections between Aerosol Properties

    E-Print Network [OSTI]

    effect and causes surface warming. Absorption of solar or thermal radiation within the atmospheric column-influencing constituents (such as green- house gases) by this process, anthropogenic aerosols can contribute to climate

  2. Aerosol Condensational Growth in Cloud Formation 

    E-Print Network [OSTI]

    Geng, Jun

    2010-10-12

    A code for the quasi-stationary solution of the coupled heat and mass transport equations for aerosols in a finite volume was developed. Both mass and heat are conserved effectively in the volume, which results in a ...

  3. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    SciTech Connect (OSTI)

    Alvarado, Samuel R. [Ames Laboratory; Guo, Yijun [Ames Laboratory; Ruberu, T. Purnima A. [Ames Laboratory; Tavasoli, Elham [Ames Laboratory; Vela, Javier [Ames Laboratory

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describe our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).

  4. Aerosol remote sensing in polar regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph; et al

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of Ĺngström's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i)more »a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winter–spring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ĺlesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.« less

  5. Aerosol remote sensing in polar regions

    SciTech Connect (OSTI)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of Ĺngström's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i) a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winter–spring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ĺlesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.

  6. Aerosol fabrication methods for monodisperse nanoparticles

    DOE Patents [OSTI]

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  7. Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect (OSTI)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  8. Development of plutonium aerosol fractionation system 

    E-Print Network [OSTI]

    Mekala, Malla R.

    1993-01-01

    DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

  9. ALS Chemistry Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01)19^ U N I T E DALSALS Chemistry Lab

  10. ALS Chemistry Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01)19^ U N I T E DALSALS Chemistry

  11. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect (OSTI)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  12. Research by BNL investigators was performed under the auspices of the U.S. Department of Energy under Contract No. DE-AC02-DOE research on atmospheric aerosols

    E-Print Network [OSTI]

    Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP of Energy under Contract No. DE-AC02- 98CH10886. BNL-62609 DOE research on atmospheric aerosols S are an programs dealing with atmospheric science, subsurface science, environmental radon, ocean margins

  13. Aerosol-cloud radiative effects from passive satellite instruments Mar%n de Graaf

    E-Print Network [OSTI]

    Graaf, Martin de

    Satellite measurements of absorbing aerosols Reflectance Difference Method Cloud modelling Results Outlook Aerosol-Radiation Interac. Aerosol-Cloud Interac. Total anthropogenic Solar irradiance #12;Absorbing aerosols: SCIAMACHY Results Outlook #12;SCIAMACHY on ESA's Environmetal Satellite: ENVISAT Polar orbi

  14. Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds

    E-Print Network [OSTI]

    Altaratz, O

    The hygroscopic growth of aerosols is controlled by the relative humidity (RH) and changes the aerosols' physical and hence optical properties. Observational studies of aerosol–cloud interactions evaluate the aerosol ...

  15. Global atmospheric chemistry: Integrating over fractional cloud cover

    E-Print Network [OSTI]

    Neu, Jessica L; Prather, Michael J; Penner, Joyce E

    2007-01-01

    trace gases and atmospheric chemistry, in Climate Change2007 Global atmospheric chemistry: Integrating over2007), Global atmospheric chemistry: Integrating over

  16. FNH 301 FOOD CHEMISTRY I Principles of Food Chemistry

    E-Print Network [OSTI]

    FNH 301 FOOD CHEMISTRY I Principles of Food Chemistry Instructor: Dr. David Kitts Department of Food Sciences Room 243 ­ Food, Nutrition & Health Building 2205 East Mall Food, Nutrition & Health Faculty of Land and Food Systems ­ University of British Columbia Phone: 604-822-5560; Fax: 604

  17. Aerosol Science and Technology, 48:803812, 2014 Copyright C American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 48:803­812, 2014 Copyright C American Association for Aerosol of particle growth in the atmosphere, and many properties of the resulting mixed particles depend on organic. In this article, analytic equations are derived p(;d) for condensational growth in a continuously mixed flow

  18. Aerosol Science and Technology, 45:244261, 2011 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 45:244­261, 2011 Copyright © American Association for Aerosol University, Cambridge, Massachusetts, USA The hygroscopic phase transitions and growth factors of mixed chemical composition on phase transitions. The hygroscopic growth factors of the mixed particles were

  19. Aerosol Science and Technology, 38:12061222, 2004 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    to Combustion-Generated Soot Aerosols as a Function of Fuel Equivalence Ratio Jay G. Slowik,1 K. Stainken,1 Paul factor, size, and fractal dimension of soot aerosol particles generated in a propane/O2 flame were on the fuel equivalence ratio. Type 1: for propane/O2), dva was nearly constant and independent

  20. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  1. Study Abroad in Chemistry and Biochemistry

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    Study Abroad in Chemistry and Biochemistry Department of Chemistry and Biochemistry York Hall for courses that may fulfill Chemistry and/or Biochemistry & other requirements to add to your Academic Planning Form Meet with your Chemistry and/or Biochemistry & college advisors Study Abroad as a Chemistry/Biochemistry

  2. ChemLin Home Chemistry index

    E-Print Network [OSTI]

    McGraw, Kevin J.

    Publishing press releases Chemistry Conferences German News Companies and products Chemicals Job market ChemChemLin Home Chemistry index Chemistry A to Z News Latest news News archive New chemistry sitesLin inside © 2004 Digitalverlag GmbH ASU researchers finds novel chemistry at work to provide parrot

  3. DIVISION OF MARINE AND ATMOSPHERIC CHEMISTRY

    E-Print Network [OSTI]

    Shyu, Mei-Ling

    DIVISION OF MARINE AND ATMOSPHERIC CHEMISTRY The missions of the Division of Marine and Atmospheric Chemistry (MAC) are to carry out broadly based research on the chemistry of the atmosphere and marine and stratosphere. Atmospheric Chemistry Research activities in atmospheric chemistry and modeling are diverse

  4. Chemistry Major and Minor At A Glance

    E-Print Network [OSTI]

    Vertes, Akos

    Chemistry Major and Minor At A Glance Major I ­ Pre-professional (Medicine, Dentistry, Business, Law, Engineering) Major II ­ ACS Certified e.g. Graduate Study or Entry Level Chemistry Employment. Major III ­ Forensic Chemistry Major IV** ­ Biochemistry Option Chemistry Minor General Chemistry I & II

  5. School of Chemistry Centre for Chemical and

    E-Print Network [OSTI]

    Birmingham, University of

    School of Chemistry Centre for Chemical and Biochemical Analysis High quality analytical services of Chemistry Edgbaston Birmingham B15 2TT Email: chemistry4business@contacts.bham.ac.uk www to excellence in research and teaching, the School of Chemistry is one of the UK's leading chemistry departments

  6. Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil

    E-Print Network [OSTI]

    Sparks, Donald L.

    Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil chemistry with respect to environmental reactions between soils and other natural contemporary training in the basics of soil chemistry and applications to real-world environmental concerns

  7. STUDENT POSITIONS IN CHEMISTRY PROGRAM Subject to budgetary approval, the Program in Chemistry anticipates hiring student

    E-Print Network [OSTI]

    Northern British Columbia, University of

    (TEACHING) FOR UPPER YEAR CHEMISTRY LABORATORY Organic, Biochemistry, Analytical, and Environmental MARKERS, Biochemistry, Analytical, Environmental Marker for upper chemistry courses ­ hiring based on lecturerSTUDENT POSITIONS ­ IN CHEMISTRY PROGRAM Subject to budgetary approval, the Program in Chemistry

  8. Year 3 Programme and Module BSc in Chemistry

    E-Print Network [OSTI]

    Rzepa, Henry S.

    Year 3 Programme and Module Handbook 2014-2015 BSc in Chemistry BSc in Chemistry with Analytical Chemistry BSc in Medicinal Chemistry Integrated Masters in Chemistry Integrated Masters in Chemistry with Analytical Chemistry Integrated Masters in Medicinal Chemistry BSc in Chemistry and Mathematics Integrated

  9. Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)

    SciTech Connect (OSTI)

    Fast J. D.; Springston S.; Gustafson Jr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar. WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere that are then entrained into the growing boundary layer the subsequent day.

  10. Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)

    SciTech Connect (OSTI)

    Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar; WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere which then can be entrained into the growing boundary layer the subsequent day.

  11. http://chemistry.usc.edu/ Tel: (213) 7407036 UndergraduateProgramsDepartment of Chemistry

    E-Print Network [OSTI]

    Rohs, Remo

    http://chemistry.usc.edu/ Tel: (213) 7407036 UndergraduateProgramsDepartment of Chemistry Chemistry NanoscienceChemical BiologyBiochemistryResearch Five Majors, One Vision #12;Department of Chemistry, Undergraduate Programs Information about the programs B.S. degree in Chemistry: The B.S. degree in Chemistry

  12. ATMOSPHERIC CHEMISTRY - RESPONSE TO HUMAN INFLUENCE

    E-Print Network [OSTI]

    LOGAN, J; PRATHER, M; WOFSY, S; MCELROY, M

    1978-01-01

    Trans. II 70, 253. ATMOSPHERIC CHEMISTRY Clyne, M. A. A. &data for modelling atmospheric chemistry. NBS Technical NoteChem. 80, 2711. ATMOSPHERIC CHEMISTRY Sanadze, G. A. 1963 On

  13. IMPROVED QUASISTEADYSTATEAPPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION #

    E-Print Network [OSTI]

    Jay, Laurent O.

    IMPROVED QUASI­STEADY­STATE­APPROXIMATION METHODS FOR ATMOSPHERIC CHEMISTRY INTEGRATION # L. O. JAY QSSA are presented. Key words. atmospheric chemistry, sti# ordinary di#erential equations, quasi PII. S1064827595283033 1. Introduction. As our scientific understanding of atmospheric chemistry

  14. Whither Physical Organic Chemistry? Wither? Or Wider?

    E-Print Network [OSTI]

    Perrin, Charles L

    2015-01-01

    Mechanism in Organic Chemistry, Cornell University Press,Sommer, A. Molnar, Superacid Chemistry 2 ed, John Wiley, NewYork,, . C. L. Perrin, Chemistry in Britain 1972, 8, 163-

  15. CHEMISTRY DEPARTMENT REQUEST FOR CAPSTONE RESEARCH ADVISOR

    E-Print Network [OSTI]

    Sanyal, Suman

    CHEMISTRY DEPARTMENT REQUEST FOR CAPSTONE RESEARCH ADVISOR The capstone project should reflect student's ability to integrate chemistry knowledge gained through the coursework, to learn outside the classroom, and to demonstrate independence. An intellectual contribution within the field of chemistry

  16. CHEMICAL SENSORS School of Chemistry and Biochemistry

    E-Print Network [OSTI]

    Sherrill, David

    students. Prerequisites include an introductory course in physical or analytical chemistry, undergraduateCHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors is an interdisciplinary topic covering area of science and engineering that lies between chemistry, physics, materials

  17. CHEM 6283 -Electroanalytical Chemistry Course Syllabus

    E-Print Network [OSTI]

    Sherrill, David

    journals: Langmuir Analytical Chemistry J. Electrochemical Society Electrochimica Acta J. ElectroanalyticalCHEM 6283 - Electroanalytical Chemistry Course Syllabus Catalog Description: (3-0-3) Coulometry examination of theory and practice of electroanalytical chemistry. Students completing this course will be

  18. Model analysis of the anthropogenic aerosol effect on clouds over East Asia

    SciTech Connect (OSTI)

    Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Zhao, Chun

    2012-01-16

    A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (PI) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm{sup -3} over the ocean and East China, 400 cm{sup -3} over Central and Southwest China, and less than 200 cm{sup -3} over North China. The cloud liquid water path (LWP) increased by 40-60 g m{sup -2} over the ocean and Southeast China and 30 g m{sup -2} over Central China; the LWP increased less than 5 g m{sup -2} or decreased by 5 g m{sup -2} over North China. The effective radius (Re) decreased by more than 4 {mu}m over Southwest, Central, and Southeast China and 2 {mu}m over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250-400 cm{sup -3}, the LWP increased by approximately 30-50 g m{sup -2}, and Re decreased by approximately 3 {mu}m over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative forcing strengthened by 30 W m{sup -2} over the ocean and 10 W m{sup -2} over Southeast China, and it weakened slightly by approximately 2-10 W m{sup -2} over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m{sup -2} over Southeast and North China and weakened by 10 W m{sup -2} over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.

  19. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    SciTech Connect (OSTI)

    Mazzoleni, Claudio; Kumar, Sumit; Wright, Kendra; Kramer, Louisa; Mazzoleni, Lynn; Owen, Robert; Helmig, Detlev

    2014-12-09

    The scientific scope of the project was to exploit the unique location of the Pico Mountain Observatory (PMO) located in the summit caldera of the Pico Volcano in Pico Island in the Azores, for atmospheric studies. The observatory, located at 2225m a.s.l., typically samples free tropospheric aerosols laying above the marine low-level clouds and long-range transported from North America. The broad purpose of this research was to provide the scientific community with a better understanding of fundamental physical processes governing the effects of aerosols on radiative forcing and climate; with the ultimate goal of improving our abilities to understand past climate and to predict future changes through numerical models. The project was 'exploratory' in nature, with the plan to demonstrate the feasibility of deploying for the first time, an extensive aerosol research package at PMO. One of the primary activities was to test the deployment of these instruments at the site, to collect data during the 2012 summer season, and to further develop the infrastructure and the knowledge for performing novel research at PMO in follow-up longer-term aerosol-cloud studies. In the future, PMO could provide an elevated research outpost to support the renewed DOE effort in the Azores that was intensified in 2013 with the opening of the new sea-level ARM-DOE Eastern North Atlantic permanent facility at Graciosa Island. During the project period, extensive new data sets were collected for the planned 2012 season. Thanks to other synergistic activities and opportunities, data collection was then successfully extended to 2013 and 2014. Highlights of the scientific findings during this project include: a) biomass burning contribute significantly to the aerosol loading in the North Atlantic free troposphere; however, long-range transported black carbon concentrations decreased substantially in the last decade. b) Single black carbon particles – analyzed off-line at the electron microscope – were often very compacted, suggesting cloud processing and exhibiting different optical properties from fresh emissions. In addition, black carbon was found to be sometimes mixed with mineral dust, affecting its optical properties and potential forcing. c) Some aerosols collected at PMO acted as ice nuclei, potentially contributing to cirrus cloud formation during their transport in the upper free troposphere. Identified good ice nuclei were often mineral dust particles. d) The free tropospheric aerosols studied at PMO have relevance to low level marine clouds due, for example, to synoptic subsidence entraining free tropospheric aerosols into the marine boundary layer. This has potentially large consequences on cloud condensation nuclei concentrations and compositions in the marine boundary layer; therefore, having an effect on the marine stratus clouds, with potentially important repercussions on the radiative forcing. The scientific products of this project currently include contributions to two papers published in the Nature Publishing group (Nature Communications and Scientific Reports), one paper under revision for Atmospheric Chemistry and Physics, one in review in Geophysical Research Letters and one recently submitted to Atmospheric Chemistry and Physics Discussion. In addition, four manuscripts are in advanced state of preparation. Finally, twenty-eight presentations were given at international conferences, workshops and seminars.

  20. Non-intrusive characterization of heat transfer fluid aerosol formation 

    E-Print Network [OSTI]

    Krishna, Kiran

    2001-01-01

    in process equipment. Predictive models relating the aerosol formation distances, aerosol droplet size, and volume concentrations to bulk liquid pressure, temperature, fluid properties, leak size and ambient conditions are developed. These models will be used...

  1. The seasonality of aerosol properties in Big Bend National Park 

    E-Print Network [OSTI]

    Allen, Christopher Lee

    2007-04-25

    ), to characterize the seasonal variability of the Big Bend regions aerosol optical properties. Mass extinction efficiencies and relative humidity scattering enhancement factors were calculated for both externally and internally mixed aerosol populations for all size...

  2. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  3. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOE Patents [OSTI]

    Lee, Yin-Nan E. (East Setauket, NY); Weber, Rodney J. (Atlanta, GA)

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  4. Chemistry & Physics at Interfaces | Advanced Materials | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical transformations and...

  5. Stockroom Authorization Department of Chemistry & Biochemistry

    E-Print Network [OSTI]

    Morgan, Stephen L.

    Stockroom Authorization Department of Chemistry & Biochemistry University of South Carolina, GSRC supplies from the Dept. of Chemistry & Biochemistry Stockroom must bring with them this completed pre

  6. Chemistry & Biology Deciphering the Late Biosynthetic Steps

    E-Print Network [OSTI]

    Zhao, Huimin

    Chemistry & Biology Article Deciphering the Late Biosynthetic Steps of Antimalarial Compound FR Engineering 2Institute for Genomic Biology 3Department of Microbiology 4Department of Chemistry 5Departments

  7. Nanostructure, Chemistry and Crystallography of Iron Nitride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

  8. Screen Electrode Materials & Cell Chemistries and Streamlining...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Cell Chemistries and Streamlining Optimization of Electrode Screen Electrode Materials & Cell Chemistries and Streamlining Optimization of Electrode 2010 DOE Vehicle Technologies...

  9. Observations of Secondary Organic Aerosol Production and Soot Aging under Atmospheric Conditions Using a Novel Environmental Aerosol Chamber 

    E-Print Network [OSTI]

    Glen, Crystal

    2012-02-14

    of the processes leading to SOA production under ambient gaseous and particulate concentrations as well as the impact these aerosol types have on climate is poorly understood. Although the majority of atmospheric aerosols scatter radiation either directly...

  10. AEROSOL-PRECIPITATION INTERACTIONS IN THE SOUTHERN APPALACHIAN MOUNTAINS

    E-Print Network [OSTI]

    AEROSOL-PRECIPITATION INTERACTIONS IN THE SOUTHERN APPALACHIAN MOUNTAINS A Thesis by GINGER MARIE of the requirements for the degree of MASTER OF ARTS May 2011 Department of Geography and Planning #12;AEROSOL-PRECIPITATION and Graduate Studies #12;Copyright by Ginger Marie Kelly 2011 All Rights Reserved #12;iv ABSTRACT AEROSOL-PRECIPITATION

  11. The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol

    SciTech Connect (OSTI)

    Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

    2011-10-03

    The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

  12. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-01-01

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore »and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day?1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II underlying the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less

  13. Radiative and thermodynamic responses to aerosol extinction profiles during the pre-monsoon month over South Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feng, Y.; Kotamarthi, V. R.; Coulter, R.; Zhao, C.; Cadeddu, M.

    2015-06-19

    Aerosol radiative effects and thermodynamic responses over South Asia are examined with a version of the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) for March 2012. Model results of Aerosol Optical Depth (AOD) and extinction profiles are analyzed and compared to satellite retrievals and two ground-based lidars located in the northern India. The WRF-Chem model is found to underestimate the AOD during the simulated pre-monsoon month and about 83 % of the model low-bias is due to aerosol extinctions below ~2 km. Doubling the calculated aerosol extinctions below 850 hPa generates much better agreement with the observed AODmore »and extinction profiles averaged over South Asia. To separate the effect of absorption and scattering properties, two runs were conducted: in one run (Case I), the calculated scattering and absorption coefficients were increased proportionally, while in the second run (Case II) only the calculated aerosol scattering coefficient was increased. With the same AOD and extinction profiles, the two runs produce significantly different radiative effects over land and oceans. On the regional mean basis, Case I generates 48 % more heating in the atmosphere and 21 % more dimming at the surface than Case II. Case I also produces stronger cooling responses over the land from the longwave radiation adjustment and boundary layer mixing. These rapid adjustments offset the stronger radiative heating in Case I and lead to an overall lower-troposphere cooling up to -0.7 K day?1, which is smaller than that in Case II. Over the ocean, direct radiative effects dominate the heating rate changes in the lower atmosphere lacking such surface and lower atmosphere adjustments due to fixed sea surface temperature, and the strongest atmospheric warming is obtained in Case I. Consequently, atmospheric dynamics (boundary layer heights and meridional circulation) and thermodynamic processes (water vapor and cloudiness) are shown to respond differently between Case I and Case II underlying the importance of determining the exact portion of scattering or absorbing aerosols that lead to the underestimation of aerosol optical depth in the model. In addition, the model results suggest that both direct radiative effect and rapid thermodynamic responses need to be quantified for understanding aerosol radiative impacts.« less

  14. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  15. Advanced Chemistry Basins Model

    SciTech Connect (OSTI)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  16. Organometallic chemistry of metal surfaces

    SciTech Connect (OSTI)

    Muetterties, E.L.

    1981-06-01

    The organometallic chemistry of metal surfaces is defined as a function of surface crystallography and of surface composition for a set of cyclic hydrocarbons that include benzene, toluene, cyclohexadienes, cyclohexene, cyclohexane, cyclooctatetraene, cyclooctadienes, cyclooctadiene, cycloheptatriene and cyclobutane. 12 figures.

  17. National Nuclear Chemistry Summer School

    Broader source: Energy.gov [DOE]

    he Division of Nuclear Chemistry and Technology of the American Chemical Society (ACS) is sponsoring two INTENSIVE six-week Summer Schools in Nuclear and Radiochemistry for undergraduates. Funding...

  18. Palladium chemistry in chemical biology 

    E-Print Network [OSTI]

    Yusop, Rahimi Muhammad

    2011-11-23

    A range of fluorescein derivatives were synthesised via Pd0-mediated cross-coupling chemistry of the mono triflate of fluorescein with a variety of boronic acids and the optical properties of each dye was studied. Among ...

  19. National Nuclear Chemistry Summer School

    Broader source: Energy.gov [DOE]

    The Division of Nuclear Chemistry and Technology of the American Chemical Society (ACS) is sponsoring two INTENSIVE six-week Summer Schools in Nuclear and Radiochemistry for undergraduates. Funding is provided by the US Department of Energy.

  20. Hot atom chemistry and radiopharmaceuticals

    SciTech Connect (OSTI)

    Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J.

    2012-12-19

    The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

  1. Flattening coefficient of aerosols collected on treated slides 

    E-Print Network [OSTI]

    Olan-Figueroa, Excel

    1981-01-01

    was found to be 1. 338, and for DOP, 1. 354. There is no apparent variation of F with particle diameter for aerosols in the 2. 7-29. 1 um range. The slightly lower value of F for oleic acid suggests that the contact angle of oleic acid with respect... monodisoerse aerosols in the 1. 5 to 50 um diameter range, the vibratino j et monodisperse aerosol generator has been used. The monodisperse aerosols generated by this device can be considered as an "aerosol standard" since the size and concentration...

  2. Near real time vapor detection and enhancement using aerosol adsorption

    DOE Patents [OSTI]

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  3. UNIVERSITY OF CALIFORNIA, SANTA CRUZ DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UNIVERSITY OF CALIFORNIA, SANTA CRUZ DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY Lecturer Pool The Department of Chemistry and Biochemistry at the University of California, Santa Cruz, invites applications specialty within chemistry and biochemistry (including general chemistry, organic chemistry, inorganic

  4. Department of Chemistry and Biochemistry U.C. San Diego

    E-Print Network [OSTI]

    Continetti, Robert E.

    around four main areas: biochemistry, inorganic, organic, and physical/analytical chemistry. 2 four Divisions: Biochemistry, Inorganic Chemistry, Organic Chemistry, and Physical/Analytical Chemistry 1 Department of Chemistry and Biochemistry U.C. San Diego DEPARTMENTAL BYLAWS Revised Version

  5. Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry

    E-Print Network [OSTI]

    Kroll, Jesse

    In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, ...

  6. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of ?-Pinene

    SciTech Connect (OSTI)

    Song, Chen; Zaveri, Rahul A.; Alexander, M. Lizabeth; Thornton, Joel A.; Madronich, Sasha; Ortega, John V.; Zelenyuk, Alla; Yu, Xiao-Ying; Laskin, Alexander; Maughan, A. D.

    2007-10-16

    Semi-empirical secondary organic aerosol (SOA) models typically assume a well-mixed organic aerosol phase even in the presence of hydrophobic primary organic aerosols (POA). This assumption significantly enhances the modeled SOA yields as additional organic mass is made available to absorb greater amounts of oxidized secondary organic gases than otherwise. We investigate the applicability of this critical assumption by measuring SOA yields from ozonolysis of ?-pinene (a major biogenic SOA precursor) in a smog chamber in the absence and in the presence of dioctyl phthalate (DOP) and lubricating oil seed aerosol. These particles serve as surrogates for urban hydrophobic POA. The results show that these POA did not enhance the SOA yields. If these results are found to apply to other biogenic SOA precursors, then the semi-empirical models used in many global models would predict significantly less biogenic SOA mass and display reduced sensitivity to anthropogenic POA emissions than previously thought.

  7. Two Hundred Fifty Years of Aerosols and Climate: The End of the Age of Aerosols

    SciTech Connect (OSTI)

    Smith, Steven J.; Bond, Tami C.

    2014-01-20

    Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

  8. Supramolecular chemistry and crystal engineering ASHWINI NANGIA

    E-Print Network [OSTI]

    Giri, Ranjit K.

    Supramolecular chemistry and crystal engineering ASHWINI NANGIA School of Chemistry, University. This article traces the evolution of supramolecular chemistry and crystal engineering starting from the early of Hyderabad, Hyderabad 500 046, India. e-mail: ashwini.nangia@gmail.com Advances in supramolecular chemistry

  9. Module Catalogue Bachelor of Science Chemistry

    E-Print Network [OSTI]

    Schubart, Christoph

    Module Catalogue Bachelor of Science Chemistry University of Regensburg 13.1.2014 The Bachelor of Science Chemistry at the University of Regensburg comprises the following modules: 1. Compulsory Courses: CHE-BSc-M 1 General Chemistry CHE-BSc-M 2 Mathematics CHE-BSc-M 3 Physics CHE-BSc-M 4 Chemistry

  10. 179Department of Chemistry Undergraduate Catalogue 201415

    E-Print Network [OSTI]

    the four major areas of chemistry, i.e. analytical, organic, inorganic and physical, and are strongly179Department of Chemistry Undergraduate Catalogue 2014­15 Department of Chemistry Chairperson: Karam, Pierre M. Instructors: Abi Rafi, Randa A.; Deeb, Hana H.; Sadek, Samar A. BS in Chemistry Mission

  11. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    SciTech Connect (OSTI)

    Bauer, Susanne E.; Menon, Surabi; Koch, Dorothy; Bond, Tami; Tsigaridis, Kostas

    2010-04-09

    Recently, attention has been drawn towards black carbon aerosols as a likely short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and its climate interactions. Black carbon is directly released as particle into the atmosphere, but then interacts with other gases and particles through condensation and coagulation processes leading to further aerosol growth, aging and internal mixing. A detailed aerosol microphysical scheme, MATRIX, embedded within the global GISS modelE includes the above processes that determine the lifecycle and climate impact of aerosols. This study presents a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing change is -0.56 W/m{sup 2} between 1750 and 2000. However, the direct and indirect aerosol effects are very sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing change can vary between -0.32 to -0.75 W/m{sup 2} depending on these carbonaceous particle properties. Assuming that sulfates, nitrates and secondary organics form a coating shell around a black carbon core, rather than forming a uniformly mixed particles, changes the overall net radiative forcing from a negative to a positive number. Black carbon mitigation scenarios showed generally a benefit when mainly black carbon sources such as diesel emissions are reduced, reducing organic and black carbon sources such as bio-fuels, does not lead to reduced warming.

  12. NEAR-FIELD IMAGING OF OBSTACLES Peijun Li and Yuliang Wang

    E-Print Network [OSTI]

    2014-06-16

    applications in modern science and technology, such as nanotechnology, biology, information storage, and surface chemistry. Using near-field imaging, we

  13. Results from simulated upper-plenum aerosol transport and aerosol resuspension experiments

    SciTech Connect (OSTI)

    Wright, A.L.; Pattison, W.L.

    1984-01-01

    Recent calculational results published as part of the Battelle-Columbus BMI-2104 source term study indicate that, for some LWR accident sequences, aerosol deposition in the reactor primary coolant system (PCS) can lead to significant reductions in the radionuclide source term. Aerosol transport and deposition in the PCS have been calculated in this study using the TRAP-MELT 2 computer code, which was developed at Battelle-Columbus; the status of validation of the TRAP-MELT 2 code has been described in an Oak Ridge National Laboratory (ORNL) report. The objective of the ORNL TRAP-MELT Validation Project, which is sponsored by the Fuel Systems Behavior Research Branch of the US Nuclear Regulatory Commission, is to conduct simulated reactor-vessel upper-plenum aerosol deposition and transport tests. The results from these tests will be used in the ongoing effort to validate TRAP-MELT 2. The TRAP-MELT Validation Project includes two experimental subtasks. In the Aerosol Transport Tests, aerosol transport in a vertical pipe is being studied; this geometry was chosen to simulate aerosol deposition and transport in the reactor-vessel upper-plenum. To date, four experiments have been performed; the results from these tests are presented in this paper. 7 refs., 4 figs., 4 tabs.

  14. INTRODUCTION Atmospheric aerosol particles influence the Earth's

    E-Print Network [OSTI]

    Wunderle, Stefan

    , scattering, and absorbing solar electromagnetic radiation and by modifying cloud properties due to their roleINTRODUCTION Atmospheric aerosol particles influence the Earth's radiation budget by reflecting to maximum cover a region once in the daytime. In contrary, up-to-date geostationary instruments like

  15. Experimental study of nuclear workplace aerosol samplers 

    E-Print Network [OSTI]

    Parulian, Antony

    1995-01-01

    consists of an inlet-elbow, a transport line, and a EL-900 CAM prototype manufactured by EG&G. Results show that only 12% of 10 []m aerodynamic diameter (AD) aerosol particles penetrate through the complete sampling system when it is operated at flow rate...

  16. CHEMISTRY 2011 Academic regulations for the Bachelor's degree in Chemistry 2011

    E-Print Network [OSTI]

    Bataillon, Thomas

    CHEMISTRY 2011 Academic regulations for the Bachelor's degree in Chemistry 2011 1. Framework) in Chemistry. Academic line and main subject areas of the degree The Bachelor's degree in Chemistry students a basic introduction to the Chemistry disciplines. In addition, the Bachelor's degree programme

  17. Air Pollution Physics and Chemistry EAS 6790 Home Work Assignment Ozone Chemistry 2

    E-Print Network [OSTI]

    Weber, Rodney

    1 Air Pollution Physics and Chemistry EAS 6790 Fall 2010 Home Work Assignment Ozone Chemistry 2 and Chemistry EAS 6790 Fall 2006 Home Work Assignment No. 4, Ozone Chemistry Problems 11.8 and 11.9 (sub-part 1 and 2 only). Daniel Jacob, Atmospheric Chemistry #12;2 Problem 2: 2 2. Consider an air parcel ventilated

  18. A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID

    E-Print Network [OSTI]

    Hohaus, T.

    In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

  19. EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality

    SciTech Connect (OSTI)

    Baer, Donald R.; Finlayson-Pitts, Barbara J.; Allen, Heather C.; Bertram, Allan K.; Grassian, Vicki H.; Martin, Scot T.; Penner, Joyce E.; Prather, Kimberly; Rasch, Philip J.; Signorell, Ruth; Smith, James N.; Wyslouzil, Barbara; Ziemann, Paul; Dabdub, Donald; Furche, Filipp; Nizkorodov, Sergey; Tobias, Douglas J.; Laskin, Julia; Laskin, Alexander

    2013-07-01

    This report contains the workshop scope and recommendations from the workshop attendees in identifying scientific gaps in new particle formation, growth and properties of particles and reactions in and on particles as well as the laboratory-focused capabilities, field-deployable capabilities and modeling/theory tools along with linking of models to fundamental data.

  20. Chemistry of Secondary Organic Aerosol Formation From the Reaction of Hydroxyl Radicals With Aromatic Compounds

    E-Print Network [OSTI]

    Strollo Gordon, Christen Michelle

    2013-01-01

    C(O)OR Carboxyl C(O)OH Hydroxyl CHOH Peroxide ROOH E1 NA 1oxidation of toluene with hydroxyl radicals. Atmos. Environ.relevant isoprene-derived hydroxyl epoxides. Environ. Sci.

  1. Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol

    E-Print Network [OSTI]

    Kroll, Jesse

    A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. ...

  2. Direct and semidirect aerosol effects of Southern African biomass burning aerosol

    SciTech Connect (OSTI)

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-21

    The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

  3. Review: engineering particles using the aerosol-through-plasma method

    SciTech Connect (OSTI)

    Phillips, Jonathan; Luhrs, Claudia C; Richard, Monique

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  4. Aerosol measurements with laser-induced breakdown spectroscopy

    E-Print Network [OSTI]

    Lithgow, Gregg Arthur

    2007-01-01

    Emission Spectrometry. Analytical Chemistry, vol. 40, no. 5,an aluminum alloy. Analytical Chemistry, vol. 41, no. 6, p.TrAC-Trends in Analytical Chemistry, vol. 17, no. 6, p. 328,

  5. Can a "state of the art" chemistry transport model simulate Amazonian tropospheric chemistry?

    E-Print Network [OSTI]

    2011-01-01

    of tropospheric gas?phase chemistry schemes for use withinthe role of atmospheric chemistry in the global CO 2 budget,for atmospheric chemistry, Geophys. Res. Lett. , 34, L18813,

  6. The impact of meteorological conditions and variation in chemical composition of aerosols on regional cloud formation

    E-Print Network [OSTI]

    Creamean, Jessie Marie

    2012-01-01

    Atmospheric Analytical Chemistry, Analytical Chemistry, 83 (Particles in Seconds, Analytical Chemistry, 76 (2), 373-378,particles in seconds, Analytical Chemistry, 76 (2), 373-378,

  7. Coupling of nitrous oxide and methane by global atmospheric chemistry

    E-Print Network [OSTI]

    Prather, MJ; Hsu, J

    2010-01-01

    supported by NSF’s Atmospheric Chemistry program (grant ATM-Methane by Global Atmospheric Chemistry Michael J. Prathergas, through atmospheric chemistry that en- hances the

  8. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    SciTech Connect (OSTI)

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  9. Sponsored by Nanotechnology Seminar Program Surface Chemistry of Gold

    E-Print Network [OSTI]

    Fisher, Frank

    Sponsored by Nanotechnology Seminar Program Surface Chemistry of Gold Nanorods: Wrapping chemistry, biophysical chemistry and nanotechnology, with a primary goal to develop inorganic nanomaterials

  10. Role of inorganic chemistry on nuclear energy examined

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues...

  11. UNIVERSITY OF CALIFORNIA, SANTA CRUZ DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    UNIVERSITY OF CALIFORNIA, SANTA CRUZ DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY Assistant Professor in Theoretical/Computational Chemistry The Department of Chemistry and Biochemistry at the University

  12. Chemistry & Biology Directed Evolution of the Nonribosomal Peptide

    E-Print Network [OSTI]

    Zhao, Huimin

    Chemistry & Biology Article Directed Evolution of the Nonribosomal Peptide Synthetase Adm University of Illinois, Urbana, IL 61801, USA 3Department of Chemistry 4The Chemistry of Life Processes

  13. COORDINATION CHEMISTRY OF METAL SURFACES AND METAL COMPLEXES

    E-Print Network [OSTI]

    Muetterties, E.L.

    2013-01-01

    molecular coordination chemistry of CH3NC has been reported.features of this surface chemistry. ACKNOw"LEDGMENTS The1980 Catalysis~ COORDINATION CHEMISTRY OF METAL SURFACES AND

  14. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect (OSTI)

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  15. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect (OSTI)

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  16. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Alexandrov, Mikhail

    2008-01-15

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  17. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Alexandrov, Mikhail

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  18. Transboundary Secondary Organic Aerosol in the Urban Air of Fukuoka, Japan

    E-Print Network [OSTI]

    Irei, Satoshi; Hara, Keiichiro; Hayashi, Masahiko

    2016-01-01

    Studies providing quantitative information regarding secondary organic aerosol (SOA), the least understood subject in atmospheric chemistry, are important to evaluating secondary transboundary pollution. To obtain quantitative information of long-range transported SOA in the air of Fukuoka, we conducted simultaneous field studies during December 2010 and March 2012 at a rural site in northern Kyushu and at an urban site in Fukuoka City. During the studies, we collected airborne particulate matter (PM) on filters and extracted the low-volatile water soluble organic carbon (LV-WSOC) component, which is possibly dominated by SOA, from the filter samples and analyzed it to determine the carbon concentration and stable carbon isotope ratio. Under the assumption that the LV-WSOC at Fukuoka had both transboundary and local origins, we then applied end-member mixing analysis (EMMA) to the stable carbon isotope ratio data from both sites to estimate the fraction of LV-WSOCs from these origins in the Fukuoka air. Indep...

  19. Design of Aerosol Face Masks for Children Using Computerized 3D Face Analysis

    E-Print Network [OSTI]

    Kimmel, Ron

    seal to the child's face, and thus may minimize aerosol leakage and dead space. Key words: inhaled supplied with valved aerosol hold- ing chambers used for aerosol therapy. (Adapted with per- mission from

  20. Limited effect of anthropogenic nitrogen oxides on secondary organic aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-12-08

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but it can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR (National Center for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product volatility basis set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. Small differences are found for themore »no-aging VBS and 2-product schemes; large increases in SOA production and the SOA-to-OA ratio are found for the aging scheme. The predicted organic aerosol amounts capture both the magnitude and distribution of US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of 2 compared to aerosol mass spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different regions and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9–5.6, 6.4–12.0 and 0.9–2.8 % for global, southeast US and Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to a limited shift in chemical regime, to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  1. Limited effect of anthropogenic nitrogen oxides on Secondary Organic Aerosol formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zheng, Y.; Unger, N.; Hodzic, A.; Emmons, L.; Knote, C.; Tilmes, S.; Lamarque, J.-F.; Yu, P.

    2015-08-28

    Globally, secondary organic aerosol (SOA) is mostly formed from emissions of biogenic volatile organic compounds (VOCs) by vegetation, but can be modified by human activities as demonstrated in recent research. Specifically, nitrogen oxides (NOx = NO + NO2) have been shown to play a critical role in the chemical formation of low volatility compounds. We have updated the SOA scheme in the global NCAR Community Atmospheric Model version 4 with chemistry (CAM4-chem) by implementing a 4-product Volatility Basis Set (VBS) scheme, including NOx-dependent SOA yields and aging parameterizations. The predicted organic aerosol amounts capture both the magnitude and distribution ofmore »US surface annual mean measurements from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network by 50 %, and the simulated vertical profiles are within a factor of two compared to Aerosol Mass Spectrometer (AMS) measurements from 13 aircraft-based field campaigns across different region and seasons. We then perform sensitivity experiments to examine how the SOA loading responds to a 50 % reduction in anthropogenic nitric oxide (NO) emissions in different regions. We find limited SOA reductions of 0.9 to 5.6, 6.4 to 12.0 and 0.9 to 2.8 % for global, the southeast US and the Amazon NOx perturbations, respectively. The fact that SOA formation is almost unaffected by changes in NOx can be largely attributed to buffering in chemical pathways (low- and high-NOx pathways, O3 versus NO3-initiated oxidation) and to offsetting tendencies in the biogenic versus anthropogenic SOA responses.« less

  2. Inorganic aerosols responses to emission changes in Yangtze River Delta, China

    SciTech Connect (OSTI)

    Dong, Xinyi; Li, Juan; Fu, Joshua S.; Gao, Yang; Huang, Kan; Zhuang, Guoshun

    2014-05-15

    China announced the Chinese National Ambient Air Quality standards (CH-NAAQS) on Feb. 29th, 2012, and PM2.5 is for the very first time included in the standards as a criteria pollutant. In order to probe into PM2.5 pollution over Yangtze River Delta, which is one of the major urban clusters hosting more than 80 million people in China, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Both simulation and observation demonstrated that, inorganic aerosols have substantial contributions to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3-) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3-concentration throughout the year. We also found that in winter NO3- was even increased under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4+) and sulfate (SO42-), while other seasons showed decrease response of NO3-. Sensitivity responses of NO3- under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3- formation was actually VOC sensitive due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.

  3. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem

    SciTech Connect (OSTI)

    Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

    2012-09-28

    Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 Oct–Nov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

  4. Challenge the future 1 Observations of aerosol-cloud-radiation

    E-Print Network [OSTI]

    Graaf, Martin de

    -road Industrial coal Residential solid fuel Biofuel cooking Biofuel heating Coal Open Burning Agricultural fields causes Differences in: · cloud properties · cloud fraction and location · aerosol properties · smoke

  5. Extending the physicochemical characterization of aerosol particles in California

    E-Print Network [OSTI]

    Zauscher, Melanie Dorothy

    2012-01-01

    W. T. (1997).Emissions from Smoldering Combustion of BiomassCombustion generated aerosols, including emissions from diesel and gasoline engines, biomass and

  6. Climatic effects of different aerosol types in China simulated

    E-Print Network [OSTI]

    Y. GU

    2006-01-01

    P. Shettle (1991), Atmospheric Aero- sols—Global ClimatologyEffects of stratospheric aero- sols and preliminarytypes, such as volcanic aero- sols, desert aerosols, or

  7. Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity

    E-Print Network [OSTI]

    Tang, Xiaochen

    2013-01-01

    by V and Ni from heavy oil combustion: Anthropogenic sourcesgeneration from heavy fuel oil (HFO) as an alternative toengines operating with heavy fuel oils. Journal of Aerosol

  8. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic Citation Details In-Document Search Title: The Radiative Role...

  9. Chemistry & Biology 16 Supplemental Data

    E-Print Network [OSTI]

    Cheng, Jianjun

    Chemistry & Biology 16 Supplemental Data Inorganic Mercury Detection and Controlled Release Cheng, Gerard C. L. Wong, and Yi Lu SUPPLEMENTAL EXPERIMENTAL PROCEDURES Materials The lipids 1, in Eagle's Menimum Essential Medium, supplemented with 100 units/mL aqueous penicillin G, 100 µg

  10. ALMA observations of the kinematics and chemistry of disc formation

    E-Print Network [OSTI]

    Lindberg, Johan E; Brinch, Christian; Haugbřlle, Troels; Bergin, Edwin A; Harsono, Daniel; Persson, Magnus V; Visser, Ruud; Yamamoto, Satoshi

    2014-01-01

    Context: The R CrA cloud hosts a handful of Class 0/I low-mass young stellar objects. The chemistry and physics at scales $>500$ AU in this cloud are dominated by the irradiation from the nearby Herbig Be star R CrA. The luminous large-scale emission makes it necessary to use high-resolution spectral imaging to study the chemistry and dynamics of the inner envelopes and discs of the protostars. Aims: We aim to better understand the structure of the inner regions of these protostars and in particular the interplay between the chemistry and the presence of discs. Methods: Using Atacama Large Millimeter/submillimeter Array (ALMA) high-resolution spectral imaging interferometry observations, we study the molecular line and dust continuum emission at submillimetre wavelengths. Results: We detect dust continuum emission from four circumstellar discs around Class 0/I objects within the R CrA cloud. Towards IRS7B we detect C$^{17}$O emission showing a rotation curve consistent with a Keplerian disc with a well-define...

  11. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect (OSTI)

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ? 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  12. Chemistry of Cobalt-Platinum Nanocatalysts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry of Cobalt-Platinum Nanocatalysts Chemistry of Cobalt-Platinum Nanocatalysts Print Monday, 25 February 2013 15:59 Bimetallic cobalt-platinum (CoPt) nanoparticles are...

  13. University of Connecticut Department of Chemistry

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    University of Connecticut Department of Chemistry NSF Research Experience for Undergraduates (REUREU@uconn.edu Fax: (860) 486-2981 Mail: REU Site Coordinator Department of Chemistry, University of Connecticut

  14. Protein-directed dynamic combinatorial chemistry 

    E-Print Network [OSTI]

    Bhat, Venugopal T.

    2011-11-23

    Dynamic combinatorial chemistry (DCC) is a novel approach to medicinal chemistry which integrates the synthesis and screening of small molecule libraries into a single step. The concept uses reversible chemical reactions to present a dynamic library...

  15. Prof. Sarah L. Keller Department of Chemistry

    E-Print Network [OSTI]

    Keller, Sarah L.

    Bio Prof. Sarah L. Keller Department of Chemistry University of Washington, Seattle Sarah Keller of Sciences and was named a Fellow of the American Physical Society. She joined the Department of Chemistry

  16. CHEMISTRY 1200-090 SUMMER SEMESTER 2013

    E-Print Network [OSTI]

    Simons, Jack

    chemistry when compared to other students. Math prerequisite: College algebra or the equivalent schedule on the web. At the top of the chemistry class schedule is "textbook requirements". Click

  17. Final Report for �¢����Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)�¢��� (DE-SC0002003) for 8/15/2009 through 8/14/2012

    SciTech Connect (OSTI)

    Lynn M. Russell; Richard C.J. Somerville

    2012-11-05

    Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by �¢����nudging�¢��� to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

  18. Eleventh international symposium on radiopharmaceutical chemistry

    SciTech Connect (OSTI)

    1995-12-31

    This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

  19. Interfacial Chemistry and Engineering Annual Report 2000

    SciTech Connect (OSTI)

    Grate, Jay W.

    2001-08-01

    This annual report describes the research and staff accomplishments in 2000 for the EMSL Interfacial Chemistry and Engineering Directorate.

  20. BA in CHEMISTRY (692827) MAP Sheet Department of Chemistry and Biochemistry

    E-Print Network [OSTI]

    Seamons, Kent E.

    BA in CHEMISTRY (692827) MAP Sheet Department of Chemistry and Biochemistry For students entering in major courses. --The Chemistry and Biochemistry Department requires the final 10 hours of required Biophysical Chemistry Chem 481M Biochemistry­Majors Chem 584 Biochemistry Lab/Proteins Or Chem 586

  1. BA in CHEMISTRY (692827) MAP Sheet Department of Chemistry and Biochemistry

    E-Print Network [OSTI]

    Seamons, Kent E.

    BA in CHEMISTRY (692827) MAP Sheet Department of Chemistry and Biochemistry For students entering Chemistry and Biochemistry Department requires the final 10 hours of required chemistry credit to be taken 481M Biochemistry­Majors Chem 584 Biochemistry Lab/Proteins Or Chem 586 Biochemistry Lab/Nucleic Acids

  2. Chemistry Course Reading List * Physical Chemistry, P W Atkins, Oxford University Press (8th

    E-Print Network [OSTI]

    Oxford, University of

    Chemistry Course Reading List * Physical Chemistry, P W Atkins, Oxford University Press (8th edn.) 2006, [7th edn. 2001] * Inorganic Chemistry, Shriver and Atkins, Oxford University Press (4th edn) 2006, (previous edn., 1999] Chemistry of the Elements, Greenwood & Earnshaw, Pergamon (2nd edn.), 1997 [1st edn

  3. Chemistry 109 (3 credit hours) Honors General Chemistry Lecture, Part I; Fall 2014

    E-Print Network [OSTI]

    Doyle, Robert

    Chemistry 109 (3 credit hours) Honors General Chemistry Lecture, Part I; Fall 2014 Instructor Prerequisite: None Textbook: Zumdahl and Zumdahl, Chemistry, 9th Edition, (Houghton Mifflin). Copies of the book are available at the University Bookstore. Corequisite: CHE 129 ­ Honors General Chemistry

  4. "Our graduate programs in chemistry are innovative and forward thinking." carleton.ca/chemistry

    E-Print Network [OSTI]

    Dawson, Jeff W.

    "Our graduate programs in chemistry are innovative and forward thinking." carleton.ca/chemistry GRADUATE PROGRAMS IN SHAPE YOUR FUTURE BASED ON YOUR RESEARCH INTERESTS Chemistry affects almost all aspects of our lives. Carleton's Department of Chemistry is host to innovative programs in analytical food

  5. Graduate Programs in Chemistry The Department of Chemistry at Wichita State offers courses

    E-Print Network [OSTI]

    of biochemistry and analytical, inorganic, organic, and physical chemistry. Admission Requirements To enrollGraduate Programs in Chemistry The Department of Chemistry at Wichita State offers courses of study in the graduate program in chemistry, students must follow the admission procedures required by the Graduate

  6. Faculty of Science Chemistry and Physics

    E-Print Network [OSTI]

    Introductory Physics I Arts or Social Science elective General Chemistry II Biological Diversity or ElectiveFaculty of Science Chemistry and Physics Honours Chemistry and Physics is a good choice if you want to attack problems of a chemical nature with a solid understanding of the underlying physics. www

  7. Montana State University 1 Chemistry and Biochemistry

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Chemistry and Biochemistry Note: MSU's programs of Biology. For additional options see Biological Sciences at MSU. Department of Chemistry and Biochemistry The Department of Chemistry and Biochemistry offers programs that are certified by the American Chemical Society

  8. BACHELOR OF SCIENCE IN CHEMISTRY BIOCHEMISTRY OPTION

    E-Print Network [OSTI]

    Hardy, Christopher R.

    OF SCIENCE IN CHEMISTRY BIOCHEMISTRY OPTION RECOMMENDED PROGRAM (1) FIRST SEMESTER SECOND SEMESTER CHEM 111 SEMESTER EIGHTH SEMESTER CHEM 326 Biochemistry I 4.0 CHEM 327 Biochemistry II 4.0 CHEM 487 Chemistry Seminar 0.5 CHEM 328 Anal Biochemistry Lab 1.0 CHEM ____ Chemistry Elective*** 2.0 CHEM 465 Analytical

  9. The Department of Chemistry and Biochemistry

    E-Print Network [OSTI]

    Texas at Arlington, University of

    The Department of Chemistry and Biochemistry 130 Chemistry & Physics Building · Box 19065 · 817 and Biochemistry offers four programs of study leading to the bachelor's degree and one leading to both in Chemistry - American Chemical Society certified, the Bachelor of Science in Biochemistry - American Chemical

  10. STRATEGIC PLAN Department of Chemistry and Biochemistry

    E-Print Network [OSTI]

    Rubloff, Gary W.

    1 STRATEGIC PLAN Department of Chemistry and Biochemistry University of Maryland, College Park 1. Executive Summary The Department of Chemistry and Biochemistry implements the missions of the College. These efforts encompass chemistry and biochemistry as traditionally defined, but are increasingly becoming

  11. College of Arts & Sciences Chemistry, MS

    E-Print Network [OSTI]

    New Mexico, University of

    College of Arts & Sciences Chemistry, MS Broad Learning Goals A. The student will develop a broad understanding of the major areas of chemistry with an understanding and awareness of the professional, ethical-rooted knowledge in their chosen sub-discipline in chemistry. C. The student will be able to report, present and

  12. THE UNIVERSITY OF CHICAGO DEPARTMENT OF CHEMISTRY

    E-Print Network [OSTI]

    THE UNIVERSITY OF CHICAGO DEPARTMENT OF CHEMISTRY A GUIDE TO THE DEPARTMENTAL ACADEMIC the Department of Chemistry 9 Departmental Seminar Attendance 9 Seminar Workshop 10 Tiger Talks 10 Scientific requires students who are admitted as prospective candidates for a higher degree in Chemistry (either the M

  13. Montana State University 1 Department of Chemistry

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Department of Chemistry and Biochemistry Departmental Office: PO Box 173400, Bozeman , MT 59717 Tel: 406-994-4801 Fax: 406-994-5407 The Department of Chemistry, and mechanism. In each of these fields, the strength of MSU Chemistry and Biochemistry Department has been

  14. Maple Syrup--Production, Composition, Chemistry,

    E-Print Network [OSTI]

    Hayden, Nancy J.

    CHAPTER 4 Maple Syrup--Production, Composition, Chemistry, and Sensory Characteristics Timothy D Chemistry 111 A. Transformation during storage 115 B. Transformations during reverse osmosis Processing 121 IX. Syrup Standards 124 X. Syrup Chemistry 126 A. Density 126 B. Carbohydrates 126 C. pH 126 D

  15. Patterning Nanoscale Structures by Surface Chemistry

    E-Print Network [OSTI]

    Lu, Wei

    Patterning Nanoscale Structures by Surface Chemistry Wei Lu* and Dongchoul Kim Department combines spinodal decomposition, surface stress and surface chemistry. The simulation shows that the self-assembly process can be guided by tuning the surface chemistry of a substrate. An epilayer may evolve into various

  16. College of Arts & Sciences Chemistry, BA

    E-Print Network [OSTI]

    New Mexico, University of

    1/13/2009 College of Arts & Sciences Chemistry, BA Broad Learning Goals A. Students graduating from of chemistry. B. Students graduating from this program will be able to employ critical thinking and hypothesis and be familiar with the status of current research in the field of chemistry. D5. Students will be able

  17. A BRIEF HISTORY THE ANALYTICAL CHEMISTRY DIVISION

    E-Print Network [OSTI]

    #12;#12;A BRIEF HISTORY THE ANALYTICAL CHEMISTRY DIVISION OF OAK RIDGE NATIONAL LABORATORY 1950 hiembers of the Chemistry Division R-on: J. A. Swartout In ra: Transfer of Personnel to Analytical Analytical Chemistry Division under Dr. M. T. Kelley, effective immediately; C. L. Burros and Group L. T

  18. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    SciTech Connect (OSTI)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  19. Chemistry (ACS) College of Science CHEM-BSCHM

    E-Print Network [OSTI]

    Kihara, Daisuke

    (2)CHM26600 Organic Chemistry Lab (4)CHM32100 Analytical Chemistry I (4)CHM24100 Intro to Inorganic Chemistry (3)CHM37400 Physical Chemistry (2)CHM37600 Physical Chemistry Lab (4)CHM 42400 AnalyticalChemistry (ACS) College of Science CHEM-BSCHM CHMA 120 Credits 2.0 GPA in CHM courses and 2.0 GPA

  20. Absorbing Aerosol Index (AAI) The residue method for the detection of aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    and calculation Main sensitivities of residue Problems with the residue Conclusions and outlook #12;#12;o = 380 scattering and absorption #12;#12;#12;Nadir View Solar zenith angle = 45o Residue = 3.5 Rayleigh atmosphere View Solar zenith angle = 45o Residue = -1.0 Rayleigh atmosphere, As = 0.16 Scattering aerosol layer

  1. AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL

    E-Print Network [OSTI]

    ) was integrated into the Aerosol Observing System (AOS) at the Atmospheric Radiation Measurement (ARM) SGP site in Oklahoma in Nov 2010. This instrument has been measuring concentrations of sulfate, ammonium, nitrate of oxygenated OA with minor contributions from hydrocarbon-like OA, indicating that the OA at the SGP site

  2. Aerosol Science and Technology, 39:6883, 2005 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    . Coffman5 1 Finnish Meteorological Institute, Air Quality Research, Sahaajankatu, Helsinki, Finland 2¨ais¨al¨a Foundation (Finland), and the 100th Anniversary Foundation of Helsingin Sanomat (Finland). Address, 00880 Helsinki, Finland. E-mail: aki.virkkula@fmi.fi properties of aerosols depend on the wavelength

  3. Aerosol Science and Technology, 38:555573, 2004 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    from motor vehicles are a significant source of fine particulate matter (PM) and gaseous pollutants of their emission. This work uses an Aero- dyne aerosol mass spectrometer (AMS) to provide size instrumentation, was deployed on the Aero- dyne Research Inc. (ARI) mobile laboratory, which was used to "chase

  4. Techniques for Minimizing Aerosols (aerosols are a common source of laboratoryacquired infections)

    E-Print Network [OSTI]

    Chan, Hue Sun

    " pipettes to avoid blowing out the last drop Drain pipettes gently with the tip against the inner wall glass rod to crack the glass, allow time for air to seep into the ampoule and gently remove the top than glass (less likely to break which generates aerosols) Source: Adapted from

  5. Aerosol Science and Technology, 43:486501, 2009 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    a NOAA research vessel during the Texas Air Quality Study 2006/Gulf of Mexico Atmospheric Composition for glutaric acid in mixed glutaric acid/NH4HSO4 test aerosols was 0.22 ng collected mass, which corresponds min­1. During TexAQS 2006/GoMACCS, signals well above the detection limit were observed at a number

  6. Measurements of aerosol vertical profiles and optical properties during INDOEX

    E-Print Network [OSTI]

    , and the Kaashidhoo Climate Observatory (KCO) in the Maldives. Sun photometers were used to provide aerosol optical depths (AOD) needed to calibrate the MPL. This study focuses on the height distribution and optical trajectories, radiosonde profiles of temperature and humidity, and aerosol concentration and optical

  7. SCIAMACHY'S ABSORBING AEROSOL INDEX AND THE CONSEQUENCES OF INSTRUMENT DEGRADATION

    E-Print Network [OSTI]

    Graaf, Martin de

    SCIAMACHY'S ABSORBING AEROSOL INDEX AND THE CONSEQUENCES OF INSTRUMENT DEGRADATION L. G. Tilstra1- itoring the Absorbing Aerosol Index (AAI) [1] measured by the satellite instrument SCIAMACHY [2]. We find. This we conclude from straightforward calculation of the effect of instrument degradation based

  8. Global observations of desert dust and biomass burning aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    and desert dust observations from GOME and SCIAMACHY · Conclusions and Outlook #12; · Absorbing Aerosol Transfer Model Solar zenith angle = 30° Viewing zenith angle = 0° Surface albedo = 5% #12;Reflectance at TOA with absorbing aerosols Doubling-Adding KNMI Radiative Transfer Model Solar zenith angle = 30

  9. GLOBAL AEROSOL EFFECT RETRIEVAL FROM PASSIVE HYPERSPECTRAL MEASUREMENTS

    E-Print Network [OSTI]

    Graaf, Martin de

    that can be detected using UV reflectance measurements. Since the aerosol extinction optical thickness any instrument, or a combination of instruments, that measures UV, visible and SWIR reflectancesGLOBAL AEROSOL EFFECT RETRIEVAL FROM PASSIVE HYPERSPECTRAL MEASUREMENTS M. de Graaf1,2 , L. G

  10. Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill

    E-Print Network [OSTI]

    Toohey, Darin W.

    Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill Nicole ONeill - ATOC 3500 and aerosol composition of air over the Deepwater Horizon oil spill in the Gulf of Mexico. · The lightest chemicals in the oil evaporated within hours, as scientists expected them to do. What they didn't expect

  11. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    SciTech Connect (OSTI)

    Hallock, K.A.; Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Cass, G.R. (California Inst. of Tech., Pasadena, CA (United States). Dept. of Environmental Engineering Science)

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon.

  12. Supplementary Material1 Characterization of Organic Aerosol Produced during2

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    mass spectra of a dominant type (coal) of ambient aerosol in Shanghai using2 ATOFMS (m/z from 1501 Supplementary Material1 Characterization of Organic Aerosol Produced during2 Pulverized Coal diagram of combustion process of a single coal particle5 6 #12;3 10 100 10 3 10 4 10 5 Oxygen/coal ratio

  13. Effects of operating conditions on a heat transfer fluid aerosol 

    E-Print Network [OSTI]

    Sukmarg, Passaporn

    2000-01-01

    fluids are used as hot liquids at elevated pressures. If loss of containment does occur, the liquid will leak under pressure and may disperse as a fine aerosol mist. Though it has been recognized that aerosol mists can explode, very little is known about...

  14. Effects of aerosols on deep convective cumulus clouds 

    E-Print Network [OSTI]

    Fan, Jiwen

    2009-05-15

    in the droplet size. Ice processes are more sensitive to the changes of aerosol chemical properties than the warm rain processes. The most noticeable effect of increasing aerosol number concentrations is an increase of CDNC and cloud water content but a decrease...

  15. Flood or Drought: How Do Aerosols Affect Precipitation?

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Flood or Drought: How Do Aerosols Affect Precipitation? Daniel Rosenfeld,1 * Ulrike Lohmann,2 and the initiation of precipitation. Large concentrations of human-made aerosols have been reported to both decrease hand, heavily polluted clouds evaporate much of their water before precipitation can occur, if they can

  16. IN-PACKAGE CHEMISTRY ABSTRACTION

    SciTech Connect (OSTI)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

  17. Experiments related to the resuspension of aerosols during hydrogen burns

    SciTech Connect (OSTI)

    Nelson, L.S.; Guay, K.P.

    1987-01-01

    We have performed seven ''add-on'' experiments in two large combustion facilities to investigate the capability of hydrogen burns to remove simulated structural and fission product aerosols previously deposited on small metal discs that have surfaces prototypical of those found in nuclear reactor containments. Our results suggest that hydrogen combustion provides an especially effective mechanism for removal (and, presumably, resuspension) of sedimented aerosols produced in a hypothetical nuclear reactor core-degradation or core-melting accident. The presence of condensing steam does not seem to assure adhesion of sedimented aerosols during hydrogen burns. Differences are exhibited between different surfaces as well as between types of aerosol. In-depth studies will be required to assess the impact exposure of sedimented aerosols to hydrogen burns might have on the radiological source term.

  18. B.S. and ACS Approved Degrees in Chemistry Requirements for the Chemistry B.S. degree program

    E-Print Network [OSTI]

    McQuade, D. Tyler

    General Chemistry CHM 1045 & 1045L; 1046 & 1046L or CHM 1050, 1050L; 1051, 1051L Analytical Chemistry CHMB.S. and ACS Approved Degrees in Chemistry Requirements for the Chemistry B.S. degree program 3120 & 3120L; 4130 & 4130L Inorganic Chemistry CHM 4610, 4610L Organic Chemistry CHM 2210; 2211, 2211L

  19. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Suresh Babu, S.; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-05-19

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore »sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m-3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less

  20. Study of Aerosol Indirect Effects in China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructure andChallenge | Department,Aerosol Indirect Effects in

  1. Chemical distribution in high-solids paint overspray aerosols

    SciTech Connect (OSTI)

    D'Arcy, J.B.; Chan, T.L. )

    1990-03-01

    The chemical composition of high-solids basecoat paint overspray aerosols was determined as a function of particle size. Detailed information on the chemical composition of the overspray aerosols is important in health hazard evaluation since the composition and distribution within the airborne particles may differ significantly from the bulk paint material. This study was conducted in a typical down-draft paint booth equipped with air-atomized spray painting equipment. A fixed paint target was used to simulate typical overspray generation conditions and the aerosols were collected isokinetically with a seven-stage cascade impactor for size-fractionated analysis. The overspray aerosol from six paints consisted of organic paint binders with varying amounts of inorganic species as pigments or luster enhancers. These overspray aerosols had mass median aerodynamic diameters (MMAD) ranging from 2.9 to 9.7 microns. The size-fractionated paint samples collected on the impaction stages were analyzed by energy dispersive X-ray spectrometry on a scanning electron microscope (SEM-EDXRS) to identify the metallic elements. Atomic absorption spectrometry was used to determine the mass distribution of aluminum and iron as indicators of nonuniform distribution. Three of the aerosols containing aluminum were found to have bimodal distributions with most aluminum distributions having cumulative MMADs larger than the total aerosol. Iron in the aerosols was bimodal for three of the paints with all samples having an overall iron MMAD less than or equal to the overspray aerosol MMAD. Analysis using ultraviolet spectrometry revealed that the organic compounds present in the size-fractionated particulate samples consisted of a single, polydispersed mode with an MMAD similar to that of the total overspray aerosol.

  2. Seasonal and diurnal variations of submicron organic aerosol in Tokyo observed using the Aerodyne aerosol mass spectrometer

    E-Print Network [OSTI]

    Jimenez, Jose-Luis

    with carbon monoxide (CO) and fragments of aliphatic and oxygenated organic compounds in the AMS mass spectra. Combustion-related organic aerosol (combustion OA) is defined as the primary organic aerosol (POA) fraction the combustion OA and the background OA from the total OA. The combustion OA and excess OA show good correlation

  3. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    SciTech Connect (OSTI)

    Smolander, S.; He, Q.; Mogensen, Ditte; Zhou, L.; Back, J.; Ruuskanen, T.; Noe, S.; Guenther, Alex B.; Aaltonen, H.; Kulmala, M.; Boy, Michael

    2014-10-07

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain.

  4. In-Package Chemistry Abstraction

    SciTech Connect (OSTI)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.

  5. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    1998-03-01

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  6. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  7. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2004-10-01

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  8. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    2004-10-01

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  9. Investigation of Aerosol Sources, Lifetime and Radiative Forcing through Multi-Instrument Data Assimilation

    E-Print Network [OSTI]

    Rubin, Juli Irene

    2012-01-01

    of the various radiative mechanims associated with aerosolof the various radiative mechanims associated with aerosol

  10. Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY

    E-Print Network [OSTI]

    Graaf, Martin de

    Analysis of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY M. de Graaf,1 of reflectance spectra of UV-absorbing aerosol scenes measured by SCIAMACHY, J. Geophys. Res., 112, D02206, doi aerosol (DDA) and biomass burning aerosol (BBA) scenes over oceans are presented, measured by the space

  11. UNDERSTANDING THE INFLUENCES OF ATMOSPHERIC AEROSOLS ON CLIMATE AND CLIMATE CHANGE

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    remarks #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS AS SEEN FROM SPACE Fire plumes from southern Mexico transported north into Gulf of Mexico. #12;CLOUD BRIGHTENING BY SHIP TRACKS Satellite photo off

  12. Satellite observations of the seasonal cycles of absorbing aerosols in Africa

    E-Print Network [OSTI]

    Graaf, Martin de

    Satellite observations of the seasonal cycles of absorbing aerosols in Africa related to monsoon of aerosol emissions from the wet surface. 1. Introduction The main aerosol types occurring over Africa Africa can be characterized using Absorbing Aerosol Index (AAI) data from Global Ozone Monitoring

  13. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  14. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  15. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  16. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chitra Sivaraman; Connor Flynn

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  17. CARES Helps Explain Secondary Organic Aerosols

    ScienceCinema (OSTI)

    Zaveri, Rahul

    2014-06-02

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  18. Asthmatic responses to airborne acid aerosols

    SciTech Connect (OSTI)

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. )

    1991-06-01

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  19. Hyperspectral Aerosol Optical Depths from TCAP Flights

    SciTech Connect (OSTI)

    Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

    2013-11-13

    4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

  20. CARES Helps Explain Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Zaveri, Rahul

    2014-03-28

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  1. Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMayARM-0501 Marine StratusChemCamChemicalCMS XSD-CMS

  2. Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanning CareerNationalCNMSTHEmaterialsEnergy

  3. Fire aerosol experiment and comparisons with computer code predictions

    SciTech Connect (OSTI)

    Gregory, W.S.; Nichols, B.D.; White, B.W.; Smith, P.R.; Leslie, I.H.; Corkran, J.R.

    1988-01-01

    Los Alamos National Laboratory, in cooperation with New Mexico State University, has carried on a series of tests to provide experimental data on fire-generated aerosol transport. These data will be used to verify the aerosol transport capabilities of the FIRAC computer code. FIRAC was developed by Los Alamos for the US Nuclear Regulatory Commission. It is intended to be used by safety analysts to evaluate the effects of hypothetical fires on nuclear plants. One of the most significant aspects of this analysis deals with smoke and radioactive material movement throughout the plant. The tests have been carried out using an industrial furnace that can generate gas temperatures to 300/degree/C. To date, we have used quartz aerosol with a median diameter of about 10 ..mu..m as the fire aerosol simulant. We also plan to use fire-generated aerosols of polystyrene and polymethyl methacrylate (PMMA). The test variables include two nominal gas flow rates (150 and 300 ft/sup 3//min) and three nominal gas temperatures (ambient, 150/degree/C, and 300/degree/C). The test results are presented in the form of plots of aerosol deposition vs length of duct. In addition, the mass of aerosol caught in a high-efficiency particulate air (HEPA) filter during the tests is reported. The tests are simulated with the FIRAC code, and the results are compared with the experimental data. 3 refs., 10 figs., 1 tab.

  4. GCM parameterization of radiative forcing by Pinatubo aerosols

    SciTech Connect (OSTI)

    Lacis, A.A.; Mishchenko, M.I.

    1996-12-31

    This paper addresses the question of whether the general circulation model (GCM) parameterization of volcanic aerosol forcing can be adequately described in terms of just two physical aerosol parameters: (1) the aerosol column optical thickness and (2) the effective radius of the aerosol size distribution. Data recorded from the eruption of Mt. Pinatubo in the Philippines in June 1991 was analyzed to attempt to answer this question. The spatial distribution of the particle size showed considerable variability and was found to increase steadily following the eruption. The time evolution of the Pinatubo aerosol particle size distribution as derived from satellite data differed significantly, particularly in the early phases of the eruption, from that assumed in the initial GCM simulation of the Pinatubo eruption. A bimodal distribution was used to examine the possibility that the actual size distribution of the volcanic aerosol was multimodal. However, results suggested that in most cases the aerosol size distribution was essentially monomodal in nature. Results from the radiative model used in the calculations are also presented. 11 refs., 6 figs.

  5. The Two-Column Aerosol Project (TCAP) Science Plan

    SciTech Connect (OSTI)

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  6. Inverse modelling of cloud-aerosol interactions - Part 2: Sensitivity tests on liquid phase clouds using a Markov chain Monte Carlo based simulation approach

    E-Print Network [OSTI]

    Partridge, D. G; Vrugt, J. A; Tunved, P.; Ekman, A. M. L; Struthers, H.; Sorooshian, A.

    2012-01-01

    Seinfeld, J. H. : Aerosol, cloud drop concentration closureof aerosol composition on cloud droplet size distribution –aerosol properties on warm cloud droplet activation, At-

  7. Chemistry, Life, and Earth Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattanChemistry ofNan Sauer named

  8. Appendix C Analytical Chemistry Data

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the WeldonB10081278MaywoodWayne Analytical Chemistry

  9. Aerosol penetration through a seismically loaded shear wall

    SciTech Connect (OSTI)

    Farrar, C.R.; Girrens, S.P.

    1992-05-01

    An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

  10. Aerosol penetration through a seismically loaded shear wall

    SciTech Connect (OSTI)

    Farrar, C.R.; Girrens, S.P.

    1992-01-01

    An experimental study was performed to measure the aerosol penetration through a reinforced concrete shear wall after simulated seismic damage. Static load-cycle testing, to stress levels sufficient to induce visible shear cracking, was used to simulate the earthquake loading. Air permeability tests were performed both before and after the simulated seismic loading damaged the structure. Aerosol penetration measurements were conducted on the cracked shear wall structure using 0.10 {mu}m monodisperse particles. The measured aerosol number penetration through the cracked shear wall was 0.5%. 7 refs.

  11. Aerosol source term in high pressure melt ejection

    SciTech Connect (OSTI)

    Brockmann, J.E.; Tarbell, W.W.

    1984-11-01

    Pressurized ejection of melt from a reactor pressure vessel has been identified as an important element of a severe reactor accident. Copious aerosol production is observed when thermitically generated melts pressurized with nitrogen or carbon dioxide to 1.3 to 17 MPa are ejected into an air atmosphere. Aerosol particle size distributions measured in the tests have modes of about 0.5, 5, and > 10 ..mu..m. Mechanisms leading to formation of these multimodal size distributions are suggested. This aerosol is a potentially important fission product source term that has not been considered in previous severe accident analyses.

  12. ATMOSPHERIC AEROSOL RESEARCH, ANNUAL REPORT 1976-77

    E-Print Network [OSTI]

    Novakov, T.

    2010-01-01

    Atmospheric Chemistry Catalytic Oxidation of ,S02 on Carbonand S.G. Chang, "Catalytic oxidation of S02 on carbonCHEMISTRY LBL-6819 Catalytic Oxidation of S02 on Carbon in

  13. Alumni & Industry Magazine Chemical Engineering & Applied Chemistry

    E-Print Network [OSTI]

    Prodić, Aleksandar

    grease, waste animal fats, recycled veg- etable oils and agricultural seed oils into biodiesel. BioxAlumni & Industry Magazine Chemical Engineering & Applied Chemistry University of Toronto Volume 10

  14. Chemistry for Measurement and Detection Science publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectroscopy Email Josh Smith Chemistry Communications Email Los Alamos is one of two FBI "hub" laboratories for analyzing bulk special nuclear material. Marcelo Jaime, Ramzy...

  15. Energy & Sustainable Chemistry: Light Harvesting & Biocatalysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Sustainable Chemistry: Light Harvesting & Biocatalysis November 30, 1999 at http:www.rle.mit.eduexcitonicswp-contentuploads201408Olsen-efrc-video-highlight-artf.chloro..m...

  16. Better Enzymes for Biofuels and Green Chemistry

    E-Print Network [OSTI]

    Better Enzymes for Biofuels and Green Chemistry: Solving the Cofactor Imbalance Problem Imbalances for the production of biofuels or other valuable chemicals. Though several research groups have re

  17. Introduction to Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 L ast edited: 2014-06-02 08:56:54...

  18. Chemistry Controls Material's Nanostructure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Controls Material's Nanostructure Tweaking the chemicals used to form nanorods can be used to control their shape.Controlling a nanorod's shape is a key to controlling...

  19. Lithium Insertion Chemistry of Some Iron Vanadates

    E-Print Network [OSTI]

    Patoux, Sebastien; Richardson, Thomas J.

    2008-01-01

    in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sébastien

  20. Exhaust Phosphorous Chemistry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Phosphorous Chemistry and Catalyst Poisoning The Development of Rapid Aging and Poisoning Protocols for Diesel Aftertreatment Devices Ionic Liquids as...

  1. Mexico City Aerosol Analysis During Milagro Using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0) - Part 1: Fine Particle Composition and Organic Source Apportionment.

    E-Print Network [OSTI]

    Aiken, A. C.

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive ...

  2. Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core

    E-Print Network [OSTI]

    Dong, Xiquan

    effects: (a) a direct effect in which aerosol particles scatter and absorb the solar and thermal radiation Atmospheric aerosols greatly impact the Earth's climate in many ways, and to date, not all of them are well

  3. Quantum Chemistry at Finite Temperature

    E-Print Network [OSTI]

    Liqiang Wei

    2006-05-23

    In this article, we present emerging fields of quantum chemistry at finite temperature. We discuss its recent developments on both experimental and theoretical fronts. First, we describe several experimental investigations related to the temperature effects on the structures, electronic spectra, or bond rupture forces for molecules. These include the analysis of the temperature impact on the pathway shifts for the protein unfolding by atomic force microscopy (AFM), the temperature dependence of the absorption spectra of electrons in solvents, and the temperature influence over the intermolecular forces measured by the AFM. On the theoretical side, we review advancements made by the author in the coming fields of quantum chemistry at finite temperature. Starting from the Bloch equation, we have derived the sets of hierarchy equations for the reduced density operators in both canonical and grand canonical ensembles. They provide a law according to which the reduced density operators vary in temperature for the identical and interacting many-body systems. By taking the independent particle approximation, we have solved the equations in the case of a grand canonical ensemble, and obtained an energy eigenequation for the molecular orbitals at finite temperature. The explicit expression for the temperature-dependent Fock operator is also given. They form a mathematical foundation for the examination of the molecular electronic structures and their interplay with finite temperature. Moreover, we clarify the physics concerning the temperature effects on the electronic structures or processes of the molecules, which is crucial for both theoretical understanding and computation. Finally, ....

  4. A fast stratospheric ozone chemistry schemeA fast stratospheric ozone chemistry scheme Michel Bourqui1

    E-Print Network [OSTI]

    Bourqui, Michel

    A fast stratospheric ozone chemistry schemeA fast stratospheric ozone chemistry scheme Michel a computationally efficient chemical scheme, the FAst STratospheric Ozone Chemistry (FASTOC) scheme, which has advantages over many existing fast methods, as it does not rely on relaxation to assumed conditions, does

  5. Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and

    E-Print Network [OSTI]

    . Capabilities Supporting National Security The CMR houses key capabilities for analytical chemistry, uraniumCMR Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and Metallurgy Research (CMR) building supports research and experimental activities for plutonium and uranium

  6. MATHEW M. MAYE, PH.D. ASSOCIATE PROFESSOR OF CHEMISTRY SYRACUSE UNIVERSITY, DEPARTMENT OF CHEMISTRY

    E-Print Network [OSTI]

    McConnell, Terry

    (MRS-UMRI) Award (2000 & 2001). ACS Analytical Chemistry Award (SUNY-Binghamton, 2000). SUPPORT AFOSR- 1 - MATHEW M. MAYE, PH.D. ASSOCIATE PROFESSOR OF CHEMISTRY SYRACUSE UNIVERSITY, DEPARTMENT OF CHEMISTRY 1-014 CENTER FOR SCIENCE AND TECHNOLOGY, SYRACUSE, NEW YORK 13244-4100 (315) 443-2146, MMMAYE

  7. Faculty of Science Chemistry is the study of matter -

    E-Print Network [OSTI]

    · Inorganic Chemistry · Analytical Chemistry · Materials Chemistry Expertise in all of these sub of courses--from Materials Chemistry, Nanoparticle Synthesis and Characterization, Main Group Chemistry, Free new compounds, materials and processes to serve the needs of society: Some examples include new

  8. Chemistry and Biochemistry University of Mississippi Gregory S. Tschumper

    E-Print Network [OSTI]

    Tchumper, Gregory S.

    1 Chemistry and Biochemistry University of Mississippi Gregory S. Tschumper 4 June 2015 http://quantum.chem.olemiss.edu Introduction to Computational Quantum Chemistry III Chemistry and Biochemistry University of Mississippi chemistry § Convergent quantum chemistry · Basis sets · Methods ŘPart II § A case

  9. Chemistry Education College of Science CHEM-BS-Teaching

    E-Print Network [OSTI]

    Kihara, Daisuke

    26605 Organic Chemistry (1)CHM26600 or 26400 Organic Chemistry Lab (4)CHM32100 Analytical Chemistry I (4Chemistry Education College of Science CHEM-BS-Teaching CHED 120 Credits 2.5 GPA in content courses credits) (5)CHM12500 Introduction to Chemistry I(satisfies Science Selective for core) (5)CHM12600

  10. Aerosol mass spectrometry systems and methods

    DOE Patents [OSTI]

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  11. Diesel Aerosol Sampling in the Atmosphere

    SciTech Connect (OSTI)

    David Kittelson; Jason Johnson; Winthrop Watts; Qiang Wei; Marcus Drayton; Dwane Paulsen; Nicolas Bukowiecki

    2000-06-19

    The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine.

  12. Measurements of the chemical, physical, and optical properties of single aerosol particles

    E-Print Network [OSTI]

    Moffet, Ryan Christopher

    2007-01-01

    Index and Density Analytical Chemistry 77, 6535-6541.mass spectrometer, Analytical Chemistry, 78 (24), 8281-8289,instrumentation, Analytical Chemistry, 77 (12), 3861-3885,

  13. Anthropogenic particulate source characterization and source apportionment using aerosol time-of-flight mass spectrometry

    E-Print Network [OSTI]

    Toner, Stephen Mark

    2007-01-01

    a portable ATOFMS, Analytical Chemistry, 69 (20), 4083-4091,the Troposphere, Analytical Chemistry, 69 (10), 1808-1814,portable ATOFMS, Analytical Chemistry , 69 (20), 4083-4091,

  14. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    E-Print Network [OSTI]

    Shields, Laura Grace

    2008-01-01

    for the fields of analytical chemistry and environmentala portable ATOFMS, Analytical Chemistry, 69 (20), 4083-4091,detection efficiency, Analytical Chemistry, 76 (3), 712-719,

  15. Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol

    E-Print Network [OSTI]

    Nguyen, T. B; Roach, P. J; Laskin, J.; Laskin, A.; Nizkorodov, S. A

    2011-01-01

    and Arey, J. : Atmospheric chemistry of bio- genic organicFehsenfeld, F. C. : Atmospheric chemistry and distributionLelieveld, J. : An atmospheric chemistry interpretation of

  16. Measurement of fragmentation and functionalization pathways in the multistep heterogeneous oxidation of organic aerosol

    E-Print Network [OSTI]

    Kroll, Jesse H.

    2010-01-01

    L. Jimenez, Atmospheric Chemistry and Physics Discussions,J. P. D. Abbatt, Atmospheric Chemistry and Physics, 2007, 7,and S. T. Martin, Atmospheric Chemistry and Physics, 2009,

  17. The impact of meteorological conditions and variation in chemical composition of aerosols on regional cloud formation

    E-Print Network [OSTI]

    Creamean, Jessie Marie

    2012-01-01

    modelling: a review, Atmospheric Chemistry and Physics, 5,aliphatic amines, Atmospheric Chemistry and Physics, 7 (9),of carbon monoxide, Atmospheric Chemistry and Physics,

  18. An overview of the Amazonian Aerosol Characterization Experiment 2008 (AMAZE-08)

    E-Print Network [OSTI]

    2010-01-01

    3.0 License. Atmospheric Chemistry and Physics An overviewimplications for atmospheric chemistry, P. Natl. Acad. Sci.sources and role in atmospheric chemistry, Science, Andreae,

  19. A review of Secondary Organic Aerosol (SOA) formation from isoprene

    E-Print Network [OSTI]

    Kroll, Jesse

    Recent field and laboratory evidence indicates that the oxidation of isoprene, (2-methyl-1,3-butadiene, C[subscript 5]H[subscript 8]) forms secondary organic aerosol (SOA). Global biogenic emissions of isoprene (600 Tg ...

  20. Toward a Minimal Representation of Aerosols in Climate Models...

    Office of Scientific and Technical Information (OSTI)

    carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt...

  1. Aerosol Optical Depth Value-Added Product Report

    SciTech Connect (OSTI)

    Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

    2013-03-17

    This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

  2. ris-r-1075(en) Quantitative Measurement of Aerosol

    E-Print Network [OSTI]

    and implications of deposition of potentially hazardous aerosol directly onto hu- mans. This state, beta doses from skin deposition to individuals in areas of Russia, where dry deposition of Chernobyl

  3. Experimental and numerical studies of aerosol penetration through screens 

    E-Print Network [OSTI]

    Han, Tae Won

    2009-05-15

    for one particular type of screen would collapse to a single curve if the collection efficiency is expressed in terms of non-dimensional parameters. Correlations characterizing the aerosol deposition process on different types of screens were developed...

  4. Aerosol-Cloud interactions : a new perspective in precipitation enhancement

    E-Print Network [OSTI]

    Gunturu, Udaya Bhaskar

    2010-01-01

    Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation ...

  5. Aerosol optical hygroscopicity measurements during the 2010 CARES campaign

    E-Print Network [OSTI]

    Atkinson, D. B.

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) study around Sacramento, CA are ...

  6. Persistent sensitivity of Asian aerosol to emissions of nitrogen oxides

    E-Print Network [OSTI]

    Kharol, S. K.

    We use a chemical transport model and its adjoint to examine the sensitivity of secondary inorganic aerosol formation to emissions of precursor trace gases from Asia. Sensitivity simulations indicate that secondary inorganic ...

  7. REPRESENTING AEROSOLS IN GLOBAL MODELS: FROM MICROMETERS TO MEGAMETERS

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    mainly from gas-to- particle conversion of low-volatility gaseous species, mainly sulfuric acid to represent aerosol processes and forcing "on-line" in climate models in order to capture the feedbacks

  8. Page 1 | B.A. in Chemistry | Academic Plan of Study Updated May 2015 B.A. in Chemistry

    E-Print Network [OSTI]

    Wang, Yongge

    Page 1 | B.A. in Chemistry | Academic Plan of Study Updated May 2015 B.A. in Chemistry Academic Plan of Study College of Liberal Arts & Sciences Department of Chemistry chemistry.uncc.edu PROGRAM. · Advising (For the Major): completed by your chemistry faculty advisor (please refer to your 49er Banner

  9. Page 1 | B.S. in Chemistry | Academic Plan of Study Updated May 2015 B.S. in Chemistry

    E-Print Network [OSTI]

    Wang, Yongge

    Page 1 | B.S. in Chemistry | Academic Plan of Study Updated May 2015 B.S. in Chemistry Academic Plan of Study College of Liberal Arts & Sciences Department of Chemistry chemistry.uncc.edu PROGRAM to declare the major. · Advising (For the Major): completed by your chemistry faculty advisor (please refer

  10. 1 BA/BS with a Major in Chemistry, Concentration in Forensic Chemistry BA/BS WITH A MAJOR IN

    E-Print Network [OSTI]

    Vertes, Akos

    Laboratory CHEM 3165 Biochemistry I CHEM 4122 Instrumental Analytical Chemistry CHEM 4134 Descriptive Instrumental Analytical Chemistry CHEM 4123 Instrumental Analytical Chemistry Laboratory CHEM 4134 (if1 BA/BS with a Major in Chemistry, Concentration in Forensic Chemistry BA/BS WITH A MAJOR

  11. B.S. and ACS Approved Degrees in Environmental Chemistry Requirements for the Environmental Chemistry B.S. degree program

    E-Print Network [OSTI]

    McQuade, D. Tyler

    and 1051 & 1051L Analytical Chemistry CHM 3120 & 3120L; 4130 & 4130L Organic Chemistry CHM 2210; 2211, 2211B.S. and ACS Approved Degrees in Environmental Chemistry Requirements for the Environmental Chemistry B.S. degree program General Chemistry CHM 1045 & CHM 1045L; 1046 and 1046L or CHM 1050 & 1050L

  12. University of Regensburg -Faculty of Chemistry & Pharmacy Chemistry, B.Sc. -course list for English-speaking students

    E-Print Network [OSTI]

    Schubart, Christoph

    -BSc-M08 3 x x Praktikum Analytische Chemie Analytic Chemistry lab course 3 4 Praktikum PhysikalischeUniversity of Regensburg - Faculty of Chemistry & Pharmacy Chemistry, B.Sc. - course list Physikalische Chemie I Physical Chemistry I lab course 4 4 TechnischeChemie TechnicalChemistry lecture 3 CHE

  13. Laser selective chemistry -is it possible?

    E-Print Network [OSTI]

    Zewail, Ahmed

    Laser selective chemistry -is it possible? Ahmed H. Zewail Reprinted I'rom PHYSI('S TODAY November 1980 c IYHii An~czr~Laser selective chemistry 3-is it possible limited by statistical thermody- namic laws. With sufficientlybrief and intense laser radiation properly

  14. Academic Chemistry Inputs and Outcomes Data

    E-Print Network [OSTI]

    Rosenbloom, Joshua L.; Ginther, Donna K.; Juhl, Ted P.; Heppert, Joseph A.

    2015-07-17

    represented in this data by summing real federally funded R&D expenditures (in prices of 2005) for chemistry and chemical engineering between 1990 and 2009 and then ranking... Chemistry or Chemical Engineering. The directory is published every 2 years, and intervening years were imputed by linear interpolation. The ACS directories are issued in odd...

  15. Carnegie Mellon University 1 Department of Chemistry

    E-Print Network [OSTI]

    Kurnikova, Maria

    power, plastics, metals, and pharmaceutical industries. Chemistry plays an increasingly important role Institute of Standards and Technology, and the Department of Energy as well as in consulting. Chemistry, technology and engineering, such as biology, physics, mathematics, chemical, biomedical or materials science

  16. Soil and Water Chemistry Distance Education Section

    E-Print Network [OSTI]

    Ma, Lena

    ., 2nd edition Oxford University Press. 3. Soil Chemistry. Bohn, McNeal, O'Connor, and Myer. 2001 3rd, Professor, Soil and Water Science Dept Mailing address: University of Florida Everglades Research principles of soil and water chemistry. The class will cover the fundamentals principles of the properties

  17. Journal of Radioanalytical and Nuclear Chemistry

    E-Print Network [OSTI]

    Buesseler, Ken

    1 23 Journal of Radioanalytical and Nuclear Chemistry An International Journal Dealing with All Aspects and Applications of Nuclear Chemistry ISSN 0236-5731 J Radioanal Nucl Chem DOI 10.1007/s10967 that devastated the Fuku- shima Dai-Ichi nuclear power plant resulted in the largest accidental release of cesium

  18. Chemistry 593: Problem Set 1 David Ronis

    E-Print Network [OSTI]

    Ronis, David M.

    Chemistry 593: Problem Set 1 © David Ronis McGill University DUE: Friday, January 23, 2015 1). What does = 1 signify? In Eq. (1.1), the first 4 terms were evaluated analytically, while in class. 4. Near a critical point, experiment shows that S(q) 1 + (q)2 , Winter, 2015 #12;Chemistry 593

  19. Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report

    SciTech Connect (OSTI)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2007-09-30

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  20. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect (OSTI)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  1. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    SciTech Connect (OSTI)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  2. On modification of global warming by sulfate aerosols

    SciTech Connect (OSTI)

    Mitchell, J.F.B.; Johns, T.C.

    1997-02-01

    There is increasing evidence that the response of climate to increasing greenhouse gases may be modified by accompanying increases in sulfate aerosols. In this study, the patterns of response in the surface climatology of a coupled ocean-atmosphere general circulation model forced by increases in carbon dioxide alone is compared with those obtained by increasing carbon dioxide and aerosol forcing. The simulations are run from early industrial times using the estimated historical forcing and continued to the end of the twenty-first century assuming a nonintervention emissions scenario for greenhouse gases and aerosols. The comparison is made for the period 2030-2050 when the aerosol forcing is a maximum. In winter, the cooling due to aerosols merely tends to reduce the response to carbon dioxide, whereas in summer, it weakens the monsoon circulations and reverses some of the changes in the hydrological cycle on increasing carbon dioxide. This response is in some respects similar to that found in simulations with changed orbital parameters, as between today and the middle Holocene. The hydrological response in the palaeosimulations is supported by palaeoclimatic reconstructions. The results of changes in aerosol concentrations of the magnetic projected in the scenarios would have a major effect on regional climate, especially over Europe and Southeast Asia. 74 refs., 12 figs., 6 tabs.

  3. Investigations of cloud altering effects of atmospheric aerosols using a new mixed Eulerian-Lagrangian aerosol model

    E-Print Network [OSTI]

    Steele, Henry Donnan, 1974-

    2004-01-01

    Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud ...

  4. Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing

    E-Print Network [OSTI]

    Leibensperger, Eric Michael

    We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 ...

  5. February 15, 2006 Postdoctoral Position in Environmental Chemistry

    E-Print Network [OSTI]

    Holmén, Britt A.

    February 15, 2006 Postdoctoral Position in Environmental Chemistry: Airborne Fine and Ultrafine research on airborne particles through a Dreyfus Foundation Environmental Chemistry Postdoctoral Fellowship and organizational skills and be motivated to apply their chemistry experience to environmental problems. Experience

  6. NATURE CHEMISTRY | www.nature.com/naturechemistry 1 SUPPLEMENTARY INFORMATION

    E-Print Network [OSTI]

    Stoltz, Brian M.

    . Stoltz* The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (USA and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology

  7. Spring 2015 Advising Booklet Biomedical Engineering Chemical & Physical Biology Chemistry

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Spring 2015 Advising Booklet Biomedical Engineering · Chemical & Physical Biology · Chemistry Human: · Biomedical Engineering · Chemical and Physical Biology · Chemistry · Cognitive Neuroscience and Evolutionary in concentrating in the Life Sciences are advised to take courses in Life Sciences, chemistry, and mathematics

  8. University of South Carolina Department of Chemistry & Biochemistry

    E-Print Network [OSTI]

    Morgan, Stephen L.

    University of South Carolina Department of Chemistry & Biochemistry Chemical Hygiene Plan & Biochemistry Department of Chemistry & Biochemistry Safety Committee Faculty members: Stephen L. Morgan@email.sc.edu) Department of Chemistry & Biochemistry Safety Information web site: http

  9. The chemistry and biology of zoanthamine alkaloids and Illicium sesquiterpenes

    E-Print Network [OSTI]

    Trzoss, Lynnie L.

    2012-01-01

    La Jolla, CA Ph.D. in Chemistry Research Advisor: Prof.data ……………… Chapter 3 The chemistry and biology of IlliciumLos Angeles, CA B.S. in Chemistry Research Advisor: Prof.

  10. The Chemistry of Cold Interstellar Cloud Cores Eric Herbst

    E-Print Network [OSTI]

    Millar, Tom

    Chapter 1 The Chemistry of Cold Interstellar Cloud Cores Eric Herbst Department of Physics and Their Chemistry . . . . . . . . . . . . . 4 1.2 Gas-Phase Chemical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.2.4 Organic Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.2.5 Negative

  11. Robert E. Blankenship Departments of Biology and Chemistry

    E-Print Network [OSTI]

    Robert E. Blankenship Departments of Biology and Chemistry Washington, Berkeley ­ Ph.D. in Chemistry, 1975 Nebraska Wesleyan University, Lincoln, Nebraska ­ B.S. in Chemistry with distinction, 1970 PROFESSIONAL EXPERIENCE: 7/06­Pres

  12. Chemistry courses as the turning point for premedical students

    E-Print Network [OSTI]

    Barr, Donald A.; Matsui, John; Wanat, Stanley F.; Gonzalez, Maria Elena

    2010-01-01

    009-9165-3 ORIGINAL PAPER Chemistry courses as the turningnegative experiences in chemistry courses are a major factorTo determine if chemistry courses have a similar effect at a

  13. Indoor Chemistry: Materials, Ventilation Systems, and Occupant Activities

    E-Print Network [OSTI]

    Morrison, G.C.

    2011-01-01

    and J. D. Wooley. Indoor chemistry: ozone volatile organicTibbetts. Ozone Reactive Chemistry on Interior Latex Paint.and the role of reactive chemistry. Indoor A ir. 16 (2006)7-

  14. Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schot, Gijs, vander

    2015-02-10

    This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

  15. Imaging single cells in a beam of live cyanobacteria with an X-ray laser

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schot, Gijs, vander

    This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

  16. Ganges Valley Aerosol Experiment: Science and Operations Plan

    SciTech Connect (OSTI)

    Kotamarthi, VR

    2010-06-21

    The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

  17. Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways

    SciTech Connect (OSTI)

    Lamarque, J.-F.; Kyle, G. Page; Meinshausen, Malte; Riahi, Keywan; Smith, Steven J.; Van Vuuren, Detlef; Conley, Andrew; Vitt, Francis

    2011-08-05

    In this paper, we discuss the results of 2000-2100 simulations with a chemistry-climate model, focusing on the changes in atmospheric composition (troposphere and stratosphere) following the emissions associated with the Representative Concentration Pathways. We show that tropospheric ozone is projected to decrease (RCP3PD and RCP4.5) or increase (RCP8.5) between 2000 and 2100. Surface ozone in 2100 is projected to change little compared from 2000 conditions, a much-reduced impact from the projections based on the A2 scenario. Aerosols are projected to strongly decrease in the 21st century, a reflection of their projected decrease in emissions. Similarly, sulfate deposition is projected to strongly decrease. However, nitrogen deposition is projected to increase over certain regions because of the projected increase NH3 emissions.

  18. An Aerosol Condensation Model for Sulfur Trioxide

    SciTech Connect (OSTI)

    Grant, K E

    2008-02-07

    This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

  19. Imaging Liquids Using Microfluidic Cells

    SciTech Connect (OSTI)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  20. The AeroCom Evaluation and Intercomparison of Organic Aerosol in Global Models

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tsigaridis, Kostas [Columbia Univ., New York, NY (United States). Center for Climate Systems Research; NASA Goddard Inst. for Space Studies, New York, NY (United States); Daskalakis, N. [Univ. of Crete, Heraklion (Greece). Environmental Chemical Processes Lab.; Foundation for Research and Technology Hellas, Patras (Greece); Inst. of Chemical Engineering; Kanakidou, M. [Univ. of Crete, Heraklion (Greece). Environmental Chemical Processes Lab.; ; Adams, P. J. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering and Dept. of Engineering and Public Policy; Artaxo, Paulo [Univ. of Sao Paulo (Brazil). Dept of Applied Physics; Bahadur, R. [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Balkanski, Y. [Lab. des Sciences du Climat et de l'Environnement, Gif-sur-Yvette (France); Bauer, S. [Columbia Univ., New York, NY (United States). Center for Climate Systems Research; NASA Goddard Inst. for Space Studies, New York, NY (United States); Bellouin, N. [Met Office Hadley Centre, Exeter (United Kingdom); Benedetti, Angela [ECMWF, Reading (United Kingdom); Bergman, T. [Finnish Meteorological Inst., Kuopio (Finland); Berntsen, T. [Univ. of Oslo (Norway). Dept. of Geosciences; CICERO, Oslo (Norway); Beukes, J. P. [North-West Univ., Potchestroom (South Africa). Environmental Sciences and Management; Bian, Huisheng [Univ. of Maryland, Baltimore County, MD (United States). Joint Center for Environmental Technology; Carslaw, K. S. [Univ. of Leeds (United Kingdom). School of Earth and Environment; Chin, M. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Curci, Gabriele [Univ. of L'Aquila (Italy). Dept of Physics CETEMPS; Diehl, Thomas [NASA Goddard Space Flight Center (GSFC) and Universities Space Research Association, Greenbelt, MD (United States); Easter, Richard C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ghan, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gong, S. [Meteorological Service of Canada, Toronto (Canada). Air Quality Research Branch; Hodzic, Alma [National Center for Atmospheric Research, Boulder, CO (United States); Hoyle, Christopher R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Swiss Federal Inst. for Forest Snow and Landscape Research (WSL) - Inst. for Snow and Avalanche Research (SLF), Davos (Switzerland); Iversen, T. [ECMWF, Reading (United Kingdom); Univ. of Oslo (Norway). Dept. of Geosciences; Norwegian Meteorological Inst., Oslo (Norway); Jathar, S. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Jimenez, J. L. [Univ. of Colorado, Boulder, CO (United States). Dept. of Chemistry and Biochemistry; Kaiser, J. W. [ECMWF, Reading (United Kingdom); King's College London (United Kingdom). Dept. of Geography; Max Planck Society, Mainz (Germany). Max Planck Inst. for Chemistry, Dept. of Atmospheric Chemistry; ; Kirkevag, A. [Norwegian Meteorological Inst., Oslo (Norway); Koch, Dorothy [Columbia Univ., New York, NY (United States). Center for Climate Systems Research; NASA Goddard Inst. for Space Studies, New York, NY (United States); Kokkola, H. [Finnish Meteorological Inst., Kuopio (Finland); Lee, Y. H. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Lin, G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic, and Space Science; Liu, Xiaohong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Luo, Gan [State Univ. of New York (SUNY), Albany, NY (United States); Ma, Xiaoyan [Environment Canada, Victoria, BC (Canada); Mann, G. W. [Univ. of Leeds (United Kingdom). National Centre for Atmospheric Science and School of Earth and Environment; Mihalopoulos, Nikos [Univ. of Crete, Heraklion (Greece). Environmental Chemical Processes Lab.; Morcrette, J. -J. [ECMWF, Reading (United Kingdom); Muller, J. F. [Belgian Inst. for Space Aeronomy, Brussels (Belgium); Myhre, G. [Center for International Climate and Environmental Research (CICERO), Oslo (Norway)

    2014-01-01

    This paper evaluates the current status of global modeling of the organic aerosol (OA) occurrence in the troposphere and analyzes the differences calculated between models as well as between models and observations. Thirty-one global chemistry/transport and general circulation models have participated in this intercomparison, in the framework of AeroCom phase II. The simulation of OA varies greatly between models in terms of the magnitude of primary emissions, secondary OA (SOA) formation, the number of OA species used (2 to 62), the complexity of OA parameterizations (gas-particle partitioning, chemical aging, multiphase chemistry, aerosol microphysics), and the OA physical, chemical and optical properties. The diversity of the global OA simulation results has increased since earlier AeroCom experiments, mainly due to the increasing complexity of the SOA parameterization in models, and the implementation of new, highly uncertain, OA sources. Diversity of over an order of magnitude exists in the modeled vertical distribution of OA that deserves a dedicated future study. Furthermore, although the OA/OC ratio depends on OA sources and atmospheric processing and is important for model evaluation against OA and OC observations, it is resolved only by few global models. The median global primary OA source strength is 56 Tg a-1 (range 34 - 144 Tg a-1) and the median secondary OA source strength (natural and anthropogenic) is 19 Tg a-1 (range 13-121 Tg a-1). Among the models that take into account the semi-volatile SOA nature, the median source is calculated to be 51 Tg a-1 (range 16-121 Tg a-1), much larger than the median value of the models that calculate SOA in a more simplistic way (19 Tg a-1; range 13-20 Tg a-1, with one model at 37 Tg a-1). The median atmospheric burden of OA is 1.4 Tg (24 models in the range of 0.6-2.0 Tg and 4 between 2.4-3.8 Tg) with a median OA lifetime of 5.4 days (range 3.8-9.6 days). In models that reported both OA and sulfate burdens, the median value of the OA/sulfate burden ratio of is calculated to be 0.77; 13 models calculate a ratio lower than 1, and 9 models higher than 1. For 26 models that reported OA deposition fluxes, the median wet removal is 70 Tg a-1 (range 28-209 Tg a-1), which is on average 85% of the total OA deposition.

  1. DEGREE PLAN BACHLEOR OF SCIENCE IN BIOENGINEERING (MEDICAL IMAGING EMPHASIS)

    E-Print Network [OSTI]

    Huang, Haiying

    DEGREE PLAN BACHLEOR OF SCIENCE IN BIOENGINEERING (MEDICAL IMAGING EMPHASIS) The University BE 1225 (Intro to Bioengineering) 2 CHEM 1442 (Chemistry ll) 4 BE 3320 (Measurement Lab) 3 CHEM 2321: MAJOR: BIOENGINEERING (Medical Imaging) ENGLISH HISTORY POLITICAL SCIENCE MATHEMATICS Approved by

  2. Aerosol specification in single-column CAM5

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lebassi-Habtezion, B.; Caldwell, P.

    2014-11-17

    The ability to run a global climate model in single-column mode is very useful for testing model improvements because single-column models (SCMs) are inexpensive to run and easy to interpret. A major breakthrough in Version 5 of the Community Atmosphere Model (CAM5) is the inclusion of prognostic aerosol. Unfortunately, this improvement was not coordinated with the SCM version of CAM5 and as a result CAM5-SCM initializes aerosols to zero. In this study we explore the impact of running CAM5-SCM with aerosol initialized to zero (hereafter named Default) and test three potential fixes. The first fix is to use CAM5'smore »prescribed aerosol capability, which specifies aerosols at monthly climatological values. The second method is to prescribe aerosols at observed values. The third approach is to fix droplet and ice crystal numbers at prescribed values. We test our fixes in four different cloud regimes to ensure representativeness: subtropical drizzling stratocumulus (based on the DYCOMS RF02 case study), mixed-phase Arctic stratocumulus (using the MPACE-B case study), tropical shallow convection (using the RICO case study), and summertime mid-latitude continental convection (using the ARM95 case study). Stratiform cloud cases (DYCOMS RF02 and MPACE-B) were found to have a strong dependence on aerosol concentration, while convective cases (RICO and ARM95) were relatively insensitive to aerosol specification. This is perhaps expected because convective schemes in CAM5 do not currently use aerosol information. Adequate liquid water content in the MPACE-B case was only maintained when ice crystal number concentration was specified because the Meyers et al. (1992) deposition/condensation ice nucleation scheme used by CAM5 greatly overpredicts ice nucleation rates, causing clouds to rapidly glaciate. Surprisingly, predicted droplet concentrations for the ARM95 region in both SCM and global runs were around 25 cm?3, which is much lower than observed. This finding suggests that CAM5 has problems capturing aerosol effects in this climate regime.« less

  3. Test Images

    E-Print Network [OSTI]

    Test Images. I hope to have a set of test images for the course soon. Some images are available now; some will have to wait until I can find another 100-200

  4. MAY 14, 2008 Chemistry and environmental science professor receives Carroll

    E-Print Network [OSTI]

    Reid, Scott A.

    MAY 14, 2008 Chemistry and environmental science professor receives Carroll College faculty award WAUKESHA, WIS.-- An associate professor of chemistry and environmental science has received an annual

  5. 5.13 Organic Chemistry II, Fall 2003

    E-Print Network [OSTI]

    Jamison, Timothy F.

    Intermediate organic chemistry. Synthesis, structure determination, mechanism, and the relationships between structure and reactivity emphasized. Special topics in organic chemistry included to illustrate the role of organic ...

  6. Plastic Bags to Batteries: A Green Chemistry Solution | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plastic Bags to Batteries: A Green Chemistry Solution Share Description Plastic bags are the scourge of roadsides, parking lots and landfills. But chemistry comes to the rescue At...

  7. Synthesis and Surface Chemistry of Group IV Nanocrystals (Friday...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis and Surface Chemistry of Group IV Nanocrystals (Friday, September 18) Synthesis and Surface Chemistry of Group IV Nanocrystals, Nathan Neale, Group Leader, National...

  8. THE MOLECULAR BIOLOGY INSTITUTE AND THE DEPARTMENT OF CHEMISTRY & BIOCHEMISTRY

    E-Print Network [OSTI]

    Grether, Gregory

    THE MOLECULAR BIOLOGY INSTITUTE AND THE DEPARTMENT OF CHEMISTRY & BIOCHEMISTRY Three Nominees in Molecular Biology, Biochemistry and Chemistry at UCLA #12;

  9. Think for yourself : a writing- based chemistry curriculum

    E-Print Network [OSTI]

    Morgan, John Andrew

    2011-01-01

    Although the number of jobs in chemistry has risen, themy job is just to make them aware of the chemistry in their

  10. Quantum Chemistry of CO2 Interaction with Swelling Clays | netl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum Chemistry of CO2 Interaction with Swelling Clays Quantum Chemistry of CO2 Interaction with Swelling Clays Ubiquitous clay minerals can play an important role in assessing...

  11. High Level Computational Chemistry Approaches to the Prediction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computational Chemistry Approaches to the Prediction of Energetic Properties of Chemical Hydrogen Storage Systems High Level Computational Chemistry Approaches to the Prediction...

  12. Electrophilic Metal Alkyl Chemistry in New Ligand Environments...

    Office of Scientific and Technical Information (OSTI)

    Electrophilic Metal Alkyl Chemistry in New Ligand Environments Citation Details In-Document Search Title: Electrophilic Metal Alkyl Chemistry in New Ligand Environments The goals...

  13. June 26 Training: Using Chemistry and Material Sciences Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0...

  14. Chemistry & Biology Aryl-aldehyde Formation in Fungal Polyketides

    E-Print Network [OSTI]

    Zhao, Huimin

    Chemistry & Biology Article Aryl-aldehyde Formation in Fungal Polyketides: Discovery at Urbana-Champaign, Urbana, IL 61801, USA 2Department of Chemistry, University of Illinois at Urbana

  15. Reductant Chemistry during LNT Regeneration for a Lean Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th Directions in...

  16. Zelenay receives professorship in chemistry from president of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zelenay receives professorship in chemistry from president of Poland Zelenay receives professorship in chemistry from president of Poland Piotr Zelenay of Materials Synthesis and...

  17. NERSC training events: Data Transfer and Archiving; Chemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications NERSC training events: Data Transfer and Archiving; Chemistry and Material Sciences...

  18. NERSC User Martin Karplus Wins Nobel Prize in Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Publications NERSC News Center News Martin Karplus Wins Nobel Prize in Chemistry Martin Karplus Wins Nobel Prize in Chemistry October 9, 2013 | Tags: Awards,...

  19. Bridging the Gap between Fundamental Physics and Chemistry and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for...

  20. Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal-Derived Liquids to Enable HCCI Technology Fuel Chemistry and Cetane Effects on HCCI Performance, Combustion, and Emissions Cetane Performance and Chemistry Comparing...