Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

THE ROLE OF SOOT IN AEROSOL CHEMISTRY  

E-Print Network (OSTI)

characterization of aerosols." in Nature. Aim. and MethodsLAWRENCE THE ROLE OF SOOT IN AEROSOL CHEMISTRY T. NovakovTHE ROLE OF SOOT IN AEROSOL CHEMISTRY* T. Novakov Lawrence

Novakov, T.

2010-01-01T23:59:59.000Z

2

Coupled aerosol-chemistry-climate twentieth century transient...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupled aerosol-chemistry-climate twentieth century transient model investigation: Trends in short-lived species and climate responses Title Coupled aerosol-chemistry-climate...

3

Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties  

E-Print Network (OSTI)

of levoglucosan in biomass combustion aerosol by high-of levoglucosan in biomass combustion aerosol by high-from smoldering biomass combustion, Atmospheric Chemistry

Moore, Meagan Julia Kerry

2011-01-01T23:59:59.000Z

4

Aerosol–Cloud Interactions in a Mesoscale Model. Part II: Sensitivity to Aqueous-Phase Chemistry  

Science Conference Proceedings (OSTI)

The feedbacks between aerosols, cloud microphysics, and cloud chemistry are investigated in a mesoscale model. A simple bulk aqueous-phase sulfur chemistry scheme was fully coupled to the existing aerosol and microphysics schemes. The ...

Irena T. Ivanova; Henry G. Leighton

2008-02-01T23:59:59.000Z

5

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

Sun, Y. et al. Size-resolved aerosol chemistry on Whistlerwith a high-resolution aerosol mass spectrometer duringBasis Set: 1. Organic-Aerosol Mixing Thermodynamics. Atmos.

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

6

Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions  

E-Print Network (OSTI)

, the aerosolassociated water depends on the composition of the #12;3 particles, which is determined by gas in a three dimensional chemical transport model to understand the roles of ammonia chemistry and natural precursors among modeled aerosol species selfconsistently with ambient relative humidity and natural

Zender, Charles

7

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)  

SciTech Connect

This paper describes the development and evaluation of a new Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), with a special focus on addressing the long-standing issues associated with solving the dynamic partitioning of semi-volatile inorganic gases (HNO3, HCl, and NH3) to size-distributed atmospheric aerosol particles. The coupled ordinary differential equations (ODE) for dynamic gas-particle mass transfer are extremely stiff, and the available numerical techniques are either too expensive or produce oscillatory and/or inaccurate steady-state solutions. These limitations are overcome in MOSAIC, which couples an accurate and computationally efficient thermodynamic module [Zaveri et al., 2005a,b] with a new dynamic gas-particle partitioning module described here. The algorithm involves time-split integrations of non-volatile and semi-volatile species, and a new concept of “dynamic pH” and an adaptive time-stepping scheme hold the key to smooth, accurate, and efficient solutions over the entire relative humidity range. MOSAIC is found to be in excellent agreement with a benchmark version of the model that uses LSODES (a Gear solver) for rigorously integrating the stiff ODEs. The steady-state MOSAIC results for monodisperse aerosol test cases are also in excellent agreement with those obtained with the benchmark equilibrium model AIM. MOSAIC is also evaluated within a 3-D model, and the average CPU speed is estimated to be over 100 times faster than the dynamic aerosol model MADM [Pilinis et al., 2000]. These results suggest that MOSAIC is highly attractive for use in 3-D aerosol and air quality models in which both accuracy and efficiency are critically important.

Zaveri, Rahul A.; Easter, Richard C.; Fast, Jerome D.; Peters, Len K.

2008-07-03T23:59:59.000Z

8

Modeling aerosol growth by aqueous chemistry in nonprecipitating stratiform cloud  

SciTech Connect

A new microphysics module based on a two-dimensional (2D) joint size distribution function representing both interstitial and cloud particles is developed and applied to studying aerosol processing in non-precipitating stratocumulus clouds. The module is implemented in a three-dimensional dynamical framework of a large-eddy simulation (LES) model and in a trajectory ensemble model (TEM). Both models are used to study the modification of sulfate aerosol by the activation - aqueous chemistry - resuspension cycle in shallow marine stratocumulus clouds. The effect of particle mixing and different size-distribution representations on modeled aerosol processing are studied in a comparison of the LES and TEM simulations with the identical microphysics treatment exposes and a comparison of TEM simulations with a 2D fixed and moving bin microphysics. Particle mixing which is represented in LES and neglected in the TEM leads to the mean relative per particle dry mass change in the TEM simulations being about 30% lower than in analogous subsample of LES domain. Particles in the final LES spectrum are mixed in from different “parcels”, some of which have experienced longer in-cloud residence times than the TEM parcels, all of which originated in the subcloud layer, have. The mean relative per particle dry mass change differs by 14% between TEM simulations with fixed and moving bin microphysics. Finally, the TEM model with the moving bin microphysics is used to evaluate assumptions about liquid water mass partitioning among activated cloud condensation nuclei (CCN) of different dry sizes. These assumptions are used in large-scale models to map the bulk aqueous chemistry sulfate production, which is largely proportional to the liquid water mass, to the changes in aerosol size distribution. It is shown that the commonly used assumptions that the droplet mass is independent of CCN size or that the droplet mass is proportional to the CCN size to the third power do not perform well in the considered case. The explicitly predicted water partitioning indicates that the mean mass of droplets participating in the models aqueous chemistry calculations is proportional to the dry CCN size.

Ovchinnikov, Mikhail; Easter, Richard C.

2010-07-29T23:59:59.000Z

9

Aerosol effects on red blue ratio of clear sky images, and impact on solar forecasting  

E-Print Network (OSTI)

urban, and desert dust aerosols ." JOURNAL OF GEOPHYSICALand K. V. S. Badarinath. "Aerosol climatology: dependence ofUsing a Sky Imager for aerosol characterization."

Ghonima, Mohamed Sherif

2011-01-01T23:59:59.000Z

10

Coupled Aerosol-Chemistry–Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses  

Science Conference Proceedings (OSTI)

The authors simulate transient twentieth-century climate in the Goddard Institute for Space Studies (GISS) GCM, with aerosol and ozone chemistry fully coupled to one another and to climate including a full dynamic ocean. Aerosols include sulfate, ...

Dorothy Koch; Susanne E. Bauer; Anthony Del Genio; Greg Faluvegi; Joseph R. McConnell; Surabi Menon; Ronald L. Miller; David Rind; Reto Ruedy; Gavin A. Schmidt; Drew Shindell

2011-06-01T23:59:59.000Z

11

Addition of Tropospheric Chemistry and Aerosols to the NCAR Community Climate System Model  

SciTech Connect

Atmospheric chemistry and aerosols have several important roles in climate change. They affect the Earth's radiative balance directly: cooling the earth by scattering sunlight (aerosols) and warming the Earth by trapping the Earth's thermal radiation (methane, ozone, nitrous oxide, and CFCs are greenhouse gases). Atmospheric chemistry and aerosols also impact many other parts of the climate system: modifying cloud properties (aerosols can be cloud condensation nuclei), fertilizing the biosphere (nitrogen species and soil dust), and damaging the biosphere (acid rain and ozone damage). In order to understand and quantify the effects of atmospheric chemistry and aerosols on the climate and the biosphere in the future, it is necessary to incorporate atmospheric chemistry and aerosols into state-of-the-art climate system models. We have taken several important strides down that path. Working with the latest NCAR Community Climate System Model (CCSM), we have incorporated a state-of-the-art atmospheric chemistry model to simulate tropospheric ozone. Ozone is not just a greenhouse gas, it damages biological systems including lungs, tires, and crops. Ozone chemistry is also central to the oxidizing power of the atmosphere, which destroys a lot of pollutants in the atmosphere (which is a good thing). We have also implemented a fast chemical mechanism that has high fidelity with the full mechanism, for significantly reduced computational cost (to facilitate millennium scale simulations). Sulfate aerosols have a strong effect on climate by reflecting sunlight and modifying cloud properties. So in order to simulate the sulfur cycle more fully in CCSM simulations, we have linked the formation of sulfate aerosols to the oxidizing power of the atmosphere calculated by the ozone mechanisms, and to dimethyl sulfide emissions from the ocean ecosystem in the model. Since the impact of sulfate aerosols depends on the relative abundance of other aerosols in the atmosphere, we also implemented interactive simulation of nitrate, sea-salt, black carbon, and both primary and secondary organic aerosols into CCSM (using assumed size distributions). These new capabilities are opening the door to studies of the role atmospheric chemistry and aerosols in climate change, and their impact on the biosphere, that were previously impossible.

Cameron-Smith, P; Lamarque, J; Connell, P; Chuang, C; Rotman, D; Taylor, J

2005-11-14T23:59:59.000Z

12

Aerosol physics and chemistry: indoor perspective, Chapter 10  

NLE Websites -- All DOE Office Websites (Extended Search)

G. Sextro Secondary Authors Ruzer, Lev S., and Naomi H. Harley Book Title Aerosol Handbook: Measurement, Dosimetry and Health Effects Chapter Chapter Pagination 189-224...

13

Atmospheric Aerosol Chemistry, Climate Change, and Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

spectrometry capabilities to analyze the molecular composition of atmospheric organic aerosols, or OA, containing nitrogen- containing organic compounds (NOC) and only carbon,...

14

Study of Heterogeneouse Processes Related to the Chemistry of Tropospheric Oxidants and Aerosols  

SciTech Connect

The objective of the studies was to elucidate the heterogeneous chemistry of tropospheric aerosols. Experiments were designed to measure both specifically needed parameters, and to obtain systematic data required to build a fundamental understanding of the nature of gas-surface physical and chemical interactions

Davidovits, Paul; Worsnop, D R; Jayne, J T; Colb, C E

2013-02-13T23:59:59.000Z

15

Evolution of Ozone, Particulates, and Aerosol Direct Radiative Forcing in the Vicinity of Houston Using a Fully Coupled Meteorology-Chemistry-Aerosol Model  

SciTech Connect

A new fully-coupled meteorology-chemistry-aerosol model is used to simulate the urban to regional scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a five day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still under-estimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg; Peckham, S. E.

2006-11-11T23:59:59.000Z

16

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

17

Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties  

E-Print Network (OSTI)

CCN activation, Atmospheric Chemistry and Physics, 10, 5241-precipitation, Atmospheric Chemistry and Physics, 9, 3223-particles. Atmospheric Chemistry and Physics, 2009, 9, A. P.

Moore, Meagan Julia Kerry

2011-01-01T23:59:59.000Z

18

BNL | Radiotracer Chemistry, Instrumentation and Biological Imaging...  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging (RCIBI) Volatile energy costs and the need to conserve a dwindling supply of fossil fuels have created an urgent need to develop alternative sources of renewable...

19

Radiotracer Chemistry and Instrumentation for Biological Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant Imaging Home | Tracer Technology | Application Areas | Publications | People Plant Imaging Home | Tracer Technology | Application Areas | Publications | People The Brookhaven Plant Imaging Program uses non-invasive imaging of molecules tagged with short-lived radioisotopes including carbon-11 (half-life: 20.4 m), nitrogen-13 (half-life: 10 m) and fluorine-18 (half-life 110 m) to contribute directly to the DOE-OBER need for, "Fundamental research on microbes and plants to understand the genetic and biochemical mechanisms that control growth, development, and metabolism, provid(ing) knowledge needed ... to develop new bioenergy crops and improved biofuel production processes that are cost effective and sustainable." Our overarching goal is to investigate how key plant hormones like auxin regulate allocation and metabolism of carbon and nitrogen resources making plants hardier (i.e., stress resistant) and productive in marginal soils.

20

Chemistry of Secondary Organic Aerosol Formation From the Reaction of Hydroxyl Radicals With Aromatic Compounds  

E-Print Network (OSTI)

and Pandis S.N. , Atmospheric Chemistry and Physics, Firstand Pitts J.N.Jr. , 2000. Chemistry of the upper and lowerPandis S.N. , 1998. Atmospheric Chemistry and Physics, First

Strollo Gordon, Christen Michelle

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Daytime Variation of Shortwave Direct Radiative Forcing of Biomass Burning Aerosols from GOES-8 Imager  

Science Conference Proceedings (OSTI)

Hourly Geostationary Operational Environmental Satellite-8 (GOES-8) imager data (1344–1944 UTC) from 20 July–31 August 1998 were used to study the daytime variation of shortwave direct radiative forcing (SWARF) of smoke aerosols over biomass ...

Sundar A. Christopher; Jianglong Zhang

2002-02-01T23:59:59.000Z

22

Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight  

DOE Data Explorer (OSTI)

This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

Loh, N. Duane

23

Radiotracer Chemistry and Instrumentation for Biological Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Addiction Research at Brookhaven Addiction Research at Brookhaven History: In 1987, Brookhaven National Laboratory became the first research institution to use positron emission tomography (PET) and other medical imaging techniques to investigate the brain mechanisms underlying drug addiction. Addiction Research Press Releases brain volume Drinking Alcohol Shrinks Critical Brain Regions in Genetically Vulnerable Mice - 2/15/2012 Brain scans of two strains of mice imbibing significant quantities of alcohol reveal serious shrinkage in some brain regions - but only in mice lacking a particular type of receptor for dopamine, the brain's "reward" chemical. brain scan Gray Matter in Brain's Control Center Linked to Ability to Process Reward - 11/29/2011 Study is first to show link between structure and function in healthy people, and the impairment of both structure and function in people addicted to cocaine.

24

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Availability Technology Negotiable Licensing Insensitive Extrudable Explosive Express Licensing Metal aminoboranes Express Licensing Nanocrystalsol-gel...

25

Aerosol Imaging with a Soft X-ray Free Electron Laser  

SciTech Connect

Lasers have long played a critical role in the advancement of aerosol science. A new regime of ultrafast laser technology has recently be realized, the world's first soft xray free electron laser. The Free electron LASer in Hamburg, FLASH, user facility produces a steady source of 10 femtosecond pulses of 7-32 nm x-rays with 10{sub 12} photons per pulse. The high brightness, short wavelength, and high repetition rate (>500 pulses per second) of this laser offers unique capabilities for aerosol characterization. Here we use FLASH to perform the highest resolution imaging of single PM2.5 aerosol particles in flight to date. We resolve to 35 nm the morphology of fibrous and aggregated spherical carbonaceous nanoparticles that existed for less than two milliseconds in vacuum. Our result opens the possibility for high spatialand time-resolved single particle aerosol dynamics studies, filling a critical technological need in aerosol science.

Bogan, Michael J.; /SLAC /LLNL, Livermore; Boutet, Sebastien; /SLAC; Chapman, Henry N.; /DESY /Hamburg U.; Marchesini, Stefano; /LBL, Berkeley; Barty, Anton; Benner, W.Henry /LLNL, Livermore; Rohner, Urs; /LLNL, Livermore /TOFWERK AG; Frank, Matthias; Hau-Riege, Stefan P.; /LLNL, Livermore; Bajt, Sasa; /DESY; Woods, Bruce; /LLNL, Livermore; Seibert, M.M.; Iwan, Bianca; Timneanu, Nicusor; Hajdu, Janos; /Uppsala U.; Schulz, Joachim; /DESY

2011-08-22T23:59:59.000Z

26

The Role of Mineral Aerosol in Tropospheric Chemistry in East Asia—A Model Study  

Science Conference Proceedings (OSTI)

A detailed gas-phase chemistry mechanism is combined with dust surface uptake processes to explore possible impacts of mineral dust on tropospheric chemistry. The formations of sulfate and nitrate on dust are studied along with the dust effects ...

Yang Zhang; Gregory R. Carmichael

1999-03-01T23:59:59.000Z

27

Stratospheric Ion and Aerosol Chemistry and Possible Links with Cirrus Cloud Microphysics—A Critical Assessment  

Science Conference Proceedings (OSTI)

It has been postulated that variations in galactic cosmic rays could affect production of stratospheric aerosols which, after transport to the upper troposphere, could affect latent heat release in convective and cyclonic systems. This hypothesis ...

Volker A. Mohnen

1990-08-01T23:59:59.000Z

28

Chemistry of carbonaceous aerosols : studies of atmospheric processing and OH-initiated oxidation  

E-Print Network (OSTI)

Carbonaceous aerosols are among the most prevalent yet least understood constituents of the atmosphere, particularly in urban environments. We have performed analyses of field samples and laboratory studies to probe the ...

Johnson, Kirsten S. (Kirsten Sue)

2008-01-01T23:59:59.000Z

29

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Express Licensing Energy Efficient Synthesis Of Boranes Express Licensing Fabrication Of Multilayered Thin Films Via Spin-Assembly Express Licensing...

30

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

SciTech Connect

A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

2010-11-05T23:59:59.000Z

31

Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment  

SciTech Connect

Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model calculations appeared to underestimate sulfate concentrations based on an existing emission inventory. The agreement between observations and model predictions of CO as well as total sulfur is reexamined in this work with a new emission inventory made available recently.

Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

2010-03-15T23:59:59.000Z

32

Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment  

Science Conference Proceedings (OSTI)

Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model calculations appeared to underestimate sulfate concentrations based on an existing emission inventory. The agreement between observations and model predictions of CO as well as total sulfur is reexamined in this work with a new emission inventory made available recently.

Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

2010-03-15T23:59:59.000Z

33

Effects of cloudy/clear air mixing and droplet pH on sulfate aerosol formation in a coupled chemistry/climate global model  

Science Conference Proceedings (OSTI)

In this paper we will briefly describe our coupled ECHAM/GRANTOUR model, provide a detailed description of our atmospheric chemistry parameterizations, and discuss a couple of numerical experiments in which we explore the influence of assumed pH and rate of mixing between cloudy and clear air on aqueous sulfate formation and concentration. We have used our tropospheric chemistry and transport model, GRANTOUR, to estimate the life cycle and global distributions of many trace species. Recently, we have coupled GRANTOUR with the ECHAM global climate model, which provides several enhanced capabilities in the representation of aerosol interactions.

Molenkamp, C.R.; Atherton, C.A. [Lawrence Livermore National Lab., CA (United States); Penner, J.E.; Walton, J.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic and Space Sciences

1996-10-01T23:59:59.000Z

34

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Chemistry Top Journals Journal of the American Chemical Society Angewandte Chemie & Angewandte Chemie, international edition in English Chemical Communications Chemical...

35

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Source Breakthrough Research on Platinum-Nickel Alloys Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Catalysts Chemistry of Cobalt-Platinum...

36

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Chemistry Print Chemical science at the ALS encompasses a broad range of approaches and specializations, including surfaces/interfaces, catalysis, chemical dynamics (gas-phase chemistry), crystallography, and physical chemistry. By one estimate, nearly 80% of all chemical reactions in nature and in human technology take place at boundaries between phases, i.e., at surfaces or interfaces. Atomic- and molecular-scale studies are needed to develop a thorough understanding of the relationships between surface properties and parameters relevant to potential applications and devices. Catalysts play a central role in processes relevant to energy, the environment, and biology. Researchers are working to develop cheaper and smarter catalysts that are fine tuned to accelerate reactions that, for example, drive fuel-refinement, sweep toxins from emissions, or convert starch to sugar.

37

Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition  

E-Print Network (OSTI)

of gas-phase chemistry-aerosol interactions on directforcing by anthropogenic aerosols and ozone, J. Geophys.GCM to constrain the aerosol indirect effect, J. Geophys.

Menon, S.

2009-01-01T23:59:59.000Z

38

Real time in situ detection of organic nitrates in atmospheric aerosols  

E-Print Network (OSTI)

Biogenic Secondary Organic Aerosol. J. Phys. Chem. A 2008,H. Secondary organic aerosol (SOA) formation from reactionsec- ondary organic aerosol yields. Atmospheric Chemistry

Rollins, Andrew W.

2011-01-01T23:59:59.000Z

39

OLIGOMERIZATION OF LEVOGLUCOSAN IN PROXIES OF BIOMASS BURNING AEROSOLS.  

E-Print Network (OSTI)

??Biomass burning aerosols play an important role in the chemistry and physics of the atmosphere and therefore, affect global climate. Biomass burning aerosols are generally… (more)

Holmes, Bryan J.

40

AEROSOL ANALYSIS FOR THE REGIONAL AIR POLLUTION STUDY - FINAL REPORT  

E-Print Network (OSTI)

Beta-Gauge Methods Applied to Aerosol Samples." Submitted toHusar and B.Y.H. Liu. "The Aerosol Size Distribution of LosAngeles Smog." In: Aerosols and Atmospheric Chemistry, G.M.

Jaklevic, J.M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Kirchstetter with aerosol measurement instrument Atmospheric Aerosols Atmospheric aerosol research at LBNL seeks to understand the air quality and climate impacts of particles...

42

Tropospheric Aerosol Chemistry via Aerosol Mass Spectrometry  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical information needed to interpret mass spectra. The challenge is to separate primary and secondary; anthropogenic, biogenic and biomass burning sources - and...

43

Aerosols in Polluted versus Nonpolluted Air Masses: Long-Range Transport and Effects on Clouds  

Science Conference Proceedings (OSTI)

To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United State, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of ...

R. F. Pueschel; C. C. Van Valin; R. C. Castillo; J. A. Kadlecek; E. Ganor

1986-12-01T23:59:59.000Z

44

Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements  

Science Conference Proceedings (OSTI)

The Georgia Institute of Technology–Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the aerosol optical thickness ? for major types of tropospheric aerosols including sulfate, dust, organic carbon ...

Mian Chin; Paul Ginoux; Stefan Kinne; Omar Torres; Brent N. Holben; Bryan N. Duncan; Randall V. Martin; Jennifer A. Logan; Akiko Higurashi; Teruyuki Nakajima

2002-02-01T23:59:59.000Z

45

ARM - Measurement - Aerosol particle size  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass Spectrometer CPI : Cloud Particle Imager DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments DRUM-AEROSOL : Drum Aerosol Sampler AEROSOL-TOWER-EML : EML Tower based Aerosol Measurements

46

EMSL: Science: Atmospheric Aerosol Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

47

© Author(s) 2007. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Global 2-D intercomparison of sectional and modal aerosol modules  

E-Print Network (OSTI)

Abstract. We present an intercomparison of several aerosol modules, sectional and modal, in a global 2-D model in order to differentiate their behavior for tropospheric and stratospheric applications. We model only binary sulfuric acidwater aerosols in this study. Three versions of the sectional model and three versions of the modal model are used to test the sensitivity of background aerosol mass and size distribution to the number of bins or modes and to the prescribed width of the largest mode. We find modest sensitivity to the number of bins (40 vs. 150) used in the sectional model. Aerosol mass is found to be reduced in a modal model if care is not taken in selecting the width of the largest lognormal mode, reflecting differences in sedimentation in the middle stratosphere. The size distributions calculated by the sectional model can be better matched by a modal model with four modes rather than three modes in most but not all situations. A simulation of aerosol decay following the 1991 eruption of Mt. Pinatubo shows that the representation of the size distribution can have a signficant impact on modelcalculated aerosol decay rates in the stratosphere. Between 1991 and 1995, aerosol extinction and surface area density calculated by two versions of the modal model adequately match results from the sectional model. Calculated effective radius for the same time period shows more intermodel variability, with a 20-bin sectional model performing much better than any of the modal models. 1

D. K. Weisenstein; J. E. Penner; M. Herzog; X. Liu

2007-01-01T23:59:59.000Z

48

Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 1. Lagrangian parcel studies  

E-Print Network (OSTI)

We have developed a new model of the gas- and aerosol-phase chemistry of biomass burning smoke plumes called Aerosol Simulation Program (ASP). Here we use ASP combined with a Lagrangian parcel model to simulate the chemistry ...

Alvarado, Matthew James

49

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

measuring equipment Atmospheric Aerosols Atmospheric aerosol research at Berkeley Lab seeks to understand the air quality and climate impacts of particles in the atmosphere. On...

50

Radiotracer Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiotracer Chemistry Radiotracer Chemistry Radiotracer chemistry is focused on the short lived positron emitters. New radiotracer chemistry and molecular targeting strategies are being developed to increase the complexity and diversity of molecular probes (small molecules and plant hormones) for imaging applications. We emphasize C-11 chemistry because the substitution of stable carbon with carbon-11 provides the opportunity to measure and quantify the distribution and kinetics of physiologically relevant substrates and signaling molecules without altering the biological properties of the parent molecule. Recent accomplishments include the development of miniaturized automated systems for the production of C-11 precursor molecules, the synthesis of C-11 labeled azaleic acid and the radiolabeling of auxin for studies of their movement and metabolism in the whole plant in vivo.

51

Photon-Counting Lidar for Aerosol Detection and 3-D Imaging  

E-Print Network (OSTI)

Laser-based remote sensing is undergoing a remarkable advance due to novel technologies developed at MIT Lincoln Laboratory. We have conducted recent experiments that have demonstrated the utility of detecting and imaging ...

Marino, Richard M.

52

Spectro-microscopic Measurements of Carbonaceous Aerosol Aging in Central California  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectro-microscopic Measurements of Carbonaceous Spectro-microscopic Measurements of Carbonaceous Aerosol Aging in Central California For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Atmospheric aerosols affect climate by scattering and absorbing sunlight and by modifying the properties of clouds. However, there are gaps in our understanding of chemical processes involving these airborne particulates, and these gaps contribute significantly to uncertainties in predicting future climate change. Developing more- accurate global climate models requires a more complete understanding of the aerosol lifecycle, from initial particle formation to loss through incorporation into precipitating clouds or dry deposition. In research published in the journal Atmospheric Chemistry and Physics, a team of

53

Simulating Aerosols Using a Chemical Transport Model with Assimilation of Satellite Aerosol Retrievals: Methodology for INDOEX  

E-Print Network (OSTI)

A system for simulating aerosols has been developed using a chemical transport model together with an assimilation of satellite aerosol retrievals. The methodology and model components are described in this paper, and the modeled distribution of aerosols for the Indian Ocean Experiment (INDOEX) is presented by Rasch et al. [this issue]. The system generated aerosol forecasts to guide deployment of ships and aircraft during INDOEX. The system consists of the Model of Atmospheric Transport and Chemistry (MATCH) combined with an assimilation package developed for applications in atmospheric chemistry. MATCH predicts the evolution of sulfate, carbonaceous, and mineral dust aerosols, and it diagnoses the distribution of sea salt aerosols. The model includes a detailed treatment of the sources, chemical transformation, transport, and deposition of the aerosol species. The aerosol forecasts involve a two-stage process. During the assimilation phase the total column aerosol optical depth (AOD) is estimated from the model aerosol fields. The model state is then adjusted to improve the agreement between the simulated AOD and satellite retrievals of AOD. During the subsequent integration phase the aerosol fields are evolved using meteorological fields from an external model. Comparison of the modeled AOD against estimates of the AOD from INDOEX Sun photometer data show that the differences in daily means are #0.03 # 0.06. Although the initial application is limited to the Indian Ocean, the methodology could be extended to derive global aerosol analyses combining in situ and remotely sensed aerosol observations.

William D. Collins; Phillip J. Rasch; Brian E. Eaton; Boris V. Khattatov; Jean-francois Lamarque; C. Zender

2001-01-01T23:59:59.000Z

54

Assessment of Aerosol Modes Used in the MODIS Ocean Aerosol Retrieval  

Science Conference Proceedings (OSTI)

Coastal and island Aerosol Robotic Network (AERONET) sites are used to determine characteristic aerosol modes over marine environments. They are compared with the assumed modes used in the operational Moderate Resolution Imaging Spectroradiometer (...

Jiacheng Wang; Qiang Zhao; Shengcheng Cui; Chengjie Zhu

2012-12-01T23:59:59.000Z

55

Retrieval of Surface Wind Speed and Aerosol Optical Depth over the Oceans from AVHRR Images of Sun Glint  

Science Conference Proceedings (OSTI)

This paper investigates the feasibility of recovering both the tropospheric aerosol loading and the surface wind speed from satellite measurements of the radiance within cloud free regions of sun glint over the ocean surface. The method relies on ...

D. M. O'Brien; R. M. Mitchell

1988-12-01T23:59:59.000Z

56

ARM - Mobile Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesMobile Aerosol Observing System FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Aerosol Observing System Intensive aerosol observations conducted on the campus of Brookhaven National Laboratory on Long Island, New York, using the ARM Mobile Aerosol Observing System. Intensive aerosol observations conducted on the campus of Brookhaven

57

Assessment of the global impact of aerosols on tropospheric oxidants  

E-Print Network (OSTI)

[1] We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas-phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect of aerosols on ultraviolet radiation and photolysis rates. The present study uses the global three-dimensional chemical/ transport model, Model for Ozone and Related Chemical Tracers, version 2 (MOZART-2), in which aerosols are coupled with the model. The model accounts for the presence of

Xuexi Tie; Sasha Madronich; Stacy Walters; David P. Edwards; Paul Ginoux; Natalie Mahowald; Renyi Zhang; Chao Lou; Guy Brasseur

2005-01-01T23:59:59.000Z

58

Global observations of desert dust and biomass burning aerosols  

E-Print Network (OSTI)

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

59

Sandia National Laboratories: Careers: Chemistry & Chemical Engineerin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry & Chemical Engineering Chemistry research photo Sandia's Combustion Research Facility pioneered the use of chemical-imaging tools, such as laser diagnostics, for...

60

A Mixed Bag of Aerosols over Northeastern China  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixed Bag of Aerosols over Northeastern China For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight...

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Do biomass burning aerosols intensify drought in equatorial Asia during El Niño?  

E-Print Network (OSTI)

fication of drought-induced biomass burning in Indonesiavariability in global biomass burning emissions from 1997 toChemistry and Physics Do biomass burning aerosols intensify

Tosca, M. G; Randerson, J. T; Zender, C. S; Flanner, M. G; Rasch, P. J

2010-01-01T23:59:59.000Z

62

ARM - Measurement - Aerosol image  

NLE Websites -- All DOE Office Websites (Extended Search)

list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments SEMSAMP : Scanning Electron Microscope Sampler...

63

Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem  

Science Conference Proceedings (OSTI)

This study assesses the ability of the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model to simulate boundary layer structure, aerosols, stratocumulus clouds, and energy fluxes over the Southeast Pacific Ocean. Measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals (i.e., products from the MODerate resolution Imaging Spectroradiometer (MODIS), Clouds and Earth's Radiant Energy System (CERES), and GOES-10) are used for this assessment. The Morrison double-moment microphysics scheme is newly coupled with interactive aerosols in the model. The 31-day (15 October-16 November 2008) WRF-Chem simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations in the microphysics scheme and simplified cloud and aerosol treatments in the radiation scheme. The well-simulated aerosol quantities (aerosol number, mass composition and optical properties), and the inclusion of full aerosol-cloud couplings lead to significant improvements in many features of the simulated stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness. In addition to accounting for the aerosol direct and semi-direct effects, these improvements feed back to the simulation of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengthens the temperature and humidity gradients within the capping inversion layer and lowers the marine boundary layer (MBL) depth by 130 m from that of the MET simulation. These differences are associated with weaker entrainment and stronger mean subsidence at the top of the MBL in AERO. Mean top-of-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.

Yang Q.; Lee Y.; Gustafson Jr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

2011-12-02T23:59:59.000Z

64

Atmospheric Chemistry and Physics  

E-Print Network (OSTI)

Abstract. A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF) carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14 C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF), which is lower than the measured modern fraction (fM) due to the elevated 14 C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (f TC

unknown authors

2010-01-01T23:59:59.000Z

65

ARM - Measurement - Aerosol scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer RL : Raman Lidar Field Campaign Instruments AOS : Aerosol Observing System DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments AEROSOL-TOWER-EML :...

66

ARM - Measurement - Aerosol extinction  

NLE Websites -- All DOE Office Websites (Extended Search)

CSPHOT : Cimel Sunphotometer CLDAEROSMICRO : Cloud and Aerosol Microphysical Properties DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments IAP : In-situ Aerosol...

67

Effects of Image Charges on the Scavenging of Aerosol Particles by Cloud Droplets and on Droplet Charging and Possible Ice Nucleation Processes  

Science Conference Proceedings (OSTI)

Previous calculations of the rate at which falling droplets in clouds collide with aerosols have led to the conclusion that except in thunderclouds any electrical charges on the aerosols or droplets have little effect on the collision rate. ...

B. A. Tinsley; R. P. Rohrbaugh; M. Hei; K. V. Beard

2000-07-01T23:59:59.000Z

68

BNL | Mobile Aerosol Observing System (MAOS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Aerosol Observing System (MAOS) Mobile Aerosol Observing System (MAOS) The Mobile Aerosol Observing System (MAOS) is a platform and instrument suite for Intensive Operation Periods (IOPs) to conduct in situ measurements of aerosols and their precursors. MAOS is part of the ARM Climate Research Facility. Physically MAOS is contained in two 20' SeaTainers custom adapted to provide a sheltered laboratory environment for operators and instruments even under harsh conditions. The two structures are designated MAOS-A and MAOS-C for Aerosol and Chemistry respectively. Although independent, with separate data systems, inlets and power distribution, the two structures are normally a single operating unit. The two enclosures comprising MAOS are designed for rapid deployment. All components (except for the Radar Wind Profiler) are transported internally

69

ARM - Surface Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesSurface Aerosol Observing System FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Surface Aerosol Observing System The ARM Mobile Facility (AMF) is equipped to quantify the interaction between clouds and aerosol particles. A counter-flow virtual impactor (CVI) is used to selectively sample cloud drops. The CVI takes advantage of the

70

CLUSTER CHEMISTRY  

E-Print Network (OSTI)

Advanced Inorganic Chemistry, 11 Wiley Huetterties and C. M.Submitted to the Journal of Organometallic ChemistryCLUSTER CHEMISTRY Earl L. Muetterties TWO-WEEK LOAN COPY May

Muetterties, Earl L.

2013-01-01T23:59:59.000Z

71

ARM - Field Campaign - Aerosol Life Cycle IOP at BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAerosol Life Cycle IOP at BNL govCampaignsAerosol Life Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News, June 14, 2011: Next-generation Aerosol-sampling Stations to Head for India Related Campaigns Aerosol Life Cycle: Chemical Ionization Mass Spectrometer - CIMS 2011.07.10, Lee, OSC Aerosol Life Cycle: HR-ToF-AMS 2011.06.15, Zhang, OSC Aerosol Life Cycle: ARM Mobile Facility 2 Aerosol Observing System 2011.06.15, Sedlacek, OSC Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10, Hallar, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle IOP at BNL 2011.06.01 - 2011.08.31 Lead Scientist : Arthur Sedlacek For data sets, see below.

72

Actinide Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Actinide Chemistry Actinide Chemistry Actinide Chemistry Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise David Gallimore Actinide Analytical Chemistry Email Rebecca Chamberlin Actinide Analytical Chemistry Email Josh Smith Chemistry Communications Email Along with the lanthanides, they are often called "the f-elements" because they have valence electrons in the f shell. Actinide chemistry serves a critical role in addressing global threats Project Description At Los Alamos, scientists are using actinide analytical chemistry to identify and quantify the chemical and isotopic composition of materials. Since the Manhattan Project, such work has supported the Laboratory's

73

Secondary Ion Mass Spectrometry of Environmental Aerosols  

Science Conference Proceedings (OSTI)

Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

Gaspar, Daniel J.; Cliff, John B.

2010-08-01T23:59:59.000Z

74

Nuclear Analytical Chemistry Portal  

Science Conference Proceedings (OSTI)

NIST Home > Nuclear Analytical Chemistry Portal. Nuclear Analytical Chemistry Portal. ... see all Nuclear Analytical Chemistry news ... ...

2010-08-02T23:59:59.000Z

75

BNL | Aerosol Lifecycle Research  

NLE Websites -- All DOE Office Websites (Extended Search)

identified strategic process-science foci: aerosol nucleation and growth and aerosol aging and mixing state. BNL is the lead laboratory responsible for the design and...

76

Aerosol Can Failure  

Science Conference Proceedings (OSTI)

Presentation Title, Aerosol Can Failure ... Abstract Scope, A three-piece, welded seam aerosol can of liquid undercoating material failed catastrophically, ...

77

Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)  

DOE Data Explorer (OSTI)

The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

78

Medicinal chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal chemistry Name: Jason A Stamm Age: NA Location: NA Country: NA Date: NA Question: I am a senior chemistry major interested in going to grad school, specifically for...

79

between Photolytic Aerosols and Solar Radiation  

E-Print Network (OSTI)

Since the early 70’s chemistry and transport models (ChTMs) have been proposed and improved. Tropospheric ChTMs for trace species are detailed numerical formulations intended to represent the atmospheric system as a whole, accounting for all the individual processes and phenomena that influence climate changes. The development of computer resources and the retrieval of emission inventories and observational data of the species of interest have enhanced the model evolution towards three-dimensional global models that account for more complicated chemical mechanisms, wet and dry deposition phenomena, and interactions and feedback mechanisms between meteorology and atmospheric chemistry. The purpose of this study is to ascertain the sensitivity of the solar radiative field in the atmosphere to absorption and scattering by aerosols. This effort is preliminary to the study of feedback mechanisms between photolytic processes that create and destroy aerosols and the radiation field itself. In this study, a cloud of water-soluble aerosols, randomly distributed in space within hypothetical 1-cm cubes of atmosphere, is generated. A random radius is assigned to each aerosol according to a lognormal size distribution function. The radiative field characterization is analyzed using a Mie scattering code to determine the scattering phase function and the absorption and scattering coefficients of sulfate aerosols, and a Monte Carlo ray-trace code is used to evaluate the radiative exchange. The ultimate goal of the effort is to create a tool to analyze the vertical distribution of absorption by aerosols in order to determine whether or not feedback between photolytic processes and the radiation field needs to be included in a Third Generation Chemistry and Transport model. ii

María Santa; María Iruzubieta; María Santa; María Iruzubieta

2001-01-01T23:59:59.000Z

80

Measurement of two-dimensional concentration fields of a glycol-based tracer aerosol using laser light sheet illumination and microcomputer video image acquisition and processing  

E-Print Network (OSTI)

The use of a tracer aerosol with a bulk density close to that of air is a convenient way to study the dispersal of pollutants in ambient room air flow. Conventional point measurement techniques do not permit the rapid and ...

Revi, Frank

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging Print Imaging Print The wavelengths of soft x-ray photons (1-15 nm) are very well matched to the creation of "nanoscopes" capable of probing the interior structure of biological cells and inorganic mesoscopic systems.Topics addressed by soft x-ray imaging techniques include cell biology, nanomagnetism, environmental science, and polymers. The tunability of synchrotron radiation is absolutely essential for the creation of contrast mechanisms. Cell biology CAT scans are performed in the "water window" (300-500 eV). Nanomagnetism studies require the energy range characteristic of iron, cobalt, and nickel (600-900 eV). Mid- and far-infrared (energies below 1 eV) microprobes using synchrotron radiation are being used to address problems such as chemistry in biological tissues, chemical identification and molecular conformation, environmental biodegradation, mineral phases in geological and astronomical specimens, and electronic properties of novel materials. Infrared synchrotron radiation is focused through, or reflected from, a small spot on the specimen and then analyzed using a spectrometer. Tuning to characteristic vibrational frequencies serves as a sensitive fingerprint for molecular species. Images of the various species are built up by raster scanning the specimen through the small illuminated spot.

82

Organic Aerosol Component (OACOMP) Value-Added Product Report  

SciTech Connect

Significantly improved returns in their aerosol chemistry data can be achieved via the development of a value-added product (VAP) of deriving OA components, called Organic Aerosol Components (OACOMP). OACOMP is primarily based on multivariate analysis of the measured organic mass spectral matrix. The key outputs of OACOMP are the concentration time series and the mass spectra of OA factors that are associated with distinct sources, formation and evolution processes, and physicochemical properties.

Fast, J; Zhang, Q; Tilp, A; Shippert, T; Parworth, C; Mei, F

2013-08-23T23:59:59.000Z

83

A Three-Dimensional Cloud Chemistry Model  

Science Conference Proceedings (OSTI)

A cloud chemistry model is formulated in term of continuity equations for chemical species in the aqueous and aqueous phases within the cloud. The model includes scavenging of SO2, HNO3, HN3, H2O3, and sulphate aerosol particles. Calculations ...

Andre Tremblay; Henry Leighton

1986-05-01T23:59:59.000Z

84

The aging of organic aerosol in the atmosphere : chemical transformations by heterogeneous oxidation  

E-Print Network (OSTI)

The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase ...

Kessler, Sean Herbert

2013-01-01T23:59:59.000Z

85

Formation of ozone and growth of aerosols in young smoke plumes from biomass burning  

E-Print Network (OSTI)

The combustion of biomass is a major source of atmospheric trace gases and aerosols. Regional and global-scale models of atmospheric chemistry and climate take estimates for these emissions and arbitrarily "mix" them into ...

Alvarado, Matthew James

2008-01-01T23:59:59.000Z

86

An Empirical Parameterization of Heterogeneous Ice Nucleation for Multiple Chemical Species of Aerosol  

Science Conference Proceedings (OSTI)

A novel, flexible framework is proposed for parameterizing the heterogeneous nucleation of ice within clouds. It has empirically derived dependencies on the chemistry and surface area of multiple species of ice nucleus (IN) aerosols. Effects from ...

Vaughan T. J. Phillips; Paul J. DeMott; Constantin Andronache

2008-09-01T23:59:59.000Z

87

ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP Campaign Links Science Plan AMF Point Reyes Website AMF Point Reyes Data Plots Related Campaigns MASRAD: Pt. Reyes Stratus Cloud and Drizzle Study 2005.07.07, Coulter, AMF MASRAD: Cloud Condensate Nuclei Chemistry Measurements 2005.07.01, Berkowitz, AMF MASRAD - Aerosol Optical Properties 2005.06.29, Strawa, AMF MASRAD:Sub-Micron Aerosol Measurements 2005.06.20, Wang, AMF MASRAD: Cloud Study from the 2NFOV at Pt. Reyes Field Campaign 2005.06.02, Wiscombe, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : MArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP 2005.03.14 - 2005.09.14 Website : http://www.arm.gov/sites/amf/pye/ Lead Scientist : Mark Miller

88

Exoplanet Chemistry  

E-Print Network (OSTI)

The characteristic chemistry of terrestrial planets and, in particular, of giant planets rich and poor in He and H2 are described.

Lodders, Katharina

2009-01-01T23:59:59.000Z

89

Computational Chemistry  

Science Conference Proceedings (OSTI)

... and numerical tools to quantify uncertainties for computational quantum chemistry. ... Results appear in the issue of The Journal of Chemical Physics. ...

2010-10-05T23:59:59.000Z

90

Tropospheric Chemistry of Internally Mixed Sea Salt and Organic Particles: Surprising Reactivity of NaCl with Weak Organic Acids  

Science Conference Proceedings (OSTI)

Chemical imaging analysis of internally mixed sea salt/organic particles collected on board the Department of Energy (DOE) G-1 aircraft during the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES) was performed using electron microscopy and X-ray spectro-microscopy techniques. Substantial chloride depletion in aged sea salt particles was observed, which could not be explained by the known atmospheric reactivity of sea salt with inorganic nitric and sulfuric acids. We present field evidence that chloride components in sea salt particles may effectively react with organic acids releasing HCl gas to the atmosphere, leaving behind particles depleted in chloride and enriched in the corresponding organic salts. While formation of the organic salts products is not thermodynamically favored for bulk aqueous chemistry, these reactions in aerosol are driven by high volatility and irreversible evaporation of the HCl product from drying particles. These field observations were corroborated in a set of laboratory experiments where NaCl particles mixed with organic acids were found to be depleted in chloride. Combined together, the results indicate substantial chemical reactivity of sea salt particles with secondary organics that has been largely overlooked in the atmospheric aerosol chemistry. Atmospheric aging, and especially hydration-dehydration cycles of mixed sea salt/organic particles may result in formation of organic salts that will modify acidity, hygroscopic and optical properties of aged particles.

Laskin, Alexander; Moffet, Ryan C.; Gilles, Marry K.; Fast, Jerome D.; Zaveri, Rahul A.; Wang, Bingbing; Nigge, P.; Shutthanandan, Janani I.

2012-08-03T23:59:59.000Z

91

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

92

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

93

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

94

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

95

Solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

Prescott, Donald S. (Shelley, ID); Schober, Robert K. (Midwest City, OK); Beller, John (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

96

Chemistry Central Journal Commentary  

E-Print Network (OSTI)

Industrial chemistry and chemoecology are linked together to realize a modern and sustainable chemistry

Peter Saling; Peter Saling

2007-01-01T23:59:59.000Z

97

The Effects of Aerosols on Intense Convective Precipitation in the Northeastern U.S.  

SciTech Connect

A fully coupled meteorology-chemistry-aerosol mesoscale model (WRF-Chem) is used to assess the effects of aerosols on intense convective precipitation over the northeastern United States. Numerical experiments are performed for three intense convective storm days and for two scenarios representing “typical” and “low” aerosol conditions. The results of the simulations suggest that increasing concentrations of aerosols can lead to either enhancement or suppression of precipitation. Quantification of the aerosol effect is sensitive to the metric used due to a shift of rainfall accumulation distribution when realistic aerosol concentrations are included in the simulations. Maximum rainfall accumulation amounts and areas with rainfall accumulations exceeding specified thresholds provide robust metrics of the aerosol effect on convective precipitation. Storms developing over areas with medium to low aerosol concentrations showed a suppression effect on rainfall independent of the meteorologic environment. Storms developing in areas of relatively high particulate concentrations showed enhancement of rainfall when there were simultaneous high values of CAPE, relative humidity and wind shear. In these cases, elevated aerosol concentrations resulted in stronger updrafts and downdrafts and more coherent organization of convection. For the extreme case, maximum rainfall accumulation differences exceeded 40 mm. The modeling results suggest that areas of the northeastern U.S. urban corridor that are close or downwind of intense sources of aerosols, could be more favorable for rainfall enhancement due to aerosols for the aerosol concentrations typical of this area.

Ntelekos, Alexandros A.; Smith, James S.; Donner, Leo J.; Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Krajewski, Witold F.

2009-08-03T23:59:59.000Z

98

Anthropogenic Aerosol Radiative Forcing in Asia Derived From Regional Models With Atmospheric and Aerosol Data Assimilation  

DOE Green Energy (OSTI)

A high-resolution estimate of monthly 3D aerosol solar heating rates and surface solar fluxes in Asia from 2001 to 2004 is described here. This product stems from an Asian aerosol assimilation project, in which a) the PNNL regional model bounded by the NCEP reanalyses was used to provide meteorology, b) MODIS and AERONET data were integrated for aerosol observations, c) the Iowa aerosol/chemistry model STEM-2K1 used the PNNL meteorology and assimilated aerosol observations, and d) 3D (X-Y-Z) aerosol simulations from the STEM-2K1 were used in the Scripps Monte-Carlo Aerosol Cloud Radiation (MACR) model to produce total and anthropogenic aerosol direct solar forcing for average cloudy skies. The MACR model and STEM both used the PNNL model resolution of 0.45ş×0.4ş in the horizontal and of 23 layers in the troposphere. The 2001–2004 averaged anthropogenic all-sky aerosol forcing is ?1.3 Wm-2 (TOA), +7.3 Wm-2 (atmosphere) and ?8.6 Wm-2 (surface) averaged in Asia (60?138°E & Eq. ?45°N). In the absence of AERONET SSA assimilation, absorbing aerosol concentration (especially BC aerosol) is much smaller, giving ?2.3 Wm-2 (TOA), +4.5 Wm-2 (atmosphere) and ?6.8 Wm-2 (surface), averaged in Asia. In the vertical, monthly forcing is mainly concentrated below 600hPa with maxima around 800hPa. Seasonally, low-level forcing is far larger in dry season than in wet season in South Asia, whereas the wet season forcing exceeds the dry season forcing in East Asia. The anthropogenic forcing in the present study is similar to that in Chung et al.’s [2005] in overall magnitude but the former offers fine-scale features and simulated vertical profiles. The interannual variability of the computed anthropogenic forcing is significant and extremely large over major emission outflow areas. In view of this, the present study’s estimate is within the implicated range of the 1999 INDOEX result. However, NCAR/CCSM3’s anthropogenic aerosol forcing is much smaller than the present study’s estimate at the surface, and is outside of what the INDOEX findings can support.

Chung, Chul Eddy; Ramanathan, V.; Carmichael, Gregory; Kulkarni, S.; Tang, Youhua; Adhikary, Bhupesh; Leung, Lai-Yung R.; Qian, Yun

2010-07-05T23:59:59.000Z

99

Chemistry implications of climate change  

SciTech Connect

Since preindustrial times, the concentrations of a number of key greenhouse gases such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and the nitric oxides (N{sub 2}O) have increased. Additionally, the concentrations of anthropogenic aerosols have also increased during the same time period. Increasing concentrations of greenhouse gases are expected to increase temperature, while the aerosols tend to have a net cooling effect. Taking both of these effects into account, the current best scientific estimate is that the global average surface temperature is expected to increase by 2{degrees}C between the years 1990 to 2100. A climate change if this magnitude will both directly and indirectly impact atmospheric chemistry. For example, many important tropospheric reactions have a temperature dependence (either Arrhenius or otherwise). Thus, if temperature increase, reaction rates will also increase.

Atherton, C.S.

1997-05-01T23:59:59.000Z

100

Impact of geoengineered aerosols on the troposphere and stratosphere  

Science Conference Proceedings (OSTI)

A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic-sized, liquid sulfate aerosols is imposed in the period 2020–2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth’s climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates.

Tilmes, S.; Garcia, Rolando R.; Kinnison, Douglas E.; Gettelman, A.; Rasch, Philip J.

2009-06-27T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Saharan Dust Aerosol Radiative Forcing Measured from Space  

Science Conference Proceedings (OSTI)

This study uses data collected from the Clouds and the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments to determine Saharan dust broadband shortwave aerosol radiative forcing over ...

F. Li; A. M. Vogelmann; V. Ramanathan

2004-07-01T23:59:59.000Z

102

AVIRIS Canopy Chemistry Data (ACCP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Canopy Chemistry Data Canopy Chemistry Data The ORNL DAAC has added a data set to its holdings from the Accelerated Canopy Chemistry Program (ACCP). The new data set is entitled "Site AVIRIS Images, 1992 (ACCP)." ACCP was an investigation to determine the theoretical and empirical basis for remote sensing of nitrogen and lignin concentrations in vegetation canopies of various ecosystems in the United States. Ten AVIRIS image scenes over selected ACCP sites were acquired in 1992. Pixels that coincided with ACCP field sites were extracted, and surface reflectance values were calculated. The purpose of the data set was to measure spectra of naturally occurring canopies where the chemical constituents were measured. The ORNL DAAC also holds ACCP data related to leaf chemistry, seedling

103

Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements  

SciTech Connect

This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

Dr. Timothy Onasch

2009-09-09T23:59:59.000Z

104

Airship Measurements of Aerosol Size Distributions, Cloud Droplet Spectra, and Trace Gas Concentrations in the Marine Boundary Layer  

Science Conference Proceedings (OSTI)

The use of an airship as a platform to conduct atmospheric chemistry, aerosol, and cloud microphysical research is described, and results from demonstration flights made off the Oregon coast are presented. The slow speed of the airship makes it ...

G. M. Frick; W. A. Hoppel

1993-11-01T23:59:59.000Z

105

(Chemistry of the global atmosphere)  

SciTech Connect

The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

Marland, G.

1990-09-27T23:59:59.000Z

106

PNNL-MILAGRO Aerosol Modeling in Mexico | Open Energy Information  

Open Energy Info (EERE)

PNNL-MILAGRO Aerosol Modeling in Mexico PNNL-MILAGRO Aerosol Modeling in Mexico Jump to: navigation, search Name PNNL-MILAGRO Aerosol Modeling in Mexico Agency/Company /Organization Pacific Northwest National Laboratory Topics Co-benefits assessment Resource Type Dataset, Maps Website http://www.pnl.gov/atmospheric Country Mexico UN Region Latin America and the Caribbean References PNNL-MILAGRO Aerosol Modeling in Mexico[1] "MILGARO surface data includes measurements from Supersites, RAMA (Red Automatica de Monitoreo Atmosferico), Mobile, and Other sites. A description of each site type follows along with a plot of the site locations. Supersites Supersites provide detailed atmospheric chemistry and meteorological measurements; these sites included: T0 (located at the Instituto Mexicano

107

NEWTON's Chemistry Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Videos Do you have a great chemistry videos? Please click our Ideas page. Featured Videos: Steve Marsden's Chemistry Resources The Periodic Table of Videos The University...

108

Green Chemistry and Workers  

E-Print Network (OSTI)

J. Warner. 1998. Green Chemistry: Theory and Practice. NewNew Science, Green Chemistry and Environmental Health.abstract.html 5. American Chemistry Council. 2003. Guide to

2009-01-01T23:59:59.000Z

109

NEWTON's Chemistry References  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry References Do you have a great chemistry reference link? Please click our Ideas page. Featured Reference Links: Steve Marsden's Chemistry Resources Steve Marsden's...

110

ARM - Measurement - Aerosol concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

concentration concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol concentration A measure of the amount of aerosol particles (e.g. number, mass, volume) per unit volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer CPC : Condensation Particle Counter IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) TDMA : Tandem Differential Mobility Analyzer

111

ARM - Measurement - Aerosol absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

absorption absorption ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The process in which radiation energy is retained by aerosols. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) PSAP : Particle Soot Absorption Photometer PASS : Photoacoustic Soot Spectrometer External Instruments OMI : Ozone Monitoring Instrument

112

Aerosols and solar energy  

DOE Green Energy (OSTI)

A brief description is presented of the involvement of the Solar Energy Research Institute (SERI) in atmospheric research, including aerosol characterization and modeling. The use of both rigorous and simple models for radiation transport is described. Modeled broadband solar irradiance data are shown to illustrate the important influence that aerosols have on the energy available to solar systems and the economics of solar systems design. Standard aerosol measurement methods for solar applications are discussed along with the need for improved instrumentation and methods.

Bird, R. E.; Hulstrom, R. L.

1979-01-01T23:59:59.000Z

113

Study of the Impact of Summer Monsoon Circulation on Spatial Distribution of Aerosols in East Asia Based on Numerical Simulations  

Science Conference Proceedings (OSTI)

The regional coupled climate–chemistry/aerosol model (RegCM3) is used to investigate the difference in the spatial distribution of aerosol optical depth (AOD) between a strong summer monsoon year (SSMY; July 2003) and a weak summer monsoon year (...

Libin Yan; Xiaodong Liu; Ping Yang; Zhi-Yong Yin; Gerald R. North

2011-11-01T23:59:59.000Z

114

Carbonaceous Aerosols and Radiative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols and Radiative Effects Study Science Objective This field campaign is designed to increase scientific knowledge about the evolution of black carbon, primary organic...

115

Computational simulation of aerosol behaviour.  

E-Print Network (OSTI)

??In this thesis, computational methods have been developed for the simulation of aerosol dynamics and transport. Two different coupled aerosol-computational fluid dynamics (CFD) models are… (more)

Pyykönen, Jouni

2002-01-01T23:59:59.000Z

116

Educational Chemistry Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Games Do you have a great chemistry game? Please click our Ideas page. Featured Games: Nobelprize.org's Chemistry Games Nobelprize.org's Chemistry Games Nobelprize.org,...

117

Ganges valley aerosol experiment.  

Science Conference Proceedings (OSTI)

In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

Kotamarthi, V.R.; Satheesh, S.K. (Environmental Science Division); (Indian Institute of Science, Bangalore, India)

2011-08-01T23:59:59.000Z

118

BNL | Aerosol Lifecycle IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Aerosol Life Cycle IOP The primary objectives that make up the Aerosol Life Cycle IOP can be broken down into three categories: Scientific; Logistical; and GVAX preparation. Scientific Objectives The science goals are to conduct intensive aerosol observations in a region exposed to anthropogenic, biogenic, and marine emissions with atmospheric processing times depending on air mass trajectories and time of day. Take advantage of new instruments in the MAOS (e.g., SP2, HR-PTRMS, ACSM, Trace Gas Suite, PASS-3, Aethelometer, UHSAS). Within this broad umbrella are embedded three main foci: Aerosol light absorption: How does the aerosol mass absorption coefficient (absorption per unit mass of BC) vary with atmospheric processing? Do observations agree with a shell-core model?

119

A Study of Air Quality in the Southeastern Hampton–Norfolk–Virginia Beach Region with Airborne Lidar Measurements and MODIS Aerosol Optical Depth Retrievals  

Science Conference Proceedings (OSTI)

A study of air quality was performed using a compact, aircraft aerosol lidar designed in the Science Directorate at NASA Langley Research Center and Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) retrievals. ...

Jasper Lewis; Russell De Young; D. Allen Chu

2010-01-01T23:59:59.000Z

120

Evolution of Water Vapor Concentrations and Stratospheric Age of Air in Coupled Chemistry-Climate Model Simulations  

Science Conference Proceedings (OSTI)

Stratospheric water vapor concentrations and age of air are investigated in an ensemble of coupled chemistry-climate model simulations covering the period from 1960 to 2005. Observed greenhouse gas concentrations, halogen concentrations, aerosol ...

John Austin; John Wilson; Feng Li; Holger Vömel

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Rob Newsom; John Goldsmith

122

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

123

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

SciTech Connect

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

124

Radiative and climate impacts of absorbing aerosols  

E-Print Network (OSTI)

P.M. Forster (2004), The semi-direct aerosol effect: Impactof absorbing aerosols on marine stratocumulus. Q. J .2005), Global anthropogenic aerosol direct forcing derived

Zhu, Aihua

2010-01-01T23:59:59.000Z

125

Carbonaceous Aerosol Study Using Advanced Particle Instrumentation  

E-Print Network (OSTI)

and atmospheric organic aerosol formation. Envir. Sci.of secondary organic aerosol mass fraction, Atmos. Chem.composition of ambient aerosol particles. Environ. Sci.

Qi, Li

2010-01-01T23:59:59.000Z

126

Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area  

E-Print Network (OSTI)

New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new ...

Tsimpidi, A. P.

127

Monodisperse aerosol generator  

DOE Patents (OSTI)

An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

Ortiz, L.W.; Soderholm, S.C.

1988-09-19T23:59:59.000Z

128

ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsMASRAD: Cloud Condensate Nuclei Chemistry Measurements govCampaignsMASRAD: Cloud Condensate Nuclei Chemistry Measurements Campaign Links AMF Point Reyes Website Related Campaigns MArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP 2005.03.14, Miller, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : MASRAD: Cloud Condensate Nuclei Chemistry Measurements 2005.07.01 - 2005.07.30 Lead Scientist : Carl Berkowitz For data sets, see below. Description Principal Investigators: J. Ogren, C. Berkowitz, R. Halthore, A. Laskin, A. Strawa, J. Wang, A. Wexler As part of the ARM Mobile Facility (AMF) deployment to Point Reyes, CA in the spring and summer of 2005, a suite of instrumentation was installed to measure the chemical, physical and optical properties of aerosol particles

129

RACORO aerosol data processing  

Science Conference Proceedings (OSTI)

The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

Elisabeth Andrews

2011-10-31T23:59:59.000Z

130

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

131

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

132

High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing  

Science Conference Proceedings (OSTI)

The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

2005-02-01T23:59:59.000Z

133

Wavelength Dependence of Aerosol Extinction Coefficient for Stratospheric Aerosols  

Science Conference Proceedings (OSTI)

A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. ...

Glenn K. Yue

1986-11-01T23:59:59.000Z

134

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Policy Applications Speaker(s): Susanne Bauer Date: December 6, 2011 - 4:00pm Location: 90-4133 Seminar...

135

Chemistry Applications at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Applications Gaussian 09 Gaussian 09 is a connected series of programs for performing semi-empirical, density functional theory and ab initio molecular orbital...

136

Chemistry Department Seminar Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Department Seminar Schedule Hamilton Seminar Room, Bldg. 555 This page shows future Chemistry Department seminars and those that have taken place within the past six...

137

Green Chemistry and Workers  

E-Print Network (OSTI)

19. P. Anastas, J. Warner. 1998. Green Chemistry: Theory andto Advance New Science, Green Chemistry and EnvironmentalChronicle Extra: Guide to Green Jobs. Field with a Future.

2009-01-01T23:59:59.000Z

138

Federal Interagency Chemistry Representatives (FICR) ...  

Science Conference Proceedings (OSTI)

Federal Interagency Chemistry Representatives (FICR) Meeting 2013 - A Federal Green Chemistry Forum. ...

2013-05-31T23:59:59.000Z

139

Aerosol–CCN Closure at a Semi-rural Site  

Science Conference Proceedings (OSTI)

aerosol size distributions and size-resolved aerosol compositions measured by ... Keywords Cloud condensation nuclei, closure study, organic aerosols, Köhler.

140

Formation mechanisms and quantification of organic nitrates in atmospheric aerosol  

E-Print Network (OSTI)

Atmospheric submicron aerosol . . . . . . . 2.3 Partitioningon SOA organic aerosol formation alkyl nitrate and secondaryPeroxy radical fate . . . . . . Aerosol . . . . . . . .

Rollins, Andrew Waite

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model  

E-Print Network (OSTI)

and R. Ruedy, Matrix (multiconfiguration aerosol tracker ofmixing state): An aerosol microphysical module for globalAn investigative review, Aerosol Sci. Technol. , Vol. 40,

Bauer, Susanne E.

2010-01-01T23:59:59.000Z

142

Discrimination between thin cirrus and and tropospheric aerosol using  

NLE Websites -- All DOE Office Websites (Extended Search)

Discrimination between thin cirrus and and tropospheric aerosol using Discrimination between thin cirrus and and tropospheric aerosol using multiple measurements from Darwin ARCS Mitchell, Ross CSIRO Category: Aerosols Thin cirrus cloud occurs frequently in the tropics, and is often difficult to distinguish from tropospheric aerosol on the basis of temporal variations in ground based measurements, since both can be rather spatially uniform. In this study we investigate their discrimination by combining data from three instruments at the Darwin Atmospheric Radiation and Cloud Station (ARCS): the Cimel sun photometer (CSP), the micropulse lidar (MPL), and the total sky imager (TSI). The study was carried out over the dry season of 2005, with the usual widespread burning of tropical savanna leading to extensive smoke plumes. It is shown that the locus of data in

143

Highly stable aerosol generator  

DOE Patents (OSTI)

An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

DeFord, Henry S. (Kennewick, WA); Clark, Mark L. (Kennewick, WA)

1981-01-01T23:59:59.000Z

144

Highly stable aerosol generator  

DOE Patents (OSTI)

An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

DeFord, H.S.; Clark, M.L.

1981-11-03T23:59:59.000Z

145

The International Year of Chemistry 2011  

Science Conference Proceedings (OSTI)

Chemistry our life our future The International Year of Chemistry 2011 Analytical Chemistry Related associations Marketing ...

146

Coupled chemistry/climate issues  

SciTech Connect

Driven by both natural and anthropogenic causes, the distributions of trace chemical species in the atmosphere has altered the natural state of the chemical distribution and, the authors believe, the climate system. A clear example of this change and its effect on climate is through tropospheric ozone. Evidence shows that over the last decade tropospheric ozone has increased, probably caused by increasing concentrations and emissions of CH{sub 4}, CO, NO{sub x}, and NMHCs (nonmethane hydrocarbons). Tropospheric ozone is photochemically produced when nitrogen oxides react in the presence of carbon monoxide, methane, non-methane hydrocarbons and sunlight. The chemistry of ozone and NO{sub x} is also closely associated with the hydroxyl radical (OH), which governs the atmospheric lifetime of a number of species, including CH{sub 4} and chlorofluorocarbons (CFCs), which are major greenhouse gases and which affect the chemical balance of the stratosphere. Increases in the concentrations of CO and CH{sub 4} can lead to decreased concentrations of OH and a positive feedback on the atmospheric lifetimes of CO and methane. The same would occur for other greenhouse gases and for some of the important reactions which form aerosols in the troposphere. This would further enhance the concentrations of the gases and accelerate the radiative effects from these greenhouse species, strongly affecting climate and the accurate prediction of climate. It is believed that warmer climates will also increase the amount of water in the atmosphere, thereby providing another chemistry feedback on OH.

Rotman, D.A. [Lawrence Livermore National Lab., CA (United States). Global Climate Research Div.; Wuebbles, D.J. [Univ. of Illinois, Urbana, IL (United States)

1994-09-01T23:59:59.000Z

147

BNL | Aerosol, Cloud, Precipitation Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Aerosol-Precipitation Interactions Cloud-Aerosol-Precipitation Interactions Atmospheric aerosols exert important "indirect effects" on clouds and climate by serving as cloud condensation nuclei (CCN) and ice nuclei that affect cloud radiative and microphysical properties. For example, an increase in CCN increases the number concentration of droplets enhances cloud albedo, and suppresses precipitation that alters cloud coverage and lifetime. However, in the case of moist and strong convective clouds, increasing aerosols may increase precipitation and enhance storm development. Although aerosol-induced indirect effects on climate are believed to have a significant impact on global climate change, estimating their impact continues to be one of the most uncertain climate forcings.

148

Jankovic Aerosol Characterization.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization, Characterization, Aerosol Characterization, Interpretation, and Interpretation, and Application of Data Application of Data NSRC Symposium NSRC Symposium July 8, 2008 John Jankovic, CIH CIH Center for Nanophase Materials Sciences Center for Nanophase Materials Sciences Aerosol Characterization, Interpretation, and Aerosol Characterization, Interpretation, and Application of Data Application of Data Department of Energy (DOE) Nanoscale Science Research Centers (NSRC) developing Approach to Nanomaterial ES&H - The CNMS Approach * Establish Exposure Control Guideline (ECG) - Characterize Aerosol * Collect and interpret data * Assign Process to a Control Band Aerosol Particle Characterization * Size distribution (geometric mean and geometric standard deviation related to either mass, surface, or number)

149

Geometrical Optics of Dense Aerosols  

SciTech Connect

Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

2013-04-24T23:59:59.000Z

150

Evolution of Asian aerosols during transpacific transport in INTEX-B  

Science Conference Proceedings (OSTI)

Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B 5 (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to 10 be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). 15 Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, 20 the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary 25 organic aerosol formation in the free troposphere.

Dunlea, E. J.; DeCarlo, Peter; Aiken, Allison; Kimmel, Joel; Peltier, R. E.; Weber, R. J.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Yohei; McNaughton, C. S.; Howell, S. G.; Clarke, A. D.; Emmons, L.; Apel, Eric; Pfister, G. G.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Heald, C. L.; Jimenez, J. L.

2009-10-01T23:59:59.000Z

151

MASS SPECTROMETRIC APPROACHES FOR CHEMICAL CHARACTERISATION OF ATMOSPHERIC AEROSOLS: CRITICAL REVIEW OF MOST RECENT ADVANCES  

Science Conference Proceedings (OSTI)

This manuscript presents an overview of the most recent instrument developments, field and laboratory applications of mass spectrometry (MS) in chemistry and physics of atmospheric aerosols. A broad range of MS instruments employing different sample introduction methods, ionization and mass detection techniques are utilized for both 'on-line' and 'off-line' characterization of aerosols. On-line MS techniques enable detection of individual particles with simultaneous measurements of particle size distributions and aerodynamic characteristics, and are ideally suited for field studies which require high temporal resolution. Off-line MS techniques provide means for detailed molecular-level analysis of aerosol samples which is essential to fundamental knowledge on aerosol chemistry, mechanisms of particle formation and atmospheric aging. Combined together, complementary MS techniques provide comprehensive information on the chemical composition, size, morphology and phase of aerosols - data of key importance for evaluating hygroscopic and optical properties of particles, their health effects, understanding their origins, and atmospheric evolution. Developments and applications of MS techniques in the aerosol research have expanded remarkably over a couple of last years as evidenced by sky-rocketing publication statistics. The goal of this review is to period of late 2010 - early 2012, which were not conveyed in previous reviews.

Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

2012-06-29T23:59:59.000Z

152

Direct Insertion of MODIS Radiances in a Global Aerosol Transport Model  

Science Conference Proceedings (OSTI)

In this paper results are presented from a simple offline assimilation system that uses radiances from the Moderate Resolution Imaging Spectroradiometer (MODIS) channels that sense atmospheric aerosols over land and ocean. The MODIS information ...

Clark Weaver; Arlindo da Silva; Mian Chin; Paul Ginoux; Oleg Dubovik; Dave Flittner; Aahmad Zia; Lorraine Remer; Brent Holben; Watson Gregg

2007-03-01T23:59:59.000Z

153

NUCLEAR CHEMISTRY ANNUAL REPORT 1970  

E-Print Network (OSTI)

1970). tpresent address: Chemistry Department, University ofSept. 1970); Nuclear Chemistry Division Annual Report, 1969,S. G. Thompson, in Nuclear Chemistry Division Annual Report

Authors, Various

2011-01-01T23:59:59.000Z

154

Computational Chemistry | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

SHARE Computational Chemistry Computational Chemistry at ORNL uses principles of computer science and mathematics and the results of theoretical physics and chemistry to...

155

Chemical Bonding and Structural Information of Black Carbon Reference Materials and Individual Carbonaceous Atmospheric Aerosols  

E-Print Network (OSTI)

HULIS) in biomass-burning aerosols, Atmospheric Chemistrymicroscopical and aerosol dynamical characterizationof soot aerosols, Journal of Aerosol Science , 34 , 1347-

Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

2007-01-01T23:59:59.000Z

156

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Policy Applications Speaker(s): Susanne Bauer Date: December 6, 2011 - 4:00pm Location: 90-4133 Seminar Host/Point of Contact: Surabi Menon The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, However, understanding the net effect of multi-source emitting sectors and the involved cloud feedbacks is

157

Turbulent thermal diffusion of aerosols in geophysics and laboratory experiments  

E-Print Network (OSTI)

We discuss a new phenomenon of turbulent thermal diffusion associated with turbulent transport of aerosols in the atmosphere and in laboratory experiments. The essence of this phenomenon is the appearance of a nondiffusive mean flux of particles in the direction of the mean heat flux, which results in the formation of large-scale inhomogeneities in the spatial distribution of aerosols that accumulate in regions of minimum mean temperature of the surrounding fluid. This effect of turbulent thermal diffusion was detected experimentally. In experiments turbulence was generated by two oscillating grids in two directions of the imposed vertical mean temperature gradient. We used Particle Image Velocimetry to determine the turbulent velocity field, and an Image Processing Technique based on an analysis of the intensity of Mie scattering to determine the spatial distribution of aerosols. Analysis of the intensity of laser light Mie scattering by aerosols showed that aerosols accumulate in the vicinity of the minimum mean temperature due to the effect of turbulent thermal diffusion. Geophysical applications of the obtained results are discussed.

A. Eidelman; T. Elperin; N. Kleeorin; A. Krein; I. Rogachevskii; J. Buchholz; G. Gruenefeld

2004-11-11T23:59:59.000Z

158

Aerosol Observing System (AOS) Handbook  

Science Conference Proceedings (OSTI)

The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

Jefferson, A

2011-01-17T23:59:59.000Z

159

Green Chemistry and Workers  

E-Print Network (OSTI)

public/private investment in green chemistry research andinvestment in cleaner chemical technologies, known collectively as greenGREEN CHEMISTRY AND WORKERS / most hazardous chemicals on the market (closing the safety gap) will spur investment

2009-01-01T23:59:59.000Z

160

Characterizing the formation of secondary organic aerosols  

E-Print Network (OSTI)

and Flagan, R.C. (1990) Aerosol Sci. and Technol. 13 , 230.and Seinfeld, J.H. (2002) Aerosol Science and Technology ,light absorption by atmospheric aerosol, in preparation for

Lunden, Melissa; Black, Douglas; Brown, Nancy

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Optical Properties of Secondary Organic Aerosols  

E-Print Network (OSTI)

Paulson, S. E. ; Chung, A. Aerosol Sci. Technol. 2007 , 41,Y. G. ; Daum, P. H. J. Aerosol Sci 2008 , 39, 974-986. (32)Accurate Monitoring of Terrestrial Aerosols and Total Solar

Kim, Hwajin

2012-01-01T23:59:59.000Z

162

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

163

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

SciTech Connect

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

164

Analytical Chemistry Databases and Links  

Science Conference Proceedings (OSTI)

Analytical chemistry websites, humor, Material Safety Data Sheets,Patent Information, and references. Analytical Chemistry Databases and Links Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDiffer

165

Model simulations of the first aerosol indirect effect and comparison of cloud susceptibility fo satellite measurements  

DOE Green Energy (OSTI)

Present-day global anthropogenic emissions contribute more than half of the mass in submicron particles primarily due to sulfate and carbonaceous aerosol components derived from fossil fuel combustion and biomass burning. These anthropogenic aerosols modify the microphysics of clouds by serving as cloud condensation nuclei (CCN) and enhance the reflectivity of low-level water clouds, leading to a cooling effect on climate (the Twomey effect or first indirect effect). The magnitude of the first aerosol indirect effect is associated with cloud frequency as well as a quantity representing the sensitivity of cloud albedo to changes in cloud drop number concentration. This quantity is referred to as cloud susceptibility [Twomey, 1991]. Analysis of satellite measurements demonstrates that marine stratus clouds are likely to be of higher susceptibility than continental clouds because of their lower number concentrations of cloud drops [Platnick and Twomey, 1994]. Here, we use an improved version of the fully coupled climate/chemistry model [Chuang et al., 1997] to calculate the global concentrations Of sulfate, dust, sea salt, and carbonaceous aerosols (biomass smoke and fossil fuel organic matter and black carbon). We investigated the impact of anthropogenic aerosols on cloud susceptibility and calculated the associated changes of shortwave radiative fluxes at the top of the atmosphere. We also examined the correspondence between the model simulation of cloud susceptibility and that inferred from satellite measurements to test whether our simulated aerosol concentrations and aerosol/cloud interactions give a faithful representation of these features.

Chuang, C; Penner, J E; Kawamoto, K

2002-03-08T23:59:59.000Z

166

The whitehouse effect: Shortwave radiative forcing of climate by anthropogenic aerosols, an overview  

E-Print Network (OSTI)

Abstraet--Loadings of tropospheric aerosols have increased substantially over the past 150 yr as a consequence of industrial activities. These aerosols enhance reflection of solar radiation by the Earth-atmosphere system both directly, by scattering light in clear air and, indirectly, by increasing the reflectivity of clouds. The magnitude of the resultant decrease in absorption of solar radiation is estimated to be comparable on global average to the enhancement in infrared forcing at the tropopause due to increases in concentrations of CO2 and other greenhouse gases over the same time period. Estimates of the aerosol shortwave forcing are quite uncertain, by more than a factor of two about the current best estimates. This article reviews the atmospheric chemistry and microphysical processes that govern the loading and light scattering properties of the aerosol particles responsible for the direct effect and delineates the basis for the present estimates of the magnitude and uncertainty in the resultant radiative forcing. The principal sources of uncertainty are in the loading of anthropogenic aerosols, which is highly variable spatially and temporally because of the relatively short residence time of these aerosols (ca. 1 week) and the episodic removal in precipitation, and in the dependence of light scattering on particle size, and in turn on relative humidity. Uncertainty in aerosol forcing is the greatest source of uncertainty in radiative forcing of climate

Stephen E. Schwartz

1996-01-01T23:59:59.000Z

167

Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols  

E-Print Network (OSTI)

[1] We evaluate the sensitivity of tropospheric OH, O3, and O3 precursors to photochemical effects of aerosols not usually included in global models: (1) aerosol scattering and absorption of ultraviolet radiation and (2) reactive uptake of HO2,NO2, and NO3. Our approach is to couple a global 3-D model of tropospheric chemistry (GEOS-CHEM) with aerosol fields from a global 3-D aerosol model (GOCART). Reactive uptake by aerosols is computed using reaction probabilities from a recent review (gHO2 = 0.2, gNO2 =10 4, gNO3 =10 3). Aerosols decrease the O3! O ( 1 D) photolysis frequency by 5–20 % at the surface throughout the Northern Hemisphere (largely due to mineral dust) and by a factor of 2 in biomass burning regions (largely due to black carbon). Aerosol uptake of HO2 accounts for 10–40 % of total HOx radical ( OH + peroxy) loss in the boundary layer over polluted continental regions (largely due to sulfate and organic carbon) and for more than 70 % over tropical biomass burning regions (largely due to organic carbon). Uptake of NO2 and NO3 accounts for 10–20 % of total HNO3 production over biomass burning regions and less elsewhere. Annual mean OH concentrations decrease by 9 % globally and by 5–35 % in the boundary layer over the Northern

All V. Martin; Daniel J. Jacob; Robert M. Yantosca; Mian Chin; Paul Ginoux

2003-01-01T23:59:59.000Z

168

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

169

Aerosol Metrology for Climate Workshop  

Science Conference Proceedings (OSTI)

... the interaction of aerosols with solar radiation ... that will accelerate the development of new ... together experts from government, industry and academia ...

2012-04-26T23:59:59.000Z

170

Researchers Model Impact of Aerosols Over California  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May...

171

Nanomaterials Chemistry Group - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD CSD Organization Contact List Search Other Links CSD CSD Organization Contact List Search Other Links Selected Research and Development Projects The Nanomaterials Chemistry Group at Chemical Sciences Division, the Oak Ridge National Laboratory conducts fundamental research related to synthesis and characterization of nanoscopic materials as well as ionic liquids for fundamental investigation of separation and catalysis processes. This group also conducts the applied research related to the applications of nanomaterials in advanced scintillators for radiation sensing, catalysts for fuel cells, radioactive tracers for medical imaging, novel electrodes for energy storage, and sensing devices for biological agents. Extensive synthesis capabilities exist within the group for preparation of mesoporous materials (oxides and carbons), low-dimensional materials (e.g., quantum dots and nanowires), sol-gel materials, inorganic and hybrid monoliths (e.g., membranes), and nanocatalysts. Solvothermal, ionothermal, templating synthesis, chemical vapor deposition (CVD), and atomic layer deposition (ALD) methods are extensively utilized in the group for tailored synthesis of nanostructured materials. An array of techniques for characterizing physical and chemical properties related to separation and catalysis are in place or are currently being developed. This research program also takes advantage of the unique resources at ORNL such as small-angle x-ray scattering, small-angle neutron scattering at the High Flux Isotope Reactor and Spallation Neutron Source (SNS), structural analysis by a variety of electron microscopes (SEM, TEM, STEM, HRTEM) and powdered X-ray diffraction (XRD) techniques. A wide variety of other facilities for routine and novel techniques are also utilized including the Center for Nanophase Materials Science. Computational chemistry tools are employed to understand experimental results related to separation and other interfacial chemical processes and design better nanomaterials and ionic liquids. Commonly used methods include first principles density functional theory (DFT) and mixed quantum mechanical/molecular mechanical (QM/MM) techniques.

172

Organic Aerosol Partition Module Documentation  

Science Conference Proceedings (OSTI)

With the promulgation of new National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM-2.5), data and analytical tools are needed to support their implementation. This report documents an EPRI modeling component for efficiently simulating aspects of organic aerosol formation. Without this component, simulations would tend to overestimate the contribution of power plant emissions to atmospheric aerosol mass.

1999-07-14T23:59:59.000Z

173

Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography  

SciTech Connect

In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P. [Brookhaven National Lab., Upton, NY (United States); Cofer, W.R. III; Levine, J.S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Winstead, E.L. [Science Applications International Corporation, Hampton, VA (United States)

1995-06-01T23:59:59.000Z

174

Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles  

E-Print Network (OSTI)

arid regions in China and Africa. Such aerosol streams have been shown to travel around the globe with silica aerosols from China impacting air quality in the continental US and #12;2 alumina and titania delivery mechanisms for a variety of drugs as an alternative to injections. As delivery devices

Beaucage, Gregory

175

Aerosol Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Aerosol Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Aerosol Laboratory The Aerosol Laboratory (AL) houses equipment to measure and record the physical parameters necessary to characterize the formation and transport of aerosols. Bookmark and Share The Aerosol Laboratory (AL) has extensive analytic and experimental capabilities to characterize the formation and transport of aerosols formed from the condensation of vapors. Computer codes have been developed to

176

The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations  

SciTech Connect

The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

2011-02-15T23:59:59.000Z

177

Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity  

E-Print Network (OSTI)

and microphysical characterization of ambient aerosols withthe aerodyne aerosol mass spectrometer, Mass Spectrom Rev,of secondary organic aerosol under near atmospheric

Tang, Xiaochen

2013-01-01T23:59:59.000Z

178

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

E-Print Network (OSTI)

+ ][Dca ? ]. Figure 2. Aerosol particle size distribution ofhypergolic ionic liquid aerosols Christine J. Koh † , Chen-ionization of evaporated IL aerosols Isolated ion pairs of a

Koh, Christine J.

2013-01-01T23:59:59.000Z

179

ATMOSPHERIC AEROSOL RESEARCH ANNUAL REPORT 1975-76  

E-Print Network (OSTI)

this room ATMOSPHERIC AEROSOL RESEARCH -RECEIVED •I.AWSSKCEDIVISION ATMOSPHERIC AEROSOL RESEARCH ANNUAL REPORTMass and Composition of Aerosol as a Function of Time,

Novakov, T.

2010-01-01T23:59:59.000Z

180

Response of California temperature to regional anthropogenic aerosol changes  

E-Print Network (OSTI)

to regional anthropogenic aerosol changes T. Novakov, T.W.indicator of anthropogenic aerosols – with observed surfacetemperature increase. Seasonal aerosol concentration trends

Novakov, T.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Aerosol measurements with laser-induced breakdown spectroscopy  

E-Print Network (OSTI)

anthropogenic sulfate aerosols. Tellus, Ser. A, vol. 43, p.Twomey, Atmospheric Aerosols. New York : Elsevier ScientificCo. , 45. B.A. Albrecht, Aerosols, cloud microphysics, and

Lithgow, Gregg Arthur

2007-01-01T23:59:59.000Z

182

ATMOSPHERIC AEROSOL RESEARCH, ANNUAL REPORT 1976-77  

E-Print Network (OSTI)

DIVISION ATMOSPHERIC AEROSOL RESEARCH ANNUAL REPORTLow-Z Elements in Atmospheric Aerosol Particles by Nuclearof sulfur dioxide by aerosols of manganese sulfate," Ind.

Novakov, T.

2010-01-01T23:59:59.000Z

183

Black carbon aerosols and the third polar ice cap  

E-Print Network (OSTI)

estimations in global aerosol models, Atmos. Chem. Phys. ,Cloud mi- crophysics and aerosol indirect efefcts in theuncertainties in assessing aerosol effects on climate, Ann.

Menon, Surabi

2010-01-01T23:59:59.000Z

184

Total aerosol effect: forcing or radiative flux perturbation?  

E-Print Network (OSTI)

of the ?rst indirect aerosol effect, Atmos. Chem. Phys. , 5,Cloud susceptibility and the ?rst aerosol indirect forcing:to black carbon and aerosol concentrations, J. Geophys.

Lohmann, Ulrike

2010-01-01T23:59:59.000Z

185

DOE fundamentals handbook: Chemistry  

SciTech Connect

This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids).

Not Available

1993-01-01T23:59:59.000Z

186

Cermic Chemistry.qrk  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Manufacturing Technologies The Manufacturing Science and Technology Center develops both aque- ous and non-aqueous chemical synthesis routes to generate highly controlled...

187

Chemistry Dept. Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities As a research organization within a National Laboratory, the Chemistry Department operates research facilities that are available to other researchers as...

188

Synthetic and Mechanistic Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

work was published in the international edition of the chemistry journal Angewandte Chemie. http:www.lanl.govnewsroomnews-releases2012November11.26-hanson-catalysis.php...

189

BNL Chemistry Department  

NLE Websites -- All DOE Office Websites (Extended Search)

American Academy of Arts and Sciences In Memoriam: Carol Creutz Women @ Energy: Joanna Fowler Electrocatalysis Pays Tribute to BNL Scientist Radoslav Adzic All Chemistry...

190

Forensic Database Chemistry & Toxicology  

Science Conference Proceedings (OSTI)

... A free online commercial chemistry and biology reference tool that searches ... Rashida Weathers DEA Mid-Atlantic Laboratory Director 301.583.3200. ...

2013-07-31T23:59:59.000Z

191

Chemistry Dept. Research Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Programs in the Chemistry Department Artificial Photosynthesis Catalysis: Reactivity and Structure Gas Phase Molecular Dynamics Electron- and Photo-Induced Processes for...

192

Chemistry Department Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures (c). Laser Safety Information: (d). Chemistry Department Laser Safety Guidelines Operational Work Planning (a). Training waiver (b). Staff Shop Posting Local...

193

GCM Aerosol Radiative Effects Using Geographically Varying Aerosol Sizes Deduced from AERONET Measurements  

Science Conference Proceedings (OSTI)

Aerosol optical properties, and hence the direct radiative effects, are largely determined by the assumed aerosol size distribution. In order to relax the fixed aerosol size constraint commonly used in general circulation models (GCMs), ...

Glen Lesins; Ulrike Lohmann

2003-11-01T23:59:59.000Z

194

AERONET: The Aerosol Robotic Network  

DOE Data Explorer (OSTI)

AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

195

LLNL Scientists Use NERSC to Advance Global Aerosol Simulations  

Science Conference Proceedings (OSTI)

While ''greenhouse gases'' have been the focus of climate change research for a number of years, DOE's ''Aerosol Initiative'' is now examining how aerosols (small particles of approximately micron size) affect the climate on both a global and regional scale. Scientists in the Atmospheric Science Division at Lawrence Livermore National Laboratory (LLNL) are using NERSC's IBM supercomputer and LLNL's IMPACT (atmospheric chemistry) model to perform simulations showing the historic effects of sulfur aerosols at a finer spatial resolution than ever done before. Simulations were carried out for five decades, from the 1950s through the 1990s. The results clearly show the effects of the changing global pattern of sulfur emissions. Whereas in 1950 the United States emitted 41 percent of the world's sulfur aerosols, this figure had dropped to 15 percent by 1990, due to conservation and anti-pollution policies. By contrast, the fraction of total sulfur emissions of European origin has only dropped by a factor of 2 and the Asian emission fraction jumped six fold during the same time, from 7 percent in 1950 to 44 percent in 1990. Under a special allocation of computing time provided by the Office of Science INCITE (Innovative and Novel Computational Impact on Theory and Experiment) program, Dan Bergmann, working with a team of LLNL scientists including Cathy Chuang, Philip Cameron-Smith, and Bala Govindasamy, was able to carry out a large number of calculations during the past month, making the aerosol project one of the largest users of NERSC resources. The applications ran on 128 and 256 processors. The objective was to assess the effects of anthropogenic (man-made) sulfate aerosols. The IMPACT model calculates the rate at which SO{sub 2} (a gas emitted by industrial activity) is oxidized and forms particles known as sulfate aerosols. These particles have a short lifespan in the atmosphere, often washing out in about a week. This means that their effects on climate tend to be more regional, occurring near the area where the SO{sub 2} is emitted. To accurately study these regional effects, Bergmann needed to run the simulations at a finer horizontal resolution, as the coarser resolution (typically 300km by 300km) of other climate models are insufficient for studying changes on a regional scale. Livermore's use of CAM3, the Community Atmospheric Model which is a high-resolution climate model developed at NCAR (with collaboration from DOE), allows a 100km by 100km grid to be applied. NERSC's terascale computing capability provided the needed computational horsepower to run the application at the finer level.

Bergmann, D J; Chuang, C; Rotman, D

2004-10-13T23:59:59.000Z

196

Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect  

E-Print Network (OSTI)

dust, and pollution aerosol on shallow cloud developmentclouds on indirect aerosol climate forcing, Nature, 432,1014– Albrecht, B. A. , Aerosols, cloud microphysics, and

2008-01-01T23:59:59.000Z

197

Model Assessment of the Ability of MODIS to Measure Top-of-Atmosphere Direct Radiative Forcing from Smoke Aerosols  

Science Conference Proceedings (OSTI)

The new generation of satellite sensors such as the moderate resolution imaging spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be ...

Lorraine A. Remer; Yoram J. Kaufman; Zev Levin; Steven Ghan

2002-02-01T23:59:59.000Z

198

Two-Column Aerosol Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Research Facility is conducting the Two-Column Aerosol Project (TCAP) at Cape Cod National Seashore. From July 2012 to June 2013, the ARM Mobile Facility-a portable...

199

Mesoscale Variations of Tropospheric Aerosols  

Science Conference Proceedings (OSTI)

Tropospheric aerosols are calculated to cause global-scale changes in the earth's heat balance, but these forcings are space/time integrals over highly variable quantities. Accurate quantification of these forcings will require an unprecedented ...

Theodore L. Anderson; Robert J. Charlson; David M. Winker; John A. Ogren; Kim Holmén

2003-01-01T23:59:59.000Z

200

NWChem and Actinide Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

ACTINIDE CHEMISTRY MEETS COMPUTATION ACTINIDE CHEMISTRY MEETS COMPUTATION Capturing how contaminants migrate across groundwater-surface water inter- faces is a challenge that researchers at the Department of Energy's EMSL-the Environmental Molecular Sciences Laboratory-are rising to. This challenge, a top priority for waste cleanup efforts at the Hanford Site in Richland, Washington, and other parts of the DOE weapons complex, is being addressed using NWChem, a computational chemistry package developed at EMSL that is designed to run on high-performance parallel supercomputers, such as EMSL's Chinook. NWChem is enabling breakthrough discoveries in actinide behavior and chemistry, in part because it allows researchers to accurately model the dynamical formation, speciation, and redox chemistry of actinide complexes in realistic complex mo-

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MISR Calibration and Implications for Low-Light-Level Aerosol Retrieval over Dark Water  

Science Conference Proceedings (OSTI)

Studying aerosols over ocean is one goal of the Multiangle Imaging Spectroradiometer (MISR) and other spaceborne imaging systems. But top-of-atmosphere equivalent reflectance typically falls in the range of 0.03 to 0.12 at midvisible wavelengths ...

Ralph Kahn; Wen-Hao Li; John V. Martonchik; Carol J. Bruegge; David J. Diner; Barbara J. Gaitley; Wedad Abdou; Oleg Dubovik; Brent Holben; Alexander Smirnov; Zhonghai Jin; Dennis Clark

2005-04-01T23:59:59.000Z

202

Method for producing monodisperse aerosols  

DOE Patents (OSTI)

An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

Ortiz, Lawrence W. (Los Alamos, NM); Soderholm, Sidney C. (Pittsford, NY)

1990-01-01T23:59:59.000Z

203

Background Stratospheric Aerosol Variations Deduced from Satellite Observations  

Science Conference Proceedings (OSTI)

The Stratospheric Aerosol and Gas Experiment II (SAGE II) aerosol products from 1998 to 2004 have been analyzed for the tendency of changes in background stratospheric aerosol properties. The aerosol extinction coefficient E has apparently ...

Yu Liu; Xuepeng Zhao; Weiliang Li; Xiuji Zhou

2012-04-01T23:59:59.000Z

204

Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of  

NLE Websites -- All DOE Office Websites (Extended Search)

Importance of Iron Mineralogy to Importance of Iron Mineralogy to Aerosol Solubility: Potential Effects of Aerosol Source on Ocean Photosynthesis figure 1 Figure 1. Dust storm blowing glacial dusts from the Copper River Basin of southeast Alaska into the North Pacific Ocean, which depends on this and other external iron sources to support its biological communities. (Image: NASA MODIS satellite image, Nov. 1, 2006. http://earthobservatory.nasa.gov/IOTD/view.php?id=7094) Iron is one of the most important elements to life. Despite its paramount importance and relative abundance, dissolved iron concentrations are often very low, in part due to the formation of very stable iron minerals in most oxidizing environments. Since soluble iron is available to living organisms, iron deficiencies are widespread, and the factors that influence

205

Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006  

E-Print Network (OSTI)

Thermodynamic Characterization of Mexico City Aerosol duringA computationally efficient thermodynamic equilibrium modelurban aerosols determined by thermodynamic equilibrium? An

Fountoukis, C.

2009-01-01T23:59:59.000Z

206

DOE fundamentals handbook: Chemistry  

Science Conference Proceedings (OSTI)

The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems.

Not Available

1993-01-01T23:59:59.000Z

207

Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization  

SciTech Connect

Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68ş latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

2009-07-10T23:59:59.000Z

208

Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources  

Science Conference Proceedings (OSTI)

The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to the typical size of a single GCM grid cell) and temporally over a three day analysis period, total rainfall in the sensitivity simulation increased by 31% over that in the baseline simulation. Fewer optically thin clouds, arbitrarily defined as a cloud exhibiting an optical depth less than 1, formed in the sensitivity simulation. Domain-averaged AODs dropped from 0.46 in the baseline simulation to 0.38 in the sensitivity simulation. The overall net effect of additional aerosols attributable to primary particulates and aerosol precursors from point source emissions above the surface was a domain-averaged reduction of 5 W m-2 in mean daytime downwelling shortwave radiation.

Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

2009-02-01T23:59:59.000Z

209

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network (OSTI)

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

210

ARM - Field Campaign - Fall 1997 Aerosol IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol IOP Aerosol IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Aerosol IOP 1997.09.15 - 1997.10.05 Lead Scientist : Stephen Schwartz For data sets, see below. Summary The Aerosol IOP was highlighted by the Gulfstream-1 aircraft flying clear-sky aerosol missions over the Central Facility to study the effect of aerosol loading on clear sky radiation fields, with weather particularly favorable for these flights during the first and third weeks of the IOP. A secondary but important goal of this IOP was to fly cloudy-sky missions over the Central Facility to study the effect of aerosol loading on cloud microphysics, and the effect of the microphysics on cloud optical properties. The Gulfstream obtained aerosol data in support of some of the

211

ARM - Evaluation Product - Organic Aerosol Component VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsOrganic Aerosol Component VAP ProductsOrganic Aerosol Component VAP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Organic Aerosol Component VAP 2011.01.08 - 2012.03.24 Site(s) SGP General Description Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10-90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties. This deficiency represents a large source of uncertainty in the quantification of aerosol direct and indirect effects and the prediction of future climate change. The Organic Aerosol Component (OACOMP) value-added product (VAP) uses

212

Volcanoes and Climate Effects of Aerosols  

E-Print Network (OSTI)

CONTENTS 8.1 Importance of volcanoes, natural aerosols, and anthropogenic aerosols 341 8.2 Major scientific questions and hypotheses 342 8.2.1 Stratospheric volcanic aerosols and climate 342 8.2.1.1 Source gases for stratospheric aerosols 342 8.2.1.2 Explosiveness and plume history during individual eruptions 343 8.2.1.3 Frequency of eruptions, tectonic setting, rock/ash vs. SO 2 343 8.2.1.4 Gas-to-particle conversion and removal mechanisms 343 8.2.1.5 Radiative properties and climatic effects of stratospheric aerosols 345 8.2.1.6 Needed satellite and in situ measurements 347 8.2.1.6.1 Global observations of stratospheric aerosol optical properties 347 8.2.1.6.2 Lidar measurements of aerosols 347 8.2.2 Volcanic aerosols and stratospheric ozone depletion 349 8.2.3 Climatic effects of t

Hartmann And Mouginis-Mark; Volcanoes; D. L. Hartmann; P. Mouginis-mark; G. J. Bluth; J. A. Coakley; J. Crisp; R. E. Dickinson; P. W. Francis; J. E. Hansen; P. V. Hobbs; B. L. Isacks; Y. J. Kaufman; M. D. King; W. I. Rose; S. Self; L. D. Travis

1999-01-01T23:59:59.000Z

213

Climate Response to Soil Dust Aerosols  

Science Conference Proceedings (OSTI)

The effect of radiative forcing by soil dust aerosols upon climate is calculated. Two atmospheric GCM (AGCM) simulations are compared, one containing a prescribed seasonally varying concentration of dust aerosols, and the other omitting dust. ...

R. L. Miller; I. Tegen

1998-12-01T23:59:59.000Z

214

Indirect and Semi-direct Aerosol Campaign  

Science Conference Proceedings (OSTI)

A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's ...

Greg M. McFarquhar; Steven Ghan; Johannes Verlinde; Alexei Korolev; J. Walter Strapp; Beat Schmid; Jason M. Tomlinson; Mengistu Wolde; Sarah D. Brooks; Dan Cziczo; Manvendra K. Dubey; Jiwen Fan; Connor Flynn; Ismail Gultepe; John Hubbe; Mary K. Gilles; Alexander Laskin; Paul Lawson; W. Richard Leaitch; Peter Liu; Xiaohong Liu; Dan Lubin; Claudio Mazzoleni; Ann-Marie Macdonald; Ryan C. Moffet; Hugh Morrison; Mikhail Ovchinnikov; Matthew D. Shupe; David D. Turner; Shaocheng Xie; Alla Zelenyuk; Kenny Bae; Matt Freer; Andrew Glen

2011-02-01T23:59:59.000Z

215

Chemistry Department Seminar Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive of Chemistry Department Seminars Archive of Chemistry Department Seminars See also: recent Department seminars Friday, July 27, 2012 "Precise Design of Donor-Acceptor Interface based on Microphase Segregated Nanostructure" Sadayuki Asaoka, Kyoto Institute of Technology Hosted by Dr. John Miller 11:00 AM, Room 300, Chemistry Bldg. 555 Thursday, April 26, 2012 ""NOx Catalysis from the Bottom Up"" Dr. William F. Schneider, Dept. of Chemical and Biomolecular Engineering, University of Notre Dame Hosted by Ping Liu 11:00 AM, Hamilton Seminar Room, Bldg. 555 Friday, April 13, 2012 "High-energy resolution x-ray emission spectroscopy for catalysis and materials chemistry" Olga Safonova, Swiss Light Source & Energy Dept. at Paul Scherrer Institute Hosted by Dario Stacchiola

216

The Entire Chemistry Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Archives Chemistry Archives Chemistry Archives, Since November 1991 Table of Contents: When entropy = 0, does atomic motion stop? When H2O and methanol mix Heavy element names Radon Bee's wax CFC's and ozone depletion Solar cells and Phosphorous vs Chlorophyll B Aromaticity Hypercolor t-shirt Bonds for tie dye Soda POP General chemistry questions Tyndall Effect Silicon chips Molecules and cancer Acetylene safety Picric acid Buckyballs Piezoelectric Weak pennies Extracting fats Anti-oxidants Batteries & chemicals Hydrogen, can it be an isotope? Can soda conduct electricity? pH What is the biggest molecule? Smallest molecule Metallic zinc as catalyst Bond order in carbon bonds Packing of crystal structure Advantages, disadvantages of chloroform Coloring oil Free-radicals Acid-Base reaction

217

Cycle Chemistry Improvement Program  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. This report, which describes formal cycle chemistry improvement programs at nine utilities, will assist utilities in achieving significant operation and maintenance cost reductions.

1997-04-21T23:59:59.000Z

218

Synthetic and Mechanistic Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

work was published in the international edition of the chemistry journal Angewandte Chemie. http:www.lanl.gov newsroomnews-releases2012November11.26-hanson-catalysis.php...

219

BNL Chemistry Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Dept. Bldg. 555A Brookhaven National Lab P.O. Box 5000 Upton, NY 11973-5000 Ph: (631)344-4301 Fax: (631)344-5815 Radoslav Adzic, Vyacheslov Volcov, Lijun Wu, Wei An, Jia...

220

SC e-journals, Chemistry  

Office of Scientific and Technical Information (OSTI)

Chemistry Chemistry Accounts of Chemical Research Accreditation and Quality Assurance ACS Chemical Biology ACS Nano Acta Biotheoretica Acta Materialia Acta Neuropathologica Adsorption Advanced Engineering Materials Advances in Physical Chemistry - OAJ AlChE Journal Amino Acids Analyst Analytica Chimica Acta Analytical and Bioanalytical Chemistry Analytical Biochemistry Analytical Chemistry Analytical Sciences - OAJ Angewandte Chemie - International Edition Annual Review of Analytical Chemistry Annual Review of Biochemistry Annual Review of Biophysics Annual Review of Materials Research Annual Review of Physical Chemistry Antimicrobial Agents and Chemotherapy Applied Geochemistry Applied Radiation and Isotopes Applied Surface Science Applied Thermal Engineering Aquatic Geochemistry

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California  

E-Print Network (OSTI)

detection efficiencies of aerosol time of flight masscomposition of ambient aerosol particles. Environmentalsize dependent response of aerosol counters, Atmospheric

Shields, Laura Grace

2008-01-01T23:59:59.000Z

222

ATI TDA 5A aerosol generator evaluation  

SciTech Connect

Oil based aerosol ``Smoke`` commonly used for testing the efficiency and penetration of High Efficiency Particulate Air filters (HEPA) and HEPA systems can produce flammability hazards that may not have been previously considered. A combustion incident involving an aerosol generator has caused an investigation into the hazards of the aerosol used to test HEPA systems at Hanford.

Gilles, D.A.

1998-07-27T23:59:59.000Z

223

Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products  

E-Print Network (OSTI)

analysis of competition between aerosol particle removal andof secondary organic aerosol. Part I: ?-pinene/ozone system.data when measuring ambient aerosol. Aerosol Science and

Coleman, Beverly K.

2008-01-01T23:59:59.000Z

224

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

E-Print Network (OSTI)

in secondary organic aerosol. Environ. Sci. Technol. 41 ,particles from an urban aerosol. Environ. Sci. Technol. 26 ,carbonaceous atmospheric aerosols. Journal of Aerosol

Moffet, Ryan C.

2011-01-01T23:59:59.000Z

225

ARM - Measurement - Aerosol optical properties  

NLE Websites -- All DOE Office Websites (Extended Search)

properties properties ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter fraction. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer NEPHELOMETER : Nephelometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

226

ARM - Measurement - Aerosol backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

backscattered radiation backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System MPL : Micropulse Lidar NEPHELOMETER : Nephelometer

227

ARM - Measurement - Aerosol optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

228

Real time infrared aerosol analyzer  

DOE Patents (OSTI)

Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

1990-01-01T23:59:59.000Z

229

Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign  

SciTech Connect

A comparison between observed aerosol optical properties from the MILAGRO field campaign, which took place in the Mexico City Metropolitan Area (MCMA) during March 2006, and values simulated by the Weather Research and Forecasting model (WRF-Chem) model, reveals large differences. To help identify the source of the discrepancies, data from the MILAGRO campaign are used to evaluate the "aerosol chemical to aerosol optical properties" module implemented in the full chemistry version of the WRF-Chem model. The evaluation uses measurements of aerosol size distributions and chemical properties obtained at the MILAGRO T1 site. These observations are fed to the module, which makes predictions of various aerosol optical properties, including the scattering coefficient, Bscat; the absorption coefficient, Babs; and the single-scattering albedo, v0; all as a function of time. This simulation is compared with independent measurements obtained from a photoacoustic spectrometer (PAS) at a wavelength of 870 nm. Because of line losses and other factors, only "fine mode" aerosols with aerodynamic diameters less than 2.5 mm are considered here. Over a 10-day period, the simulations of hour-by-hour variations of Bscat are not satisfactory, but simulations of Babs and v0 are considerably better. When averaged over the 10-day period, the computed and observed optical properties agree within the uncertainty limits of the measurements and simulations. Specifically, the observed and calculated values are, respectively: (1) Bscat, 34.1 ± 5.1 Mm-1 versus 30.4 ± 4.3 Mm-1; (2) Babs, 9.7 ± 1.0 Mm-1 versus 11.7 ± 1.5 Mm-1; and (3) v0, 0.78 ± 0.04 and 0.74 ± 0.03. The discrepancies in values of v0 simulated by the full WRF-Chem model thus cannot be attributed to the "aerosol chemistry to optics" module. The discrepancy is more likely due, in part, to poor characterization of emissions near the T1 site, particularly black carbon emissions.

Barnard, James C.; Fast, Jerome D.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Laskin, Alexander

2010-08-09T23:59:59.000Z

230

Initiative to improve process representation in chemistry-climate models  

SciTech Connect

The Atmospheric Chemistry and Climate Initiative (AC&C) will address the current large uncertainties in our understanding of chemistry-climate interactions for short-lived atmospheric chemical constituents (e.g. aerosols, ozone, and methane). Understanding what controls the distribution of these species, how they affect climate, and how their distributions might change with a changing climate are important for air quality and climate forecasts. AC&C will address this issue in its first phase through a series of modeling exercises designed to test models’ ability to reproduce observed changes in these species distributions, to produce a set of coordinated forecasts for their future distribution, and to understand how processes are represented in different models. Observational databases will be used to test the models and to better understand processes represented in the models. This article describes the plans for this first phase of activities and seeks participation from the research community.

Doherty, Sarah J.; Rasch, Philip J.; Ravishankara, A.R.

2009-06-16T23:59:59.000Z

231

Modeling Organic Aerosols in a Megacity: Comparison of Simple and Complex Representations of the Volatility Basis Set Approach  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25%, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15% oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.

Shrivastava, ManishKumar B.; Fast, Jerome D.; Easter, Richard C.; Gustafson, William I.; Zaveri, Rahul A.; Jimenez, Jose L.; Saide, Pablo; Hodzic, Alma

2011-07-13T23:59:59.000Z

232

Multi-year Satellite and Surface Observations of AOD in support of Two-Column Aerosol Project (TCAP) Field Campaign  

SciTech Connect

We use combined multi-year measurements from the surface and space for assessing the spatial and temporal distribution of aerosol properties within a large (~400x400 km) region centered on Cape Cod, Massachusetts, along the East Coast of the United States. The ground-based Aerosol Robotic Network (AERONET) measurements at Martha’s Vineyard Coastal Observatory (MVCO) site and Moderate Resolution Imaging Spectrometer (MODIS) sensors on board the Terra and Aqua satellites provide horizontal and temporal variations of aerosol optical depth, while the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) offers the altitudes of aerosol-layers. The combined ground-based and satellite measurements indicated several interesting features among which were the large differences in the aerosol properties observed in July and February. We applied the climatology of aerosol properties for designing the Two-Column Aerosol Project (TCAP), which is supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The TCAP field campaign involves 12-month deployment (started July 1, 2012) of the ground-based ARM Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) on Cape Cod and complimentary aerosol observations from two research aircraft: the DOE Gulfstream-1 (G-1) and the National Aeronautics and Space Administration (NASA) B200 King Air. Using results from the coordinated G-1 and B200 flights during the recent (July, 2012) Intensive Observation Period, we demonstrated that the G-1 in situ measurements and B200 active remote sensing can provide complementary information on the temporal and spatial changes of the aerosol properties off the coast of North America.

Kassianov, Evgueni I.; Chand, Duli; Berg, Larry K.; Fast, Jerome D.; Tomlinson, Jason M.; Ferrare, R.; Hostetler, Chris A.; Hair, John

2012-11-01T23:59:59.000Z

233

“Greening Up” Cross-Coupling Chemistry  

E-Print Network (OSTI)

today. Insofar as green chemistry is concerned, however,Handbook of organopalladium chemistry for organic synthesis.Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH,

Lipshutz, Bruce H.; Abela, Alexander R.; Boškovi?, Žarko V.; Nishikata, Takashi; Duplais, Christophe; Krasovskiy, Arkady

2010-01-01T23:59:59.000Z

234

THE COORDINATION CHEMISTRY OF METAL SURFACES  

E-Print Network (OSTI)

48 and the cluster chemistry by the The nickel and platinumL. Muetterties Department of Chemistry, Lawrence Berkeleyphenomenon in metal surface chemistry. Ultra high vacuw:n

Muetterties, Earl L.

2013-01-01T23:59:59.000Z

235

Nuclear Chemistry at BNL 1947-66  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry in the Chemistry Department. The National Laboratories were spawned from the Manhattan Project. Not coincidentally, nuclear chemistry and nuclear physics burgeoned...

236

Evaluation of Empirical Aerosol Correlations  

Science Conference Proceedings (OSTI)

This study examined the adequacy of novel scaling and correlation methods used to analyze aerosol behavior in versions 2.0 and 3.0 of the MAAP computer code. The results show that the MAAP 2.0 method suffers from inaccurate scaling. The method used in MAAP 3.0 is theoretically superior and more consistent with experimental data.

1986-12-17T23:59:59.000Z

237

Guide to Chemistry Dept  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to the Chemistry Building Guide to the Chemistry Building The main Chemistry building (Building 555) has been designed to make adequate facilities available for research and to provide an informal atmosphere for free exchange among Department members. There are public areas, shared laboratories, shared office space, and privately assigned places. A newcomer to the building should become familiar with locations of the key areas. Stairs and Elevators - Building 555 The central main staircase and a passenger elevator are for personnel traffic only. Each wing has a staircase. There is a rear staircase for traffic directly to service areas. The building has a freight elevator at the rear core. Flammable material, chemicals, solvents, gas cylinders, etc. can be transported in the freight elevator but not in the passenger elevator. Do not ride with gas cylinders or dewars charged with cryogens as the presence of these in a confined space introduces a suffocation hazard.

238

Home / Chemistry / Chemistry (general) Angewandte Chemie International Edition  

E-Print Network (OSTI)

JOURNALS Home / Chemistry / Chemistry (general) Angewandte Chemie International Edition See Also: Angewandte Chemie Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim View all previous titles

Jo, Moon-Ho

239

Aerosol observing system platform integration and AAF instrumentation  

SciTech Connect

As part of the federal government’s 2009 American Recovery and Reinvestment Act (ARRA), the U.S. DOE Office of Science allocated funds for the capital upgrade of the Atmospheric Radiation Measurement (ARM) Climate Research Facility to improve and expand observational capabilities related to cloud and aerosol properties. The ARM Facility was established as a national user facility for the global scientific community to conduct a wide range of interdisciplinary science. Part of the ARRA-funded expansion of the ARM Facility includes four new Aerosol Observing Systems (AOS) to be designed, instrumented, and mentored by BNL. The enclosures will be customized SeaTainers. These new platforms ([AMF2]: ARM Mobile Facility-2; [TWP-D]: Tropical Western Pacific at Darwin; and [MAOS-A]/[MAOS-C]: Mobile Aerosol Observing System-Aerosol/-Chemistry) will provide a laboratory environment for fielding instruments to collect data on aerosol life cycle, microphysics, and optical/physical properties. The extensive instrument suite includes both established methods and initial deployments of new techniques to add breadth and depth to the AOS data sets. The platforms are designed: (1) to have all instruments pre-installed before deployment, allowing a higher measurement duty cycle; (2) with a standardized configuration improving the robustness of data inter-comparability; (3) to provide remote access capability for instrument mentors; and (4) to readily accommodate guest instrumentation. The first deployment of the AMF2 platform will be at the upcoming StormVEx campaign held at Steamboat Springs, Colorado, October 15, 2010–March 31, 2011 while the TWP-D AOS will be stationed at the ARM Darwin site. The maiden deployments of the MAOS-A and MAOS-C platforms will be during the Ganges Valley Experiment (GVAX) scheduled for April 2011–April 2012. In addition to the ground-based AOS platforms, thee major instrument builds for the AAF are also being undertaken (new trace gas package [NO, NOx, NOy, CO, O3, and SO2]; Scanning Mobility Particle Sampler [SMPS]; and Particle into Liquid Sampler [PILS]). The current status of the AOS platforms, instrument suites, instituted QA/QC activities, projected AOS VAPs, and inlet design, as well as still-unresolved issues, will be presented.

Springston, S.; Sedlacek, A.

2010-03-15T23:59:59.000Z

240

Two-Component Horizontal Aerosol Motion Vectors in the Atmospheric Surface Layer from a Cross-Correlation Algorithm Applied to Scanning Elastic Backscatter Lidar Data  

Science Conference Proceedings (OSTI)

Two-component horizontal motion vectors of aerosol features were calculated by applying a cross-correlation algorithm to square image blocks extracted from consecutive pairs of elastic backscatter lidar scans. The resulting vector components were ...

Shane D. Mayor; Jennifer P. Lowe; Christopher F. Mauzey

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Keeping up with detergent chemistry  

Science Conference Proceedings (OSTI)

The detergent industry is highly competitive, mostly recession proof, and, thanks to chemistry, always changing ever so slightly. It has been years, however, since cleaning chemistry has been the driving force in detergent innovation. Instead, the environm

242

Integrated Solutions in Chemistry  

E-Print Network (OSTI)

Paths best traveled Choose from a portfolio of comprehensive, interlinked, intuitive and accessible chemistry resources Paths best traveled Choose from a comprehensive portfolio of interlinked, intuitive and accessible resources www.info.sciencedirect.com/solutions www.elsevier.com/chemistrysolutions ELSEVIER’S

unknown authors

2004-01-01T23:59:59.000Z

243

Aerosol climate effects and air quality impacts from 1980 to 2030  

SciTech Connect

We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present-day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 Wm{sup -2} and the total aerosol forcing increases from -0.10 Wm{sup -2} to -0.94 Wm{sup -2} (AIE increases from -0.13 to -0.68 Wm{sup -2}) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 Wm{sup -2}), but the magnitude decreases (-0.3Wm{sup -2}) considerably for the future scenario. Over Asia, we evaluate the role of biofuel and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of two) in biofuel and transport-based emissions for 2030 A1B over Asia. Projected changes from present-day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggest that future climate projections warrant particular scrutiny.

Menon, Surabi; Menon, Surabi; Unger, Nadine; Koch, Dorothy; Francis, Jennifer; Garrett, Tim; Sednev, Igor; Shindell, Drew; Streets, David

2007-11-26T23:59:59.000Z

244

COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols  

Science Conference Proceedings (OSTI)

Atmospheric organic aerosols (OA) represent a significant fraction of airborne particulate matter and can impact climate, visibility, and human health. These mixtures are difficult to characterize experimentally due to the enormous complexity and dynamic nature of their chemical composition. We introduce a novel Computational Brewing Application (COBRA) and apply it to modeling oligomerization chemistry stemming from condensation and addition reactions of monomers pertinent to secondary organic aerosol (SOA) formed by photooxidation of isoprene. COBRA uses two lists as input: a list of chemical structures comprising the molecular starting pool, and a list of rules defining potential reactions between molecules. Reactions are performed iteratively, with products of all previous iterations serving as reactants for the next one. The simulation generated thousands of molecular structures in the mass range of 120-500 Da, and correctly predicted ~70% of the individual SOA constituents observed by high-resolution mass spectrometry (HR-MS). Selected predicted structures were confirmed with tandem mass spectrometry. Esterification and hemiacetal formation reactions were shown to play the most significant role in oligomer formation, whereas aldol condensation was shown to be insignificant. COBRA is not limited to atmospheric aerosol chemistry, but is broadly applicable to the prediction of reaction products in other complex mixtures for which reasonable reaction mechanisms and seed molecules can be supplied by experimental or theoretical methods.

Fooshee, David R.; Nguyen, Tran B.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Baldi, Pierre

2012-05-08T23:59:59.000Z

245

Chemistry Dept. Research Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Department Overview: Chemistry Department Overview: While the subjects of chemical research in the Chemistry Department are diverse, several predominant themes span traditional research fields and research groups. These themes include: artificial photosynthesis, charge transfer for energy conversion, chemistry with ionizing radiation, catalysis and surface science, nanoscience, combustion, and nuclear chemistry. Artificial Photosynthesis This program addresses major issues hindering progress in photoinduced catalytic reduction of carbon dioxide, water splitting, and small molecule activation using an integrated experimental and theoretical approach that offers fundamental insights into the underlying photochemical processes. One thrust investigates factors controlling reductive half-reactions. Among these are: (1) searching for visible-light absorbers to couple with electron transfer and/or catalytic processes; (2) avoiding high-energy intermediates through multi-electron, multi-proton processes; (3) using earth-abundant metals, or metal complexes that have bio-inspired or non-innocent ligands to achieve low-energy pathways via second-coordination sphere interactions or redox leveling; (4) adopting water as the target solvent and the source of protons and electrons; and (5) immobilizing catalysts on electrode or semiconductor surfaces for better turnover rates and frequencies. Another thrust investigates water oxidation, focusing on photoelectrolysis processes occurring in band-gap-narrowed semiconductor and catalyst components by: (i) tuning semiconductors to control their light-harvesting and charge-separation abilities; (ii) developing viable catalysts for the four-electron water oxidation process; (iii) immobilizing the homogenous catalysts and metal oxide catalysts on electrodes and/or metal-oxide nanoparticles; and (iv) exploring the interfacial water-decomposition reactions using carriers generated by visible-light irradiation with the goal of understanding semiconductorccatalystcwater charge transport.

246

Design and Sampling Characteristics of a New Airborne Aerosol Inlet for Aerosol Measurements in Clouds  

Science Conference Proceedings (OSTI)

Design of a new submicron aerosol inlet (SMAI) for airborne sampling of aerosol particles is introduced and its performance characteristics under a range of sampling conditions are presented. Analysis of inlet performance in clear-air and cloud ...

Lucas Craig; Allen Schanot; Arash Moharreri; David C. Rogers; Suresh Dhaniyala

2013-06-01T23:59:59.000Z

247

The Aerosol Modeling Testbed: A Community Tool to Objectively Evaluate Aerosol Process Modules  

Science Conference Proceedings (OSTI)

The current paradigm of developing and testing new aerosol process modules is haphazard and slow. Aerosol modules are often tested for short simulation periods using limited data so that their overall performance over a wide range of ...

Jerome D. Fast; William I. Gustafson Jr.; Elaine G. Chapman; Richard C. Easter; Jeremy P. Rishel; Rahul A. Zaveri; Georg A. Grell; Mary C. Barth

2011-03-01T23:59:59.000Z

248

Another Look at the Influence of Absorbing Aerosols in Drops on Cloud Absorption: Large Aerosols  

Science Conference Proceedings (OSTI)

Since as early as 1969, solar absorbing aerosols inside of cloud drops have been suggested to influence cloud radiative properties. The absorbing aerosols were invoked to help explain two “anomalies”: 1) the maximum visible albedo of thick ...

Carynelisa Erlick; Dana Schlesinger

2008-02-01T23:59:59.000Z

249

Dust Aerosol Optical Depth Retrieval over a Desert Surface Using the SEVIRI Window Channels  

Science Conference Proceedings (OSTI)

The authors present a new algorithm to retrieve aerosol optical depth (AOD) over a desert using the window channels centered at 8.7, 10.8, and 12.0 ?m of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) instrument on board the Meteosat ...

Bart De Paepe; Steven Dewitte

2009-04-01T23:59:59.000Z

250

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

251

ARM - Field Campaign - Two-Column Aerosol Project (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsTwo-Column Aerosol Project (TCAP) govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction Measurements 2012.07.15, Dubey, AMF Two-Column Aerosol Project (TCAP): Aerial Campaign 2012.07.07, Berg, AAF Two-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer 2012.07.01, Berg, AMF Two-Column Aerosol Project (TCAP): KASPRR Engineering Tests 2012.07.01, Mead, AMF Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements

252

Using MODIS and AERONET to Determine GCM Aerosol Size  

Science Conference Proceedings (OSTI)

Aerosol size is still a poorly constrained quantity in general circulation models (GCMs). By using the modal radii of the coarse and fine mode retrieved from 103 stations in the Aerosol Robotic Network (AERONET) and the fine mode aerosol optical ...

Glen Lesins; Ulrike Lohmann

2006-04-01T23:59:59.000Z

253

Aerosol Remote Sensing over Clouds Using A-Train Observations  

Science Conference Proceedings (OSTI)

The detection of aerosol above clouds is critical for the estimate of both the aerosol and cloud radiative impacts. In this study, the authors present a new method to retrieve the aerosol properties over clouds that uses the multiangle ...

F. Waquet; J. Riedi; L. C. Labonnote; P. Goloub; B. Cairns; J-L. Deuzé; D. Tanré

2009-08-01T23:59:59.000Z

254

Distinguishing Aerosol Impacts on Climate Over the Past Century  

E-Print Network (OSTI)

Table 1. Aerosol Characteristics Species Emissions Burdenc and h), IE (d, i) and BAE (e, f). List of Tables AerosolEmission of trace gases and aerosols from biomass burning,

Koch, Dorothy

2009-01-01T23:59:59.000Z

255

OH-initiated heterogeneous aging of highly oxidized organic aerosol  

E-Print Network (OSTI)

P. ; Jimenez, J. L. Aerosol Science and Technology 2004, 38,A. G. Highly dispersed aerosols; Halsted Press, New York,highly oxidized organic aerosol Sean H. Kessler 1 , Theodora

Kessler, Sean H.

2013-01-01T23:59:59.000Z

256

SPURIOUS SULFATE FORMATION ON COLLECTED AMBIENT AEROSOL SAMPLES  

E-Print Network (OSTI)

FORMATION ON COLLECTED AMBIENT AEROSOL SAMPLES B. W. Loo, R.FORMATION ON COLLECTED AMBIENT AEROSOL SAMPLES Billy W. Lao,ON COLLECTED AMBIENT AEROSOL SAMPLES* _B_il_l~y ___ W_. _L~o

Loo, B.W.

2011-01-01T23:59:59.000Z

257

The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm  

Science Conference Proceedings (OSTI)

Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One ...

Ali H. Omar; David M. Winker; Mark A. Vaughan; Yongxiang Hu; Charles R. Trepte; Richard A. Ferrare; Kam-Pui Lee; Chris A. Hostetler; Chieko Kittaka; Raymond R. Rogers; Ralph E. Kuehn; Zhaoyan Liu

2009-10-01T23:59:59.000Z

258

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network (OSTI)

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

259

Photolytically generated aerosols in the mesosphere and thermosphere of Titan  

E-Print Network (OSTI)

Analysis of the Cassini Ultraviolet Imaging Spectrometer (UVIS) stellar and solar occultations at Titan to date include 12 species: N$_{2}$ (nitrogen), CH$_{4}$ (methane), C$_{2}$H$_{2}$ (acetylene), C$_{2}$H$_{4}$ (ethylene), C$_{2}$H$_{6}$ (ethane), C$_{4}$H$_{2}$ (diacetylene), C$_{6}$H$_{6}$ (benzene), C$_{6}$N$_{2}$ (dicyanodiacetylene), C$_{2}$N$_{2}$ (cyanogen), HCN (hydrogen cyanide), HC$_{3}$N (cyanoacetylene), and aerosols distinguished by a structureless continuum extinction (absorption plus scattering) of photons in the EUV. The introduction of aerosol particles, retaining the same refractive index properties as tholin with radius $\\sim$125 \\AA and using Mie theory, provides a satisfactory fit to the spectra. The derived vertical profile of aerosol density shows distinct structure, implying a reactive generation process reaching altitudes more than 1000 km above the surface. A photochemical model presented here provides a reference basis for examining the chemical and physical processes leading to the distinctive atmospheric opacity at Titan. We find that dicyanodiacetylene is condensable at $\\sim$650 km, where the atmospheric temperature minimum is located. This species is the simplest molecule identified to be condensable. Observations are needed to confirm the existence and production rates of dicyanodiacetylene.

Mao-Chang Liang; Yuk L. Yung; Donald E. Shemansky

2007-05-01T23:59:59.000Z

260

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

change. Tiny Specks with Large Effects Most people equate aerosols with hairspray and household cleaning products, but a large portion of these microscopic particles floating...

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Radiative and climate impacts of absorbing aerosols  

E-Print Network (OSTI)

over the southwest summer monsoon region, Meteorol. Atmos.Absorbing aerosols and summer monsoon evolution over SouthK. M. Kim (2006), Asian summer monsoon anomalies induced by

Zhu, Aihua

2010-01-01T23:59:59.000Z

262

Micro Aerosol-based Decontamination System - Available ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Micro Aerosol-based Decontamination System. Battelle Number(s): 15847. ...

263

Carbonaceous Aerosol Study Using Advanced Particle Instrumentation  

E-Print Network (OSTI)

range transport of biomass combustion aerosols. Environ.6 6.1 Introduction Biomass combustion emissions contributeparticles from the combustion of biomass fuels. Environ.

Qi, Li

2010-01-01T23:59:59.000Z

264

Aerosol Retrieval Using Remote-sensed Observations  

E-Print Network (OSTI)

electromagnetic solar radiation. The amount of atmosphericas the amount of solar radiation that aerosols scatter andbased on reflected solar radiation field measurements

Wang, Yueqing

2012-01-01T23:59:59.000Z

265

THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION  

NLE Websites -- All DOE Office Websites (Extended Search)

THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION Title THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION Publication Type Journal Article LBNL Report...

266

Aerosol organic carbon to black carbon ratios: Analysis of published...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing Title Aerosol organic carbon to black carbon ratios: Analysis of...

267

Evaluating the Direct and Indirect Aerosol Effect on Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

one of the largest uncertainties in climate forcing studies is the effect of aerosols on the earth-atmosphere system. Aerosols affect the radiation budget under both clear...

268

Aerosol Jet® Material Deposition for High Resolution Printed ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Aerosol Jet printing, is finding wide use in a number of ... The Aerosol Jet systems deposit a wide variety of functional materials onto a wide ...

269

Characterizing the Formation of Secondary Organic Aerosols-Interim...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing the Formation of Secondary Organic Aerosols-Interim Report. Title Characterizing the Formation of Secondary Organic Aerosols-Interim Report. Publication Type Report...

270

Modeling Corrosion of a Metal under an Aerosol Droplet  

Science Conference Proceedings (OSTI)

Deposition of aerosol droplets produced either by marine or industrial activity on the ... The atmospheric corrosion caused by aerosols is a result of a complex ...

271

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton,...

272

Factors affecting the indoor concentrations of carbonaceous aerosols...  

NLE Websites -- All DOE Office Websites (Extended Search)

Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin Title Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin...

273

The Transformation of Outdoor Ammonium Nitrate Aerosols in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Transformation of Outdoor Ammonium Nitrate Aerosols in the Indoor Environment Title The Transformation of Outdoor Ammonium Nitrate Aerosols in the Indoor Environment...

274

Retrieval of Aerosol Mass Concentration from Elastic Lidar Data.  

E-Print Network (OSTI)

??Agricultural aerosol sources can contribute significantly to air pollution in many regions of the country. Characterization of the aerosol emissions of agricultural operations is required… (more)

Marchant, Christian C.

2010-01-01T23:59:59.000Z

275

Studies of urban atmospheric aerosols using lidar and sky radiometer.  

E-Print Network (OSTI)

???This thesis discusses the remote sensing of atmospheric aerosols, the corresponding instrumental technology and inversion algorithm. The urban aerosol optical properties in Hong Kong have… (more)

Yang, Xun (??)

2008-01-01T23:59:59.000Z

276

Final Report for LDRD Project 05-ERD-050: "Developing a Reactive Chemistry Capability for the NARAC Operational Model (LODI)"  

SciTech Connect

In support of the National Security efforts of LLNL, this project addressed the existing imbalance between dispersion and chemical capabilities of LODI (Lagrangian Operational Dispersion Integrator--the NARAC operational dispersion model). We have demonstrated potentially large effects of atmospheric chemistry on the impact of chemical releases (e.g., industrial chemicals and nerve agents). Prior to our work, LODI could only handle chains of first-order losses (exponential decays) that were independent of time and space, limiting NARAC's capability to respond when reactive chemistry is important. We significantly upgraded the chemistry and aerosol capability of LODI to handle (1) arbitrary networks of chemical reactions, (2) mixing and reactions with ambient species, (3) evaporation and condensation of aerosols, and (4) heat liberated from chemical reactions and aerosol condensation (which can cause a cold and dense plume hugging the ground to rise into the atmosphere, then descend to the ground again as droplets). When this is made operational, it will significantly improve NARAC's ability to respond to terrorist attacks and industrial accidents that involve reactive chemistry, including many chemical agents and toxic industrial chemicals (TICS). As a dual-use, the resulting model also has the potential to be a state-of-the-art air-quality model. Chemical releases are the most common type of airborne hazardous release and many operational applications involve such scenarios. The new capability we developed is therefore relevant to the needs of the Department of Energy (DOE), Department of Homeland Security (DHS) and Department of Defense (DoD).

Cameron-Smith, P; Grant, K; Connell, P

2008-02-11T23:59:59.000Z

277

Chemistry Department Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Staff Directory Chemistry Staff Directory Last Name, First Phone E-mail Note: All listed phone extensions are in the format of (631) 344-xxxx. Adzic, Radoslav 4522 adzic@bnl.gov Akimov, Alexey No Entry akimov@bnl.gov An, Wei 4317 weian@bnl.gov Anselmini, James 4399 anselmini@bnl.gov Baber, Ashleigh 4317 ababer@bnl.gov Badiei, Yosra 4360 ybadiei@bnl.gov Bak, Seong Min BAK 3663 smbak@bnl.gov Bakalis, Jin No Entry jbakalis@bnl.gov Bird, Matthew 4331 mbird@bnl.gov Cabelli, Diane 4361 cabelli@bnl.gov Camillone III, Nicholas 4412 nicholas@bnl.gov Chen, Jingguang 2655 jgchen@bnl.gov Chen, Wei-Fu 4360 wfchen@bnl.gov Concepcion, Javier 4369 jconcepc@bnl.gov Cook, Andrew 4782 acook@bnl.gov Cumming, James 4338 cumming@bnl.gov Duan, Lele 4357 lduan@bnl.gov Ertem, Mehmed No Entry mzertem@bnl.gov

278

Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem  

Science Conference Proceedings (OSTI)

In the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model, we have coupled the Morrison double-moment microphysics scheme with interactive aerosols so that full two-way aerosol-cloud interactions are included in simulations. We have used this new WRF-Chem functionality in a study focused on assessing predictions of aerosols, marine stratocumulus clouds, and their interactions over the Southeast Pacific using measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals. This study also serves as a detailed analysis of our WRF-Chem simulations contributed to the VOCALS model Assessment (VOCA) project. The WRF-Chem 31-day (October 15-November 16, 2008) simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations assumed by the default in Morrison microphysics scheme with no interactive aerosols. The well-predicted aerosol properties such as number, mass composition, and optical depth lead to significant improvements in many features of the predicted stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness, and cloud macrostructure such as cloud depth and cloud base height. These improvements in addition to the aerosol direct and semi-direct effects, in turn, feed back to the prediction of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengths temperature and humidity gradients within capping inversion layer and lowers the MBL depth by 150 m from that of the MET simulation. Mean top-of-the-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity over the remote ocean) and aerosol quantities (e.g., overestimations of supermicron sea salt mass) might affect simulated stratocumulus and energy fluxes over the SEP, and require further investigations. Although not perfect, the overall performance of the regional model in simulating mesoscale aerosol-cloud interactions is encouraging and suggests that the inclusion of spatially varying aerosol characteristics is important when simulating marine stratocumulus over the southeastern Pacific.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Morrison, H.; Lee, Y.- N.; Chapman, Elaine G.; Spak, S. N.; Mena-Carrasco, M. A.

2011-12-02T23:59:59.000Z

279

Complementary Chemistry and Matched Materials | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Complementary Chemistry and Matched Materials Complementary Chemistry and Matched Materials Complementary Chemistry and Matched Materials November 15, 2013 - 1:45pm Addthis DNA linkers allow different kinds of nanoparticles to self-assemble and form relatively large-scale nanocomposite arrays. This approach allows for mixing and matching components for the design of multifunctional materials. | Image courtesy of Brookhaven National Laboratory. DNA linkers allow different kinds of nanoparticles to self-assemble and form relatively large-scale nanocomposite arrays. This approach allows for mixing and matching components for the design of multifunctional materials. | Image courtesy of Brookhaven National Laboratory. Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science What are the key facts?

280

Longwave radiative forcing by aqueous aerosols  

SciTech Connect

Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States). Environmental Research Div.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Henry Taube and Coordination Chemistry  

Office of Scientific and Technical Information (OSTI)

Henry Taube and Coordination Chemistry Henry Taube and Coordination Chemistry Resources with Additional Information Henry Taube Chuck Painter/Stanford News Service Henry Taube, a Marguerite Blake Wilbur Professor of Chemistry, Emeritus, at Stanford University, received the 1983 Nobel Prize in Chemistry "for his work on the mechanisms of electron transfer reactions, especially in metal complexes" Taube 'received a doctorate from the University of California-Berkeley in 1940 and was an instructor there from 1940-41. "I became deeply interested in chemistry soon after I came to Berkeley," Taube recalled. ... He joined the Cornell University faculty in 1941, becoming a naturalized United States citizen in 1942, and then moved in 1946 to the University of Chicago where he remained until 1961. A year later he joined the Stanford faculty as professor of chemistry, a position he held until 1986, when he became professor emeritus. ...

282

The Opposed Migration Aerosol Classifier (OMAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

The Opposed Migration Aerosol Classifier (OMAC) The Opposed Migration Aerosol Classifier (OMAC) Speaker(s): Harmony Gates Date: February 22, 2007 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Melissa Lunden A new differential mobility classifier will be described. The instrument classifies aerosol particles in a channel flow between porous (or screen) electrodes. The aerosol enters the channel parallel to the porous electrodes, while a larger, particle-free cross-flow enters through one of the porous electrode. A potential difference between electrodes causes the charged aerosol particles to migrate upstream against the cross-flow. Only particles whose upward migration velocity balances the cross flow will be transmitted along the path of the classifier. Simulations of the OMAC show that it should give the same resolution at the traditional

283

NUCLEAR CHEMISTRY ANNUAL REPORT 1970  

SciTech Connect

Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

Authors, Various

1971-05-01T23:59:59.000Z

284

AEROSOL PARTICLE COLLECTOR DESIGN STUDY  

Science Conference Proceedings (OSTI)

A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

Lee, S; Richard Dimenna, R

2007-09-27T23:59:59.000Z

285

Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil  

E-Print Network (OSTI)

Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil chemistry with respect to environmental reactions between soils and other natural contemporary training in the basics of soil chemistry and applications to real-world environmental concerns

Sparks, Donald L.

286

VIDEOS: History of Nuclear Chemistry  

Science Conference Proceedings (OSTI)

Oct 19, 2007 ... Topic Summary: The Living Textbook of Nuclear Chemistry, ACS. Collection of brief videos on the discoveries of several heavy elements

287

Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006.  

SciTech Connect

Understanding the roles of human and natural sources in contributing to aerosol concentrations around the world is an important step toward developing efficient and effective mitigation measures for local and regional air quality degradation and climate change. In this study we test the hypothesis that changes in aerosol optical depth (AOD) over time are caused by the changing patterns of anthropogenic emissions of aerosols and aerosol precursors. We present estimated trends of contributions to AOD for eight world regions from 1980 to 2006, built upon a full run of the Goddard Chemistry Aerosol Radiation and Transport model for the year 2001, extended in time using trends in emissions of man-made and natural sources. Estimated AOD trends agree well (R > 0.5) with observed trends in surface solar radiation in Russia, the United States, south Asia, southern Africa, and East Asia (before 1992) but less well for Organization for Economic Co-operative Development (OECD) Europe (R < 0.5). The trends do not agree well for southeast Asia and for East Asia (after 1992) where large-scale inter- and intraannual variations in emissions from forest fires, volcanic eruptions, and dust storms confound our approach. Natural contributions to AOD, including forest and grassland fires, show no significant long-term trends (<1%/a), except for a small increasing trend in OECD Europe and a small decreasing trend in South America. Trends in man-made contributions to AOD follow the changing patterns of industrial and economic activity. We quantify the average contributions of key source types to regional AOD over the entire time period.

Streets, D. G.; Yan, F.; Chin, M.; Diehl, T.; Mahowald, N.; Schultz, M.; Wild, M.; Wu, Y.; Yu, C.; Decision and Information Sciences; Univ. of Illinois; NASA; Cornell Univ.; Forschungszentrum; Inst.for Atmospheric and Climate Science; Tsinghua Univ.

2009-07-28T23:59:59.000Z

288

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2  

E-Print Network (OSTI)

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME burning events. It is found that the regional AAI data follow the regional tropospheric NO2 data well sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

Tilstra, Gijsbert

289

Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior  

E-Print Network (OSTI)

and Seinfeld, J. H. : Organic aerosol formation from theJ. : A large organic aerosol source in the free troposphereand Worsnop, D. R. : Organic aerosol components observed in

Cappa, Christopher D.

2011-01-01T23:59:59.000Z

290

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

in press), Organic aerosols in the earth's atmosphere,loss, and trace gas and aerosol emissions during laboratoryproperties of biomass burn aerosols, Geophysical Research

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

291

Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data  

E-Print Network (OSTI)

J. : A parameterization of aerosol activation - 3. Sectionalclouds on indirect aerosol climate forcing, Nature, 432,2004. Albrecht, B. A. : Aerosols, cloud microphysics, and

Quaas, Johannes

2010-01-01T23:59:59.000Z

292

Secondary Organic Aerosol Formation from Primary Aliphatic Amines with Nitrate Radical  

E-Print Network (OSTI)

back- ground atmospheric aerosol in the UK determined inof secondary organic aerosols, Atmos. Environ. , 31, 3921–et al. : Secondary organic aerosol formation from amines

Malloy, Q G J; Qi, L; Warren, B; Cocker III, D R; Erupe, M E; Silva, P J

2009-01-01T23:59:59.000Z

293

Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols  

E-Print Network (OSTI)

instruments and photoelectric aerosol sensors in source-sampling of black carbon aerosol and particle-bound PAHsAirborne minerals and related aerosol particles: Effects on

2008-01-01T23:59:59.000Z

294

Composition, sources, and formation of secondary organic aerosols from urban emissions  

E-Print Network (OSTI)

organonitrate functional groups in aerosol particles200 5.1v aerosol Chapter 3 Meteorological conditions during theSecondary organic aerosol formation from fossil fuel sources

Liu, Shang; Liu, Shang

2012-01-01T23:59:59.000Z

295

X-RAY METHODS FOR THE CHEMICAL CHARACTERIZATION OF ATMOSPHERIC AEROSOLS  

E-Print Network (OSTI)

Goulding Fine Particles: Aerosol Generation, Sampling andCHARACTERIZATION OF ATMOSPHERIC AEROSOLS J.M. Jaklevic andCHARACTERIZATION OF ATMOSPHERIC AEROSOLS J.M. Jaklevic and

Jaklevic, J.M.

2010-01-01T23:59:59.000Z

296

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate  

E-Print Network (OSTI)

Cloud susceptibility and the first aerosol indirect forcing:Sensitivity to BC and aerosol concentrations. J. Geophys.of cloud droplet and aerosols number concentrations:

Menon, Surabi

2008-01-01T23:59:59.000Z

297

Characterization of the Molecular Composition of Secondary Organic Aerosols using High Resolution Mass Spectrometry  

E-Print Network (OSTI)

in secondary organic aerosol formation from isoprene, Proc.biogenic secondary organic aerosol, J. Phys. Chem. A, 112(in secondary organic aerosol, Environ. Sci. Technol. , 41(

Sellon, Rachel Elizabeth

2012-01-01T23:59:59.000Z

298

Measurements of the chemical, physical, and optical properties of single aerosol particles  

E-Print Network (OSTI)

composition of ambient aerosol particles, EnvironmentalParticle Measurement of Ambient Aerosol Particles Containingfor quantifying direct aerosol forcing of climate, Bull. Am.

Moffet, Ryan Christopher

2007-01-01T23:59:59.000Z

299

DETERMINATION OF CARBON IN ATMOSPHERIC AEROSOLS BY DEUTERON-INDUCED NUCLEAR REACTIONS  

E-Print Network (OSTI)

deuteron irradiation of an atmospheric aerosol sample.CARBON IN ATMOSPHERIC AEROSOLS BY DEUTERON-INDUCED NUCLEARCARBON IN ATMOSPHERIC AEROSOLS BY DEUTERON-INDUCED NUCLEAR

Clemenson, Mark

2013-01-01T23:59:59.000Z

300

On the Importance of Organic Oxygen for Understanding Organic Aerosol Particles  

E-Print Network (OSTI)

carbon fractions in atmospheric aerosols, J. Geophys. Res. -particulate diesel exhaust, Aerosol Sci. Technol. 25: 221-climate forcing of carbonaceous aerosols, J. Geophys. Res. -

Pang, Y.; Turpin, B.J.; Gundel, L.A.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data  

E-Print Network (OSTI)

Oscillation influence aerosol variability? , J. Geophys.clouds on indirect aerosol climate forcing, Nature, 432,2004. Albrecht, B. A. : Aerosols, cloud microphysics, and

Quaas, Johannes

2010-01-01T23:59:59.000Z

302

Secondary Organic Aerosol Formation From Radical-Initiated Reactions of Alkenes: Development of Mechanisms  

E-Print Network (OSTI)

and Secondary Organic Aerosols in Southern California duringSources of Organic Carbon Aerosols in the Free Troposphere21 co-authors), 2005. Organic Aerosol and Global Climate

Matsunaga, Aiko

2009-01-01T23:59:59.000Z

303

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing  

E-Print Network (OSTI)

Ryu (2004), Carbonaceous aerosol characteristics ofPM 2.5Allen (1990), Transported acid aerosols measured in southernconference international aerosol carbon round robin test

Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

2005-01-01T23:59:59.000Z

304

ATMOSPHERIC AEROSOL RESEARCH FY-1979, CHAPTER IN THE ENERGY AND ENVIRONMENT ANNUAL REPORT, 1979  

E-Print Network (OSTI)

California atmospheric aerosols," Environ. Sci. Technol. ll•suspensions," in Atmospheric Aerosol Research Annual Report,formation," in Atmospheric Aerosol Research Annual Report,

Authors, Various

2013-01-01T23:59:59.000Z

305

Chemistry & Physics at Interfaces | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxide Interfaces Chemical Imaging Grain Boundaries Related Research Materials Synthesis from Atoms to Systems Materials Characterization Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science & Discovery | Advanced Materials | Research Areas | Chemistry and Physics at Interfaces SHARE Chemistry and Physics at Interfaces Chemical transformations and physical phenomena at gas, liquid and solid interfaces lie at the heart of today's energy technologies. They underpin ORNL's research strategies to deliver scientific discoveries and technical breakthroughs that will accelerate the development and deployment of solutions in clean energy. Understanding, predicting and controlling the structure, transport and reactivity at interfaces will lead to advances in

306

Open Cooling Water Chemistry Guideline  

Science Conference Proceedings (OSTI)

State-of-the-art chemistry programs help to ensure the continued operation of open cooling water systems while mitigating corrosion and fouling mechanisms. This document, Open Cooling Water Chemistry Guideline, prepared by a committee of industry experts, reflects field and laboratory data on corrosion and fouling issues of open cooling systems.BackgroundService Water System Chemical Addition Guideline (Electric Power Research Institute ...

2012-09-17T23:59:59.000Z

307

Synthetic and Mechanistic Chemistry publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Synthetic and Mechanistic Chemistry » Synthetic and Mechanistic Chemistry » Synthetic and Mechanistic Synthetic and Mechanistic publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Dave Thorn Chemistry Program Manager Email Josh Smith Chemistry Communications Email "Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this century. Energy security is vital to our future national security and the efficient functioning of our market economy." -LANL Director Charles McMillan Harshini Mukundan, Hongzhi Xie, Aaron S. Anderson, W. Kevin Grace, John E. Shively, and Basil I. Swanson, "Optimizing a waveguide-based sandwich immunoassay for tumor biomarkers: Evaluating fluorescent labels and functional surfaces," Bioconjugate Chemistry 20(2), 222-230 (2009).

308

Polarimetric Remote Sensing of Aerosols over Land  

Science Conference Proceedings (OSTI)

The sensitivity of accurate polarized reflectance measurements over a broad spectral (410 -2250 nm) and angular (±60° from nadir) range to the presence of aerosols over land is analyzed and the consequent ability to retrieve the aerosol burden and microphysical model is assessed. Here we present a new approach to the correction of polarization observations for the effects of the surface that uses longer wavelength observations to provide a direct estimate of the surface polarized reflectance. This approach to surface modeling is incorporated into an optimal estimation framework for retrieving the particle number density and a detailed aerosol microphysical model: effective radius, effective variance and complex refractive index of aerosols. A sensitivity analysis shows that the uncertainties in aerosol optical thickness (AOT) increase with AOT while the uncertainties in the microphysical model decrease. Of particular note is that the uncertainty in the single scattering albedo is less than 0.05 by the time the AOT is greater than 0.2. We also find that calibration is the major source of uncertainty and that perfect angular and spectral correlation of calibration errors reduces the uncertainties in retrieved quantities compared with the case of uncorrelated errors. Finally, in terms of required spectral range, we observe that shorter wavelength (aerosols from polarized reflectance observations. The optimal estimation scheme is then tested on observations made by the Research Scanning Polarimeter during the Aerosol Lidar Validation experiment and over Southern California wild fires. These two sets of observations test the retrieval scheme under pristine and polluted conditions respectively. In both cases we find that the retrievals are within the combined uncertainties of the retrieval and the Aerosol Robotic Network Cimel products and Total Ozone Mapping Spectrometer Aerosol Index that we are comparing to. This confirms the validity of the sensitivity analysis of the polarized reflectance observations to the aerosol number density and microphysical model and demonstrates the unique capability to accurately retrieve aerosol optical depths under pristine conditions and also the single scattering albedo of aerosols at higher optical depths.

Waquet, F.; Cairns, Brian; Knobelspiesse, Kirk D.; Chowdhary, J.; Travis, Larry D.; Schmid, Beat; Mishchenko, M.

2009-01-26T23:59:59.000Z

309

Chemistry and Material Sciences Codes at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 & ast edited: 2012-02-24 15:12:59...

310

BNL Center for Radiation Chemistry Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Department | Photo- and Radiation Chemistry | Group Members Welcome to the Brookhaven National Laboratory Center for Radiation Chemistry Research LEAF Logo CRCR Logo Graphic Pop-up...

311

SLAC National Accelerator Laboratory - Materials, Chemistry and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials, Chemistry and Energy Sciences Two people holding a solar cell outdoors Materials, chemistry and energy sciences are central to many of today's most critical technical...

312

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

Science Conference Proceedings (OSTI)

Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

Richard A. Ferrare; David D. Turner

2011-09-01T23:59:59.000Z

313

Chemistry Department Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration Administration A. Harris, Chair (631) 344-4301 alexh@bnl.gov G. Hall, Deputy Chair (631) 344-4376 gehall@bnl.gov S. McAlary, Deputy BES Manager (631) 344-4305 mcalary2@bnl.gov J. Petterson, Senior Administrative Assistant (631) 344-4302 jpetter@bnl.gov Administrative Support Includes budgeting, procurement activities, foreign/domestic travel, seminars and general administrative concerns. Guest Appointments and Personnel matters should be referred to the Department's Senior Administrative Assistant. L. Sallustio (631) 344-4303 lsallust@bnl.gov Building and Stockroom Maintain the Chemistry Department stockroom and provide technical and building support to the staff. Information on the BNL Chemical Management Inventory system is available through the stockroom. Click here to view

314

Silane discharge ion chemistry  

SciTech Connect

Silane dc, rf, and dc proximity discharges have been studied using mass spectroscopic measurements of the positive ions as a detailed diagnostic for the type of discharge used to produce hydrogenated amorphous silicon solar photovoltaic cells. The properties and quality of these films depends in a very complex way upon the interactions of the many reactive neutral and ion species in the discharge. Qualitative models of the ion chemical processes in these discharges have been developed from experimental measurements. Knowledge of the ion-molecule and electron-molecule collision cross sections is important to any attempt at understanding silane discharge chemistry. Consequently, the electron impact ionization cross sections for silane and disilane have been measured and for comparison purposes also for methane and ethane. In addition, the rate coefficients for charge exchange reactions of He , Ne , and Ar with silane, disilane, methane, and ethane have been measured as these are important to understanding discharges in inert gas-silane mixtures. A detailed quantitative model of the cathode sheath region of a silane dc discharge has been developed by extending the best recent calculation of the electron motion in the sheath to a self-consistent form which includes the ion motion. This model is used with comparison of silane dc discharge data to diagnose the ion chemistry occurring in the sheath region of silane dc discharge. The understanding of the discharge ion chemical processes that have been gained in this study represent an important step toward understanding the chemical and physical processes leading to film growth.

Chatham, R.H. III

1984-01-01T23:59:59.000Z

315

Assessment of Aerosol Radiative Impact over Oceanic Regions Adjacent to Indian Subcontinent using Multi-Satellite Analysis  

SciTech Connect

Using data from Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, we have retrieved regional distribution of aerosol column single scattering albedo (parameter indicative of the relative dominance of aerosol absorption and scattering effects), a most important, but least understood aerosol property in assessing its climate impact. Consequently we provide improved assessment of short wave aerosol radiative forcing (ARF) (on both regional and seasonal scales) estimates over this region. Large gradients in north-south ARF were observed as a consequence of gradients in single scattering albedo as well as aerosol optical depth. The highest ARF (-37 W m-2 at the surface) was observed over the northern Arabian Sea during June to August period (JJA). In general, ARF was higher over northern Bay of Bengal (NBoB) during winter and pre-monsoon period, whereas the ARF was higher over northern Arabian Sea (NAS) during the monsoon and post- monsoon period. The largest forcing observed over NAS during JJA is the consequence of large amounts of desert dust transported from the west Asian dust sources. High as well as seasonally invariant aerosol single scattering albedos (~0.98) were observed over the southern Indian Ocean region far from continents. The ARF estimates based on direct measurements made at a remote island location, Minicoy (8.3°N, 73°E) in the southern Arabian Sea are in good agreement with the estimates made following multisatellite analysis.

Satheesh, S. K.; Vinoj, V.; Krishnamoorthy, K.

2010-10-01T23:59:59.000Z

316

Emerging Technology for Measuring Atmospheric Aerosol Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Laboratory and with funding from the DOE STTR program. DMT is developing a new technique for measuring aerosol size distributions in the sub-0.1 um size range. The...

317

ARM - Measurement - Aerosol particle size distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size distribution particle size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size distribution The number of aerosol particles present in any given volume of air within a specificied size range Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

318

BNL | Two-Column Aerosol Program (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Column Aerosol Project (TCAP) Two-Column Aerosol Project (TCAP) There remain many key knowledge gaps despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. Many climatically important processes depend on particles that undergo continuous changes within a size range spanning a few nanometers to a few microns, and with compositions that consist of a variety of carbonaceous materials, soluble inorganic salts and acids and insoluble mineral dust. Primary particles, which are externally-mixed when emitted, are subject to coagulation and chemical changes associated with the condensation of semi-volatile gases to their surface resulting in a spectrum of compositions or mixing-states with a range of climate-affecting optical and hygroscopic properties. The numerical treatments of aerosol transformation

319

Exploring Atmospheric Aerosols by Twilight Photometry  

Science Conference Proceedings (OSTI)

The instrument twilight photometer was designed, developed, and installed at the Indian Institute of Tropical Meteorology (IITM), Pune, India (18°43?N, 73°51?E), to monitor the vertical distribution of atmospheric aerosols. The instrument, based ...

B. Padma Kumari; S. H. Kulkarni; D. B. Jadhav; A. L. Londhe; H. K. Trimbake

2008-09-01T23:59:59.000Z

320

Eastern Pacific Emitted Aerosol Cloud Experiment  

Science Conference Proceedings (OSTI)

Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled ...

Lynn M. Russell; Armin Sorooshian; John H. Seinfeld; Bruce A. Albrecht; Athanasios Nenes; Lars Ahlm; Yi-Chun Chen; Matthew Coggon; Jill S. Craven; Richard C. Flagan; Amanda A. Frossard; Haflidi Jonsson; Eunsil Jung; Jack J. Lin; Andrew R. Metcalf; Robin Modini; Johannes Mülmenstädt; Greg Roberts; Taylor Shingler; Siwon Song; Zhen Wang; Anna Wonaschütz

2013-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ARM - Campaign Instrument - aerosol-tower-eml  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsaerosol-tower-eml Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : EML Tower based Aerosol...

322

Remote Sensing of Aerosol Properties during CARES  

SciTech Connect

One month of MFRSR data collected at two sites in the central California (USA) region during the CARES campaign are processed and the MFRSR-derived AODs at 500 nm wavelength are compared with available AODs provided by AERONET measurements. We find that the MFRSR and AERONET AODs are small ({approx}0.05) and comparable. A reasonable quantitative agreement between column aerosol size distributions (up to 2 um) from the MFRSR and AERONET retrievals is illustrated as well. Analysis of the retrieved (MFRSR and AERONET) and in situ measured aerosol size distributions suggests that the contribution of the coarse mode to aerosol optical properties is substantial for several days. The results of a radiative closure experiment performed for the two sites and one-month period show a favorable agreement between the calculated and measured broadband downwelling irradiances (bias does not exceed about 3 Wm-2), and thus imply that the MFRSR-derived aerosol optical properties are reasonable.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Flynn, Connor J.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Jobson, Bertram Thomas

2011-10-01T23:59:59.000Z

323

The Life Cycle of Stratospheric Aerosol Particles  

Science Conference Proceedings (OSTI)

This paper describes the life cycle of the background (nonvolcanic) stratospheric sulfate aerosol. The authors assume the particles are formed by homogeneous nucleation near the tropical tropopause and are carried aloft into the stratosphere. The ...

Patrick Hamill; Eric J. Jensen; P. B. Russell; Jill J. Bauman

1997-07-01T23:59:59.000Z

324

On the Background Stratospheric Aerosol Layer  

Science Conference Proceedings (OSTI)

Balloonborne aerosol particle counter measurements are used in studying the stratospheric sulfate layer at Laramie, Wyoming, during 1978 and 1979, a 2-year volcanically quiescent period in which the layer appears to have been in a near ...

D. J. Hofmann; J. M. Rosen

1981-01-01T23:59:59.000Z

325

Study of Aerosol Indirect Effects in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effects in China In 2008, the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile...

326

Radiative and climate impacts of absorbing aerosols  

E-Print Network (OSTI)

during SHADE: 1. Solar spectrum, J. Geophys. Res . , 108(sensed data in the solar spectrum, J. Geophys. Res , 106 (a scattering aerosol in the solar spectrum with a SSA=1 and

Zhu, Aihua

2010-01-01T23:59:59.000Z

327

A New Method for Measuring Aerosol Absorption  

Science Conference Proceedings (OSTI)

A new technique has recently been developed to measure aerosol absorption by means of a microdensitometer. Black particulate material is collected into six spots on membrane filters by a laboratory-tested impaction/concentration technique. Follow-...

B. B. Murphey; S. I. Reynolds

1988-08-01T23:59:59.000Z

328

Aerosol Transport in the Southern Sierra Nevada  

Science Conference Proceedings (OSTI)

Aerosol transport and meteorology were investigated during 10 days in August 1985, at three elevations in the southern Sierra. Ground weather station and pilot balloon data revealed the diurnal variation of the topographic winds to be remarkably ...

D. M. Ewell; R. G. Flocchini; L. O. Myrup; T. A. Cahill

1989-02-01T23:59:59.000Z

329

Urban Aerosol Impacts on Downwind Convective Storms  

Science Conference Proceedings (OSTI)

The impacts of urban-enhanced aerosol concentrations on convective storm development and precipitation over and downwind of St. Louis, Missouri, are investigated. This is achieved through the use of a cloud-resolving mesoscale model, in which ...

Susan C. van den Heever; William R. Cotton

2007-06-01T23:59:59.000Z

330

Aerosol Best Estimate Value-Added Product  

Science Conference Proceedings (OSTI)

The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

2012-07-19T23:59:59.000Z

331

ARM - Field Campaign - Aerosol Lidar Validation Experiment -...  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAerosol Lidar Validation Experiment - ALIVE Campaign Links ALIVE Website Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

332

ARM - Publications: Science Team Meeting Documents: A decade long aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

A decade long aerosol and cloud statistics and aerosol indirect effect at A decade long aerosol and cloud statistics and aerosol indirect effect at the ARM SGP site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Twelve-year data of MFRSR and MWR have been used to derive aerosol and cloud optical properties at the ARM SGP. Diurnal, monthly, seasonal and interannual variability of aerosol (optical depth and Angstrom coefficient) and cloud (optical depth and effective radius) have been analyzed. We specially focused on aerosol-cloud interactions. We found a signature of indirect aerosol effect for summer data: increased aerosol index has a statistically-significant anti-correlation with mean effective radius. No

333

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL  

NLE Websites -- All DOE Office Websites (Extended Search)

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL SIZE DISTRIBUTION FROM MEASUREMENTS OF LIGHT TRANSMITTANCE AND SCATTERING Ernie R. Lewis and Stephen E. Schwartz Brookhaven National Laboratory, Upton, NY 11933 ses@bnl.gov elewis@bnl.gov MOMENTS FROM MEASUREMENTS As each of the measured quantities is linear in the size distribution dn/dr, it is possible to construct linear combinations of measurements that yield

334

Apparatus for sampling and characterizing aerosols  

DOE Patents (OSTI)

Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

1984-04-11T23:59:59.000Z

335

Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors  

SciTech Connect

In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current work is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.

Phillips, Jonathan [Los Alamos National Laboratory; Luhrs, Claudia [UNM; Lesman, Zayd [UNM; Soliman, Haytham [UNM; Zea, Hugo [UNM

2010-01-01T23:59:59.000Z

336

Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol  

E-Print Network (OSTI)

Despite decades of study, we still do not fully understand aerosols and their interactions among gases or other aerosols in the atmosphere. Among their impacts, they influence radiative transfer in the atmosphere and contribute to cloud formation. There are many different types of aerosols, including dust particles, soot particles, and microscopic particles containing inorganic compounds such as sulfates. Most of these particles have natural origins, but many are anthropogenic. The eventual purpose of this research is to examine sea salt aerosols and their impact on polluted environments. Sea salt aerosols act as Cloud Condensation Nuclei (CCN) as well as providing a surface for heterogeneous reactions. Such reactions have implications for trace gases such as ozone, reactive nitrogen, mercury, and sulfur containing compounds. Urban areas are most impacted by these trace gases, which is a concern because ozone especially affects the health of citizens. Experiments have three basic parts. First we generate mono-disperse 3 aerosols. That aerosol is then injected into the aerosol chambers with sea salt aerosols and prescribed concentrations of trace gases to characterize relevant interactions. However, those chambers are still under construction and not used during my study. The processed aerosols are then analyzed with a tandem differential mobility analyzer (TDMA) and other equipment. Different concentrations of sea salt aerosols, Cl, NOx, and other gases were planned to be introduced during the experiments. Concentrations of other gases and intensity of solar radiation would mimic those outside. Because these reactions have proved to increase localized concentrations of ozone in other work, this could have important implications. Future work will be designed to find study these interactions. This is important because the EPA has considered tightening the standards for both ozone and particulate matter. Industries would then need to reduce emissions or move farther from current sources of Cl or NOx pollution.

Benoit, Mark David

2013-05-01T23:59:59.000Z

337

Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)  

SciTech Connect

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar; WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere which then can be entrained into the growing boundary layer the subsequent day.

Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

2012-02-17T23:59:59.000Z

338

Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)  

SciTech Connect

We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley, were relatively low. Aerosol layering in the free troposphere was observed during the morning by an airborne Lidar. WRF-Chem forecasts showed that mountain venting processes contributed to aged pollutants aloft in the valley atmosphere that are then entrained into the growing boundary layer the subsequent day.

Fast J. D.; Springston S.; Gustafson Jr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

2012-02-17T23:59:59.000Z

339

Nuclear chemistry. Annual report, 1974  

SciTech Connect

The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

Conzett, H.E.; Edelstein, N.M.; Tsang, C.F. (eds.)

1975-07-01T23:59:59.000Z

340

Model analysis of the anthropogenic aerosol effect on clouds over East Asia  

Science Conference Proceedings (OSTI)

A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (PI) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm{sup -3} over the ocean and East China, 400 cm{sup -3} over Central and Southwest China, and less than 200 cm{sup -3} over North China. The cloud liquid water path (LWP) increased by 40-60 g m{sup -2} over the ocean and Southeast China and 30 g m{sup -2} over Central China; the LWP increased less than 5 g m{sup -2} or decreased by 5 g m{sup -2} over North China. The effective radius (Re) decreased by more than 4 {mu}m over Southwest, Central, and Southeast China and 2 {mu}m over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250-400 cm{sup -3}, the LWP increased by approximately 30-50 g m{sup -2}, and Re decreased by approximately 3 {mu}m over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative forcing strengthened by 30 W m{sup -2} over the ocean and 10 W m{sup -2} over Southeast China, and it weakened slightly by approximately 2-10 W m{sup -2} over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m{sup -2} over Southeast and North China and weakened by 10 W m{sup -2} over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.

Gao, Yi; Zhang, Meigen; Liu, Xiaohong; Zhao, Chun

2012-01-16T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Aerosols in Central California: Unexpectedly Large Contribution of Coarse Mode to Aerosol Radiative Forcing  

Science Conference Proceedings (OSTI)

The majority of previous studies dealing with effect of coarse-mode aerosols on the radiation budget have focused primary on polluted regions with substantial aerosol loadings. We reexamine this effect for a relatively "pristine" area using a unique 1-month dataset collected during recent Carbonaceous Aerosol and Radiative Effects Study (CARES). We demonstrate that the coarse-mode (supermicron) particles can contribute substantially (more than 50%) and frequently (up to 85% of time) to the total volume. In contrast to the conventional expectations that the radiative impact of coarse-mode aerosols should be small for "pristine" regions, we find that the neglecting of the large particles may lead to significant overestimation (up to 45%) of direct aerosol radiative forcing at the top-of atmosphere despite of very small aerosol optical depth (about 0.05 at 0.5 ). Our findings highlight the potential for widespread impacts of the coarse-mode aerosols on the pristine radiative properties over land and the need for more explicit inclusion of the coarse-mode aerosols in climate-related observational and model studies.

Kassianov, Evgueni I.; Pekour, Mikhail S.; Barnard, James C.

2012-10-20T23:59:59.000Z

342

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

Science Conference Proceedings (OSTI)

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06T23:59:59.000Z

343

An Improved Raindrop Chemistry Spectrometer  

Science Conference Proceedings (OSTI)

A spectrometer allowing size-fractional chemical analysis of raindrops has been described previously by the authors. Modifications to this raindrop chemistry spectrometer now allow improved performance in windy conditions. Instrument ...

Stuart G. Bradley; Stephen J. Adams; C. David Stow; Stephen J. de Mora

1991-08-01T23:59:59.000Z

344

Hot atom chemistry and radiopharmaceuticals  

Science Conference Proceedings (OSTI)

The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J. [University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States); University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States)

2012-12-19T23:59:59.000Z

345

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

346

The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol  

Science Conference Proceedings (OSTI)

The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

2011-10-03T23:59:59.000Z

347

Natural organic compounds as tracers for biomass combustion in aerosols  

SciTech Connect

Biomass combustion is an important primary source of carbonaceous particles in the global atmosphere. Although various molecular markers have already been proposed for this process, additional specific organic tracers need to be characterized. The injection of natural product organic tracers to smoke occurs primarily by direct volatilization/steam stripping and by thermal alteration based on combustion temperature. The degree of alteration increases as the burn temperature rises and the moisture content of the fuel decreases. Although the molecular composition of organic matter in smoke particles is highly variable, the molecular structures of the tracers are generally source specific. The homologous compound series and biomarkers present in smoke particles are derived directly from plant wax, gum and resin by volatilization and secondarily from pyrolysis of biopolymers, wax, gum and resin. The complexity of the organic components of smoke aerosol is illustrated with examples from controlled burns of temperate and tropical biomass fuels. Burning of biomass from temperate regions (i.e., conifers) yields characteristic tracers from diterpenoids as well as phenolics and other oxygenated species, which are recognizable in urban airsheds. The major organic components of smoke particles from tropical biomass are straight-chain, aliphatic and oxygenated compounds and triterpenoids. The precursor-to-product approach of organic geochemistry can be applied successfully to provide tracers for studying smoke plume chemistry and dispersion.

Simoneit, B.R.T. [Brookhaven National Lab., Upton, NY (United States)]|[Oregon State Univ., Corvallis, OR (United States). Coll. of Oceanic and Atmospheric Sciences; Abas, M.R. bin [Brookhaven National Lab., Upton, NY (United States)]|[Univ. of Malaya, Kuala Lumpur (Malaysia); Cass, G.R. [Brookhaven National Lab., Upton, NY (United States)]|[California Inst. of Tech., Pasadena, CA (United States). Environmental Engineering Science Dept.; Rogge, W.F. [Brookhaven National Lab., Upton, NY (United States)]|[Florida International Univ., University Park, FL (United States). Dept. of Civil and Environmental Engineering; Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Standley, L.J. [Academy of Natural Sciences, Avondale, PA (United States). Stroud Water Research Center; Hildemann, L.M. [Stanford Univ., CA (United States). Dept. of Civil Engineering

1995-08-01T23:59:59.000Z

348

ARM Aerosol Working Group Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

and MFRSR Measurements ARM STM 2008 Norfolk, VA Connor Flynn 1 , Annette Koontz 1 , Anne Jefferson 2 , Jim Barnard 1 , Sally McFarlane 1 1 Pacific Northwest National Laboratory 2 CIRES, University of Colorado, Boulder Progress towards ARM DOE 2008 Performance Metric 3 & 4 * Produce and make available new continuous time series of aerosol total column depth, based on results from the AMF deployment in Niger, Africa. * Produce and make available new continuous time series of retrieved dust properties, based on results from the AMF deployment in Niger, Africa. 0 100 200 300 400 0 20 40 60 80 100 ITF movement and surface RH % RH day of year (2006) 0 100 200 300 400 0 50 100 150 200 250 300 350 day of year wind direction (N = 0, E = 90) 2 4 6 8 10 12 14 Wind speed m/s 0 100 200 300 1.4 1.6 1.8 2 MFRSR Vo for filter2, Niamey

349

Aerosol Data Sources and Their Roles within PARAGON  

Science Conference Proceedings (OSTI)

We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, ...

Ralph A. Kahn; John A. Ogren; Thomas P. Ackerman; Jens Bösenberg; Robert J. Charlson; David J. Diner; Brent N. Holben; Robert T. Menzies; Mark A. Miller; John H. Seinfeld

2004-10-01T23:59:59.000Z

350

Aerosol beam-focus laser-induced plasma spectrometer device  

SciTech Connect

An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

Cheng, Meng-Dawn (Oak Ridge, TN)

2002-01-01T23:59:59.000Z

351

Optical Properties of Atmospheric Aerosol in Maritime Environments  

Science Conference Proceedings (OSTI)

Systematic characterization of aerosol over the oceans is needed to understand the aerosol effect on climate and on transport of pollutants between continents. Reported are the results of a comprehensive optical and physical characterization of ...

Alexander Smirnov; Brent N. Holben; Yoram J. Kaufman; Oleg Dubovik; Thomas F. Eck; Ilya Slutsker; Christophe Pietras; Rangasayi N. Halthore

2002-02-01T23:59:59.000Z

352

ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) Campaign Links CARES Website Related Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding 2010.05.26, Zaveri, OSC Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light Absorption and Scattering 2010.05.26, Arnott, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES): SMPS & CCN counter deployment during CARES/Cal-NEx 2010.05.04, Wang, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES) Ground Based Instruments 2010.04.01, Cziczo, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiative Effects Study (CARES)

353

Optical Properties of Aerosol Particles over the Northeast Pacific  

Science Conference Proceedings (OSTI)

In July 2002, atmospheric aerosol measurements were conducted over the northeast Pacific Ocean as part of the Subarctic Ecosystem Response to Iron Enhancement Study (SERIES). The following aerosol quantities were measured: particle number size ...

Julia Marshall; Ulrike Lohmann; W. Richard Leaitch; Nicole Shantz; Lisa Phinney; Desiree Toom-Sauntry; Sangeeta Sharma

2005-08-01T23:59:59.000Z

354

Experimental investigation of aerosol deposition on slot-and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental investigation of aerosol deposition on slot-and joint-type leaks Title Experimental investigation of aerosol deposition on slot-and joint-type leaks Publication Type...

355

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility (AMF) and the Mobile Aerosol Observing System (MAOS) will be deployed on Cape Cod (MA) for a 12-month period starting in the summer of 2012 in order to quantify aerosol...

356

Dynamical Effects of Aerosol Perturbations on Simulated Idealized Squall Lines  

Science Conference Proceedings (OSTI)

The dynamical effects of increased aerosol loading on the strength and structure of numerically simulated squall lines are explored. Results are explained in the context of RKW theory. Changes in aerosol loading lead to changes in rain drop size ...

Zachary J. Lebo; Hugh Morrison

357

Light Extinction by Aerosols during Summer Air Pollution  

Science Conference Proceedings (OSTI)

In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been ...

Yoram J. Kaufman; Robert S. Fraser

1983-10-01T23:59:59.000Z

358

Distinguishing Aerosol Impacts on Climate over the Past Century  

Science Conference Proceedings (OSTI)

Aerosol direct (DE), indirect (IE), and black carbon–snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol–climate simulations in the Goddard Institute for Space Studies General Circulation Model ...

Dorothy Koch; Surabi Menon; Anthony Del Genio; Reto Ruedy; Igor Alienov; Gavin A. Schmidt

2009-05-01T23:59:59.000Z

359

Quantifying and Minimizing Uncertainty of Climate Forcing by Anthropogenic Aerosols  

Science Conference Proceedings (OSTI)

Anthropogenic aerosols are composed of a variety of aerosol types and components including water-soluble inorganic species (e.g., sulfate, nitrate, ammonium), condensed organic species, elemental or black carbon, and mineral dust. Previous ...

J. E. Penner; R. J. Charlson; S. E. Schwartz; J. M. Hales; N. S. Laulainen; L. Travis; R. Leifer; T. Novakov; J. Ogren; L. F. Radke

1994-03-01T23:59:59.000Z

360

Overview of the Cumulus Humilis Aerosol Processing Study  

Science Conference Proceedings (OSTI)

The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, within, and above fields of cumuli, and to study changes to the cloud microphysical structure within these ...

Larry K. Berg; Carl M. Berkowitz; John M. Hubbe; John A. Ogren; Chris A. Hostetler; Richard A. Ferrare; Johnathan W. Hair; Manvendra K. Dubey; Claudio Mazzoleni; Elisabeth Andrews; Richard L. Coulter; Yin-Nan Lee; Jasono Olfert; Stephen R. Springston

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Aerosol Impacts on the Microphysical Growth Processes of Orographic Snowfall  

Science Conference Proceedings (OSTI)

The Regional Atmospheric Modeling System was used to simulate four winter snowfall events over the Park Range of Colorado. For each event, three hygroscopic aerosol sensitivity simulations were performed with initial aerosol profiles representing ...

Stephen M. Saleeby; William R. Cotton; Douglas Lowenthal; Joe Messina

2013-04-01T23:59:59.000Z

362

Aerosol Impacts on the Diurnal Cycle of Marine Stratocumulus  

Science Conference Proceedings (OSTI)

Recent large-eddy simulation (LES) studies of the impact of aerosol on the dynamics of nocturnal marine stratocumulus revealed that, depending on the large-scale forcings, an aerosol-induced increase of the droplet concentration can lead to ...

Irina Sandu; Jean-Louis Brenguier; Olivier Geoffroy; Odile Thouron; Valery Masson

2008-08-01T23:59:59.000Z

363

A Critical Examination of the Observed First Aerosol Indirect Effect  

Science Conference Proceedings (OSTI)

The relative change in cloud droplet number concentration with respect to the relative change in aerosol number concentration, ?, is an indicator of the strength of the aerosol indirect effect and is commonly used in models to parameterize this ...

Hongfei Shao; Guosheng Liu

2009-04-01T23:59:59.000Z

364

Chemistry Central Journal Commentary Molecular biology: Self-sustaining chemistry  

E-Print Network (OSTI)

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells. Molecular biology in Chemistry Central Journal At the outset, let me pose two important questions: Why

Paul Wrede

2007-01-01T23:59:59.000Z

365

Photometric Variations as Small Perturbations in Aerosol Content  

NLE Websites -- All DOE Office Websites (Extended Search)

Photometric Variations as Photometric Variations as Small Perturbations in Aerosol Content I. Musat Department of Meteorology University of Maryland College Park, Maryland R. G. Ellingson Department of Meteorology Florida State University Tallahassee, Florida Abstract The quality of profile fitting of resolved stars depends ultimately upon the accuracy with which spectral differences of the sources are retrievable within the data, because the radiation color of well-separated known sources can serve as an indicator of the origin of the optical depth variations one observes during the night. The particularities of the whole sky imager (WSI) detector and optical system are such that the data suffer from lack of the spatial resolution required in a common astronomical observation.

366

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network (OSTI)

Crutzen, P. : Atmospheric Aerosols: Biogeochemical sourcesof optically active aerosol particles over the Amazonproperties of Amazonian aerosol particles: Rev. Geophys. ,

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

367

Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:methodology and application  

DOE Green Energy (OSTI)

We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report. Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available at this point; 40 regions and 12 sectors were used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, was then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Application of these emissions into two chemistry-climate models is used to test their ability to capture long-term changes in atmospheric ozone, carbon monoxide and aerosols distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations consistently underestimate the carbon monoxide trend, while capturing the long-term trend at the Mace Head station. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates.

Lamarque, J. F.; Bond, Tami C.; Eyring, Veronika; Granier, Claire; Heil, Angelika; Klimont, Z.; Lee, David S.; Liousse, Catherine; Mieville, Aude; Owen, Bethan; Schultz, Martin; Shindell, Drew; Smith, Steven J.; Stehfest, Eike; van Aardenne, John; Cooper, Owen; Kainuma, M.; Mahowald, Natalie; McConnell, J.R.; Naik, Vaishali; Riahi, Keywan; Van Vuuren, Detlef

2010-08-11T23:59:59.000Z

368

Sensitivity of aerosol radiative forcing calculations to spectral resolution  

DOE Green Energy (OSTI)

Potential impacts of aerosol radiative forcing on climate have generated considerable recent interest. An important consideration in estimating the forcing from various aerosol components is the spectral resolution used for the solar radiative transfer calculations. This paper examines the spectral resolution required from the viewpoint of overlapping spectrally varying aerosol properties with other cross sections. A diagnostic is developed for comparing different band choices, and the impact of these choices on the radiative forcing calculated for typical sulfate and biomass aerosols was investigated.

Grant, K.E.

1996-10-01T23:59:59.000Z

369

Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing  

Science Conference Proceedings (OSTI)

The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic ...

S. J. Ghan; X. Liu; R. C. Easter; R. Zaveri; P. J. Rasch; J.-H. Yoon; B. Eaton

2012-10-01T23:59:59.000Z

370

Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part I: Optical Thicknesses and Aerosol Size Distributions  

Science Conference Proceedings (OSTI)

A series of ground-based and airborne observations of desert aerosols, the ECLATS experiment was carried out in December 1980 in the vicinity of Niamey (Niger). This paper deals with aerosol optical thicknesses and size distributions derived from ...

Y. Fouquart; B. Bonnel; M. Chaoui Roquai; R. Santer; A. Cerf

1987-01-01T23:59:59.000Z

371

Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model  

Science Conference Proceedings (OSTI)

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying ...

Philip Stier; Johann Feichter; Silvia Kloster; Elisabetta Vignati; Julian Wilson

2006-08-01T23:59:59.000Z

372

Possible Aerosol Effects on Ice Clouds via Contact Nucleation  

Science Conference Proceedings (OSTI)

The indirect effect of aerosols on water clouds, whereby aerosol particles change cloud optical properties, is caused by aerosol-induced changes of the size and number of cloud droplets. This affects the lifetime of the water clouds as well as ...

Ulrike Lohmann

2002-02-01T23:59:59.000Z

373

Discrete-element modeling of particulate aerosol flows  

Science Conference Proceedings (OSTI)

A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including ... Keywords: Aerosols, Aggregation, Particle adhesion, Particulate flow

J. S. Marshall

2009-03-01T23:59:59.000Z

374

Indirect and Semi-Direct Aerosol Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Campaign For the month of April, researchers are descending on and above Barrow, Alaska, to obtain data from the atmosphere that will help them understand the impacts that aerosols have on Arctic clouds and climate. Scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility are using a heavily instrumented aircraft to collect data from the sky, while instruments based at surface sites in Barrow and Atqasuk, Alaska, are obtaining measurements from the ground. Information obtained during the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, will help scientists analyze the role of aerosols in climate, and represents a key contribution to Arctic climate research during International Polar Year.

375

Researchers Model Impact of Aerosols Over California  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Model Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu, lvu@lbl.gov, (510) 495-2404 LosAngelesSmogv1.jpg Smog over downtown Los Angeles. Aerosols are microscopic particles-like dust, pollen and soot-that ubiquitously float around in our atmosphere. Despite their tiny stature, these particles can have a huge impact on human health, climate and the environment. So scientists from the Pacific Northwest National Laboratory (PNNL), Colorado State University and the California Air Resources Board have set out to characterize the roles of various particles as atmospheric change agents on a regional scale.

376

Evolution of Organic Aerosols in the Atmosphere.  

SciTech Connect

Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework that describes the atmospheric evolution of OA and is constrained and motivated by new, high time resolution, experimental characterizations of their composition, volatility, and oxidation state. OA and OA-precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of large amounts of oxygenated organic aerosol (OOA) mass that has comparable concentrations to sulfate aerosol over the Northern Hemisphere. Our new model framework captures the dynamic aging behavior observed in the atmosphere and the laboratory and can serve as a basis for improving parameterizations in regional and global models.

Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Qi; Kroll, Jesse H.; DeCarlo, Peter F.; Allan, James D.; Coe, H.; Ng, N. L.; Aiken, Allison; Docherty, Kenneth S.; Ulbrich, Ingrid M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, Jason M.; Collins, Donald R.; Cubison, Michael J.; Dunlea, E. J.; Huffman, John A.; Onasch, Timothy B.; Alfarra, M. R.; Williams, Paul I.; Bower, K.; Kondo, Yutaka; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, Robert; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, Joel; Sueper, D.; Jayne, J. T.; Herndon, Scott C.; Trimborn, Achim; Williams, L. R.; Wood, Ezra C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, Urs; Worsnop, Douglas R.

2009-12-11T23:59:59.000Z

377

Morphology effects on polydispersed aerosol deposition rates  

Science Conference Proceedings (OSTI)

In the analysis of severe nuclear accidents, accurate prediction of aerosol deposition is important since, among other things, this influences the distribution of radioactive decay heat within the primary system and containment compartments. The fact that the aerosol cloud is not comprised of dense isolated spherical particles of only one size inevitably complicates such calculations but must be taken into account. Some particle deposition mechanisms are more sensitive to particle size and morphology than others so that simplifying assumptions valid for one mechanism [such as particle thermophoresis (notoriously size and morphology insensitive)] may be seriously in error for others (e.g., convective Brownian diffusion or eddy impaction). This paper deals with aggregate aerosol deposition.

Rosner, D.E.; Tandon, P. [Yale Univ., New Haven, CT (United States); Khalil, Y.F. [Northeast Utilities Service Co., Berlin, CT (United States)

1997-12-01T23:59:59.000Z

378

Can aerosols be trapped in open flows?  

E-Print Network (OSTI)

The fate of aerosols in open flows is relevant in a variety of physical contexts. Previous results are consistent with the assumption that such finite-size particles always escape in open chaotic advection. Here we show that a different behavior is possible. We analyze the dynamics of aerosols both in the absence and presence of gravitational effects, and both when the dynamics of the fluid particles is hyperbolic and nonhyperbolic. Permanent trapping of aerosols much heavier than the advecting fluid is shown to occur in all these cases. This phenomenon is determined by the occurrence of multiple vortices in the flow and is predicted to happen for realistic particle-fluid density ratios.

Rafael D. Vilela; Adilson E. Motter

2007-06-10T23:59:59.000Z

379

Role of inorganic chemistry on nuclear energy examined  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues...

380

COORDINATION CHEMISTRY OF METAL SURFACES AND METAL COMPLEXES  

E-Print Network (OSTI)

molecular coordination chemistry of CH3NC has been reported.features of this surface chemistry. ACKNOw"LEDGMENTS The1980 Catalysis~ COORDINATION CHEMISTRY OF METAL SURFACES AND

Muetterties, E.L.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Direct radiative forcing of anthropogenic organic aerosol  

E-Print Network (OSTI)

[1] This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity–dependent hygroscopic growth by employing a functional group– based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as 0.34 and 0.71 W m 2, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are 0.63 and 0.98 W m 2, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clearsky TOA forcing estimates by 18 % and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18 % and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47 % and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.

Yi Ming; V. Ramaswamy; Paul A. Ginoux; Larry H. Horowitz

2005-01-01T23:59:59.000Z

382

Two-Dimensional Vector Wind Fields from Volume Imaging Lidar Data  

Science Conference Proceedings (OSTI)

Spatially resolved wind fields are derived by cross correlation of aerosol backscatter data from horizontal and vertical scans of the University of Wisconsin volume imaging lidar during the 1997/98 Lake-Induced Convection Experiment. Data from ...

Shane D. Mayor; Edwin W. Eloranta

2001-08-01T23:59:59.000Z

383

Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties  

SciTech Connect

Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol), sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.

Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka; Takegawa, Nobuyuki; Fast, Jerome D.; Poschl, U.; Garland, R. M.; Andreae, M. O.; Wiedensohler, A.; Sugimoto, N.; Zhu, T.

2010-11-23T23:59:59.000Z

384

Apparatus for sampling and characterizing aerosols  

DOE Patents (OSTI)

Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

Dunn, Patrick F. (Downers Grove, IL); Herceg, Joseph E. (Naperville, IL); Klocksieben, Robert H. (Park Forest, IL)

1986-01-01T23:59:59.000Z

385

Near-Real-Time Measurement of Sea-Salt Aerosol during the SEAS Campaign: Comparison of Emission-Based Sodium Detection with an Aerosol Volatility Technique  

Science Conference Proceedings (OSTI)

The first deployment of an emission-based aerosol sodium detector (ASD), designed to chemically characterize marine aerosols on a near-real-time basis, is reported. Deployment occurred as part of the Shoreline Environment Aerosol Study (SEAS) ...

P. Campuzano-Jost; C. D. Clark; H. Maring; D. S. Covert; S. Howell; V. Kapustin; K. A. Clarke; E. S. Saltzman; A. J. Hynes

2003-10-01T23:59:59.000Z

386

Pyrochemical separations chemistry of plutonium  

Science Conference Proceedings (OSTI)

The recovery and purification of plutonium involves interesting chemistry. Currently in use are several high temperature processes based on redox reactions. These processes include direct oxide reduction which uses calcium to reduce the oxide to the free metal and electrorefining which is used as a final purification step. The chemical research group at Rocky Flats is currently investigating the use of an aluminum/magnesium alloy to remove the ionic plutonium from the salts used in the above named processes. The results of this study along with an overview of pyrochemical plutonium processing chemistry will be presented.

Bynum, R.V.; Navratil, J.D.

1986-01-01T23:59:59.000Z

387

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

388

CHEMISTRY 213B: Introductory Physical Chemistry I. General Information  

E-Print Network (OSTI)

and applications 9.4 Lecture 21. Chemical equilibrium 11 February 25 - March 1: STUDY BREAK Lecture 22. Chemical Chemistry. Supplementary Texts 1. P. A. Rock, Chemical Thermodynamics. 2. Gordon M. Barrow, Physical of gases 2 Lecture 3. Empirical properties of liquids and solids 5 Lecture 4. Molecular basis: Kinetic

Ronis, David M.

389

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

for measuring ecosystem carbon oxidation state and oxidativemean oxidation number of carbon (MOC) - A useful concept forJ.F. & Barsanti, K.C. The Carbon Number-Polarity Grid: A

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

390

Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties  

E-Print Network (OSTI)

from the Fireplace Combustion of Wood Types Grown in thefrom the Fireplace Combustion of Wood Types Grown in the

Moore, Meagan Julia Kerry

2011-01-01T23:59:59.000Z

391

EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality  

SciTech Connect

This report contains the workshop scope and recommendations from the workshop attendees in identifying scientific gaps in new particle formation, growth and properties of particles and reactions in and on particles as well as the laboratory-focused capabilities, field-deployable capabilities and modeling/theory tools along with linking of models to fundamental data.

Baer, Donald R.; Finlayson-Pitts, Barbara J.; Allen, Heather C.; Bertram, Allan K.; Grassian, Vicki H.; Martin, Scot T.; Penner, Joyce E.; Prather, Kimberly; Rasch, Philip J.; Signorell, Ruth; Smith, James N.; Wyslouzil, Barbara; Ziemann, Paul; Dabdub, Donald; Furche, Filipp; Nizkorodov, Sergey; Tobias, Douglas J.; Laskin, Julia; Laskin, Alexander

2013-07-01T23:59:59.000Z

392

Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties  

E-Print Network (OSTI)

Korhonen, M. Aurela, T. Makela, R.E. Hillamo, T. Koskentalo,O.H. ; Hillamo, R. ; Makela, T. , Chemical mass closure and

Moore, Meagan Julia Kerry

2011-01-01T23:59:59.000Z

393

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

A detailed understanding of the sources, transformations and fates of organic species in the environment is crucial because of the central roles that they play in human health, biogeochemical cycles and the Earth's climate. ...

Kroll, Jesse

394

Radially Classified Aerosol Detector for Aircraft-Based Submicron Aerosol Measurements  

Science Conference Proceedings (OSTI)

A radially classified aerosol detector (RCAD) for fast characterization of fine particle size distributions aboard aircraft has been designed and implemented. The measurement system includes a radial differential mobility analyzer and a high-flow,...

Lynn M. Russell; Shou-Hua Zhang; Richard C. Flagan; John H. Seinfeld; Mark R. Stolzenburg; Robert Caldow

1996-06-01T23:59:59.000Z

395

Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry  

E-Print Network (OSTI)

In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, ...

Kroll, Jesse

396

Archaeopteryx Feathers and Bone Chemistry Fully Revealed via Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Archaeopteryx Feathers and Bone Chemistry Fully Revealed via Archaeopteryx Feathers and Bone Chemistry Fully Revealed via Synchrotron Imaging Archaeopteryx specimens are important but extremely rare fossils. Due to their possession of both reptilian (jaws with teeth, long bony tail) and avian (feathered wings) characters, Archaeopteryx has been crucial in the development of Darwinian evolution. Despite their importance, no Archaeopteryx specimen has ever been chemically analyzed. This in large part may be explained by the analytical obstacles which preclude applying standard methods to such valuable specimens; destructive sampling is not an option and most non-destructive methods cannot handle large specimens. Furthermore, mapping using conventional methods is far too slow to enable chemical zonation to be reasonably determined. Mapping of trace element chemistry is of tremendous interest, however, because it opens a window into understanding several critical questions about Archaeopteryx in particular, and about fossil specimens in general. Preserved trace chemistry in bones and soft tissue may be remnants of the living organism, and therefore may give insight into life processes of extinct organisms. When mapping includes the embedding rock matrix, mass transfer between the fossil and the matrix can be constrained, hence giving information about mode of preservation. Chemical analysis can also resolve artefacts of the curation process. Finally, accurate chemical maps can also be useful for directing future work by highlighting regions that may be promising for other types of analysis including structural methods (CT, diffraction) or techniques that use other parts of the electromagnetic spectrum (infra-red).

397

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds  

SciTech Connect

A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

2011-02-01T23:59:59.000Z

398

Understanding Brown Carbon Aerosols and Their Role in Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown Carbon Aerosols Brown Carbon Aerosols Tiny aerosol particles in the atmosphere are a possible cause of climate change. Among the many contributors to climate change are aerosols in the atmosphere. These tiny particles suspended in the air come from many sources, some natural and some man-made. Some aerosols are organic (containing carbon), while others are inorganic (such as sea salt and sulfates). Most aerosols reflect sunlight, and some also absorb it. Many of these nanoparticles have severe health effects in addition to climate effects. Human activities that produce aerosols include transportation, industry, and agriculture. Black carbon particles (a component of soot) originating from combustion processes have been known for some time to absorb sunlight and warm the

399

Response of California temperature to regional anthropogenic aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

Response of California temperature to regional anthropogenic aerosol Response of California temperature to regional anthropogenic aerosol changes Title Response of California temperature to regional anthropogenic aerosol changes Publication Type Journal Article Year of Publication 2008 Authors Novakov, Tihomir, Thomas W. Kirchstetter, Surabi Menon, and Jeffery Aguiar Journal Geophysical Research Letters Volume 35 Issue 19 Abstract In this paper, we compare constructed records of concentrations of black carbon (BC) - an indicator of anthropogenic aerosols - with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

400

Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter Relationships  

E-Print Network (OSTI)

This dissertation consists of three parts, each devoted to a particular issue of significant importance for CALIPSO lidar observation of depolarization ratio (delta) and backscatter (gamma?) to improve current understanding of the microphysical properties of clouds and aerosols. The relationships between depolarization ratio and backscatter allow us to retrieve particle thermodynamic phase and shape and/or orientation of aerosols and clouds. The first part is devoted to the investigation of the relationships between lidar backscatter and the corresponding depolarization ratio for different cloud classifications and aerosol types. For each cloud and aerosol types, layer-averaged backscatter and backscattering depolarization ratio from the CALIPSO measurements are discussed. The present results demonstrate the unique capabilities of the CALIPSO lidar instrument for determining cloud phase and aerosols subtypes. In the second part, we evaluate the MODIS IR cloud phase with the CALIPSO cloud products. The three possible misclassifications of MODIS IR cloud phasealgorithm, which are studied by Nasiri and Kahn (2008) with radiative transfer modeling, are tested by comparing between MODIS IR phase and CALIOP observations. The current results support their hypotheses, which is that the MODIS phase algorithm may tend to classify thin cirrus clouds as water clouds or mixed phase clouds or unknown, and classify midlevel and/or mid-temperature clouds as mixed or unknown phase. In the third part, we present a comparison of mineral dust aerosol retrievals from two instruments, MODIS and CALIPSO lidar. And, we implement and evaluate a new mineral dust detection algorithm based on the analysis of thin dust radiative signature. In comparison, three commonly used visible and IR mineral dust detection algorithms, including BTD procedure, D parameter method, and multi-channel image algorithm, are evaluated with CALIPSO aerosol classification. The comparison reveals that those dust detection algorithms are not effective for optically thin dust layers, but for thick dust storm. The new algorithm using discriminant analysis with CALIPSO observation is much better in detecting thin dust layer of optical thickness between 0.1 and 2.

Cho, Hyoun-Myoung

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Bio-Organic Chemistry Quarterly Report  

E-Print Network (OSTI)

I). Johannes Ull~.ich, in Bio-Organic Chc! mistry Qiinrtcr-sodium E. A. Shneour, in Bio-Organic Chemistry Quarterly2, Edwige Tyszkiewicz, in Bio-Organic Chemistry Qnarterly

Various

1961-01-01T23:59:59.000Z

402

Chemistry of Cobalt-Platinum Nanocatalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Cobalt-Platinum Nanocatalysts Chemistry of Cobalt-Platinum Nanocatalysts Print Monday, 25 February 2013 15:59 Bimetallic cobalt-platinum (CoPt) nanoparticles are...

403

Boron chemistry reported in Chemical Reviews  

NLE Websites -- All DOE Office Websites (Extended Search)

813chemistry 03282013 Boron chemistry reported in Chemical Reviews Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly A ball-and-stick structural model of...

404

THE LIFETIME OF AEROSOL DROPLETS IN AMBIENT AIR: CONSIDERATION OF THE EFFECTS OF SURFACTANTS AND CHEMICAL REACTIONS  

E-Print Network (OSTI)

of various urban sulfate aerosol production mechanisms.radius of an evaporating aerosol droplet in which oxidationEnvironment THE LIFETIME OF AEROSOL DROPLETS IN AMBIENT AIR:

Toossi, R.

2013-01-01T23:59:59.000Z

405

The radiative influence of aerosol effects on liquid-phase cumulus clouds based on sensitivity studies with two climate models  

E-Print Network (OSTI)

A global black carbon aerosol model. J Geophys Res 101:of interactions between aerosols and cloud microphysics overby anthropogenic sulfate aerosol. J Geophys Res 106: 5279-

Menon, Surabi; Rotstayn, Leon

2005-01-01T23:59:59.000Z

406

A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID  

E-Print Network (OSTI)

In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

Hohaus, T.

407

RADIATIVE FORCING OF CLIMATE CHANGE BY AEROSOLS  

E-Print Network (OSTI)

nonbelievers. #12;Level of Scientific Understanding 2 1 0 1 2 3 Radiativeforcing(Wattspersquaremetre) Cooling scattering -- Cooling influence Light absorption -- Warming influence, depending on surface Indirect Effects is highly sensitive to modest aerosol loadings. Global-average AOT 0.1 corresponds to global-average forcing

Schwartz, Stephen E.

408

Scavenging of Aerosol Particles by Precipitation  

Science Conference Proceedings (OSTI)

Airborne measurements have been made of aerosol particle size distributions (>0.01 ?m) in aged air masses, in the plumes from several coal power plants and a large Kraft paper mill, and in the emissions from a volcano, before and after rain or ...

Lawrence F. Radke; Peter V. Hobbs; Mark W. Eltgroth

1980-06-01T23:59:59.000Z

409

Scanning 6-Wavelength 11-Channel Aerosol Lidar  

Science Conference Proceedings (OSTI)

A transportable multiple-wavelength lidar is presented, which is used for the profiling of optical and physical aerosol properties. Two Nd:YAG and two dye lasers in combination with frequency-doubling crystals emit simultaneously at 355, 400, 532,...

Dietrich Althausen; Detlef Müller; Albert Ansmann; Ulla Wandinger; Helgard Hube; Ernst Clauder; Steffen Zörner

2000-11-01T23:59:59.000Z

410

Aerosol Condensational Growth in Cloud Formation  

E-Print Network (OSTI)

A code for the quasi-stationary solution of the coupled heat and mass transport equations for aerosols in a finite volume was developed. Both mass and heat are conserved effectively in the volume, which results in a competitive aerosol condensation growth computational model. A further model that couples this competitive aerosol condensation growth computational model with computational fluid dynamics (CFD) software (ANSYS FLUENT) enables the simulation of the realistic atmospheric environment. One or more air parcels, where the aerosols reside, are placed in a very big volume in order to mimic the large atmospheric environment. Mass (water vapor) and heat transportat between the air parcels and the environment facilitates the growth and prevents the parcels from unrealistically overheating. The suppression of cloud condensation nuclei (CCN) growth by high number densities was quantified by our model study. Model study with organic particles (Lmalic acid and maleic acid) indicates that when these organic species and ammonium sulfate are internally mixed, the particles can grow much more than if they are separately associated with distinct particles. Moreover, by using more multiple air parcels, which are randomly assigned with different initial relative humidity values according to a power law distribution, we studied the effects of atmospheric stochastic RH distribution on the growth of CCN.

Geng, Jun

2010-08-01T23:59:59.000Z

411

A Compact Lightweight Aerosol Spectrometer Probe (CLASP)  

Science Conference Proceedings (OSTI)

The Compact Lightweight Aerosol Spectrometer Probe (CLASP) is an optical particle spectrometer capable of measuring size-resolved particle concentrations in 16 user-defined size bins spanning diameters in the range 0.24 < D < 18.5 ?m at a rate of ...

Martin K. Hill; Barbara J. Brooks; Sarah J. Norris; Michael H. Smith; Ian M. Brooks; Gerrit de Leeuw

2008-11-01T23:59:59.000Z

412

Attachment of radon progeny to cigarette-smoke aerosols  

SciTech Connect

The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, {approximately}10{sup {minus}6} cm{sup 3}/s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols.

Biermann, A.H.; Sawyer, S.R.

1995-05-01T23:59:59.000Z

413

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Frequency Comb, Ultrafast Laser. ...

414

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Iron-Based Superconductors. Description ...

415

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Space Weather Forecasts. Description ...

416

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... Image Gallery : Image Details. 72 DPI Image 150 DPI Image No 300 DPI Version. Title: Organic Solar Power. Description ...

417

Chemistry Monitoring and Control for Fuel Reliability  

Science Conference Proceedings (OSTI)

Water chemistry has been identified as a known or potential contributing cause in recent corrosion-induced fuel failures and anomalies such as fuel crud spallation and enhanced nodular corrosion. The 2004 revision of the BWR Water Chemistry Guidelines (EPRI report 1008192) addressed these concerns by recommending tighter chemistry control limits and additional monitoring for contaminants and additives that can have an adverse effect on fuel cladding corrosion. The revision focused on chemistry control fo...

2004-12-13T23:59:59.000Z

418

Interfacial Chemistry and Engineering Annual Report 2000  

Science Conference Proceedings (OSTI)

This annual report describes the research and staff accomplishments in 2000 for the EMSL Interfacial Chemistry and Engineering Directorate.

Grate, Jay W.

2001-08-01T23:59:59.000Z

419

Heat Recovery Steam Generator Cycle Chemistry Instrumentation  

Science Conference Proceedings (OSTI)

Effective monitoring of the purity of water and steam is an integral part of any productive cycle chemistry monitoring program. The Electric Power Research Institute's (EPRI's) heat recovery steam generator (HRSG) cycle chemistry guidelines identified a group of core monitoring parameters that are considered the minimum requirements. Meeting these requirements is part of EPRI's cycle chemistry benchmarking criteria for HRSGs. In addition to the core parameters, many chemistry parameters might need to be ...

2010-11-19T23:59:59.000Z

420

Eleventh international symposium on radiopharmaceutical chemistry  

SciTech Connect

This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

NONE

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ivaco Rolling Mills LP, Chemistry Laboratory  

Science Conference Proceedings (OSTI)

Ivaco Rolling Mills LP, Chemistry Laboratory. NVLAP Lab Code: 200143-0. Address and Contact Information: Highway 17 ...

2013-09-06T23:59:59.000Z

422

Computing Policy Department of Chemistry  

E-Print Network (OSTI)

Computing Policy Department of Chemistry Michigan Technological University This document describes the rules and regulations concerning the acquisition, provision, maintenance, and use of the computing established by: · Michigan Internet Provider, MERIT: (http://www.merit.edu/) · MTU Computer Advisory Committee

Honrath, Richard E.

423

Modeling biochemical pathways using an artificial chemistry  

Science Conference Proceedings (OSTI)

Artificial chemistries are candidates for methodologies that model and design biochemical systems. If artificial chemistries can deal with such systems in beneficial ways, they may facilitate activities in the new area of biomolecular engineering. In ... Keywords: Artificial chemistry, biochemical pathways, biomolecular engineering, modularity, reasoning, scalability

Kazuto Tominaga; Yoshikazu Suzuki; Keiji Kobayashi; Tooru Watanabe; Kazumasa Koizumi; Koji Kishi

2009-01-01T23:59:59.000Z

424

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Nanotechnology; Biotechnology/Health; Nanocrystals; Hwang. ...

425

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

Science Conference Proceedings (OSTI)

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

426

Aerosol size distribution using Lidar data and a typical Lidar assembly  

Science Conference Proceedings (OSTI)

An algorithm is developed and detailed in this paper which determines atmospheric aerosol parameters such as backscatter and extinction coefficients, aerosol optical thickness, and the aerosol size distribution. The algorithm uses the power profile data ... Keywords: LIDAR system, aerosol optical depth, aerosol size distribution, remote sensing

Hamed Parsiani; Javier Mčndez

2008-11-01T23:59:59.000Z

427

Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980  

Science Conference Proceedings (OSTI)

This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

Ryan, R.R. (comp.)

1981-05-01T23:59:59.000Z

428

Review: engineering particles using the aerosol-through-plasma method  

DOE Green Energy (OSTI)

For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

Phillips, Jonathan [Los Alamos National Laboratory; Luhrs, Claudia C [UNM; Richard, Monique [TEMA

2009-01-01T23:59:59.000Z

429

Recent activities in the Aerosol Generation and Transport Program  

SciTech Connect

General statements may be made on the behavior of single-component and multi-component aerosols in the Nuclear Safety Pilot Plant vessel. The removal processes for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols are enhanced in a steam-air atmosphere. Steam-air seems to have little effect on removal of concrete aerosol from the vessel atmosphere. A steam-air environment causes a change in aerosol shape from chain-agglomerate to basically spherical for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosol; for concrete the change in aerosol shape is from chain-agglomerate to partially spherical. The mass ratio of the individual components of a multi-component aerosol seems to have an observable influence on the resultant behavior of these aerosols in steam. The enhanced rate of removal of the U/sub 3/O/sub 8/, the Fe/sub 2/O/sub 3/, and the mixed U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols from the atmosphere of the NSPP vessel by steam-air is probably caused by the change in aerosol shape and the condensation of steam on the aerosol surfaces combining to increase the effect of gravitational settling. The apparent lack of an effect by steam-air on the removal rate of concrete aerosol could result from a differing physical/chemical response of the surfaces of this aerosol to condensing steam.

Adams, R.E.

1984-01-01T23:59:59.000Z

430

BNL Photo- and Radiation Chemistry Group Members  

NLE Websites -- All DOE Office Websites (Extended Search)

and Radiation Chemistry Group and Radiation Chemistry Group Chemistry Department, Brookhaven National Laboratory Staff Diane E. Cabelli Redox chemistry of high oxidation state transition-metal complexes, particularly CuIII, MnIII/MnIV; Superoxide chemistry in aqueous solutions: dismutation of superoxide radical; copper-zinc superoxide dismutase and model compounds. Andrew R. Cook Excited state structure, dynamics and electron transfer reactions of a variety of organic radicals in both low temperature matrices and room temperature solutions using radiation chemistry techniques. Robert A. Crowell Ultrafast reaction phenomena. Etsuko Fujita Photochemistry of transition-metal complexes, small molecule activation by high- and low-oxidation state metal complexes; and biomimetic chemistry of porphyrins and enzymes.

431

Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: A regional modeling study using WRF-Chem  

Science Conference Proceedings (OSTI)

Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 Oct–Nov 16, 2008). The effects of oceanic aerosols on cloud properties, precipitation, and the shortwave forcing counteract those of anthropogenic aerosols. Despite the relatively small changes in Na concentrations (2-12%) from regional oceanic emissions, their net effect (direct and indirect) on the surface shortwave forcing is opposite and comparable or even larger in magnitude compared to those of regional anthropogenic emissions over the SEP. Two distinct regions are identified in the VOCALS-REx domain. The near-coast polluted region is characterized with strong droplet activation suppression of small particles by sea-salt particles, the more important role of the first than the second indirect effect, low surface precipitation rate, and low aerosol-cloud interaction strength associated with anthropogenic emissions. The relatively clean remote region is characterized with large contributions of Cloud Condensation Nuclei (CCN, number concentration denoted by NCCN) and droplet number concentrations (Nd) from non-local sources (lateral boundaries), a significant amount of surface precipitation, and high aerosol-cloud interactions under a scenario of five-fold increase in anthropogenic emissions. In the clean region, cloud properties have high sensitivity (e.g., 13% increase in cloud-top height and a 9% surface albedo increase) to the moderate increase in CCN concentration (?Nccn = 13 cm-3; 25%) produced by a five-fold increase in regional anthropogenic emissions. The increased anthropogenic aerosols reduce the precipitation amount over the relatively clean remote ocean. The reduction of precipitation (as a cloud water sink) more than doubles the wet scavenging timescale, resulting in an increased aerosol lifetime in the marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol. The positive feedback ultimately alters the cloud micro- and macro-properties, leading to strong aerosol-cloud-precipitation interactions. The higher sensitivity of clouds to anthropogenic aerosols over this region is also related to a 16% entrainment rate increase due to anthropogenic aerosols. The simulated aerosol-cloud-precipitation interactions are stronger at night over the clean marine region, while during the day, solar heating results in more frequent decoupling, thinner clouds, reduced precipitation, and reduced sensitivity to anthropogenic emissions. The simulated high sensitivity to the increased anthropogenic emissions over the clean region suggests that the perturbation of the clean marine environment with anthropogenic aerosols may have a larger effect on climate than that of already polluted marine environments.

Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Wang, Minghuai; Ghan, Steven J.; Berg, Larry K.; Leung, Lai-Yung R.; Morrison, H.

2012-09-28T23:59:59.000Z

432

The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments  

Science Conference Proceedings (OSTI)

A fully coupled meteorology-chemistry-aerosol model (WRF-Chem) with the implementation of two dust emission schemes (GOCART and DUSTRAN) into two aerosol models (MADE/SORGAM and MOSAIC) is applied over North Africa to investigate the modeling sensitivities to dust emissions and aerosol size treatments in simulating mineral dust and its shortwave (SW) radiative forcing. Model results of the spatial distribution of mineral dust and its radiative forcing are evaluated using measurements from the AMMA SOP0 campaign in January and February of 2006 over North Africa. Our study suggests that the size distribution of emitted dust can result in significant differences (up to 100%) in simulating mineral dust and its SW radiative forcing. With the same dust emission and dry deposition processes, two aerosol models, MADE/SORGAM and MOSAIC, can yield large difference in size distributions of dust particles due to their different aerosol size treatments using modal and sectional approaches respectively. However, the difference between the two aerosol models in simulating the mass concentrations and the SW radiative forcing of mineral dust is small (< 10%). The model simulations show that mineral dust increases AOD by a factor of 2, heats the lower atmosphere (1-3 km) with a maximum rate of 0.7?0.5 K day-1 below 1 km, and reduces the downwelling SW radiation by up to 25 W m-2 on 24-hour average at surface, highlighting the importance of including dust radiative impact in understanding the regional climate of North Africa. When compared to the available measurements, WRF-Chem simulations can generally capture the measured features of mineral dust and its radiative properties over North Africa, suggesting that the model can be used to perform more extensive simulations of regional climate over North Africa.

Zhao, Chun; Liu, Xiaohong; Leung, Lai-Yung R.; Johnson, Ben; McFarlane, Sally A.; Gustafson, William I.; Fast, Jerome D.; Easter, Richard C.

2010-09-20T23:59:59.000Z

433

NUMERICAL VERIFICATION OF EQUILIBRIUM CHEMISTRY  

SciTech Connect

A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

Piro, Markus [Royal Military College of Canada; Lewis, Brent [Royal Military College of Canada; Thompson, Dr. William T. [Royal Military College of Canada; Simunovic, Srdjan [ORNL; Besmann, Theodore M [ORNL

2010-01-01T23:59:59.000Z

434

Final Report for Ă?¢Ă?Â?Ă?Â?Cloud-Aerosol Physics in Super-Parameterized Atmospheric Regional Climate Simulations (CAP-SPARCS)Ă?¢Ă?Â?Ă?Âť (DE-SC0002003) for 8/15/2009 through 8/14/2012  

SciTech Connect

Improving the representation of local and non-local aerosol interactions in state-of-the-science regional climate models is a priority for the coming decade (Zhang, 2008). With this aim in mind, we have combined two new technologies that have a useful synergy: (1) an aerosol-enabled regional climate model (Advanced Weather Research and Forecasting Model with Chemistry WRF-Chem), whose primary weakness is a lack of high quality boundary conditions and (2) an aerosol-enabled multiscale modeling framework (PNNL Multiscale Aerosol Climate Model (MACM)), which is global but captures aerosol-convection-cloud feedbacks, and thus an ideal source of boundary conditions. Combining these two approaches has resulted in an aerosol-enabled modeling framework that not only resolves high resolution details in a particular region, but crucially does so within a global context that is similarly faithful to multi-scale aerosol-climate interactions. We have applied and improved the representation of aerosol interactions by evaluating model performance over multiple domains, with (1) an extensive evaluation of mid-continent precipitation representation by multiscale modeling, (2) two focused comparisons to transport of aerosol plumes to the eastern United States for comparison with observations made as part of the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT), with the first being idealized and the second being linked to an extensive wildfire plume, and (3) the extension of these ideas to the development of a new approach to evaluating aerosol indirect effects with limited-duration model runs by �¢����nudging�¢��� to observations. This research supported the work of one postdoc (Zhan Zhao) for two years and contributed to the training and research of two graduate students. Four peer-reviewed publications have resulted from this work, and ground work for a follow-on project was completed.

Lynn M. Russell; Richard C.J. Somerville

2012-11-05T23:59:59.000Z

435

IN-PACKAGE CHEMISTRY ABSTRACTION  

Science Conference Proceedings (OSTI)

This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

E. Thomas

2005-07-14T23:59:59.000Z

436

Cold Controlled Chemistry Roman Krems  

E-Print Network (OSTI)

· Possible applications of cold controlled chemistry #12; #¢¡ ©£¡ ! # %¢ ¥¤6#¢¡§¦ # ¤¨¤§! # ¤§¦ Centrifugal processes remains a significant challenge..." Paul Brumer, DAMOP 2007, Bulletin of the APS #12;Thermal gas is difficult to control #12;Low temperature gas under external fieldE #12;E BLow temperature gas

Krems, Roman

437

Aerosol Modeling at LLNL - Our capability, results, and perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effects to Cloud Aerosol Indirect Effects to Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 Over the Southern Great Plains during May 2003 IOP Lawrence Livermore National Laboratory This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Catherine Chuang, James Boyle Shaocheng Xie and James Kelly LLNL-POST-401948 March 11, 2008 Why are aerosol/cloud interactions important? The greatest uncertainty in the assessment of radiative forcing arises from the interactions of aerosols with clouds. Radiative forcing of climate between 1750 and 2005 (IPCC, 2007) Sources of uncertainty Emissions Gas to particle conversion Aerosol size distribution Linkage between aerosols

438

ARM - Field Campaign - 2007 Cumulus Humilis Aerosol Process Study (CHAPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Cumulus Humilis Aerosol Process Study (CHAPS) 7 Cumulus Humilis Aerosol Process Study (CHAPS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2007 Cumulus Humilis Aerosol Process Study (CHAPS) 2007.06.04 - 2007.06.25 Lead Scientist : Carl Berkowitz For data sets, see below. Description The primary goal of this campaign was to characterize and contrast freshly emitted aerosols above, within and below fields of cumulus humilis (or fair-weather cumulus, FWC) and to use these observations to address how below-cloud and above-cloud aerosol optical and cloud nucleating properties differ downwind of a mid-size city relative to similar aerosols in air less affected by emissions. The observations from this campaign can also be used to aid in the development and evaluation of parameterizations of the

439

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 2014.04.01 - 2014.06.01 Lead Scientist : Joel Thornton Description The ultimate goal of this work is to connect field and laboratory observations of organic aerosol chemical and physical properties during the nascent growth stage to the diurnal and vertical distributions of aerosol abundance measured over the boreal forest by the ARM Mobile Facility 2

440

Total aerosol effect: forcing or radiative flux perturbation?  

Science Conference Proceedings (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Role of Giant and Ultragiant Aerosol Particles in Warm Rain Initiation  

Science Conference Proceedings (OSTI)

Giant and ultragiant aerosol particles can play an important role in warm rain initiation. Recent aerosol measurements have established that particles as large as 100 ?m are a regular part of the atmospheric aerosol. When ingested in growing ...

David B. Johnson

1982-02-01T23:59:59.000Z

442

CALIPSO-Derived Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent Continents  

Science Conference Proceedings (OSTI)

Accurate modeling of the impact of aerosols on climate requires a detailed understanding of the vertical distribution of aerosols. The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provides continuous high-resolution ...

Aaron M. Adams; Joseph M. Prospero; Chidong Zhang

2012-10-01T23:59:59.000Z

443

Comparison of Aerosol Single Scattering Albedos Derived by Diverse Techniques in Two North Atlantic Experiments  

Science Conference Proceedings (OSTI)

Aerosol single scattering albedo ? (the ratio of scattering to extinction) is important in determining aerosol climatic effects, in explaining relationships between calculated and measured radiative fluxes, and in retrieving aerosol optical ...

P. B. Russell; J. Redemann; B. Schmid; R. W. Bergstrom; J. M. Livingston; D. M. McIntosh; S. A. Ramirez; S. Hartley; P. V. Hobbs; P. K. Quinn; C. M. Carrico; M. J. Rood; E. Öström; K. J. Noone; W. von Hoyningen-Huene; L. Remer

2002-02-01T23:59:59.000Z

444

A Method to Estimate Aerosol Radiative Forcing from Spectral Optical Depths  

Science Conference Proceedings (OSTI)

Radiative forcing of aerosols is much more difficult to estimate than that of well-mixed gases due to the large spatial variability of aerosols and the lack of an adequate database on their radiative properties. Estimation of aerosol radiative ...

S. K. Satheesh; J. Srinivasan

2006-03-01T23:59:59.000Z

445

An Aerosol Climatology at Kyoto: Observed Local Radiative Forcing and Columnar Optical Properties  

Science Conference Proceedings (OSTI)

In order to evaluate the radiative effect of the atmospheric aerosol at Kyoto, Japan, surface solar irradiance and columnar aerosol optical properties were observed in the period between September 1998 and December 2001. The aerosol optical ...

Takahiro Yabe; Robert Höller; Susumu Tohno; Mikio Kasahara

2003-06-01T23:59:59.000Z

446

THE LIFETIME OF AEROSOLS IN AMBIENT AIR: CONSIDERATION OF THE EFFECTS OF SURFACTANTS AND CHEMICAL REACTIONS  

E-Print Network (OSTI)

lltion to tre sol,thll! ' aerosols and sulfur dioxidP. inof snlfur rlioxirle by aerosols of rnanganesP KinPtics ofof various urhan Sillfate aerosols prorluction r1echani sns.

Toossi, R.

2013-01-01T23:59:59.000Z

447

Characterization of ambient aerosol composition and formation mechanisms and development of quantification methodologies utilizing ATOFMS  

E-Print Network (OSTI)

compounds in fine atmospheric aerosol at the Jungfraujoch,on the Quantification of Aerosol Time-of-Flight MassMass Concentrations from Aerosol Time-of-Flight Mass

Qin, Xueying

2007-01-01T23:59:59.000Z

448

Measurement of fragmentation and functionalization pathways in the multistep heterogeneous oxidation of organic aerosol  

E-Print Network (OSTI)

E. Kolb, and D. R. Worsnop, Aerosol Science and Technology,Wilson, and D. R. Worsnop, Aerosol Science and Technology,and J. L. Jiménez, Aerosol Sci. Tech. , 2004, 38, 1185–1205.

Kroll, Jesse H.

2010-01-01T23:59:59.000Z

449

Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin  

E-Print Network (OSTI)

Valley of California, USA. J. Aerosol Science 32, S631-S632.particles of outdoor origin. Aerosol Science and Technology,in Central California. Aerosol Science and Technology, 40,

Lunden, Melissa M.

2009-01-01T23:59:59.000Z

450

DETERMINATION OF LOW-Z ELEMENTS IN ATMOSPHERIC AEROSOLS BY CHARGED-PARTICLE-INDUCED NUCLEAR REACTIONS  

E-Print Network (OSTI)

Analysis of Atmospheric Aerosols . . . . G. IIo I I Is IV aat levels found in aerosols was not available. These errorsreaction on aluminum in the aerosol and degrading foils. rl

Clemenson, Mark Steven

2013-01-01T23:59:59.000Z

451

Quantifying the Reactive Uptake of OH by Organic Aerosols in a Continuous Flow Stirred Tank Reactor  

E-Print Network (OSTI)

O. Edney and J. B. Cohen, Aerosol Science and Technology, M.Uptake of OH by Organic Aerosols in a Continuous Flowof sub- micron organic aerosol particles using a continuous

Che, Dung L.

2010-01-01T23:59:59.000Z

452

Aerosol climate effects and air quality impacts from 1980 to 2030  

E-Print Network (OSTI)

impacts of carbonaceous aerosols on clouds and climate. InGeophys. Res. . ”In review”. Aerosol climate e?ects and airChem. Phys. 6, 4427–4459. Aerosol climate e?ects and air

Menon, Surabi

2008-01-01T23:59:59.000Z

453

Application of Sun/star photometry to derive the aerosol optical depth  

Science Conference Proceedings (OSTI)

Atmospheric aerosols play a crucial role in the radiative transfer and chemical processes that control the Earth's climate. Aerosol optical depth and other related aerosol characteristics are widely known during daytime through Sun photometers, and so ...

D. Perez-Ramirez; B. Ruiz; J. Aceituno; F. J. Olmo; L. Alados-Arboledas

2008-09-01T23:59:59.000Z

454

X-RAY ABSORPTION SPECTROSCOPY FOR THE CHEMICAL CHARACTERIZATION OF ATMOSPHERIC AEROSOLS  

E-Print Network (OSTI)

CHARACTERIZATION OF ATMOSPHERIC AEROSOLS J. M. Jaklevic andOF ATMOSPHERIC AEROSOLS X~RAY J. M. Jaklevic and A. C.from the atmospheric aerosol. Modern air sampling technology

Jaklevic, J. M.

2011-01-01T23:59:59.000Z

455

Experimental investigations of photochemically-generated organic aerosols and applications to early Earth and Mars  

E-Print Network (OSTI)

in Titan’s atmospheric aerosols from in situ pyrolysis andformation rates of organic aerosols through time-resolved inExperiments of Titan Aerosol Analogues in Preparation for

Chu, Emily Faye

2013-01-01T23:59:59.000Z

456

The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance  

Science Conference Proceedings (OSTI)

The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite was launched in April 2006 to provide global vertically resolved measurements of clouds and aerosols. Correct discrimination between clouds and aerosols ...

Zhaoyan Liu; Mark Vaughan; David Winker; Chieko Kittaka; Brian Getzewich; Ralph Kuehn; Ali Omar; Kathleen Powell; Charles Trepte; Chris Hostetler

2009-07-01T23:59:59.000Z

457

Lidar Observations of the Vertical Aerosol Flux in the Planetary Boundary Layer  

Science Conference Proceedings (OSTI)

The vertical aerosol transport in the planetary boundary layer (PBL) is investigated with lidars. Profiles of the vertical wind velocity are measured with a 2-?m Doppler wind lidar. Aerosol parameters are derived from observations with an aerosol ...

Ronny Engelmann; Ulla Wandinger; Albert Ansmann; Detlef Müller; Egidijus Žeromskis; Dietrich Althausen; Birgit Wehner

2008-08-01T23:59:59.000Z

458

Priorities for In-situ Aerosol Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Priorities for In-situ Priorities for In-situ Aerosol Measurements Parameters * Aerosol light absorption coefficient - spectral, including UV, vis, and IR - as f(RH), and at ambient RH * Phase function - or relevant integral properties (how many?) * Ice nuclei * Scattering vs. RH, for RH>90% * CCN, as f(S, D p ) * Size distribution * Chemical composition - for determining climate forcing, vs. radiative effect Calibration * Number concentration * Size and shape * Light absorption reference method Characterization * Accuracy and precision - need well-understood error bars * Algorithm comparisons * Closure studies * Facilities for method testing - aircraft time Methods * Inlets - shattering/splashing - location on airplane - passing efficiency - inletless analyzers/samplers * Packaging - modular/portable "pods" for multiple a/c

459

LOSA-M2 aerosol Raman lidar  

SciTech Connect

The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2011-10-31T23:59:59.000Z

460

Natural Aerosols in the Global Atmosphere  

E-Print Network (OSTI)

1 N?ar det kjem til stykket ?Ar ut og ?ar inn har du site břygd yver břkene, du har samla deg meir kunnskap enn du treng til ni liv. N?ar det kjem til stykket, er det so lite som skal til, og det vesle har hjarta alltid visst. I Egypt hadde guden for lćrdom hovud som ei ape. Olav H. HaugeNatural aerosols in the global atmosphere

Alf Grini; Alf Grini

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

TROPOSPHERIC AEROSOL PROGRAM, PROGRAM PLAN, MARCH 2001  

Science Conference Proceedings (OSTI)

The goal of Tropospheric Aerosol Program (TAP) will be to develop the fundamental scientific understanding required to construct tools for simulating the life cycle of tropospheric aerosols--the processes controlling their mass loading, composition, and microphysical properties, all as a function of time, location, and altitude. The TAP approach to achieving this goal will be by conducting closely linked field, modeling, laboratory, and theoretical studies focused on the processes controlling formation, growth, transport, and deposition of tropospheric aerosols. This understanding will be represented in models suitable for describing these processes on a variety of geographical scales; evaluation of these models will be a key component of TAP field activities. In carrying out these tasks TAP will work closely with other programs in DOE and in other Federal and state agencies, and with the private sector. A forum to directly work with our counterparts in industry to ensure that the results of this research are translated into products that are useful to that community will be provided by NARSTO (formerly the North American Research Strategy on Tropospheric Ozone), a public/private partnership, whose membership spans government, the utilities, industry, and university researchers in Mexico, the US, and Canada.

SCHWARTZ,S.E.; LUNN,P.

2001-03-01T23:59:59.000Z

462

Clustering of Aerosols in Atmospheric Turbulent Flow  

E-Print Network (OSTI)

A mechanism of formation of small-scale inhomogeneities in spatial distributions of aerosols and droplets associated with clustering instability in the atmospheric turbulent flow is discussed. The particle clustering is a consequence of a spontaneous breakdown of their homogeneous space distribution due to the clustering instability, and is caused by a combined effect of the particle inertia and a finite correlation time of the turbulent velocity field. In this paper a theoretical approach proposed in Phys. Rev. E 66, 036302 (2002) is further developed and applied to investigate the mechanisms of formation of small-scale aerosol inhomogeneities in the atmospheric turbulent flow. The theory of the particle clustering instability is extended to the case when the particle Stokes time is larger than the Kolmogorov time scale, but is much smaller than the correlation time at the integral scale of turbulence. We determined the criterion of the clustering instability for the Stokes number larger than 1. We discussed applications of the analyzed effects to the dynamics of aerosols and droplets in the atmospheric turbulent flow.

T. Elperin; N. Kleeorin; M. A. Liberman; V. L'vov; I. Rogachevskii

2007-02-15T23:59:59.000Z

463

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

464

Aerosol Duct Sealing : Technologies : From the Lab to the Marketplace...  

NLE Websites -- All DOE Office Websites (Extended Search)

the California building code changes and increasing availability of the aerosol sealing technology, more homeowners and facilities managers will seal their duct systems and save...

465

ARM - Publications: Science Team Meeting Documents: Aerosol Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Research at the Arctic Facility for Atmospheric Remote Sensing (AFARS): In Search of Indirect Cloud Effects Sassen, Kenneth University of Alaska Fairbanks Tiruchirapalli,...

466

Urban aerosols harbor diverse and dynamic bacterial populations  

Urban aerosols harbor diverse and dynamic bacterial populations Eoin L. Brodie, Todd Z. DeSantis, Jordan P. Moberg Parker, Ingrid X. Zubietta, Yvette M. Piceno, and ...

467

Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity  

E-Print Network (OSTI)

and absorb solar and terrestrial radiation, influence cloudand absorb solar and terrestrial radiation, influence cloudand absorption of solar and thermal radiation by aerosol

Tang, Xiaochen

2013-01-01T23:59:59.000Z

468

Deposition of biological aerosols on HVAC heat exchangers  

E-Print Network (OSTI)

Methods to Maintain Heat Exchanger Coil Cleanliness. ASHRAEEngineering Foundation on Heat Exchanger Fouling, UnitedAerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain

Siegel, Jeffrey; Walker, Iain

2001-01-01T23:59:59.000Z

469

Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...  

NLE Websites -- All DOE Office Websites (Extended Search)

(DAP) - Evelyne Richard, Hans-Stefan Bauer * Aerosol and Cloud Microphysics (ACM) - Chairs: Susanne Crewell, Dave Turner, Stephen Mobbs ACM Scientific Questions * What...

470

ARM AOS Processing Status and Aerosol Intensive Properties VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS)...

471

Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001  

Science Conference Proceedings (OSTI)

The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

Worsnop, Douglas R.

2001-06-01T23:59:59.000Z

472

Overview of the Cumulus Humilis Aerosol Processing Study.  

Science Conference Proceedings (OSTI)

Aerosols influence climate directly by scattering and absorbing radiation and indirectly through their influence on cloud microphysical and dynamical properties. The Intergovernmental Panel on Climate Change (IPCC) concluded that the global radiative forcing due to aerosols is large and in general cools the planet. But the uncertainties in these estimates are also large due to our poor understanding of many of the important processes related to aerosols and clouds. To address this uncertainty an integrated strategy for addressing issues related to aerosols and aerosol processes was proposed. Using this conceptual framework, the Cumulus Humilis Aerosol Processing Study (CHAPS) is a stage 1 activity, that is, a detailed process study. The specific focus of CHAPS was to provide concurrent observations of the chemical composition of the activated [particles that are currently serving as cloud condensation nuclei (CCN)] and nonactivated aerosols, the scattering and extinction profiles, and detailed aerosol and droplet size spectra in the vicinity of Oklahoma City, Oklahoma, during June 2007. Numerous campaigns have examined aerosol properties downwind from large pollution sources, including the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign and the two of the three Aerosol Characterization Experiments, ACE-2 and ACE-Asia. Other studies conducted near cities have examined changes in both aerosols and clouds downwind of urban areas. For example wintertime stratiform clouds associated with the urban plumes of Denver, Colorado, and Kansas City, Missouri, have a larger number concentration and smaller median volume diameter of droplets than clouds that had not been affected by the urban plume. Likewise, a decrease in precipitation in polluted regions along the Front Range of the Rocky Mountains was discovered. In a modeling study, it was found that precipitation downwind of urban areas may be influenced by changes in aerosols as well as the convergence pattern caused by the city. Recently, the New England Air Quality Study (NEAQS), and the 2004 International Consortium for Atmospheric Research on Transport and Transformation, which were conducted during the summer of 2004, examined the transport of pollutants and aerosols eastward from New England over the Atlantic Ocean. The Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS) also looked at relationships between clouds and aerosols in polluted conditions around Houston, Texas. In contrast to these recent studies near large or very dirty cities, CHAPS was conducted near a moderately sized city that is representative of a large number of cities around the United States. CHAPS was also one of the first times that a Aerodyne aerosol mass spectrometer was used in conjunction with a counterflow virtual impactor (CVI) inlet on an aircraft. The AMS provides information on the nonrefractory (i.e., materials that are chemically and physically unstable at high temperatures) composition of aerosols, while the CVI uses a counterflow relative to the main incoming airstream to exclude small droplets and nonactivated particles from the inlet, allowing only larger cloud droplets to enter the inlet. The combination of the CVI and AMS allow the examination of the chemical composition of the dried aerosol kernel from the cloud droplets. A key objective of the U.S. Department of Energy's (DOE)'s Atmospheric Sciences Program (ASP) is to improve the understanding of aerosol radiative effects on climate. This objective encompasses not only clear sky observations but also studies relating the effects of both aerosols on clouds and clouds on aerosols - in particular, how clouds affect the chemical and optical properties of aerosols. The latter was the science driver in the design of CHAPS. The measurement strategy for CHAPS was intended to provide measurements relevant to four questions associated with the aerosol radiative forcing issues of interest to the ASP: (1) How do the below-cloud and above-cloud aerosol optical and clou

Berg, L. K.; Berkowitz, C. M.; Ogren, J. A.; Hostetler, C. A.; Ferrare, R. A.; Dubey, M.; Andrews, E.; Coulter, R. L.; Hair, J. W.; Hubbe, J. M.Lee, Y. N.; Mazzoleni, C; Olfert, J; Springston, SR; Environmental Science Division; PNNL; NOAA Earth System Research Lab.; NASA Langley Research Center; LANL; BNL; Univ.of Alberta; Univ. of Colorado

2009-11-01T23:59:59.000Z

473

In-Package Chemistry Abstraction  

SciTech Connect

This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.

E. Thomas

2004-11-09T23:59:59.000Z

474

Self-assembly of Ni-nanoparticles in Aerosols Produced Thermally ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The self-assembly behavior in Ni-aerosols was studied on- ground ... In microgravity, convection within the thermally produced aerosols could be ...

475

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate  

E-Print Network (OSTI)

response of fossil fuel and biofuel soot, accounting for2005) include fossil- and biofuel sources from Bond et al. (the impacts of fossil- and biofuel BC aerosols, aerosol-

Menon, Surabi

2008-01-01T23:59:59.000Z

476

MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models  

SciTech Connect

A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations. A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 {micro}m, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment. This is more likely due to oversimplifications of the representation of sea salt emissions - sea salt emissions are only calculated for two size classes - than to inherent limitations of MATRIX.

Bauer,S.E.; Wright, D.L.; Koch, D.; Lewis, E.R.; McGraw, R.; Chang, L.-S.; Schwartz, S.E.; Ruedy, R.

2008-10-21T23:59:59.000Z

477

Increase of Cloud Droplet Size with Aerosol Optical Depth: An Observational and Modeling Study  

SciTech Connect

Cloud droplet effective radius (DER) is generally negatively correlated with aerosol optical depth (AOD) as a proxy of cloud condensation nuclei. In this study, cases of positive correlation were found over certain portions of the world by analyzing the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite products, together with a general finding that DER may increase or decrease with aerosol loading depending on environmental conditions. The slope of the correlation between DER and AOD is driven primarily by water vapor amount, which explains 70% of the variance in our study. Various potential artifacts that may cause the positive relation are investigated including water vapor swelling, partially cloudy, atmospheric dynamics, cloud three-dimensional (3-D) and surface influence effects. None seems to be the primary cause for the observed phenomenon, although a certain degree of influence exists for some of the factors. Analyses are conducted over seven regions around the world representing different types of aerosols and clouds. Only two regions show positive dependence of DER on AOD, near coasts of the Gulf of Mexico and South China Sea, which implies physical processes may at work. Using a 2-D spectral-bin microphysics Goddard Cumulus Ensemble model (GCE) which incorporated a reformulation of the Köhler theory, two possible physical mechanisms are hypothesized. They are related to the effects of slightly soluble organics (SSO) particles and giant CCNs. Model simulations show a positive correlation between DER and AOD, due to a decrease in activated aerosols with an increasing SSO content. Addition of a few giant CCNs also increases the DER. Further investigations are needed to fully understand and clarify the observed phenomenon.

Yuan, Tianle; Li, Zhanqing; Zhang, Renyi; Fan, Jiwen

2008-02-21T23:59:59.000Z

478

Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Aerosol Models for Radiative Flux Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology E. Andrews Cooperative Institute for Research in the Environment University of Colorado Boulder, Colorado E. Andrews, J. A. Ogren, P. J. Sheridan, and J. M. Harris Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. K. Quinn Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington Abstract The uncertainties associated with assumptions of generic aerosol properties in radiative transfer codes are unknown, which means that these uncertainties are frequently invoked when models and

479

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Quantum Physics; Quantum Communications; Ultrafast Photon Detector; Nam. ...

480

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Energy; Fossil Fuels;Distillation Curves for Complex Fuel Mixtures. ...

Note: This page contains sample records for the topic "aerosol chemistry imaging" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Scanning Electron Microscope with Spin Polarization Analysis. ...

482

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Metrology, Basic Units; Mass; Electronic Kilogram. Description ...

483

NIST Image Gallery: Image Details  

Science Conference Proceedings (OSTI)

... nist.gov. 72 DPI Image © 150 DPI Image © 300 DPI Image ©. Title: Public safety & Smart Grid. Description: Electrical engineer ...

484

Lithium Insertion Chemistry of Some Iron Vanadates  

E-Print Network (OSTI)

in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sébastien

Patoux, Sebastien; Richardson, Thomas J.

2008-01-01T23:59:59.000Z

485

DOE fundamentals handbook: Chemistry. Volume 2  

SciTech Connect

This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids).

Not Available

1993-01-01T23:59:59.000Z

486

Chemistry for Measurement and Detection Science  

NLE Websites -- All DOE Office Websites (Extended Search)

and Detection Science Chemistry for Measurement and Detection Science Research into alternative forms of energy, especially energy security, is one of the major national...

487

Symposium on high temperature and materials chemistry  

SciTech Connect

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

1989-10-01T23:59:59.000Z

488

2005 American Conference on Theoretical Chemistry  

Science Conference Proceedings (OSTI)

The materials uploaded are meant to serve as final report on the funds provided by DOE-BES to help sponsor the 2005 American Conference on Theoretical Chemistry.

Carter, Emily A

2006-11-19T23:59:59.000Z

489

The Chemistry and Technology of Magnesia  

Science Conference Proceedings (OSTI)

Apr 20, 2007 ... In 17 chapters, The Chemistry and Technology of Magnesia covers a wide variety of topics that range from history to economic geology, mining, ...

490

Chemistry of Addition-Type Polyimides  

Science Conference Proceedings (OSTI)

...of polyimides are shown in 6and Fig. 5The basic chemistry of the PE series of imide oligomers is illustrated

491

Chemistry of Cobalt-Platinum Nanocatalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Cobalt-Platinum Nanocatalysts Print Bimetallic cobalt-platinum (CoPt) nanoparticles are drawing attention in many areas of catalysis as scientists attempt to reduce...

492

Charge Carrier Chemistry in Nanoscopic Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Defect chemistry is explored in space charge zones with emphasis on mesoscopic situations. After a general overview two representative

493

Introduction to Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 L ast edited: 2013-05-28 15:53:12...

494

BNL Photo- and Radiation Chemistry Program  

NLE Websites -- All DOE Office Websites (Extended Search)

chemistry, and photophysics; energy transduction by electron-transfer reactions; and energy storage through chemical transformations. Theoretical and experimental efforts are...

495

WEB: The Living Textbook of Nuclear Chemistry  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... The American Chemical Society's website "The Living Textbook of Nuclear