Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Iron Speciation and Mixing in Single Aerosol Particles from the Asian Continental Outflow  

Science Conference Proceedings (OSTI)

Bioavailable iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on Okinawa Island during an atmospheric pollution transport event from China were analyzed using complementary single particle techniques to determine the iron source and speciation. Comparing the spatial distribution of iron within ambient particles and standard Asian mineral dust, it was determined that field-collected atmospheric Fe-containing particles have numerous sources, including anthropogenic sources such as coal combustion. Fe-containing particles were found to be internally mixed with secondary species such as sulfate, soot, and organic carbon. The mass weighted average Fe(II) fraction (defined as Fe(II)/[Fe(II)+Fe(III)]) was determined to be 0.33 {+-} 0.08. Within the experimental uncertainty, this value lies close to the range of 0.26-0.30 determined for representative Asian mineral dust. Previous studies have indicated that the solubility of iron from combustion is much higher than that from mineral dust. Therefore, chemical and/or physical differences other than oxidation state may help explain the higher solubility of iron in atmospheric particles.

Moffet, Ryan C.; Furutani, Hiroshi; Rodel, Tobias; Henn, Tobias R.; Sprau, Peter; Laskin, Alexander; Uematsu, Mitsuo; Gilles, Marry K.

2012-04-04T23:59:59.000Z

2

Chemical Speciation of Chromium in Drilling Muds  

Science Conference Proceedings (OSTI)

Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. We have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.

Taguchi, Takeyoshi [X-ray Research Laboratory, RIGAKU Corporation, 3-9-12 Matsubara-cho, Akishima-shi, Tokyo 196-8666 (Japan); Yoshii, Mitsuru [Mud Technical Center, Telnite Co., Ltd., 1-2-14 Ohama, Sakata-shi, Yamagata 998-0064 (Japan); Shinoda, Kohzo [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai-shi, Miyagi 980-8577 (Japan)

2007-02-02T23:59:59.000Z

3

Frontiers in Assessing the Role of Chemical Speciation and Natural Attenuation on the Bioavailability  

E-Print Network (OSTI)

1 Frontiers in Assessing the Role of Chemical Speciation and Natural Attenuation of contaminants in the terrestrial environment is greatly affected by a number of chemical factors and processes its fate, transport, and bioavailability. Traditionally, chemical extraction techniques have been

Sparks, Donald L.

4

Simulating Aerosols Using a Chemical Transport Model with Assimilation of Satellite Aerosol Retrievals: Methodology for INDOEX  

E-Print Network (OSTI)

A system for simulating aerosols has been developed using a chemical transport model together with an assimilation of satellite aerosol retrievals. The methodology and model components are described in this paper, and the modeled distribution of aerosols for the Indian Ocean Experiment (INDOEX) is presented by Rasch et al. [this issue]. The system generated aerosol forecasts to guide deployment of ships and aircraft during INDOEX. The system consists of the Model of Atmospheric Transport and Chemistry (MATCH) combined with an assimilation package developed for applications in atmospheric chemistry. MATCH predicts the evolution of sulfate, carbonaceous, and mineral dust aerosols, and it diagnoses the distribution of sea salt aerosols. The model includes a detailed treatment of the sources, chemical transformation, transport, and deposition of the aerosol species. The aerosol forecasts involve a two-stage process. During the assimilation phase the total column aerosol optical depth (AOD) is estimated from the model aerosol fields. The model state is then adjusted to improve the agreement between the simulated AOD and satellite retrievals of AOD. During the subsequent integration phase the aerosol fields are evolved using meteorological fields from an external model. Comparison of the modeled AOD against estimates of the AOD from INDOEX Sun photometer data show that the differences in daily means are #0.03 # 0.06. Although the initial application is limited to the Indian Ocean, the methodology could be extended to derive global aerosol analyses combining in situ and remotely sensed aerosol observations.

William D. Collins; Phillip J. Rasch; Brian E. Eaton; Boris V. Khattatov; Jean-francois Lamarque; C. Zender

2001-01-01T23:59:59.000Z

5

Chemical Speciation of Heterogeneously Reduced Pu in Synthetic Brines  

Science Conference Proceedings (OSTI)

X-ray absorption fine structure (XAFS) spectroscopy has been used to determine the speciation of Pu precipitates prepared by the heterogeneous reduction of Pu(VI) with Al and Fe in 5M NaCl and an ERDA-6 brine, a simulant from the Waste Isolation Pilot Plant in Carlsbad, New Mexico. NaOCl was added to some of these solutions to determine its effect on Pu speciation. Analysis of the Pu LIII spectra showed that all solids consisted of PuO2+x?y(OH)2y •zH2O, compounds with characteristics identical to those prepared by hydrolysis and with Pu?O and Pu?Pu distances identical to those treated at elevated temperature. Additionally, reduction with Al gave compounds with different site distributions than reduction with Fe, and reduction with Al or the addition of NaOCl appeared to suppress the formation of oxo groups and their associated Pu(V) sites.

Ding, Mei; Conca, James L.; Den Auwer, Christophe J.; Gabitov, Rinat I.; Hess, Nancy J.; Paviet-Hartmann, Patricia; Palmer, Phillip D.; LoPresti, Vin; Conradson, Steven D.

2006-07-01T23:59:59.000Z

6

Speciation of Organic Aerosols in the Tropical Mid-Pacific and Their Relationship to Light Scattering  

Science Conference Proceedings (OSTI)

Although the importance of the aerosol contribution to the global radiative budget has been recognized, the forcings of aerosols in general, and specifically the role of the organic component in these forcings, still contain large uncertainties. ...

Kathleen K. Crahan; Dean A. Hegg; David S. Covert; Haflidi Jonsson; Jeffrey S. Reid; Djamal Khelif; Barbara J. Brooks

2004-11-01T23:59:59.000Z

7

Raman spectroscopic studies of chemical speciation in calcium chloride melts  

DOE Green Energy (OSTI)

Raman spectroscopy was applied to CaCl2 melts at 900 degrees C under both non-electrolyzed and electrolyzed conditions. The later used titania cathodes supplied by TIMET, Inc. and graphite anodes. Use of pulse-gating to collect the Raman spectra successfully eliminated any interference from black-body radiation and other stray light. The spectrum of molten CaCl2 exhibited no distinct, resolvable bands that could be correlated with a calcium chloride complex similar to MgCl42- in MgCl2 melts. Rather, the low frequency region of the spectrum was dominated by a broad “tail” arising from collective oscillations of both charge and mass in the molten salt “network.” Additions of both CaO and Ca at concentrations of a percent or two resulted in no new features in the spectra. Addition of CO2, both chemically and via electrolysis at concentrations dictated by stability and solubility at 900 degrees C and 1 bar pressure, also produced no new bands that could be correlated with either dissolved CO2 or the carbonate ion. These results indicated that Raman spectroscopy, at least under the conditions evaluated in the research, was not well suited for following the reactions and coordination chemistry of calcium ions, nor species such as dissolved metallic Ca and CO2 that are suspected to impact current efficiency in titanium electrolysis cells using molten CaCl2. Raman spectra of TIMET titania electrodes were successfully obtained as a function of temperature up to 900 degrees C, both in air and in-situ in CaCl2 melts. However, spectra of these electrodes could only be obtained when the material was in the unreduced state. When reduced, either with hydrogen or within an electrolysis cell, the resulting electrodes exhibited no measurable Raman bands under the conditions used in this work.

Windisch, Charles F.; Lavender, Curt A.

2005-02-01T23:59:59.000Z

8

RETENTION AND CHEMICAL SPECIATION OF URANIUM IN A WETLAND ON THE SAVANNAH RIVER SITE  

SciTech Connect

Uranium speciation and retention mechanism onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction desorption tests and U L{sub 3}-edge X-ray absorption near-edge structure (XANES) spectroscopy of contaminated wetland sediments. U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH <4 and pH >8. Sequential extraction tests indicated that the U(VI) species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and NOM fraction (Na-pyrophosphate extractable). Uranium L3- edge XANES spectra of the U-retained sediments were nearly identical to that of uranyl acetate. The primary oxidation state of U in these sediments was as U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species. The molecular mechanism responsible for the high U retention in the SRS wetland sediments is likely related to the chemical bonding of U to organic carbon.

Li, D.; CHANG, H.: SEAMAN, J.; Jaffe, P.; Groos, P.; Jiang, D.; Chen, N.; Lin, J.; Arthur, Z.; Scheckel, K.; Kaplan, D.

2013-06-17T23:59:59.000Z

9

RETENTION AND CHEMICAL SPECIATION OF URANIUM IN A WETLAND ON THE SAVANNAH RIVER SITE  

Science Conference Proceedings (OSTI)

Uranium speciation and retention mechanism onto Savannah River Site (SRS) wetland sediments was studied using batch (ad)sorption experiments, sequential extraction desorption tests and U L{sub 3}-edge X-ray absorption near-edge structure (XANES) spectroscopy of contaminated wetland sediments. U was highly retained by the SRS wetland sediments. In contrast to other similar but much lower natural organic matter (NOM) sediments, significant sorption of U onto the SRS sediments was observed at pH 8. Sequential extraction tests indicated that the U(VI) species were primarily associated with the acid soluble fraction (weak acetic acid extractable) and NOM fraction (Na-pyrophosphate extractable). Uranium L3- edge XANES spectra of the U-retained sediments were nearly identical to that of uranyl acetate. The primary oxidation state of U in these sediments was as U(VI), and there was little evidence that the high sorptive capacity of the sediments could be ascribed to abiotic or biotic reduction to the less soluble U(IV) species. The molecular mechanism responsible for the high U retention in the SRS wetland sediments is likely related to the chemical bonding of U to organic carbon.

Li, D.; CHANG, H.: SEAMAN, J.; Jaffe, P.; Groos, P.; Jiang, D.; Chen, N.; Lin, J.; Arthur, Z.; Scheckel, K.; Kaplan, D.

2013-06-17T23:59:59.000Z

10

Chemical Speciation of Strontium, Americium, and Curium in High Level Waste: Predictive Modeling of Phase Partitioning During Tank Processing  

DOE Green Energy (OSTI)

The objective of this research project is to measure the effects of organic chelate complexation on the speciation and solubility of Sr and trivalent actinides under strongly basic, high carbonate conditions, similar to those present in high- level waste tanks at U.S. Department of Energy storage sites. We proposed, (1) extension to important chelates not previously studied; (2) studies of completing metal ions; and (3) specific studies using Am(III)/Cm(III). The chelate complexation studies would extend our previous research on EDTA, HEDTA, NTA, and IDA to citrate and oxalate. In addition, we propose to address the possible formation of mixed ligand- ligand complexes for Eu(III) in EDTA-HEDTA, EDTA-NTA, HEDTA-NTA, and ligand-carbonate solutions. The fundamental data on chemical speciation and solubility will be used to develop accurate thermodynamic models which are valid to high ionic strength.

CHOPPIN, GREGORY R.

2003-06-01T23:59:59.000Z

11

Chemical and Physical Properties of Atmospheric Aerosols (a) A Case Study in the Unique Properties of Agricultural Aerosols (b) The Role of Chemical Composition in Ice Nucleation during the Arctic Spring  

E-Print Network (OSTI)

This study focuses on the analysis of atmospheric particles sampled from two different field campaigns: the field study at a cattle feeding facility in the summer from 2005 to 2008 and the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in 2008. A ground site field study at a representative large cattle feeding facility in the Texas Panhandle was conducted to characterize the particle size distributions, hygroscopicity, and chemical composition of agricultural aerosols. Here, a first comprehensive dataset is reported for these physical and chemical properties of agricultural aerosols appropriate for use in a site-specific emission inventory. The emission rate and transport of the aerosols are also discussed. In addition, mixing ratios of total and gaseous ammonia were measured at the same field in 2007 and 2008. Measurements such as these provide a means to determine whether the fugitive dust emitted from a typical large feedlot represents a health concern for employees of the feeding operation and the nearby community. Detailed chemical composition of aircraft-sampled particles collected during ISDAC was studied. Filter samples were collected under a variety of conditions in and out of mixed phase and ice clouds in the Arctic. Specifically, particles were sampled from a mixed-phase cloud during a period of observed high concentrations of ice nuclei (IN), a biomass plume, and under relatively clean ambient conditions. Composition of particles was studied on a particle-by-particle basis using several microspectroscopy techniques. Based on the elemental composition analysis, more magnesium was found in Arctic cloud residues relative to ambient air. Likewise, based on the carbon speciation analysis, high IN samples contained coated inorganics, carbonate, and black or brown carbon particles. In the samples collected during a flight through a biomass burning plume, water-soluble organic carbon was the dominant overall composition. Due to their hygroscopic nature, these organics may preferably act as cloud condensation nuclei (CCN) rather than IN. Other ambient samples contained relatively higher fractions of organic and inorganic mixtures and less purely water-soluble organics than found in the biomass particles. The most likely source of inorganics would be sea salt. When present, sea salt may further enhance ice nucleation.

Moon, Seong-Gi

2010-05-01T23:59:59.000Z

12

Aerosol Influence on Cloud Microphysics Examined by Satellite Measurements and Chemical Transport Modeling  

Science Conference Proceedings (OSTI)

Anthropogenic aerosols are hypothesized to decrease cloud drop radius and increase cloud droplet number concentration enhancing cloud optical depth and albedo. Here results have been used from a chemical transport model driven by the output of a ...

Harshvardhan; S. E. Schwartz; C. M. Benkovitz; G. Guo

2002-02-01T23:59:59.000Z

13

The aging of organic aerosol in the atmosphere : chemical transformations by heterogeneous oxidation  

E-Print Network (OSTI)

The immense chemical complexity of atmospheric organic particulate matter ("aerosol") has left the general field of condensed-phase atmospheric organic chemistry relatively under-developed when compared with either gas-phase ...

Kessler, Sean Herbert

2013-01-01T23:59:59.000Z

14

Real-time chemical analysis of aerosol particles  

Science Conference Proceedings (OSTI)

An important aspect of environmental atmospheric monitoring requires the characterization of airborne microparticles and aerosols. Unfortunately, traditional sample collection and handling techniques are prone to contamination and interference effects that can render an analysis invalid. These problems can be avoided by using real-time atmospheric sampling techniques followed by immediate mass spectrometric analysis. The former is achieved in these experiments via a two state differential pumping scheme that is attached directly to a commercially available quadruple ion trap mass spectrometer. Particles produced by an external particle generator enter the apparatus and immediately pass through two cw laser/fiberoptic based detectors positioned two centimeters apart. Timing electronics measure the time between detection events, estimate the particles arrival in the center of the ion trap and control the firing of a YAG laser. Ions produced when the UV laser light ablates the particle`s surface are stored by the ion trap for mass analysis. Ion trap mass spectrometers have several advantages over conventional time-of-flight instruments. First, they are capable of MS/MS analysis by the collisional dissociation of a stored species, This permits complete chemical characterization of airborne samples. Second, ion traps are small and lend themselves to portable, field oriented applications.

Yang, M.; Whitten, W.B.; Ramsey, J.M.

1995-04-01T23:59:59.000Z

15

Chemical Bonding and Structural Information of Black Carbon Reference Materials and Individual Carbonaceous Atmospheric Aerosols  

E-Print Network (OSTI)

HULIS) in biomass-burning aerosols, Atmospheric Chemistrymicroscopical and aerosol dynamical characterizationof soot aerosols, Journal of Aerosol Science , 34 , 1347-

Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

2007-01-01T23:59:59.000Z

16

Chemical characterization of the ambient organic aerosol soluble in water  

E-Print Network (OSTI)

the water-soluble organic car- bon (WSOC) components of ambient aerosol particles into hydrophilic and Weber [2006]. In the XAD-8 method, the WSOC components that penetrate the column are hydro- philic

Weber, Rodney

17

New Chemical Aerosol Characterization Methods- Examples Using Agricultural and Urban Airborne Particulate Matter  

E-Print Network (OSTI)

This study explored different chemical characterization methods of agricultural and urban airborne particulate matter. Three different field campaigns are discussed. For the agricultural aerosols, measurement of the chemical composition of size-resolved agricultural aerosols collected from a ground site at the nominally downwind and upwind edge of a feedlot in West Texas were reported. High volume cascade impactor samplers were used for the collection of the particles, and two major analytical methods were applied to characterize different components of the aerosols, ion chromatography (IC ) was used to measure ionic composition with the main targets being ammonium (NH4 ), nitrate (NO3 -), and sulfate (SO4 2-), direct thermal desorption gas chromatography-mass spectrometry/flame ionization detection (GC-MS/FID) methodology was used to identify and quantify organic compounds in the aerosol particles. For the urban aerosols, I report the measurement of mass, and the chemical composition of size-resolved aerosols collected from two different locations in Houston, analyzed by the thermal desorption GC-MS/FID method. The investigation of single particle composition using RM is reported as well: RM and chemical mapping techniques have been applied for the qualitative analysis of components in the samples of air particulate matter collected in downtown Houston.

Zhou, Lijun

2010-08-01T23:59:59.000Z

18

Geochem-EZ: a Chemical Speciation Program With Greater Power and Flexibility  

E-Print Network (OSTI)

R H Loeppert et al. , eds, Chemical Equilibrium and ReactionNorvell WA, Chaney RL (1995b) Chemical Equilibrium Models:R H Loeppert et al. , eds, Chemical Equilibrium and Reaction

Shaff, Jon; Schultz, Benjamin; Craft, Eric; Clark, Randy; Kochian, Leon

2009-01-01T23:59:59.000Z

19

Aerosols and clouds in chemical transport models and climate models.  

Science Conference Proceedings (OSTI)

Clouds exert major influences on both shortwave and longwave radiation as well as on the hydrological cycle. Accurate representation of clouds in climate models is a major unsolved problem because of high sensitivity of radiation and hydrology to cloud properties and processes, incomplete understanding of these processes, and the wide range of length scales over which these processes occur. Small changes in the amount, altitude, physical thickness, and/or microphysical properties of clouds due to human influences can exert changes in Earth's radiation budget that are comparable to the radiative forcing by anthropogenic greenhouse gases, thus either partly offsetting or enhancing the warming due to these gases. Because clouds form on aerosol particles, changes in the amount and/or composition of aerosols affect clouds in a variety of ways. The forcing of the radiation balance due to aerosol-cloud interactions (indirect aerosol effect) has large uncertainties because a variety of important processes are not well understood precluding their accurate representation in models.

Lohmann,U.; Schwartz, S. E.

2008-03-02T23:59:59.000Z

20

Production Mechanism, Number Concentration, Size Distribution, Chemical Composition, and Optical Properties of Sea Spray Aerosols Workshop, Summer 2012  

SciTech Connect

The objective of this workshop was to address the most urgent open science questions for improved quantification of sea spray aerosol-radiation-climate interactions. Sea spray emission and its influence on global climate remains one of the most uncertain components of the aerosol-radiation-climate problem, but has received less attention than other aerosol processes (e.g. production of terrestrial secondary organic aerosols). Thus, the special emphasis was placed on the production flux of sea spray aerosol particles, their number concentration and chemical composition and properties.

Meskhidze, Nicholas [NCSU] [NCSU

2013-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

MASS SPECTROMETRIC APPROACHES FOR CHEMICAL CHARACTERISATION OF ATMOSPHERIC AEROSOLS: CRITICAL REVIEW OF MOST RECENT ADVANCES  

Science Conference Proceedings (OSTI)

This manuscript presents an overview of the most recent instrument developments, field and laboratory applications of mass spectrometry (MS) in chemistry and physics of atmospheric aerosols. A broad range of MS instruments employing different sample introduction methods, ionization and mass detection techniques are utilized for both 'on-line' and 'off-line' characterization of aerosols. On-line MS techniques enable detection of individual particles with simultaneous measurements of particle size distributions and aerodynamic characteristics, and are ideally suited for field studies which require high temporal resolution. Off-line MS techniques provide means for detailed molecular-level analysis of aerosol samples which is essential to fundamental knowledge on aerosol chemistry, mechanisms of particle formation and atmospheric aging. Combined together, complementary MS techniques provide comprehensive information on the chemical composition, size, morphology and phase of aerosols - data of key importance for evaluating hygroscopic and optical properties of particles, their health effects, understanding their origins, and atmospheric evolution. Developments and applications of MS techniques in the aerosol research have expanded remarkably over a couple of last years as evidenced by sky-rocketing publication statistics. The goal of this review is to period of late 2010 - early 2012, which were not conveyed in previous reviews.

Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

2012-06-29T23:59:59.000Z

22

Aerosol chemical vapor deposition of metal oxide films  

DOE Patents (OSTI)

A process of preparing a film of a multicomponent metal oxide including: forming an aerosol from a solution comprised of a suitable solvent and at least two precursor compounds capable of volatilizing at temperatures lower than the decomposition temperature of said precursor compounds; passing said aerosol in combination with a suitable oxygen-containing carrier gas into a heated zone, said heated zone having a temperature sufficient to evaporate the solvent and volatilize said precursor compounds; and passing said volatilized precursor compounds against the surface of a substrate, said substrate having a sufficient temperature to decompose said volatilized precursor compounds whereby metal atoms contained within said volatilized precursor compounds are deposited as a metal oxide film upon the substrate is disclosed. In addition, a coated article comprising a multicomponent metal oxide film conforming to the surface of a substrate selected from the group consisting of silicon, magnesium oxide, yttrium-stabilized zirconium oxide, sapphire, or lanthanum gallate, said multicomponent metal oxide film characterized as having a substantially uniform thickness upon said substrate, and as having a crystalline orientation defined as predominantly C-axis oriented by x-ray diffraction is disclosed.

Ott, K.C.; Kodas, T.T.

1990-04-16T23:59:59.000Z

23

Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols  

E-Print Network (OSTI)

instruments and photoelectric aerosol sensors in source-sampling of black carbon aerosol and particle-bound PAHsAirborne minerals and related aerosol particles: Effects on

2008-01-01T23:59:59.000Z

24

X-RAY METHODS FOR THE CHEMICAL CHARACTERIZATION OF ATMOSPHERIC AEROSOLS  

E-Print Network (OSTI)

Goulding Fine Particles: Aerosol Generation, Sampling andCHARACTERIZATION OF ATMOSPHERIC AEROSOLS J.M. Jaklevic andCHARACTERIZATION OF ATMOSPHERIC AEROSOLS J.M. Jaklevic and

Jaklevic, J.M.

2010-01-01T23:59:59.000Z

25

Measurements of the chemical, physical, and optical properties of single aerosol particles  

E-Print Network (OSTI)

composition of ambient aerosol particles, EnvironmentalParticle Measurement of Ambient Aerosol Particles Containingfor quantifying direct aerosol forcing of climate, Bull. Am.

Moffet, Ryan Christopher

2007-01-01T23:59:59.000Z

26

The Effects of Clouds on Aerosol and Chemical Species Production and Distribution. Part III: Aerosol Model Description and Sensitivity Analysis  

Science Conference Proceedings (OSTI)

A modeling study of the effects of clouds on the evolution and redistribution of aerosol particles in the troposphere is presented. A two-mode, two-moment aerosol evolution model is coupled with a two-dimensional, mixed-phase, two-moment ...

Yiping Zhang; Sonia Kreidenweis; Gregory R. Taylor

1998-03-01T23:59:59.000Z

27

THE LIFETIME OF AEROSOLS IN AMBIENT AIR: CONSIDERATION OF THE EFFECTS OF SURFACTANTS AND CHEMICAL REACTIONS  

E-Print Network (OSTI)

lltion to tre sol,thll! ' aerosols and sulfur dioxidP. inof snlfur rlioxirle by aerosols of rnanganesP KinPtics ofof various urhan Sillfate aerosols prorluction r1echani sns.

Toossi, R.

2013-01-01T23:59:59.000Z

28

X-RAY ABSORPTION SPECTROSCOPY FOR THE CHEMICAL CHARACTERIZATION OF ATMOSPHERIC AEROSOLS  

E-Print Network (OSTI)

CHARACTERIZATION OF ATMOSPHERIC AEROSOLS J. M. Jaklevic andOF ATMOSPHERIC AEROSOLS X~RAY J. M. Jaklevic and A. C.from the atmospheric aerosol. Modern air sampling technology

Jaklevic, J. M.

2011-01-01T23:59:59.000Z

29

Technical Note: Evaluation of the WRF-Chem "Aerosol Chemical to Aerosol Optical Properties" Module using data from the MILAGRO campaign  

SciTech Connect

A comparison between observed aerosol optical properties from the MILAGRO field campaign, which took place in the Mexico City Metropolitan Area (MCMA) during March 2006, and values simulated by the Weather Research and Forecasting model (WRF-Chem) model, reveals large differences. To help identify the source of the discrepancies, data from the MILAGRO campaign are used to evaluate the "aerosol chemical to aerosol optical properties" module implemented in the full chemistry version of the WRF-Chem model. The evaluation uses measurements of aerosol size distributions and chemical properties obtained at the MILAGRO T1 site. These observations are fed to the module, which makes predictions of various aerosol optical properties, including the scattering coefficient, Bscat; the absorption coefficient, Babs; and the single-scattering albedo, v0; all as a function of time. This simulation is compared with independent measurements obtained from a photoacoustic spectrometer (PAS) at a wavelength of 870 nm. Because of line losses and other factors, only "fine mode" aerosols with aerodynamic diameters less than 2.5 mm are considered here. Over a 10-day period, the simulations of hour-by-hour variations of Bscat are not satisfactory, but simulations of Babs and v0 are considerably better. When averaged over the 10-day period, the computed and observed optical properties agree within the uncertainty limits of the measurements and simulations. Specifically, the observed and calculated values are, respectively: (1) Bscat, 34.1 ± 5.1 Mm-1 versus 30.4 ± 4.3 Mm-1; (2) Babs, 9.7 ± 1.0 Mm-1 versus 11.7 ± 1.5 Mm-1; and (3) v0, 0.78 ± 0.04 and 0.74 ± 0.03. The discrepancies in values of v0 simulated by the full WRF-Chem model thus cannot be attributed to the "aerosol chemistry to optics" module. The discrepancy is more likely due, in part, to poor characterization of emissions near the T1 site, particularly black carbon emissions.

Barnard, James C.; Fast, Jerome D.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Laskin, Alexander

2010-08-09T23:59:59.000Z

30

Laboratory investigation of chemical and physical properties of soot-containing aerosols  

E-Print Network (OSTI)

Soot particles released from fossil fuel combustion and biomass burning have a large impact on the regional/global climate by altering the atmospheric radiative properties and by serving as cloud condensation nuclei (CCN). However, the exact forcing is affected by the mixing of soot with other aerosol constituents, such as sulfuric acid. In this work, experimental studies have been carried out focusing on three integral parts: (1) heterogeneous uptake of sulfuric acid on soot; (2) hygroscopic growth of H2SO4-coated soot aerosols; (3) effect of H2SO4 coating on scattering and extinction properties of soot particles. A low-pressure laminar-flow reactor, coupled to ion driftchemical ionization mass spectrometry (ID-CIMS) detection, is used to study uptake coefficients of H2SO4 on combustion soot. The results suggest that uptake of H2SO4 takes place efficiently on soot particles, representing an important route to convert hydrophobic soot to hydrophilic aerosols. A tandem differential mobility analyzing (TDMA) system is employed to determine the hygroscopicity of freshly generated soot in the presence of H2SO4 coating. It is found that fresh soot particles are highly hydrophobic, while coating of H2SO4 significantly facilitates water uptake on soot even at sub-saturation relative humidities. The results indicate that aged soot particles in the atmosphere can potentially be an efficient source of CCN. Scattering and extinction coefficient measurements of the soot-H2SO4 mixed particles are conducted using a threewavelength Nephelometer and a multi-path extinction cell. Coating of H2SO4 is found to increase the single scattering albedo (SSA) of soot particles which has impact on the aerosol direct radiative effect. Other laboratory techniques such as transmission electron microscopy (TEM) and Fourier transform infrared spectrometry (FTIR) are utilized to examine the morphology and chemical composition of the soot-H2SO4 particles. This work provides critical information concerning the heterogeneous interaction of soot and sulfuric acid, and how their mixing affects the hygroscopic and optical properties of soot. The results will improve our ability to model and assess the soot direct and indirect forcing and hence enhance our understanding of the impact of anthropogenic activities on the climate.

Zhang, Dan

2003-05-01T23:59:59.000Z

31

An Application of Chemical Kinetic Theory and Methodology to Characterize the Ice Nucleating Properties of Aerosols Used for Weather Modification  

Science Conference Proceedings (OSTI)

Chemical kinetic theory and methodology is applied to examine the ice nucleating properties of silver iodide (AgI) and silver iodide-silver chloride (AgI-AgCl) aerosols in a large cloud chamber held at water saturation. This approach uses ...

Paul J. DeMott; William G. Finnegan; Lewis O. Grant

1983-07-01T23:59:59.000Z

32

Some Physical and Chemical Properties of the Arctic Winter Aerosol in Northeastern Canada  

Science Conference Proceedings (OSTI)

Measurements spanning much of the particle size spectrum were made on the surface aerosol arriving at Igloolik, Northwest Territories, Canada during late February 1982. Vertical profiles of aerosol particle concentration were obtained during one ...

W. R. Leaitch; R. M. Hoff; S. Melnichuk; A. W. Hogan

1984-06-01T23:59:59.000Z

33

THE LIFETIME OF AEROSOL DROPLETS IN AMBIENT AIR: CONSIDERATION OF THE EFFECTS OF SURFACTANTS AND CHEMICAL REACTIONS  

E-Print Network (OSTI)

of various urban sulfate aerosol production mechanisms.radius of an evaporating aerosol droplet in which oxidationEnvironment THE LIFETIME OF AEROSOL DROPLETS IN AMBIENT AIR:

Toossi, R.

2013-01-01T23:59:59.000Z

34

The Statistical Evolution of Multiple Generations of Oxidation Products in the Photochemical Aging of Chemically Reduced Organic Aerosol  

Science Conference Proceedings (OSTI)

The heterogeneous reaction of hydroxyl radicals (OH) with squalane and bis(2-ethylhexyl) sebacate (BES) particles are used as model systems to examine how distributions of reactionproducts evolve during the oxidation of chemically reduced organic aerosol. A kinetic model of multigenerational chemistry, which is compared to previously measured (squalane) and new(BES) experimental data, reveals that it is the statistical mixtures of different generations of oxidation products that control the average particle mass and elemental composition during thereaction. The model suggests that more highly oxidized reaction products, although initially formed with low probability, play a large role in the production of gas phase reaction products.In general, these results highlight the importance of considering atmospheric oxidation as a statistical process, further suggesting that the underlying distribution of molecules could playimportant roles in aerosol formation as well as in the evolution of key physicochemical properties such as volatility and hygroscopicity.

Wilson, Kevin R.; Smith, Jared D.; Kessler, Sean; Kroll, Jesse H.

2011-10-03T23:59:59.000Z

35

Chemical Characteristics of Aerosol Composition over the Yellow Sea and the East China Sea in Autumn  

Science Conference Proceedings (OSTI)

The total suspended particulate (TSP) samples over the Yellow Sea and the East China Sea were collected to determine the major compositions of water-soluble ionic species during two cruises in autumn 2007. The aerosol compositions exhibited an ...

Hong-Hai Zhang; Gui-Peng Yang; Chun-Ying Liu; Lu-Ping Su

2013-06-01T23:59:59.000Z

36

An Empirical Parameterization of Heterogeneous Ice Nucleation for Multiple Chemical Species of Aerosol  

Science Conference Proceedings (OSTI)

A novel, flexible framework is proposed for parameterizing the heterogeneous nucleation of ice within clouds. It has empirically derived dependencies on the chemistry and surface area of multiple species of ice nucleus (IN) aerosols. Effects from ...

Vaughan T. J. Phillips; Paul J. DeMott; Constantin Andronache

2008-09-01T23:59:59.000Z

37

Chemical Bonding and Structural Information of Black Carbon Reference Materials and Individual Carbonaceous Atmospheric Aerosols  

E-Print Network (OSTI)

A. (1998), Determination of chemical- structural changes inOptical, physical, and chemical properties of tar ballsE. (2001), Study on the chemical character of water soluble

Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

2007-01-01T23:59:59.000Z

38

New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique  

E-Print Network (OSTI)

mass fractions in particles. Aerosol Science and Technology,mediated lung injury, J. Aerosol Sci. , 29 (5-6), 553-560,from natural to anthropogenic aerosol radiative forcing:

Spencer, Matthew Todd

2007-01-01T23:59:59.000Z

39

The darkening of zinc yellow: XANES speciation of chromium in artist;s paints after light and chemical exposures  

Science Conference Proceedings (OSTI)

The color darkening of selected brushstrokes of the masterpiece A Sunday on La Grande Jatte - 1884 (by Georges Seurat) has been attributed to the alteration of the chromate pigment zinc yellow. The pigment originally displays a bright greenish-yellow color but may undergo, after aging, darkening to a dull, ocher tone. We used XANES to probe the oxidation state of Cr on paint reconstructions, and show that color changes are associated with the reduction of Cr(VI) to Cr(III). Paint mixtures containing the pigment and linseed oil to mimic mixtures used in La Grande Jatte were subjected to artificial aging in the presence of light, SO{sub 2}, and variable air humidity - 50 and 90% relative humidity. High relative humidity led to the largest degree of Cr(VI) reduction whereas low relative humidity promoted light-induced alterations. These results are corroborated by visible reflectance measurements on the same laboratory samples and contribute to a better understanding of the chemical reactivity of chromate pigments, which are present in many historical works of art.

Zanella, Luciana; Casadio, Francesca; Gray, Kimberly A.; Warta, Richard; Ma, Qing; Gaillard, Jean-François

2012-03-14T23:59:59.000Z

40

Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses  

Science Conference Proceedings (OSTI)

The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.

Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth; Arey, Bruce W.; Jenson, Evan D.; Guilmette, Raymond A.

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Aerosol Properties and Chemical Apportionment of Aerosol Optical Depth at Locations off the U.S. East Coast in July and August 2001  

Science Conference Proceedings (OSTI)

Airborne in situ measurements of vertical profiles of the aerosol light scattering coefficient, light absorption coefficient, and single scattering albedo (?0) are presented for locations off the East Coast of the United States in July–August ...

Brian I. Magi; Peter V. Hobbs; Thomas W. Kirchstetter; Tihomir Novakov; Dean A. Hegg; Song Gao; Jens Redemann; Beat Schmid

2005-04-01T23:59:59.000Z

42

A Method for Forecasting Cloud Condensation Nuclei Using Predictions of Aerosol Physical and Chemical Properties from WRF/Chem  

Science Conference Proceedings (OSTI)

Model investigations of aerosol–cloud interactions across spatial scales are necessary to advance basic understanding of aerosol impacts on climate and the hydrological cycle. Yet these interactions are complex, involving numerous physical and ...

Daniel Ward; William Cotton

2011-07-01T23:59:59.000Z

43

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Kirchstetter with aerosol measurement instrument Atmospheric Aerosols Atmospheric aerosol research at LBNL seeks to understand the air quality and climate impacts of particles...

44

An Improved Equilibrium-Kinetics Speciation Algorithm For Redox Reactions  

Open Energy Info (EERE)

Improved Equilibrium-Kinetics Speciation Algorithm For Redox Reactions Improved Equilibrium-Kinetics Speciation Algorithm For Redox Reactions In Variably Saturated Subsurface Flow Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Improved Equilibrium-Kinetics Speciation Algorithm For Redox Reactions In Variably Saturated Subsurface Flow Systems Details Activities (0) Areas (0) Regions (0) Abstract: Reactive chemical transport occurs in a variety of geochemical environments, and over a broad range of space and time scales. Efficiency of the chemical speciation and water-rock-gas interaction calculations is important for modeling field-scale multidimensional reactive transport problems. An improved efficient model, REACT, for simulating water-rock-gas interaction under equilibrium and kinetic conditions, has been developed.

45

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect

In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

Glenn C. England

2004-10-20T23:59:59.000Z

46

Atmospheric Aerosols  

NLE Websites -- All DOE Office Websites (Extended Search)

measuring equipment Atmospheric Aerosols Atmospheric aerosol research at Berkeley Lab seeks to understand the air quality and climate impacts of particles in the atmosphere. On...

47

A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID  

E-Print Network (OSTI)

In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

Hohaus, T.

48

Sources and production of organic aerosol in Mexico City: insights from the combination of a chemical transport model (PMCAMx-2008) and measurements  

E-Print Network (OSTI)

Urban areas are large sources of organic aerosols and their precursors. Nevertheless, the contributions of primary (POA) and secondary organic aerosol (SOA) to the observed particulate matter levels have been difficult to ...

Tsimpidi, A. P.

49

Near-Real-Time Measurement of Sea-Salt Aerosol during the SEAS Campaign: Comparison of Emission-Based Sodium Detection with an Aerosol Volatility Technique  

Science Conference Proceedings (OSTI)

The first deployment of an emission-based aerosol sodium detector (ASD), designed to chemically characterize marine aerosols on a near-real-time basis, is reported. Deployment occurred as part of the Shoreline Environment Aerosol Study (SEAS) ...

P. Campuzano-Jost; C. D. Clark; H. Maring; D. S. Covert; S. Howell; V. Kapustin; K. A. Clarke; E. S. Saltzman; A. J. Hynes

2003-10-01T23:59:59.000Z

50

Chemical Speciation of Engineered Nanoparticle Surface ...  

Science Conference Proceedings (OSTI)

... evaluation of API sources Page 3. API-MS Surface Analysis Methodologies ... Page 4. Why API-MS • Fast analysis – high sample throughput ...

2012-12-06T23:59:59.000Z

51

MODELING CHEMICAL SPECIATION AND RELEASE FROM CEMENT ...  

System definition Input file (text) ... control? Water treatment Model with percolation ... MULTIELEMENT PREDICTIVE MODELLING OF pH

52

Assessment of the global impact of aerosols on tropospheric oxidants  

E-Print Network (OSTI)

[1] We present here a fully coupled global aerosol and chemistry model for the troposphere. The model is used to assess the interactions between aerosols and chemical oxidants in the troposphere, including (1) the conversion from gas-phase oxidants into the condensed phase during the formation of aerosols, (2) the heterogeneous reactions occurring on the surface of aerosols, and (3) the effect of aerosols on ultraviolet radiation and photolysis rates. The present study uses the global three-dimensional chemical/ transport model, Model for Ozone and Related Chemical Tracers, version 2 (MOZART-2), in which aerosols are coupled with the model. The model accounts for the presence of

Xuexi Tie; Sasha Madronich; Stacy Walters; David P. Edwards; Paul Ginoux; Natalie Mahowald; Renyi Zhang; Chao Lou; Guy Brasseur

2005-01-01T23:59:59.000Z

53

Application of Sun/star photometry to derive the aerosol optical depth  

Science Conference Proceedings (OSTI)

Atmospheric aerosols play a crucial role in the radiative transfer and chemical processes that control the Earth's climate. Aerosol optical depth and other related aerosol characteristics are widely known during daytime through Sun photometers, and so ...

D. Perez-Ramirez; B. Ruiz; J. Aceituno; F. J. Olmo; L. Alados-Arboledas

2008-09-01T23:59:59.000Z

54

NICKEL SPECIATION OF URBAN PARTICULATE MATTER  

SciTech Connect

A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

2003-10-01T23:59:59.000Z

55

Automated Chemical Analysis of Internally Mixed Aerosol Particles Using X-ray Spectromicroscopy at the Carbon K-Edge  

SciTech Connect

We have developed an automated data analysis method for atmospheric particles using scanning transmission X-ray microscopy coupled with near edge X-ray fine structure spectroscopy (STXM/NEXAFS). This method is applied to complex internally mixed submicrometer particles containing organic and inorganic material. Several algorithms were developed to exploit NEXAFS spectral features in the energy range from 278 to 320 eV for quantitative mapping of the spatial distribution of elemental carbon, organic carbon, potassium, and noncarbonaceous elements in particles of mixed composition. This energy range encompasses the carbon K-edge and potassium L2 and L3 edges. STXM/NEXAFS maps of different chemical components were complemented with a subsequent analysis using elemental maps obtained by scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX). We demonstrate the application of the automated mapping algorithms for data analysis and the statistical classification of particles.

Gilles, Mary K; Moffet, R.C.; Henn, T.; Laskin, A.

2011-01-20T23:59:59.000Z

56

ARM - Measurement - Aerosol scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer RL : Raman Lidar Field Campaign Instruments AOS : Aerosol Observing System DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments AEROSOL-TOWER-EML :...

57

ARM - Measurement - Aerosol extinction  

NLE Websites -- All DOE Office Websites (Extended Search)

CSPHOT : Cimel Sunphotometer CLDAEROSMICRO : Cloud and Aerosol Microphysical Properties DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments IAP : In-situ Aerosol...

58

Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Speciation in Piscivorous Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs Mercury toxicity generates environmental concerns in diverse aquatic systems because methylmercury enters the water column in diverse ways then biomagnifies through food webs. At the apex of many freshwater food webs, piscivorous fish can then extend that trophic transfer and potential for neurotoxicity to wildlife and humans. Mining activities, particularly those associated with the San Francisco Bay region, can generate both point and non-point mercury sources. Replicate XANES analyses on largemouth bass and hybrid striped bass from Guadalupe Reservoir (GUA), California and Lahontan Reservoir (LAH), Nevada, were performed to determine predominant chemical species of mercury accumulated by high-trophic-level piscivores that are exposed to elevated mercury in both solution and particulate phases in the water column.

59

Chemical Characterization of Aerosols on the East Coast of the United States Using Aircraft and Ground-Based Stations during the CLAMS Experiment  

Science Conference Proceedings (OSTI)

The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) experiment was carried out off the central East Coast of the United States in July 2001. During CLAMS, aerosol particle mass was measured at two ground stations and on the ...

Andréa Dde Almeida Castanho; Paulo Artaxo; J. Vanderlei Martins; Peter V. Hobbs; Lorraine Remer; Marcia Yamasoe; Peter R. Colarco

2005-04-01T23:59:59.000Z

60

Trace metal speciation in saline waters affected by geothermal brines. [GEOCHEM  

DOE Green Energy (OSTI)

A description is given of the chemical equilibrium computer program GEOCHEM, which has been developed to calculate trace element speciation in soil, irrigation, drainage, or Salton Sea waters affected by geothermal brine. GEOCHEM is applied to irrigation water-brine mixtures and to Salton Sea water-brine mixtures in order to compute the chemical speciation of the elements Cd, Cu, Hg, Ni, Pb, and Zn, along with the oxyanions of As and B. The results suggest that the computer simulation can have an important effect on a program for managing brine spills. Appendices include published papers on related research.

Sposito, G.; Page, A.L.

1977-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Trace metal characterization and speciation in geothermal effluent by multiple scanning anodic stripping voltammetry and atomic absorption analysis  

DOE Green Energy (OSTI)

Recent studies have shown geothermal power plants to have a significant environmental impact on the ground water of the area. The heavy metals arsenic and mercury are special problems, as both are concentrated by flora and fauna exposed to the effluent waters. Because the toxicity of these and other metallic pollutants present in geothermal effluent depends on the chemical form, or speciation, of the particular metal, any serious study of the environmental impact of a geothermal development should include studies of trace metal speciation, in addition to trace metal concentration. This proposal details a method for determining metal speciation in dilute waters. The method is based on ion-exchange and backed by atomic absorption spectrometry and multiple scanning anodic stripping voltammetry. Special laboratory studies will be performed on mercury, arsenic and selenium speciation in synthetic geothermal water. The method will be applied to three known geothermal areas in Washington and Oregon, with emphasis on the speciation of mercury, arsenic and selenium in these waters. The computer controlled electrochemical instrumentation was built and tested. Using this instrumentation, a new experimental procedure was developed to determine the chemical form (speciation) of metal ions in very dilute solutions (ng/ml). This method was tested on model systems including Pb, Cd, and As with C1/sup -/, CO/sub 3//sup 2 -/ and glycine ligands. Finally, the speciation of lead in a geothermal water was examined and the PbC1/sup +/ complex was observed and quantified.

Kowalski, B.R.

1979-05-25T23:59:59.000Z

62

ARM - Field Campaign - Aerosol Life Cycle IOP at BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAerosol Life Cycle IOP at BNL govCampaignsAerosol Life Cycle IOP at BNL Campaign Links Images Wiki 2011 ASR STM Presentation: Sedlacek 2011 ASR STM Presentation: Springston 2010 ASR Fall Meeting: Sedlacek News, June 14, 2011: Next-generation Aerosol-sampling Stations to Head for India Related Campaigns Aerosol Life Cycle: Chemical Ionization Mass Spectrometer - CIMS 2011.07.10, Lee, OSC Aerosol Life Cycle: HR-ToF-AMS 2011.06.15, Zhang, OSC Aerosol Life Cycle: ARM Mobile Facility 2 Aerosol Observing System 2011.06.15, Sedlacek, OSC Aerosol Life Cycle: UV-APS and Nano-SMPS 2011.06.10, Hallar, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Aerosol Life Cycle IOP at BNL 2011.06.01 - 2011.08.31 Lead Scientist : Arthur Sedlacek For data sets, see below.

63

On The Importance of Organic Oxygen for Understanding Organic Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

On The Importance of Organic Oxygen for Understanding Organic Aerosol On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Title On The Importance of Organic Oxygen for Understanding Organic Aerosol Particles Publication Type Journal Article Year of Publication 2006 Authors Pang, Yanbo, B. J. Turpin, and Lara A. Gundel Journal Journal of Aerosol Science and Technology Volume 40 Start Page Chapter Pagination 128-133 Abstract This study shows how aerosol organic oxygen data could provide new and independent information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass concentration has usually been estimated by multiplying the measured carbon content by an assumed organic mass (OM)-to-organic carbon (OC ) factor of 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This great uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health.New examination of organic aerosol speciation data shows that the oxygen content is the key factor responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-non-oxygen OC factor for all studied sites (urban and non-urban) is 1.13± 0.02. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6± 0.2 for urban and 2.1± 0.2 for non-urban areas). When aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1g per 100 g water

64

Cloud Activating Properties of Aerosol Observed during CELTIC  

Science Conference Proceedings (OSTI)

Measurements of aerosol size distribution, chemical composition, and cloud condensation nuclei (CCN) concentration were performed during the Chemical Emission, Loss, Transformation, and Interactions with Canopies (CELTIC) field program at Duke ...

Craig A. Stroud; Athanasios Nenes; Jose L. Jimenez; Peter F. DeCarlo; J. Alex Huffman; Roelof Bruintjes; Eiko Nemitz; Alice E. Delia; Darin W. Toohey; Alex B. Guenther; Sreela Nandi

2007-02-01T23:59:59.000Z

65

BNL | Aerosol Lifecycle Research  

NLE Websites -- All DOE Office Websites (Extended Search)

identified strategic process-science foci: aerosol nucleation and growth and aerosol aging and mixing state. BNL is the lead laboratory responsible for the design and...

66

Aerosol Can Failure  

Science Conference Proceedings (OSTI)

Presentation Title, Aerosol Can Failure ... Abstract Scope, A three-piece, welded seam aerosol can of liquid undercoating material failed catastrophically, ...

67

Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)  

DOE Data Explorer (OSTI)

The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

68

Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization  

SciTech Connect

Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

2009-07-10T23:59:59.000Z

69

Spatial and temporal variations of aerosols around Beijing in summer 2006: 2. Local and column aerosol optical properties  

SciTech Connect

Weather Research and Forecasting (WRF)-chem model calculations were conducted to study aerosol optical properties around Beijing, China, during the Campaign of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006) period. In this paper, we interpret aerosol optical properties in terms of aerosol mass concentrations and their chemical compositions by linking model calculations with measurements. In general, model calculations reproduced observed features of spatial and temporal variations of various surface and column aerosol optical parameters in and around Beijing. Spatial and temporal variations of aerosol absorption, scattering, and extinction coefficient corresponded well to those of elemental carbon (primary aerosol), sulfate (secondary aerosol), and the total aerosol mass concentration, respectively. These results show that spatial and temporal variations of the absorption coefficient are controlled by local emissions (within 100 km around Beijing during the preceding 24 h), while those of the scattering coefficient are controlled by regional-scale emissions (within 500 km around Beijing during the preceding 3 days) under synoptic-scale meteorological conditions, as discussed in our previous study of aerosol mass concentration. Vertical profiles of aerosol extinction revealed that the contribution of secondary aerosols and their water uptake increased with altitude within the planetary boundary layer, leading to a considerable increase in column aerosol optical depth (AOD) around Beijing. These effects are the main factors causing differences in regional and temporal variations between particulate matter (PM) mass concentration at the surface and column AOD over a wide region in the northern part of the Great North China Plain.

Matsui, Hitoshi; Koike, Makoto; Kondo, Yutaka; Takegawa, Nobuyuki; Fast, Jerome D.; Poschl, U.; Garland, R. M.; Andreae, M. O.; Wiedensohler, A.; Sugimoto, N.; Zhu, T.

2010-11-23T23:59:59.000Z

70

Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001  

Science Conference Proceedings (OSTI)

The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

Worsnop, Douglas R.

2001-06-01T23:59:59.000Z

71

The Role of Molecular Scale Investigations in Advanci,ng the Frontiers of Contaminant Speciation and Bioavailability in Soils  

E-Print Network (OSTI)

Speciation and Bioavailability in Soils Donald L. Sparks* Department of Plant and Soil Sciences, University. Contamination of soils and waters with metals, oxyanions, radionuclides, nutri~nts, and organic chemicals is the focus of research in a variety of fields including soil and environmental sciences and' engineering

Sparks, Donald L.

72

Quantification, Localization, and Speciation of Selenium in Seeds of Canola and Two Mustard Species Compared to Seed-Meals Produced  

E-Print Network (OSTI)

Quantification, Localization, and Speciation of Selenium in Seeds of Canola and Two Mustard Species with Se. We report a chemical analysis of Se in Brassica seeds (canola, Indian mustard, and white mustard shoots of several Brassica species, canola (Brassica napus), Indian mustard (Brassica juncea), and white

73

Characterization of Technetium Speciation in Cast Stone  

SciTech Connect

This report describes the results from laboratory tests performed at Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy (DOE) EM-31 Support Program (EMSP) subtask, “Production and Long-Term Performance of Low Temperature Waste Forms” to provide additional information on technetium (Tc) speciation characterization in the Cast Stone waste form. To support the use of Cast Stone as an alternative to vitrification for solidifying low-activity waste (LAW) and as the current baseline waste form for secondary waste streams at the Hanford Site, additional understanding of Tc speciation in Cast Stone is needed to predict the long-term Tc leachability from Cast Stone and to meet the regulatory disposal-facility performance requirements for the Integrated Disposal Facility (IDF). Characterizations of the Tc speciation within the Cast Stone after leaching under various conditions provide insights into how the Tc is retained and released. The data generated by the laboratory tests described in this report provide both empirical and more scientific information to increase our understanding of Tc speciation in Cast Stone and its release mechanism under relevant leaching processes for the purpose of filling data gaps and to support the long-term risk and performance assessments of Cast Stone in the IDF at the Hanford Site.

Um, Wooyong; Jung, Hun Bok; Wang, Guohui; Westsik, Joseph H.; Peterson, Reid A.

2013-11-11T23:59:59.000Z

74

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

75

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

76

BNL | Two-Column Aerosol Program (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Column Aerosol Project (TCAP) Two-Column Aerosol Project (TCAP) There remain many key knowledge gaps despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. Many climatically important processes depend on particles that undergo continuous changes within a size range spanning a few nanometers to a few microns, and with compositions that consist of a variety of carbonaceous materials, soluble inorganic salts and acids and insoluble mineral dust. Primary particles, which are externally-mixed when emitted, are subject to coagulation and chemical changes associated with the condensation of semi-volatile gases to their surface resulting in a spectrum of compositions or mixing-states with a range of climate-affecting optical and hygroscopic properties. The numerical treatments of aerosol transformation

77

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

Composition and Reactions of Atmospheric Aerosol Particles Print Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while changing organic composition by 13 to 24% per day, an oxidation rate significantly slower than is currently used in atmospheric models. Since oxidation has a strong effect on particle lifetime in the atmosphere, these results will help climate scientists refine the computer models used to predict climate change.

78

Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach  

E-Print Network (OSTI)

In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling ...

Baustian, Kelly J.

79

Solid aerosol generator  

DOE Patents (OSTI)

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

Prescott, Donald S. (Shelley, ID); Schober, Robert K. (Midwest City, OK); Beller, John (Idaho Falls, ID)

1992-01-01T23:59:59.000Z

80

On the Importance of Organic Oxygen for Understanding OrganicAerosol Particles  

SciTech Connect

This study shows how aerosol organic oxygen data could provide new information about organic aerosol mass, aqueous solubility of organic aerosols, formation of secondary organic aerosol (SOA) and the relative contributions of anthropogenic and biogenic sources. For more than two decades atmospheric aerosol organic mass (OM) concentration has been estimated by multiplying the measured carbon content by an assumed (OM)-to-organic carbon (OC) factor, usually 1.4. However, this factor can vary from 1.0 to 2.5 depending on location. This large uncertainty about aerosol organic mass limits our understanding of the influence of organic aerosol on climate, visibility and health. New examination of organic aerosol speciation data shows that the oxygen content is responsible for the observed range in the OM-to-OC factor. When organic oxygen content is excluded, the ratio of non-oxygen organic mass to carbon mass varies very little across different environments (1.12 to 1.14). The non-oxygen-OM-to-OC factor for all studied sites (urban and non-urban) averaged 1.13. The uncertainty becomes an order of magnitude smaller than the uncertainty in the best current estimates of organic mass to organic carbon ratios (1.6 {+-} 0.2 for urban and 2.1 {+-} 0.2 for non-urban areas). This analysis suggests that, when aerosol organic oxygen data become available, organic aerosol mass can be quite accurately estimated using just OC and organic oxygen (OO) without the need to know whether the aerosol is fresh or aged. In addition, aerosol organic oxygen data will aid prediction of water solubility since compounds with OO-to-OC higher than 0.4 have water solubilities higher than 1 g per 100 g water.

Pang, Y.; Turpin, B.J.; Gundel, L.A.

2005-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: govCampaignsBiogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 Related Campaigns Biogenic Aerosols- Effects on Clouds and Climate 2014.02.01, Petäjä, AMF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Biogenic Aerosols - Effects on Clouds and Climate: FIGAERO-ToF-CIMS Instrument in Hyytiala with AMF-2 2014.04.01 - 2014.06.01 Lead Scientist : Joel Thornton Description The ultimate goal of this work is to connect field and laboratory observations of organic aerosol chemical and physical properties during the nascent growth stage to the diurnal and vertical distributions of aerosol abundance measured over the boreal forest by the ARM Mobile Facility 2

82

Sampling Characteristics of an Aircraft-Borne Aerosol Inlet System  

Science Conference Proceedings (OSTI)

When sampling aerosol particles from aircraft, the inlet system is the most critical item because it can strongly modify the number concentration, size distribution, and chemical composition of the particles. In this investigation, the authors ...

M. Hermann; F. Stratmann; M. Wilck; A. Wiedensohler

2001-01-01T23:59:59.000Z

83

Climatic effects of 1950–2050 changes in US anthropogenic aerosols – Part 1: Aerosol trends and radiative forcing  

E-Print Network (OSTI)

We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 ...

Leibensperger, Eric Michael

84

Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements  

SciTech Connect

This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

Dr. Timothy Onasch

2009-09-09T23:59:59.000Z

85

Overview of the Cumulus Humilis Aerosol Processing Study.  

Science Conference Proceedings (OSTI)

Aerosols influence climate directly by scattering and absorbing radiation and indirectly through their influence on cloud microphysical and dynamical properties. The Intergovernmental Panel on Climate Change (IPCC) concluded that the global radiative forcing due to aerosols is large and in general cools the planet. But the uncertainties in these estimates are also large due to our poor understanding of many of the important processes related to aerosols and clouds. To address this uncertainty an integrated strategy for addressing issues related to aerosols and aerosol processes was proposed. Using this conceptual framework, the Cumulus Humilis Aerosol Processing Study (CHAPS) is a stage 1 activity, that is, a detailed process study. The specific focus of CHAPS was to provide concurrent observations of the chemical composition of the activated [particles that are currently serving as cloud condensation nuclei (CCN)] and nonactivated aerosols, the scattering and extinction profiles, and detailed aerosol and droplet size spectra in the vicinity of Oklahoma City, Oklahoma, during June 2007. Numerous campaigns have examined aerosol properties downwind from large pollution sources, including the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign and the two of the three Aerosol Characterization Experiments, ACE-2 and ACE-Asia. Other studies conducted near cities have examined changes in both aerosols and clouds downwind of urban areas. For example wintertime stratiform clouds associated with the urban plumes of Denver, Colorado, and Kansas City, Missouri, have a larger number concentration and smaller median volume diameter of droplets than clouds that had not been affected by the urban plume. Likewise, a decrease in precipitation in polluted regions along the Front Range of the Rocky Mountains was discovered. In a modeling study, it was found that precipitation downwind of urban areas may be influenced by changes in aerosols as well as the convergence pattern caused by the city. Recently, the New England Air Quality Study (NEAQS), and the 2004 International Consortium for Atmospheric Research on Transport and Transformation, which were conducted during the summer of 2004, examined the transport of pollutants and aerosols eastward from New England over the Atlantic Ocean. The Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS) also looked at relationships between clouds and aerosols in polluted conditions around Houston, Texas. In contrast to these recent studies near large or very dirty cities, CHAPS was conducted near a moderately sized city that is representative of a large number of cities around the United States. CHAPS was also one of the first times that a Aerodyne aerosol mass spectrometer was used in conjunction with a counterflow virtual impactor (CVI) inlet on an aircraft. The AMS provides information on the nonrefractory (i.e., materials that are chemically and physically unstable at high temperatures) composition of aerosols, while the CVI uses a counterflow relative to the main incoming airstream to exclude small droplets and nonactivated particles from the inlet, allowing only larger cloud droplets to enter the inlet. The combination of the CVI and AMS allow the examination of the chemical composition of the dried aerosol kernel from the cloud droplets. A key objective of the U.S. Department of Energy's (DOE)'s Atmospheric Sciences Program (ASP) is to improve the understanding of aerosol radiative effects on climate. This objective encompasses not only clear sky observations but also studies relating the effects of both aerosols on clouds and clouds on aerosols - in particular, how clouds affect the chemical and optical properties of aerosols. The latter was the science driver in the design of CHAPS. The measurement strategy for CHAPS was intended to provide measurements relevant to four questions associated with the aerosol radiative forcing issues of interest to the ASP: (1) How do the below-cloud and above-cloud aerosol optical and clou

Berg, L. K.; Berkowitz, C. M.; Ogren, J. A.; Hostetler, C. A.; Ferrare, R. A.; Dubey, M.; Andrews, E.; Coulter, R. L.; Hair, J. W.; Hubbe, J. M.Lee, Y. N.; Mazzoleni, C; Olfert, J; Springston, SR; Environmental Science Division; PNNL; NOAA Earth System Research Lab.; NASA Langley Research Center; LANL; BNL; Univ.of Alberta; Univ. of Colorado

2009-11-01T23:59:59.000Z

86

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

Science Conference Proceedings (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

87

Recent activities in the Aerosol Generation and Transport Program  

SciTech Connect

General statements may be made on the behavior of single-component and multi-component aerosols in the Nuclear Safety Pilot Plant vessel. The removal processes for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols are enhanced in a steam-air atmosphere. Steam-air seems to have little effect on removal of concrete aerosol from the vessel atmosphere. A steam-air environment causes a change in aerosol shape from chain-agglomerate to basically spherical for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosol; for concrete the change in aerosol shape is from chain-agglomerate to partially spherical. The mass ratio of the individual components of a multi-component aerosol seems to have an observable influence on the resultant behavior of these aerosols in steam. The enhanced rate of removal of the U/sub 3/O/sub 8/, the Fe/sub 2/O/sub 3/, and the mixed U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols from the atmosphere of the NSPP vessel by steam-air is probably caused by the change in aerosol shape and the condensation of steam on the aerosol surfaces combining to increase the effect of gravitational settling. The apparent lack of an effect by steam-air on the removal rate of concrete aerosol could result from a differing physical/chemical response of the surfaces of this aerosol to condensing steam.

Adams, R.E.

1984-01-01T23:59:59.000Z

88

Speciation of Uranium in Biologically Reduced Sediments in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy Office of Science SSRL Phone List People Search Maps Speciation of Uranium in Biologically Reduced Sediments in the Old Rifle Aquifer Wednesday, May 16, 2012 -...

89

ARM - Measurement - Aerosol absorption  

NLE Websites -- All DOE Office Websites (Extended Search)

absorption absorption ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol absorption The process in which radiation energy is retained by aerosols. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) PSAP : Particle Soot Absorption Photometer PASS : Photoacoustic Soot Spectrometer External Instruments OMI : Ozone Monitoring Instrument

90

ARM - Measurement - Aerosol concentration  

NLE Websites -- All DOE Office Websites (Extended Search)

concentration concentration ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol concentration A measure of the amount of aerosol particles (e.g. number, mass, volume) per unit volume of air. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System CSPHOT : Cimel Sunphotometer CPC : Condensation Particle Counter IAP : In-situ Aerosol Profiles (Cessna Aerosol Flights) TDMA : Tandem Differential Mobility Analyzer

91

Aerosols and solar energy  

DOE Green Energy (OSTI)

A brief description is presented of the involvement of the Solar Energy Research Institute (SERI) in atmospheric research, including aerosol characterization and modeling. The use of both rigorous and simple models for radiation transport is described. Modeled broadband solar irradiance data are shown to illustrate the important influence that aerosols have on the energy available to solar systems and the economics of solar systems design. Standard aerosol measurement methods for solar applications are discussed along with the need for improved instrumentation and methods.

Bird, R. E.; Hulstrom, R. L.

1979-01-01T23:59:59.000Z

92

Carbonaceous Aerosols and Radiative...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols and Radiative Effects Study Science Objective This field campaign is designed to increase scientific knowledge about the evolution of black carbon, primary organic...

93

Computational simulation of aerosol behaviour.  

E-Print Network (OSTI)

??In this thesis, computational methods have been developed for the simulation of aerosol dynamics and transport. Two different coupled aerosol-computational fluid dynamics (CFD) models are… (more)

Pyykönen, Jouni

2002-01-01T23:59:59.000Z

94

Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter  

SciTech Connect

This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

F Claret; C Tournassat; C Crouzet; E Gaucher; T Schäfer; G Braibant; D Guyonnet

2011-12-31T23:59:59.000Z

95

Thermally Speciated Mercury in Mineral Exploration | Open Energy  

Open Energy Info (EERE)

Thermally Speciated Mercury in Mineral Exploration Thermally Speciated Mercury in Mineral Exploration Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Thermally Speciated Mercury in Mineral Exploration Abstract Abstract unavailable. Author S.C. Smith Conference IGES; Dublin, CA; 2003/09/01 Published IGES, 2003 DOI Not Provided Check for DOI availability: http://crossref.org Citation S.C. Smith. 2003. Thermally Speciated Mercury in Mineral Exploration. In: Programs & Abstracts: Soil and Regolith Geochemistry in the Search for Mineral Deposits. IGES; 2003/09/01; Dublin, CA. Dublin, CA: IGES; p. 78 Retrieved from "http://en.openei.org/w/index.php?title=Thermally_Speciated_Mercury_in_Mineral_Exploration&oldid=681717" Categories: References Geothermal References

96

Diffusion and Modification of Marine Aerosol Particles over the Coastal Areas in China: A Case Study Using a Single Particle Analysis  

Science Conference Proceedings (OSTI)

Aerosol particles over coastal areas are subject to the modification of chemical composition during their transport and diffusion. For examining the modification, individual aerosol particles of 0.1–2-?m radius were collected at Shengshan Island (...

Fang Li; Kikuo Okada

1999-01-01T23:59:59.000Z

97

The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol  

Science Conference Proceedings (OSTI)

The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Köhler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Köhler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Köhler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The biases associated with these simplifications are compared for different supersaturations, and the variation of the biases is examined as a function of aerosol age. The results show that the simplification of internally mixed, size-independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

2010-03-15T23:59:59.000Z

98

Ganges valley aerosol experiment.  

Science Conference Proceedings (OSTI)

In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

Kotamarthi, V.R.; Satheesh, S.K. (Environmental Science Division); (Indian Institute of Science, Bangalore, India)

2011-08-01T23:59:59.000Z

99

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

Glenn C. England; Stephanie Wien; Mingchih O. Chang

2002-08-01T23:59:59.000Z

100

BNL | Aerosol Lifecycle IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Aerosol Life Cycle IOP The primary objectives that make up the Aerosol Life Cycle IOP can be broken down into three categories: Scientific; Logistical; and GVAX preparation. Scientific Objectives The science goals are to conduct intensive aerosol observations in a region exposed to anthropogenic, biogenic, and marine emissions with atmospheric processing times depending on air mass trajectories and time of day. Take advantage of new instruments in the MAOS (e.g., SP2, HR-PTRMS, ACSM, Trace Gas Suite, PASS-3, Aethelometer, UHSAS). Within this broad umbrella are embedded three main foci: Aerosol light absorption: How does the aerosol mass absorption coefficient (absorption per unit mass of BC) vary with atmospheric processing? Do observations agree with a shell-core model?

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions  

E-Print Network (OSTI)

, the aerosolassociated water depends on the composition of the #12;3 particles, which is determined by gas in a three dimensional chemical transport model to understand the roles of ammonia chemistry and natural precursors among modeled aerosol species selfconsistently with ambient relative humidity and natural

Zender, Charles

102

Loading capacity of various filters for lithium fire generated aerosols  

Science Conference Proceedings (OSTI)

The lithium aerosol loading capacity of a prefilter, HEPA filters and a sand and gravel bed filter was determined. The test aerosol was characterized and was generated by burning lithium in an unlimited air atmosphere. Correlation to sodium aerosol loading capacities were made to relate existing data to lithium aerosol loadings under varying conditions. This work is being conducted in support of the fusion reactor safety program. The lithium aerosol was generated by burning lithium pools, up to 45 kgs, in a 340 m/sup 3/ low humidity air atmosphere to supply aerosol to recirculating filter test loops. The aerosol was sampled to determine particle size, mass concentrations and chemical species. The dew point and gas concentrations were monitored throughout the tests. Loop inlet aerosol mass concentrations ranged up to 5 gr/m/sup 3/. Chemical compounds analyzed to be present in the aerosol include Li/sub 2/O, LiOH, and Li/sub 2/CO/sub 3/. HEPA filters with and without separators and a prefilter and HEPA filter in series were loaded with 7.8 to 11.1 kg/m/sup 2/ of aerosol at a flow rate of 1.31 m/sec and 5 kPa pressure drop. The HEPA filter loading capacity was determined to be greater at a lower flow rate. The loading capacity increased from 0.4 to 2.8 kg by decreasing the flow rate from 1.31 to 0.26 m/sec for a pressure drop of 0.11 kPa due to aerosol buildup. The prefilter tested in series with a HEPA did not increase the total loading capacity significantly for the same total pressure drop. Separators in the HEPA had only minor effect on loading capacity. The sand and gravel bed filter loaded to 0.50 kg/m/sup 2/ at an aerosol flow rate of 0.069 m/sec and final pressure drop of 6.2 kPa. These loading capacities and their dependence on test variables are similar to those reported for sodium aerosols except for the lithium aerosol HEPA loading capacity dependence upon flow rate.

Jeppson, D.W.; Barreca, J.R.

1980-10-23T23:59:59.000Z

103

ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Rob Newsom; John Goldsmith

104

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

105

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

SciTech Connect

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

106

Radiative and climate impacts of absorbing aerosols  

E-Print Network (OSTI)

P.M. Forster (2004), The semi-direct aerosol effect: Impactof absorbing aerosols on marine stratocumulus. Q. J .2005), Global anthropogenic aerosol direct forcing derived

Zhu, Aihua

2010-01-01T23:59:59.000Z

107

Carbonaceous Aerosol Study Using Advanced Particle Instrumentation  

E-Print Network (OSTI)

and atmospheric organic aerosol formation. Envir. Sci.of secondary organic aerosol mass fraction, Atmos. Chem.composition of ambient aerosol particles. Environ. Sci.

Qi, Li

2010-01-01T23:59:59.000Z

108

Power Plant Validation of the Mercury Speciation Sampling Method  

Science Conference Proceedings (OSTI)

This report presents results for the field validation study of the Ontario Hydro mercury speciation method. The tests were conducted at a Midwestern plant -- designated as Site E-29 -- burning bituminous coal.

1999-04-16T23:59:59.000Z

109

between Photolytic Aerosols and Solar Radiation  

E-Print Network (OSTI)

Since the early 70’s chemistry and transport models (ChTMs) have been proposed and improved. Tropospheric ChTMs for trace species are detailed numerical formulations intended to represent the atmospheric system as a whole, accounting for all the individual processes and phenomena that influence climate changes. The development of computer resources and the retrieval of emission inventories and observational data of the species of interest have enhanced the model evolution towards three-dimensional global models that account for more complicated chemical mechanisms, wet and dry deposition phenomena, and interactions and feedback mechanisms between meteorology and atmospheric chemistry. The purpose of this study is to ascertain the sensitivity of the solar radiative field in the atmosphere to absorption and scattering by aerosols. This effort is preliminary to the study of feedback mechanisms between photolytic processes that create and destroy aerosols and the radiation field itself. In this study, a cloud of water-soluble aerosols, randomly distributed in space within hypothetical 1-cm cubes of atmosphere, is generated. A random radius is assigned to each aerosol according to a lognormal size distribution function. The radiative field characterization is analyzed using a Mie scattering code to determine the scattering phase function and the absorption and scattering coefficients of sulfate aerosols, and a Monte Carlo ray-trace code is used to evaluate the radiative exchange. The ultimate goal of the effort is to create a tool to analyze the vertical distribution of absorption by aerosols in order to determine whether or not feedback between photolytic processes and the radiation field needs to be included in a Third Generation Chemistry and Transport model. ii

María Santa; María Iruzubieta; María Santa; María Iruzubieta

2001-01-01T23:59:59.000Z

110

Direct radiative forcing of anthropogenic organic aerosol  

E-Print Network (OSTI)

[1] This study simulates the direct radiative forcing of organic aerosol using the GFDL AM2 GCM. The aerosol climatology is provided by the MOZART chemical transport model (CTM). The approach to calculating aerosol optical properties explicitly considers relative humidity–dependent hygroscopic growth by employing a functional group– based thermodynamic model, and makes use of the size distribution derived from AERONET measurements. The preindustrial (PI) and present-day (PD) global burdens of organic carbon are 0.17 and 1.36 Tg OC, respectively. The annual global mean total-sky and clear-sky top-of-the atmosphere (TOA) forcings (PI to PD) are estimated as 0.34 and 0.71 W m 2, respectively. Geographically the radiative cooling largely lies over the source regions, namely part of South America, Central Africa, Europe and South and East Asia. The annual global mean total-sky and clear-sky surface forcings are 0.63 and 0.98 W m 2, respectively. A series of sensitivity analyses shows that the treatments of hygroscopic growth and optical properties of organic aerosol are intertwined in the determination of the global organic aerosol forcing. For example, complete deprivation of water uptake by hydrophilic organic particles reduces the standard (total-sky) and clearsky TOA forcing estimates by 18 % and 20%, respectively, while the uptake by a highly soluble organic compound (malonic acid) enhances them by 18 % and 32%, respectively. Treating particles as non-absorbing enhances aerosol reflection and increases the total-sky and clear-sky TOA forcing by 47 % and 18%, respectively, while neglecting the scattering brought about by the water associated with particles reduces them by 24% and 7%, respectively.

Yi Ming; V. Ramaswamy; Paul A. Ginoux; Larry H. Horowitz

2005-01-01T23:59:59.000Z

111

ARM - Measurement - Aerosol particle size  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size particle size ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size Linear size (e.g. radius or diameter) of an aerosol particle. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. Field Campaign Instruments AEROSMASSSPEC : Aerosol Mass Spectrometer CPI : Cloud Particle Imager DRI-GND : Desert Research Institute Ground-Based Aerosol Instruments DRUM-AEROSOL : Drum Aerosol Sampler AEROSOL-TOWER-EML : EML Tower based Aerosol Measurements

112

Monodisperse aerosol generator  

DOE Patents (OSTI)

An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

Ortiz, L.W.; Soderholm, S.C.

1988-09-19T23:59:59.000Z

113

RACORO aerosol data processing  

Science Conference Proceedings (OSTI)

The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

Elisabeth Andrews

2011-10-31T23:59:59.000Z

114

Effects of aerosols on deep convective cumulus clouds  

E-Print Network (OSTI)

This work investigates the effects of anthropogenic aerosols on deep convective clouds and the associated radiative forcing in the Houston area. The Goddard Cumulus Ensemble model (GCE) coupled with a spectral-bin microphysics is employed to investigate the aerosol effects on clouds and precipitation. First, aerosol indirect effects on clouds are separately investigated under different aerosol compositions, concentrations and size distributions. Then, an updated GCE model coupled with the radiative transfer and land surface processes is employed to investigate the aerosol radiative effects on deep convective clouds. The cloud microphysical and macrophysical properties change considerably with the aerosol properties. With varying the aerosol composition from only (NH4)2SO4, (NH4)2SO4 with soluble organics, to (NH4)2SO4 with slightly soluble organics, the number of activated aerosols decreases gradually, leading to a decrease in the cloud droplet number concentration (CDNC) and an increase in the droplet size. Ice processes are more sensitive to the changes of aerosol chemical properties than the warm rain processes. The most noticeable effect of increasing aerosol number concentrations is an increase of CDNC and cloud water content but a decrease in droplet size. It is indicated that the aerosol indirect effect on deep convection is more pronounced in relatively clean air than in heavily polluted air. The aerosol effects on clouds are strongly dependent on RH: the effect is very significant in humid air. Aerosol radiative effects (ARE) on clouds are very pronounced for mid-visible single-scattering albedo (SSA) of 0.85. Relative to the case without the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. The daytime-mean direct forcing is about 2.2 W m-2 at the TOA and -17.4 W m-2 at the surface. The semi-direct forcing is positive, about 10 and 11.2 W m-2 at the TOA and surface, respectively. Aerosol direct and semi-direct effects are very sensitive to SSA. The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable atmosphere due to enhanced surface cooling and atmospheric heating.

Fan, Jiwen

2007-08-01T23:59:59.000Z

115

Wavelength Dependence of Aerosol Extinction Coefficient for Stratospheric Aerosols  

Science Conference Proceedings (OSTI)

A simple empirical formula for the wavelength dependence of the aerosol extinction coefficient is proposed. The relationship between the constants in the formula and the variable parameter in the aerosol size distribution is explicitly expressed. ...

Glenn K. Yue

1986-11-01T23:59:59.000Z

116

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Policy Applications Speaker(s): Susanne Bauer Date: December 6, 2011 - 4:00pm Location: 90-4133 Seminar...

117

Aerosol–CCN Closure at a Semi-rural Site  

Science Conference Proceedings (OSTI)

aerosol size distributions and size-resolved aerosol compositions measured by ... Keywords Cloud condensation nuclei, closure study, organic aerosols, Köhler.

118

Formation mechanisms and quantification of organic nitrates in atmospheric aerosol  

E-Print Network (OSTI)

Atmospheric submicron aerosol . . . . . . . 2.3 Partitioningon SOA organic aerosol formation alkyl nitrate and secondaryPeroxy radical fate . . . . . . Aerosol . . . . . . . .

Rollins, Andrew Waite

2010-01-01T23:59:59.000Z

119

The use of ion chromatography-D.C. plasma atomic emission spectrometry for the speciation of trace metals. Final performance technical report, February 1, 1995--January 31, 1998  

SciTech Connect

The chemistry of heavy metals in natural waters, industrial waste streams, and the environment is influenced by a number of factors including the prevailing matrix, their relative concentrations, and biologically or chemically induced transformations. Speciation, which entails the identification and quantification of all the forms of a metal or any other chemical entity present in a sample, is a necessary step in assessing the toxic and pollution effects and the overall impact of these entities on environmental systems. Analytical methods and protocols that can provide analytical data in the parts per billion concentration range and below are needed for these kinds of measurements. The thrust of this research was to develop metal speciation methods and techniques using direct current plasma (DCPAES) in combination with ion chromatography (IC), whereby the DCPAES serves as an element selective detector (ESD) for the metal species separated in the chromatographic column. While the metal speciation work carried out in this program has utilized the IC-DCPAES as the primary analytical measurement tool, other sample processing and preparation approaches have also been developed to enhance the effectiveness and capability of the chromatographic-element selective method of metal speciation. Post-column derivatization and solid phase extraction are two protocols which were incorporated with IC-ESD with significant improvements in the capability of the method.

Urasa, I.T.

1998-06-12T23:59:59.000Z

120

Changes in Zinc Speciation with Mine Tailings Acidification in a Semiarid Weathering Environment  

Science Conference Proceedings (OSTI)

High concentrations of residual metal contaminants in mine tailings can be transported easily by wind and water, particularly when tailings remain unvegetated for decades following mining cessation, as is the case in semiarid landscapes. Understanding the speciation and mobility of contaminant metal(loid)s, particularly in surficial tailings, is essential to controlling their phytotoxicities and to revegetating impacted sites. In prior work, we showed that surficial tailings samples from the Klondyke State Superfund Site (AZ, USA), ranging in pH from 5.4 to 2.6, represent a weathering series, with acidification resulting from sulfide mineral oxidation, long-term Fe hydrolysis, and a concurrent decrease in total (6000 to 450 mg kg{sup -1}) and plant-available (590 to 75 mg kg{sup -1}) Zn due to leaching losses and changes in Zn speciation. Here, we used bulk and microfocused Zn K-edge X-ray absorption spectroscopy (XAS) data and a six-step sequential extraction procedure to determine tailings solid phase Zn speciation. Bulk sample spectra were fit by linear combination using three references: Zn-rich phyllosilicate (Zn{sub 0.8}talc), Zn sorbed to ferrihydrite (Zn{sub adsFeOx}), and zinc sulfate (ZnSO{sub 4} {center_dot} 7H{sub 2}O). Analyses indicate that Zn sorbed in tetrahedral coordination to poorly crystalline Fe and Mn (oxyhydr)oxides decreases with acidification in the weathering sequence, whereas octahedral zinc in sulfate minerals and crystalline Fe oxides undergoes a relative accumulation. Microscale analyses identified hetaerolite (ZnMn{sub 2}O{sub 4}), hemimorphite (Zn{sub 4}Si{sub 2}O{sub 7}(OH){sub 2} {center_dot} H{sub 2}O) and sphalerite (ZnS) as minor phases. Bulk and microfocused spectroscopy complement the chemical extraction results and highlight the importance of using a multimethod approach to interrogate complex tailings systems.

Hayes, Sarah M.; O’ Day, Peggy A.; Webb, Sam M.; Maier, Raina M.; Chorover, Jon (UCM); (SLAC); (Ariz)

2012-10-09T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Metal speciation in landfill leachates with a focus on the influence of organic matter  

SciTech Connect

Highlights: > This study characterises the heavy-metal content in leachates collected from eight landfills in France. > Most of the metals are concentrated in the <30 kDa fraction, while Pb, Cu and Cd are associated with larger particles. > Metal complexation with OM is not sufficient to explain apparent supersaturation of metals with sulphide minerals. - Abstract: This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.

Claret, Francis, E-mail: f.claret@brgm.fr [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Tournassat, Christophe; Crouzet, Catherine; Gaucher, Eric C. [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France); Schaefer, Thorsten [Karlsruhe Institute of Technology (KIT), Institute for Nuclear Waste Disposal (INE), P.O. Box 3640, 76021 Karlsruhe (Germany); Freie Universitaet Berlin, Institute of Geological Sciences, Department of Earth Sciences, Hydrogeology Group, D-12249 Berlin (Germany); Braibant, Gilles; Guyonnet, Dominique [BRGM, 3 avenue C. Guillemin, BP 6009, 45060 Orleans (France)

2011-09-15T23:59:59.000Z

122

Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model  

E-Print Network (OSTI)

and R. Ruedy, Matrix (multiconfiguration aerosol tracker ofmixing state): An aerosol microphysical module for globalAn investigative review, Aerosol Sci. Technol. , Vol. 40,

Bauer, Susanne E.

2010-01-01T23:59:59.000Z

123

Highly stable aerosol generator  

DOE Patents (OSTI)

An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

DeFord, Henry S. (Kennewick, WA); Clark, Mark L. (Kennewick, WA)

1981-01-01T23:59:59.000Z

124

Highly stable aerosol generator  

DOE Patents (OSTI)

An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

DeFord, H.S.; Clark, M.L.

1981-11-03T23:59:59.000Z

125

Long-Range Tropospheric Transport of Pollution Aerosols into the Alaskan Arctic  

Science Conference Proceedings (OSTI)

Noncrustal vanadium and manganese are used as chemical tracers for pollution-derived aerosols (collected over a period of four years in the near-surface air at Barrow, Alaska), in order to investigate tropospheric long-range transport of ...

Wolfgang E. Raatz; Glenn E. Shaw

1984-07-01T23:59:59.000Z

126

Characterisation of lightly oxidised organic aerosol formed from the photochemical aging of diesel exhaust particles  

E-Print Network (OSTI)

The oxidative aging of the semivolatile fraction of diesel exhaust aerosol is studied in order to better understand the influence of oxidation reactions on particle chemical composition. Exhaust is sampled from an idling ...

Kroll, Jesse

127

Assessment of Seeding Effects in Snowpack Augmentation Programs: Ice Nucleation and Scavenging of Seeding Aerosols  

Science Conference Proceedings (OSTI)

Trace chemical analysis techniques have been used in a series of cloud-seeding experiments in the central Sierra Nevada with the ultimate purpose of distinguishing whether the submicron-sized aerosol particles used for seeding are removed by ...

J. A. Warburton; L. G. Young; R. H. Stone

1995-01-01T23:59:59.000Z

128

Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign  

E-Print Network (OSTI)

One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the ...

Karydis, V. A.

129

A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution  

E-Print Network (OSTI)

We discuss the use of a two-dimensional volatility-oxidation space (2-D-VBS) to describe organic-aerosol chemical evolution. The space is built around two coordinates, volatility and the degree of oxidation, both of which ...

Donahue, N. M.

130

Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston  

E-Print Network (OSTI)

Many recent models underpredict secondary organic aerosol (SOA) particulate matter (PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. ...

Wood, E. C.

131

Priorities for In-situ Aerosol Measurements  

NLE Websites -- All DOE Office Websites (Extended Search)

Priorities for In-situ Priorities for In-situ Aerosol Measurements Parameters * Aerosol light absorption coefficient - spectral, including UV, vis, and IR - as f(RH), and at ambient RH * Phase function - or relevant integral properties (how many?) * Ice nuclei * Scattering vs. RH, for RH>90% * CCN, as f(S, D p ) * Size distribution * Chemical composition - for determining climate forcing, vs. radiative effect Calibration * Number concentration * Size and shape * Light absorption reference method Characterization * Accuracy and precision - need well-understood error bars * Algorithm comparisons * Closure studies * Facilities for method testing - aircraft time Methods * Inlets - shattering/splashing - location on airplane - passing efficiency - inletless analyzers/samplers * Packaging - modular/portable "pods" for multiple a/c

132

Geometrical Optics of Dense Aerosols  

SciTech Connect

Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

2013-04-24T23:59:59.000Z

133

BNL | Aerosol, Cloud, Precipitation Interactions  

NLE Websites -- All DOE Office Websites (Extended Search)

Cloud-Aerosol-Precipitation Interactions Cloud-Aerosol-Precipitation Interactions Atmospheric aerosols exert important "indirect effects" on clouds and climate by serving as cloud condensation nuclei (CCN) and ice nuclei that affect cloud radiative and microphysical properties. For example, an increase in CCN increases the number concentration of droplets enhances cloud albedo, and suppresses precipitation that alters cloud coverage and lifetime. However, in the case of moist and strong convective clouds, increasing aerosols may increase precipitation and enhance storm development. Although aerosol-induced indirect effects on climate are believed to have a significant impact on global climate change, estimating their impact continues to be one of the most uncertain climate forcings.

134

Jankovic Aerosol Characterization.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization, Characterization, Aerosol Characterization, Interpretation, and Interpretation, and Application of Data Application of Data NSRC Symposium NSRC Symposium July 8, 2008 John Jankovic, CIH CIH Center for Nanophase Materials Sciences Center for Nanophase Materials Sciences Aerosol Characterization, Interpretation, and Aerosol Characterization, Interpretation, and Application of Data Application of Data Department of Energy (DOE) Nanoscale Science Research Centers (NSRC) developing Approach to Nanomaterial ES&H - The CNMS Approach * Establish Exposure Control Guideline (ECG) - Characterize Aerosol * Collect and interpret data * Assign Process to a Control Band Aerosol Particle Characterization * Size distribution (geometric mean and geometric standard deviation related to either mass, surface, or number)

135

XANES Identification of Plutonium Speciation in RFETS Samples  

Science Conference Proceedings (OSTI)

Using primarily X-ray absorption near edge spectroscopy (XANES) with standards run in tandem with samples, probable plutonium speciation was determined for 13 samples from contaminated soil, acid-splash or fire-deposition building interior surfaces, or asphalt pads from the Rocky Flats Environmental Technology Site (RFETS). Save for extreme oxidizing situations, all other samples were found to be of Pu(IV) speciation, supporting the supposition that such contamination is less likely to show mobility off site. EXAFS analysis conducted on two of the 13 samples supported the validity of the XANES features employed as determinants of the plutonium valence.

LoPresti, V.; Conradson, S.D.; Clark, D.L.

2009-06-03T23:59:59.000Z

136

Actinide speciation in glass leach-layers: An EXAFS study  

SciTech Connect

Uranium L{sub 3} X-ray absorption data were obtained from two borosilicate glasses, which are considered as models for radioactive wasteforms, both before and after leaching. Surface sensitivity to uranium speciation was attained by a novel application of simultaneous fluorescence and electron-yield detection. Changes in speciation are clearly discernible, from U(VI) in the bulk to (UO{sub 2}){sup 2+}-uranyl in the leach layer. The leach-layer uranium concentration variations with leaching times are also determined from the data.

Biwer, B.M.; Soderholm, L. [Argonne National Lab., IL (United States); Greegor, R.B. [Boeing Co., Seattle, WA (United States); Lytle, F.W. [EXAFS Co., Pioche, NV (United States)

1996-12-31T23:59:59.000Z

137

X-ray absorption near edge structure spectrometry study of nickel and lead speciation in coals and coal combustion products  

SciTech Connect

The fate and environmental impacts of trace elements from coal fired power stations are a significant concern because of the large quantities of coal used as an energy source. The ultimate environmental fate and health impact of some of these trace elements is dependent on their various forms and oxidation states. Nickel and lead are two of the trace elements classified as 'priority pollutants' by the National Pollutant Inventory (NPI) in Australia. This study attempts to understand speciation of nickel and lead in coal and coal combustion products from five coal fired power stations in Australia where bituminous rank coals are utilized. Non-destructive X-ray Absorption Near Edge Structure Spectrometry (XANES) was used to determine speciation of these metals. Semiquantitative speciation of nickel and lead was calculated using a linear combination fit of XANES spectra obtained for selected pure reference compounds. In all fly ash samples, 28-80% of nickel was present as nickel in NiSO{sub 4} form, which is a more toxic and more bioavailable form of nickel. Less toxic NiO was detected in fly ash samples in the range of 0-15%. Speciation of lead revealed that 65-70% is present as PbS in the feed coals. In all fly ash samples analyzed, lead comprised different proportions of PbCl{sub 2}, PbO, and PbSO{sub 4}. PbCl{sub 2} and PbSO{sub 4} contents varied between 30-70% and 30-60%, respectively. Chemical reactions resulting in nickel and lead transformation that are likely to have occurred in the post-combustion environment are discussed. 22 refs., 7 figs., 7 tabs.

Pushan Shah; Vladimir Strezov; Peter F. Nelson [Macquarie University, Sydney, NSW (Australia). CRC for Coal in Sustainable Development

2009-03-15T23:59:59.000Z

138

ARM's Aerosol Observing System (AOS) Data  

DOE Data Explorer (OSTI)

The aerosol observing system (AOS) is the primary Atmospheric Radiation Measurement (ARM) platform for in situ aerosol measurements at the surface. The principal measurements are those of the aerosol absorption and scattering coefficients as a function of the particle size and radiation wavelength. Additional measurements include those of the particle number concentration, size distribution, hygroscopic growth, and inorganic chemical composition. The AOS measures aerosol optical properties to better understand how particles interact with solar radiation and influence the earth's radiation balance. The measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. [Copied from http://www.arm.gov/instruments/aos]

The ARM Archive at Oak Ridge National Laboratory holds aerosol data from the AOS for two of the permanent ARM sites, North Slope Alaska (NSA) and Southern Great Plains (SGP), as well as from mobile facilities used during specific field campaigns. The AOS has collected data since 1995.

139

Tropospheric Aerosol Chemistry via Aerosol Mass Spectrometry  

NLE Websites -- All DOE Office Websites (Extended Search)

chemical information needed to interpret mass spectra. The challenge is to separate primary and secondary; anthropogenic, biogenic and biomass burning sources - and...

140

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Aerosols in a Changing Atmosphere: From Detailed Aerosol Microphysics to Policy Applications Speaker(s): Susanne Bauer Date: December 6, 2011 - 4:00pm Location: 90-4133 Seminar Host/Point of Contact: Surabi Menon The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, However, understanding the net effect of multi-source emitting sectors and the involved cloud feedbacks is

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Speciation of Trace Elements in Biological and Environmental Samples by X-ray Absorption Spectroscopy: The Role of Plants and Microbes in Remediation  

Science Conference Proceedings (OSTI)

Plants can accumulate, detoxify, and transform trace elements present in contaminated soil and water, leading to the phytoremediation of contaminated sites. An important factor for consideration is the chemical form of trace elements accumulated in tissues of different plant species used for phytoremediation. This report describes the use of X-ray absorption spectroscopy (XAS) for successfully determining the speciation of trace elements in biological and environmental samples.

2001-11-21T23:59:59.000Z

142

Trace element speciation under coal fired power station conditions  

Science Conference Proceedings (OSTI)

Coal combustion from power stations is one of the largest contributors of potentially toxic trace elements to the environment. Some trace elements may be released in range of valencies, often with varying toxicity and bioavailability. Hence, determination ... Keywords: arsenic, chromium, coal combustion, mercury, selenium, speciation, trace elements

Pushan Shah; Vladimir Strezov; Peter F. Nelson

2007-05-01T23:59:59.000Z

143

Evolution of Asian aerosols during transpacific transport in INTEX-B  

Science Conference Proceedings (OSTI)

Measurements of aerosol composition were made with an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) on board the NSF/NCAR C-130 aircraft as part of the Intercontinental Chemical Transport Experiment Phase B 5 (INTEX-B) field campaign over the Eastern Pacific Ocean. The HR-ToF-AMS measurements of non-refractory submicron aerosol mass are shown to compare well with other aerosol instrumentation in the INTEX-B field study. Two case studies are described for pollution layers transported across the Pacific from the Asian continent, intercepted 3–4 days and 7–10 days downwind of Asia, respectively. Aerosol chemistry is shown to 10 be a robust tracer for air masses originating in Asia, specifically the presence of sulfate dominated aerosol is a distinguishing feature of Asian pollution layers that have been transported to the Eastern Pacific. We examine the time scales of processing for sulfate and organic aerosol in the atmosphere and show that our observations confirm a conceptual model for transpacific transport from Asia proposed by Brock et al. (2004). 15 Our observations of both sulfate and organic aerosol in aged Asian pollution layers are consistent with fast formation near the Asian continent, followed by washout during lofting and subsequent transformation during transport across the Pacific. Our observations are the first atmospheric measurements to indicate that although secondary organic aerosol (SOA) formation from pollution happens on the timescale of one day, 20 the oxidation of organic aerosol continues at longer timescales in the atmosphere. Comparisons with chemical transport models of data from the entire campaign reveal an under-prediction of SOA mass in the MOZART model, but much smaller discrepancies with the GEOS-Chem model than found in previous studies over the Western Pacific. No evidence is found to support a previous hypothesis for significant secondary 25 organic aerosol formation in the free troposphere.

Dunlea, E. J.; DeCarlo, Peter; Aiken, Allison; Kimmel, Joel; Peltier, R. E.; Weber, R. J.; Tomlinson, Jason M.; Collins, Donald R.; Shinozuka, Yohei; McNaughton, C. S.; Howell, S. G.; Clarke, A. D.; Emmons, L.; Apel, Eric; Pfister, G. G.; van Donkelaar, A.; Martin, R. V.; Millet, D. B.; Heald, C. L.; Jimenez, J. L.

2009-10-01T23:59:59.000Z

144

ARM - Mobile Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesMobile Aerosol Observing System FacilitiesMobile Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Aerosol Observing System Intensive aerosol observations conducted on the campus of Brookhaven National Laboratory on Long Island, New York, using the ARM Mobile Aerosol Observing System. Intensive aerosol observations conducted on the campus of Brookhaven

145

Aerosol Observing System (AOS) Handbook  

Science Conference Proceedings (OSTI)

The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

Jefferson, A

2011-01-17T23:59:59.000Z

146

Modeling of aqueous and organic phase speciation for solvent extraction systems  

SciTech Connect

The TRUEX (TRansUranic EXtraction) solvent extraction process has the ability to remove, separate, and recover transuranic (TRU) elements from acidic nuclear waste solutions. A computer model of the TRUEX process is currently being developed for use in flowsheet design and process optimization. The correlations that are to be used in the model for generating extraction distribution ratios are based on chemical mass action principles and require calculation of aqueous and organic phase speciation. Aqueous phase activity coefficients are calculated using methods available in the literature, while the organic phase species are treated in terms of ideal associated solution theory. This approach is demonstrated for the extraction of HNO/sub 3/, HTcO/sub 4/, and americium nitrate by n-octyl(phenyl)-N,N-diisobutylcarbamoyl-methylphosphine oxide (CMPO)---the primary metal extractant in the TRUEX solvent. 23 refs., 5 figs.

Chaiko, D.J.; Tse, Pui-Kwan; Vandegrift, G.F

1988-11-01T23:59:59.000Z

147

DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS  

SciTech Connect

This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

Glenn England; Oliver Chang; Stephanie Wien

2002-02-14T23:59:59.000Z

148

THE ROLE OF SOOT IN AEROSOL CHEMISTRY  

E-Print Network (OSTI)

characterization of aerosols." in Nature. Aim. and MethodsLAWRENCE THE ROLE OF SOOT IN AEROSOL CHEMISTRY T. NovakovTHE ROLE OF SOOT IN AEROSOL CHEMISTRY* T. Novakov Lawrence

Novakov, T.

2010-01-01T23:59:59.000Z

149

Characterizing the formation of secondary organic aerosols  

E-Print Network (OSTI)

and Flagan, R.C. (1990) Aerosol Sci. and Technol. 13 , 230.and Seinfeld, J.H. (2002) Aerosol Science and Technology ,light absorption by atmospheric aerosol, in preparation for

Lunden, Melissa; Black, Douglas; Brown, Nancy

2004-01-01T23:59:59.000Z

150

Optical Properties of Secondary Organic Aerosols  

E-Print Network (OSTI)

Paulson, S. E. ; Chung, A. Aerosol Sci. Technol. 2007 , 41,Y. G. ; Daum, P. H. J. Aerosol Sci 2008 , 39, 974-986. (32)Accurate Monitoring of Terrestrial Aerosols and Total Solar

Kim, Hwajin

2012-01-01T23:59:59.000Z

151

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer (OSTI)

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

152

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

SciTech Connect

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Chitra Sivaraman; Connor Flynn

2010-12-15T23:59:59.000Z

153

EMSL: Science: Atmospheric Aerosol Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Aerosol Systems Atmospheric Aerosol Systems atmospheric logo Nighttime enhancement of nitrogen-containing organic compounds, or NOC Observed nighttime enhancement of nitrogen-containing organic compounds, or NOC, showed evidence of being formed by reactions that transform carbonyls into imines. The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model parameterization to improve the accuracy of climate model simulations and develop a predictive understanding of climate. By elucidating the role of natural and anthropogenic regional and global climate forcing mechanisms, EMSL can provide DOE and others with the ability to develop cost-effective strategies to monitor, control and mitigate them.

154

Aerosol Metrology for Climate Workshop  

Science Conference Proceedings (OSTI)

... the interaction of aerosols with solar radiation ... that will accelerate the development of new ... together experts from government, industry and academia ...

2012-04-26T23:59:59.000Z

155

Researchers Model Impact of Aerosols Over California  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May...

156

Direct Aerosol Forcing in the Infrared at the SGP Site?  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Aerosol Forcing in the Infrared at the SGP Site? Direct Aerosol Forcing in the Infrared at the SGP Site? D. D. Turner and C. N. Long Pacific Northwest National Laboratory Richland, Washington Introduction Low level haze is often observed during the night and early morning hours in many locations. This haze is typically formed during quiescent conditions by radiative cooling of the surface, which lowers the ambient temperature and consequently increases the near-surface relative humidity (RH). Many aerosols start to deliquesce around 75% relative humidity (RH) (depending on their chemical composition), and thus if the near surface RH increases above this level, haze will form. The Atmospheric Radiation Measurement (ARM) Program's ultimate goal, stated simply, is to improve the treatment of radiative transfer in global climate models. Global climate models typically do not

157

Organic Aerosol Partition Module Documentation  

Science Conference Proceedings (OSTI)

With the promulgation of new National Ambient Air Quality Standards (NAAQS) for fine particulate matter (PM-2.5), data and analytical tools are needed to support their implementation. This report documents an EPRI modeling component for efficiently simulating aspects of organic aerosol formation. Without this component, simulations would tend to overestimate the contribution of power plant emissions to atmospheric aerosol mass.

1999-07-14T23:59:59.000Z

158

Subarctic atmospheric aerosol composition: 2. Hygroscopic growth properties  

SciTech Connect

Sub-arctic aerosols were sampled during July 2007 at the Abisko Scientific Research Station Stordalen site in northern Sweden with an instrument setup consisting of a custom-built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) connected in series to a single particle mass spectrometer. Aerosol chemical composition in the form of bipolar single particle mass spectra was determined as a function of hygroscopic growth both in situ and in real time. The HTDMA was deployed at a relative humidity of 82% and particles with a dry mobility diameter of 260 nm were selected. Aerosols from two distinct airmasses were analyzed during the sampling period. Sea salt aerosols were found to be the dominant particle group with the highest hygroscopicity. High intensities of sodium and related peaks in the mass spectra were identified as exclusive markers for large hygroscopic growth. Particles from biomass combustion were found to be the least hygroscopic aerosol category. Species normally considered soluble (e.g., sulfates and nitrates) were found in particles ranging from high to low hygroscopicity. Furthermore, the signal intensities of the peaks related to these species did not correlate with hygroscopicity.

Herich, Hanna; Kammermann, Lukas; Friedman, Beth; Gross, Deborah S.; Weingartner, E.; Lohmann, U.; Spichtinger, Peter; Gysel, Martin; Baltensperger, Urs; Cziczo, Daniel J.

2009-07-10T23:59:59.000Z

159

Evolution of Ozone, Particulates, and Aerosol Direct Radiative Forcing in the Vicinity of Houston Using a Fully Coupled Meteorology-Chemistry-Aerosol Model  

SciTech Connect

A new fully-coupled meteorology-chemistry-aerosol model is used to simulate the urban to regional scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a five day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still under-estimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg; Peckham, S. E.

2006-11-11T23:59:59.000Z

160

Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological and Anthropogenic Factors Influencing Mercury Speciation Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim,1 James J. Rytuba,2 Gordon E. Brown, Jr.3 1Department of Physical Sciences, Chapman University, Orange, CA 92866 2U.S. Geological Survey, Menlo Park, CA 94025 3Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Introduction Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The majority of mercury mine wastes at these sites are present as loose, unconsolidated piles, facilitating the transport of mercury-bearing material downstream into local watersheds. Mercury (Hg) is a naturally occurring element that poses considerable health risks to humans, primarily through the consumption of fish which

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

How the Transport and Dispersion of AgI Aerosols May Affect Detectability of Seeding Effects by Statistical Methods  

Science Conference Proceedings (OSTI)

Trace chemical measurements of the silver content of snow have been used to investigate the transport and dispersion of silver iodide cloud seeding aerosols into and around two large target areas in the central Sierra Nevada between 1978 and ...

Joseph A. Warburton; Richard H. Stone III; Byron L. Marler

1995-09-01T23:59:59.000Z

162

Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles  

E-Print Network (OSTI)

arid regions in China and Africa. Such aerosol streams have been shown to travel around the globe with silica aerosols from China impacting air quality in the continental US and #12;2 alumina and titania delivery mechanisms for a variety of drugs as an alternative to injections. As delivery devices

Beaucage, Gregory

163

NETL: Utilization Projects - Speciation and Attenuation of Arsenic and  

NLE Websites -- All DOE Office Websites (Extended Search)

Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities Speciation and Attenuation of Arsenic and Selenium at Coal Combustion By-Product Management Facilities The overall objective of this project is to evaluate the impact of key constituents captured from power plant air streams (arsenic, selenium and mercury) on the disposal and utilization of coal combustion by-products. Specific objectives of the project are: 1) to develop a comprehensive database of field leachate concentrations at a wide range of CCB management sites (about 25 sites), including speciation of arsenic and selenium, and low-detection limit analyses for mercury; and 2) to perform detailed evaluations of the release and attenuation of arsenic and selenium species at 3 CCB sites. The fundamental or mechanistic data to reliably model many of the inorganics in CCB leachate are lacking. There is a large degree of uncertainty in the initial leachate concentrations, long-term leaching characteristics of CCBs, and the attenuation coefficients typically used in groundwater transport models. As a result, the model simulations are either highly conservative, or they can be manipulated to obtain almost any desired result. This research project will develop a coherent field leachate database and soil attenuation coefficients for improved modeling and evaluation of the potential for groundwater impacts at CCB management facilities. The work is focused on speciation of four key constituents at CCB sites: arsenic, selenium, chromium, and mercury. The proposed work will help to narrow the uncertainties in the range of values of these critical inputs and improve the accuracy of the modeling results.

164

Pu speciation in actual and simulated aged wastes  

Science Conference Proceedings (OSTI)

X-ray Absorption Fine Structure Spectroscopy (XAFS) at the Pu L{sub II/III} edge was used to determine the speciation of this element in (1) Hanford Z-9 Pu crib samples, (2) deteriorated waste resins from a chloride process ion-exchange purification line, and (3) the sediments from two Waste Isolation Pilot Plant Liter Scale simulant brine systems. The Pu speciation in all of these samples except one is within the range previously displayed by PuO{sub 2+x-2y}(OH){sub y}{center_dot}zH{sub 2}O compounds, which is expected based on the putative thermodynamic stability of this system for Pu equilibrated with excess H{sub 2}O and O{sub 2} under environmental conditions. The primary exception was a near neutral brine experiment that displayed evidence for partial substitution of the normal O-based ligands with Cl{sup -} and a concomitant expansion of the Pu-Pu distance relative to the much more highly ordered Pu near neighbor shell in PuO{sub 2}. However, although the Pu speciation was not necessarily unusual, the Pu chemistry identified via the history of these samples did exhibit unexpected patterns, the most significant of which may be that the presence of the Pu(V)-oxo species may decrease rather than increase the overall solubility of these compounds. Several additional aspects of the Pu speciation have also not been previously observed in laboratory-based samples. The molecular environmental chemistry of Pu is therefore likely to be more complicated than would be predicted based solely on the behavior of PuO{sub 2} under laboratory conditions.

Lezama-pacheco, Juan S [Los Alamos National Laboratory; Conradson, Steven D [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

165

Nickel Speciation Measurements at Oil-Fired Power Plants  

Science Conference Proceedings (OSTI)

Nickel in power plant stack gas emissions may be present in several forms, including nickel subsulfide, a known carcinogen. To test for nickel subsulfide, EPRI performed flue gas measurements at four oil-fired power plants, representing a range of fuel sulfur levels as well as NOx and particulate control technologies. This report summarizes the field measurements to determine the form (or speciation) of nickel flue gas emissions. Utilities can use the results to conduct health risk assessments and suppor...

1999-01-05T23:59:59.000Z

166

Aerosol Laboratory - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities > Engineering Capabilities > Engineering Experimentation > Aerosol Laboratory Capabilities Engineering Experimentation Reactor Safety Experimentation Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Aerosol Laboratory The Aerosol Laboratory (AL) houses equipment to measure and record the physical parameters necessary to characterize the formation and transport of aerosols. Bookmark and Share The Aerosol Laboratory (AL) has extensive analytic and experimental capabilities to characterize the formation and transport of aerosols formed from the condensation of vapors. Computer codes have been developed to

167

Application of Three Methods for Determining Mercury Speciation in Mine Waste  

Science Conference Proceedings (OSTI)

Three methods, pyrolytic and chemical extractions (PCE), extended X-ray adsorption fine structure spectroscopy (EXAFS) and solid-phase-Hg-thermo-desorption (SPTD) were applied to determine mercury speciation in amended substrates and mine waste samples. Although these three methods determine Hg speciation by fundamentally different processes, comparison of the results are useful for validation of the three methods. PCE uses pyrolysis and weak leaches to determine relative percentages of volatile, ''soluble'' and residual Hg in substrate. The results are operationally defined and specific species cannot be determined with this method. EXAFS is a nondestructive method which uses high energy synchrotron-sourced X-ray radiation to identify specific species based on scattering patterns. Least squares data analysis is done to link patterns to a database of model compounds. This method is most useful for identification of specific species, given that they are included in the model database. Identification of Hg{sup 0} is difficult using EXAFS. SPTD identifies Hg species by incremental heating and comparison of thermal release patterns to a database of compounds. SPTD allows the identification of a more limited number of specific species than EXAFS, but is the best of the three methods for the identification of Hg{sup 0}. Overlapping release patterns make the identification of species, such as HgS and some forms of matrix-bound Hg, difficult. Results of PCE analyses indicate that volatile and leachable forms of Hg in mine waste are low relative to the total Hg concentration. This was supported by EXAFS and SPTD analysis which identified HgS as the primary component of mine waste. In contrast, analysis of tailings from mills that utilized Hg to amalgamate Au and Ag from ores yielded conflicting results. The results of this study illustrate the importance of using multiple analytical methods for the evaluation of Hg in the substrate.

Sladek, Chris; Sexauer Gustin, Mae; /Nevada U., Reno; Kim, Christopher S.; Biester, H.; /Stanford U., Geo. Environ. Sci.

2005-08-23T23:59:59.000Z

168

Distribution and speciation of trace elements in iron and manganese oxide cave deposits  

SciTech Connect

Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redox conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.

Frierdich, Andrew J.; Catalano, Jeffrey G. (WU)

2012-10-24T23:59:59.000Z

169

Effects of stratospheric aerosol surface processes on the LLNL two-dimensional zonally averaged model  

Science Conference Proceedings (OSTI)

We have investigated the effects of incorporating representations of heterogeneous chemical processes associated with stratospheric sulfuric acid aerosol into the LLNL two-dimensional, zonally averaged, model of the troposphere and stratosphere. Using distributions of aerosol surface area and volume density derived from SAGE 11 satellite observations, we were primarily interested in changes in partitioning within the Cl- and N- families in the lower stratosphere, compared to a model including only gas phase photochemical reactions.

Connell, P.S.; Kinnison, D.E.; Wuebbles, D.J. [Lawrence Livermore National Lab., CA (United States); Burley, J.D.; Johnston, H.S. [California Univ., Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States)

1992-07-05T23:59:59.000Z

170

Program on Technology Innovation: Health Effects of Organic Aerosols: An EPRI/NARSTO Workshop  

Science Conference Proceedings (OSTI)

The EPRI-NARSTO Health Effects of Organic Aerosols Workshop was held in Palo Alto, California on October 24-25, 2006. The workshop was intended to further our understanding of the organic fraction of ambient particulate matter (PM) and associated organic gases. The composition of organic aerosol is very complex, varying in accordance with physical and chemical processes in the atmosphere and comprising numerous organic compounds of both anthropogenic and natural origin. The workshop focused on organic ae...

2007-03-27T23:59:59.000Z

171

Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity  

E-Print Network (OSTI)

and microphysical characterization of ambient aerosols withthe aerodyne aerosol mass spectrometer, Mass Spectrom Rev,of secondary organic aerosol under near atmospheric

Tang, Xiaochen

2013-01-01T23:59:59.000Z

172

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

E-Print Network (OSTI)

+ ][Dca ? ]. Figure 2. Aerosol particle size distribution ofhypergolic ionic liquid aerosols Christine J. Koh † , Chen-ionization of evaporated IL aerosols Isolated ion pairs of a

Koh, Christine J.

2013-01-01T23:59:59.000Z

173

ATMOSPHERIC AEROSOL RESEARCH ANNUAL REPORT 1975-76  

E-Print Network (OSTI)

this room ATMOSPHERIC AEROSOL RESEARCH -RECEIVED •I.AWSSKCEDIVISION ATMOSPHERIC AEROSOL RESEARCH ANNUAL REPORTMass and Composition of Aerosol as a Function of Time,

Novakov, T.

2010-01-01T23:59:59.000Z

174

Response of California temperature to regional anthropogenic aerosol changes  

E-Print Network (OSTI)

to regional anthropogenic aerosol changes T. Novakov, T.W.indicator of anthropogenic aerosols – with observed surfacetemperature increase. Seasonal aerosol concentration trends

Novakov, T.

2008-01-01T23:59:59.000Z

175

Aerosol measurements with laser-induced breakdown spectroscopy  

E-Print Network (OSTI)

anthropogenic sulfate aerosols. Tellus, Ser. A, vol. 43, p.Twomey, Atmospheric Aerosols. New York : Elsevier ScientificCo. , 45. B.A. Albrecht, Aerosols, cloud microphysics, and

Lithgow, Gregg Arthur

2007-01-01T23:59:59.000Z

176

ATMOSPHERIC AEROSOL RESEARCH, ANNUAL REPORT 1976-77  

E-Print Network (OSTI)

DIVISION ATMOSPHERIC AEROSOL RESEARCH ANNUAL REPORTLow-Z Elements in Atmospheric Aerosol Particles by Nuclearof sulfur dioxide by aerosols of manganese sulfate," Ind.

Novakov, T.

2010-01-01T23:59:59.000Z

177

Black carbon aerosols and the third polar ice cap  

E-Print Network (OSTI)

estimations in global aerosol models, Atmos. Chem. Phys. ,Cloud mi- crophysics and aerosol indirect efefcts in theuncertainties in assessing aerosol effects on climate, Ann.

Menon, Surabi

2010-01-01T23:59:59.000Z

178

Total aerosol effect: forcing or radiative flux perturbation?  

E-Print Network (OSTI)

of the ?rst indirect aerosol effect, Atmos. Chem. Phys. , 5,Cloud susceptibility and the ?rst aerosol indirect forcing:to black carbon and aerosol concentrations, J. Geophys.

Lohmann, Ulrike

2010-01-01T23:59:59.000Z

179

GCM Aerosol Radiative Effects Using Geographically Varying Aerosol Sizes Deduced from AERONET Measurements  

Science Conference Proceedings (OSTI)

Aerosol optical properties, and hence the direct radiative effects, are largely determined by the assumed aerosol size distribution. In order to relax the fixed aerosol size constraint commonly used in general circulation models (GCMs), ...

Glen Lesins; Ulrike Lohmann

2003-11-01T23:59:59.000Z

180

Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols  

Science Conference Proceedings (OSTI)

The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

2012-06-13T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

AERONET: The Aerosol Robotic Network  

DOE Data Explorer (OSTI)

AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

182

Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect  

E-Print Network (OSTI)

dust, and pollution aerosol on shallow cloud developmentclouds on indirect aerosol climate forcing, Nature, 432,1014– Albrecht, B. A. , Aerosols, cloud microphysics, and

2008-01-01T23:59:59.000Z

183

ARM - Surface Aerosol Observing System  

NLE Websites -- All DOE Office Websites (Extended Search)

FacilitiesSurface Aerosol Observing System FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Surface Aerosol Observing System The ARM Mobile Facility (AMF) is equipped to quantify the interaction between clouds and aerosol particles. A counter-flow virtual impactor (CVI) is used to selectively sample cloud drops. The CVI takes advantage of the

184

Two-Column Aerosol Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Climate Research Facility is conducting the Two-Column Aerosol Project (TCAP) at Cape Cod National Seashore. From July 2012 to June 2013, the ARM Mobile Facility-a portable...

185

Mesoscale Variations of Tropospheric Aerosols  

Science Conference Proceedings (OSTI)

Tropospheric aerosols are calculated to cause global-scale changes in the earth's heat balance, but these forcings are space/time integrals over highly variable quantities. Accurate quantification of these forcings will require an unprecedented ...

Theodore L. Anderson; Robert J. Charlson; David M. Winker; John A. Ogren; Kim Holmén

2003-01-01T23:59:59.000Z

186

Method for producing monodisperse aerosols  

DOE Patents (OSTI)

An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

Ortiz, Lawrence W. (Los Alamos, NM); Soderholm, Sidney C. (Pittsford, NY)

1990-01-01T23:59:59.000Z

187

Background Stratospheric Aerosol Variations Deduced from Satellite Observations  

Science Conference Proceedings (OSTI)

The Stratospheric Aerosol and Gas Experiment II (SAGE II) aerosol products from 1998 to 2004 have been analyzed for the tendency of changes in background stratospheric aerosol properties. The aerosol extinction coefficient E has apparently ...

Yu Liu; Xuepeng Zhao; Weiliang Li; Xiuji Zhou

2012-04-01T23:59:59.000Z

188

Composition of carbonaceous smoke particles from prescribed burning of a Canadian boreal forest: 1. Organic aerosol characterization by gas chromatography  

SciTech Connect

In this study we examine the molecular organic constituents (C8 to C40 lipid compounds) collected as smoke particles from a Canadian boreal forest prescribed burn. Of special interest are (1) the molecular identity of polar organic aerosols, and (2) the amount of polar organic matter relative to the total mass of aerosol particulate carbon. Organic extracts of smoke aerosol particles show complex distributions of the lipid compounds when analyzed by capillary gas chromatography/mass spectrometry. The molecular constituents present as smoke aerosol are grouped into non-polar (hydrocarbons) and polar {minus}2 oxygen atoms) subtractions. The dominant chemical species found in the boreal forest smoke aerosol are unaltered resin compounds (C20 terpenes) which are abundant in unburned conifer wood, plus thermally altered wood lignins and other polar aromatic hydrocarbons. Our results show that smoke aerosols contain molecular tracers which are related to the biofuel consumed. These smoke tracers can be related structurally back to the consumed softwood and hardwood vegetation. In addition, combustion of boreal forest materials produces smoke aerosol particles that are both oxygen-rich and chemically complex, yielding a carbonaceous aerosol matrix that is enriched in polar substances. As a consequence, emissions of carbonaceous smoke particles from large-scale combustion of boreal forest land may have a disproportionate effect on regional atmospheric chemistry and on cloud microphysical processes.

Mazurek, M.A.; Laterza, C.; Newman, L.; Daum, P. [Brookhaven National Lab., Upton, NY (United States); Cofer, W.R. III; Levine, J.S. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Winstead, E.L. [Science Applications International Corporation, Hampton, VA (United States)

1995-06-01T23:59:59.000Z

189

GEOC Sunday, March 21, 2010 48 -Methylarsenate distribution and speciation in soil  

E-Print Network (OSTI)

GEOC Sunday, March 21, 2010 48 - Methylarsenate distribution and speciation in soil Masayuki Shimizu, Donald L. Sparks, . Department of Plant and Soil Sciences University of Delaware Newark DE United loam soil was spiked with MMA and DMA and incubated for one year to investigate arsenic speciation

Sparks, Donald L.

190

A Linear Combination Analyses Approach For Directly Speciating Ni Contaminated Soils.  

E-Print Network (OSTI)

A Linear Combination Analyses Approach For Directly Speciating Ni Contaminated Soils. (S02-trivedi215458-Oral) Abstract: To provide an accurate description of the fate of Ni in aerial- contaminated soils to combine multiple analytical techniques to accurately determine metal speciation in complex soil systems

Sparks, Donald L.

191

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

SciTech Connect

A detailed understanding of the sources, transformations, and fates of organic species in the environment is crucial because of the central roles that organics play in human health, biogeochemical cycles, and Earth's climate. However, such an understanding is hindered by the immense chemical complexity of environmental mixtures of organics; for example, atmospheric organic aerosol consists of at least thousands of individual compounds, all of which likely evolve chemically over their atmospheric lifetimes. Here we demonstrate the utility of describing organic aerosol (and other complex organic mixtures) in terms of average carbon oxidation state (OSC), a quantity that always increases with oxidation, and is readily measured using state-of-the-art analytical techniques. Field and laboratory measurements of OSC , using several such techniques, constrain the chemical properties of the organics and demonstrate that the formation and evolution of organic aerosol involves simultaneous changes to both carbon oxidation state and carbon number (nC).

Massachusetts Institute of Technology; Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.; Kessler, Sean H.; Canagaratna, Manjula R.; Wilson, Kevin R.; Altieri, Katye E.; Mazzoleni, Lynn R.; Wozniak, Andrew S.; Bluhm, Hendrik; Mysak, Erin R.; Smith, Jared D.; Kolb, Charles E.; Worsnop, Douglas R.

2010-11-05T23:59:59.000Z

192

Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006  

E-Print Network (OSTI)

Thermodynamic Characterization of Mexico City Aerosol duringA computationally efficient thermodynamic equilibrium modelurban aerosols determined by thermodynamic equilibrium? An

Fountoukis, C.

2009-01-01T23:59:59.000Z

193

Arsenic and Selenium Speciation in Fly Ash and Wastewater  

Science Conference Proceedings (OSTI)

The objective of the work is to predict As and Se behavior in pond wastewater based on coal and power plant characteristics so that utilities will have tools for selection of coals (and blends) that will allow them to meet applicable water quality regulations in the ash pond discharge. Arsenic and selenium were chosen as the focus of this work because the behavior of arsenic and selenium is not well correlated with pH in ash pond water, but with speciation of these oxyanions in the fly ash. Furthermore, ...

2005-03-28T23:59:59.000Z

194

Impact of geoengineered aerosols on the troposphere and stratosphere  

Science Conference Proceedings (OSTI)

A coupled chemistry climate model, the Whole Atmosphere Community Climate Model was used to perform a transient climate simulation to quantify the impact of geoengineered aerosols on atmospheric processes. In contrast to previous model studies, the impact on stratospheric chemistry, including heterogeneous chemistry in the polar regions, is considered in this simulation. In the geoengineering simulation, a constant stratospheric distribution of volcanic-sized, liquid sulfate aerosols is imposed in the period 2020–2050, corresponding to an injection of 2 Tg S/a. The aerosol cools the troposphere compared to a baseline simulation. Assuming an Intergovernmental Panel on Climate Change A1B emission scenario, global warming is delayed by about 40 years in the troposphere with respect to the baseline scenario. Large local changes of precipitation and temperatures may occur as a result of geoengineering. Comparison with simulations carried out with the Community Atmosphere Model indicates the importance of stratospheric processes for estimating the impact of stratospheric aerosols on the Earth’s climate. Changes in stratospheric dynamics and chemistry, especially faster heterogeneous reactions, reduce the recovery of the ozone layer in middle and high latitudes for the Southern Hemisphere. In the geoengineering case, the recovery of the Antarctic ozone hole is delayed by about 30 years on the basis of this model simulation. For the Northern Hemisphere, a onefold to twofold increase of the chemical ozone depletion occurs owing to a simulated stronger polar vortex and colder temperatures compared to the baseline simulation, in agreement with observational estimates.

Tilmes, S.; Garcia, Rolando R.; Kinnison, Douglas E.; Gettelman, A.; Rasch, Philip J.

2009-06-27T23:59:59.000Z

195

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network (OSTI)

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

196

Conclusions of the Capstone Depleted Uranium Aerosol Characterization and Risk Assessment Study  

Science Conference Proceedings (OSTI)

The rationale for the Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Program and its results and applications have been examined in the previous 13 articles of this special issue. This paper summarizes the results and discusses its successes and lessons learned. The robust data from the Capstone DU Aerosol Study have provided a sound basis for assessing the inhalation exposure to DU aerosols and the dose and risk to personnel in combat vehicles at the time of perforation and to those entering immediately after perforation. The Human Health Risk Assessment provided a technically sound process for evaluating chemical and radiological doses and risks from DU aerosol exposure using well-accepted biokinetic and dosimetric models innovatively applied. An independent review of the study process and results is summarized, and recommendations for possible avenues of future study by the authors and by other major reviews of DU health hazards are provided.

Parkhurst, MaryAnn; Guilmette, Raymond A.

2009-02-26T23:59:59.000Z

197

Aerodyne Develops an Aircraft-Deployable Precision Aerosol Analyzer | U.S.  

Office of Science (SC) Website

Aerodyne Develops an Aircraft-Deployable Precision Aerosol Aerodyne Develops an Aircraft-Deployable Precision Aerosol Analyzer Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer U.S. Department of Energy SC-29/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-5707 F: (301) 903-5488 E: sbir-sttr@science.doe.gov More Information » January 2013 Aerodyne Develops an Aircraft-Deployable Precision Aerosol Analyzer Aerodyne Research Inc. develops an aerosol mass spectrometer (AMS) that fills a critical need for size-resolved, quantitative chemical composition

198

Aerosol Resuspension Model for MELCOR for Fusion and Very High Temperature Reactor Applications  

SciTech Connect

Dust is generated in fusion reactors from plasma erosion of plasma facing components within the reactor’s vacuum vessel (VV) during reactor operation. This dust collects in cooler regions on interior surfaces of the VV. Because this dust can be radioactive, toxic, and/or chemically reactive, it poses a safety concern, especially if mobilized by the process of resuspension during an accident and then transported as an aerosol though out the reactor confinement building, and possibly released to the environment. A computer code used at the Idaho National Laboratory (INL) to model aerosol transport for safety consequence analysis is the MELCOR code. A primary reason for selecting MELCOR for this application is its aerosol transport capabilities. The INL Fusion Safety Program (FSP) organization has made fusion specific modifications to MELCOR. Recent modifications include the implementation of aerosol resuspension models in MELCOR 1.8.5 for Fusion. This paper presents the resuspension models adopted and the initial benchmarking of these models.

B.J. Merrill

2011-01-01T23:59:59.000Z

199

ARM - Field Campaign - Fall 1997 Aerosol IOP  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol IOP Aerosol IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Fall 1997 Aerosol IOP 1997.09.15 - 1997.10.05 Lead Scientist : Stephen Schwartz For data sets, see below. Summary The Aerosol IOP was highlighted by the Gulfstream-1 aircraft flying clear-sky aerosol missions over the Central Facility to study the effect of aerosol loading on clear sky radiation fields, with weather particularly favorable for these flights during the first and third weeks of the IOP. A secondary but important goal of this IOP was to fly cloudy-sky missions over the Central Facility to study the effect of aerosol loading on cloud microphysics, and the effect of the microphysics on cloud optical properties. The Gulfstream obtained aerosol data in support of some of the

200

ARM - Evaluation Product - Organic Aerosol Component VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsOrganic Aerosol Component VAP ProductsOrganic Aerosol Component VAP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Organic Aerosol Component VAP 2011.01.08 - 2012.03.24 Site(s) SGP General Description Organic aerosol (OA, i.e., the organic fraction of particles) accounts for 10-90% of the fine aerosol mass globally and is a key determinant of aerosol radiative forcing. But atmospheric OA is poorly characterized and its life cycle insufficiently represented in models. As a result, current models are unable to simulate OA concentrations and properties. This deficiency represents a large source of uncertainty in the quantification of aerosol direct and indirect effects and the prediction of future climate change. The Organic Aerosol Component (OACOMP) value-added product (VAP) uses

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Volcanoes and Climate Effects of Aerosols  

E-Print Network (OSTI)

CONTENTS 8.1 Importance of volcanoes, natural aerosols, and anthropogenic aerosols 341 8.2 Major scientific questions and hypotheses 342 8.2.1 Stratospheric volcanic aerosols and climate 342 8.2.1.1 Source gases for stratospheric aerosols 342 8.2.1.2 Explosiveness and plume history during individual eruptions 343 8.2.1.3 Frequency of eruptions, tectonic setting, rock/ash vs. SO 2 343 8.2.1.4 Gas-to-particle conversion and removal mechanisms 343 8.2.1.5 Radiative properties and climatic effects of stratospheric aerosols 345 8.2.1.6 Needed satellite and in situ measurements 347 8.2.1.6.1 Global observations of stratospheric aerosol optical properties 347 8.2.1.6.2 Lidar measurements of aerosols 347 8.2.2 Volcanic aerosols and stratospheric ozone depletion 349 8.2.3 Climatic effects of t

Hartmann And Mouginis-Mark; Volcanoes; D. L. Hartmann; P. Mouginis-mark; G. J. Bluth; J. A. Coakley; J. Crisp; R. E. Dickinson; P. W. Francis; J. E. Hansen; P. V. Hobbs; B. L. Isacks; Y. J. Kaufman; M. D. King; W. I. Rose; S. Self; L. D. Travis

1999-01-01T23:59:59.000Z

202

Climate Response to Soil Dust Aerosols  

Science Conference Proceedings (OSTI)

The effect of radiative forcing by soil dust aerosols upon climate is calculated. Two atmospheric GCM (AGCM) simulations are compared, one containing a prescribed seasonally varying concentration of dust aerosols, and the other omitting dust. ...

R. L. Miller; I. Tegen

1998-12-01T23:59:59.000Z

203

Indirect and Semi-direct Aerosol Campaign  

Science Conference Proceedings (OSTI)

A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's ...

Greg M. McFarquhar; Steven Ghan; Johannes Verlinde; Alexei Korolev; J. Walter Strapp; Beat Schmid; Jason M. Tomlinson; Mengistu Wolde; Sarah D. Brooks; Dan Cziczo; Manvendra K. Dubey; Jiwen Fan; Connor Flynn; Ismail Gultepe; John Hubbe; Mary K. Gilles; Alexander Laskin; Paul Lawson; W. Richard Leaitch; Peter Liu; Xiaohong Liu; Dan Lubin; Claudio Mazzoleni; Ann-Marie Macdonald; Ryan C. Moffet; Hugh Morrison; Mikhail Ovchinnikov; Matthew D. Shupe; David D. Turner; Shaocheng Xie; Alla Zelenyuk; Kenny Bae; Matt Freer; Andrew Glen

2011-02-01T23:59:59.000Z

204

Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California  

E-Print Network (OSTI)

detection efficiencies of aerosol time of flight masscomposition of ambient aerosol particles. Environmentalsize dependent response of aerosol counters, Atmospheric

Shields, Laura Grace

2008-01-01T23:59:59.000Z

205

Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior  

Science Conference Proceedings (OSTI)

Vacuum Ultraviolet (VUV) photoionization mass spectrometry has been used to measure the evolution of chemical composition for two distinct organic aerosol types as they are passed through a thermodenuder at different temperatures. The two organic aerosol types considered are primary lubricating oil (LO) aerosol and secondary aerosol from the alpha-pinene + O3 reaction (alphaP). The evolution of the VUV mass spectra for the two aerosol types with temperature are observed to differ dramatically. For LO particles, the spectra exhibit distinct changes with temperature in which the lower m/z peaks, corresponding to compounds with higher vapor pressures, disappear more rapidly than the high m/z peaks. In contrast, the alphaP aerosol spectrum is essentially unchanged by temperature even though the particles experience significant mass loss due to evaporation. The variations in the LO spectra are found to be quantitatively in agreement with expectations from absorptive partitioning theory whereas the alphaP spectra suggest that the evaporation of alphaP derived aerosol appears to not be governed by partitioning theory. We postulate that this difference arises from the alphaP particles existing as in a glassy state instead of having the expected liquid-like behavior. To reconcile these observations with decades of aerosol growth measurements, which indicate that OA formation is described by equilibrium partitioning, we present a conceptual model wherein the secondary OA is formed and then rapidly converted from an absorbing form to a non-absorbing form. The results suggest that although OA growth may be describable by equilibrium partitioning theory, the properties of organic aerosol once formed may differ significantly from the properties determined in the equilibrium framework.

UC Davis; Cappa, Christopher D.; Wilson, Kevin R.

2010-10-28T23:59:59.000Z

206

Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)  

Science Conference Proceedings (OSTI)

Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes in climate models.

Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

2012-08-22T23:59:59.000Z

207

ATI TDA 5A aerosol generator evaluation  

SciTech Connect

Oil based aerosol ``Smoke`` commonly used for testing the efficiency and penetration of High Efficiency Particulate Air filters (HEPA) and HEPA systems can produce flammability hazards that may not have been previously considered. A combustion incident involving an aerosol generator has caused an investigation into the hazards of the aerosol used to test HEPA systems at Hanford.

Gilles, D.A.

1998-07-27T23:59:59.000Z

208

Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products  

E-Print Network (OSTI)

analysis of competition between aerosol particle removal andof secondary organic aerosol. Part I: ?-pinene/ozone system.data when measuring ambient aerosol. Aerosol Science and

Coleman, Beverly K.

2008-01-01T23:59:59.000Z

209

Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research  

E-Print Network (OSTI)

in secondary organic aerosol. Environ. Sci. Technol. 41 ,particles from an urban aerosol. Environ. Sci. Technol. 26 ,carbonaceous atmospheric aerosols. Journal of Aerosol

Moffet, Ryan C.

2011-01-01T23:59:59.000Z

210

ARM - Measurement - Aerosol optical properties  

NLE Websites -- All DOE Office Websites (Extended Search)

properties properties ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical properties The optical properties of aerosols, including asymmetry factor, phase-function, single-scattering albedo, refractive index, and backscatter fraction. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments CSPHOT : Cimel Sunphotometer NEPHELOMETER : Nephelometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

211

ARM - Measurement - Aerosol backscattered radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

backscattered radiation backscattered radiation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol backscattered radiation The scattering of radiant energy into the hemisphere of space bounded by a plane normal to the direction of the incident radiation and lying on the same side as the incident ray. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments AOS : Aerosol Observing System MPL : Micropulse Lidar NEPHELOMETER : Nephelometer

212

ARM - Measurement - Aerosol optical depth  

NLE Websites -- All DOE Office Websites (Extended Search)

depth depth ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol optical depth A measure of how much light aerosols prevent from passing through a column of atmosphere. Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments HSRL : High Spectral Resolution Lidar MPL : Micropulse Lidar MFRSR : Multifilter Rotating Shadowband Radiometer NIMFR : Normal Incidence Multifilter Radiometer Field Campaign Instruments AOS-PMFOV : Acoustical Optical Spectrometer-Photometer with Multiple

213

Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development  

SciTech Connect

The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

Radisav Vidic; Joseph Flora; Eric Borguet

2008-12-31T23:59:59.000Z

214

Real time infrared aerosol analyzer  

DOE Patents (OSTI)

Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

1990-01-01T23:59:59.000Z

215

Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area  

E-Print Network (OSTI)

New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new ...

Tsimpidi, A. P.

216

Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach  

Science Conference Proceedings (OSTI)

In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

Baustian, Kelly J.; Cziczo, Daniel J.; Wise, M. A.; Pratt, Kerri; Kulkarni, Gourihar R.; Hallar, Anna G.; Tolbert, Margaret A.

2012-03-30T23:59:59.000Z

217

Addition of Tropospheric Chemistry and Aerosols to the NCAR Community Climate System Model  

SciTech Connect

Atmospheric chemistry and aerosols have several important roles in climate change. They affect the Earth's radiative balance directly: cooling the earth by scattering sunlight (aerosols) and warming the Earth by trapping the Earth's thermal radiation (methane, ozone, nitrous oxide, and CFCs are greenhouse gases). Atmospheric chemistry and aerosols also impact many other parts of the climate system: modifying cloud properties (aerosols can be cloud condensation nuclei), fertilizing the biosphere (nitrogen species and soil dust), and damaging the biosphere (acid rain and ozone damage). In order to understand and quantify the effects of atmospheric chemistry and aerosols on the climate and the biosphere in the future, it is necessary to incorporate atmospheric chemistry and aerosols into state-of-the-art climate system models. We have taken several important strides down that path. Working with the latest NCAR Community Climate System Model (CCSM), we have incorporated a state-of-the-art atmospheric chemistry model to simulate tropospheric ozone. Ozone is not just a greenhouse gas, it damages biological systems including lungs, tires, and crops. Ozone chemistry is also central to the oxidizing power of the atmosphere, which destroys a lot of pollutants in the atmosphere (which is a good thing). We have also implemented a fast chemical mechanism that has high fidelity with the full mechanism, for significantly reduced computational cost (to facilitate millennium scale simulations). Sulfate aerosols have a strong effect on climate by reflecting sunlight and modifying cloud properties. So in order to simulate the sulfur cycle more fully in CCSM simulations, we have linked the formation of sulfate aerosols to the oxidizing power of the atmosphere calculated by the ozone mechanisms, and to dimethyl sulfide emissions from the ocean ecosystem in the model. Since the impact of sulfate aerosols depends on the relative abundance of other aerosols in the atmosphere, we also implemented interactive simulation of nitrate, sea-salt, black carbon, and both primary and secondary organic aerosols into CCSM (using assumed size distributions). These new capabilities are opening the door to studies of the role atmospheric chemistry and aerosols in climate change, and their impact on the biosphere, that were previously impossible.

Cameron-Smith, P; Lamarque, J; Connell, P; Chuang, C; Rotman, D; Taylor, J

2005-11-14T23:59:59.000Z

218

Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols  

E-Print Network (OSTI)

This dissertation describes the use of measured aerosol size distributions and size-resolved hygroscopic growth to examine the physical and chemical properties of several particle classes. The primary objective of this work was to investigate the optical and cloud forming properties of a range of ambient aerosol types measured in a number of different locations. The tool used for most of these analyses is a differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system developed in our research group. To collect the data described in two of the chapters of this dissertation, an aircraft-based version of the DMA / TDMA was deployed to Japan and California. The data described in two other chapters were conveniently collected during a period when the aerosol of interest came to us. The unique aspect of this analysis is the use of these data to isolate the size distributions of distinct aerosol types in order to quantify their optical and cloud forming properties. I used collected data during the Asian Aerosol Characterization Experiment (ACE-Asia) to examine the composition and homogeneity of a complex aerosol generated in the deserts and urban regions of China and other Asian countries. An aircraft-based TDMA was used for the first time during this campaign to examine the size-resolved hygroscopic properties of the aerosol. The Asian Dust Above Monterey (ADAM-2003) study was designed both to evaluate the degree to which models can predict the long-range transport of Asian dust, and to examine the physical and optical properties of that aged dust upon reaching the California coast. Aerosol size distributions and hygroscopic growth were measured in College Station, Texas to investigate the cloud nucleating and optical properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types that were observed during this period. The predicted cloud condensation nuclei concentrations were used in a cloud model to determine the impact of the different aerosol types on the expected cloud droplet concentration. RH-dependent aerosol extinction coefficients were also calculated.

Lee, Yong Seob

2003-05-01T23:59:59.000Z

219

Observations of Secondary Organic Aerosol Production and Soot Aging under Atmospheric Conditions Using a Novel Environmental Aerosol Chamber  

E-Print Network (OSTI)

Secondary organic aerosols (SOA) comprise a substantial fraction of the total global aerosol budget. While laboratory studies involving smog chambers have advanced our understanding of the formation mechanisms responsible for SOA, our knowledge of the processes leading to SOA production under ambient gaseous and particulate concentrations as well as the impact these aerosol types have on climate is poorly understood. Although the majority of atmospheric aerosols scatter radiation either directly or indirectly by serving as cloud condensation nuclei, soot is thought to have a significant warming effect through absorption. Like inorganic salts, soot may undergo atmospheric transformation through the vapor condensation of non-volatile gaseous species which will alter both its chemical and physical properties. Typical smog chamber studies investigating the formation and growth of SOA as well as the soot aging process are temporally limited by the initial gaseous concentrations injected into the chamber environment. Furthermore, data interpretation from such experiments is generally restricted to the singular gaseous species under investigation. This dissertation discusses the use of a new aerosol chamber designed to study the formation and growth of SOA and soot aging under atmospherically relevant conditions. The Ambient Aerosol Chamber for Evolution Studies (AACES) was deployed at three field sites where size and hygroscopic growth factor (HGF) of ammonium sulfate seed particles was monitored over time to examine the formation and growth of SOA. Similar studies investigating the soot aging process were also conducted in Houston, TX. It is shown that during the ambient growth of ammonium sulfate seed particles, as particle size increases, hygroscopic growth factors decrease considerably resulting in a significant organic mass fraction in the particle phase concluding an experiment. Observations of soot aging show an increase in measured size, HGF, mass and single scattering albedo. Ambient growth rate comparisons with chamber growth yielded similar trends verifying the use of AACES to study aerosol aging. Based on the results from this study, it is recommended that AACES be employed in future studies involving the production and growth of SOA and soot aging under ambient conditions in order to bridge the gaps in our current scientific knowledge.

Glen, Crystal

2010-12-01T23:59:59.000Z

220

Genomic Speciation and Adaptation in Aquilegia (2011 JGI User Meeting)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Scott Hodges of the University of California, Santa Barbara gives a presentation on "Genomic Speciation and Adaptation in Aquilegia" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011

Hodges, Scott [University of California, Santa Barbara

2011-03-23T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Evaluation of Empirical Aerosol Correlations  

Science Conference Proceedings (OSTI)

This study examined the adequacy of novel scaling and correlation methods used to analyze aerosol behavior in versions 2.0 and 3.0 of the MAAP computer code. The results show that the MAAP 2.0 method suffers from inaccurate scaling. The method used in MAAP 3.0 is theoretically superior and more consistent with experimental data.

1986-12-17T23:59:59.000Z

222

he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study  

SciTech Connect

This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistryâ??s MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences of marine aerosol production on the microphysical properties of aerosol populations and clouds over the ocean and the corresponding direct and indirect effects on radiative transfer; (2) atmospheric burdens of reactive halogen species and their impacts on O3, NOx, OH, DMS, and particulate non-sea-salt SO42-; and (3) the global production and influences of marine-derived particulate organic carbon. The model reproduced major characteristics of the marine aerosol system and demonstrated the potential sensitivity of global, decadal-scale climate metrics to multiphase marine-derived components of Earthâ??s troposphere. Due to the combined computational burden of the coupled system, the currently available computational resources were the limiting factor preventing the adequate statistical analysis of the overall impact that multiphase chemistry might have on climate-scale radiative transfer and climate.

Keene, William C. [University of Virginia] [University of Virginia; Long, Michael S. [University of Virginia] [University of Virginia

2013-05-20T23:59:59.000Z

223

Hydrogen speciation in hydrated layers on nuclear waste glass  

DOE Green Energy (OSTI)

The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 & 165, and PNL 76-68), which were leached at 90{sup 0}C (all glasses) or hydrated in a vapor-saturated atmosphere at 202{sup 0}C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 {mu}m layer on SRL-131 glass formed by leaching at 90{sup 0}C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H{sup +} interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups.

Aines, R.D.; Weed, H.C.; Bates, J.K.

1987-01-15T23:59:59.000Z

224

The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols  

Science Conference Proceedings (OSTI)

Aerosol microphysics, chemical composition, and CCN concentrations were measured at the T0 urban supersite in Mexico City during Megacity Initiative: Local and Global Research Observations (MILAGRO) in March 2006. The aerosol size distribution and composition often showed strong diurnal variation associated with traffic emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. CCN concentrations (N{sub CCN}) are derived using Kohler theory from the measured aerosol size distribution and various simplified aerosol mixing state and chemical composition, and are compared to concurrent measurements at five supersaturations ranging from 0.11% to 0.35%. The influence of assumed mixing state on calculated N{sub CCN} is examined using both aerosols observed during MILAGRO and representative aerosol types. The results indicate that while ambient aerosols often consist of particles with a wide range of compositions at a given size, N{sub CCN} may be derived within {approx}20% assuming an internal mixture (i.e., particles at a given size are mixtures of all participating species, and have the identical composition) if great majority of particles has an overall {kappa} (hygroscopicity parameter) value greater than 0.1. For a non-hygroscopic particle with a diameter of 100 nm, a 3 nm coating of sulfate or nitrate is sufficient to increase its {kappa} from 0 to 0.1. The measurements during MILAGRO suggest that the mixing of non-hygroscopic primary organic aerosol (POA) and black carbon (BC) particles with photochemically produced hygroscopic species and thereby the increase of their {kappa} to 0.1 take place in a few hours during daytime. This rapid process suggests that during daytime, a few tens of kilometers away for POA and BC sources, N{sub CCN} may be derived with sufficient accuracy by assuming an internal mixture, and using bulk chemical composition. The rapid mixing also indicates that, at least for very active photochemical environments such as Mexico City, a substantially shorter timescale during daytime for the conversion of hydrophobic POA and BC to hydrophilic particles than the 1-2 days used in some global models. The conversion time scale is substantially longer during night. Most POA and BC particles emitted during evening hours likely remain non-hygroscopic until efficiently internally mixed with secondary species in the next morning. The results also suggest that the assumed mixing state strongly impacts calculated N{sub CCN} only when POA and BC represent a large fraction of the total aerosol volume. One of the implications is that while physically unrealistic, external mixtures, which are used in many global models, may also sufficiently predict N{sub CCN} for aged aerosol, as the contribution of non-hygroscopic POA and BC to overall aerosol volume is often substantially reduced due to the condensation of secondary species.

Wang, J.; Cubison, M. J.; Aiken, A. C.; Jimenez, J. L.; Collins, D. R.

2010-05-01T23:59:59.000Z

225

Study of Heterogeneouse Processes Related to the Chemistry of Tropospheric Oxidants and Aerosols  

SciTech Connect

The objective of the studies was to elucidate the heterogeneous chemistry of tropospheric aerosols. Experiments were designed to measure both specifically needed parameters, and to obtain systematic data required to build a fundamental understanding of the nature of gas-surface physical and chemical interactions

Davidovits, Paul; Worsnop, D R; Jayne, J T; Colb, C E

2013-02-13T23:59:59.000Z

226

DIESEL AEROSOL SAMPLING IN THE David Kittelson, Jason Johnson, and Winthrop Watts  

E-Print Network (OSTI)

chemical composition of diesel particulate matter collected in laboratory and in wind tunnel #12;In OrderDIESEL AEROSOL SAMPLING IN THE ATMOSPHERE David Kittelson, Jason Johnson, and Winthrop Watts Center for Diesel Research University of Minnesota 10th CRC ON-ROAD VEHICLE EMISSIONS WORKSHOP San Diego, California

Minnesota, University of

227

COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols  

E-Print Network (OSTI)

), 31-36. (35) Daylight Theory Manual, Daylight Chemical Information Systems, Inc., release date August, for example, the formation of nitrogen-containing organic compounds (NOC).9-11 Recent advances in high such as hemiacetal formation29-31 are quite common in both organic aerosols and in aqueous solutions of OA. Advanced

Nizkorodov, Sergey

228

Aerosol Sampling System for Collection of Capstone Depleted Uranium Particles in a High-Energy Environment  

SciTech Connect

The Capstone Depleted Uranium Aerosol Study was undertaken to obtain aerosol samples resulting from a kinetic-energy cartridge with a large-caliber depleted uranium (DU) penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post-impact, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the vehicle commander, loader, gunner, and driver. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for depleted uranium concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol.

Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung-Sung; Parkhurst, MaryAnn; Hoover, Mark D.

2009-03-01T23:59:59.000Z

229

Chemical leukoderma  

E-Print Network (OSTI)

the first report, to date, of chemical leukoderma that wasreview on biological, chemical and clinical aspects. Pigment4. Briganti S, et al. Chemical and instrumental approaches

O'Reilly, Kathryn E; Patel, Utpal; Chu, Julie; Patel, Rishi; Machler, Brian C

2011-01-01T23:59:59.000Z

230

Design and Sampling Characteristics of a New Airborne Aerosol Inlet for Aerosol Measurements in Clouds  

Science Conference Proceedings (OSTI)

Design of a new submicron aerosol inlet (SMAI) for airborne sampling of aerosol particles is introduced and its performance characteristics under a range of sampling conditions are presented. Analysis of inlet performance in clear-air and cloud ...

Lucas Craig; Allen Schanot; Arash Moharreri; David C. Rogers; Suresh Dhaniyala

2013-06-01T23:59:59.000Z

231

The Aerosol Modeling Testbed: A Community Tool to Objectively Evaluate Aerosol Process Modules  

Science Conference Proceedings (OSTI)

The current paradigm of developing and testing new aerosol process modules is haphazard and slow. Aerosol modules are often tested for short simulation periods using limited data so that their overall performance over a wide range of ...

Jerome D. Fast; William I. Gustafson Jr.; Elaine G. Chapman; Richard C. Easter; Jeremy P. Rishel; Rahul A. Zaveri; Georg A. Grell; Mary C. Barth

2011-03-01T23:59:59.000Z

232

Another Look at the Influence of Absorbing Aerosols in Drops on Cloud Absorption: Large Aerosols  

Science Conference Proceedings (OSTI)

Since as early as 1969, solar absorbing aerosols inside of cloud drops have been suggested to influence cloud radiative properties. The absorbing aerosols were invoked to help explain two “anomalies”: 1) the maximum visible albedo of thick ...

Carynelisa Erlick; Dana Schlesinger

2008-02-01T23:59:59.000Z

233

Assessment of Aerosol Modes Used in the MODIS Ocean Aerosol Retrieval  

Science Conference Proceedings (OSTI)

Coastal and island Aerosol Robotic Network (AERONET) sites are used to determine characteristic aerosol modes over marine environments. They are compared with the assumed modes used in the operational Moderate Resolution Imaging Spectroradiometer (...

Jiacheng Wang; Qiang Zhao; Shengcheng Cui; Chengjie Zhu

2012-12-01T23:59:59.000Z

234

Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources  

Science Conference Proceedings (OSTI)

The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to the typical size of a single GCM grid cell) and temporally over a three day analysis period, total rainfall in the sensitivity simulation increased by 31% over that in the baseline simulation. Fewer optically thin clouds, arbitrarily defined as a cloud exhibiting an optical depth less than 1, formed in the sensitivity simulation. Domain-averaged AODs dropped from 0.46 in the baseline simulation to 0.38 in the sensitivity simulation. The overall net effect of additional aerosols attributable to primary particulates and aerosol precursors from point source emissions above the surface was a domain-averaged reduction of 5 W m-2 in mean daytime downwelling shortwave radiation.

Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

2009-02-01T23:59:59.000Z

235

Photolytically generated aerosols in the mesosphere and thermosphere of Titan  

E-Print Network (OSTI)

Analysis of the Cassini Ultraviolet Imaging Spectrometer (UVIS) stellar and solar occultations at Titan to date include 12 species: N$_{2}$ (nitrogen), CH$_{4}$ (methane), C$_{2}$H$_{2}$ (acetylene), C$_{2}$H$_{4}$ (ethylene), C$_{2}$H$_{6}$ (ethane), C$_{4}$H$_{2}$ (diacetylene), C$_{6}$H$_{6}$ (benzene), C$_{6}$N$_{2}$ (dicyanodiacetylene), C$_{2}$N$_{2}$ (cyanogen), HCN (hydrogen cyanide), HC$_{3}$N (cyanoacetylene), and aerosols distinguished by a structureless continuum extinction (absorption plus scattering) of photons in the EUV. The introduction of aerosol particles, retaining the same refractive index properties as tholin with radius $\\sim$125 \\AA and using Mie theory, provides a satisfactory fit to the spectra. The derived vertical profile of aerosol density shows distinct structure, implying a reactive generation process reaching altitudes more than 1000 km above the surface. A photochemical model presented here provides a reference basis for examining the chemical and physical processes leading to the distinctive atmospheric opacity at Titan. We find that dicyanodiacetylene is condensable at $\\sim$650 km, where the atmospheric temperature minimum is located. This species is the simplest molecule identified to be condensable. Observations are needed to confirm the existence and production rates of dicyanodiacetylene.

Mao-Chang Liang; Yuk L. Yung; Donald E. Shemansky

2007-05-01T23:59:59.000Z

236

ARM - PI Product - Direct Aerosol Forcing Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsDirect Aerosol Forcing Uncertainty ProductsDirect Aerosol Forcing Uncertainty Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Direct Aerosol Forcing Uncertainty Site(s) NSA SGP TWP General Description Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in

237

ARM - Field Campaign - Two-Column Aerosol Project (TCAP)  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsTwo-Column Aerosol Project (TCAP) govCampaignsTwo-Column Aerosol Project (TCAP) Campaign Links TCAP website Related Campaigns Two-Column Aerosol Project (TCAP): Field Evaluation of Real-time Cloud OD Sensor TWST 2013.04.15, Scott, AMF Two-Column Aerosol Project (TCAP): Winter Aerosol Effects on Cloud Formation 2013.02.04, Cziczo, AMF Two-Column Aerosol Project (TCAP): CU GMAX-DOAS Deployment 2012.07.15, Volkamer, AMF Two-Column Aerosol Project (TCAP): Aerosol Light Extinction Measurements 2012.07.15, Dubey, AMF Two-Column Aerosol Project (TCAP): Aerial Campaign 2012.07.07, Berg, AAF Two-Column Aerosol Project (TCAP): Aerodynamic Particle Sizer 2012.07.01, Berg, AMF Two-Column Aerosol Project (TCAP): KASPRR Engineering Tests 2012.07.01, Mead, AMF Two-Column Aerosol Project (TCAP): Airborne HSRL and RSP Measurements

238

Using MODIS and AERONET to Determine GCM Aerosol Size  

Science Conference Proceedings (OSTI)

Aerosol size is still a poorly constrained quantity in general circulation models (GCMs). By using the modal radii of the coarse and fine mode retrieved from 103 stations in the Aerosol Robotic Network (AERONET) and the fine mode aerosol optical ...

Glen Lesins; Ulrike Lohmann

2006-04-01T23:59:59.000Z

239

Aerosol Remote Sensing over Clouds Using A-Train Observations  

Science Conference Proceedings (OSTI)

The detection of aerosol above clouds is critical for the estimate of both the aerosol and cloud radiative impacts. In this study, the authors present a new method to retrieve the aerosol properties over clouds that uses the multiangle ...

F. Waquet; J. Riedi; L. C. Labonnote; P. Goloub; B. Cairns; J-L. Deuzé; D. Tanré

2009-08-01T23:59:59.000Z

240

AEROSOL ANALYSIS FOR THE REGIONAL AIR POLLUTION STUDY - FINAL REPORT  

E-Print Network (OSTI)

Beta-Gauge Methods Applied to Aerosol Samples." Submitted toHusar and B.Y.H. Liu. "The Aerosol Size Distribution of LosAngeles Smog." In: Aerosols and Atmospheric Chemistry, G.M.

Jaklevic, J.M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Distinguishing Aerosol Impacts on Climate Over the Past Century  

E-Print Network (OSTI)

Table 1. Aerosol Characteristics Species Emissions Burdenc and h), IE (d, i) and BAE (e, f). List of Tables AerosolEmission of trace gases and aerosols from biomass burning,

Koch, Dorothy

2009-01-01T23:59:59.000Z

242

OH-initiated heterogeneous aging of highly oxidized organic aerosol  

E-Print Network (OSTI)

P. ; Jimenez, J. L. Aerosol Science and Technology 2004, 38,A. G. Highly dispersed aerosols; Halsted Press, New York,highly oxidized organic aerosol Sean H. Kessler 1 , Theodora

Kessler, Sean H.

2013-01-01T23:59:59.000Z

243

SPURIOUS SULFATE FORMATION ON COLLECTED AMBIENT AEROSOL SAMPLES  

E-Print Network (OSTI)

FORMATION ON COLLECTED AMBIENT AEROSOL SAMPLES B. W. Loo, R.FORMATION ON COLLECTED AMBIENT AEROSOL SAMPLES Billy W. Lao,ON COLLECTED AMBIENT AEROSOL SAMPLES* _B_il_l~y ___ W_. _L~o

Loo, B.W.

2011-01-01T23:59:59.000Z

244

The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm  

Science Conference Proceedings (OSTI)

Descriptions are provided of the aerosol classification algorithms and the extinction-to-backscatter ratio (lidar ratio) selection schemes for the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) aerosol products. One ...

Ali H. Omar; David M. Winker; Mark A. Vaughan; Yongxiang Hu; Charles R. Trepte; Richard A. Ferrare; Kam-Pui Lee; Chris A. Hostetler; Chieko Kittaka; Raymond R. Rogers; Ralph E. Kuehn; Zhaoyan Liu

2009-10-01T23:59:59.000Z

245

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOE Patents (OSTI)

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

Vo-Dinh, Tuan (625 Gulfwood Rd., Knoxville, TN 37923)

1987-01-01T23:59:59.000Z

246

Dosimeter for monitoring vapors and aerosols of organic compounds  

DOE Patents (OSTI)

A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

Vo-Dinh, T.

1987-07-14T23:59:59.000Z

247

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network (OSTI)

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

248

Composition and Reactions of Atmospheric Aerosol Particles  

NLE Websites -- All DOE Office Websites (Extended Search)

change. Tiny Specks with Large Effects Most people equate aerosols with hairspray and household cleaning products, but a large portion of these microscopic particles floating...

249

Radiative and climate impacts of absorbing aerosols  

E-Print Network (OSTI)

over the southwest summer monsoon region, Meteorol. Atmos.Absorbing aerosols and summer monsoon evolution over SouthK. M. Kim (2006), Asian summer monsoon anomalies induced by

Zhu, Aihua

2010-01-01T23:59:59.000Z

250

Micro Aerosol-based Decontamination System - Available ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Micro Aerosol-based Decontamination System. Battelle Number(s): 15847. ...

251

Carbonaceous Aerosol Study Using Advanced Particle Instrumentation  

E-Print Network (OSTI)

range transport of biomass combustion aerosols. Environ.6 6.1 Introduction Biomass combustion emissions contributeparticles from the combustion of biomass fuels. Environ.

Qi, Li

2010-01-01T23:59:59.000Z

252

Aerosol Retrieval Using Remote-sensed Observations  

E-Print Network (OSTI)

electromagnetic solar radiation. The amount of atmosphericas the amount of solar radiation that aerosols scatter andbased on reflected solar radiation field measurements

Wang, Yueqing

2012-01-01T23:59:59.000Z

253

Chemical and Physical Investigation of Secondary Organic Aerosol Formation  

E-Print Network (OSTI)

mass and mobility for atmospheric particles: A new techniquemass and mobility for atmospheric particles: A new techniquemass and mobility for atmospheric particles: A new technique

Nakao, Shunsuke

2012-01-01T23:59:59.000Z

254

Chemical and Physical Investigation of Secondary Organic Aerosol Formation  

E-Print Network (OSTI)

compounds (e.g. , 80% catechol formation from phenol, OlariuO 2 Isoprene Benzene Phenol Catechol Toluene o-/m- Cresol NObenzene, phenol, and catechol), ~0.5 for C 7 species (

Nakao, Shunsuke

2012-01-01T23:59:59.000Z

255

Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical  

E-Print Network (OSTI)

). He received his M.Sc. degree (physics) in 1991 from the Leningrad Polytechnical Institute, Russia received her M.Sc. degree in physics from the Leningrad Polytechnical Institute (1990) and her Ph.D. degree Professor at the University of California, Irvine. He received his M.Sc. degree in biochemistry from

Nizkorodov, Sergey

256

Chemical and Physical Investigation of Secondary Organic Aerosol Formation  

E-Print Network (OSTI)

iodine-containing species (IO, OIO, INO3, (IO)2, I2O3, I2O4channel and ~40% for the OIO forming channel (Saiz-Lopez etiodine oxide species, such as OIO, I 2 O 3 , I 2 O 4 , and I

Nakao, Shunsuke

2012-01-01T23:59:59.000Z

257

THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION  

NLE Websites -- All DOE Office Websites (Extended Search)

THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION Title THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION Publication Type Journal Article LBNL Report...

258

Coupled aerosol-chemistry-climate twentieth century transient...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupled aerosol-chemistry-climate twentieth century transient model investigation: Trends in short-lived species and climate responses Title Coupled aerosol-chemistry-climate...

259

Aerosol organic carbon to black carbon ratios: Analysis of published...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing Title Aerosol organic carbon to black carbon ratios: Analysis of...

260

OLIGOMERIZATION OF LEVOGLUCOSAN IN PROXIES OF BIOMASS BURNING AEROSOLS.  

E-Print Network (OSTI)

??Biomass burning aerosols play an important role in the chemistry and physics of the atmosphere and therefore, affect global climate. Biomass burning aerosols are generally… (more)

Holmes, Bryan J.

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Evaluating the Direct and Indirect Aerosol Effect on Climate  

NLE Websites -- All DOE Office Websites (Extended Search)

one of the largest uncertainties in climate forcing studies is the effect of aerosols on the earth-atmosphere system. Aerosols affect the radiation budget under both clear...

262

Aerosol Jet® Material Deposition for High Resolution Printed ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Aerosol Jet printing, is finding wide use in a number of ... The Aerosol Jet systems deposit a wide variety of functional materials onto a wide ...

263

Characterizing the Formation of Secondary Organic Aerosols-Interim...  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterizing the Formation of Secondary Organic Aerosols-Interim Report. Title Characterizing the Formation of Secondary Organic Aerosols-Interim Report. Publication Type Report...

264

Modeling Corrosion of a Metal under an Aerosol Droplet  

Science Conference Proceedings (OSTI)

Deposition of aerosol droplets produced either by marine or industrial activity on the ... The atmospheric corrosion caused by aerosols is a result of a complex ...

265

Raman Lidar Measurements of Aerosols and Water Vapor During the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Raman Lidar Measurements of Aerosols and Water Vapor During the May 2003 Aerosol IOP R. A. Ferrare National Aeronautics and Space Administration Langley Research Center Hampton,...

266

Factors affecting the indoor concentrations of carbonaceous aerosols...  

NLE Websites -- All DOE Office Websites (Extended Search)

Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin Title Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin...

267

The Transformation of Outdoor Ammonium Nitrate Aerosols in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Transformation of Outdoor Ammonium Nitrate Aerosols in the Indoor Environment Title The Transformation of Outdoor Ammonium Nitrate Aerosols in the Indoor Environment...

268

Retrieval of Aerosol Mass Concentration from Elastic Lidar Data.  

E-Print Network (OSTI)

??Agricultural aerosol sources can contribute significantly to air pollution in many regions of the country. Characterization of the aerosol emissions of agricultural operations is required… (more)

Marchant, Christian C.

2010-01-01T23:59:59.000Z

269

Studies of urban atmospheric aerosols using lidar and sky radiometer.  

E-Print Network (OSTI)

???This thesis discusses the remote sensing of atmospheric aerosols, the corresponding instrumental technology and inversion algorithm. The urban aerosol optical properties in Hong Kong have… (more)

Yang, Xun (??)

2008-01-01T23:59:59.000Z

270

Development of a Fast Time-Resolved Aerosol Collector (Fast TRAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Yu Yu & James Cowin PNNL Fast Time-Resolved Aerosol Collector ......Fast TRAC...... Xiao-Ying Yu, Ali Hashim, Martin Iedema, and James Cowin Atmospheric Sciences, Chemical Sciences Pacific Northwest National Laboratory Richland, WA Research is supported by NOAA & DOE. *Patent Pending Xiao-Ying Yu & James Cowin PNNL Cloud Microstructures ≤ 1 m Want to know the aerosols at this resolution Aircraft flies at 150 m/s Need time resolution 1 m/150 m/s = 6 ms (!!!!!) Xiao-Ying Yu & James Cowin PNNL What is TRAC? - Time-Resolved Aerosol Collector * Uses an impactor * ~ 600 TEM samples * Flow rate: 1 l/min * Time resolution: ≥ 1 min* * Applications: Off-line analysis: - particle hygroscopicity, morphology, composition.. (6.5 in) 3 , 7 lb, 12 V, 8 W 0% 20% 40% 60%

271

Spectro-microscopic Measurements of Carbonaceous Aerosol Aging in Central California  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectro-microscopic Measurements of Carbonaceous Spectro-microscopic Measurements of Carbonaceous Aerosol Aging in Central California For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Atmospheric aerosols affect climate by scattering and absorbing sunlight and by modifying the properties of clouds. However, there are gaps in our understanding of chemical processes involving these airborne particulates, and these gaps contribute significantly to uncertainties in predicting future climate change. Developing more- accurate global climate models requires a more complete understanding of the aerosol lifecycle, from initial particle formation to loss through incorporation into precipitating clouds or dry deposition. In research published in the journal Atmospheric Chemistry and Physics, a team of

272

Aerosol characterization study using multi-spectrum remote sensing measurement techniques.  

SciTech Connect

A unique aerosol flow chamber coupled with a bistatic LIDAR system was implemented to measure the optical scattering cross sections and depolarization ratio of common atmospheric particulates. Each of seven particle types (ammonium sulfate, ammonium nitrate, sodium chloride, potassium chloride, black carbon and Arizona road dust) was aged by three anthropogenically relevant mechanisms: 1. Sulfuric acid deposition, 2. Toluene ozonolysis reactions, and 3. m-Xylene ozonolysis reactions. The results of pure particle scattering properties were compared with their aged equivalents. Results show that as most particles age under industrial plume conditions, their scattering cross sections are similar to pure black carbon, which has significant impacts to our understanding of aerosol impacts on climate. In addition, evidence emerges that suggest chloride-containing aerosols are chemically altered during the organic aging process. Here we present the direct measured scattering cross section and depolarization ratios for pure and aged atmospheric particulates.

Glen, Crystal Chanea; Sanchez, Andres L.; Lucero, Gabriel Anthony; Schmitt, Randal L.; Johnson, Mark S.; Tezak, Matthew Stephen; Servantes, Brandon Lee

2013-09-01T23:59:59.000Z

273

Active Spectral Nephelometry in Studies of the Condensational Activity of Submicron Aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

Active Spectral Nephelometry in Studies of the Active Spectral Nephelometry in Studies of the Condensational Activity of Submicron Aerosol M. V. Panchenko, S. A. Terpugova, and V. S. Kozlov Institute of Atmospheric Optics Russian Academy of Sciences Tomsk, Russia M. A. Sviridenkov A. M. Obukhov Institute of Atmospheric Physics Russian Academy of Sciences Moscow, Russia A. S. Kozlov Institute of Chemical Kinetics and Combustion Russian Academy of Sciences Novosibirsk, Russia Introduction Water vapor condensation and evaporation are among the main processes of the atmospheric aerosol transformation essentially affecting its optical and radiative characteristics. Most of the known methods for investigating the aerosol condensation activity are based on measurements of only the changes in the

274

The Evolution of the Physicochemical Properties of Aerosols in the Atmosphere  

E-Print Network (OSTI)

A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) system was used to measure simultaneously the size distribution and hygroscopicity of the ambient aerosol population. The system was operated aboard the National Center for Atmospheric Research/National Science Foundation (NCAR/NSF) C-130 during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaign followed by the 2006 Intercontinental Chemical Transport Experiment – Phase B (INTEX-B) field campaign. The research flights for the MILAGRO campaign were conducted within the Mexico City basin and the region to the northeast within the pollution plume. The aerosol within the basin is dominated by organics with an average measured kappa value of 0.21 /- 0.18, 0.13 /- 0.09, 0.09 /- 0.06, 0.14 /- 0.07, and 0.17 /- 0.04 for dry particle diameters of 0.025, 0.050, 0.100, 0.200, and 0.300 mu m, respectively. As the aerosols are transported away from the Mexico City Basin, secondary organic aerosol formation through oxidation and condensation of sulfate on the aerosols surface rapidly increases the solubility of the aerosol. The most pronounced change occurs for a 0.100 mu m diameter aerosol where, after 6 hours of transport, the average kappa value increased by a factor of 3 to a kappa?of 0.29 /- 0.13. The rapid increase in solubility increases the fraction of the aerosol size distribution that could be activated within a cloud. The research flights for the INTEX-B field campaign investigated the evolution of the physicochemical properties of the Asian aerosol plume after 3 to 7 days of transport. The Asian aerosol within the free troposphere exhibited a bimodal growth distribution roughly 50 percent of the time. The more soluble mode of the growth distribution contributed between 67-80 percent of the overall growth distribution and had an average kappa?between 0.40 and 0.53 for dry particle diameters of 0.025, 0.050, 0.100, and 0.300 mu m. The secondary mode was insoluble with an average kappa?between 0.01 and 0.05 for all dry particle diameters. Cloud condensation nuclei closure was attained at a supersaturation of 0.2 percent for all particles within the free troposphere by either assuming a pure ammonium bisulfate composition or a binary composition of ammonium bisulfate and an insoluble organic.

Tomlinson, Jason

2010-12-01T23:59:59.000Z

275

Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging in Central California  

Science Conference Proceedings (OSTI)

Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (June 27-29, 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research.

Moffet, Ryan C.; Rodel, Tobias; Kelly, Stephen T.; Yu, Xiao-Ying; Carroll, Gregory; Fast, Jerome D.; Zaveri, Rahul A.; Laskin, Alexander; Gilles, Mary K.

2013-10-29T23:59:59.000Z

276

Capstone Depleted Uranium Aerosol Biokinetics, Concentrations, and Doses  

SciTech Connect

One of the principal goals of the Capstone Depleted Uranium (DU) Aerosol Study was to quantify and characterize DU aerosols generated inside armored vehicles by perforation with a DU penetrator. This study consequently produced a database in which the DU aerosol source terms were specified both physically and chemically for a variety of penetrator-impact geometries and conditions. These source terms were used to calculate radiation doses and uranium concentrations for various scenarios as part of the Capstone DU Human Health Risk Assessment (HHRA). This paper describes the scenario-related biokinetics of uranium, and summarizes intakes, chemical concentrations to the organs, and E(50) and HT(50) for organs and tissues based on exposure scenarios for personnel in vehicles at the time of perforation as well as for first responders. For a given exposure scenario (duration time and breathing rates), the range of DU intakes among the target vehicles and shots was not large, about a factor of 10, with the lowest being from a ventilated operational Abrams tank and the highest being for an unventilated Abrams with DU penetrator perforating DU armor. The ranges of committed effective doses were more scenario-dependent than were intakes. For example, the largest range, a factor of 20, was shown for scenario A, a 1-min exposure, whereas, the range was only a factor of two for the first-responder scenario (E). In general, the committed effective doses were found to be in the tens of mSv. The risks ascribed to these doses are discussed separately.

Guilmette, Raymond A.; Miller, Guthrie; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

277

Longwave radiative forcing by aqueous aerosols  

SciTech Connect

Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States). Environmental Research Div.

1995-01-01T23:59:59.000Z

278

An Improved Equilibrium-Kinetics Speciation Algorithm For Redox...  

Open Energy Info (EERE)

Flow Systems Details Activities (0) Areas (0) Regions (0) Abstract: Reactive chemical transport occurs in a variety of geochemical environments, and over a broad range of...

279

Study for radionuclide transfer ratio of aerosols generated during heat cutting  

SciTech Connect

The metallic elements with a low melting point and high vapor pressure seemed to transfer in aerosols selectively at dismantling reactor internals using heat cutting. Therefore, the arc melting tests of neutron irradiated zirconium alloy were conducted to investigate the radionuclide transfer behavior of aerosols generated during the heat cutting of activated metals. The arc melting test was conducted using a tungsten inert gas welding machine in an inert gas or air atmosphere. The radioactive aerosols were collected by filter and charcoal filter. The test sample was obtained from Zry-2 fuel cladding irradiated in a Japanese boiling water reactor for five fuel cycles. The activity analysis, chemical composition measurement and scanning electron microscope observation of aerosols were carried out. Some radionuclides were enriched in the aerosols generated in an inert gas atmosphere and the radionuclide transfer ratio did not change remarkably by the presence of air. The transfer ratio of Sb-125 was almost the same as that of Co-60. It was expected that Sb-125 was enriched from other elements since Sb is an element with a low melting point and high vapor pressure compared with the base metal (Zr). In the viewpoint of the environmental impact assessment, it became clear that the influence if Sb-125 is comparable to Co-60. The transfer ratio of Mn-54 was one order higher compared with other radionuclides. The results were discussed on the basis of thermal properties and oxide formation energy of the metallic elements. (authors)

Iguchi, Yukihiro; Baba, Tsutomu; Kawakami, Hiroto [Japan Nuclear Energy Safety Organization - JNES (Japan); Kitahara, Takashi; Watanabe, Atsushi [Hitachi, Ltd. (Japan); Kodama, Mitsuhiro [Nippon Nuclear Fuel Development Co., Ltd. (Japan)

2007-07-01T23:59:59.000Z

280

Southeastern Aerosol and Visibility Study (SEAVS): Concentration and Composition of Atmospheric Aerosols at Look Rock, Tennessee, Ju ly-August 1995  

Science Conference Proceedings (OSTI)

Fine airborne particles with diameters below about 2.5 mm (PM-2.5), contribute to inhalation exposure, deposit on lakes and vegetation, form hazes, and influence the earth's radiative balance. This report describes the results of the Southeastern Aerosol and Visibility Study (SEAVS), which characterizes the concentration and chemical composition of fine particulate matter measured in the Great Smoky Mountains National Park during July-August, 1995. These results provide new insights into the influence of...

1998-12-16T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

BNL | Mobile Aerosol Observing System (MAOS)  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Aerosol Observing System (MAOS) Mobile Aerosol Observing System (MAOS) The Mobile Aerosol Observing System (MAOS) is a platform and instrument suite for Intensive Operation Periods (IOPs) to conduct in situ measurements of aerosols and their precursors. MAOS is part of the ARM Climate Research Facility. Physically MAOS is contained in two 20' SeaTainers custom adapted to provide a sheltered laboratory environment for operators and instruments even under harsh conditions. The two structures are designated MAOS-A and MAOS-C for Aerosol and Chemistry respectively. Although independent, with separate data systems, inlets and power distribution, the two structures are normally a single operating unit. The two enclosures comprising MAOS are designed for rapid deployment. All components (except for the Radar Wind Profiler) are transported internally

282

The Opposed Migration Aerosol Classifier (OMAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

The Opposed Migration Aerosol Classifier (OMAC) The Opposed Migration Aerosol Classifier (OMAC) Speaker(s): Harmony Gates Date: February 22, 2007 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Melissa Lunden A new differential mobility classifier will be described. The instrument classifies aerosol particles in a channel flow between porous (or screen) electrodes. The aerosol enters the channel parallel to the porous electrodes, while a larger, particle-free cross-flow enters through one of the porous electrode. A potential difference between electrodes causes the charged aerosol particles to migrate upstream against the cross-flow. Only particles whose upward migration velocity balances the cross flow will be transmitted along the path of the classifier. Simulations of the OMAC show that it should give the same resolution at the traditional

283

AEROSOL PARTICLE COLLECTOR DESIGN STUDY  

Science Conference Proceedings (OSTI)

A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

Lee, S; Richard Dimenna, R

2007-09-27T23:59:59.000Z

284

Canadian House Dust Study: Lead Bioaccessibility and Speciation  

Science Conference Proceedings (OSTI)

Vacuum samples were collected from 1025 randomly selected urban Canadian homes to investigate bioaccessible Pb (Pb{sub S}) concentrations in settled house dust. Results indicate a polymodal frequency distribution, consisting of three lognormally distributed subpopulations defined as 'urban background' (geomean 58 {micro}g g{sup -1}), 'elevated' (geomean 447 {micro}g g{sup -1}), and 'anomalous' (geomean 1730 {micro}g g{sup -1}). Dust Pb{sub S} concentrations in 924 homes (90%) fall into the 'urban background' category. The elevated and anomalous subpopulations predominantly consist of older homes located in central core areas of cities. The influence of house age is evidenced by a moderate correlation between house age and dust Pb{sub S} content (R{sup 2} = 0.34; n = 1025; p < 0.01), but it is notable that more than 10% of homes in the elevated/anomalous category were built after 1980. Conversely, the benefit of home remediation is evidenced by the large number of homes (33%) in the background category that were built before 1960. The dominant dust Pb species determined using X-ray Absorption Spectroscopy were as follows: Pb carbonate, Pb hydroxyl carbonate, Pb sulfate, Pb chromate, Pb oxide, Pb citrate, Pb metal, Pb adsorbed to Fe- and Al-oxyhydroxides, and Pb adsorbed to humate. Pb bioaccessibility estimated from solid phase speciation predicts Pb bioaccessibility measured using a simulated gastric extraction (R{sup 2} = 0.85; n = 12; p < 0.0001). The trend toward increased Pb bioaccessibility in the elevated and anomalous subpopulations (75% {+-} 18% and 81% {+-} 8%, respectively) compared to background (63% {+-} 18%) is explained by the higher proportion of bioaccessible compounds used as pigments in older paints (Pb carbonate and Pb hydroxyl carbonate). This population-based study provides a nationally representative urban baseline for applications in human health risk assessment and risk management.

P Rasmussen; S Beauchemin; M Chenier; C Levesque; L MacLean; L Marrow; H Jones-Otazo; S Petrovic; L McDonald; H Gardner

2011-12-31T23:59:59.000Z

285

Global observations of desert dust and biomass burning aerosols  

E-Print Network (OSTI)

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

286

Subarctic atmospheric aerosol composition: 3. Measured and modeled properties of cloud condensation nuclei  

SciTech Connect

Predicting the ability of aerosol particles to act as cloud condensation nuclei (CCN) is still a challenge and not properly incorporated in current climate models. By using field data from measurements at the sub-arctic Stordalen site, approximately 200 km north of the Arctic Circle, a hygroscopicity closure study was performed. Measured CCN number concentrations were compared with predictions that involved size distribution data and hygroscopicity data measured by a HTDMA as a proxy for the chemical composition of the aerosol. The sensitivity of the predictions to simplifying assumptions re-garding mixing state of the particles and the temporal variability of the chemical composition were explored. It was found that involving the full growth factor probability density function (GF-PDF) or the averaged growth factor (GF) or a constant averaged ?-value resulted in reasonable agreement be-tween predicted and measured CCN number concentrations. Probability distribution histograms of the performances of the different closure approaches revealed that involving the full GF-PDF resulted in the narrowest and most symmetric distribution of the predicted-to-measured CCN number concentra-tion ratio around unity. While also involving the averaged GF showed a good agreement, the constant averaged ?-value-approach resulted in most of the cases in an overestimation of CCN number con-centrations by ~15 %. Approaches where a constant estimated hygroscopicity was involved predicted CCN number concentrations in some cases well but largely overestimated (assuming internally mixed ammonium sulphate particles) or underestimated (assuming internally mixed organic aerosol particles with ? = 0.1) CCN number concentrations. It is therefore recommended that at least an averaged measured proxy for the aerosol’s chemical composition be incorporated in future CCN predictions and climate models.

Kammermann, Lukas; Gysel, Martin; Weingartner, E.; Herich, Hanna; Holst, Thomas; Cziczo, Daniel J.; Svenningsson, Birgitta; Arneth, Almut; Baltensperger, Urs

2010-02-19T23:59:59.000Z

287

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2  

E-Print Network (OSTI)

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME burning events. It is found that the regional AAI data follow the regional tropospheric NO2 data well sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

Tilstra, Gijsbert

288

Evolution of organic aerosol mass spectra upon heating: implications for OA phase and partitioning behavior  

E-Print Network (OSTI)

and Seinfeld, J. H. : Organic aerosol formation from theJ. : A large organic aerosol source in the free troposphereand Worsnop, D. R. : Organic aerosol components observed in

Cappa, Christopher D.

2011-01-01T23:59:59.000Z

289

Aerosol effects on red blue ratio of clear sky images, and impact on solar forecasting  

E-Print Network (OSTI)

urban, and desert dust aerosols ." JOURNAL OF GEOPHYSICALand K. V. S. Badarinath. "Aerosol climatology: dependence ofUsing a Sky Imager for aerosol characterization."

Ghonima, Mohamed Sherif

2011-01-01T23:59:59.000Z

290

Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory  

E-Print Network (OSTI)

in press), Organic aerosols in the earth's atmosphere,loss, and trace gas and aerosol emissions during laboratoryproperties of biomass burn aerosols, Geophysical Research

McMeeking, Gavin R.

2009-01-01T23:59:59.000Z

291

Aerosol indirect effects -- general circulation model intercomparison and evaluation with satellite data  

E-Print Network (OSTI)

J. : A parameterization of aerosol activation - 3. Sectionalclouds on indirect aerosol climate forcing, Nature, 432,2004. Albrecht, B. A. : Aerosols, cloud microphysics, and

Quaas, Johannes

2010-01-01T23:59:59.000Z

292

Secondary Organic Aerosol Formation from Primary Aliphatic Amines with Nitrate Radical  

E-Print Network (OSTI)

back- ground atmospheric aerosol in the UK determined inof secondary organic aerosols, Atmos. Environ. , 31, 3921–et al. : Secondary organic aerosol formation from amines

Malloy, Q G J; Qi, L; Warren, B; Cocker III, D R; Erupe, M E; Silva, P J

2009-01-01T23:59:59.000Z

293

Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition  

E-Print Network (OSTI)

of gas-phase chemistry-aerosol interactions on directforcing by anthropogenic aerosols and ozone, J. Geophys.GCM to constrain the aerosol indirect effect, J. Geophys.

Menon, S.

2009-01-01T23:59:59.000Z

294

Composition, sources, and formation of secondary organic aerosols from urban emissions  

E-Print Network (OSTI)

organonitrate functional groups in aerosol particles200 5.1v aerosol Chapter 3 Meteorological conditions during theSecondary organic aerosol formation from fossil fuel sources

Liu, Shang; Liu, Shang

2012-01-01T23:59:59.000Z

295

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate  

E-Print Network (OSTI)

Cloud susceptibility and the first aerosol indirect forcing:Sensitivity to BC and aerosol concentrations. J. Geophys.of cloud droplet and aerosols number concentrations:

Menon, Surabi

2008-01-01T23:59:59.000Z

296

Characterization of the Molecular Composition of Secondary Organic Aerosols using High Resolution Mass Spectrometry  

E-Print Network (OSTI)

in secondary organic aerosol formation from isoprene, Proc.biogenic secondary organic aerosol, J. Phys. Chem. A, 112(in secondary organic aerosol, Environ. Sci. Technol. , 41(

Sellon, Rachel Elizabeth

2012-01-01T23:59:59.000Z

297

DETERMINATION OF CARBON IN ATMOSPHERIC AEROSOLS BY DEUTERON-INDUCED NUCLEAR REACTIONS  

E-Print Network (OSTI)

deuteron irradiation of an atmospheric aerosol sample.CARBON IN ATMOSPHERIC AEROSOLS BY DEUTERON-INDUCED NUCLEARCARBON IN ATMOSPHERIC AEROSOLS BY DEUTERON-INDUCED NUCLEAR

Clemenson, Mark

2013-01-01T23:59:59.000Z

298

On the Importance of Organic Oxygen for Understanding Organic Aerosol Particles  

E-Print Network (OSTI)

carbon fractions in atmospheric aerosols, J. Geophys. Res. -particulate diesel exhaust, Aerosol Sci. Technol. 25: 221-climate forcing of carbonaceous aerosols, J. Geophys. Res. -

Pang, Y.; Turpin, B.J.; Gundel, L.A.

2005-01-01T23:59:59.000Z

299

Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data  

E-Print Network (OSTI)

Oscillation influence aerosol variability? , J. Geophys.clouds on indirect aerosol climate forcing, Nature, 432,2004. Albrecht, B. A. : Aerosols, cloud microphysics, and

Quaas, Johannes

2010-01-01T23:59:59.000Z

300

Real time in situ detection of organic nitrates in atmospheric aerosols  

E-Print Network (OSTI)

Biogenic Secondary Organic Aerosol. J. Phys. Chem. A 2008,H. Secondary organic aerosol (SOA) formation from reactionsec- ondary organic aerosol yields. Atmospheric Chemistry

Rollins, Andrew W.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Secondary Organic Aerosol Formation From Radical-Initiated Reactions of Alkenes: Development of Mechanisms  

E-Print Network (OSTI)

and Secondary Organic Aerosols in Southern California duringSources of Organic Carbon Aerosols in the Free Troposphere21 co-authors), 2005. Organic Aerosol and Global Climate

Matsunaga, Aiko

2009-01-01T23:59:59.000Z

302

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing  

E-Print Network (OSTI)

Ryu (2004), Carbonaceous aerosol characteristics ofPM 2.5Allen (1990), Transported acid aerosols measured in southernconference international aerosol carbon round robin test

Novakov, T.; Menon, S.; Kirchstetter, T.W.; Koch, D.; Hansen, J.E.

2005-01-01T23:59:59.000Z

303

ATMOSPHERIC AEROSOL RESEARCH FY-1979, CHAPTER IN THE ENERGY AND ENVIRONMENT ANNUAL REPORT, 1979  

E-Print Network (OSTI)

California atmospheric aerosols," Environ. Sci. Technol. ll•suspensions," in Atmospheric Aerosol Research Annual Report,formation," in Atmospheric Aerosol Research Annual Report,

Authors, Various

2013-01-01T23:59:59.000Z

304

Polarimetric Remote Sensing of Aerosols over Land  

Science Conference Proceedings (OSTI)

The sensitivity of accurate polarized reflectance measurements over a broad spectral (410 -2250 nm) and angular (±60° from nadir) range to the presence of aerosols over land is analyzed and the consequent ability to retrieve the aerosol burden and microphysical model is assessed. Here we present a new approach to the correction of polarization observations for the effects of the surface that uses longer wavelength observations to provide a direct estimate of the surface polarized reflectance. This approach to surface modeling is incorporated into an optimal estimation framework for retrieving the particle number density and a detailed aerosol microphysical model: effective radius, effective variance and complex refractive index of aerosols. A sensitivity analysis shows that the uncertainties in aerosol optical thickness (AOT) increase with AOT while the uncertainties in the microphysical model decrease. Of particular note is that the uncertainty in the single scattering albedo is less than 0.05 by the time the AOT is greater than 0.2. We also find that calibration is the major source of uncertainty and that perfect angular and spectral correlation of calibration errors reduces the uncertainties in retrieved quantities compared with the case of uncorrelated errors. Finally, in terms of required spectral range, we observe that shorter wavelength (aerosols from polarized reflectance observations. The optimal estimation scheme is then tested on observations made by the Research Scanning Polarimeter during the Aerosol Lidar Validation experiment and over Southern California wild fires. These two sets of observations test the retrieval scheme under pristine and polluted conditions respectively. In both cases we find that the retrievals are within the combined uncertainties of the retrieval and the Aerosol Robotic Network Cimel products and Total Ozone Mapping Spectrometer Aerosol Index that we are comparing to. This confirms the validity of the sensitivity analysis of the polarized reflectance observations to the aerosol number density and microphysical model and demonstrates the unique capability to accurately retrieve aerosol optical depths under pristine conditions and also the single scattering albedo of aerosols at higher optical depths.

Waquet, F.; Cairns, Brian; Knobelspiesse, Kirk D.; Chowdhary, J.; Travis, Larry D.; Schmid, Beat; Mishchenko, M.

2009-01-26T23:59:59.000Z

305

Emissions of trace gases and aerosols during the open combustion of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions of trace gases and aerosols during the open combustion of biomass Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Title Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory Publication Type Journal Article Year of Publication 2009 Authors McMeeking, Gavin R., Sonia M. Kreidenweis, Stephen Baker, Christian M. Carrico, Judith C. Chow, Jeffrey Collett L. Jr., Wei Min Hao, Amanda S. Holden, Thomas W. Kirchstetter, William C. Malm, Hans Moosmuller, Amy P. Sullivan, and Cyle E. Wold Journal Journal of Geophysical Research Volume 114 Abstract We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO4 2, NO3, Cl, Na+, K+, and NH4 + generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.

306

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

Science Conference Proceedings (OSTI)

Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

Richard A. Ferrare; David D. Turner

2011-09-01T23:59:59.000Z

307

East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An Overview  

Science Conference Proceedings (OSTI)

As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas. Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate (EAST-AIRC). The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF10 China), the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE). The former two are US-China collaborative projects and the latter is a part of the China’s National Basic Research program (or often referred to as “973 project”). Routine meteorological data of China are also employed in some studies. The wealth of general and specialized measurements lead to extensive and close-up investigations of the optical, physical and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation and transport mechanisms; horizontal, vertical and temporal variations; direct and indirect effects and interactions with the East Asian monsoon system. Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc. In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

Li, Zhanqing; Li, C.; Chen, H.; Tsay, S. C.; Holben, B. N.; Huang, J.; Li, B.; Maring, H.; Qian, Yun; Shi, Guangyu; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

2011-02-01T23:59:59.000Z

308

An Estimate of the Chemical and Radiative Perturbation of Stratospheric Ozone Following the Eruption of Mt. Pinatubo  

Science Conference Proceedings (OSTI)

In this work a numerical assessment is attempted of trace species interactions with aerosols injected in the stratosphere by the eruption of Mt. Pinatubo. A photochemical two-dimensional model is used for this purpose, with heterogeneous chemical ...

G. Pitari; V. Rizi

1993-10-01T23:59:59.000Z

309

Relating hygroscopicity and composition of organic aerosol particulate matter  

SciTech Connect

A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f44). m/z 44 is due mostly to the ion fragment CO+2 for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfraujoch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation between the hygroscopicity of OA at subsaturated RH, as given by the hygroscopic growth factor (GF) or “*org” parameter, and f44 was determined and is given by *org=2.2×f44?0.13. This approximation can be further verified and refined as the database for AMS and HTDMA measurements is constantly being expanded around the world. The use of this approximation could introduce an important simplification in the parameterization of hygroscopicity of OA in atmospheric models, since 20 f44 is correlated with the photochemical age of an air mass.

Duplissy, J.; DeCarlo, Peter F.; Dommen, J.; Alfarra, M. R.; Metzger, A.; Barmpadimos, I.; Prevot, A. S. H.; Weingartner, E.; Tritscher, Torsten; Gysel, Martin; Aiken, Allison; Jimenez, J. L.; Canagaratna, M. R.; Worsnop, Douglas R.; Collins, Donald R.; Tomlinson, Jason M.; Baltensperger, Urs

2011-02-10T23:59:59.000Z

310

Development of a method for the speciation of source mercury emissions  

SciTech Connect

In a study conducted at the Research Triangle Institute (RTI), funded through an EPA cooperative agreement, RTI and EPA researchers sought to identify a stationary source mercury (Hg) speciation method that is applicable to both fossil fuel and waste combustion processes. Initial research included the bench-scale evaluation of EPA Method 29, as well as the identification of other potential impinger solution reagents and methods capable of selectively capturing and preserving mercury species. A relatively simple speciation/collection approach for Hg emissions from fossil fuel combustion was developed that employed impingers containing deionized water (Draft Method 101B) upstream of the Method 29 peroxide solution. Recent work by RTI and EPA has focused on the evaluation of a dilute sodium hydroxide impinger solution to replace the water used in Draft Method 101B. Results obtained to date from both bench tests and pilot-scale combustion tests indicate that the alkaline mercury speciation method (AMS) is highly effective at speciating elemental and ionic mercury emissions in the presence of Cl{sub 2} concentrations up to 20 ppmv and SO{sub 2} levels exceeding 1,500 ppmv. Other potential interferences investigated during the study were hydrogen chloride, nitric oxide, carbon dioxide, and moisture.

Giglio, J.J.; O`Rourke, J.A.; Grohse, P.M.; Wilshire, F.; Ryan, J.

1998-04-21T23:59:59.000Z

311

Elucidating cadmium speciation and bioavailability in Thai paddy soils Saengdao Khaokaew1  

E-Print Network (OSTI)

Elucidating cadmium speciation and bioavailability in Thai paddy soils GEOC 55 Saengdao Khaokaew1 Sparks, dlsparks@udel.edu1 . (1) Department of Plant and Soil Sciences and the Center for Critical Zone Research, University of Delaware, Newark, DE 19716, (2) Department of Soil Science, Kasetsart University

Sparks, Donald L.

312

Speciation and Release Kinetics of Zinc in Contaminated Paddy Soils Saengdao Khaokaew,*,  

E-Print Network (OSTI)

Speciation and Release Kinetics of Zinc in Contaminated Paddy Soils Saengdao Khaokaew,*, Gautier of Plant and Soil Sciences, 152 Townsend Hall, Newark, Delaware 19716, United States U.S. Department of Zn is controlled by many factors, especially soil pH and Eh, which can vary in lowland rice culture

Sparks, Donald L.

313

Toward a Minimal Representation of Aerosols in Climate Models: Description and Evaluation in the Community Atmosphere Model CAM5  

Science Conference Proceedings (OSTI)

A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically based manner. Two MAM versions were developed: a more complete version with seven-lognormal modes (MAM7), and a three-lognormal mode version (MAM3) for the purpose of long-term (decades to centuries) simulations. Major approximations in MAM3 include assuming immediate mixing of primary organic matter (POM) and black carbon (BC) with other aerosol components, merging of the MAM7 fine dust and fine sea salt modes into the accumulation mode, merging of the MAM7 coarse dust and coarse sea salt modes into the single coarse mode, and neglecting the explicit treatment of ammonia and ammonium cycles. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7 as most ({approx}90%) of these aerosol species are in the accumulation mode. Differences of POM and BC concentrations between MAM3 and MAM7 are also small (mostly within 10%) because of the assumed hygroscopic nature of POM, so that freshly emitted POM and BC are wet-removed before mixing internally with soluble aerosol species. Sensitivity tests with the POM assumed to be hydrophobic and with slower aging process increase the POM and BC concentrations, especially at high latitudes (by several times). The mineral dust global burden differs by 10% and sea salt burden by 30-40% between MAM3 and MAM7 mainly due to the different size ranges for dust and sea salt modes and different standard deviations of log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases, e.g., simulated sulfate and mineral dust concentrations at surface over the oceans are too low. Simulated BC concentrations are significant low in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing counties. There biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and precursor gases in developing countries, boundary layer nucleation) and properties (e.g., primary aerosol emission size, POM hygroscopicity). In addition the critical role of cloud properties (e.g., liquid water content, cloud fraction) responsible for the wet scavenging of aerosol is highlighted.

Liu, Xiaohong; Easter, Richard C.; Ghan, Steven J.; Zaveri, Rahul A.; Rasch, Philip J.; Shi, Xiangjun; Lamarque, J.-F.; Gettelman, A.; Morrison, H.; Vitt, Francis; Conley, Andrew; Park, S.; Neale, Richard; Hannay, Cecile; Ekman, A. M.; Hess, Peter; Mahowald, N.; Collins, William D.; Iacono, Michael J.; Bretherton, Christopher S.; Flanner, M. G.; Mitchell, David

2012-05-21T23:59:59.000Z

314

Emerging Technology for Measuring Atmospheric Aerosol Properties...  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Laboratory and with funding from the DOE STTR program. DMT is developing a new technique for measuring aerosol size distributions in the sub-0.1 um size range. The...

315

ARM - Measurement - Aerosol particle size distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

particle size distribution particle size distribution ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Aerosol particle size distribution The number of aerosol particles present in any given volume of air within a specificied size range Categories Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded for diagnostic or quality assurance purposes. ARM Instruments SMPS : Scanning mobility particle sizer TDMA : Tandem Differential Mobility Analyzer UHSAS : Ultra-High Sensitivity Aerosol Spectrometer Field Campaign Instruments

316

Exploring Atmospheric Aerosols by Twilight Photometry  

Science Conference Proceedings (OSTI)

The instrument twilight photometer was designed, developed, and installed at the Indian Institute of Tropical Meteorology (IITM), Pune, India (18°43?N, 73°51?E), to monitor the vertical distribution of atmospheric aerosols. The instrument, based ...

B. Padma Kumari; S. H. Kulkarni; D. B. Jadhav; A. L. Londhe; H. K. Trimbake

2008-09-01T23:59:59.000Z

317

Eastern Pacific Emitted Aerosol Cloud Experiment  

Science Conference Proceedings (OSTI)

Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled ...

Lynn M. Russell; Armin Sorooshian; John H. Seinfeld; Bruce A. Albrecht; Athanasios Nenes; Lars Ahlm; Yi-Chun Chen; Matthew Coggon; Jill S. Craven; Richard C. Flagan; Amanda A. Frossard; Haflidi Jonsson; Eunsil Jung; Jack J. Lin; Andrew R. Metcalf; Robin Modini; Johannes Mülmenstädt; Greg Roberts; Taylor Shingler; Siwon Song; Zhen Wang; Anna Wonaschütz

2013-05-01T23:59:59.000Z

318

ARM - Campaign Instrument - aerosol-tower-eml  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsaerosol-tower-eml Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : EML Tower based Aerosol...

319

Remote Sensing of Aerosol Properties during CARES  

SciTech Connect

One month of MFRSR data collected at two sites in the central California (USA) region during the CARES campaign are processed and the MFRSR-derived AODs at 500 nm wavelength are compared with available AODs provided by AERONET measurements. We find that the MFRSR and AERONET AODs are small ({approx}0.05) and comparable. A reasonable quantitative agreement between column aerosol size distributions (up to 2 um) from the MFRSR and AERONET retrievals is illustrated as well. Analysis of the retrieved (MFRSR and AERONET) and in situ measured aerosol size distributions suggests that the contribution of the coarse mode to aerosol optical properties is substantial for several days. The results of a radiative closure experiment performed for the two sites and one-month period show a favorable agreement between the calculated and measured broadband downwelling irradiances (bias does not exceed about 3 Wm-2), and thus imply that the MFRSR-derived aerosol optical properties are reasonable.

Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Flynn, Connor J.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Jobson, Bertram Thomas

2011-10-01T23:59:59.000Z

320

The Life Cycle of Stratospheric Aerosol Particles  

Science Conference Proceedings (OSTI)

This paper describes the life cycle of the background (nonvolcanic) stratospheric sulfate aerosol. The authors assume the particles are formed by homogeneous nucleation near the tropical tropopause and are carried aloft into the stratosphere. The ...

Patrick Hamill; Eric J. Jensen; P. B. Russell; Jill J. Bauman

1997-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

On the Background Stratospheric Aerosol Layer  

Science Conference Proceedings (OSTI)

Balloonborne aerosol particle counter measurements are used in studying the stratospheric sulfate layer at Laramie, Wyoming, during 1978 and 1979, a 2-year volcanically quiescent period in which the layer appears to have been in a near ...

D. J. Hofmann; J. M. Rosen

1981-01-01T23:59:59.000Z

322

Study of Aerosol Indirect Effects in China  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effects in China In 2008, the U.S. Department of Energy (DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM Mobile...

323

Radiative and climate impacts of absorbing aerosols  

E-Print Network (OSTI)

during SHADE: 1. Solar spectrum, J. Geophys. Res . , 108(sensed data in the solar spectrum, J. Geophys. Res , 106 (a scattering aerosol in the solar spectrum with a SSA=1 and

Zhu, Aihua

2010-01-01T23:59:59.000Z

324

A New Method for Measuring Aerosol Absorption  

Science Conference Proceedings (OSTI)

A new technique has recently been developed to measure aerosol absorption by means of a microdensitometer. Black particulate material is collected into six spots on membrane filters by a laboratory-tested impaction/concentration technique. Follow-...

B. B. Murphey; S. I. Reynolds

1988-08-01T23:59:59.000Z

325

Aerosol Transport in the Southern Sierra Nevada  

Science Conference Proceedings (OSTI)

Aerosol transport and meteorology were investigated during 10 days in August 1985, at three elevations in the southern Sierra. Ground weather station and pilot balloon data revealed the diurnal variation of the topographic winds to be remarkably ...

D. M. Ewell; R. G. Flocchini; L. O. Myrup; T. A. Cahill

1989-02-01T23:59:59.000Z

326

Urban Aerosol Impacts on Downwind Convective Storms  

Science Conference Proceedings (OSTI)

The impacts of urban-enhanced aerosol concentrations on convective storm development and precipitation over and downwind of St. Louis, Missouri, are investigated. This is achieved through the use of a cloud-resolving mesoscale model, in which ...

Susan C. van den Heever; William R. Cotton

2007-06-01T23:59:59.000Z

327

Aerosol Best Estimate Value-Added Product  

Science Conference Proceedings (OSTI)

The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

2012-07-19T23:59:59.000Z

328

ARM - Field Campaign - Aerosol Lidar Validation Experiment -...  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsAerosol Lidar Validation Experiment - ALIVE Campaign Links ALIVE Website Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA....

329

Equilibrium Speciation of Select Lanthanides in the Presence of Acidic Ligands in Homo- and Heterogeneous Solutions  

SciTech Connect

This dissertation explores lanthanide speciation in liquid solution systems related to separation schemes involving the acidic ligands: bis(2-ethylhexyl) phosphoric acid (HDEHP), lactate, and 8-hydroxyquinoline. Equilibrium speciation of neodymium (Nd3+), sodium (Na+), HDEHP, water, and lactate in the TALSPEAK liquid-liquid extraction system was explored under varied Nd3+ loading of HDEHP in the organic phase and through extraction from aqueous HCl and lactate media. System speciation was probed through vapor pressure osmometry, visible and Fourier Transform Infrared (FTIR) spectroscopy, 22Na and 13C labeled lactate radiotracer distribution measurements, Karl Fischer titrations, and equilibrium pH measurements. Distribution of Nd3+, Na+, lactate, and equilibrium pH were modeled using the SXLSQI software to obtain logKNd and logKNa extraction constants under selected conditions. Results showed that high Nd3+ loading of the HDEHP led to Nd3+ speciation that departs from the ion exchange mechanism and includes formation of highly aggregated, polynuclear [NdLactate(DEHP)2]x; (with x > 1). By substituting lanthanum (La3+) for Nd3+ in this system, NMR scoping experiments using 23Na, 31P nuclei and 13C labeled lactate were performed. Results indicated that this technique is sensitive to changes in system speciation, and that further experiments are warranted. In a homogeneous system representing the TALSPEAK aqueous phase, Lactate protonation behavior at various temperatures was characterized using a combination of potentiometric titration and modeling with the Hyperquad computer program. The temperature dependent deprotonation behavior of lactate showed little change with temperature at 2.0 M NaCl ionic strength. Cloud point extraction is a non-traditional separation technique that starts with a homogeneous phase that becomes heterogeneous by the micellization of surfactants through the increase of temperature. To better understand the behavior of europium (Eu3+) and 8-hydroxyquinoline under cloud point extraction conditions, potentiometric and spectrophotometric titrations coupled with modeling with Hyperquad and SQUAD computer programs were performed to assess europium (Eu3+) and 8-hydroxyquinoline speciation. Experiments in both water and a 1wt% Triton X-114/water mixed solvent were compared to understand the effect of Triton X-114 on the system speciation. Results indicated that increased solvation of 8-hydroxyquinoline by the mixed solvent lead to more stable complexes involving 8-hydroxyquinoline than in water, whereas competition between hydroxide and Triton X-114 for Eu3+ led to lower stability hydrolysis complexes in the mixed solvent than in water. Lanthanide speciation is challenging due to the trivalent oxidation state that leads to multiple ligand complexes, including some mixed complexes. The complexity of the system demands well-designed and precise experiments that capture the nuances of the chemistry. This work increased the understanding of lanthanide speciation in the explored systems, but more work is required to produce a comprehensive understanding of the speciation involved.

Robinson, Troy A.

2011-08-11T23:59:59.000Z

330

Spatial Imaging And Speciation of Lead in the Accumulator Plant Sedum Alfredii By Microscopically Focused Synchrotron X-Ray Investigation  

Science Conference Proceedings (OSTI)

Sedum alfredii (Crassulaceae), a species native to China, has been characterized as a Zn/Cd cohyperaccumulator and Pb accumulator though the mechanisms of metal tolerance and accumulation are largely unknown. Here, the spatial distribution and speciation of Pb in tissues of the accumulator plant was investigated using synchrotron-based X-ray microfluorescence and powder Extended X-ray absorption fine structure (EXAFS) spectroscopy. Lead was predominantly restricted to the vascular bundles of both leaf and stem of the accumulator. Micro-XRF analysis revealed that Pb distributed predominantly within the areas of vascular bundles, and a positive correlation between the distribution patterns of S and Pb was observed. The dominant chemical form of Pb (>60%) in tissues of both accumulating (AE) and nonaccumulating ecotype (NAE) S. alfredii was similar to prepared Pb-cell wall compounds. However, the percentage of the Pb-cell wall complex is lower in the stem and leaf of AE, and a small amount of Pb appeared to be associated with SH-compounds. These results suggested a very low mobility of Pb out of vascular bundles, and that the metal is largely retained in the cell walls during transportation in plants of S. alfredii.

Tian, S.; Lu, L.; Yang, X.; Webb, S.M.; Du, Y.; Brown, P.H.; /SLAC

2012-08-23T23:59:59.000Z

331

ARM - Publications: Science Team Meeting Documents: A decade long aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

A decade long aerosol and cloud statistics and aerosol indirect effect at A decade long aerosol and cloud statistics and aerosol indirect effect at the ARM SGP site Min, Qilong State University of New York at Albany Duan, Minzheng State University of New York at Albany Harrison, Lee State University of New York Joseph, Everette Howard University Twelve-year data of MFRSR and MWR have been used to derive aerosol and cloud optical properties at the ARM SGP. Diurnal, monthly, seasonal and interannual variability of aerosol (optical depth and Angstrom coefficient) and cloud (optical depth and effective radius) have been analyzed. We specially focused on aerosol-cloud interactions. We found a signature of indirect aerosol effect for summer data: increased aerosol index has a statistically-significant anti-correlation with mean effective radius. No

332

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL  

NLE Websites -- All DOE Office Websites (Extended Search)

DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL DETERMINATION OF RADIAL MOMENTS OF AN AEROSOL SIZE DISTRIBUTION FROM MEASUREMENTS OF LIGHT TRANSMITTANCE AND SCATTERING Ernie R. Lewis and Stephen E. Schwartz Brookhaven National Laboratory, Upton, NY 11933 ses@bnl.gov elewis@bnl.gov MOMENTS FROM MEASUREMENTS As each of the measured quantities is linear in the size distribution dn/dr, it is possible to construct linear combinations of measurements that yield

333

Apparatus for sampling and characterizing aerosols  

DOE Patents (OSTI)

Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

1984-04-11T23:59:59.000Z

334

Examination of the Effects of Sea Salt Aerosols on Southeast Texas Ozone and Secondary Organic Aerosol  

E-Print Network (OSTI)

Despite decades of study, we still do not fully understand aerosols and their interactions among gases or other aerosols in the atmosphere. Among their impacts, they influence radiative transfer in the atmosphere and contribute to cloud formation. There are many different types of aerosols, including dust particles, soot particles, and microscopic particles containing inorganic compounds such as sulfates. Most of these particles have natural origins, but many are anthropogenic. The eventual purpose of this research is to examine sea salt aerosols and their impact on polluted environments. Sea salt aerosols act as Cloud Condensation Nuclei (CCN) as well as providing a surface for heterogeneous reactions. Such reactions have implications for trace gases such as ozone, reactive nitrogen, mercury, and sulfur containing compounds. Urban areas are most impacted by these trace gases, which is a concern because ozone especially affects the health of citizens. Experiments have three basic parts. First we generate mono-disperse 3 aerosols. That aerosol is then injected into the aerosol chambers with sea salt aerosols and prescribed concentrations of trace gases to characterize relevant interactions. However, those chambers are still under construction and not used during my study. The processed aerosols are then analyzed with a tandem differential mobility analyzer (TDMA) and other equipment. Different concentrations of sea salt aerosols, Cl, NOx, and other gases were planned to be introduced during the experiments. Concentrations of other gases and intensity of solar radiation would mimic those outside. Because these reactions have proved to increase localized concentrations of ozone in other work, this could have important implications. Future work will be designed to find study these interactions. This is important because the EPA has considered tightening the standards for both ozone and particulate matter. Industries would then need to reduce emissions or move farther from current sources of Cl or NOx pollution.

Benoit, Mark David

2013-05-01T23:59:59.000Z

335

Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer  

SciTech Connect

During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

2008-06-19T23:59:59.000Z

336

Chemical deposition methods using supercritical fluid solutions  

DOE Patents (OSTI)

A method for depositing a film of a desired material on a substrate comprises dissolving at least one reagent in a supercritical fluid comprising at least one solvent. Either the reagent is capable of reacting with or is a precursor of a compound capable of reacting with the solvent to form the desired product, or at least one additional reagent is included in the supercritical solution and is capable of reacting with or is a precursor of a compound capable of reacting with the first reagent or with a compound derived from the first reagent to form the desired material. The supercritical solution is expanded to produce a vapor or aerosol and a chemical reaction is induced in the vapor or aerosol so that a film of the desired material resulting from the chemical reaction is deposited on the substrate surface. In an alternate embodiment, the supercritical solution containing at least one reagent is expanded to produce a vapor or aerosol which is then mixed with a gas containing at least one additional reagent. A chemical reaction is induced in the resulting mixture so that a film of the desired material is deposited.

Sievers, Robert E. (Boulder, CO); Hansen, Brian N. (Boulder, CO)

1990-01-01T23:59:59.000Z

337

Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry  

DOE Green Energy (OSTI)

Chemical characterizations of atmospheric aerosols is a serious analytical challenge because of the complexity of particulate matter analyte composed of a large number of compounds with a wide range of molecular structures, physico-chemical properties, and reactivity. In this study chemical composition of biomass burning organic aerosol (BBOA) samples is characterized by high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurement combined with Kendrick analysis allowed us to assign elemental composition for hundreds of compounds in the range of m/z values of 50-1000. ESI/MS spectra of different BBOA samples contain a variety of distinct, sample specific, characteristic peaks that can be used as unique markers for different types of biofuels. Our results indicate that a significant number of high-MW organic compounds in BBOA samples are highly oxidized polar species that can be efficiently detected using ESI/MS but are difficult to observe using the conventional GCMS analysis of aerosol samples. The average O:C ratios obtained for each of the BBOA samples studied in this work are in a strikingly good agreement with the previously reported values obtained using STXM/NEXAFS. The degree of unsaturation of detected organic compounds shows a clear decrease with increase in the molecular weight of the anyalyte molecules. The decrease is particularly pronounced for the samples containing a large number of CH2-based homologous series.

Smith, Jeffrey S.; Laskin, Alexander; Laskin, Julia

2009-02-13T23:59:59.000Z

338

Soiling by atmospheric aerosols in an urban industrial area  

Science Conference Proceedings (OSTI)

The gradual and progressive soiling of structures exposed to the atmosphere is commonplace. Material soiling results from the deposition of atmospheric aerosols. Both wet and dry deposition occurs. The particle size and the orientation, exposure and roughness of the surface determine the dominant deposition mechanisms. Wet deposition is not an important cause of surface soiling, but precipitation removes particles from a surface. Aged atmospheric particles are characterized by a bimodal size distribution of coarse and fine particles. Coarse particles tend to be inactive chemically and are removed by washout and runoff. A primary cause of building soiling in urban areas has been attributed to the fine-particle mode. When fine particles contain carbon they tend to be black, and adhere more tenaciously to surface than do course particles. Elemental carbon is usually 10-20 percent of the urban fine aerosol mass, and vehicular emissions, particularly diesel emissions, are the major source of urban black smoke. The soiling of buildings occurs over the years from fine particle deposition and is associated with low atmospheric concentrations. This paper describes the influences of particle size and rainfall on the deposition, and on the soiling of surfaces with different surface glosses, orientations and exposures.

Creighton, P.J. (Rutgers: The State Univ., New Brunswick, NJ (USA)); Lioy, P.J. (Environmental and Occupational Health Sciences Inst., Piscataway, NJ (USA)); Haynie, F.H.; Lemmons, T.J.; Miller, J.L.; Gerhart, J. (Environmental Protection Agency, Research Triangle Park, NC (USA))

1990-08-01T23:59:59.000Z

339

Aerosols in Central California: Unexpectedly Large Contribution of Coarse Mode to Aerosol Radiative Forcing  

Science Conference Proceedings (OSTI)

The majority of previous studies dealing with effect of coarse-mode aerosols on the radiation budget have focused primary on polluted regions with substantial aerosol loadings. We reexamine this effect for a relatively "pristine" area using a unique 1-month dataset collected during recent Carbonaceous Aerosol and Radiative Effects Study (CARES). We demonstrate that the coarse-mode (supermicron) particles can contribute substantially (more than 50%) and frequently (up to 85% of time) to the total volume. In contrast to the conventional expectations that the radiative impact of coarse-mode aerosols should be small for "pristine" regions, we find that the neglecting of the large particles may lead to significant overestimation (up to 45%) of direct aerosol radiative forcing at the top-of atmosphere despite of very small aerosol optical depth (about 0.05 at 0.5 ). Our findings highlight the potential for widespread impacts of the coarse-mode aerosols on the pristine radiative properties over land and the need for more explicit inclusion of the coarse-mode aerosols in climate-related observational and model studies.

Kassianov, Evgueni I.; Pekour, Mikhail S.; Barnard, James C.

2012-10-20T23:59:59.000Z

340

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

Science Conference Proceedings (OSTI)

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Chemical Science  

NLE Websites -- All DOE Office Websites (Extended Search)

reactor concept for deep space exploration Research directions Weapons chemistry and nuclear performance Radiological, nuclear, and chemical signatures Energy production,...

342

Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment  

SciTech Connect

Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model calculations appeared to underestimate sulfate concentrations based on an existing emission inventory. The agreement between observations and model predictions of CO as well as total sulfur is reexamined in this work with a new emission inventory made available recently.

Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

2010-03-15T23:59:59.000Z

343

Large-Scale Spray Releases: Initial Aerosol Test Results  

Science Conference Proceedings (OSTI)

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. The purpose of this report is to present the experimental results and analyses for the aerosol measurements obtained in the large-scale test stand. The report includes a description of the simulants used and their properties, equipment and operations, data analysis methodology, and test results. The results of tests investigating the role of slurry particles in plugging of small breaches are reported in Mahoney et al. 2012a. The results of the aerosol measurements in the small-scale test stand are reported in Mahoney et al. (2012b).

Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

2012-12-01T23:59:59.000Z

344

Small-Scale Spray Releases: Initial Aerosol Test Results  

Science Conference Proceedings (OSTI)

One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and rectangular slots. The round holes ranged in size from 0.2 to 4.46 mm. The slots ranged from (width × length) 0.3 × 5 to 2.74 × 76.2 mm. Most slots were oriented longitudinally along the pipe, but some were oriented circumferentially. In addition, a limited number of multi-hole test pieces were tested in an attempt to assess the impact of a more complex breach. Much of the testing was conducted at pressures of 200 and 380 psi, but some tests were conducted at 100 psi. Testing the largest postulated breaches was deemed impractical because of the large size of some of the WTP equipment. This report presents the experimental results and analyses for the aerosol measurements obtained in the small-scale test stand. It includes a description of the simulants used and their properties, equipment and operations, data analysis methodologies, and test results. The results of tests investigating the role of slurry particles in plugging small breaches are reported in Mahoney et al. (2012). The results of the aerosol measurements in the large-scale test stand are reported in Schonewill et al. (2012) along with an analysis of the combined results from both test scales.

Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

2012-11-01T23:59:59.000Z

345

Source Attribution of Light Absorbing Aerosol in Arctic Snow  

NLE Websites -- All DOE Office Websites (Extended Search)

Source Attribution of Light Absorbing Source Attribution of Light Absorbing Aerosol in Arctic Snow (Preliminary analysis of 2008-2009 data) Outline * Receptor modeling overview * Results from 2007 data set * New goals arising from analysis of 2007 data * New data for 2008 * New data for 2009 * Tentative conclusions * Future analysis i Factor profiles from 2007 analysis Source attribution of Black Carbon from 2007 analysis Goals/Issues suggested by the analysis of the 2007 data set * Are there seasonal differences in the source strengths? * Are there other LAA chemical components besides black carbon. What are their sources? * Can the various data sets available (e.g., 2007, 2008, 2009) be combined in a single large PMF analysis 2008 Data Set For Receptor Analysis * 42 samples from Eastern Siberia including 4 depth profiles

346

Hazardous particle binder, coagulant and re-aerosolization inhibitor  

DOE Patents (OSTI)

A copolymer and water/ethanol solvent solution capable of binding with airborne contaminants or potential airborne contaminants, such as biological weapon agents or toxic particulates, coagulating as the solvent evaporates, and adhering the contaminants to a surface so as to inhibit the re-suspension of such contaminants. The solution uses a water or ethanol/water mixture for the solvent, and a copolymer having one of several functional group sets so as to have physical and chemical characteristics of high adhesion, low viscosity, low surface tension, negative electrostatic charge, substantially neutral pH, and a low pKa. Use of the copolymer solution prevents re-aerosolization and transport of unwanted, reactive species thus increasing health and safety for personnel charged with decontamination of contaminated buildings and areas.

Krauter, Paula (Livermore, CA); Zalk, David (San Jose, CA); Hoffman, D. Mark (Livermore, CA)

2011-04-12T23:59:59.000Z

347

Context: Physical and Chemical Properties  

Science Conference Proceedings (OSTI)

... Modification of the Characteristics of the Condensed Fire Extinguishing Aerosol During Its Distribution Through the Pipelines.. ...

2011-11-17T23:59:59.000Z

348

ARM Aerosol Working Group Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

and MFRSR Measurements ARM STM 2008 Norfolk, VA Connor Flynn 1 , Annette Koontz 1 , Anne Jefferson 2 , Jim Barnard 1 , Sally McFarlane 1 1 Pacific Northwest National Laboratory 2 CIRES, University of Colorado, Boulder Progress towards ARM DOE 2008 Performance Metric 3 & 4 * Produce and make available new continuous time series of aerosol total column depth, based on results from the AMF deployment in Niger, Africa. * Produce and make available new continuous time series of retrieved dust properties, based on results from the AMF deployment in Niger, Africa. 0 100 200 300 400 0 20 40 60 80 100 ITF movement and surface RH % RH day of year (2006) 0 100 200 300 400 0 50 100 150 200 250 300 350 day of year wind direction (N = 0, E = 90) 2 4 6 8 10 12 14 Wind speed m/s 0 100 200 300 1.4 1.6 1.8 2 MFRSR Vo for filter2, Niamey

349

Aerosol Data Sources and Their Roles within PARAGON  

Science Conference Proceedings (OSTI)

We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, ...

Ralph A. Kahn; John A. Ogren; Thomas P. Ackerman; Jens Bösenberg; Robert J. Charlson; David J. Diner; Brent N. Holben; Robert T. Menzies; Mark A. Miller; John H. Seinfeld

2004-10-01T23:59:59.000Z

350

Aerosol beam-focus laser-induced plasma spectrometer device  

SciTech Connect

An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

Cheng, Meng-Dawn (Oak Ridge, TN)

2002-01-01T23:59:59.000Z

351

Optical Properties of Atmospheric Aerosol in Maritime Environments  

Science Conference Proceedings (OSTI)

Systematic characterization of aerosol over the oceans is needed to understand the aerosol effect on climate and on transport of pollutants between continents. Reported are the results of a comprehensive optical and physical characterization of ...

Alexander Smirnov; Brent N. Holben; Yoram J. Kaufman; Oleg Dubovik; Thomas F. Eck; Ilya Slutsker; Christophe Pietras; Rangasayi N. Halthore

2002-02-01T23:59:59.000Z

352

ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) govCampaignsCarbonaceous Aerosol and Radiative Effects Study (CARES) Campaign Links CARES Website Related Campaigns Carbonaceous Aerosol and Radiation Effects Study (CARES) - Surface Meteorological Sounding 2010.05.26, Zaveri, OSC Carbonaceous Aerosol and Radiation Effects Study (CARES) Photo-Acoustic Aerosol Light Absorption and Scattering 2010.05.26, Arnott, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES): SMPS & CCN counter deployment during CARES/Cal-NEx 2010.05.04, Wang, OSC Carbonaceous Aerosol and Radiative Effects Study (CARES) Ground Based Instruments 2010.04.01, Cziczo, OSC Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Carbonaceous Aerosol and Radiative Effects Study (CARES)

353

Optical Properties of Aerosol Particles over the Northeast Pacific  

Science Conference Proceedings (OSTI)

In July 2002, atmospheric aerosol measurements were conducted over the northeast Pacific Ocean as part of the Subarctic Ecosystem Response to Iron Enhancement Study (SERIES). The following aerosol quantities were measured: particle number size ...

Julia Marshall; Ulrike Lohmann; W. Richard Leaitch; Nicole Shantz; Lisa Phinney; Desiree Toom-Sauntry; Sangeeta Sharma

2005-08-01T23:59:59.000Z

354

Experimental investigation of aerosol deposition on slot-and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experimental investigation of aerosol deposition on slot-and joint-type leaks Title Experimental investigation of aerosol deposition on slot-and joint-type leaks Publication Type...

355

ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility (AMF) and the Mobile Aerosol Observing System (MAOS) will be deployed on Cape Cod (MA) for a 12-month period starting in the summer of 2012 in order to quantify aerosol...

356

Dynamical Effects of Aerosol Perturbations on Simulated Idealized Squall Lines  

Science Conference Proceedings (OSTI)

The dynamical effects of increased aerosol loading on the strength and structure of numerically simulated squall lines are explored. Results are explained in the context of RKW theory. Changes in aerosol loading lead to changes in rain drop size ...

Zachary J. Lebo; Hugh Morrison

357

Light Extinction by Aerosols during Summer Air Pollution  

Science Conference Proceedings (OSTI)

In order to utilize satellite measurements of optical thickness over land for estimating aerosol properties during air pollution episodes the optical thickness was measured from the surface and investigated. Aerosol optical thicknesses have been ...

Yoram J. Kaufman; Robert S. Fraser

1983-10-01T23:59:59.000Z

358

Distinguishing Aerosol Impacts on Climate over the Past Century  

Science Conference Proceedings (OSTI)

Aerosol direct (DE), indirect (IE), and black carbon–snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol–climate simulations in the Goddard Institute for Space Studies General Circulation Model ...

Dorothy Koch; Surabi Menon; Anthony Del Genio; Reto Ruedy; Igor Alienov; Gavin A. Schmidt

2009-05-01T23:59:59.000Z

359

Quantifying and Minimizing Uncertainty of Climate Forcing by Anthropogenic Aerosols  

Science Conference Proceedings (OSTI)

Anthropogenic aerosols are composed of a variety of aerosol types and components including water-soluble inorganic species (e.g., sulfate, nitrate, ammonium), condensed organic species, elemental or black carbon, and mineral dust. Previous ...

J. E. Penner; R. J. Charlson; S. E. Schwartz; J. M. Hales; N. S. Laulainen; L. Travis; R. Leifer; T. Novakov; J. Ogren; L. F. Radke

1994-03-01T23:59:59.000Z

360

Overview of the Cumulus Humilis Aerosol Processing Study  

Science Conference Proceedings (OSTI)

The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, within, and above fields of cumuli, and to study changes to the cloud microphysical structure within these ...

Larry K. Berg; Carl M. Berkowitz; John M. Hubbe; John A. Ogren; Chris A. Hostetler; Richard A. Ferrare; Johnathan W. Hair; Manvendra K. Dubey; Claudio Mazzoleni; Elisabeth Andrews; Richard L. Coulter; Yin-Nan Lee; Jasono Olfert; Stephen R. Springston

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Aerosol Impacts on the Microphysical Growth Processes of Orographic Snowfall  

Science Conference Proceedings (OSTI)

The Regional Atmospheric Modeling System was used to simulate four winter snowfall events over the Park Range of Colorado. For each event, three hygroscopic aerosol sensitivity simulations were performed with initial aerosol profiles representing ...

Stephen M. Saleeby; William R. Cotton; Douglas Lowenthal; Joe Messina

2013-04-01T23:59:59.000Z

362

Aerosol Impacts on the Diurnal Cycle of Marine Stratocumulus  

Science Conference Proceedings (OSTI)

Recent large-eddy simulation (LES) studies of the impact of aerosol on the dynamics of nocturnal marine stratocumulus revealed that, depending on the large-scale forcings, an aerosol-induced increase of the droplet concentration can lead to ...

Irina Sandu; Jean-Louis Brenguier; Olivier Geoffroy; Odile Thouron; Valery Masson

2008-08-01T23:59:59.000Z

363

A Critical Examination of the Observed First Aerosol Indirect Effect  

Science Conference Proceedings (OSTI)

The relative change in cloud droplet number concentration with respect to the relative change in aerosol number concentration, ?, is an indicator of the strength of the aerosol indirect effect and is commonly used in models to parameterize this ...

Hongfei Shao; Guosheng Liu

2009-04-01T23:59:59.000Z

364

Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods  

E-Print Network (OSTI)

Crutzen, P. : Atmospheric Aerosols: Biogeochemical sourcesof optically active aerosol particles over the Amazonproperties of Amazonian aerosol particles: Rev. Geophys. ,

Soto-Garcia, Lydia L.

2012-01-01T23:59:59.000Z

365

Sensitivity of aerosol radiative forcing calculations to spectral resolution  

DOE Green Energy (OSTI)

Potential impacts of aerosol radiative forcing on climate have generated considerable recent interest. An important consideration in estimating the forcing from various aerosol components is the spectral resolution used for the solar radiative transfer calculations. This paper examines the spectral resolution required from the viewpoint of overlapping spectrally varying aerosol properties with other cross sections. A diagnostic is developed for comparing different band choices, and the impact of these choices on the radiative forcing calculated for typical sulfate and biomass aerosols was investigated.

Grant, K.E.

1996-10-01T23:59:59.000Z

366

Bio-butanol: Combustion properties and detailed chemical kinetic model  

Science Conference Proceedings (OSTI)

Autoignition delay time measurements were performed at equivalence ratios of 0.5, 1 and 2 for butan-1-ol at reflected shock pressures of 1, 2.6 and 8 atm at temperatures from 1100 to 1800 K. High-level ab initio calculations were used to determine enthalpies of formation and consequently bond dissociation energies for each bond in the alcohol. A detailed chemical kinetic model consisting of 1399 reactions involving 234 species was constructed and tested against the delay times and also against recent jet-stirred reactor speciation data with encouraging results. The importance of enol chemistry is highlighted. (author)

Black, G.; Curran, H.J.; Pichon, S.; Simmie, J.M.; Zhukov, V. [Combustion Chemistry Centre, National University of Ireland, Galway (Ireland)

2010-02-15T23:59:59.000Z

367

Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing  

Science Conference Proceedings (OSTI)

The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic ...

S. J. Ghan; X. Liu; R. C. Easter; R. Zaveri; P. J. Rasch; J.-H. Yoon; B. Eaton

2012-10-01T23:59:59.000Z

368

Observations of Saharan Aerosols: Results of ECLATS Field Experiment. Part I: Optical Thicknesses and Aerosol Size Distributions  

Science Conference Proceedings (OSTI)

A series of ground-based and airborne observations of desert aerosols, the ECLATS experiment was carried out in December 1980 in the vicinity of Niamey (Niger). This paper deals with aerosol optical thicknesses and size distributions derived from ...

Y. Fouquart; B. Bonnel; M. Chaoui Roquai; R. Santer; A. Cerf

1987-01-01T23:59:59.000Z

369

Emission-Induced Nonlinearities in the Global Aerosol System: Results from the ECHAM5-HAM Aerosol-Climate Model  

Science Conference Proceedings (OSTI)

In a series of simulations with the global ECHAM5-HAM aerosol-climate model, the response to changes in anthropogenic emissions is analyzed. Traditionally, additivity is assumed in the assessment of the aerosol climate impact, as the underlying ...

Philip Stier; Johann Feichter; Silvia Kloster; Elisabetta Vignati; Julian Wilson

2006-08-01T23:59:59.000Z

370

Possible Aerosol Effects on Ice Clouds via Contact Nucleation  

Science Conference Proceedings (OSTI)

The indirect effect of aerosols on water clouds, whereby aerosol particles change cloud optical properties, is caused by aerosol-induced changes of the size and number of cloud droplets. This affects the lifetime of the water clouds as well as ...

Ulrike Lohmann

2002-02-01T23:59:59.000Z

371

Discrete-element modeling of particulate aerosol flows  

Science Conference Proceedings (OSTI)

A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including ... Keywords: Aerosols, Aggregation, Particle adhesion, Particulate flow

J. S. Marshall

2009-03-01T23:59:59.000Z

372

Chemical microsensors  

DOE Patents (OSTI)

An article of manufacture is provided including a substrate having an oxide surface layer and a selective thin film of a cyclodextrin derivative chemically bound upon said substrate, said film is adapted for the inclusion of a selected organic compound therewith. Such an article can be either a chemical sensor capable of detecting a resultant mass change from inclusion of the selected organic compound or a chemical separator capable of reversibly selectively separating a selected organic compound.

Li, DeQuan (Los Alamos, NM); Swanson, Basil I. (Los Alamos, NM)

1995-01-01T23:59:59.000Z

373

CCN predictions using simplified assumptions of organic aerosol composition and mixing state: A synthesis from six different locations  

SciTech Connect

An accurate but simple quantification of the fraction of aerosol particles that can act as cloud condensation nuclei (CCN) is needed for implementation in large-scale models. Data on aerosol size distribution, chemical composition, and CCN concentration from six different locations have been analyzed to explore the extent to which simple assumptions of composition and mixing state of the organic fraction can reproduce measured CCN number concentrations. Fresher pollution aerosol as encountered in Riverside, CA, and the ship channel in Houston, TX, cannot be represented without knowledge of more complex (size-resolved) composition. For aerosol that has experienced processing (Mexico City, Holme Moss (UK), Point Reyes (CA), and Chebogue Point (Canada)), CCN can be predicted within a factor of two assuming either externally or internally mixed soluble organics although these simplified compositions/mixing states might not represent the actual properties of ambient aerosol populations, in agreement with many previous CCN studies in the literature. Under typical conditions, a factor of two uncertainty in CCN concentration due to composition assumptions translates to an uncertainty of {approx}15% in cloud drop concentration, which might be adequate for large-scale models given the much larger uncertainty in cloudiness.

Ervens, B.; Wang, J.; Cubison, M. J.; Andrews, E.; Feingold, G.; Ogren, J. A.; Jimenez, J. L.; Quinn, P. K.; Bates, T. S.; Zhang, Q.; Coe, H.; Flynn, M.; Allan, J. D.

2010-05-01T23:59:59.000Z

374

Indirect and Semi-Direct Aerosol Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

Campaign Campaign For the month of April, researchers are descending on and above Barrow, Alaska, to obtain data from the atmosphere that will help them understand the impacts that aerosols have on Arctic clouds and climate. Scientists sponsored by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility are using a heavily instrumented aircraft to collect data from the sky, while instruments based at surface sites in Barrow and Atqasuk, Alaska, are obtaining measurements from the ground. Information obtained during the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, will help scientists analyze the role of aerosols in climate, and represents a key contribution to Arctic climate research during International Polar Year.

375

Researchers Model Impact of Aerosols Over California  

NLE Websites -- All DOE Office Websites (Extended Search)

Researchers Model Researchers Model Impact of Aerosols Over California Researchers Model Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu, lvu@lbl.gov, (510) 495-2404 LosAngelesSmogv1.jpg Smog over downtown Los Angeles. Aerosols are microscopic particles-like dust, pollen and soot-that ubiquitously float around in our atmosphere. Despite their tiny stature, these particles can have a huge impact on human health, climate and the environment. So scientists from the Pacific Northwest National Laboratory (PNNL), Colorado State University and the California Air Resources Board have set out to characterize the roles of various particles as atmospheric change agents on a regional scale.

376

Evolution of Organic Aerosols in the Atmosphere.  

SciTech Connect

Organic aerosol (OA) particles affect climate forcing and human health, but their sources and evolution remain poorly characterized. We present a unifying model framework that describes the atmospheric evolution of OA and is constrained and motivated by new, high time resolution, experimental characterizations of their composition, volatility, and oxidation state. OA and OA-precursor gases evolve by becoming increasingly oxidized, less volatile, and more hygroscopic, leading to the formation of large amounts of oxygenated organic aerosol (OOA) mass that has comparable concentrations to sulfate aerosol over the Northern Hemisphere. Our new model framework captures the dynamic aging behavior observed in the atmosphere and the laboratory and can serve as a basis for improving parameterizations in regional and global models.

Jimenez, J. L.; Canagaratna, M. R.; Donahue, N. M.; Prevot, A. S. H.; Zhang, Qi; Kroll, Jesse H.; DeCarlo, Peter F.; Allan, James D.; Coe, H.; Ng, N. L.; Aiken, Allison; Docherty, Kenneth S.; Ulbrich, Ingrid M.; Grieshop, A. P.; Robinson, A. L.; Duplissy, J.; Smith, J. D.; Wilson, K. R.; Lanz, V. A.; Hueglin, C.; Sun, Y. L.; Tian, J.; Laaksonen, A.; Raatikainen, T.; Rautiainen, J.; Vaattovaara, P.; Ehn, M.; Kulmala, M.; Tomlinson, Jason M.; Collins, Donald R.; Cubison, Michael J.; Dunlea, E. J.; Huffman, John A.; Onasch, Timothy B.; Alfarra, M. R.; Williams, Paul I.; Bower, K.; Kondo, Yutaka; Schneider, J.; Drewnick, F.; Borrmann, S.; Weimer, S.; Demerjian, K.; Salcedo, D.; Cottrell, L.; Griffin, Robert; Takami, A.; Miyoshi, T.; Hatakeyama, S.; Shimono, A.; Sun, J. Y.; Zhang, Y. M.; Dzepina, K.; Kimmel, Joel; Sueper, D.; Jayne, J. T.; Herndon, Scott C.; Trimborn, Achim; Williams, L. R.; Wood, Ezra C.; Middlebrook, A. M.; Kolb, C. E.; Baltensperger, Urs; Worsnop, Douglas R.

2009-12-11T23:59:59.000Z

377

Morphology effects on polydispersed aerosol deposition rates  

Science Conference Proceedings (OSTI)

In the analysis of severe nuclear accidents, accurate prediction of aerosol deposition is important since, among other things, this influences the distribution of radioactive decay heat within the primary system and containment compartments. The fact that the aerosol cloud is not comprised of dense isolated spherical particles of only one size inevitably complicates such calculations but must be taken into account. Some particle deposition mechanisms are more sensitive to particle size and morphology than others so that simplifying assumptions valid for one mechanism [such as particle thermophoresis (notoriously size and morphology insensitive)] may be seriously in error for others (e.g., convective Brownian diffusion or eddy impaction). This paper deals with aggregate aerosol deposition.

Rosner, D.E.; Tandon, P. [Yale Univ., New Haven, CT (United States); Khalil, Y.F. [Northeast Utilities Service Co., Berlin, CT (United States)

1997-12-01T23:59:59.000Z

378

Can aerosols be trapped in open flows?  

E-Print Network (OSTI)

The fate of aerosols in open flows is relevant in a variety of physical contexts. Previous results are consistent with the assumption that such finite-size particles always escape in open chaotic advection. Here we show that a different behavior is possible. We analyze the dynamics of aerosols both in the absence and presence of gravitational effects, and both when the dynamics of the fluid particles is hyperbolic and nonhyperbolic. Permanent trapping of aerosols much heavier than the advecting fluid is shown to occur in all these cases. This phenomenon is determined by the occurrence of multiple vortices in the flow and is predicted to happen for realistic particle-fluid density ratios.

Rafael D. Vilela; Adilson E. Motter

2007-06-10T23:59:59.000Z

379

Anthropogenic Aerosol Radiative Forcing in Asia Derived From Regional Models With Atmospheric and Aerosol Data Assimilation  

DOE Green Energy (OSTI)

A high-resolution estimate of monthly 3D aerosol solar heating rates and surface solar fluxes in Asia from 2001 to 2004 is described here. This product stems from an Asian aerosol assimilation project, in which a) the PNNL regional model bounded by the NCEP reanalyses was used to provide meteorology, b) MODIS and AERONET data were integrated for aerosol observations, c) the Iowa aerosol/chemistry model STEM-2K1 used the PNNL meteorology and assimilated aerosol observations, and d) 3D (X-Y-Z) aerosol simulations from the STEM-2K1 were used in the Scripps Monte-Carlo Aerosol Cloud Radiation (MACR) model to produce total and anthropogenic aerosol direct solar forcing for average cloudy skies. The MACR model and STEM both used the PNNL model resolution of 0.45º×0.4º in the horizontal and of 23 layers in the troposphere. The 2001–2004 averaged anthropogenic all-sky aerosol forcing is ?1.3 Wm-2 (TOA), +7.3 Wm-2 (atmosphere) and ?8.6 Wm-2 (surface) averaged in Asia (60?138°E & Eq. ?45°N). In the absence of AERONET SSA assimilation, absorbing aerosol concentration (especially BC aerosol) is much smaller, giving ?2.3 Wm-2 (TOA), +4.5 Wm-2 (atmosphere) and ?6.8 Wm-2 (surface), averaged in Asia. In the vertical, monthly forcing is mainly concentrated below 600hPa with maxima around 800hPa. Seasonally, low-level forcing is far larger in dry season than in wet season in South Asia, whereas the wet season forcing exceeds the dry season forcing in East Asia. The anthropogenic forcing in the present study is similar to that in Chung et al.’s [2005] in overall magnitude but the former offers fine-scale features and simulated vertical profiles. The interannual variability of the computed anthropogenic forcing is significant and extremely large over major emission outflow areas. In view of this, the present study’s estimate is within the implicated range of the 1999 INDOEX result. However, NCAR/CCSM3’s anthropogenic aerosol forcing is much smaller than the present study’s estimate at the surface, and is outside of what the INDOEX findings can support.

Chung, Chul Eddy; Ramanathan, V.; Carmichael, Gregory; Kulkarni, S.; Tang, Youhua; Adhikary, Bhupesh; Leung, Lai-Yung R.; Qian, Yun

2010-07-05T23:59:59.000Z

380

COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols  

Science Conference Proceedings (OSTI)

Atmospheric organic aerosols (OA) represent a significant fraction of airborne particulate matter and can impact climate, visibility, and human health. These mixtures are difficult to characterize experimentally due to the enormous complexity and dynamic nature of their chemical composition. We introduce a novel Computational Brewing Application (COBRA) and apply it to modeling oligomerization chemistry stemming from condensation and addition reactions of monomers pertinent to secondary organic aerosol (SOA) formed by photooxidation of isoprene. COBRA uses two lists as input: a list of chemical structures comprising the molecular starting pool, and a list of rules defining potential reactions between molecules. Reactions are performed iteratively, with products of all previous iterations serving as reactants for the next one. The simulation generated thousands of molecular structures in the mass range of 120-500 Da, and correctly predicted ~70% of the individual SOA constituents observed by high-resolution mass spectrometry (HR-MS). Selected predicted structures were confirmed with tandem mass spectrometry. Esterification and hemiacetal formation reactions were shown to play the most significant role in oligomer formation, whereas aldol condensation was shown to be insignificant. COBRA is not limited to atmospheric aerosol chemistry, but is broadly applicable to the prediction of reaction products in other complex mixtures for which reasonable reaction mechanisms and seed molecules can be supplied by experimental or theoretical methods.

Fooshee, David R.; Nguyen, Tran B.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Baldi, Pierre

2012-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Trace metal speciation in saline waters affected by geothermal brines. Final technical report. [GEOCHEM  

DOE Green Energy (OSTI)

The computer program GEOCHEM was developed and applied to calculate the speciation of trace elements, such as Li, B, Mn, Co, Ni, Cu, Zn, Pb, and As, in mixtures of geothermal brines with soil waters. A typical speciation calculation involved the simultaneous consideration of about 350 inorganic and organic complexes and about 80 possible solid phases that could form among the macro- and microconstituents in the mixtures. The four geothermal brines chosen for study were from the East Mesa, Heber, and Salton Sea KGRA's. Two examples of East Mesa brine were employed in order to illustrate the effect of brine variability within a given KGRA. The soil waters chosen for study were the Holtville, Rosita, and Vint soil solutions and the Vail 4 drain water. These waters were mixed with the four brines to produce 1%, 5%, and 10% brine combinations. The combinations then were analyzed with the help of GEOCHEM and were interpreted in the context of two proposed general contamination scenarios. The results of the speciation calculations pointed to the great importance, in brine, of sulfide as a precipitating agent for trace metals and of borate as a trace metal-complexing ligand. In general, precipitation and/or exchange adsorption in soil were found to reduce the levels of trace metals well below harmful concentrations. The principal exceptions were Li and B, which did not precipitate and which were at or very hear harmful levels in the soil water-brine mixtures.

Sposito, G.

1979-07-01T23:59:59.000Z

382

In-situ determination of atmospheric aerosol composition as a function of hygroscopic growth  

Science Conference Proceedings (OSTI)

An in-situ measurement setup to determine the chemical composition of aerosols as a function of hygroscopicity is presented. This has been done by connecting a custom-built Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) and an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS), commercially available from TSI (Model 3800). Single particle bipolar mass spectra from aerosols leaving the HTDMA could thus be obtained as a function of the hygroscopic growth factor. For these studies the HTDMA was set at a relative humidity of 82% and particles with a dry diameter of 260 nm were selected. The setup was first laboratory tested after which field experiments were performed. Two datasets were obtained during wintertime 2007 in Switzerland: the first in the urban Zurich environment and the other at the remote high alpine research station Jungfraujoch (JFJ). In Zurich several thousand mass spectra were obtained in less than two days of sampling due to a high aerosol loading. At the JFJ, due to low particle concentrations in free tropospheric airmasses, a longer sampling period was required. Both in Zurich and at the JFJ two different growth factor modes were observed. Results from these two locations show that most aerosol particles were a mixture of several compounds. A large contribution of organics and combustion species was found in the less hygroscopic growth mode for both locations. Non-combustion refractory material (e.g. metals, mineral dust, and fly ash) was also highly enhanced in the non-hygroscopic particles. Sulfate, normally considered highly soluble, was found to be a constituent in almost all particles independent of their hygroscopic growth factor.

Herich, Hanna; Kammermann, Lukas; Gysel, Martin; Weingartner, E.; Baltensperger, Urs; Lohmann, U.; Cziczo, Daniel J.

2008-08-30T23:59:59.000Z

383

Apparatus for sampling and characterizing aerosols  

DOE Patents (OSTI)

Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

Dunn, Patrick F. (Downers Grove, IL); Herceg, Joseph E. (Naperville, IL); Klocksieben, Robert H. (Park Forest, IL)

1986-01-01T23:59:59.000Z

384

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising (a) a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, operatively coupled to (b) a transducer capable of directly converting said expansion or contraction to a measurable electrical response.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Bend, OR)

1991-01-01T23:59:59.000Z

385

Chemical preconcentrator  

DOE Patents (OSTI)

A chemical preconcentrator is disclosed with applications to chemical sensing and analysis. The preconcentrator can be formed by depositing a resistive heating element (e.g. platinum) over a membrane (e.g. silicon nitride) suspended above a substrate. A coating of a sorptive material (e.g. a microporous hydrophobic sol-gel coating or a polymer coating) is formed on the suspended membrane proximate to the heating element to selective sorb one or more chemical species of interest over a time period, thereby concentrating the chemical species in the sorptive material. Upon heating the sorptive material with the resistive heating element, the sorbed chemical species are released for detection and analysis in a relatively high concentration and over a relatively short time period. The sorptive material can be made to selectively sorb particular chemical species of interest while not substantially sorbing other chemical species not of interest. The present invention has applications for use in forming high-sensitivity, rapid-response miniaturized chemical analysis systems (e.g. a "chem lab on a chip").

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2001-01-01T23:59:59.000Z

386

Molecular Characterization of Nitrogen Containing Organic Compounds in Biomass Burning Aerosols Using High Resolution Mass Spectrometry  

DOE Green Energy (OSTI)

Although nitrogen-containing organic compounds (NOC) are important components of atmospheric aerosols, little is known about their chemical compositions. Here we present detailed characterization of the NOC constituents of biomass burning aerosol (BBA) samples using high resolution electrospray ionization mass spectrometry (ESI/MS). Accurate mass measurements combined with MS/MS fragmentation experiments of selected ions were used to assign molecular structures to individual NOC species. Our results indicate that N-heterocyclic alkaloid compounds - species naturally produced by plants and living organisms - comprise a substantial fraction of NOC in BBA samples collected from test burns of five biomass fuels. High abundance of alkaloids in test burns of ponderosa pine - a widespread tree in the western U.S. areas frequently affected by large scale fires - suggests that N-heterocyclic alkaloids in BBA can play a significant role in dry and wet deposition of fixed nitrogen in this region.

Laskin, Alexander; Smith, Jeffrey S.; Laskin, Julia

2009-05-13T23:59:59.000Z

387

Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment  

Science Conference Proceedings (OSTI)

Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model calculations appeared to underestimate sulfate concentrations based on an existing emission inventory. The agreement between observations and model predictions of CO as well as total sulfur is reexamined in this work with a new emission inventory made available recently.

Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

2010-03-15T23:59:59.000Z

388

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

389

Radially Classified Aerosol Detector for Aircraft-Based Submicron Aerosol Measurements  

Science Conference Proceedings (OSTI)

A radially classified aerosol detector (RCAD) for fast characterization of fine particle size distributions aboard aircraft has been designed and implemented. The measurement system includes a radial differential mobility analyzer and a high-flow,...

Lynn M. Russell; Shou-Hua Zhang; Richard C. Flagan; John H. Seinfeld; Mark R. Stolzenburg; Robert Caldow

1996-06-01T23:59:59.000Z

390

Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry  

E-Print Network (OSTI)

In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, ...

Kroll, Jesse

391

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network (OSTI)

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

Provancher, William

392

Investigation of modified speciation for enhanced control of mercury  

SciTech Connect

The control of hazardous air pollutant (HAP) emissions was addressed in Title III of the Clean Air Act Amendments of 1990, which provided an initial list of 189 elements and compounds of concern. The combustion of coal has the potential to produce a number of those species, either directly as a result of the trace elements found in coal, or as products of chemical reactions occurring in combustion. However, field studies conducted by the U.S. Department of Energy (DOE), the Electric Power Research Institute (EPRI), and others have shown that the actual emissions are very low and that effective particulate-matter capture can control most of the inorganic species. The most significant exception is mercury, which has also been singled out for particular regulatory attention because of its behavior in the environment (bioaccumulation) and the potential for deleterious health effects. In anticipation of possible regulations regarding mercury emissions, research efforts sponsored by DOE, EPRI, and others are investigating the risks posed by mercury emissions, improved techniques for measuring those emissions, and possible control measures. The focus in the control research is on techniques that can be used in conjunction with existing flue-gas-cleanup (FGC) systems in order to minimize additional capital costs and operational complexity. The very small amount of mercury (on the order of a few micrograms per cubic meter) in flue gas, its occurrence in several chemical forms that vary from system to system, the very low solubility of the elemental form, and the fact that it is usually in the vapor phase combine to make the achievement of cost-effective control a challenging task.

Livengood, C.D.; Mendelsohn, M.H.

1997-09-01T23:59:59.000Z

393

Detailed chemical characterization of unresolved complex mixtures in  

NLE Websites -- All DOE Office Websites (Extended Search)

Detailed chemical characterization of unresolved complex mixtures in Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation Title Detailed chemical characterization of unresolved complex mixtures in atmospheric organics: Insights into emission sources, atmospheric processing, and secondary organic aerosol formation Publication Type Journal Article Year of Publication 2013 Authors Chan, Arthur W. H., Gabriel Isaacman, Kevin R. Wilson, David R. Worton, Christopher R. Ruehl, Theodora Nah, Drew R. Gentner, Timothy R. Dallmann, Thomas W. Kirchstetter, Robert A. Harley, Jessica B. Gilman, William C. Kuster, Joost A. de Gouw, John H. Offenberg, Tadeusz E. Kleindienst, Ying H. Lin, Caitlin L. Rubitschun, Jason D. Surratt, Patrick L. Hayes, Jose L. Jimenez, and Allen H. Goldstein

394

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds  

SciTech Connect

A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmospheric emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.

McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.; Korolev, Alexei; Strapp, J. Walter; Schmid, Beat; Tomlinson, Jason M.; Wolde, Mengistu; Brooks, Sarah D.; Cziczo, Daniel J.; Dubey, Manvendra K.; Fan, Jiwen; Flynn, Connor J.; Gultepe, Ismail; Hubbe, John M.; Gilles, Mary K.; Laskin, Alexander; Lawson, Paul; Leaitch, W. R.; Liu, Peter S.; Liu, Xiaohong; Lubin, Dan; Mazzoleni, Claudio; Macdonald, A. M.; Moffet, Ryan C.; Morrison, H.; Ovchinnikov, Mikhail; Shupe, Matthew D.; Turner, David D.; Xie, Shaocheng; Zelenyuk, Alla; Bae, Kenny; Freer, Matthew; Glen, Andrew

2011-02-01T23:59:59.000Z

395

Understanding Brown Carbon Aerosols and Their Role in Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Brown Carbon Aerosols Brown Carbon Aerosols Tiny aerosol particles in the atmosphere are a possible cause of climate change. Among the many contributors to climate change are aerosols in the atmosphere. These tiny particles suspended in the air come from many sources, some natural and some man-made. Some aerosols are organic (containing carbon), while others are inorganic (such as sea salt and sulfates). Most aerosols reflect sunlight, and some also absorb it. Many of these nanoparticles have severe health effects in addition to climate effects. Human activities that produce aerosols include transportation, industry, and agriculture. Black carbon particles (a component of soot) originating from combustion processes have been known for some time to absorb sunlight and warm the

396

Response of California temperature to regional anthropogenic aerosol  

NLE Websites -- All DOE Office Websites (Extended Search)

Response of California temperature to regional anthropogenic aerosol Response of California temperature to regional anthropogenic aerosol changes Title Response of California temperature to regional anthropogenic aerosol changes Publication Type Journal Article Year of Publication 2008 Authors Novakov, Tihomir, Thomas W. Kirchstetter, Surabi Menon, and Jeffery Aguiar Journal Geophysical Research Letters Volume 35 Issue 19 Abstract In this paper, we compare constructed records of concentrations of black carbon (BC) - an indicator of anthropogenic aerosols - with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

397

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

398

The radiative influence of aerosol effects on liquid-phase cumulus clouds based on sensitivity studies with two climate models  

E-Print Network (OSTI)

A global black carbon aerosol model. J Geophys Res 101:of interactions between aerosols and cloud microphysics overby anthropogenic sulfate aerosol. J Geophys Res 106: 5279-

Menon, Surabi; Rotstayn, Leon

2005-01-01T23:59:59.000Z

399

RADIATIVE FORCING OF CLIMATE CHANGE BY AEROSOLS  

E-Print Network (OSTI)

nonbelievers. #12;Level of Scientific Understanding 2 1 0 1 2 3 Radiativeforcing(Wattspersquaremetre) Cooling scattering -- Cooling influence Light absorption -- Warming influence, depending on surface Indirect Effects is highly sensitive to modest aerosol loadings. Global-average AOT 0.1 corresponds to global-average forcing

Schwartz, Stephen E.

400

Scavenging of Aerosol Particles by Precipitation  

Science Conference Proceedings (OSTI)

Airborne measurements have been made of aerosol particle size distributions (>0.01 ?m) in aged air masses, in the plumes from several coal power plants and a large Kraft paper mill, and in the emissions from a volcano, before and after rain or ...

Lawrence F. Radke; Peter V. Hobbs; Mark W. Eltgroth

1980-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Scanning 6-Wavelength 11-Channel Aerosol Lidar  

Science Conference Proceedings (OSTI)

A transportable multiple-wavelength lidar is presented, which is used for the profiling of optical and physical aerosol properties. Two Nd:YAG and two dye lasers in combination with frequency-doubling crystals emit simultaneously at 355, 400, 532,...

Dietrich Althausen; Detlef Müller; Albert Ansmann; Ulla Wandinger; Helgard Hube; Ernst Clauder; Steffen Zörner

2000-11-01T23:59:59.000Z

402

Secondary Ion Mass Spectrometry of Environmental Aerosols  

Science Conference Proceedings (OSTI)

Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

Gaspar, Daniel J.; Cliff, John B.

2010-08-01T23:59:59.000Z

403

Aerosol Condensational Growth in Cloud Formation  

E-Print Network (OSTI)

A code for the quasi-stationary solution of the coupled heat and mass transport equations for aerosols in a finite volume was developed. Both mass and heat are conserved effectively in the volume, which results in a competitive aerosol condensation growth computational model. A further model that couples this competitive aerosol condensation growth computational model with computational fluid dynamics (CFD) software (ANSYS FLUENT) enables the simulation of the realistic atmospheric environment. One or more air parcels, where the aerosols reside, are placed in a very big volume in order to mimic the large atmospheric environment. Mass (water vapor) and heat transportat between the air parcels and the environment facilitates the growth and prevents the parcels from unrealistically overheating. The suppression of cloud condensation nuclei (CCN) growth by high number densities was quantified by our model study. Model study with organic particles (Lmalic acid and maleic acid) indicates that when these organic species and ammonium sulfate are internally mixed, the particles can grow much more than if they are separately associated with distinct particles. Moreover, by using more multiple air parcels, which are randomly assigned with different initial relative humidity values according to a power law distribution, we studied the effects of atmospheric stochastic RH distribution on the growth of CCN.

Geng, Jun

2010-08-01T23:59:59.000Z

404

A Compact Lightweight Aerosol Spectrometer Probe (CLASP)  

Science Conference Proceedings (OSTI)

The Compact Lightweight Aerosol Spectrometer Probe (CLASP) is an optical particle spectrometer capable of measuring size-resolved particle concentrations in 16 user-defined size bins spanning diameters in the range 0.24 < D < 18.5 ?m at a rate of ...

Martin K. Hill; Barbara J. Brooks; Sarah J. Norris; Michael H. Smith; Ian M. Brooks; Gerrit de Leeuw

2008-11-01T23:59:59.000Z

405

Attachment of radon progeny to cigarette-smoke aerosols  

SciTech Connect

The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, {approximately}10{sup {minus}6} cm{sup 3}/s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols.

Biermann, A.H.; Sawyer, S.R.

1995-05-01T23:59:59.000Z

406

Chemical Dynamics Beamline Publications 340. K. N. Urness, A. Golan, J. W. Daily, M. R. Nimlos, J. F. Stanton, M. Ahmed, and G. B. Ellison, "Pyrolysis  

E-Print Network (OSTI)

. Kroll, "Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation Detailed Chemical Kinetic Mechanism for Oxidation of Four Small Alkyl Esters in Laminar Premixed Flames. Ahmed, and S. R. Leone, "The multiplexed chemical kinetic photoionization mass spectrometer: a new

407

Chemical Dynamics Beamline Publications 306. R. I. Kaiser, S. P. Krishtal, A. M. Mebel, O. Kostko, and M. Ahmed, "An Experimental and Theoretical  

E-Print Network (OSTI)

, "Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation of Erythritol. R. Leone, M. Ahmed, K. R. Wilson, "Chemical Dynamics, Molecular Energetics, and Kinetics, J. Wang, B. Yang, N. Hansen, T. Kasper, "A Detailed Chemical Kinetic Mechanism for Oxidation of Four

408

Chemical Activation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Activation of Single-walled Carbon Nanotubes for Hydrogen Adsorption Milton R. Smith, Jr., 1 Edward W. Bittner, 1 Wei Shi, 1, 2 J. Karl Johnson, 1, 2 and Bradley C....

409

Basic research for assessment of geologic nuclear waste repositories: What solubility and speciation studies of transuranium elements can tell us  

Science Conference Proceedings (OSTI)

Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results from solubility and speciation experiments of {sup 237}NpO{sub 2} {sup +}, {sup 239}Pu{sup 4+}, and {sup 241}Am{sup 3+}/Nd{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a candidate high-level nuclear waste disposal site) at three different temperatures (25{degrees}, 60{degrees}, and 90{degrees}C) and pH values (6, 7, and 8.5) are presented and compared with published modeling calculations. The comparison results indicate that there is a great need for experimental data on the solubility and speciation of transuranium elements under a wide range of conditions, for example, pH, Eh, temperature, and composition of groundwaters. Additionally, the influence of alpha radiation and the radiolysis of the secondary transuranium solids on solubility and speciation should be studies. Solubility studies and model calculations should be extended to other important long-lived nuclear waste radionuclides such as nickel, zirconium, cadmium, radium, and thorium. 14 refs., 13 figs., 5 tabs.

Nitsche, H.

1990-12-01T23:59:59.000Z

410

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

1992-06-09T23:59:59.000Z

411

Chemical sensors  

DOE Patents (OSTI)

Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material.

Lowell, Jr., James R. (Bend, OR); Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR); Rayfield, George W. (Eugene, OR)

1992-01-01T23:59:59.000Z

412

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

Science Conference Proceedings (OSTI)

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

413

Aerosol size distribution using Lidar data and a typical Lidar assembly  

Science Conference Proceedings (OSTI)

An algorithm is developed and detailed in this paper which determines atmospheric aerosol parameters such as backscatter and extinction coefficients, aerosol optical thickness, and the aerosol size distribution. The algorithm uses the power profile data ... Keywords: LIDAR system, aerosol optical depth, aerosol size distribution, remote sensing

Hamed Parsiani; Javier Mèndez

2008-11-01T23:59:59.000Z

414

Inter-annual Tropospheric Aerosol Variability in Late Twentieth Century and its Impact on Tropical Atlantic and West African Climate by Direct and Semi-direct Effects  

Science Conference Proceedings (OSTI)

A new high-resolution (0.9$^{\\circ}$x1.25$^{\\circ}$ in the horizontal) global tropospheric aerosol dataset with monthly resolution is generated using the finite-volume configuration of Community Atmosphere Model (CAM4) coupled to a bulk aerosol model and forced with recent estimates of surface emissions for the latter part of twentieth century. The surface emissions dataset is constructed from Coupled Model Inter-comparison Project (CMIP5) decadal-resolution surface emissions dataset to include REanalysis of TROpospheric chemical composition (RETRO) wildfire monthly emissions dataset. Experiments forced with the new tropospheric aerosol dataset and conducted using the spectral configuration of CAM4 with a T85 truncation (1.4$^{\\circ}$x1.4$^{\\circ}$) with prescribed twentieth century observed sea surface temperature, sea-ice and greenhouse gases reveal that variations in tropospheric aerosol levels can induce significant regional climate variability on the inter-annual timescales. Regression analyses over tropical Atlantic and Africa reveal that increasing dust aerosols can cool the North African landmass and shift convection southwards from West Africa into the Gulf of Guinea in the spring season in the simulations. Further, we find that increasing carbonaceous aerosols emanating from the southwestern African savannas can cool the region significantly and increase the marine stratocumulus cloud cover over the southeast tropical Atlantic ocean by aerosol-induced diabatic heating of the free troposphere above the low clouds. Experiments conducted with CAM4 coupled to a slab ocean model suggest that present day aerosols can shift the ITCZ southwards over the tropical Atlantic and can reduce the ocean mixed layer temperature beneath the increased marine stratocumulus clouds in the southeastern tropical Atlantic.

Evans, Katherine J [ORNL; Hack, James J [ORNL; Truesdale, John [National Center for Atmospheric Research (NCAR); Mahajan, Salil [ORNL; Lamarque, J-F [University Center for Atmospheric Research

2012-01-01T23:59:59.000Z

415

Speciation of Heptavalent Technetium in Sulfuric Acid: Structural and Spectroscopic Studies.  

Science Conference Proceedings (OSTI)

The speciation of Tc(VII) in 12 M sulfuric acid was studied by NMR, UV-visible and XAFS spectroscopy, experimental results were supported by DFT calculation and were in agreement with the formation of TcO{sub 3}OH(H{sub 2}O){sub 2}. In summary, the speciation of heptvalent technetium has been investigated in sulfuric acid. In 12 M H{sub 2}SO{sub 4}, a yellow solution is observed, and its {sup 99}Tc NMR spectrum is consistent with a heptavalent complex. The yellow solution was further characterized by EXAFS spectroscopy, and results are consistent with the formation of TcO{sub 3}(OH)(H{sub 2}O){sub 2}. No technetium heptoxide or sulfato- complexes were detected in these conditions. The molecular structure of TcO{sub 3}(OH)(H{sub 2}O){sub 2} has been optimized by DFT techniques, and the structural parameters are well in accordance with those found by XAFS spectroscopy. The experimental electronic spectra exhibit ligand-to-metal charge transfer transitions that have been assigned using TDDFT methods. Calculations demonstrate the theoretical electronic spectrum of TcO{sub 3}(OH)(H{sub 2}O){sub 2} to be in very good agreement with the experimental one. Recent experiments in 12 M H{sub 2}SO{sub 4} show the yellow solution to be very reactive in presence of reducing agents presumably forming low valent Tc species. Current spectroscopic works focus on the speciation of these species.

Poineau, Frederic; Weck, Philippe F.; German, Konstantin; Maruk, Alesya; Kirakosyan, Gayane; Lukens, Wayne; Rego, Daniel B.; Sattelberger, Alfred P.; Czerwinski, Kenneth R.

2010-06-10T23:59:59.000Z

416

Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes  

SciTech Connect

Our aim was to investigate rhizosphere effects on the chemical behavior of Cd. This was done in a glasshouse experiment, where two rice cultivars (Zhenong54 and Sixizhan) were grown in soil spiked with cadmium (Cd) at two levels, 3.9{+-}0.5 and 8.3{+-}0.5 mg kg{sup -1} soil, placed in a rhizobox until ripening stage. Chemical forms of cadmium near the root surface were then assessed using a sequential extraction procedure (SEP). There were significant differences in Cd species, especially exchangeable Cd (EXC-Cd) between the two rice cultivars as affected by rice roots. The lowest EXC-Cd with Zhenong54 appeared in the near-rhizosphere area with little difference between tillering stage and ripening stage while Sixizhan had its lowest EXC-Cd concentration in the root compartment. Both cultivars had slight changes in the Fe/Mn oxide-bound fraction of Cd (FMO-Cd) at the grain ripening stage while the control treatments without plants had a significant increase in FMO-Cd at the same time, indicating a transformation from a less bioavailable form (FMO-Cd) to more bioavailable forms (EXC-Cd). Soil microbial biomass in the vicinity of the root surface had opposite trends to some extent with EXC-Cd, partly because of the root-induced changes to bioavailable Cd. Unlike Zhenong54, Sixizhan had a higher Cd concentration in the root, but only a small proportion of Cd translocated from the root to grain. - Research highlights: {yields}We investigated genotypic effects on Cd speciation in the rhizosphere of rice. {yields}Zhenong54 (ZN) and Sixizhan (SX) were grown in rhizobox to show root-induced changes. {yields}Lowest exchangeable-Cd of ZN was in near-rhizosphere while SX in root compartment. {yields}Soil microbial biomass had opposite trends with exchangeable-Cd in both cultivars. {yields}Unlike ZN, SX had higher Cd content in roots, but lower Cd content in shoots.

Hu, Linfei [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China) [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Hangzhou 310029 (China); Department of Crop and Soil Sciences, Bradfield Hall, Cornell University, Ithaca, NY 14853 (United States); McBride, Murray B. [Department of Crop and Soil Sciences, Bradfield Hall, Cornell University, Ithaca, NY 14853 (United States)] [Department of Crop and Soil Sciences, Bradfield Hall, Cornell University, Ithaca, NY 14853 (United States); Cheng, Hao [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China) [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Hangzhou 310029 (China); Wu, Jianjun [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China) [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Hangzhou 310029 (China); Ministry of Agriculture Key Laboratory of Nonpoint Source Pollution Control, Hangzhou 310029 (China); Shi, Jiachun, E-mail: jcshi@zju.edu.cn [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China) [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Hangzhou 310029 (China); Ministry of Agriculture Key Laboratory of Nonpoint Source Pollution Control, Hangzhou 310029 (China); Xu, Jianming, E-mail: jmxu@zju.edu.cn [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China) [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Hangzhou 310029 (China); Ministry of Agriculture Key Laboratory of Nonpoint Source Pollution Control, Hangzhou 310029 (China); Wu, Laosheng [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China) [Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou 310029 (China); Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Hangzhou 310029 (China); Ministry of Agriculture Key Laboratory of Nonpoint Source Pollution Control, Hangzhou 310029 (China)

2011-04-15T23:59:59.000Z

417

Aerosol Modeling at LLNL - Our capability, results, and perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Indirect Effects to Cloud Aerosol Indirect Effects to Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 Over the Southern Great Plains during May 2003 IOP Lawrence Livermore National Laboratory This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Catherine Chuang, James Boyle Shaocheng Xie and James Kelly LLNL-POST-401948 March 11, 2008 Why are aerosol/cloud interactions important? The greatest uncertainty in the assessment of radiative forcing arises from the interactions of aerosols with clouds. Radiative forcing of climate between 1750 and 2005 (IPCC, 2007) Sources of uncertainty Emissions Gas to particle conversion Aerosol size distribution Linkage between aerosols

418

ARM - Field Campaign - 2007 Cumulus Humilis Aerosol Process Study (CHAPS)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Cumulus Humilis Aerosol Process Study (CHAPS) 7 Cumulus Humilis Aerosol Process Study (CHAPS) Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2007 Cumulus Humilis Aerosol Process Study (CHAPS) 2007.06.04 - 2007.06.25 Lead Scientist : Carl Berkowitz For data sets, see below. Description The primary goal of this campaign was to characterize and contrast freshly emitted aerosols above, within and below fields of cumulus humilis (or fair-weather cumulus, FWC) and to use these observations to address how below-cloud and above-cloud aerosol optical and cloud nucleating properties differ downwind of a mid-size city relative to similar aerosols in air less affected by emissions. The observations from this campaign can also be used to aid in the development and evaluation of parameterizations of the

419

Total aerosol effect: forcing or radiative flux perturbation?  

Science Conference Proceedings (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

420

The Role of Giant and Ultragiant Aerosol Particles in Warm Rain Initiation  

Science Conference Proceedings (OSTI)

Giant and ultragiant aerosol particles can play an important role in warm rain initiation. Recent aerosol measurements have established that particles as large as 100 ?m are a regular part of the atmospheric aerosol. When ingested in growing ...

David B. Johnson

1982-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CALIPSO-Derived Three-Dimensional Structure of Aerosol over the Atlantic Basin and Adjacent Continents  

Science Conference Proceedings (OSTI)

Accurate modeling of the impact of aerosols on climate requires a detailed understanding of the vertical distribution of aerosols. The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) provides continuous high-resolution ...

Aaron M. Adams; Joseph M. Prospero; Chidong Zhang

2012-10-01T23:59:59.000Z

422

Comparison of Aerosol Single Scattering Albedos Derived by Diverse Techniques in Two North Atlantic Experiments  

Science Conference Proceedings (OSTI)

Aerosol single scattering albedo ? (the ratio of scattering to extinction) is important in determining aerosol climatic effects, in explaining relationships between calculated and measured radiative fluxes, and in retrieving aerosol optical ...

P. B. Russell; J. Redemann; B. Schmid; R. W. Bergstrom; J. M. Livingston; D. M. McIntosh; S. A. Ramirez; S. Hartley; P. V. Hobbs; P. K. Quinn; C. M. Carrico; M. J. Rood; E. Öström; K. J. Noone; W. von Hoyningen-Huene; L. Remer

2002-02-01T23:59:59.000Z

423

Aerosols in Polluted versus Nonpolluted Air Masses: Long-Range Transport and Effects on Clouds  

Science Conference Proceedings (OSTI)

To assess the influence of anthropogenic aerosols on the physics and chemistry of clouds in the northeastern United State, aerosol and cloud-drop size distributions, elemental composition of aerosols as a function of size, and ionic content of ...

R. F. Pueschel; C. C. Van Valin; R. C. Castillo; J. A. Kadlecek; E. Ganor

1986-12-01T23:59:59.000Z

424

A Method to Estimate Aerosol Radiative Forcing from Spectral Optical Depths  

Science Conference Proceedings (OSTI)

Radiative forcing of aerosols is much more difficult to estimate than that of well-mixed gases due to the large spatial variability of aerosols and the lack of an adequate database on their radiative properties. Estimation of aerosol radiative ...

S. K. Satheesh; J. Srinivasan

2006-03-01T23:59:59.000Z

425

An Aerosol Climatology at Kyoto: Observed Local Radiative Forcing and Columnar Optical Properties  

Science Conference Proceedings (OSTI)

In order to evaluate the radiative effect of the atmospheric aerosol at Kyoto, Japan, surface solar irradiance and columnar aerosol optical properties were observed in the period between September 1998 and December 2001. The aerosol optical ...

Takahiro Yabe; Robert Höller; Susumu Tohno; Mikio Kasahara

2003-06-01T23:59:59.000Z

426

Characterization of ambient aerosol composition and formation mechanisms and development of quantification methodologies utilizing ATOFMS  

E-Print Network (OSTI)

compounds in fine atmospheric aerosol at the Jungfraujoch,on the Quantification of Aerosol Time-of-Flight MassMass Concentrations from Aerosol Time-of-Flight Mass

Qin, Xueying

2007-01-01T23:59:59.000Z

427

Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol  

E-Print Network (OSTI)

Sun, Y. et al. Size-resolved aerosol chemistry on Whistlerwith a high-resolution aerosol mass spectrometer duringBasis Set: 1. Organic-Aerosol Mixing Thermodynamics. Atmos.

Kroll, Jesse H.

2011-01-01T23:59:59.000Z

428

Measurement of fragmentation and functionalization pathways in the multistep heterogeneous oxidation of organic aerosol  

E-Print Network (OSTI)

E. Kolb, and D. R. Worsnop, Aerosol Science and Technology,Wilson, and D. R. Worsnop, Aerosol Science and Technology,and J. L. Jiménez, Aerosol Sci. Tech. , 2004, 38, 1185–1205.

Kroll, Jesse H.

2010-01-01T23:59:59.000Z

429

Factors affecting the indoor concentrations of carbonaceous aerosols of outdoor origin  

E-Print Network (OSTI)

Valley of California, USA. J. Aerosol Science 32, S631-S632.particles of outdoor origin. Aerosol Science and Technology,in Central California. Aerosol Science and Technology, 40,

Lunden, Melissa M.

2009-01-01T23:59:59.000Z

430

DETERMINATION OF LOW-Z ELEMENTS IN ATMOSPHERIC AEROSOLS BY CHARGED-PARTICLE-INDUCED NUCLEAR REACTIONS  

E-Print Network (OSTI)

Analysis of Atmospheric Aerosols . . . . G. IIo I I Is IV aat levels found in aerosols was not available. These errorsreaction on aluminum in the aerosol and degrading foils. rl

Clemenson, Mark Steven

2013-01-01T23:59:59.000Z

431

Quantifying the Reactive Uptake of OH by Organic Aerosols in a Continuous Flow Stirred Tank Reactor  

E-Print Network (OSTI)

O. Edney and J. B. Cohen, Aerosol Science and Technology, M.Uptake of OH by Organic Aerosols in a Continuous Flowof sub- micron organic aerosol particles using a continuous

Che, Dung L.

2010-01-01T23:59:59.000Z

432

Aerosol climate effects and air quality impacts from 1980 to 2030  

E-Print Network (OSTI)

impacts of carbonaceous aerosols on clouds and climate. InGeophys. Res. . ”In review”. Aerosol climate e?ects and airChem. Phys. 6, 4427–4459. Aerosol climate e?ects and air

Menon, Surabi

2008-01-01T23:59:59.000Z

433

Experimental investigations of photochemically-generated organic aerosols and applications to early Earth and Mars  

E-Print Network (OSTI)

in Titan’s atmospheric aerosols from in situ pyrolysis andformation rates of organic aerosols through time-resolved inExperiments of Titan Aerosol Analogues in Preparation for

Chu, Emily Faye

2013-01-01T23:59:59.000Z

434

Tropospheric Aerosol Optical Thickness from the GOCART Model and Comparisons with Satellite and Sun Photometer Measurements  

Science Conference Proceedings (OSTI)

The Georgia Institute of Technology–Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model is used to simulate the aerosol optical thickness ? for major types of tropospheric aerosols including sulfate, dust, organic carbon ...

Mian Chin; Paul Ginoux; Stefan Kinne; Omar Torres; Brent N. Holben; Bryan N. Duncan; Randall V. Martin; Jennifer A. Logan; Akiko Higurashi; Teruyuki Nakajima

2002-02-01T23:59:59.000Z

435

The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance  

Science Conference Proceedings (OSTI)

The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite was launched in April 2006 to provide global vertically resolved measurements of clouds and aerosols. Correct discrimination between clouds and aerosols ...

Zhaoyan Liu; Mark Vaughan; David Winker; Chieko Kittaka; Brian Getzewich; Ralph Kuehn; Ali Omar; Kathleen Powell; Charles Trepte; Chris Hostetler

2009-07-01T23:59:59.000Z

436

Lidar Observations of the Vertical Aerosol Flux in the Planetary Boundary Layer  

Science Conference Proceedings (OSTI)

The vertical aerosol transport in the planetary boundary layer (PBL) is investigated with lidars. Profiles of the vertical wind velocity are measured with a 2-?m Doppler wind lidar. Aerosol parameters are derived from observations with an aerosol ...

Ronny Engelmann; Ulla Wandinger; Albert Ansmann; Detlef Müller; Egidijus Žeromskis; Dietrich Althausen; Birgit Wehner

2008-08-01T23:59:59.000Z

437

LOSA-M2 aerosol Raman lidar  

SciTech Connect

The scanning LOSA-M2 aerosol Raman lidar, which is aimed at probing atmosphere at wavelengths of 532 and 1064 nm, is described. The backscattered light is received simultaneously in two regimes: analogue and photon-counting. Along with the signals of elastic light scattering at the initial wavelengths, a 607-nm Raman signal from molecular nitrogen is also recorded. It is shown that the height range of atmosphere probing can be expanded from the near-Earth layer to stratosphere using two (near- and far-field) receiving telescopes, and analogue and photon-counting lidar signals can be combined into one signal. Examples of natural measurements of aerosol stratification in atmosphere along vertical and horizontal paths during the expeditions to the Gobi Desert (Mongolia) and Lake Baikal areas are presented.

Balin, Yu S; Bairashin, G S; Kokhanenko, G P; Penner, I E; Samoilova, S V [V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

2011-10-31T23:59:59.000Z

438

Natural Aerosols in the Global Atmosphere  

E-Print Network (OSTI)

1 N?ar det kjem til stykket ?Ar ut og ?ar inn har du site bøygd yver bøkene, du har samla deg meir kunnskap enn du treng til ni liv. N?ar det kjem til stykket, er det so lite som skal til, og det vesle har hjarta alltid visst. I Egypt hadde guden for lærdom hovud som ei ape. Olav H. HaugeNatural aerosols in the global atmosphere

Alf Grini; Alf Grini

2004-01-01T23:59:59.000Z

439

TROPOSPHERIC AEROSOL PROGRAM, PROGRAM PLAN, MARCH 2001  

Science Conference Proceedings (OSTI)

The goal of Tropospheric Aerosol Program (TAP) will be to develop the fundamental scientific understanding required to construct tools for simulating the life cycle of tropospheric aerosols--the processes controlling their mass loading, composition, and microphysical properties, all as a function of time, location, and altitude. The TAP approach to achieving this goal will be by conducting closely linked field, modeling, laboratory, and theoretical studies focused on the processes controlling formation, growth, transport, and deposition of tropospheric aerosols. This understanding will be represented in models suitable for describing these processes on a variety of geographical scales; evaluation of these models will be a key component of TAP field activities. In carrying out these tasks TAP will work closely with other programs in DOE and in other Federal and state agencies, and with the private sector. A forum to directly work with our counterparts in industry to ensure that the results of this research are translated into products that are useful to that community will be provided by NARSTO (formerly the North American Research Strategy on Tropospheric Ozone), a public/private partnership, whose membership spans government, the utilities, industry, and university researchers in Mexico, the US, and Canada.

SCHWARTZ,S.E.; LUNN,P.

2001-03-01T23:59:59.000Z

440

Clustering of Aerosols in Atmospheric Turbulent Flow  

E-Print Network (OSTI)

A mechanism of formation of small-scale inhomogeneities in spatial distributions of aerosols and droplets associated with clustering instability in the atmospheric turbulent flow is discussed. The particle clustering is a consequence of a spontaneous breakdown of their homogeneous space distribution due to the clustering instability, and is caused by a combined effect of the particle inertia and a finite correlation time of the turbulent velocity field. In this paper a theoretical approach proposed in Phys. Rev. E 66, 036302 (2002) is further developed and applied to investigate the mechanisms of formation of small-scale aerosol inhomogeneities in the atmospheric turbulent flow. The theory of the particle clustering instability is extended to the case when the particle Stokes time is larger than the Kolmogorov time scale, but is much smaller than the correlation time at the integral scale of turbulence. We determined the criterion of the clustering instability for the Stokes number larger than 1. We discussed applications of the analyzed effects to the dynamics of aerosols and droplets in the atmospheric turbulent flow.

T. Elperin; N. Kleeorin; M. A. Liberman; V. L'vov; I. Rogachevskii

2007-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chemical speciation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chemical Evolution  

E-Print Network (OSTI)

In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

Francesca Matteucci

2007-04-05T23:59:59.000Z

442

Aerosol Duct Sealing : Technologies : From the Lab to the Marketplace...  

NLE Websites -- All DOE Office Websites (Extended Search)

the California building code changes and increasing availability of the aerosol sealing technology, more homeowners and facilities managers will seal their duct systems and save...

443

Aerosol physics and chemistry: indoor perspective, Chapter 10  

NLE Websites -- All DOE Office Websites (Extended Search)

G. Sextro Secondary Authors Ruzer, Lev S., and Naomi H. Harley Book Title Aerosol Handbook: Measurement, Dosimetry and Health Effects Chapter Chapter Pagination 189-224...

444

ARM - Publications: Science Team Meeting Documents: Aerosol Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol Research at the Arctic Facility for Atmospheric Remote Sensing (AFARS): In Search of Indirect Cloud Effects Sassen, Kenneth University of Alaska Fairbanks Tiruchirapalli,...

445

Urban aerosols harbor diverse and dynamic bacterial populations  

Urban aerosols harbor diverse and dynamic bacterial populations Eoin L. Brodie, Todd Z. DeSantis, Jordan P. Moberg Parker, Ingrid X. Zubietta, Yvette M. Piceno, and ...

446

Relating Secondary Organic Aerosol Characteristics with Cloud Condensation Nuclei Activity  

E-Print Network (OSTI)

and absorb solar and terrestrial radiation, influence cloudand absorb solar and terrestrial radiation, influence cloudand absorption of solar and thermal radiation by aerosol

Tang, Xiaochen

2013-01-01T23:59:59.000Z

447

Deposition of biological aerosols on HVAC heat exchangers  

E-Print Network (OSTI)

Methods to Maintain Heat Exchanger Coil Cleanliness. ASHRAEEngineering Foundation on Heat Exchanger Fouling, UnitedAerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain

Siegel, Jeffrey; Walker, Iain

2001-01-01T23:59:59.000Z

448

Overview of the COPS Aerosol and Cloud Microphysics (ACM) Subgroup...  

NLE Websites -- All DOE Office Websites (Extended Search)

(DAP) - Evelyne Richard, Hans-Stefan Bauer * Aerosol and Cloud Microphysics (ACM) - Chairs: Susanne Crewell, Dave Turner, Stephen Mobbs ACM Scientific Questions * What...

449

A Mixed Bag of Aerosols over Northeastern China  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixed Bag of Aerosols over Northeastern China For original submission and image(s), see ARM Research Highlights http:www.arm.govsciencehighlights Research Highlight...

450

ARM AOS Processing Status and Aerosol Intensive Properties VAP  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrews, and P. J. Sheridan National Oceanic and Atmospheric Administration Boulder, Colorado Abstract The Atmospheric Radiation Measurement (ARM) Aerosol Observing System (AOS)...

451

Atmospheric Aerosol Chemistry, Climate Change, and Air Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

spectrometry capabilities to analyze the molecular composition of atmospheric organic aerosols, or OA, containing nitrogen- containing organic compounds (NOC) and only carbon,...

452

Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties  

E-Print Network (OSTI)

of levoglucosan in biomass combustion aerosol by high-of levoglucosan in biomass combustion aerosol by high-from smoldering biomass combustion, Atmospheric Chemistry

Moore, Meagan Julia Kerry

2011-01-01T23:59:59.000Z

453

Self-assembly of Ni-nanoparticles in Aerosols Produced Thermally ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The self-assembly behavior in Ni-aerosols was studied on- ground ... In microgravity, convection within the thermally produced aerosols could be ...

454

Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate  

E-Print Network (OSTI)

response of fossil fuel and biofuel soot, accounting for2005) include fossil- and biofuel sources from Bond et al. (the impacts of fossil- and biofuel BC aerosols, aerosol-

Menon, Surabi

2008-01-01T23:59:59.000Z

455

MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models  

SciTech Connect

A new aerosol microphysical module MATRIX, the Multiconfiguration Aerosol TRacker of mIXing state, and its application in the Goddard Institute for Space Studies (GISS) climate model (ModelE) are described. This module, which is based on the quadrature method of moments (QMOM), represents nucleation, condensation, coagulation, internal and external mixing, and cloud-drop activation and provides aerosol particle mass and number concentration and particle size information for up to 16 mixed-mode aerosol populations. Internal and external mixing among aerosol components sulfate, nitrate, ammonium, carbonaceous aerosols, dust and sea-salt particles are represented. The solubility of each aerosol population, which is explicitly calculated based on its soluble and insoluble components, enables calculation of the dependence of cloud drop activation on the microphysical characterization of multiple soluble aerosol populations. A detailed model description and results of box-model simulations of various aerosol population configurations are presented. The box model experiments demonstrate the dependence of cloud activating aerosol number concentration on the aerosol population configuration; comparisons to sectional models are quite favorable. MATRIX is incorporated into the GISS climate model and simulations are carried out primarily to assess its performance/efficiency for global-scale atmospheric model application. Simulation results were compared with aircraft and station measurements of aerosol mass and number concentration and particle size to assess the ability of the new method to yield data suitable for such comparison. The model accurately captures the observed size distributions in the Aitken and accumulation modes up to particle diameter 1 {micro}m, in which sulfate, nitrate, black and organic carbon are predominantly located; however the model underestimates coarse-mode number concentration and size, especially in the marine environment. This is more likely due to oversimplifications of the representation of sea salt emissions - sea salt emissions are only calculated for two size classes - than to inherent limitations of MATRIX.

Bauer,S.E.; Wright, D.L.; Koch, D.; Lewis, E.R.; McGraw, R.; Chang, L.-S.; Schwartz, S.E.; Ruedy, R.

2008-10-21T23:59:59.000Z

456

Isolation and gene flow: inferring the speciation history of European house mice  

E-Print Network (OSTI)

Inferring the history of isolation and gene flow during species differentiation can inform us on the processes underlying their formation. Following their recent expansion in Europe, two subspecies of the house mouse (Mus musculus domesticus and Mus musculus musculus) have formed a hybrid zone maintained by hybrid incompatibilities and possibly behavioural reinforcement, offering a good model of incipient speciation. We reconstruct the history of their divergence using an approximate Bayesian computation framework and sequence variation at 57 autosomal loci. We find support for a long isolation period preceding the advent of gene flow around 200 000 generations ago, much before the formation of the European hybrid zone a few thousand years ago. The duration of the allopatric episode appears long enough (74 % of divergence time) to explain the accumulation of many post-zygotic incompatibilities expressed in the present hybrid zone. The ancient contact inferred could have played a role in mating behaviour divergence and laid the ground for further reinforcement. We suggest that both subspecies originally colonized the Middle East from the northern Indian subcontinent, domesticus settling on the shores of the Persian Gulf and musculus on those of the Caspian Sea. Range expansions during interglacials would have induced secondary contacts, presumably in Iran, where they must have also interacted with Mus musculus castaneus. Future studies should incorporate this possibility, and we point to Iran and its surroundings as a hot spot for house mouse diversity and speciation studies.

Ludovic Duvaux; Khalid Belkhir; Matthieu Boulesteix; Pierre Boursot

2011-01-01T23:59:59.000Z

457

Speciation model selection by Monte Carlo analysis of optical absorption spectra: Plutonium(IV) nitrate complexes  

Science Conference Proceedings (OSTI)

Standard modeling approaches can produce the most likely values of the formation constants of metal-ligand complexes if a particular set of species containing the metal ion is known or assumed to exist in solution equilibrium with complexing ligands. Identifying the most likely set of species when more than one set is plausible is a more difficult problem to address quantitatively. A Monte Carlo method of data analysis is described that measures the relative abilities of different speciation models to fit optical spectra of open-shell actinide ions. The best model(s) can be identified from among a larger group of models initially judged to be plausible. The method is demonstrated by analyzing the absorption spectra of aqueous Pu(IV) titrated with nitrate ion at constant 2 molal ionic strength in aqueous perchloric acid. The best speciation model supported by the data is shown to include three Pu(IV) species with nitrate coordination numbers 0, 1, and 2. Formation constants are {beta}{sub 1}=3.2{+-}0.5 and {beta}{sub 2}=11.2{+-}1.2, where the uncertainties are 95% confidence limits estimated by propagating raw data uncertainties using Monte Carlo methods. Principal component analysis independently indicates three Pu(IV) complexes in equilibrium. (c) 2000 Society for Applied Spectroscopy.

Berg, John M. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Veirs, D. Kirk [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Vaughn, Randolph B. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Cisneros, Michael R. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Smith, Coleman A. [Nuclear Materials Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2000-06-01T23:59:59.000Z

458

Selenium Accumulation, Distribution, and Speciation in Spineless Prickly Pear Cactus: A Drought- and Salt-Tolerant, Selenium-Enriched Nutraceutical Fruit Crop for Biofortified Foods  

SciTech Connect

The organ-specific accumulation, spatial distribution, and chemical speciation of selenium (Se) were previously unknown for any species of cactus. We investigated Se in Opuntia ficus-indica using inductively coupled plasma mass spectrometry, microfocused x-ray fluorescence elemental and chemical mapping ({micro}XRF), Se K-edge x-ray absorption near-edge structure (XANES) spectroscopy, and liquid chromatography-mass spectrometry (LC-MS). {micro}XRF showed Se concentrated inside small conic, vestigial leaves (cladode tips), the cladode vasculature, and the seed embryos. Se K-edge XANES demonstrated that approximately 96% of total Se in cladode, fruit juice, fruit pulp, and seed is carbon-Se-carbon (C-Se-C). Micro and bulk XANES analysis showed that cladode tips contained both selenate and C-Se-C forms. Inductively coupled plasma mass spectrometry quantification of Se in high-performance liquid chromatography fractions followed by LC-MS structural identification showed selenocystathionine-to-selenomethionine (SeMet) ratios of 75:25, 71:29, and 32:68, respectively in cladode, fruit, and seed. Enzymatic digestions and subsequent analysis confirmed that Se was mainly present in a 'free' nonproteinaceous form inside cladode and fruit, while in the seed, Se was incorporated into proteins associated with lipids. {micro}XRF chemical mapping illuminated the specific location of Se reduction and assimilation from selenate accumulated in the cladode tips into the two LC-MS-identified C-Se-C forms before they were transported into the cladode mesophyll. We conclude that Opuntia is a secondary Se-accumulating plant whose fruit and cladode contain mostly free selenocystathionine and SeMet, while seeds contain mainly SeMet in protein. When eaten, the organic Se forms in Opuntia fruit, cladode, and seed may improve health, increase Se mineral nutrition, and help prevent multiple human cancers.

Banuelos, Gary S.; Fakra, Sirine C.; Walse, Spencer S.; Marcus, Matthew A.; Yang, Soo In; Pickering, Ingrid J.; Pilon-Smits, Elizabeth A.H.; Freeman, John L.

2011-07-01T23:59:59.000Z

459

Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Aerosol Models for Radiative Flux Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology E. Andrews Cooperative Institute for Research in the Environment University of Colorado Boulder, Colorado E. Andrews, J. A. Ogren, P. J. Sheridan, and J. M. Harris Climate Monitoring and Diagnostics Laboratory National Oceanic and Atmospheric Administration Boulder, Colorado P. K. Quinn Pacific Marine Environmental Laboratory National Oceanic and Atmospheric Administration Seattle, Washington Abstract The uncertainties associated with assumptions of generic aerosol properties in radiative transfer codes are unknown, which means that these uncertainties are frequently invoked when models and

460

About Chemical Hazards  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Hazards What Is a Chemical Hazard? chemical hazards.jpg A chemical hazard is any substance that can cause harm, primarily to people. Chemicals of all kinds are stored in...