Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

aerosol test chamber: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosol test chamber First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 IFE Chamber Technology Testing...

2

Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber  

SciTech Connect (OSTI)

Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

2011-04-14T23:59:59.000Z

3

Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001  

SciTech Connect (OSTI)

The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

Worsnop, Douglas R.

2001-06-01T23:59:59.000Z

4

Observations of Secondary Organic Aerosol Production and Soot Aging under Atmospheric Conditions Using a Novel Environmental Aerosol Chamber  

E-Print Network [OSTI]

of the processes leading to SOA production under ambient gaseous and particulate concentrations as well as the impact these aerosol types have on climate is poorly understood. Although the majority of atmospheric aerosols scatter radiation either directly...

Glen, Crystal

2012-02-14T23:59:59.000Z

5

A Model for Kinetically Controlled Internal Phase Segregation During Aerosol Coagulation  

E-Print Network [OSTI]

A Model for Kinetically Controlled Internal Phase Segregation During Aerosol Coagulation H size distribution. The dynamical behavior of such a system is presented. 1 Introduction The evolution). The GDE has been employed to characterize the behavior in time and space of the particle size distribution

6

Study of surface kinetics in PECVD chamber cleaning using remote plasma source  

E-Print Network [OSTI]

The scope of this research work is to characterize the Transformer Coupled Toroidal Plasma (TCTP); to understand gas phase reactions and surface reactions of neutrals in the cleaning chamber by analyzing the concentration ...

An, Ju Jin

2008-01-01T23:59:59.000Z

7

Ice Nucleation Kinetics of Aerosols Containing Aqueous and Solid Ammonium Sulfate Hui-Ming Hung, Adam Malinowski, and Scot T. Martin*  

E-Print Network [OSTI]

Ice Nucleation Kinetics of Aerosols Containing Aqueous and Solid Ammonium Sulfate Particles Hui; In Final Form: September 20, 2001 Ice freezing events in aerosols composed of (NH4)2SO4/H2O particles. Although they have similar apparent mole fraction compositions, the observed ice freezing characteristics

8

Modeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics  

E-Print Network [OSTI]

that the generation of SiOHx species from fast gas- phase reactions can significantly degrade film quality. Based conservation equations and a moment-type aerosol dynamics model were formulated for a batch reactor undergoing to impurity diffusion.1 During LPCVD film deposition rates are limited by the gas-phase nucleation

Zachariah, Michael R.

9

Improved solid aerosol generator  

DOE Patents [OSTI]

An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

Prescott, D.S.; Schober, R.K.; Beller, J.

1988-07-19T23:59:59.000Z

10

Flow chamber  

DOE Patents [OSTI]

A flow chamber having a vacuum chamber and a specimen chamber. The specimen chamber may have an opening through which a fluid may be introduced and an opening through which the fluid may exit. The vacuum chamber may have an opening through which contents of the vacuum chamber may be evacuated. A portion of the flow chamber may be flexible, and a vacuum may be used to hold the components of the flow chamber together.

Morozov, Victor (Manassas, VA)

2011-01-18T23:59:59.000Z

11

Experimental study of nuclear workplace aerosol samplers  

E-Print Network [OSTI]

LITERATURE REVIEW Aerosol Losses in an Inlet . Aerosol Losses in a Transport System Aerosol Losses in CAMs Critical Flow Venturi 8 13 15 16 EXPERIMENT PROCEDURE 18 CAM Evaluation Consideration FAS Evaluation Consideration Test Protocol Mixing... Chamber Setup High Speed Aerosol Wind Tunnel Setup Low Speed Aerosol Wind Tunnel Setup Critical Flow Venturi 18 19 21 22 24 25 27 RESULTS AND DISCUSSION Page 28 Aerosol Penetration through Transport Systems and CAM Areal Uniformity Deposits...

Parulian, Antony

2012-06-07T23:59:59.000Z

12

Modeling kinetic partitioning of secondary organic aerosol and size distribution dynamics: representing effects of volatility, phase state, and particle-phase reaction  

SciTech Connect (OSTI)

Evidence is mounting that the majority of the climatically active aerosols are produced through the growth of smaller particles via secondary organic aerosol (SOA) formation from gas-to-particle conversion of anthropogenic and biogenic volatile organic compounds (VOCs). The timescale of SOA partitioning and the associated size distribution dynamics are expected to depend on the gas-phase oxidation of the precursor VOCs and their products, volatility of these organic solutes, composition and phase state of the pre-existing particles, and diffusivity and reactivity of the solute within the particle phase. This paper describes a new framework for modeling kinetic gas-particle partitioning of SOA, with an analytical treatment for the diffusion-reaction process within the particle phase. The formulation is amenable for eventual use in regional and global climate models, although it currently awaits implementation of the actual particle-phase reactions that are important for SOA formation. In the present work, the model is applied to investigate the competitive growth dynamics of the Aitken and accumulation mode particles while the Kelvin effect and coagulation are neglected for simplicity. The timescale of SOA partitioning and evolution of number and composition size distributions are evaluated for a range of solute volatilities (C*), particle-phase bulk diffusivities (Db), and particle-phase reactivity, as exemplified by a pseudo-first-order rate constant (kc). Results show that irreversible condensation of non-volatile organic vapors (equivalent to ) produces significant narrowing of the size distribution. At the other extreme, non-reactive partitioning of semi-volatile organic vapors is volume-controlled in which the final (equilibrium) size distribution simply shifts to the right on the diameter axis while its shape remains unchanged. However, appreciable narrowing of the size distribution may occur when the pre-existing particles are highly viscous semi-solids such that small particles reach quasi-equilibrium much faster than the large ones. In the case of reactive partitioning (finite ), the size distribution experiences permanent narrowing, which is especially pronounced for Db < 10-13 cm2 s-1 and kc > 0.01 s-1. As a result, both number and composition size distributions are needed to effectively constrain and evaluate the next generation of SOA models that treat phase state thermodynamics, particle-phase diffusion and particle-phase chemical reactions.

Zaveri, Rahul A.; Easter, Richard C.; Shilling, John E.; Seinfeld, J. H.

2014-05-27T23:59:59.000Z

13

Ionization chamber  

DOE Patents [OSTI]

An ionization chamber has separate drift and detection regions electrically isolated from each other by a fine wire grid. A relatively weak electric field can be maintained in the drift region when the grid and another electrode in the chamber are connected to a high voltage source. A much stronger electric field can be provided in the detection region by connecting wire electrodes therein to another high voltage source. The detection region can thus be operated in a proportional mode when a suitable gas is contained in the chamber. High resolution output pulse waveforms are provided across a resistor connected to the detection region anode, after ionizing radiation enters the drift region and ionize the gas.

Walenta, Albert H. (Port Jefferson Station, NY)

1981-01-01T23:59:59.000Z

14

aerosols | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosols aerosols Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

15

Chamber transport  

SciTech Connect (OSTI)

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

16

EMSL - aerosols  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosols en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-m...

17

Two chamber reaction furnace  

DOE Patents [OSTI]

A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

Blaugher, Richard D. (Evergreen, CO)

1998-05-05T23:59:59.000Z

18

Atmospheric Aerosol Systems | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

19

Final report for NIF chamber dynamics studies  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the fina optics debris shields from an excessive coating (> 10 A) of target debris and ablated material, thereby prolonging their lifetime between change-outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. The work or portions of the work completed this year have been published in several papers and a dissertation [l-5].

Burnham, A; Peterson, P F; Scott, J M

1998-09-01T23:59:59.000Z

20

Mercury Chamber Considerations  

E-Print Network [OSTI]

Mercury Chamber Considerations V. Graves IDS-NF Target Studies July 2011 #12;2 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Considerations, July 2011 Flow Loop Review · 1 cm dia nozzle, 20 m/s jet requires 1.57 liter/sec mercury flow (94.2 liter/min, 24.9 gpm). · MERIT experiment

McDonald, Kirk

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sleeve reaction chamber system  

DOE Patents [OSTI]

A chemical reaction chamber system that combines devices such as doped polysilicon for heating, bulk silicon for convective cooling, and thermoelectric (TE) coolers to augment the heating and cooling rates of the reaction chamber or chambers. In addition the system includes non-silicon-based reaction chambers such as any high thermal conductivity material used in combination with a thermoelectric cooling mechanism (i.e., Peltier device). The heat contained in the thermally conductive part of the system can be used/reused to heat the device, thereby conserving energy and expediting the heating/cooling rates. The system combines a micromachined silicon reaction chamber, for example, with an additional module/device for augmented heating/cooling using the Peltier effect. This additional module is particularly useful in extreme environments (very hot or extremely cold) where augmented heating/cooling would be useful to speed up the thermal cycling rates. The chemical reaction chamber system has various applications for synthesis or processing of organic, inorganic, or biochemical reactions, including the polymerase chain reaction (PCR) and/or other DNA reactions, such as the ligase chain reaction.

Northrup, M. Allen (Berkeley, CA); Beeman, Barton V. (San Mateo, CA); Benett, William J. (Livermore, CA); Hadley, Dean R. (Manteca, CA); Landre, Phoebe (Livermore, CA); Lehew, Stacy L. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA)

2009-08-25T23:59:59.000Z

22

Attachment of radon progeny to cigarette-smoke aerosols  

SciTech Connect (OSTI)

The daughter products of radon gas are now recognized as a significant contributor to radiation exposure to the general public. It is also suspected that a synergistic effect exists with the combination cigarette smoking and radon exposure. We have conducted an experimental investigation to determine the physical nature of radon progeny interactions with cigarette smoke aerosols. The size distributions of the aerosols are characterized and attachment rates of radon progeny to cigarette-smoke aerosols are determined. Both the mainstream and sidestream portions of the smoke aerosol are investigated. Unattached radon progeny are very mobile and, in the presence of aerosols, readily attach to the particle surfaces. In this study, an aerosol chamber is used to contain the radon gas, progeny and aerosol mixture while allowing the attachment process to occur. The rate of attachment is dependent on the size distribution, or diffusion coefficient, of the radon progeny as well as the aerosol size distribution. The size distribution of the radon daughter products is monitored using a graded-screen diffusion battery. The diffusion battery also enables separation of the unattached radon progeny from those attached to the aerosol particles. Analysis of the radon decay products is accomplished using alpha spectrometry. The aerosols of interest are size fractionated with the aid of a differential mobility analyzer and cascade impactor. The measured attachment rates of progeny to the cigarette smoke are compared to those found in similar experiments using an ambient aerosol. The lowest attachment coefficients observed, {approximately}10{sup {minus}6} cm{sup 3}/s, occurred for the ambient aerosol. The sidestream and mainstream smoke aerosols exhibited higher attachment rates in that order. The results compared favorably with theories describing the coagulation process of aerosols.

Biermann, A.H.; Sawyer, S.R.

1995-05-01T23:59:59.000Z

23

Automated soil gas monitoring chamber  

DOE Patents [OSTI]

A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.

Edwards, Nelson T.; Riggs, Jeffery S.

2003-07-29T23:59:59.000Z

24

Effective Henry's Law Partitioning and the Salting Constant of Glyoxal in Aerosols Containing Sulfate  

E-Print Network [OSTI]

-resolved measurements of gas-phase and particle-phase concentrations in sulfate- containing aerosols. Two complementary utilizing filter sampling of chamber aerosols followed by HPLC-MS/MS analysis and (2) positive matrix and irreversible condensed-phase reactions of these compounds yield products of lower volatility; e.g. acetal

25

Secondary emission gas chamber  

E-Print Network [OSTI]

For a hadron calorimeter active element there is considered a gaseous secondary emis-sion detector (150 micron gap, 50 kV/cm). Such one-stage parallel plate chamber must be a radiation hard, fast and simple. A model of such detector has been produced, tested and some characteristics are presented.

V. In'shakov; V. Kryshkin; V. Skvortsov

2014-12-10T23:59:59.000Z

26

Liquid Wall Chambers  

SciTech Connect (OSTI)

The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

Meier, W R

2011-02-24T23:59:59.000Z

27

Vertical two chamber reaction furnace  

DOE Patents [OSTI]

A vertical two chamber reaction furnace. The furnace comprises a lower chamber having an independently operable first heating means for heating the lower chamber and a gas inlet means for admitting a gas to create an ambient atmosphere, and an upper chamber disposed above the lower chamber and having an independently operable second heating means for heating the upper chamber. Disposed between the lower chamber and the upper chamber is a vapor permeable diffusion partition. The upper chamber has a conveyor means for conveying a reactant there through. Of particular importance is the thallinating of long-length thallium-barium-calcium-copper oxide (TBCCO) or barium-calcium-copper oxide (BCCO) precursor tapes or wires conveyed through the upper chamber to thereby effectuate the deposition of vaporized thallium (being so vaporized as the first reactant in the lower chamber at a temperature between about 700.degree. and 800.degree. C.) on TBCCO or BCCO tape or wire (the second reactant) at its simultaneous annealing temperature in the upper chamber of about 800.degree. to 950.degree. C. to thereby replace thallium oxide lost from TBCCO tape or wire because of the high annealing temperature or to deposit thallium on BCCO tape or wire. Continuously moving the tape or wire provides a single-step process that effectuates production of long-length TBCCO superconducting product.

Blaugher, Richard D. (Evergreen, CO)

1999-03-16T23:59:59.000Z

28

CADS:Cantera Aerosol Dynamics Simulator.  

SciTech Connect (OSTI)

This manual describes a library for aerosol kinetics and transport, called CADS (Cantera Aerosol Dynamics Simulator), which employs a section-based approach for describing the particle size distributions. CADS is based upon Cantera, a set of C++ libraries and applications that handles gas phase species transport and reactions. The method uses a discontinuous Galerkin formulation to represent the particle distributions within each section and to solve for changes to the aerosol particle distributions due to condensation, coagulation, and nucleation processes. CADS conserves particles, elements, and total enthalpy up to numerical round-off error, in all of its formulations. Both 0-D time dependent and 1-D steady state applications (an opposing-flow flame application) have been developed with CADS, with the initial emphasis on developing fundamental mechanisms for soot formation within fires. This report also describes the 0-D application, TDcads, which models a time-dependent perfectly stirred reactor.

Moffat, Harry K.

2007-07-01T23:59:59.000Z

29

Pressure-flow reducer for aerosol focusing devices  

DOE Patents [OSTI]

A pressure-flow reducer, and an aerosol focusing system incorporating such a pressure-flow reducer, for performing high-flow, atmosphere-pressure sampling while delivering a tightly focused particle beam in vacuum via an aerodynamic focusing lens stack. The pressure-flow reducer has an inlet nozzle for adjusting the sampling flow rate, a pressure-flow reduction region with a skimmer and pumping ports for reducing the pressure and flow to enable interfacing with low pressure, low flow aerosol focusing devices, and a relaxation chamber for slowing or stopping aerosol particles. In this manner, the pressure-flow reducer decouples pressure from flow, and enables aerosol sampling at atmospheric pressure and at rates greater than 1 liter per minute.

Gard, Eric (San Francisco, CA); Riot, Vincent (Oakland, CA); Coffee, Keith (Diablo Grande, CA); Woods, Bruce (Livermore, CA); Tobias, Herbert (Kensington, CA); Birch, Jim (Albany, CA); Weisgraber, Todd (Brentwood, CA)

2008-04-22T23:59:59.000Z

30

The four-chambered heart.  

E-Print Network [OSTI]

??The Four-Chambered Heart is a collection of four short stories centering around themes and motifs most popular in the genre of magical realism. Important to… (more)

Christie, Jennifer L.

2013-01-01T23:59:59.000Z

31

MFE Chamber Overview Mohamed Abdou  

E-Print Network [OSTI]

MFE Chamber Overview Mohamed Abdou Presented to: Chamber Technology Peer Review UCLA, Los Angeles/Be/structure thermomechanics interactions - Framework: IEA collaboration; part of US strategy to gain access to the larger to VNS; sparked world interest - IEA initiated a study in 1994 on VNS, called HVPNS. A scholarly

Abdou, Mohamed

32

Ion chamber based neutron detectors  

DOE Patents [OSTI]

A neutron detector with monolithically integrated readout circuitry, including: a bonded semiconductor die; an ion chamber formed in the bonded semiconductor die; a first electrode and a second electrode formed in the ion chamber; a neutron absorbing material filling the ion chamber; and the readout circuitry which is electrically coupled to the first and second electrodes. The bonded semiconductor die includes an etched semiconductor substrate bonded to an active semiconductor substrate. The readout circuitry is formed in a portion of the active semiconductor substrate. The ion chamber has a substantially planar first surface on which the first electrode is formed and a substantially planar second surface, parallel to the first surface, on which the second electrode is formed. The distance between the first electrode and the second electrode may be equal to or less than the 50% attenuation length for neutrons in the neutron absorbing material filling the ion chamber.

Derzon, Mark S; Galambos, Paul C; Renzi, Ronald F

2014-12-16T23:59:59.000Z

33

Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area  

E-Print Network [OSTI]

New primary and secondary organic aerosol modules have been added to PMCAMx, a three dimensional chemical transport model (CTM), for use with the SAPRC99 chemistry mechanism based on recent smog chamber studies. The new ...

Tsimpidi, A. P.

34

Light diffusing fiber optic chamber  

DOE Patents [OSTI]

A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

Maitland, Duncan J. (Lafayette, CA)

2002-01-01T23:59:59.000Z

35

Thermophoretic separation of aerosol particles from a sampled gas stream  

SciTech Connect (OSTI)

A method is described for separating aerosol particles from a gas sample being withdrawn from a contained atmosphere, comprising the following steps: placing within the contained atmosphere a covering gas impermeable enclosure have an interior chamber partly defined by a bottom metal plate that is permeable to gas; fixing the position of the enclosure with the plate facing downwardly and directly exposed to the contained atmosphere; heating the metal plate to a temperature greater than that of the contained atmosphere, whereby aerosol particles are repelled to the resulting thermophoretic forces applied to them by the temperature gradient produced in the atmosphere immediately under the plate; and sampling gas within the interior chamber of the enclosure.

Poztman, A.K.

1986-02-25T23:59:59.000Z

36

Direct Aerosol Forcing Uncertainty  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

Mccomiskey, Allison

37

IFE thick liquid wall chamber dynamics: Governing mechanisms andmodeling and experimental capabilities  

SciTech Connect (OSTI)

For thick liquid wall concepts, it is important to understand the different mechanisms affecting the chamber dynamics and the state of the chamber prior to each shot a compared with requirements from the driver and target. These include ablation mechanisms, vapor transport and control, possible aerosol formation, as well as protective jet behavior. This paper was motivated by a town meeting on this subject which helped identify the major issues, assess the latest results, review the capabilities of existing modeling and experimental facilities with respect to addressing remaining issues, and helping guide future analysis and R&D efforts; the paper covers these exact points.

Raffray, A.R.; Meier, W.; Abdel-Khalik, S.; Bonazza, R.; Calderoni, P.; Debonnel, C.S.; Dragojlovic, Z.; El-Guebaly, L.; Haynes,D.; Latkowski, J.; Olson, C.; Peterson, P.F.; Reyes, S.; Sharpe, P.; Tillack, M.S.; Zaghloul, M.

2005-01-24T23:59:59.000Z

38

ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

39

ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Newsom, Rob; Goldsmith, John

40

Modal aerosol dynamics modeling  

SciTech Connect (OSTI)

The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

1991-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Aerosol Cans? -Aerosol cans use a pressurized  

E-Print Network [OSTI]

? - The waste generated in the processing of images/photos contains silver. Silver is a toxic heavy metal the product. Propellants are often flammable and/or toxic. Therefore, never store aerosol cans near ignition of this pamphlet. -Carefully transfer the old paint thinner from the one gallon closable can to the 30 gallon metal

Jia, Songtao

42

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents [OSTI]

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T.A.

2014-05-13T23:59:59.000Z

43

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents [OSTI]

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T. A. [Knoxville, TN

2010-12-14T23:59:59.000Z

44

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents [OSTI]

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T.A.

2013-12-03T23:59:59.000Z

45

Sensitive glow discharge ion source for aerosol and gas analysis  

DOE Patents [OSTI]

A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

Reilly, Peter T. A. (Knoxville, TN)

2007-08-14T23:59:59.000Z

46

Aerosol Sampler Operations Manual  

E-Print Network [OSTI]

-1123 Laboratory FAX (916) 752-4107 Standard Operating Procedures Technical Information Document TI 201A #12;TI 201.................................................................................................................................................. 3 1.0 Weekly Maintenance ProceduresIMPROVE Aerosol Sampler Operations Manual February 10, 1997 Air Quality Group Crocker Nuclear

Fischer, Emily V.

47

The TESLA Time Projection Chamber  

E-Print Network [OSTI]

A large Time Projection Chamber is proposed as part of the tracking system for a detector at the TESLA electron positron linear collider. Different ongoing R&D studies are reviewed, stressing progress made on a new type readout technique based on Micro-Pattern Gas Detectors.

Nabil Ghodbane

2002-12-12T23:59:59.000Z

48

VERTEX CHAMBERS TARGET CELL CALORIMETER  

E-Print Network [OSTI]

DRIFT VC 1/2 FC 1/2 VERTEX CHAMBERS TARGET CELL DVC MC 1­3 HODOSCOPE H0 MONITOR BC 1/2 BC 3/4 TRD at Threashold Lambda Physics (u ­L spin transfer) Motivation: ­ W L Target cell e beam L p p e ­ Elastic: Peltier elements ( T ~ ­20C ) ­ Custom built electronics + HELIX chips low autgassing (

49

Chamber dynamic research with pulsed power  

SciTech Connect (OSTI)

In Inertial Fusion Energy (IFE), Target Chamber Dynamics (TCD) is an integral part of the target chamber design and performance. TCD includes target output deposition of target x-rays, ions and neutrons in target chamber gases and structures, vaporization and melting of target chamber materials, radiation-hydrodynamics in target chamber vapors and gases, and chamber conditions at the time of target and beam injections. Pulsed power provides a unique environment for IFE-TCD validation experiments in two important ways: they do not require the very clean conditions which lasers need and they currently provide large x-ray and ion energies.

PETERSON,ROBERT R.; OLSON,CRAIG L.; RENK,TIMOTHY J.; ROCHAU,GARY E.; SWEENEY,MARY ANN

2000-05-15T23:59:59.000Z

50

Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles  

E-Print Network [OSTI]

We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. Firstly, aerosol photoemission studies can be performed for many different materials, including liquids. Secondly, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

Goldmann, Maximilian; West, Adam H C; Yoder, Bruce L; Signorell, Ruth

2015-01-01T23:59:59.000Z

51

5, 79658026, 2005 Simulating aerosol  

E-Print Network [OSTI]

composition, number concentration, and size distribution of the global submicrometer aerosol. The present, coagulation, condensation, nucleation of sulfuric acid vapor, aerosol chemistry, cloud processing, and sizeACPD 5, 7965­8026, 2005 Simulating aerosol microphysics with ECHAM/MADE A. Lauer et al. Title Page

Paris-Sud XI, Université de

52

Recent Advances in Chamber Science and Technology  

E-Print Network [OSTI]

Recent Advances in Chamber Science and Technology Mohamed Abdou April 8, 2002ISFNT-6 San Diego, USA #12;Recent Advances in Chamber Science & Technology OutlineOutline · Highlights of Major World - Experiments - Analysis & Design #12;Highlights of Major World Programs on Chamber (Blanket) Technology

Abdou, Mohamed

53

Mercury Chamber NF-IDS Meeting  

E-Print Network [OSTI]

-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 Starting Point: Coil and Shielding Concept IDS120H #12;3 Managed by UT-Battelle for the U.S. Department of Energy Mercury Chamber Update Oct 2011 · Penetrations (ports) into chamber ­ Nozzle ­ Hg drains (overflow and maintenance) ­ Vents (in and out) ­ Beam

McDonald, Kirk

54

Aerosol engineering: design and stability of aerosol reactors  

SciTech Connect (OSTI)

A theoretical study of the performance of aerosol reactors is presented. The goals of this study are (1) to identify the appropriate reactor types (batch, CSTR, and tubular) for production of aerosol with specific properties (for example, uniform size particles, high aerosol surface area, etc.) and (2) to investigate the effect of various process parameters on product aerosol characteristics and on the stability of operation of aerosol reactors. In all the reactors considered, the aerosol dynamics were detemined by chemical reaction, nucleation, and aerosol growth in the free molecule regime in the absence of coagulation at isothermal conditions. Formulation of the aerosol dynamics in terms of moments of the aerosol size distribution facilitated the numerical solution of the resulting systems of ordinary or partial differential equations. The stability characteristics of a continuous stirred tank aerosol reactor (CSTAR) were investigated since experimental data in the literature indicate that under certain conditions this reactor exhibits oscillatory behavior with respect to product aerosol concentration and size distribution.

Pratsinis, S.E.

1985-01-01T23:59:59.000Z

55

Highly stable aerosol generator  

DOE Patents [OSTI]

An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

DeFord, H.S.; Clark, M.L.

1981-11-03T23:59:59.000Z

56

Atmospheric-pressure plasma decontamination/sterilization chamber  

DOE Patents [OSTI]

An atmospheric-pressure plasma decontamination/sterilization chamber is described. The apparatus is useful for decontaminating sensitive equipment and materials, such as electronics, optics and national treasures, which have been contaminated with chemical and/or biological warfare agents, such as anthrax, mustard blistering agent, VX nerve gas, and the like. There is currently no acceptable procedure for decontaminating such equipment. The apparatus may also be used for sterilization in the medical and food industries. Items to be decontaminated or sterilized are supported inside the chamber. Reactive gases containing atomic and metastable oxygen species are generated by an atmospheric-pressure plasma discharge in a He/O.sub.2 mixture and directed into the region of these items resulting in chemical reaction between the reactive species and organic substances. This reaction typically kills and/or neutralizes the contamination without damaging most equipment and materials. The plasma gases are recirculated through a closed-loop system to minimize the loss of helium and the possibility of escape of aerosolized harmful substances.

Herrmann, Hans W. (Los Alamos, NM); Selwyn, Gary S. (Los Alamos, NM)

2001-01-01T23:59:59.000Z

57

Vapor scavenging by atmospheric aerosol particles  

SciTech Connect (OSTI)

Particle growth due to vapor scavenging was studied using both experimental and computational techniques. Vapor scavenging by particles is an important physical process in the atmosphere because it can result in changes to particle properties (e.g., size, shape, composition, and activity) and, thus, influence atmospheric phenomena in which particles play a role, such as cloud formation and long range transport. The influence of organic vapor on the evolution of a particle mass size distribution was investigated using a modified version of MAEROS (a multicomponent aerosol dynamics code). The modeling study attempted to identify the sources of organic aerosol observed by Novakov and Penner (1993) in a field study in Puerto Rico. Experimentally, vapor scavenging and particle growth were investigated using two techniques. The influence of the presence of organic vapor on the particle`s hydroscopicity was investigated using an electrodynamic balance. The charge on a particle was investigated theoretically and experimentally. A prototype apparatus--the refractive index thermal diffusion chamber (RITDC)--was developed to study multiple particles in the same environment at the same time.

Andrews, E.

1996-05-01T23:59:59.000Z

58

Electrostatics and radioactive aerosol behavior  

SciTech Connect (OSTI)

Radioactive aerosols differ from their nonradioactive counterparts by their ability to charge themselves by emitting charged particles during the radioactive decay process. Evidence that electrostatics, including this charging process, can affect the transport of the aerosols was summarized previously. Charge distributions and the mean charge for a monodisperse radioactive aerosol have been considered in detail. The principal results of theory to calculate charge distributions on a aerosol with a size distribution, changes to Brownian coagulation rates for an aerosol in a reactor containment, and possible changes to aerosol deposition resulting from the charging will be presented. The main purpose of the work has been to improve calculations of aerosol behavior in reactor containments, but behavior in less ionizing environments will be affected more strongly, and some problems remain to be solved in performing reliable calculations.

Clement, C.F.

1994-12-31T23:59:59.000Z

59

aerosols and climate : uncertainties  

E-Print Network [OSTI]

contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

60

Parameterizations of Cloud Microphysics and Indirect Aerosol Effects  

SciTech Connect (OSTI)

1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005]. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated. 2. MODEL DESCRIPTION AND CASE STUDIES 2.1 GCE MODEL The model used in this study is the 2D version of the GCE model. Modeled flow is anelastic. Second- or higher-order advection schemes can produce negative values in the solution. Thus, a Multi-dimensional Positive Definite Advection Transport Algorithm (MPDATA) has been implemented into the model. All scalar variables (potential temperature, water vapor, turbulent coefficient and all five hydrometeor classes) use forward time differencing and the MPDATA for advection. Dynamic variables, u, v and w, use a second-order accurate advection scheme and a leapfrog time integration (kinetic energy semi-conserving method). Short-wave (solar) and long-wave radiation as well as a subgrid-scale TKE turbulence scheme are also included in the model. Details of the model can be found in Tao and Simpson (1993) and Tao et al. (2003). 2.2 Microphysics (Bin Model) The formulation of the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (cloud droplets and raindrops), and six types of ice particles: pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail. Each type is described by a special size distribution function containing 33 categories (bin

Tao, Wei-Kuo [NASA/GSFC] [NASA/GSFC

2014-05-19T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

62

The Mark II Vertex Drift Chamber  

SciTech Connect (OSTI)

We have completed constructing and begun operating the Mark II Drift Chamber Vertex Detector. The chamber, based on a modified jet cell design, achieves 30 {mu}m spatial resolution and <1000 {mu}m track-pair resolution in pressurized CO{sub 2} gas mixtures. Special emphasis has been placed on controlling systematic errors including the use of novel construction techniques which permit accurate wire placement. Chamber performance has been studied with cosmic ray tracks collected with the chamber located both inside and outside the Mark II. Results on spatial resolution, average pulse shape, and some properties of CO{sub 2} mixtures are presented. 10 refs., 12 figs., 1 tab.

Alexander, J.P.; Baggs, R.; Fujino, D.; Hayes, K.; Hoard, C.; Hower, N.; Hutchinson, D.; Jaros, J.A.; Koetke, D.; Kowalski, L.A.

1989-03-01T23:59:59.000Z

63

Kinetic Analysis of Competition between Aerosol Particle Removal  

E-Print Network [OSTI]

of a typical residential building. This model predicts that certain widely used ionization air purifiers may contribute to the toxicity of urban air pollution (1, 2). The adverse health effects of particulate matter PM, the Environmental Protection Agency (EPA) established the national ambient air quality standards

Nizkorodov, Sergey

64

Molecular Characterization of Biomass Burning Aerosols Using...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

65

Nonequilibrium Atmospheric Secondary Organic Aerosol Formation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Formation and Growth. Abstract: Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA)...

66

Aerosol collection characteristics of ambient aerosol samplers  

E-Print Network [OSTI]

the error for aniso- kinet1c sampl1ng with the smaller errors being associated w1th the larger orifices. For a higher accuracy in field sampling Watson suggested sampling with high volumetric rates and large sampling orifices to approximate isokinet1c..., was used to sample with a standard knife-edged orifice under isokinet1c conditions. May noted that the modified Casella cascade impactor was highly effective with sizes as small as about 1 um. Another excellent device for sampling down to 10 um...

Ortiz, Carlos A

2012-06-07T23:59:59.000Z

67

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both  

E-Print Network [OSTI]

meters in CO2 euthanasia chambers. All CO2 euthanasia chambers in both the facilities and laboratories will need flow meters. ULAR is currently in the process of identifying a cost-effective, accurate, and durable flow meter to install in all of the CO2 chambers in all of the vivaria. When a specific model

Bushman, Frederic

68

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou  

E-Print Network [OSTI]

. As ITER serves as a fusion testing facility for magnetic fusion energy (MFE) nuclear technology componentIFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation

Abdou, Mohamed

69

Investigation of multiple scattering effects in aerosols. Final report, Sep 1978 - Dec 1979  

SciTech Connect (OSTI)

The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution) (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method) (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

Deepak, A.

1980-05-01T23:59:59.000Z

70

Multicomponent aerosol dynamic of the Pb-O[sub 2] system in a bench scale flame incinerator  

SciTech Connect (OSTI)

The article gives results of a study to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe (in conjunction with real-time aerosol instruments) was used to measure the evolution of the particle size distribution at different locations in the flame region. A multicomponent lognormal aerosol model was developed accounting for the chemistry of the lead-oxygen system, and for such aerosol dynamic phenomena as nucleation, coagulation, and condensation. Reasonable agreement was obtained between the predictions of the model using appropriate kinetic parameters and the experimental results.

Lin, W.Y.; Sethi, V.; Biswas, P.

1992-01-01T23:59:59.000Z

71

Vapor-Wall Deposition in Chambers: Theoretical Considerations  

E-Print Network [OSTI]

aerosol size distribution changes continuously as particles grow by condensation and are lost by coagulation

McVay, Renee C; Cappa, Christopher D; Seinfeld, John H

2014-01-01T23:59:59.000Z

72

Construction of a scattering chamber for ion-beam analysis of environmental materials in undergraduate physics research  

SciTech Connect (OSTI)

We have developed a new scattering chamber for ion-beam analysis of environmental materials with the 1.1-MV Pelletron accelerator at the Union College Ion-Beam Analysis Laboratory. The chamber was constructed from a ten-inch, Conflat, multi-port cross and includes a three-axis target manipulator and target ladder assembly, an eight-inch turbo pump, an Amptek X-ray detector, and multiple charged particle detectors. Recent projects performed by our undergraduate research team include proton induced X-ray emission (PIXE) and Rutherford backscattering (RBS) analyses of atmospheric aerosols collected with a nine-stage cascade impactor in Upstate New York. We will describe the construction of the chamber and discuss the results of some commissioning experiments.

LaBrake, Scott M.; Vineyard, Michael F.; Turley, Colin F.; Moore, Robert D.; Johnson, Christopher [Department of Physics and Astronomy Union College, Schenectady, NY 12308 (United States)

2013-04-19T23:59:59.000Z

73

6, 75197562, 2006 Simulating aerosol  

E-Print Network [OSTI]

, particle number concentration and aerosol size-distribution. The model takes into account sulfate (SO4. This model system enables explicit simulations of the particle number concentration and size-distribution of aerosol dynamical processes (nucleation, condensation, coagulation) is evaluated by comparison

Paris-Sud XI, Université de

74

The Nearby Supernova Factory Ozone + Aerosol + Rayleigh  

E-Print Network [OSTI]

Rayleigh + Aerosol Extinction monitor filter Auxiliary Camera CCD Spectrograph picko ff mirror Umbra

75

Heat transfer and pollutant formation mechanisms in insulated combustion chambers  

SciTech Connect (OSTI)

The authors have studied the quenching situation as it can be found in constant volume combustion chambers for a methane flame over a range of wall temperatures between 300 K and 600 K using Direct Numerical Simulation. To do this, the authors solved the fully compressible, one-dimensional Navier-Stokes equations with detailed mechanisms for kinetics and diffusion. This approach allows to compare various reaction schemes, to identify the most important species and reaction paths, and to investigate the influence of different modeling assumptions. The computational results show that the dimensional wall heat flux increases with wall temperature over the whole range of wall temperatures studied; this agrees well with the most recent measurements in a strongly improved experimental setup. It is found that the wall can be modeled as chemically inert and thermal diffusion processes are negligible for low wall temperatures between 300 K and 400 K. However, at higher temperatures, due to a dramatically increasing radical concentration (H, Oh, OH) at the wall, both become increasingly important leading to large heat release rates directly at the metallic wall surface of the combustion chamber, and can thus not be neglected in the modeling of the quenching process. Furthermore, these high radical concentrations adjacent to the wall indicate that the uncertainties in wall heat flux measurements at high wall temperatures could be underestimated by the experimentalists. The UHC concentration at a wall temperature of 600 K is about 20 times smaller than for 300 K after quenching. 37 refs., 12 figs., 1 tab.

Popp, P.; Baum, M.

1995-12-31T23:59:59.000Z

76

Aerosol characterization study using multi-spectrum remote sensing measurement techniques.  

SciTech Connect (OSTI)

A unique aerosol flow chamber coupled with a bistatic LIDAR system was implemented to measure the optical scattering cross sections and depolarization ratio of common atmospheric particulates. Each of seven particle types (ammonium sulfate, ammonium nitrate, sodium chloride, potassium chloride, black carbon and Arizona road dust) was aged by three anthropogenically relevant mechanisms: 1. Sulfuric acid deposition, 2. Toluene ozonolysis reactions, and 3. m-Xylene ozonolysis reactions. The results of pure particle scattering properties were compared with their aged equivalents. Results show that as most particles age under industrial plume conditions, their scattering cross sections are similar to pure black carbon, which has significant impacts to our understanding of aerosol impacts on climate. In addition, evidence emerges that suggest chloride-containing aerosols are chemically altered during the organic aging process. Here we present the direct measured scattering cross section and depolarization ratios for pure and aged atmospheric particulates.

Glen, Crystal Chanea; Sanchez, Andres L.; Lucero, Gabriel Anthony; Schmitt, Randal L.; Johnson, Mark S.; Tezak, Matthew Stephen; Servantes, Brandon Lee

2013-09-01T23:59:59.000Z

77

Spent fuel sabotage test program, characterization of aerosol dispersal : technical review and analysis supplement.  

SciTech Connect (OSTI)

This project seeks to provide vital data required to assess the consequences of a terrorist attack on a spent fuel transportation cask. One such attack scenario involves the use of conical shaped charges (CSC), which are capable of damaging a spent fuel transportation cask. In the event of such an attack, the amount of radioactivity that may be released as respirable aerosols is not known with great certainty. Research to date has focused on measuring the aerosol release from single short surrogate fuel rodlets subjected to attack by a small CSC device in various aerosol chamber designs. The last series of three experiments tested surrogate fuel rodlets made with depleted uranium oxide ceramic pellets in a specially designed double chamber aerosol containment apparatus. This robust testing apparatus was designed to prevent any radioactive release and allow high level radioactive waste disposal of the entire apparatus following testing of actual spent fuel rodlets as proposed. DOE and Sandia reviews of the project to date identified a number of issues. The purpose of this supplemental report is to address and document the DOE review comments and to resolve the issues identified in the Sandia technical review.

Durbin, Samuel G.; Lindgren, Eric Richard

2009-07-01T23:59:59.000Z

78

aerosol particles collected: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Saller 2002-05-07 6 Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles Materials Science Websites Summary: being clouds...

79

Mexico City Aerosol Analysis during MILAGRO using High Resolution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Abstract: Submicron aerosol was analyzed during...

80

Mexico City Aerosol Analysis during MILAGRO using High Resolution...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Abstract: Submicron aerosol was analyzed during...

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Engineering design of a hypobaric plant growth chamber  

E-Print Network [OSTI]

plants with the chamber in place and removed. With the chamber removed, PAR levels were recorded as 461 []mol m?² s?¹; inside the complete chamber the level decreased to 408 []mol m?² s?¹, a difference of 11.5%....

Purswell, Joseph Lawrence

2002-01-01T23:59:59.000Z

82

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

83

Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.  

SciTech Connect (OSTI)

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage--aerosol test program, performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission, had significant inputs from, and is strongly supported and coordinated by both the U.S. and international program participants in Germany, France, and the U.K., as part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC.

Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

2006-10-01T23:59:59.000Z

84

AERONET: The Aerosol Robotic Network  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

85

Formation mechanisms of combustion chamber deposits  

E-Print Network [OSTI]

Combustion chamber deposits are found in virtually all internal combustion engines after a few hundred hours of operation. Deposits form on cylinder, piston, and head surfaces that are in contact with fuel-air mixture ...

O'Brien, Christopher J. (Christopher John)

2001-01-01T23:59:59.000Z

86

Cloud chamber visualization of primary cosmic rays  

SciTech Connect (OSTI)

From 1948 until 1963, cloud chambers were carried to the top of the atmosphere by balloons. From these flights, which were begun by Edward P. Ney at the University of Minnesota, came the following results: discovery of heavy cosmic ray nuclei, development of scintillation and cherenkov detectors, discovery of cosmic ray electrons, and studies of solar proton events. The history of that era is illustrated here by cloud chamber photographs of primary cosmic rays.

Earl, James A. [Department of Astronomy, University of Maryland, College Park MD (United States)

2013-02-07T23:59:59.000Z

87

8, 68456901, 2008 Aerosol optical  

E-Print Network [OSTI]

of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance, Germany 2 Helmholtz Center Munich, German Research Center for Environmental Health, Institute

Paris-Sud XI, Université de

88

AEROSOL, CLOUDS, AND CLIMATE CHANGE  

SciTech Connect (OSTI)

Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

SCHWARTZ, S.E.

2005-09-01T23:59:59.000Z

89

Nonequilibrium quantum kinetics  

SciTech Connect (OSTI)

This paper contains viewgraphs on non-equilibrium quantum kinetics of nuclear reactions at the intermediate and high energy ranges.

Danielewicz, P.

1997-09-22T23:59:59.000Z

90

THERMO FLUID DYNAMICS AND CHAMBER AEROSOL BEHAVIOR FOR THIN LIQUID WALL UNDER IFE  

E-Print Network [OSTI]

thermal and injection control. Experimental and numerical studies have been con- ducted to examine beam propagation and focusing requirements, as well as the target thermal integrity and injection the fluid dynamic aspects of thin-liquid- film protection systems with either radial injection through

91

Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.  

SciTech Connect (OSTI)

This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) and supported by both the U.S. Department of Energy and the Nuclear Regulatory Commission.

Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Mo, Tin (U.S. Nuclear Regulatory Commission, Washington, DC); Billone, Michael C. (Argonne National Laboratory, Argonne, IL); Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Young, F. I. (U.S. Nuclear Regulatory Commission, Washington, DC); Coats, Richard Lee; Burtseva, Tatiana (Argonne National Laboratory, Argonne, IL); Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Thompson, Nancy Slater (U.S. Department of Energy, Washington, DC); Hibbs, Russell S. (U.S. Department of Energy, Washington, DC); Gregson, Michael Warren; Lange, Florentin (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Molecke, Martin Alan; Tsai, Han-Chung (Argonne National Laboratory, Argonne, IL)

2005-07-01T23:59:59.000Z

92

Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols  

SciTech Connect (OSTI)

The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

2012-06-13T23:59:59.000Z

93

Final report for NIF chamber dynamics studies, final rept (May 1997), Subcontract No. B291847  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), a 1.8 MJ, 192 laser beam facility, will have anticipated fusion yields of up to 20 MJ from D-T pellets encased in a gold hohlraum target. The energy emitted from the target in the form of x rays, neutrons, target debris kinetic energy, and target shrapnel will be contained in a 5 m. radius spherical target chamber. Various diagnostics will be stationed around the target at varying distances from the target. During each shot, the target will emit x rays that will vaporize nearby target facing surfaces including those of the diagnostics, the target positioner, and other chamber structures. This ablated vapor will be transported throughout the chamber, and will eventually condense and deposit on surfaces in the chamber, including the final optics debris shields. The research at the University of California at Berkeley relates primarily to the NIF chamber dynamics. The key design issues are the ablation of the chamber structures, transport of the vapor through the chamber and the condensation or deposition processes of those vaporized materials. An understanding of these processes is essential in developing a concept for protecting the final optics debris shields from an excessive coating (> 10 {Angstrom}) of target debris and ablated material, thereby prolonging their lifetime between change- outs. At Berkeley, we have studied the physical issues of the ablation process and the effects of varying materials, the condensation process of the vaporized material, and design schemes that can lower the threat posed to the debris shields by these processes. In addition to the work described briefly above, we performed extensive analysis of the target-chamber thermal response to in- chamber CO{sub 2} Cleaning and of work performed to model the behavior of silica vapor. The work completed this year has been published in several papers and a dissertation [1-6]. This report provides a summary of the work completed this year, as well as copies fo presentation materials that have not been published elsewhere. In particular, the Appendix contains copies of presentations made on CO{sub 2} cleaning that are not available elsewhere.

Peterson, P.F.; Jin, H.; Scott, J.M. [University of California, Berkeley (United States)

1997-07-01T23:59:59.000Z

94

Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2  

E-Print Network [OSTI]

1 Direct and semi-direct aerosol effects of Southern African1 biomass burning aerosol2 Naoko effects of biomass burning aerosols from Southern African fires9 during July-October are investigated region the overall TOA radiative effect from the23 biomass burning aerosols is almost zero due

Wood, Robert

95

Composition and Reactions of Atmospheric Aerosol Particles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Source type and mechanism information for the four aerosol samples gathered from the Caribbean, the Sea of Japan, and New Jersey. One way to gauge an aerosol's ability to stay...

96

6, 93519388, 2006 Aerosol-cloud  

E-Print Network [OSTI]

ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

Paris-Sud XI, Université de

97

Lifetime tests for MAC vertex chamber  

SciTech Connect (OSTI)

A vertex chamber for MAC was proposed to increase precision in the measurement of the B hadron and tau lepton lifetimes. Thin-walled aluminized mylar drift tubes were used for detector elements. A study of radiation hardness was conducted under the conditions of the proposed design using different gases and different operating conditions. (LEW)

Nelson, H.N.

1986-07-01T23:59:59.000Z

98

A Cosmic Ray Measurement Facility for ATLAS Muon Chambers  

E-Print Network [OSTI]

Monitored Drift Tube (MDT) chambers will constitute the large majority of precision detectors in the Muon Spectrometer of the ATLAS experiment at the Large Hadron Collider at CERN. For commissioning and calibration of MDT chambers, a Cosmic Ray Measurement Facility is in operation at Munich University. The objectives of this facility are to test the chambers and on-chamber electronics, to map the positions of the anode wires within the chambers with the precision needed for standalone muon momentum measurement in ATLAS, and to gain experience in the operation of the chambers and on-line calibration procedures. Until the start of muon chamber installation in ATLAS, 88 chambers built at the Max Planck Institute for Physics in Munich have to be commissioned and calibrated. With a data taking period of one day individual wire positions can be measured with an accuracy of 8.3 micrometers in the chamber plane and 27 micrometers in the direction perpendicular to that plane.

O. Biebel; M. Binder; M. Boutemeur; A. Brandt; J. Dubbert; G. Duckeck; J. Elmsheuser; F. Fiedler; R. Hertenberger; O. Kortner; T. Nunnemann; F. Rauscher; D. Schaile; P. Schieferdecker; A. Staude; W. Stiller; R. Stroehmer; R. Vertesi

2003-07-30T23:59:59.000Z

99

Laboratory investigation of chemical and physical properties of soot-containing aerosols  

E-Print Network [OSTI]

....................................................................................44 3-6 Hygroscopic growth factor of H2SO4-coated (a) propane (b) methane and (c) kerosene soot aerosols of selected dry particle sizes as a function of RH... on the surfaces of soot generated from methane, hexane and kerosene combustion. The kinetic experiments are conducted with a low-pressure, coated-wall laminar flow reactor 8 apparatus equipped with ion drift - chemical ionization mass spectrometry...

Zhang, Dan

2006-08-16T23:59:59.000Z

100

Long-range forces and the collisions of free-molecular and transition regime aerosols  

SciTech Connect (OSTI)

An aerosol here is understood to be a two-component system comprised of gaseous and condensed phases with the characteristic that the condensed phase is not an equilibrium subsystem. In contrast to the usual definitions based upon geometrical or mechanical variables, this quasi-thermodynamic formulation is framed to emphasize the dynamical behavior of aerosols by allowing for coagulation and other aerosol evolutionary processes as natural consequences of the interactions and state variables appropriate to the system. As will become clear later, it also provides a point of departure for distinguishing aerosol particles from unstable gas-phase cluster systems. The question of accommodation in particle collisions must be addressed as a prelude to the discussion of the role of long-range forces. Microscopic reversibility is frequently assumed for molecular collisions with either molecules or solid surfaces. In the case of aerosol collisions, the implication of this assumption is that collisions are elastic, which is contrary to the evidence from coagulation experiments and the conventional operational assumption of sticking upon collision. Gay and Berne have performed computer simulations of the collision of two clusters consisting of a total of 135 molecules interacting via Lennard-Jones potentials. That work showed that complete accommodation, accompanied by overall heating of the unified cluster, occurred. Since heating represents an irreversible degradation of the kinetic energy of the collision, the hamiltonian of the two-cluster system should be considered as dissipative and therefore microscopic reversibility does not apply.

Marlow, W.H.

1988-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Review of models applicable to accident aerosols  

SciTech Connect (OSTI)

Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

Glissmeyer, J.A.

1983-07-01T23:59:59.000Z

102

Stratospheric Aerosol Geoengineering ALAN ROBOCK  

E-Print Network [OSTI]

Stratospheric Aerosol Geoengineering ALAN ROBOCK ABSTRACT In response to global warming, one suggested geoengineering response involves creating a cloud of particles in the stratosphere to reflect some, the volcano analog also warns against geoengineering because of responses such as ozone depletion, regional

Robock, Alan

103

On-Site Wastewater Treatment Systems: Leaching Chambers  

E-Print Network [OSTI]

Leaching chambers distribute treated wastewater into the soil. This publication lists the advantages and disadvantages of leaching chamber systems, explains how to maintain them and gives estimates of costs....

Lesikar, Bruce J.

2000-02-04T23:59:59.000Z

104

DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?  

E-Print Network [OSTI]

BALANCE Global and annual average energy fluxes in watts per square meter Schwartz, 1996, modified from;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS

Schwartz, Stephen E.

105

Reduce Steam Trap Failures at Chambers Works  

E-Print Network [OSTI]

Ultrasonic Inspection At least 2 times per year Steam Trap Surveyor Submit reports to area management, energy team, and reliability engineers for each area every month Steam Trap Team Leader Control Plan ? Process Owner agrees...Reduce Steam Trap Failures at Chambers Works GB/BB Name: Cyndi Kouba Mentor/MBB: Andrew Degraff Team Members Michael Crowley(Site Energy Lead), (Charlie) Flanigan (Aramids-maintenance), Ben Snyder (Aramids-ATO), Michael Scruggs (Central...

Kouba, C.

106

Inhalation toxicology of red and violet mixtures. Chamber concentration and particle-size distribution report  

SciTech Connect (OSTI)

An inhalation exposure facility was developed at the U.S. EPA, RTP, NC to conduct inhalation exposures of rodents and guinea pigs to dye mixtures used by the U.S. Army in the manufacture of smoke munitions. Initially, an evaluation of the prototype chamber aerosol homogeneity was conducted to determine the uniformity and reproducibility of the concentration and particle size of dye aerosol throughout the breathing zone of the test animals. The three dyes, DR11, SR1, and DB3, were chemically analyzed for purity and optically examined for size and shape. All pure dyes appeared to be stable at room temperature except DB3, which decomposes if not stored at 4 C. The particle size ranges varied for each pure dye and structures were either amorphous (azo dye) or crystalline (anthraquinone dyes). The bulk red and violet dye mixtures were analyzed for composition. The chemical analysis of the relative composition of each dye mixture, collected by cascade impactor sampling, revealed fractionation of the mixtures into component dyes.

Higuchi, M.A.; Davies, D.W.

1991-07-01T23:59:59.000Z

107

Remote sensing of terrestrial tropospheric aerosols from aircraft and satellites  

E-Print Network [OSTI]

Remote sensing of terrestrial tropospheric aerosols from aircraft and satellites M I Mishchenko1 instruments suitable for aerosol remote sensing and give examples of aerosol retrievals obtained forcing directly by absorbing and reflecting sunlight, thereby cooling or heating the atmosphere

108

Optimization of aerosol penetration through transport lines  

E-Print Network [OSTI]

will be minimum and -' he penetration of aerosols through the transport system will be maximal. It is the purpose of the study reported herein to experimentally investigate the optimization of aerosol penetration through transport systems and to obtain a... numbers less than 869, bounded the use of this model to Reynolds numbers less than or equal to 1100. 19 IV. SUNNARY OF WORK AND EXPERINENTAL NETHODOLOGY The purpose of the study reported herein was to further analyze the optimization of aerosol...

Wong Luque, Fermin Samuel

1992-01-01T23:59:59.000Z

109

IFE chamber technology testing program in NIF and chamber development test plan  

SciTech Connect (OSTI)

Issues concerning chamber technology testing program in NIF involving: criteria for evaluation/prioritization of experiments, engineering scaling requirements for test article design and material selection and R and D plan prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program in NIF, the testing in NIF should provide the experimental data relevant to DEMO design choice or to DEMO design predictive capability by utilizing engineering scaling test article designs. Test plans were developed for 2 promising chamber design concepts. Early testing in non-fusion/non-ignition prior to testing in ignition facility serves a critical role in chamber R and D test plans in order to reduce the risks and costs of the more complex experiments in NIF.

Abdou, M.A. [Univ. of California, Los Angeles, CA (United States)

1995-12-31T23:59:59.000Z

110

Direct and semidirect aerosol effects of southern African biomass burning aerosol  

E-Print Network [OSTI]

Direct and semidirect aerosol effects of southern African biomass burning aerosol Naoko Sakaeda,1 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols static stability. Over the entire region the overall TOA radiative effect from the biomass burning

Wood, Robert

111

Vacuum chamber with a supersonic-flow aerodynamic window  

DOE Patents [OSTI]

A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

Hanson, C.L.

1980-10-14T23:59:59.000Z

112

Vacuum chamber with a supersonic flow aerodynamic window  

DOE Patents [OSTI]

A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

Hanson, Clark L. (Livermore, CA)

1982-01-01T23:59:59.000Z

113

Researchers Model Impact of Aerosols Over California  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu,...

114

Separating Cloud Forming Nuclei from Interstitial Aerosol  

SciTech Connect (OSTI)

It has become important to characterize the physicochemical properties of aerosol that have initiated the warm and ice clouds. The data is urgently needed to better represent the aerosol-cloud interaction mechanisms in the climate models. The laboratory and in-situ techniques to separate precisely the aerosol particles that act as cloud condensation nuclei (CCN) and ice nuclei (IN), termed as cloud nuclei (CN) henceforth, have become imperative in studying aerosol effects on clouds and the environment. This review summarizes these techniques, design considerations, associated artifacts and challenges, and briefly discusses the need for improved designs to expand the CN measurement database.

Kulkarni, Gourihar R.

2012-09-12T23:59:59.000Z

115

Indirect and Semi-Direct Aerosol Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October? 2. To what extent do the different properties of the Arctic aerosol during April produce differences in clouds? * Do the more polluted conditions during April in the...

116

Vacuum chamber for containing particle beams  

DOE Patents [OSTI]

A vacuum chamber for containing a charged particle beam in a rapidly changing magnetic environment comprises a ceramic pipe with conducting strips oriented along the longitudinal axis of the pipe and with circumferential conducting bands oriented perpendicular to the longitudinal axis but joined with a single longitudinal electrical connection. When both strips and bands are on the outside of the ceramic pipe, insulated from each other, a high-resistance conductive layer such as nickel can be coated on the inside of the pipe.

Harvey, A.

1985-11-26T23:59:59.000Z

117

Comparative Analysis of Urban Atmospheric Aerosol by Particle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

118

aerosol ratio program: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

contribute a major portion of atmospheric aerosol mass loading 5. The estimated global annual Liou, K. N. 2 Studying Clouds and Aerosols with Lidar Depolarization Ratio and...

119

Reduction in biomass burning aerosol light absorption upon humidificat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

120

aerosol optical thickness: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

aerosol black carbon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

122

aerosols iii morphologic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sciences Websites Summary: of aerosols. Keywords: metal waste recycling; aerosols; fire hazard; explosion hazard. 1. OVERVIEW ProductsRisks generated by the treatment of...

123

The Indirect and Semi-Direct Aerosol Campaign  

ScienceCinema (OSTI)

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-06-12T23:59:59.000Z

124

ambient ultrafine aerosols: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer...

125

The Indirect and Semi-Direct Aerosol Campaign  

SciTech Connect (OSTI)

Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

Ghan, Steve

2014-03-24T23:59:59.000Z

126

Synergy between Secondary Organic Aerosols and Long Range Transport...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between Secondary Organic Aerosols and Long Range Transport of Polycyclic Aromatic Hydrocarbons. Synergy between Secondary Organic Aerosols and Long Range Transport of Polycyclic...

127

acid aerosol exposure: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nenes, Athanasios 8 Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia Geosciences Websites Summary: Neutralization of soil aerosol and...

128

Aerosol Composition and Source Apportionment in the Mexico City...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Composition and Source Apportionment in the Mexico City Metropolitan Area with PIXEPESASTIM and Multivariate Analysis. Aerosol Composition and Source Apportionment in the...

129

Molecular Chemistry of Organic Aerosols Through the Application...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

130

aerosol samples collected: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

elements analysis of aerosol samples from some CiteSeer Summary: Aerosols deposits on filters from ten Romanian towns with different kinds and levels of industrial development...

131

Optical, physical, and chemical properties of springtime aerosol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in...

132

aerosol particles emitted: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosols scatter and absorb solar, estimates of the impact of aerosols on visibility, the solar radiation balance, and crop production is presented. 1. INTRODUCTION The attenuation...

133

aerosolized pentamidine effect: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

134

aerosols radioactifs artificiels: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

135

aerosol particle analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: data analysis algorithm is presented. Our earlier algorithm assumed a monomodal aerosol size distribution, while the new algorithm allows us to partition the aerosol...

136

aerosol research study: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in atmospheric thermal structure, burning, bio-sources changes? 12;Aerosol microphysics: size distribution, mixing state, morphology, shape 9 Aerosol Science and Technology,...

137

Building America Webinar: Sealing of Home Enclosures with Aerosol...  

Energy Savers [EERE]

Sealing of Home Enclosures with Aerosol Particles Building America Webinar: Sealing of Home Enclosures with Aerosol Particles This webinar was presented by research team Building...

138

The dependence of ice microphysics on aerosol concentration in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. The dependence of ice microphysics on aerosol...

139

Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer  

SciTech Connect (OSTI)

During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

2008-06-19T23:59:59.000Z

140

Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions  

SciTech Connect (OSTI)

Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near-surface NO{sub x} concentrations by a factor of 2-5. These results suggest the importance of using the more accurate hybrid dynamical method in the estimates of both aerosol forcing and tropospheric ozone chemistry.

Joyce E. Penner

2005-03-14T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Characterization of aerosols produced by surgical procedures  

SciTech Connect (OSTI)

In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States); Turner, R.S. [Lovelace Health Systems, Albuquerque, NM (United States)

1994-07-01T23:59:59.000Z

142

IFE thick liquid wall chamber dynamics: Governing mechanisms and modeling and experimental capabilities  

E-Print Network [OSTI]

in the aerosol size distribution due to coagulation andCoagulation changes the size distribution a number of 1 ptm aerosolCoagulation changes the size distribution a number of 1 pirn aerosol

2005-01-01T23:59:59.000Z

143

ENCAPSULATION EFFECTS ON CARBONACEOUS AEROSOL LIGHT ABSORPTION  

E-Print Network [OSTI]

ENCAPSULATION EFFECTS ON CARBONACEOUS AEROSOL LIGHT ABSORPTION Arthur Sedlacek, Brookhaven National of aerosol absorption on direct radiative forcing is still an active area of research, in part, because. This poster presents data on black carbon (BC) light absorption measured by Photothermal Interferometry

144

2, 12871315, 2002 Aerosol sources and  

E-Print Network [OSTI]

in climate variability and climate change studies (IPCC, 2001). Radiative forcing of natural and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime J aerosol sources in the Eastern Mediterranean5 Basin could be investigated at this location since the site

Paris-Sud XI, Université de

145

6, 1217912197, 2006 Aerosol formation in  

E-Print Network [OSTI]

troposphere and lower stratosphere. The model implements a first order scheme for resolving the aerosol size distribution within its geometric size10 sections, which efficiently suppresses numerical diffusion. We operate removes freshly nucleated particles by coagulation. The observation of high ultrafine aerosol

Paris-Sud XI, Université de

146

6, 32653319, 2006 Study aerosol with  

E-Print Network [OSTI]

ACPD 6, 3265­3319, 2006 Study aerosol with two emission inventories and time factors A. de Meij et in Europe to two different emission inventories and temporal distribution of emissions A. de Meij 1 , M Study aerosol with two emission inventories and time factors A. de Meij et al. Title Page Abstract

Paris-Sud XI, Université de

147

Tests of a Novel Design of Resistive Plate Chambers  

E-Print Network [OSTI]

A novel design of Resistive Plate Chambers (RPCs), using only a single resistive plate, is being proposed. Based on this design, two large size prototype chambers were constructed and were tested with cosmic rays and in particle beams. The tests confirmed the viability of this new approach. In addition to showing an improved single-particle response compared to the traditional 2-plate design, the novel chambers also prove to be suitable for calorimetric applications.

Bilki, B; Freund, B; Neubüser, C; Onel, Y; Repond, J; Schlereth, J; Xia, L

2015-01-01T23:59:59.000Z

148

AEROSOL PARTICLE COLLECTOR DESIGN STUDY  

SciTech Connect (OSTI)

A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

Lee, S; Richard Dimenna, R

2007-09-27T23:59:59.000Z

149

ARM - Field Campaign - Aerosol IOP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience4AJ01)3, 2010SeptemberInfrared SpectralgovCampaignsAerosol IOP

150

Bubble Chambers for Experiments in Nuclear Astrophysics  

E-Print Network [OSTI]

A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas tar...

DiGiovine, B; Holt, R J; Rehm, K E; Raut, R; Robinson, A; Sonnenschein, A; Rusev, G; Tonchev, A P; Ugalde, C

2015-01-01T23:59:59.000Z

151

The hydrogen bubble chamber and the strange resonances  

SciTech Connect (OSTI)

The author's recollections of his experience in the use of bubble chambers and the discoveries of strange resonances are given. (LEW)

Alvarez, L.W.

1985-06-01T23:59:59.000Z

152

air wall ionization chambers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of California eScholarship Repository Summary: chamber, passive sampling, passive solar house, measurementhouse, we planed the distribution of fresh air, passivepassive...

153

Dielectric liquid ionization chambers for detecting fast neutrons  

E-Print Network [OSTI]

Three ionization chambers with different geometries have been constructed and filled with dielectric liquids for detection of fast neutrons. The three dielectric liquids studied were Tetramethylsilane (TMS), Tetramethylpentane ...

Boyd, Erin M

2008-01-01T23:59:59.000Z

154

Erbium hydride decomposition kinetics.  

SciTech Connect (OSTI)

Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

Ferrizz, Robert Matthew

2006-11-01T23:59:59.000Z

155

Global observations of desert dust and biomass burning aerosols  

E-Print Network [OSTI]

Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning.6 Biomass burning over Angola, 09 Sep. 2004 Absorbing Aerosol Index PMD image #12;biomass burning ocean

Graaf, Martin de

156

Kinetic theory viscosity  

E-Print Network [OSTI]

We show how the viscous evolution of Keplerian accretion discs can be understood in terms of simple kinetic theory. Although standard physics texts give a simple derivation of momentum transfer in a linear shear flow using kinetic theory, many authors, as detailed by Hayashi & Matsuda 2001, have had difficulties applying the same considerations to a circular shear flow. We show here how this may be done, and note that the essential ingredients are to take proper account of, first, isotropy locally in the frame of the fluid and, second, the geometry of the mean flow.

C. J. Clarke; J. E. Pringle

2004-03-17T23:59:59.000Z

157

Molecular Beam Kinetics | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8Mistakes to AvoidKinetics Molecular Beam Kinetics

158

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2  

E-Print Network [OSTI]

Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME the resulting time series, we use tropospheric NO2 data as a reference in the regions dominated by biomass sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

Tilstra, Gijsbert

159

Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract: A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic...

160

Parallel plate avalanche chamber as an endcap detector for Time Projection Chamber  

SciTech Connect (OSTI)

A small, 10 x 10 cm/sup 2/, parallel plate avalanche counter has been tested paying special attention to those features which can be important in the Time Projection Chamber. The structure of the test chamber is shown. It has a conversion and drift volume, 11 mm thick, delimited by two stainless steel cross wire grids, of 100 ..mu..m wire diameter and 500 ..mu..mm pitch, identified by HV1 and HV2. The anode is made of thick wires, 100 ..mu..m in diameter spaced every 500 ..mu..m. The amplification gap is 4 mm thick. Below the anode, 1 mm apart, we have paced an identical wire plane, HV4, with wires perpendicular to the anode wires. Both electrodes are equipped with electronics and read out. All measurements were performed with a mixture of argon and methane (83% - 17%), a typical gas for Time Projection Chambers. A multiplication factor up to 10/sup 5/ was attained.

Peisert, A.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The behavior of constant rate aerosol reactors  

SciTech Connect (OSTI)

An aerosol reactor is a gaseous system in which fine particles are formed by chemical reaction in either a batch or flow process. The particle sizes of interest range from less than 10 angstrom (molecular clusters) to 10 ..mu..m. Such reactors may be operated to study the aerosol formation process, as in a smog reactor, or to generate a product such as a pigment or a catalytic aerosol. Aerosol reactors can be characterized by three temporal or spatial zones or regions of operation for batch and flow reactors, respectively. In zone I, chemical reaction results in the formation of condensable molecular products which nucleate and form very high concentrations of small particles. The number density depends on the concentration of preexisting aerosol. Zone II is a transition region in which the aerosol number concentration levels off as a result of hetergeneous condensation by the stable aerosol. In zone III coagulation becomes sufficiently rapid to reduce the particle number concentration. There may be a zone IV in which agglomerates form.

Friedlander, S.K.

1982-01-01T23:59:59.000Z

162

CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan  

SciTech Connect (OSTI)

Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-05-27T23:59:59.000Z

163

Heart chambers and whole heart segmentation techniques: review  

E-Print Network [OSTI]

Heart chambers and whole heart segmentation techniques: review Dongwoo Kang Jonghye Woo Piotr J://electronicimaging.spiedigitallibrary.org/ on 01/15/2014 Terms of Use: http://spiedl.org/terms #12;Heart chambers and whole heart segmentation, and reproducible segmentation methods. Figure 1 illustrates an example of segmentation of heart on CT scan. A

Kuo, C.-C. "Jay"

164

Exciting Internship at the American Arab Chamber of Commerce  

E-Print Network [OSTI]

Exciting Internship at the American Arab Chamber of Commerce Take advantage of the opportunity@americanarab.com with the subject "Internship Opportunity." Include a brief statement on why you would like to work at the American Arab Chamber of Commerce, along with your availability. If you are looking for an internship to fulfill

Cinabro, David

165

Overview of Chamber and Power Plant Designs for IFE  

E-Print Network [OSTI]

, to be published in 2011, (ISBN 9780470894392) I will review some of the more complete integrated design studies&E are choice of materials, chamber and building design, tritium inventory, design of tritium processing systemsOverview of Chamber and Power Plant Designs for IFE Wayne Meier Deputy Program Leader Fusion Energy

166

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect (OSTI)

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

167

A mechanical mode-stirred reverberation chamber with chaotic geometry  

E-Print Network [OSTI]

A previous research on multivariate approach to the calculation of reverberation chamber correlation matrices is used to calculate the number of independent positions in a mode-stirred reverberation chamber. Anomalies and counterintuitive behavior are observed in terms of number of correlated matrix elements with respect to increasing frequency. This is ascribed to the regular geometry forming the baseline cavity (screened room) of a reverberation chamber, responsible for localizing energy and preserving regular modes (bouncing ball modes). Smooth wall deformations are introduced in order to create underlying Lyapunov instability of rays and then destroy survived regular modes. Numerical full-wave simulations are performed for a reverberation chamber with corner hemispheres and (off-)center wall spherical caps. Field sampling is performed by moving a mechanical carousel stirrer. It is found that wave-chaos inspired baseline geometries improve chamber performances in terms of lowest usable frequencies and number of independent cavity realizations of mechanical stirrers.

Gabriele Gradoni; Franco Moglie; Valter Mariani Primiani

2014-07-06T23:59:59.000Z

168

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect (OSTI)

Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

Richard A. Ferrare; David D. Turner

2011-09-01T23:59:59.000Z

169

LLNL Chemical Kinetics Modeling Group  

SciTech Connect (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

170

Vacuum chamber for ion manipulation device  

DOE Patents [OSTI]

An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. A predetermined number of pairs of surfaces are disposed in one or more chambers, forming a multiple-layer ion mobility cyclotron device.

Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M

2014-12-09T23:59:59.000Z

171

Southern hemisphere tropospheric aerosol microphysics  

SciTech Connect (OSTI)

Aerosol particle size distribution data have been obtained in the southern hemisphere from approximately 4{degree}S to 44{degree}S and between ground level and 6 km, in the vicinity of eastern Australia. The relative shape of the free-tropospheric size distribution for particles with radii larger than approximately 0.04 {mu}m was found to be remarkably stable with time, altitude, and location for the autumn-winter periods considered. This was despite some large concentration changes which were found to be typical of the southeastern Australian coastal region. The majority of free-troposphere large particles were found to have sulfuric acid or lightly ammoniated sulfate morphology. Large particles in the boundary layer almost exclusively had a sea-salt morphology.

Gras, J.L. (Commonwealth Scientific and Industrial Research Organization, Aspendale (Australia))

1991-03-20T23:59:59.000Z

172

Radiative and climate impacts of absorbing aerosols  

E-Print Network [OSTI]

incident radiation are distinguished, and albedos for oceanOceans using multiple satellite datasets in conjunction with MACR (Monte Carlo Aerosol-Cloud-Radiation)ocean temperature is coupled with the rest of the climate system, the dimming of surface radiation

Zhu, Aihua

2010-01-01T23:59:59.000Z

173

Aerosol remote sensing in polar regions  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i) a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winter–spring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.

Tomasi, C.; Wagener, R.; Kokhanovsky, A. A.; Lupi, A.; Ritter, C.; Smirnov, A.; O Neill, N. T.; Stone, R. S.; Holben, B. N.; Nyeki, S.; Wehrli, C.; Stohl, A.; Mazzola, M.; Lanconelli, C.; Vitale, V.; Stebel, K.; Aaltonen, V.; de Leeuw, G.; Rodriguez, E.; Herber, A. B.; Radionov, V. F.; Zielinski, T.; Petelski, T.; Sakerin, S. M.; Kabanov, D. M.; Xue, Y.; Mei, L.; Istomina, L.; Wagener, R.; McArthur, B.; Sobolewski, P. S.; Kivi, R.; Courcoux, Y.; Larouche, P.; Broccardo, S.; Piketh, S. J.

2015-01-01T23:59:59.000Z

174

Aerosol fabrication methods for monodisperse nanoparticles  

DOE Patents [OSTI]

Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

Jiang, Xingmao; Brinker, C Jeffrey

2014-10-21T23:59:59.000Z

175

Development of plutonium aerosol fractionation system  

E-Print Network [OSTI]

DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

Mekala, Malla R.

1993-01-01T23:59:59.000Z

176

Electrically Driven Technologies for Radioactive Aerosol Abatement  

SciTech Connect (OSTI)

The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

2003-01-28T23:59:59.000Z

177

Improving alternative fuel utilization: detailed kinetic combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improving alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

178

WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia  

SciTech Connect (OSTI)

This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

2014-08-01T23:59:59.000Z

179

E-Print Network 3.0 - aerosol chemical vapor Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical and microphysical properties influence aerosol optical properties and radiative effects... distribution of aerosol extensive and intensive properties will aid ......

180

Closed chamber drill stem test detects deep damage  

SciTech Connect (OSTI)

Closed chamber drill stem tests are a relatively new development in drill stem testing. The technique was originated to reduce operational and safety problems caused by hydrate formation during conventional drill stem tests in the Canadian Arctic. During the 1970s, closed chamber testing found widespread acceptance in Canada and is now becoming more widely used in the US. The closed chamber testing method is used in conjunction with conventional drill stem testing tools and equipment. The only additional requirement is a means of continuously monitoring pressure at the surface; therefore, the method can be conducted anywhere conventional drill stem testing equipment is available. The advantage and disadvantages of the system are discussed.

Berkstresser, M.

1982-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Turbine component cooling channel mesh with intersection chambers  

DOE Patents [OSTI]

A mesh (35) of cooling channels (35A, 35B) with an array of cooling channel intersections (42) in a wall (21, 22) of a turbine component. A mixing chamber (42A-C) at each intersection is wider (W1, W2)) than a width (W) of each of the cooling channels connected to the mixing chamber. The mixing chamber promotes swirl, and slows the coolant for more efficient and uniform cooling. A series of cooling meshes (M1, M2) may be separated by mixing manifolds (44), which may have film cooling holes (46) and/or coolant refresher holes (48).

Lee, Ching-Pang; Marra, John J

2014-05-06T23:59:59.000Z

182

AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL  

E-Print Network [OSTI]

AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL SPECIATION MONITOR Yin-Nan Lee1 , Fan Mei1 , Stephanie DeJong1 , Anne Jefferson2 1 Atmospheric Sciences Division, Brookhaven National Lab, Upton, NY 2 CIRES, University of Colorado, Boulder, CO

183

Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds  

SciTech Connect (OSTI)

The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

Turner, David, D.; Ferrare, Richard, A.

2011-07-06T23:59:59.000Z

184

Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

185

atlas muon chamber: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

detectors and a calibrated BF3 neutron detector provided monitoring of the neutron flux-density and energy. The sensitivity of the drift chamber to the neutrons was measured...

186

atlas muon chambers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

detectors and a calibrated BF3 neutron detector provided monitoring of the neutron flux-density and energy. The sensitivity of the drift chamber to the neutrons was measured...

187

Carrying Semiautomatic Pistols with a Round in the Chamber  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Sets forth requirements for a DOE security police officer who must carry a round in the chamber of a semiautomatic pistol while on duty. Does not cancel other directives.

1999-10-28T23:59:59.000Z

188

Mini-chamber, an advanced protection concept for NIF  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) target debris and ablated near-target materials pose the primary threat to the National Ignition Facility (NIF) final optics debris shields, as well as a major challenge in future inertial fusion energy (IFE) power plants. This work discusses a NIF `mini-chamber,` designed to mitigate the debris threat. Although the NIF base-line design protects against debris using a frost-protected target positioner and refractory first-wall coatings, the mini-chamber provides important flexibility in three areas: debris-shield protection from beyond-design basis shots (i.e. heavy hohlraums, special diagnostics, shields); fielding of large experiments with significant surface ablation; and studying key ablation and gas-dynamics issues for liquid-wall IFE power plants. Key mini-chamber modeling results are presented, followed by discussion of equipment requirements for fielding a NIF mini-chamber. 7 refs., 3 figs.

Peterson, P.F.; Scott, J.M. [Univ. of California, Berkeley, CA (United States)

1996-12-31T23:59:59.000Z

189

E-Cloud Build-up in Grooved Chambers  

E-Print Network [OSTI]

and F. Zimmermann, ”LC e-Cloud Activities at CERN”, talkal. , Simulations of the Electron Cloud for Vari- ous Con?E-CLOUD BUILD-UP IN GROOVED CHAMBERS ? M. Venturini † LBNL,

Venturini, Marco

2007-01-01T23:59:59.000Z

190

E-Print Network 3.0 - automated chamber system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for 1 h before the measurements with soil chambers were started. We... to a SRC-1 soil respiration chamber), Geir streng. The ... Source: Yakir, Dan - Department of...

191

E-Print Network 3.0 - anterior chamber flare Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ventricular septum comprise a Summary: chambered heart with the future atrial myocardium looping dorsal and anterior to the developing ventricles... ventricular chamber in mef2c...

192

E-Print Network 3.0 - anterior chamber depth Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mesethmoid is not convex... , then a smaller chamber was cut out with a straw. Once an agar chamber was prepared, the ... Source: Hagadorn, Whitey - Department of Geology, Amherst...

193

DIMUON PRODUCTION BY HIGH ENERGY NEUTRINOS AND ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER  

E-Print Network [OSTI]

ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBERANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER*ANTINEUTRINOS IN THE FERMILAB FIFTEEN-FOOT BUBBLE CHAMBER

Orthel, John L.

2010-01-01T23:59:59.000Z

194

E-Print Network 3.0 - atmosphere simulation chamber Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Topic List Advanced Search Sample search results for: atmosphere simulation chamber Page: << < 1 2 3 4 5 > >> 1 Dynamic Chamber System to Measure Gaseous Compounds Emissions...

195

Laser calibration system for the CERES Time Projection Chamber  

E-Print Network [OSTI]

A Nd:YAG laser was used to simulate charged particle tracks at known positions in the CERES Time Projection Chamber at the CERN SPS. The system was primarily developed to study the response of the readout electronics and to calibrate the electron drift velocity. Further applications were the determination of the gating grid transparency, the chamber position calibration, and long-term monitoring of drift properties of the gas in the detector.

Dariusz Miskowiec; Peter Braun-Munzinger

2008-02-15T23:59:59.000Z

196

Chamber technology concepts for inertial fusion energy: Three recent examples  

SciTech Connect (OSTI)

The most serious challenges in the design of chambers for inertial fusion energy (IFE) are 1) protecting the first wall from fusion energy pulses on the order of several hundred megajoules released in the form of x rays, target debris, and high energy neutrons, and 2) operating the chamber at a pulse repetition rate of 5-10 Hz (i.e., re-establishing, the wall protection and chamber conditions needed for beam propagation to the target between pulses). In meeting these challenges, designers have capitalized on the ability to separate the fusion burn physics from the geometry and environment of the fusion chamber. Most recent conceptual designs use gases or flowing liquids inside the chamber. Thin liquid layers of molten salt or metal and low pressure, high-Z gases can protect the first wall from x rays and target debris, while thick liquid layers have the added benefit of protecting structures from fusion neutrons thereby significantly reducing the radiation damage and activation. The use of thick liquid walls is predicted to 1) reduce the cost of electricity by avoiding the cost and down time of changing damaged structures, and 2) reduce the cost of development by avoiding the cost of developing a new, low-activation material. Various schemes have been proposed to assure chamber clearing and renewal of the protective features at the required pulse rate. Representative chamber concepts are described, and key technical feasibility issues are identified for each class of chamber. Experimental activities (past, current, and proposed) to address these issues and technology research and development needs are discussed.

Meier, W.R.; Moir, R.W. [Lawrence Livermore National Lab., CA (United States); Abdou, M.A. [California Univ., Los Angeles, CA (United States)

1997-02-27T23:59:59.000Z

197

DOE research on atmospheric aerosols  

SciTech Connect (OSTI)

Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

Schwartz, S.E.

1995-11-01T23:59:59.000Z

198

Chemical kinetics modeling  

SciTech Connect (OSTI)

This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

199

SUMMARY ON TITANIUM NITRIDE COATING OF SNS RING VACUUM CHAMBERS.  

SciTech Connect (OSTI)

The inner surfaces of the 248 m Spallation Neutron Source (SNS) accumulator ring vacuum chambers are coated with {approx}100nm of titanium nitride (TiN) to reduce the secondary electron yield (SEY) of the chamber walls. There are approximately 135 chambers and kicker modules, some up to 5m in length and 36cm in diameter, coated with TiN. The coating is deposited by means of reactive DC magnetron sputtering -using a - cylindrical cathode with internal permanent magnets. This cathode configuration generates a deposition-rate sufficient to meet the required production schedule and produces stoichiometric films with good adhesion, low SEY and acceptable outgassing. Moreover, the cathode magnet configuration allows for simple changes in length and has been adapted to coat the wide variety of chambers and components contained within the arcs, injection, extraction, collimation and RF straight sections. Chamber types and quantities as well as the cathode configurations are presented herein. The unique coating requirements of the injection kicker ceramic chambers and the extraction kicker ferrite surface will be emphasized. A brief summary of the salient coating properties is given including the interdependence of SEY as a function of surface roughness and its effect on outgassing.

TODD, R.; HE, P.; HSEUH, H.C.; WEISS, D.

2005-05-16T23:59:59.000Z

200

Application of computational fluid dynamics to aerosol sampling and concentration  

E-Print Network [OSTI]

An understanding of gas-liquid two-phase interactions, aerosol particle deposition, and heat transfer is needed. Computational Fluid Dynamics (CFD) is becoming a powerful tool to predict aerosol behavior for related design work. In this study...

Hu, Shishan

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Aerosol beam-focus laser-induced plasma spectrometer device  

DOE Patents [OSTI]

An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

Cheng, Meng-Dawn (Oak Ridge, TN)

2002-01-01T23:59:59.000Z

202

aerosol particle penetration: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the subsequent aerosol penetration performance through these tubes were conducted for a aerosol particle size range of 5 nm to 20 nm and a flow rate range of 28 Lmin to 169.9...

203

Effects of operating conditions on a heat transfer fluid aerosol  

E-Print Network [OSTI]

of heat transfer fluid aerosols from process leaks. To simulate industrial leaks, aerosol formation from a plain orifice into ambient air is studied by measuring liquid drop sizes and size distributions at various distances from an orifice. Measurements...

Sukmarg, Passaporn

2000-01-01T23:59:59.000Z

204

Indoor Secondary Pollutants from Household Product Emissions inthe Presence of Ozone: A Bench-Scale Chamber Study  

SciTech Connect (OSTI)

Ozone-driven chemistry is a major source of indoor secondary pollutants of health concern. This study investigates secondary air pollutants formed from reactions between constituents of household products and ozone. Gas-phase product emissions were introduced along with ozone at constant rates into a 198-L Teflon-lined reaction chamber. Gas-phase concentrations of reactive terpenoids and oxidation products were measured. Formaldehyde was a predominant oxidation byproduct for the three studied products, with yields under most conditions of 20-30% with respect to ozone consumed. Acetaldehyde, acetone, glycolaldehyde, formic acid and acetic acid were each also detected for two or three of the products. Immediately upon mixing of reactants, a scanning mobility particle sizer detected particle nucleation events that were followed by a significant degree of ultrafine particle growth. The production of secondary gaseous pollutants and particles depended primarily on the ozone level and was influenced by other parameters such as the air-exchange rate. Hydroxyl radical concentrations in the range 0.04-200 x 10{sup 5} molecules cm{sup -3} were measured. OH concentrations were observed to vary strongly with residual ozone level in the chamber, which was in the range 1-25 ppb, as is consistent with expectations from a simplified kinetic model. In a separate test, we exposed the dry residue of two products to ozone in the chamber and observed the formation of gas-phase and particle-phase secondary oxidation products.

Destaillats, Hugo; Lunden, Melissa M.; Singer, Brett C.; Coleman,Beverly K.; Hodgson, Alfred T.; Weschler, Charles J.; Nazaroff, William W.

2005-10-01T23:59:59.000Z

205

Project of Aerosol Optical Depth Change in South America  

E-Print Network [OSTI]

AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Suriname Guyana Venezuela Colombia Ecuador Peru Chile Argentina Paraguay Uruguay #12;Statistics of Aerosol M ean D ec 01 to 06 Mean Month AerosolDepth Brazil Bolivia French Guiana Suriname Guyana Venezuela

Frank, Thomas D.

206

Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols  

E-Print Network [OSTI]

aerosols can potentially result in an increase in acid deposition. [4] Acid rain has been studiedSulfuric acid deposition from stratospheric geoengineering with sulfate aerosols Ben Kravitz,1 Alan limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2

Robock, Alan

207

Organic and Inorganic Aerosol Below-Cloud Scavenging by  

E-Print Network [OSTI]

concentrations, with an average gravimetric PM1.0 of 8.2 ( 1.6 µg m-3 and an average Fourier transform infrared-rinsing behavior was unaffected by source type. The aerosol OM was hydrophilic throughout the sampling period the description of aerosol lifetimes in global models. Introduction Wet and dry deposition of aerosol particles

Russell, Lynn

208

Phase transformation and growth of hygroscopic aerosols  

SciTech Connect (OSTI)

Ambient aerosols play an important role in many atmospheric processes affecting air quality, visibility degradation, and climatic changes as well. Both natural and anthropogenic sources contribute to the formation of ambient aerosols, which are composed mostly of sulfates, nitrates, and chlorides in either pure or mixed forms. These inorganic salt aerosols are hygroscopic by nature and exhibit the properties of deliquescence and efflorescence in humid air. For pure inorganic salt particles with diameter larger than 0.1 micron, the phase transformation from a solid particle to a saline droplet occurs only when the relative humidity in the surrounding atmosphere reaches a certain critical level corresponding to the water activity of the saturated solution. The droplet size or mass in equilibrium with relative humidity can be calculated in a straightforward manner from thermodynamic considerations. For aqueous droplets 0.1 micron or smaller, the surface curvature effect on vapor pressure becomes important and the Kelvin equation must be used.

Tang, I.N.

1999-11-01T23:59:59.000Z

209

Characterizing the formation of secondary organic aerosols  

SciTech Connect (OSTI)

Organic aerosol is an important fraction of the fine particulate matter present in the atmosphere. This organic aerosol comes from a variety of sources; primary organic aerosol emitted directly from combustion process, and secondary aerosol formed in the atmosphere from condensable vapors. This secondary organic aerosol (SOA) can result from both anthropogenic and biogenic sources. In rural areas of the United States, organic aerosols can be a significant part of the aerosol load in the atmosphere. However, the extent to which gas-phase biogenic emissions contribute to this organic load is poorly understood. Such an understanding is crucial to properly apportion the effect of anthropogenic emissions in these rural areas that are sometimes dominated by biogenic sources. To help gain insight on the effect of biogenic emissions on particle concentrations in rural areas, we have been conducting a field measurement program at the University of California Blodgett Forest Research Facility. The field location includes has been used to acquire an extensive suite of measurements resulting in a rich data set, containing a combination of aerosol, organic, and nitrogenous species concentration and meteorological data with a long time record. The field location was established in 1997 by Allen Goldstein, a professor in the Department of Environmental Science, Policy and Management at the University of California at Berkeley to study interactions between the biosphere and the atmosphere. The Goldstein group focuses on measurements of concentrations and whole ecosystem biosphere-atmosphere fluxes for volatile organic compounds (VOC's), oxygenated volatile organic compounds (OVOC's), ozone, carbon dioxide, water vapor, and energy. Another important collaborator at the Blodgett field location is Ronald Cohen, a professor in the Chemistry Department at the University of California at Berkeley. At the Blodgett field location, his group his group performs measurements of the concentrations of important gas phase nitrogen compounds. Experiments have been ongoing at the Blodgett field site since the fall of 2000, and have included portions of the summer and fall of 2001, 2002, and 2003. Analysis of both the gas and particle phase data from the year 2000 show that the particle loading at the site correlates with both biogenic precursors emitted in the forest and anthropogenic precursors advected to the site from Sacramento and the Central Valley of California. Thus the particles at the site are affected by biogenic processing of anthropogenic emissions. Size distribution measurements show that the aerosol at the site has a geometric median diameter of approximately 100 nm. On many days, in the early afternoon, growth of nuclei mode particles (<20 nm) is also observed. These growth events tend to occur on days with lower average temperatures, but are observed throughout the summer. Analysis of the size resolved data for these growth events, combined with typical measured terpene emissions, show that the particle mass measured in these nuclei mode particles could come from oxidation products of biogenic emissions, and can serve as a significant route for SOA partitioning into the particle phase. During periods of each year, the effect of emissions for forest fires can be detected at the Blodgett field location. During the summer of 2002 emissions from the Biscuit fire, a large fire located in Southwest Oregon, was detected in the aerosol data. The results show that increases in particle scattering can be directly related to increased black carbon concentration and an appearance of a larger mode in the aerosol size distribution. These results show that emissions from fires can have significant impact on visibility over large distances. The results also reinforce the view that forest fires can be a significant source of black carbon in the atmosphere, which has important climate and visibility. Continuing work with the 2002 data set, particularly the combination of the aerosol and gas phase data, will continue to provide important information o

Lunden, Melissa; Black, Douglas; Brown, Nancy

2004-02-01T23:59:59.000Z

210

Dark matter limits froma 15 kg windowless bubble chamber  

SciTech Connect (OSTI)

The COUPP collaboration has successfully used bubble chambers, a technology previously applied only to high-energy physics experiments, as direct dark matter detectors. It has produced the world's most stringent spin-dependent WIMP limits, and increasingly competitive spin-independent limits. These limits were achieved by capitalizing on an intrinsic rejection of the gamma background that all other direct detection experiments must address through high-density shielding and empirically-determined data cuts. The history of COUPP, including its earliest prototypes and latest results, is briefly discussed in this thesis. The feasibility of a new, windowless bubble chamber concept simpler and more inexpensive in design is discussed here as well. The dark matter limits achieved with a 15 kg windowless chamber, larger than any previous COUPP chamber (2 kg, 4 kg), are presented. Evidence of the greater radiopurity of synthetic quartz compared to natural is presented using the data from this 15 kg device, the first chamber to be made from synthetic quartz. The effective reconstruction of the three-dimensional positions of bubbles in a highly distorted optical field, with ninety-degree bottom lighting similar to cloud chamber lighting, is demonstrated. Another innovation described in this thesis is the use of the sound produced by bubbles recorded by an array of piezoelectric sensors as the primary means of bubble detection. In other COUPP chambers, cameras have been used as the primary trigger. Previous work on bubble acoustic signature differentiation using piezos is built upon in order to further demonstrate the ability to discriminate between alpha- and neutron-induced events.

Szydagis, Matthew Mark; /Chicago U.

2010-12-01T23:59:59.000Z

211

Preliminary investigation of the role that DMS (dimethyl sulfide) and cloud cycles play in the formation of the aerosol size distribution. Interim report  

SciTech Connect (OSTI)

A series of experiments designed to study the production of new particulate matter by photolysis of dimethyl sulfide (DMS) and the effect that nonprecipitating clouds have on the aerosol size distributions were carried out in Calspan Corporation's 600 cum environmental chamber during January and February 1986. The results show that DMS, the most-abundant natural source of sulfur, is photooxidized to some product of low volatility that can form new particles by homogeneous nucleation or condense on existing aerosols causing them to grow. To explain these observations, a theoretical study of the nucleation properties of methane sulfonic acid (MSA) was undertaken. The nucleation thresholds, calculated using thermodynamic data for MSA, show that at 70% RH, and MSA concentration of only 0.006 ppb will result in a supersaturated environment in which MSA will condense on preexisting particles larger than 0.02-micron radius. If the MSA concentrations increase to 30 ppb, then spontaneous formation of MSA solution droplets occurs by homogeneous binary nucleation. Simulations of the evolution of the size distribution observed for the DMS irradiation experiments with a dynamic aerosol model that includes the effects of coagulation, growth by condensation, and deposition to the walls of the chamber, yield results that are in excellent agreement with the observed evolution.

Hoppel, W.A.; Fitzgerald, J.W.; Frick, G.M.; Larson, R.E.; Wattle, B.J.

1987-07-29T23:59:59.000Z

212

Aerodynamic Focusing Of High-Density Aerosols  

SciTech Connect (OSTI)

High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

Ruiz, D. E.; Fisch, Nathaniel

2014-02-24T23:59:59.000Z

213

High pressure argon ionization chamber systems for the measurement of environmental radiation exposure rates  

E-Print Network [OSTI]

High pressure argon ionization chamber systems for the measurement of environmental radiation exposure rates

DeCampo, J A; Raft, P D

1972-01-01T23:59:59.000Z

214

A Computational Approach to Understanding Aerosol Formation and Oxidant Chemistry in the Troposphere  

SciTech Connect (OSTI)

An understanding of the mechanisms and kinetics of aerosol formation and ozone production in the troposphere is currently a high priority because these phenomena are recognized as two major effects of energy-related air pollution. Atmospheric aerosols are of concern because of their effect on visibility, climate, and human health. Equally important, aerosols can change the chemistry of the atmosphere, in dramatic fashion, by providing new chemical pathways (in the condensed phase) unavailable in the gas phase. The oxidation of volatile organic compounds (VOCs) and inorganic compounds (e.g., sulfuric acid, ammonia, nitric acid, ions, and mineral) can produce precursor molecules that act as nucleation seeds. The U.S. Department of Energy (DOE) Atmospheric Chemistry Program (ACP) has identified the need to evaluate the causes of variations in tropospheric aerosol chemical composition and concentrations, including determining the sources of aerosol particles and the fraction of such that are of primary and secondary origin. In particular, the ACP has called for a deeper understanding into aerosol formation because nucleation creates substantial concentrations of fresh particles that, via growth and coagulation, influence the Earth's radiation budget. Tropospheric ozone is also of concern primarily because of its impact on human health. Ozone levels are controlled by NOx and by VOCs in the lower troposphere. The VOCs can be either from natural emissions from such sources as vegetation and phytoplankton or from anthropogenic sources such as automobiles and oil-fueled power production plants. The major oxidant for VOCs in the atmosphere is the OH radical. With the increase in VOC emissions, there is rising concern regarding the available abundance of HOx species needed to initiate oxidation. Over the last five years, there have been four field studies aimed at initial measurements of HOx species (OH and HO? radicals). These measurements revealed HOx levels that are two to four times higher than expected from the commonly assumed primary sources. Such elevated abundances of HOx imply a more photochemically active troposphere than previously thought. This implies that rates of ozone formation in the lower region of the atmosphere and the oxidation of SO? can be enhanced, thus promoting the formation of new aerosol properties. Central to unraveling this chemistry is the ability to assess the photochemical product distributions resulting from the photodissociation of by-products of VOC oxidation. We propose to use state-of-the-art theoretical techniques to develop a detailed understanding of the mechanisms of aerosol formation in multicomponent (mixed chemical) systems and the photochemistry of atmospheric organic species. The aerosol studies involve an approach that determines homogeneous gas-particle nucleation rates from knowledge of the molecular interactions that are used to define properties of molecular clusters. Over the past several years we developed Dynamical Nucleation Theory (DNT), a novel advance in the theoretical description of homogeneous gas-liquid nucleation, and applied it to gas-liquid nucleation of a single component system (e.g., water). The goal of the present research is to build upon these advances by extending the theory to multicomponent systems important in the atmosphere (such as clusters containing sulfuric acid, water, ions, ammonia, and organics). In addition, high-level ab initio electronic structure calculations will be used to unravel the chemical reactivity of the OH radical and water clusters.

Francisco, Joseph S.; Kathmann, Shawn M.; Schenter, Gregory K.; Dang, Liem X.; Xantheas, Sotiris S.; Garrett, Bruce C.; Du, Shiyu; Dixon, David A.; Bianco, Roberto; Wang, Shuzhi; Hynes, James T.; Morita, Akihiro; Peterson, Kirk A.

2006-04-18T23:59:59.000Z

215

Near real time vapor detection and enhancement using aerosol adsorption  

SciTech Connect (OSTI)

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J.; Johnson, Stanley A.

1997-12-01T23:59:59.000Z

216

Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing  

SciTech Connect (OSTI)

Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

Ghan, Steven J.

2013-10-09T23:59:59.000Z

217

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

Novick, V.J.; Johnson, S.A.

1999-08-03T23:59:59.000Z

218

Near real time vapor detection and enhancement using aerosol adsorption  

DOE Patents [OSTI]

A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

Novick, Vincent J. (Downers Grove, IL); Johnson, Stanley A. (Countryside, IL)

1999-01-01T23:59:59.000Z

219

Initial Back-to-Back Fission Chamber Testing in ATRC  

SciTech Connect (OSTI)

Development and testing of in-pile, real-time neutron sensors for use in Materials Test Reactor experiments is an ongoing project at Idaho National Laboratory. The Advanced Test Reactor National Scientific User Facility has sponsored a series of projects to evaluate neutron detector options in the Advanced Test Reactor Critical Facility (ATRC). Special hardware was designed and fabricated to enable testing of the detectors in the ATRC. Initial testing of Self-Powered Neutron Detectors and miniature fission chambers produced promising results. Follow-on testing required more experiment hardware to be developed. The follow-on testing used a Back-to-Back fission chamber with the intent to provide calibration data, and a means of measuring spectral indices. As indicated within this document, this is the first time in decades that BTB fission chambers have been used in INL facilities. Results from these fission chamber measurements provide a baseline reference for future measurements with Back-to-Back fission chambers.

Benjamin Chase; Troy Unruh; Joy Rempe

2014-06-01T23:59:59.000Z

220

Method to calibrate fission chambers in Campbelling mode  

SciTech Connect (OSTI)

Fission chambers are neutron detectors which are widely used to instrument experimental reactors such as material testing reactors or zero power reactors. In the presence of a high level mixed gamma and neutron flux, fission chambers can be operated in Campbelling mode (also known as 'fluctuation mode' or 'mean square voltage mode') to provide reliable and precise neutron related measurements. Fission chamber calibration in Campbelling mode (in terms of neutron flux) is usually done empirically using a calibrated reference detector. A major drawback of this method is that calibration measurements have to be performed in a neutron environment very similar to the one in which the calibrated detector will be used afterwards. What we propose here is a different approach based on characterizing the fission chamber response in terms of fission rate. This way, the detector calibration coefficient is independent from the neutron spectrum and can be determined prior to the experiment. The fissile deposit response to the neutron spectrum can then be assessed independently by other means (experimental or numerical). In this paper, the response of CEA made miniature fission chambers in Campbelling mode is studied. We use a theoretical model of the signal to calculate the calibration coefficient. Input parameters of the model come from statistical distribution of individual pulses. Supporting measurements have been made in the CEA Cadarache zero power reactor MINERVE. Results are compared to an empirical Campbelling mode calibration.

Benoit Geslot; Troy C. Unruh; Philippe Filliatre; Christian Jammes; Jacques Di Salvo; Stéphane Bréaud; Jean-François Villard

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Aerosol Science and Technology, 41:202216, 2007 Copyright c American Association for Aerosol Research  

E-Print Network [OSTI]

processes, such as con- densation, coagulation, gas-to-particle conversion (Reid et al. 1998), and particle Aerosol size distribution is, along with particle refractive in- dex and shape, one of important

222

Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry  

E-Print Network [OSTI]

In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, ...

Kroll, Jesse

223

Two Hundred Fifty Years of Aerosols and Climate: The End of the Age of Aerosols  

SciTech Connect (OSTI)

Carbonaceous and sulfur aerosols have a substantial global and regional influence on climate in addition to their impact on health and ecosystems. The magnitude of this influence has changed substantially over the past and is expected to continue to change into the future. An integrated picture of the changing climatic influence of black carbon, organic carbon and sulfate over the period 1850 through 2100, focusing on uncertainty, is presented using updated historical inventories and a coordinated set of emission projections. While aerosols have had a substantial impact on climate over the past century, by the end of the 21st century aerosols will likely be only a minor contributor to radiative forcing due to increases in greenhouse gas forcing and a global decrease in pollutant emissions. This outcome is even more certain under a successful implementation of a policy to limit greenhouse gas emissions as low-carbon energy technologies that do not emit appreciable aerosol or SO2 are deployed.

Smith, Steven J.; Bond, Tami C.

2014-01-20T23:59:59.000Z

224

Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant  

SciTech Connect (OSTI)

The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated spray releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not accurately represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate of droplets suspended in a test chamber and droplet size distribution from a range of prototypic sprays. A novel test method was developed to allow measurement of sprays from small to very large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the aerosol generation rate increases with increasing the orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 ?m and increases the release fraction below this droplet size.

Gauglitz, Phillip A.; Mahoney, Lenna A.; Schonewill, Philip P.; Bontha, Jagannadha R.; Blanchard, Jeremy; Kurath, Dean E.; Daniel, Richard C.; Song, Chen

2013-03-05T23:59:59.000Z

225

Extreme-UV lithography vacuum chamber zone seal  

DOE Patents [OSTI]

Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

Haney, Steven J. (Tracy, CA); Herron, Donald Joe (Manteca, CA); Klebanoff, Leonard E. (San Ramon, CA); Replogle, William C. (Livermore, CA)

2001-01-01T23:59:59.000Z

226

Extreme-UV lithography vacuum chamber zone seal  

DOE Patents [OSTI]

Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

Haney, Steven J. (Tracy, CA); Herron, Donald Joe (Manteca, CA); Klebanoff, Leonard E. (San Ramon, CA); Replogle, William C. (Livermore, CA)

2003-04-08T23:59:59.000Z

227

Extreme-UV lithography vacuum chamber zone seal  

DOE Patents [OSTI]

Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

Haney, Steven J. (Tracy, CA); Herron, Donald Joe (Manteca, CA); Klebanoff, Leonard E. (San Ramon, CA); Replogle, William C. (Livermore, CA)

2003-04-15T23:59:59.000Z

228

Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine  

SciTech Connect (OSTI)

The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. The present work focuses on the pure fusion option. A key component of a LIFE engine is the fusion chamber subsystem. It must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated design that meets all of these requirements is described herein.

Latkowski, J F; Abbott, R P; Aceves, S; Anklam, T; Badders, D; Cook, A W; DeMuth, J; Divol, L; El-Dasher, B; Farmer, J C; Flowers, D; Fratoni, M; ONeil, R G; Heltemes, T; Kane, J; Kramer, K J; Kramer, R; Lafuente, A; Loosmore, G A; Morris, K R; Moses, G A; Olson, B; Pantano, C; Reyes, S; Rhodes, M; Roe, K; Sawicki, R; Scott, H; Spaeth, M; Tabak, M; Wilks, S

2010-11-30T23:59:59.000Z

229

The Aerosol Modeling Testbed: A community tool to objectively evaluate aerosol process modules  

SciTech Connect (OSTI)

This study describes a new modeling paradigm that significantly advances how the third activity is conducted while also fully exploiting data and findings from the first two activities. The Aerosol Modeling Testbed (AMT) is a computational framework for the atmospheric sciences community that streamlines the process of testing and evaluating aerosol process modules over a wide range of spatial and temporal scales. The AMT consists of a fully-coupled meteorology-chemistry-aerosol model, and a suite of tools to evaluate the performance of aerosol process modules via comparison with a wide range of field measurements. The philosophy of the AMT is to systematically and objectively evaluate aerosol process modules over local to regional spatial scales that are compatible with most field campaigns measurement strategies. The performance of new treatments can then be quantified and compared to existing treatments before they are incorporated into regional and global climate models. Since the AMT is a community tool, it also provides a means of enhancing collaboration and coordination among aerosol modelers.

Fast, Jerome D.; Gustafson, William I.; Chapman, Elaine G.; Easter, Richard C.; Rishel, Jeremy P.; Zaveri, Rahul A.; Grell, Georg; Barth, Mary

2011-03-02T23:59:59.000Z

230

Calibration of the On-Line Aerosol Monitor (OLAM) with ammonium chloride and sodium chloride aerosols  

SciTech Connect (OSTI)

The On-Line Aerosol Monitor (OLAM) is a light attenuation device designed and built at the Idaho National Engineering Laboratory (INEL) by EG&G Idaho. Its purpose is to provide an on-line indication of aerosol concentration in the PHEBUS-FP tests. It does this by measuring the attenuation of a light beam across a tube through which an aerosol is flowing. The OLAM does not inherently give an absolute response and must be calibrated. A calibration has been performed at Sandia National Laboratories` (SNL) Sandia Aerosol Research Laboratory (SARL) and the results are described here. Ammonium chloride and sodium chloride calibration aerosols are used for the calibration and the data for the sodium chloride aerosol is well described by a model presented in this report. Detectable instrument response is seen over a range of 0.1 cm{sup 3} of particulate material per m{sup 3} of gas to 10 cm{sup 3} of particulate material per m{sup 3} of gas.

Brockmann, J.E.; Lucero, D.A.; Romero, T. [Sandia National Labs., Albuquerque, NM (United States); Pentecost, G. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1993-12-01T23:59:59.000Z

231

A new aerosol collector for quasi on-line analysis of particulate organic matter: the Aerosol Collection Module (ACM) and first applications with a GC/MS-FID  

E-Print Network [OSTI]

In many environments organic matter significantly contributes to the composition of atmospheric aerosol particles influencing its properties. Detailed chemical characterization of ambient aerosols is critical in order to ...

Hohaus, T.

232

Uncertainties and Frontiers in Aerosol Research  

E-Print Network [OSTI]

;Transport Power Industry Biomass burning Residential Human activity Perspective Aerosol Sources (rather than, Mixing, Chemistry, Climate) Climate Effects Resource: AeroCom, an international model intercomparison of fossil fuel (coal, oil, diesel, gasoline), domestic wood burning, forest fires #12;Natural sources

233

Aerosol Spray Synthesis of Porous Molybdenum Sulfide  

E-Print Network [OSTI]

, and colloidal silica, SiO2, was ultrasonically nebulized using a household humidifier; the resulting aerosol in materials science because of their ability to be scaled-up for industrial applications.[2] USP solution, as indicated by Eq. 2. Typically, micron-sized particles are obtained; however, by adding

Suslick, Kenneth S.

234

3, 59195976, 2003 The nitrate aerosol  

E-Print Network [OSTI]

ACPD 3, 5919­5976, 2003 The nitrate aerosol field over Europe M. Schaap et al. Title Page Abstract of Utrecht, Institute of Marine and Atmospheric Science, PO Box 80005, 3508 TA, Utrecht, The Netherlands 2, The Netherlands 3 Netherlands Energy Research Foundation (ECN), PO Box 1, 1755 LE Petten, The Netherlands 4 Joint

Paris-Sud XI, Université de

235

Source Apportionment of Carbonaceous Aerosols using  

E-Print Network [OSTI]

are different than the collection of particles from water Filtration has high efficiency for all sizes Size Condensation Nuclei (CCN) Human health Carbonaceous aerosol implicated as important for toxicity and adverse of particulate matter Again, agreement between these two approaches would give a high level of confidence

Einat, Aharonov

236

Multidimensional simulation and chemical kinetics development...  

Broader source: Energy.gov (indexed) [DOE]

processes. deer09aceves.pdf More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels Simulation of High...

237

Chamber and target technology development for inertial fusion energy  

SciTech Connect (OSTI)

Fusion chambers and high pulse-rate target systems for inertial fusion energy (IFE) must: regenerate chamber conditions suitable for target injection, laser propagation, and ignition at rates of 5 to 10 Hz; extract fusion energy at temperatures high enough for efficient conversion to electricity; breed tritium and fuel targets with minimum tritium inventory; manufacture targets at low cost; inject those targets with sufficient accuracy for high energy gain; assure adequate lifetime of the chamber and beam interface (final optics); minimize radioactive waste levels and annual volumes; and minimize radiation releases under normal operating and accident conditions. The primary goal of the US IFE program over the next four years (Phase I) is to develop the basis for a Proof-of-Performance-level driver and target chamber called the Integrated Research Experiment (IRE). The IRE will explore beam transport and focusing through prototypical chamber environment and will intercept surrogate targets at high pulse rep-rate. The IRE will not have enough driver energy to ignite targets, and it will be a non-nuclear facility. IRE options are being developed for both heavy ion and laser driven IFE. Fig. 1 shows that Phase I is prerequisite to an IRE, and the IRE plus NIF (Phase II) is prerequisite to a high-pulse rate. Engineering Test Facility and DEMO for IFE, leading to an attractive fusion power plant. This report deals with the Phase-I R&D needs for the chamber, driver/chamber interface (i.e., magnets for accelerators and optics for lasers), target fabrication, and target injection; it is meant to be part of a more comprehensive IFE development plan which will include driver technology and target design R&D. Because of limited R&D funds, especially in Phase I, it is not possible to address the critical issues for all possible chamber and target technology options for heavy ion or laser fusion. On the other hand, there is risk in addressing only one approach to each technology option. Therefore, in the following description of these specific feasibility issues, we try to strike a balance between narrowing the range of recommended R&D options to minimize cost, and keeping enough R&D options to minimize risk.

Abdou, M; Besenbruch, G; Duke, J; Forman, L; Goodin, D; Gulec, K; Hoffer, J; Khater, H; Kulcinsky, G; Latkowski, J F; Logan, B G; Margevicious, B; Meier, W R; Moir, R W; Morley, N; Nobile, A; Payne, S; Peterson, P F; Peterson, R; Petzoldt, R; Schultz, K; Steckle, W; Sviatoslavsky, L; Tillack, M; Ying, A

1999-04-07T23:59:59.000Z

238

Secondary organic aerosol from ozone-initiated reactions with terpene-rich household products  

SciTech Connect (OSTI)

We analyzed secondary organic aerosol (SOA) data from a series of small-chamber experiments in which terpene-rich vapors from household products were combined with ozone under conditions analogous to product use indoors. Reagents were introduced into a continuously ventilated 198 L chamber at steady rates. Consistently, at the time of ozone introduction, nucleation occurred exhibiting behavior similar to atmospheric events. The initial nucleation burst and growth was followed by a period in which approximately stable particle levels were established reflecting a balance between new particle formation, condensational growth, and removal by ventilation. Airborne particles were measured with a scanning mobility particle sizer (SMPS, 10 to 400 nm) in every experiment and with an optical particle counter (OPC, 0.1 to 2.0 ?m) in a subset. Parameters for a three-mode lognormal fit to the size distribution at steady state were determined for each experiment. Increasing the supply ozone level increased the steady-state mass concentration and yield of SOA from each product tested. Decreasing the air-exchange rate increased the yield. The steady-state fine-particle mass concentration (PM1.1) ranged from 10 to> 300 mu g m-3 and yields ranged from 5percent to 37percent. Steady-state nucleation rates and SOA mass formation rates were on the order of 10 cm-3 s-1 and 10 mu g m-3 min-1, respectively.

Coleman, Beverly; Coleman, Beverly K.; Lunden, Melissa M.; Destaillats, Hugo; Nazaroff, William W.

2008-01-01T23:59:59.000Z

239

Direct and semidirect aerosol effects of Southern African biomass burning aerosol  

SciTech Connect (OSTI)

The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the importance of semi-direct radiative effects and precipitation responses for determining the climatic effects of aerosols in the African region.

Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

2011-06-21T23:59:59.000Z

240

Reciprocal Relations Between Kinetic Curves  

E-Print Network [OSTI]

We study coupled irreversible processes. For linear or linearized kinetics with microreversibility, $\\dot{x}=Kx$, the kinetic operator $K$ is symmetric in the entropic inner product. This form of Onsager's reciprocal relations implies that the shift in time, $\\exp (Kt)$, is also a symmetric operator. This generates reciprocity relations between kinetic curves. For example, for the Master equation, if we start the process from the $i$th pure state and measure the probability $p_j(t)$ of the $j$th state ($j\

Yablonsky, G S; Constales, D; Galvita, V; Marin, G B

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Chemical Looping Combustion Kinetics  

SciTech Connect (OSTI)

One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

Edward Eyring; Gabor Konya

2009-03-31T23:59:59.000Z

242

Chemical Sinks of Organic Aerosol: Kinetics and Products of the Heterogeneous Oxidation of Erythritol and Levoglucosan  

E-Print Network [OSTI]

The heterogeneous oxidation of pure erythritol (C[subscript 4]H[subscript 10]O[subscript 4]) and levoglucosan (C[subscript 6]H[subscript 10]O[subscript 5]) particles was studied in order to evaluate the effects of atmospheric ...

Kessler, Sean Herbert

243

Cycles in the chamber homology of GL(3).  

E-Print Network [OSTI]

Let F be a nonarchimedean local field and let GL(N) = GL(N,F). We prove the existence of parahoric types for GL(N). We construct representative cycles in all the homology classes of the chamber homology of GL(3).

Anne-Marie Aubert; Samir Hasan; Roger Plymen

244

www.ornl.gov Environmental Chambers at ORNL  

E-Print Network [OSTI]

-air HVAC system, heat pump water heaters, a dehumidifying water heater, solid-state lighting, hybrid solar-by-side chambers can test gas heat pumps, electric heat pumps and air conditioners, gas/electric packaged units, desiccant systems, and small distributed generation/combined heat and power (CHP) systems with capacities

Oak Ridge National Laboratory

245

Thermodynamic Analysis of a single chamber Microbial Eric A. Zielke  

E-Print Network [OSTI]

Thermodynamic Analysis of a single chamber Microbial Fuel Cell Eric A. Zielke May 5, 2006 #12;Microbial Fuel Cell Zielke ii List of Tables 1 First Law Thermodynamic Efficiencies from Experimental Data . . . . . . . 9 #12;Microbial Fuel Cell Zielke iii List of Figures 1 Representation of Anaerobic (anode portion

246

Modeling chamber transport for heavy-ion fusion  

SciTech Connect (OSTI)

In a typical thick-liquid-wall scenario for heavy-ion fusion (HIF), between seventy and two hundred high-current beams enter the target chamber through ports and propagate about three meters to the target. Since molten-salt jets are planned to protect the chamber wall, the beams move through vapor from the jets, and collisions between beam ions and this background gas both strip the ions and ionize the gas molecules. Radiation from the preheated target causes further beam stripping and gas ionization. Due to this stripping, beams for heavy-ion fusion are expected to require substantial neutralization in a target chamber. Much recent research has, therefore, focused on beam neutralization by electron sources that were neglected in earlier simulations, including emission from walls and the target, photoionization by the target radiation, and pre-neutralization by a plasma generated along the beam path. When these effects are included in simulations with practicable beam and chamber parameters, the resulting focal spot is approximately the size required by a distributed radiator target.

Sharp, W.M.; Callahan, D.A.; Tabak, M.; Yu, S.S.; Peterson, P.F.; Welch, D.R.; Rose, D.V.; Olson, C.L.

2002-10-01T23:59:59.000Z

247

Harvesting Energy from Wastewater in a 2-Chamber  

E-Print Network [OSTI]

Harvesting Energy from Wastewater in a 2-Chamber Microbial Fuel Cell Sikandar Present day wastewater treatment plants utilize high amounts of energy and are costly to operate. These conventional wastewater treatment plants utilize aerobic bacteria. Organic material in wastewater contains energy that can

248

LASER FUSION CHAMBER DESIGN James P. Blanchard1  

E-Print Network [OSTI]

the energy emitted by the target in such a way that the plant can achieve a commercially viable power approaches required for commercially viable laser fusion power plants, the issues driving those designs define the chamber size by providing flux limits for the various threats. In cases where a dry

Raffray, A. René

249

High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler  

SciTech Connect (OSTI)

This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

2010-10-01T23:59:59.000Z

250

Kinetic models of opinion formation  

E-Print Network [OSTI]

We introduce and discuss certain kinetic models of (continuous) opinion formation involving both exchange of opinion between individual agents and diffusion of information. We show conditions which ensure that the kinetic model reaches non trivial stationary states in case of lack of diffusion in correspondence of some opinion point. Analytical results are then obtained by considering a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution of opinion among individuals.

G. Toscani

2006-05-17T23:59:59.000Z

251

Nonlinear effects in kinetic resolutions  

E-Print Network [OSTI]

KTRIC AMPLIFICATION IN THE JACOBSEN HYDROLYTIC KINET RESOLUTION OF RACEMIC EPOXIDES 20 Applicability of Homocompetitive Reaction Kinetics to the Jacobsen HKR Effect of Catalyst EE and Choice of Epoxide on Amplification in the Jacobsen HKR.... . . . . . . . . . . . . . . . . . Effect of Temperature on Amplification and Reaction Rate in the Jacobsen HKR . Effect of Low EE Catalyst Generation on Amplification in the Jacobsen HKR. . . . 21 21 25 26 27 30 31 TABLE OF CONTENTS (Continued) CHAPTER Page V AS...

Johnson, Derrell W.

1999-01-01T23:59:59.000Z

252

Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters  

SciTech Connect (OSTI)

Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

Kravitz, Benjamin S.

2013-02-12T23:59:59.000Z

253

Total aerosol effect: forcing or radiative flux perturbation?  

SciTech Connect (OSTI)

Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

2009-09-25T23:59:59.000Z

254

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III (SAGE III)  

E-Print Network [OSTI]

Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas extinction. We retrieve ozone and nitrogen dioxide number densities and aerosol extinction from transmission), Retrieval of ozone and nitrogen dioxide concentrations from Stratospheric Aerosol and Gas Experiment III

255

Correction to "Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols"  

E-Print Network [OSTI]

Correction to "Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols (2010), Correction to "Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols from stratospheric geoengineering with sulfate aerosols" (Journal of Geophysical Research, 114, D14109

Robock, Alan

256

Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago  

E-Print Network [OSTI]

possible pollutant sources. Keywords Atmospheric aerosols . Canonical correlation analysis . Chicago air pollution studies involve collection and anal- ysis of atmospheric aerosols and concurrent meteorol- ogy) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations

O'Brien, Timothy E.

257

Aerosol Retrievals from ARM SGP MFRSR Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

Alexandrov, Mikhail

258

Stackable differential mobility analyzer for aerosol measurement  

DOE Patents [OSTI]

A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

Cheng, Meng-Dawn (Oak Ridge, TN); Chen, Da-Ren (Creve Coeur, MO)

2007-05-08T23:59:59.000Z

259

ARM - PI Product - Niamey Aerosol Optical Depths  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearchWarmingMethaneProductsCSSEFProductsMerged andAerosol Optical

260

Aerosol Working Group Contributions Accomplishments for 2006  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011 Simulation StudiesAerosol

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

TROPOSPHERIC AEROSOL PROGRAM, PROGRAM PLAN, MARCH 2001  

SciTech Connect (OSTI)

The goal of Tropospheric Aerosol Program (TAP) will be to develop the fundamental scientific understanding required to construct tools for simulating the life cycle of tropospheric aerosols--the processes controlling their mass loading, composition, and microphysical properties, all as a function of time, location, and altitude. The TAP approach to achieving this goal will be by conducting closely linked field, modeling, laboratory, and theoretical studies focused on the processes controlling formation, growth, transport, and deposition of tropospheric aerosols. This understanding will be represented in models suitable for describing these processes on a variety of geographical scales; evaluation of these models will be a key component of TAP field activities. In carrying out these tasks TAP will work closely with other programs in DOE and in other Federal and state agencies, and with the private sector. A forum to directly work with our counterparts in industry to ensure that the results of this research are translated into products that are useful to that community will be provided by NARSTO (formerly the North American Research Strategy on Tropospheric Ozone), a public/private partnership, whose membership spans government, the utilities, industry, and university researchers in Mexico, the US, and Canada.

SCHWARTZ,S.E.; LUNN,P.

2001-03-01T23:59:59.000Z

262

aerosol characteristic researching: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

as they have significant impacts both on localregional air pollution and global climate. Recent for Aerosol and Cloud Chemistry, Aerodyne Research, Incorporated, Billerica,...

263

aerosol challenge model: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

climate change is important because of its strong capability in causing extinction of solar radiation. A three-dimensional interactive aerosol-climate model has been used to...

264

Iron Speciation and Mixing in Single Aerosol Particles from the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iron from atmospheric aerosol is an essential nutrient that can control oceanic productivity, thereby impacting the global carbon budget and climate. Particles collected on...

265

aircraft exhaust aerosol: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Window Location on a King Air 200 Aircraft:aerosol.atmos.und.edu) Objective A Raytheon Beechcraft King Air 200 aircraft has been used to obtain Condensation Particle...

266

aerosol mass spectrometry: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

analysis of aerosol organic nitrates with electron ionization high-resolution mass spectrometry MIT - DSpace Summary: Four hydroxynitrates (R(OH)R'ONO2) representative of...

267

aerosol assisted chemical: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 5 Simulating Aerosols Using a Chemical Transport Model with Assimilation of...

268

ambient fine aerosols: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Chemical characterization of the ambient organic aerosol soluble in water:...

269

aerosol chemical characteristion: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 5 Simulating Aerosols Using a Chemical Transport Model with Assimilation of...

270

aerosol characterization experiment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 8 Desert dust aerosol age characterized by massage tracking of tracers...

271

aerosol generation characterization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 5 Desert dust aerosol age characterized by massage tracking of tracers...

272

aerosol monitor development: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paris May 2003John Matthews Monitoring the Aerosol Phase Function University of New Mexico 12;AstroParticles & Atmosphere, Paris May 2003John Matthews 12;AstroParticles &...

273

aerosol particle charger: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Introduction The Universal Serial Bus (USB) port Allen, Jont 9 New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry...

274

aerosol mass spectrometer: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2004. The concentration of a species Zhang, Qi 8 Development of a thermal desorption chemical ionization mobility mass spectrometer for the speciation of ultrafine aerosols. Open...

275

aerosol particles generated: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique University of California eScholarship Repository Summary: Real-...

276

aerosol monitors including: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical ... Ridley, David Andrew 33...

277

aerosol retrieval validation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

off the coast of Chile and Peru, where aerosol-cloud interactions are important to the energy balance (15), and limitations in current observing and modeling capabilities...

278

aerosol detection equipment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Daniel, Rosenfeld 464 Mixtures of pollution, dust, sea salt, and volcanic aerosol during ACE-Asia: Radiative properties Energy Storage, Conversion and Utilization Websites...

279

Aerosol generation and entrainment model for cough simulations.  

E-Print Network [OSTI]

??The airborne transmission of diseases is of great concern to the public health community. The possible spread of infectious disease by aerosols is of particular… (more)

Ersahin, Cem.

2007-01-01T23:59:59.000Z

280

atmospheric aerosols basic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of atmospheric aerosol. Aplin, KL 2012-01-01 13 1. Introduction The atmospheric greenhouse effect is the basic mechanism Environmental Sciences and Ecology Websites Summary: 1....

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Aerosols, Clouds, and Climate Change Stephen E. Schwartz  

E-Print Network [OSTI]

in atmospheric carbon dioxide associated with fossil fuel combustion. Briefly the options are mitigation work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous

Schwartz, Stephen E.

282

Scale-free Universal Spectrum for Atmospheric Aerosol Size Distribution for Davos, Mauna Loa and Izana  

E-Print Network [OSTI]

Atmospheric flows exhibit fractal fluctuations and inverse power law form for power spectra indicating an eddy continuum structure for the selfsimilar fluctuations. A general systems theory for fractal fluctuations developed by the author is based on the simple visualisation that large eddies form by space-time integration of enclosed turbulent eddies, a concept analogous to Kinetic Theory of Gases in Classical Statistical Physics. The ordered growth of atmospheric eddy continuum is in dynamical equilibrium and is associated with Maximum Entropy Production. The model predicts universal (scale-free) inverse power law form for fractal fluctuations expressed in terms of the golden mean. Atmospheric particulates are held in suspension in the fractal fluctuations of vertical wind velocity. The mass or radius (size) distribution for homogeneous suspended atmospheric particulates is expressed as a universal scale-independent function of the golden mean, the total number concentration and the mean volume radius. Model predicted spectrum is in agreement (within two standard deviations on either side of the mean) with total averaged radius size spectra for the AERONET (aerosol inversions) stations Davos and Mauna Loa for the year 2010 and Izana for the year 2009 daily averages. The general systems theory model for aerosol size distribution is scale free and is derived directly from atmospheric eddy dynamical concepts. At present empirical models such as the log normal distribution with arbitrary constants for the size distribution of atmospheric suspended particulates are used for quantitative estimation of earth-atmosphere radiation budget related to climate warming/cooling trends. The universal aerosol size spectrum will have applications in computations of radiation balance of earth-atmosphere system in climate models.

A. M. Selvam

2014-08-14T23:59:59.000Z

283

E-Print Network 3.0 - administrado como aerosol Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

del ozono estratosfrico, los aerosoles atmosfricos y... a los cambios en las emisiones que los GEI de larga duracin, como el CO2. Los aerosoles antropgenos... ms...

284

E-Print Network 3.0 - aerosol robotic network Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

), AERONET--A federated instrument network and data archive for aerosol characterization, Remote Sens... Period examining aerosol properties and radiative ... Source: Brookhaven...

285

E-Print Network 3.0 - aerosol condensation model Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science Collection: Environmental Sciences and Ecology 8 DETERMINING AEROSOL RADIATIVE FORCING AT ARM SITES Summary: OF AEROSOL DIRECT FORCING By linear model and by...

286

SciTech Connect: Results and code predictions for ABCOVE aerosol...  

Office of Scientific and Technical Information (OSTI)

Results and code predictions for ABCOVE aerosol code validation - Test AB5 Citation Details In-Document Search Title: Results and code predictions for ABCOVE aerosol code...

287

E-Print Network 3.0 - aerosolized polymerized type Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

spheric aerosol particles and isolated from fog... in atmospheric aerosol particles and rainwater in the 1980's (Si- moneit, 1980; Likens and ... Source: Ecole Polytechnique,...

288

E-Print Network 3.0 - aerosol radiative forcing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No. DE- Summary: : WHY MEASUREMENTS ALONE CANNOT QUANTIFY AEROSOL RADIATIVE FORCING OF CLIMATE CHANGE Stephen E. Schwartz... of radiative forcing of climate change by aerosols,...

289

E-Print Network 3.0 - aerosols nanometriques application Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is studying how aerosol particles affect everything from Summary: of aerosol particles on climate change, public health, and renewable energy applications. In particular, he......

290

E-Print Network 3.0 - aerosol main physical Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND INTEGRAL AEROSOL PROPERTIES RETRIEVAL FROM RAMAN LIDAR DATA USING PRINCIPLE COMPONENT ANALYSIS Summary: retrievals of physical aerosol parameters from ground-based and...

291

Aerosol-Cloud-Precipitation Interactions in the Trade Wind Boundary Layer.  

E-Print Network [OSTI]

??This dissertation includes an overview of aerosol, cloud, and precipitation properties associated with shallow marine cumulus clouds observed during the Barbados Aerosol Cloud Experiment (BACEX,… (more)

Jung, Eunsil

2012-01-01T23:59:59.000Z

292

E-Print Network 3.0 - aerosol light absorption Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND Summary: population centers were used to calculate the aerosol forcing due to light scattering and absorption. Directly... , NY www.bnl.gov ABSTRACT Aerosols influence...

293

Large Aerosols Play Unexpected Role in Ganges Valley | U.S. DOE...  

Office of Science (SC) Website

The data have revealed that large aerosols in this region absorb a greater amount of light than expected. The Science Aerosol particles in the atmosphere may absorb solar...

294

E-Print Network 3.0 - aerosol atmospheric interactions Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Climate Summary: order estimates of aerosol-climate interaction But... only Earth System Models can include all... of the interactions (in theory at least) 12;Aerosols <>...

295

E-Print Network 3.0 - atmospheric aerosol size Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for about ten percent of all aerosols in the atmosphere. We... , can actually absorb solar energy and warm the atmosphere. Atmospheric aerosols are very important... by...

296

aerosol source-receptor relationships: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

297

E-Print Network 3.0 - aerosol particle size Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: of aerosol over many orders-of-magnitude of particle size range, from subcritical clusters on the molecular... to modeling aerosol dynamics under conditions of new...

298

E-Print Network 3.0 - aerosol load study Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

conditions... reserved. Keywords: India; Aerosol loading; Aerosol forcing; MODIS; TOMS; Remote sensing 1. Introduction... heating effect on the earth surface and in turn...

299

E-Print Network 3.0 - analysis od aerosol Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tivanski, Rebecca Hopkins, Yury Desyaterik... of Aerosols 12;Aerosol Transport From Mexico City During MILAGRO T0 T1 T2 Mexico ... Source: Brookhaven National Laboratory,...

300

Passivity Based Adaptive Control of a Two Chamber Single Rod Hydraulic Actuator  

E-Print Network [OSTI]

Passivity Based Adaptive Control of a Two Chamber Single Rod Hydraulic Actuator Meng Wang and Perry based backstepping controller using a physical compressibility energy function for a chamber hydraulic produces an accurate trajectory tracking performance. I. INTRODUCTION Electronically controlled hydraulic

Li, Perry Y.

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

SciTech Connect: ON THE ANALYSIS OF BUBBLE CHAMBER TRACKS  

Office of Scientific and Technical Information (OSTI)

THE ANALYSIS OF BUBBLE CHAMBER TRACKS Citation Details In-Document Search Title: ON THE ANALYSIS OF BUBBLE CHAMBER TRACKS Since its invention by Glaser in 1953, the bubble...

302

Chamber for the optical manipulation of microscopic particles  

DOE Patents [OSTI]

A particle control chamber enables experiments to be carried out on biological cells and the like using a laser system to trap and manipulate the particles. A manipulation chamber provides a plurality of inlet and outlet ports for the particles and for fluids used to control or to contact the particles. A central manipulation area is optically accessible by the laser and includes first enlarged volumes for containing a selected number of particles for experimentation. A number of first enlarged volumes are connected by flow channels through second enlarged volumes. The second enlarged volumes act as bubble valves for controlling the interconnections between the first enlarged volumes. Electrode surfaces may be applied above the first enlarged volumes to enable experimentation using the application of electric fields within the first enlarged volumes. A variety of chemical and environmental conditions may be established within individual first enlarged volumes to enable experimental conditions for small scale cellular interactions.

Buican, Tudor N. (Los Alamos, NM); Upham, Bryan D. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

303

Beam Loss Ion Chamber System Upgrade for Experimental Halls  

SciTech Connect (OSTI)

The Beam loss Ion Chamber System (BLICS) was developed to protect Jefferson Labs transport lines, targets and beam dumps from a catastrophic ''burn through''. Range changes and testing was accomplished manually requiring the experiment to be shut down. The new upgraded system is based around an ''off the shelf'' Programmable Logic Controller located in a single control box supporting up to ten individual detectors. All functions that formerly required an entry into the experimental hall and manual adjustment can be accomplished from the Machine Control Center (MCC). A further innovation was the addition of a High Voltage ''Brick'' at the detector location. A single cable supplies the required voltage for the Brick and a return line for the ion chamber signal. The read back screens display range, trip point, and accumulated dose for each location. The new system is very cost effective and significantly reduces the amount of lost experimental time.

D.W. Dotson; D.J. Seidman

2005-05-16T23:59:59.000Z

304

HOM Sensitivity in the PEP-II HER Vacuum Chamber  

SciTech Connect (OSTI)

Synchrotron radiation is the main source of vacuum chamber heating in the PEP-II storage ring collider. This heating is reduced substantially as lattice energy is lowered. Energy scans over {Upsilon} energy states were performed by varying the high energy ring (HER) lattice energy at constant gap voltage and frequency. We observed unexpected temperature rise at particular locations when HER lattice energy was lowered from 8.6 GeV ({Upsilon}(3S)) to 8.0 GeV ({Upsilon}(2S)) while most other temperatures decreased. Bunch length measurements reveal a shorter bunch at the lower energy. The shortened bunch overheated a beam position monitoring electrode causing a vacuum breach. We explain the unexpected heating as a consequence of increased higher order mode (HOM) power generated by a shortened bunch. In this case, temperature rise helps to identify HOM sources and HOM sensitive vacuum chamber elements. Reduction of gap voltage helps to reduce this unexpected heating.

Weathersby, Stephen; Novokhatski, Alexander; Sullivan, Mike; /SLAC

2010-02-10T23:59:59.000Z

305

Combustion of Shock-Dispersed Fuels in a Chamber  

SciTech Connect (OSTI)

In previous studies we have investigated after-burning effects of a fuel-rich explosive (TNT). In that case the detonation only releases about 30 % of the available energy, but generates a hot cloud of fuel that can burn in the ambient air, thus evoking an additional energy release that is distributed in space and time. The current series of small-scale experiments can be looked upon as a natural generalization of this mechanism: a booster charge disperses a (non-explosive) fuel, provides mixing with air and - by means of the hot detonation products - energy to ignite the fuel. The current version of our miniature Shock-Dispersed-Fuel (SDF) charges consists of a spherical booster charge of 0.5 g PETN, embedded in a paper cylinder of approximately 2.2 cm3, which is filled with powdered fuel compositions. The main compositions studied up to now contain aluminum powder, hydrocarbon powders like polyethylene or sucrose and/or carbon particles. These charges were studied in three different chambers of 4-1, 6.6-1 and 40.5-1 volume. In general, the booster charge was sufficient to initiate burning of the fuel. This modifies the pressure signatures measured with a number of wall gages and increases the quasi-static overpressure level obtained in the chambers. On the one hand the time-scale and the yield of the pressure rise depend on the fuel and its characteristics. On the other hand they also depend on the flow dynamics in the chamber, which is dominated by shock reverberations, and thus on the chamber geometry and volume. The paper gives a survey of the experimental results and discusses the possible influences of some basic parameters.

Neuwald, P; Reichenbach, H; Kuhl, A L

2003-04-23T23:59:59.000Z

306

Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements  

SciTech Connect (OSTI)

This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

Dr. Timothy Onasch

2009-09-09T23:59:59.000Z

307

Progress and critical issues for IFE blanket and chamber research  

SciTech Connect (OSTI)

Advances in high gain target designs for Inertial Fusion Energy (IFE), and the initiation of construction of large megajoule-class laser facilities in the U.S. (National Ignition Facility) and France (Laser-Megajoule) capable of testing the requirements for inertial fusion ignition and propagating burn, have improved the prospects for IFE. Accordingly, there have recently been modest increases in the US fusion research program related to the feasibility of IFE. These research areas include heavy-ion accelerators, Krypton-Fluoride (KrF) gas lasers, diode-pumped, solid-state (DPSSL) lasers, IFE target designs for higher gains, feasibility of low cost IFE target fabrication and accurate injection, and long-lasting IFE fusion chambers and final optics. Since several studies of conceptual IFE power plant and driver designs were completed in 1992-1996 [1-5], U.S. research in the IFE blanket, chamber, and target technology areas has focused on the critical issues relating to the feasibility of IFE concepts towards the goal of achieving economically-competitive and environmentally-attractive fusion energy. This paper discusses the critical issues in these areas, and the approaches taken to address these issues. The U.S. research in these areas, called IFE Chamber and Target Technologies, is coordinated through the Virtual Laboratory for Technology (VLT) formed by the Department of Energy in December 1998.

Abdou, M.; Kulcinski, G.L.; Latkowski, J.F.; Logan, B.G.; Meier, W.R.; Moir, R.W.; Nobile, A.; Peterson, P.F.; Petti, D.; Schultz, K.R.; Tillack, M.S.

1999-06-23T23:59:59.000Z

308

Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber  

E-Print Network [OSTI]

with a diode laser beam. This cloud chamber produces distinct plate and hollow column ice crystal types. The cloud chamber developed at the Desert Re- search Institute has been used to produce ice clouds composedLight-scattering properties of plate and column ice crystals generated in a laboratory cold chamber

Liou, K. N.

309

Chemical kinetics and combustion modeling  

SciTech Connect (OSTI)

The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

310

Aerosol radiative forcing and the accuracy of satellite aerosol optical depth retrieval  

E-Print Network [OSTI]

) of the AVHRR (Advanced Very High Resolution Radiometer) is typically between 0.06 and 0.15, while the RMSE between t = 0.1 and t = 0.8. The Department of Energy research satellite instrument, the Multispectral aerosol radiative forcing are known, the predictions of future global warming may remain unacceptably high

311

Variability of Aerosol Optical Properties from Long-term  

E-Print Network [OSTI]

%) controlled measurements: sp ­ Aerosol total light scattering coefficient at 450, 550, and 700 nm wavelengths automated generation and review of quality control plots · Weekly editing of data by station scientist]. Indirect Forcing Direct Forcing Carbon Dioxide Forcing Total Forcing Importance of Aerosols #12;Direct

Delene, David J.

312

Sulfate Aerosol Geoengineering: The Question of Justice Toby Svoboda1,*  

E-Print Network [OSTI]

Sulfate Aerosol Geoengineering: The Question of Justice Toby Svoboda1,* , Klaus Keller2 , Marlos of geoengineering as a means to address global climate change. This paper focuses on the question of whether a particular form of geoengineering, namely deploying sulfate aerosols in the stratosphere to counteract some

313

An overview of geoengineering of climate using stratospheric sulphate aerosols  

E-Print Network [OSTI]

REVIEW An overview of geoengineering of climate using stratospheric sulphate aerosols BY PHILIP J, MD 21218, USA We provide an overview of geoengineering by stratospheric sulphate aerosols. The state after geoengineering, with some regions experiencing significant changes in temperature or precipitation

Robock, Alan

314

aerosol ratio test: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosol ratio test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Effect of mineral dust aerosol...

315

Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill  

E-Print Network [OSTI]

Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill Nicole ONeill - ATOC 3500 and aerosol composition of air over the Deepwater Horizon oil spill in the Gulf of Mexico. · The lightest chemicals in the oil evaporated within hours, as scientists expected them to do. What they didn't expect

Toohey, Darin W.

316

Spatial and Seasonal Trends in Biogenic Secondary Organic Aerosol  

E-Print Network [OSTI]

Spatial and Seasonal Trends in Biogenic Secondary Organic Aerosol Tracers and Water-Soluble Organic biogenic secondary organic aerosol (SOA) tracers via gas chromatography-mass spectrometry (GC natural and anthropogenic sources and is dominated by terrestrial plant foliage (7). The global

Zheng, Mei

317

CLOUD PHYSICS From aerosol-limited to invigoration  

E-Print Network [OSTI]

CLOUD PHYSICS From aerosol-limited to invigoration of warm convective clouds Ilan Koren,1 * Guy Dagan,1 Orit Altaratz1 Among all cloud-aerosol interactions, the invigoration effect is the most elusive. Most of the studies that do suggest this effect link it to deep convective clouds with a warm base

Napp, Nils

318

Deposition of Biological Aerosols on HVAC Heat Exchangers  

E-Print Network [OSTI]

LBNL-47669 Deposition of Biological Aerosols on HVAC Heat Exchangers Jeffrey Siegel and Iain Walker of Biological Aerosols on HVAC Heat Exchangers Jeffrey A. Siegel Iain S. Walker, Ph.D. ASHRAE Student Member that are found in commercial and residential HVAC systems of 1 - 6 m/s (200 - 1200 ft/min), particle diameters

319

Climatology of aerosol optical depth in northcentral Oklahoma: 19922008  

E-Print Network [OSTI]

of aerosol models; for identification of aerosols from spe- cific events (e.g., the Central American fires Radiation Measurement Program central facility near Lamont, Oklahoma, since the fall of 1992. Most dimming; that is, the decrease in solar radiation reaching Earth's surface. Additionally, the wavelength

320

Absorption cross-section 139 Accumulation mode, of aerosol 146  

E-Print Network [OSTI]

133, 151 residence times 153 size distributions 144 Air composition 2 molecular weight 4, 6 Albedo 122 dioxide Coagulation (aerosol) 146 Column model 32 Conditional unstability 56 Continuity equation 75261 INDEX A Absorption cross-section 139 Accumulation mode, of aerosol 146 Acetaldehyde (CH3CHO

Jacob, Daniel J.

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Laboratory Measurements of Sea Salt Aerosol Refractive Index  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Complex Refractive Index . . . . . . . . . . . . . . . . . . . . 6 1.2.4 Size Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.3.5 Coagulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.4 Sea Salt AerosolsLaboratory Measurements of Sea Salt Aerosol Refractive Index Thesis submitted for the degree

Oxford, University of

322

Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol  

E-Print Network [OSTI]

Cloud Condensation Nuclei (CCN) Analysis of Biogenic Secondary Organic Aerosol Rachel L. Atlas1' gas-phase emissions and the aerosols they form (figure 6), including a cloud condensation nuclei Cloud condensation nuclei (CCN) are particles which water vapor condenses onto to form cloud droplets

Collins, Gary S.

323

Design criteria for centripeter aerosol samplers  

E-Print Network [OSTI]

, the model centripeter consists of seven parts: the acceleration nozzle, the collection nozzle, the large parti- cle conveyance tube, the small particle transport chamber, the main hou- sing, the 47 mm diameter large particle collection filter holder... of model centripeter sampler 13 matter was increased. It then flowed into the separation zone which is essentially the gap between the acceleration nozzle discharge plane and the intake of the collection nozzle. The large particles which, due to high...

King, Connie Hazel

1977-01-01T23:59:59.000Z

324

Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry  

SciTech Connect (OSTI)

Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/?m). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

2009-09-09T23:59:59.000Z

325

Dual chamber system providing simultaneous etch and deposition on opposing substrate sides for growing low defect density epitaxial layers  

DOE Patents [OSTI]

A dual-chamber reactor can include a housing enclosing a volume having a divider therein, where the divider defines a first chamber and a second chamber. The divider can include a substrate holder that supports at least one substrate and exposes a first side of the substrate to the first chamber and a second side of the substrate to the second chamber. The first chamber can include an inlet for delivering at least one reagent to the first chamber for forming a film on the first side of the substrate, and the second chamber can include a removal device for removing material from the second side of the substrate.

Kulkarni, Nagraj S. (Knoxville, TN); Kasica, Richard J. (Ashburn, VA) ,

2011-03-08T23:59:59.000Z

326

Method of dispersing particulate aerosol tracer  

DOE Patents [OSTI]

A particulate aerosol tracer which comprises a particulate carrier of sheet silicate composition having a particle size up to one micron, and a cationic dopant chemically absorbed in solid solution in the carrier. The carrier is preferably selected from the group consisting of natural mineral clays such as bentonite, and the dopant is selected from the group consisting of rare earth elements and transition elements. The tracers are dispersed by forming an aqueous salt solution with the dopant present as cations, dispersing the carriers in the solution, and then atomizing the solution under heat sufficient to superheat the solution droplets at a level sufficient to prevent reagglomeration of the carrier particles.

O'Holleran, Thomas P. (Belleville, MI)

1988-01-01T23:59:59.000Z

327

Study of Aerosol Indirect Effects in China  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide Thin Films.AdministrationAerosol Indirect

328

Aerosol Remote Sealing System - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the BuildingInnovation 2011 Simulation StudiesAerosol Remote Sealing

329

Light Absorption by Secondary Organic Aerosol from ?-Pinene: Effects of Oxidants, Seed Aerosol Acidity, and Relative Humidity  

SciTech Connect (OSTI)

It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOA) generated from ozonolysis or NO3 oxidation of ?-pinene in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532 and 870 nm. Light absorption at 355 and 405 nm was observed by SOA generated from oxidation of ?-pinene in the presence of acidic sulfate seed aerosols, under dry conditions. No absorption was observed when the relative humidity was elevated to greater than 27%, or in the presence of neutral sulfate seed aerosols. The light-absorbing compounds are speculated to be aldol condensation oligomers with organosulfate and organic nitrate groups. The results of this study also indicate that organic nitrates from ?-pinene SOA formed in the presence of neutral sulfate seed aerosols do not appear to absorb near-UV and UV radiation.

Song, Chen; Gyawali, Madhu S.; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

2013-10-25T23:59:59.000Z

330

ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Newsom, Rob; Goldsmith, John

331

ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

332

ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

333

ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

334

spectra from size-resolved particle samples col-lected from the Southeastern Aerosol Visibility  

E-Print Network [OSTI]

and acrolein aerosols. We believe that these transformations are due to acid-catalyzed heterogeneous reac

Bishop, James K.B.

335

Assessment of the Upper Particle Size Limit for Quantitative Analysis of Aerosols Using  

E-Print Network [OSTI]

the vaporization dynamics of individual aerosol particles, such as thermophoretic forces and vapor expulsion. Since

Hahn, David W.

336

Modeling the Direct and Indirect Effects of Atmospheric Aerosols on Tropical Cyclones  

E-Print Network [OSTI]

’ are conducted under the three aerosol scenarios: 1) the clean case with an aerosol number concentration of 200 cm-1, 2) the polluted case with a number concentration of 1000 cm-1, and 3) the aerosol radiative effects (AR) case with same aerosol concentration...

Lee, Keun-Hee

2012-02-14T23:59:59.000Z

337

Kinetic Modeling and Thermodynamic Closure Approximation of ...  

E-Print Network [OSTI]

Oct 5, 2007 ... Kinetic Modeling and Thermodynamic Closure. Approximation of Liquid Crystal Polymers. Haijun Yu. Program in Applied and Computational ...

2007-10-03T23:59:59.000Z

338

Long ion chamber systems for the SLC (Stanford Linear Collider)  

SciTech Connect (OSTI)

A Panofsky Long Ion Chamber (PLIC) is essentially a gas-filled coaxial cable, and has been used to protect the Stanford Linear Accelerator from damage caused by its electron beam, and as a sensitive diagnostic tool. This old technology has been updated and has found renewed use in the SLC. PLIC systems have been installed as beam steering aids in most parts of the SLC and are a part of the system that protects the SLC from damage by errant beams in several places. 5 refs., 3 figs., 1 tab.

Rolfe, J.; Gearhart, R.; Jacobsen, R.; Jenkins, T.; McComick, D.; Nelson, R.; Reagan, D.; Ross, M.

1989-03-01T23:59:59.000Z

339

Statistics of the electromagnetic response of a chaotic reverberation chamber  

E-Print Network [OSTI]

This article presents a study of the electromagnetic response of a chaotic reverberation chamber (RC) in the presence of losses. By means of simulations and of experiments, the fluctuations in the maxima of the field obtained in a conventional mode-stirred RC are compared with those in a chaotic RC in the neighborhood of the Lowest Useable Frequency (LUF). The present work illustrates that the universal spectral and spatial statistical properties of chaotic RCs allow to meet more adequately the criteria required by the Standard IEC 61000-4-21 to perform tests of electromagnetic compatibility.

J. -B. Gros; U. Kuhl; O. Legrand; F. Mortessagne; O. Picon; E. Richalot

2014-09-20T23:59:59.000Z

340

14CME Kinetic Energy and Mass Kinetic energy is the energy that a  

E-Print Network [OSTI]

14CME Kinetic Energy and Mass Kinetic energy is the energy that a body has by virtue of its mass the table by determining the value of the missing entries using the formula for Kinetic Energy. Problem 2: What is the minimum and maximum range for the observed kinetic energies for the 10 CMEs? The largest

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CARES Helps Explain Secondary Organic Aerosols  

SciTech Connect (OSTI)

What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

Zaveri, Rahul

2014-03-28T23:59:59.000Z

342

CARES Helps Explain Secondary Organic Aerosols  

ScienceCinema (OSTI)

What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

Zaveri, Rahul

2014-06-02T23:59:59.000Z

343

Hyperspectral Aerosol Optical Depths from TCAP Flights  

SciTech Connect (OSTI)

4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research), the world’s first hyperspectral airborne tracking sunphotometer, acquired aerosol optical depths (AOD) at 1 Hz during all July 2012 flights of the Two Column Aerosol Project (TCAP). Root-mean square differences from AERONET ground-based observations were 0.01 at wavelengths between 500-1020 nm, 0.02 at 380 and 1640 nm and 0.03 at 440 nm in four clear-sky fly-over events, and similar in ground side-by-side comparisons. Changes in the above-aircraft AOD across 3-km-deep spirals were typically consistent with integrals of coincident in situ (on DOE Gulfstream 1 with 4STAR) and lidar (on NASA B200) extinction measurements within 0.01, 0.03, 0.01, 0.02, 0.02, 0.02 at 355, 450, 532, 550, 700, 1064 nm, respectively, despite atmospheric variations and combined measurement uncertainties. Finer vertical differentials of the 4STAR measurements matched the in situ ambient extinction profile within 14% for one homogeneous column. For the AOD observed between 350-1660 nm, excluding strong water vapor and oxygen absorption bands, estimated uncertainties were ~0.01 and dominated by (then) unpredictable throughput changes, up to +/-0.8%, of the fiber optic rotary joint. The favorable intercomparisons herald 4STAR’s spatially-resolved high-frequency hyperspectral products as a reliable tool for climate studies and satellite validation.

Shinozuka, Yohei; Johnson, Roy R.; Flynn, Connor J.; Russell, P. B.; Schmid, Beat; Redemann, Jens; Dunagan, Stephen; Kluzek, Celine D.; Hubbe, John M.; Segal-Rosenheimer, Michal; Livingston, J. M.; Eck, T.; Wagener, Richard; Gregory, L.; Chand, Duli; Berg, Larry K.; Rogers, Ray; Ferrare, R. A.; Hair, John; Hostetler, Chris A.; Burton, S. P.

2013-11-13T23:59:59.000Z

344

Particle size distribution of indoor aerosol sources  

SciTech Connect (OSTI)

As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

Shah, K.B.

1990-10-24T23:59:59.000Z

345

Asthmatic responses to airborne acid aerosols  

SciTech Connect (OSTI)

Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. (California Department of Health Services, Berkeley (USA))

1991-06-01T23:59:59.000Z

346

The Two-Column Aerosol Project (TCAP) Science Plan  

SciTech Connect (OSTI)

The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

2011-07-27T23:59:59.000Z

347

Sensitivity of Remote Aerosol Distributions to Representation of Cloud-Aerosol Interactions in a Global Climate Model  

SciTech Connect (OSTI)

Many global aerosol and climate models, including the widely used Community Atmosphere Model version 5 (CAM5), have large biases in predicting aerosols in remote regions such as upper troposphere and high latitudes. In this study, we conduct CAM5 sensitivity simulations to understand the role of key processes associated with aerosol transformation and wet removal affecting the vertical and horizontal long-range transport of aerosols to the remote regions. Improvements are made to processes that are currently not well represented in CAM5, which are guided by surface and aircraft measurements together with results from a multi-scale aerosol-climate model (PNNL-MMF) that explicitly represents convection and aerosol-cloud interactions at cloud-resolving scales. We pay particular attention to black carbon (BC) due to its importance in the Earth system and the availability of measurements. We introduce into CAM5 a new unified scheme for convective transport and aerosol wet removal with explicit aerosol activation above convective cloud base. This new implementation reduces the excessive BC aloft to better simulate observed BC profiles that show decreasing mixing ratios in the mid- to upper-troposphere. After implementing this new unified convective scheme, we examine wet removal of submicron aerosols that occurs primarily through cloud processes. The wet removal depends strongly on the sub-grid scale liquid cloud fraction and the rate of conversion of liquid water to precipitation. These processes lead to very strong wet removal of BC and other aerosols over mid- to high latitudes during winter months. With our improvements, the Arctic BC burden has a10-fold (5-fold) increase in the winter (summer) months, resulting in a much better simulation of the BC seasonal cycle as well. Arctic sulphate and other aerosol species also increase but to a lesser extent. An explicit treatment of BC aging with slower aging assumptions produces an additional 30-fold (5-fold) increase in the Arctic winter (summer) BC burden. This BC aging treatment, however, has minimal effect on other under-predicted species. Interestingly, our modifications to CAM5 that aim at improving prediction of high-latitude and upper tropospheric aerosols also produce much better AOD and AAOD over various other regions globally when compared to multi-year AERONET retrievals. The improved aerosol distributions have impacts on other aspects of CAM5, improving the simulation of global mean liquid water path and cloud forcing.

Wang, Hailong; Easter, Richard C.; Rasch, Philip J.; Wang, Minghuai; Liu, Xiaohong; Ghan, Steven J.; Qian, Yun; Yoon, Jin-Ho; Ma, Po-Lun; Vinoj, V.

2013-06-05T23:59:59.000Z

348

Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Abstract: Many...

349

Challenges and Progress Toward a Commercial Kinetic Hydropower System  

E-Print Network [OSTI]

Challenges and Progress Toward a Commercial Kinetic Hydropower System for its kinetic hydropower devices, and has made precise measurements

Walter, M.Todd

350

Beam quality conversion factors for parallel-plate ionization chambers in MV photon beams  

SciTech Connect (OSTI)

Purpose: To investigate the behavior of plane-parallel ion chambers in high-energy photon beams through measurements and Monte Carlo simulations. Methods: Ten plane-parallel ion chamber types were obtained from the major ion chamber manufacturers. Absorbed dose-to-water calibration coefficients are measured for these chambers and k{sub Q} factors are determined. In the process, the behaviors of the chambers are characterized through measurements of leakage currents, chamber settling in cobalt-60, polarity and ion recombination behavior, and long-term stability. Monte Carlo calculations of the absorbed dose to the air in the ion chamber and absorbed dose to water are obtained to calculate k{sub Q} factors. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors are investigated by varying material properties and chamber dimensions. Results: Chamber behavior was variable in MV photon beams, especially with regard to chamber leakage and ion recombination. The plane-parallel chambers did not perform as well as cylindrical chambers. Significant differences up to 1.5% were observed in calibration coefficients after a period of eight months although k{sub Q} factors were consistent on average within 0.17%. Chamber-to-chamber variations in k{sub Q} factors for chambers of the same type were at the 0.2% level. Systematic uncertainties in Monte Carlo calculated k{sub Q} factors ranged between 0.34% and 0.50% depending on the chamber type. Average percent differences between measured and calculated k{sub Q} factors were - 0.02%, 0.18%, and - 0.16% for 6, 10, and 25 MV beams, respectively. Conclusions: Excellent agreement is observed on average at the 0.2% level between measured and Monte Carlo calculated k{sub Q} factors. Measurements indicate that the behavior of these chambers is not adequate for their use for reference dosimetry of high-energy photon beams without a more extensive QA program than currently used for cylindrical reference-class ion chambers.

Muir, B. R.; McEwen, M. R.; Rogers, D. W. O. [Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada); Institute for National Measurement Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada); Carleton Laboratory for Radiotherapy Physics, Physics Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 (Canada)

2012-03-15T23:59:59.000Z

351

Aerodynamic size associations of natural radioactivity with ambient aerosols  

SciTech Connect (OSTI)

The aerodynamic size of /sup 214/Pb, /sup 212/Pb, /sup 210/Pb, /sup 7/Be, /sup 32/P, /sup 35/S (as SO/sub 4//sup 2 -/), and stable SO/sub 4//sup 2 -/ was measured using cascade impactors. The activity distribution of /sup 212/Pb and /sup 214/Pb, measured by alpha spectroscopy, was largely associated with aerosols smaller than 0.52 ..mu..m. Based on 46 measurements, the activity median aerodynamic diameter of /sup 212/Pb averaged 0.13 ..mu..m (sigma/sub g/ = 2.97), while /sup 214/Pb averaged 0.16 ..mu..m (sigma/sub g/ = 2.86). The larger median size of /sup 214/Pb was attributed to ..cap alpha..-recoil depletion of smaller aerosols following decay of aerosol-associated /sup 218/Po. Subsequent /sup 214/Pb condensation on all aerosols effectively enriches larger aerosols. /sup 212/Pb does not undergo this recoil-driven redistribution. Low-pressure impactor measurements indicated that the mass median aerodynamic diameter of SO/sub 4//sup 2 -/ was about three times larger than the activity median diameter /sup 212/Pb, reflecting differences in atmospheric residence times as well as the differences in surface area and volume distributions of the atmospheric aerosol. Cosmogenic radionuclides, especially /sup 7/Be, were associated with smaller aerosols than SO/sub 4//sup 2 -/ regardless of season, while /sup 210/Pb distributions in summer measurements were similar to sulfate but smaller in winter measurements. Even considering recoil following /sup 214/Po ..cap alpha..-decay, the avervage /sup 210/Pb labeled aerosol grows by about a factor of two during its atmospheric lifetime. The presence of 5 to 10% of the /sup 7/Be on aerosols greater than 1 ..mu..m was indicative of post-condensation growth, probably either in the upper atmosphere or after mixing into the boundary layer.

Bondietti, E.A.; Papastefanou, C.; Rangarajan, C.

1986-04-01T23:59:59.000Z

352

Wire-chamber radiation detector with discharge control  

DOE Patents [OSTI]

A wire chamber; radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or; near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced.

Perez-Mendez, V.; Mulera, T.A.

1982-03-29T23:59:59.000Z

353

Shock-Dispersed-Fuel Charges: Combustion in Chambers and Tunnels  

SciTech Connect (OSTI)

In previous studies we have investigated after-burning effects of a fuel-rich explosive (TNT). In that case the detonation only releases about 30% of the available energy, but generates a hot cloud of fuel that can burn in the ambient air, thus evoking an additional energy release that is distributed in space and time. The current series of small-scale experiments can be looked upon as a natural generalization of this mechanism: a booster charge disperses a (non-explosive) fuel, provides mixing with air and, by means of the hot detonation products, the energy to ignite the fuel. The current version of our miniature Shock-Dispersed-Fuel (SDF) charges consists of a spherical booster charge of 0.5 g PETN, embedded in a paper cylinder of approximately 2.2 cm, which is filled with powdered fuel compositions. The main compositions studied up to now contain aluminum flakes, hydrocarbon powders like polyethylene or hexosen (sucrose) and/or carbon particles. These charges were studied in four different chambers: two cylindrical vessels of 6.6-1 and 40.5-1 volume with a height-to-diameter ratio of approximately 1, a rectangular chamber of 41 (10.5 x 10.5 x 38.6 cm) and a 299.6 cm long tunnel model with a cross section of 8 x 8 cm (volume 19.21) closed at both ends.

Neuwald, P; Reichenbach, H; Kuhl, A L

2003-04-22T23:59:59.000Z

354

Slag monitoring system for combustion chambers of steam boilers  

SciTech Connect (OSTI)

The computer-based boiler performance system presented in this article has been developed to provide a direct and quantitative assessment of furnace and convective surface cleanliness. Temperature, pressure, and flow measurements and gas analysis data are used to perform heat transfer analysis in the boiler furnace and evaporator. Power boiler efficiency is calculated using an indirect method. The on-line calculation of the exit flue gas temperature in a combustion chamber allows for an on-line heat flow rate determination, which is transferred to the boiler evaporator. Based on the energy balance for the boiler evaporator, the superheated steam mass flow rate is calculated taking into the account water flow rate in attemperators. Comparing the calculated and the measured superheated steam mass flow rate, the effectiveness of the combustion chamber water walls is determined in an on-line mode. Soot-blower sequencing can be optimized based on actual cleaning requirements rather than on fixed time cycles contributing to lowering of the medium usage in soot blowers and increasing of the water-wall lifetime.

Taler, J.; Taler, D. [Cracow University of Technology, Krakow (Poland)

2009-07-01T23:59:59.000Z

355

Criteria pollutant and acid aerosol characterization study, Catano, Puerto Rico  

SciTech Connect (OSTI)

The primary objective of the Catano Criteria Pollutant and Acid Aerosol Characterization Study (CPAACS) was to measure criteria pollutant concentrations and acid aerosol concentrations in and around the Ward of Catano, Puerto Rico, during the summer of 1994. Continuous air sampling for criteria pollutants was performed at three fixed stations and one moobile station that was deployed to four locations. Air samples for acid aerosol analyses and particulate matter measurements were collected at three sites. Semicontinuous sulfate analysis was performed at the primary site. Continuous measurements of wind speed, wind direction, temperature, and relative humidity were also made at each site. The study was conducted from June 1 through September 30, 1994.

Edgerton, E.S.; Harlos, D.P.; Sune, J.M.; Akland, G.G.; Vallero, D.A.

1995-07-01T23:59:59.000Z

356

A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols  

SciTech Connect (OSTI)

For studying the formation and photochemical/thermal reactions of aerosols relevant to the troposphere, a unique, high-volume, slow-flow, stainless steel aerosol flow system equipped with 5 UV lamps has been constructed and characterized experimentally. The total flow system length 6 is 8.5 m and includes a 1.2 m section used for mixing, a 6.1 m reaction section and a 1.2 m 7 transition cone at the end. The 45.7 cm diameter results in a smaller surface to volume ratio than is found in many other flow systems and thus reduces the potential contribution from wall reactions. The latter are also reduced by frequent cleaning of the flow tube walls which is made feasible by the ease of disassembly. The flow tube is equipped with ultraviolet lamps for photolysis. This flow system allows continuous sampling under stable conditions, thus increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. The residence time is of the order of an hour, and sampling ports located along the length of the flow tube allow for time-resolved measurements of aerosol and gas-phase products. The system was characterized using both an inert gas (CO2) and particles (atomized NaNO3). Instruments interfaced directly to this flow system include a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer spectrometer, an aerodynamic particle sizer spectrometer, a gas chromatograph-mass spectrometer, an integrating nephelometer, and a Fourier transform infrared spectrophotometer equipped with a long path (64 m) cell. Particles collected with impactors and filters at the various sampling ports can be analyzed subsequently by a variety of techniques. Formation of secondary organic aerosol from ?-pinene reactions (NOx photooxidation and ozonolysis) are used to demonstrate the capabilities of this new system.

Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Perraud, Veronique; Bruns, Emily; Alexander, M. L.; Zelenyuk, Alla; Dabdub, Donald; Finlayson-Pitts, Barbara J.

2010-05-01T23:59:59.000Z

357

Mexico City Aerosol Analysis During Milagro Using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0) - Part 1: Fine Particle Composition and Organic Source Apportionment.  

E-Print Network [OSTI]

Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive ...

Aiken, A. C.

358

Sensitivity of aerosol properties to new particle formation mechanism and to primary emissions in a continental-scale chemical  

E-Print Network [OSTI]

of aerosol particles and in turn their number concentration and size distribution. Aerosol particles can grow contribution from coagulation. The aerosol mass concentration, which is primarily in the accumulation mode of aerosol number concentration and size distri- bution is important for considerations of the aerosol

359

Development of a multistep parallel-plate chamber as time projection chamber end-cap or vertex detector  

SciTech Connect (OSTI)

In the course of development of the multistep avalanche chamber the authors have realized several multiple electrode parallel-plate devices exhibiting stable gains well in excess of 10/sup 5/ which are thus capable of detecting minimum ionizing particles. This paper presents the design and discusses the performance of a two-step parallel-plate avalanche chamber. A region of moderate electric field --the drift region where charges are released by ionizing radiation--is followed by two layers of comparable and very high field where charge multiplication occurs. Owing to the choice of the electrodes--either cross-wire meshes or parallel thick-wire grids at small pitch--the electric field is uniform over most of the gaps, and charge multiplication proceeds through a parallel-plate avalanche mode. In order to obtain a fast signal and a reduced avalanche spread in their prototypes, the authors have adopted rather narrow typical gaps of 4 mm for the first amplification region and 1 mm for the second. To avoid edge sparking, they have used either a gap increase at the edges or the insertion of thin mylar foil around the frame's edges. The last electrode in the structure, made with a printed-circuit board, is the only one equipped with electronics and is conveniently operated at ground potential. At regular intervals, four rows of pads are used to determine the coordinates of tracks in selected positions. Argon (90%) and methane (10%) comprise the gas filling.

Peisert, A.; Charpak, G.; Sauli, F.; Viezzoli, G.

1984-02-01T23:59:59.000Z

360

Aerosol mass spectrometry systems and methods  

DOE Patents [OSTI]

A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

Fergenson, David P.; Gard, Eric E.

2013-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Soot particle aerosol dynamics at high pressure  

SciTech Connect (OSTI)

The authors have used detailed calculations to analyze the coagulation dynamics of a soot aerosol at high pressures (20 and 50 atm). They find that the soot size distribution is altered compared to lower-pressure conditions because the mean free path at high pressures is reduced to the point that the particles are similar in size to the mean free path. At lower pressures the form of the size distribution becomes constant (self-preserving) in time, allowing optical measurements to be easily interpreted. However, the authors find that at pressures above about 5 atm the shape of the size distribution continually changes. As a result, proper and accurate interpretation of optical data at high pressures is more difficult than at lower pressures.

Harris, S.J. (General Motors Research Labs., Warren, MI (USA). Physics Dept.); Kennedy, I.M. (California Univ., Davis, CA (USA). Dept. of Mechanical Engineering)

1989-12-01T23:59:59.000Z

362

Diesel Aerosol Sampling in the Atmosphere  

SciTech Connect (OSTI)

The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine.

David Kittelson; Jason Johnson; Winthrop Watts; Qiang Wei; Marcus Drayton; Dwane Paulsen; Nicolas Bukowiecki

2000-06-19T23:59:59.000Z

363

aerosol content monitoring: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rings, Jrg 2008-01-01 6 The impact of aerosols on simulated ocean temperature and heat content in the 20th century Environmental Sciences and Ecology Websites Summary: The...

364

Effects of aerosols on deep convective cumulus clouds  

E-Print Network [OSTI]

This work investigates the effects of anthropogenic aerosols on deep convective clouds and the associated radiative forcing in the Houston area. The Goddard Cumulus Ensemble model (GCE) coupled with a spectral-bin microphysics is employed...

Fan, Jiwen

2009-05-15T23:59:59.000Z

365

Continuous air monitor for alpha-emitting aerosol particles  

SciTech Connect (OSTI)

A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

McFarland, A.R.; Ortiz, C.A. (Texas A and M Univ., College Station, TX (USA). Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. (Los Alamos National Lab., NM (USA))

1990-01-01T23:59:59.000Z

366

MELCOR 1. 8. 1 assessment: LACE aerosol experiment LA4  

SciTech Connect (OSTI)

The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.

Kmetyk, L.N.

1991-09-01T23:59:59.000Z

367

Distinguishing Aerosol Impacts on Climate Over the Past Century  

E-Print Network [OSTI]

Figure 8a). The IE cooling increases snow/ice by about 10% (Their cooling e?ect on surface temperatures promotes ice androw), cooling from the aerosol DE increases snow/ice cover

Koch, Dorothy

2009-01-01T23:59:59.000Z

368

A review of Secondary Organic Aerosol (SOA) formation from isoprene  

E-Print Network [OSTI]

Recent field and laboratory evidence indicates that the oxidation of isoprene, (2-methyl-1,3-butadiene, C[subscript 5]H[subscript 8]) forms secondary organic aerosol (SOA). Global biogenic emissions of isoprene (600 Tg ...

Kroll, Jesse

369

atmospheric aerosol limb: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coefficient is 0.5 and then 1.0 2. For the same conditions calculate the H Weber, Rodney 5 Secondary organic aerosol 1. Atmospheric chemical mechanism for production...

370

atmospheric aerosols recorded: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coefficient is 0.5 and then 1.0 2. For the same conditions calculate the H Weber, Rodney 4 Secondary organic aerosol 1. Atmospheric chemical mechanism for production...

371

atmospheric aerosols relation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coefficient is 0.5 and then 1.0 2. For the same conditions calculate the H Weber, Rodney 4 Secondary organic aerosol 1. Atmospheric chemical mechanism for production...

372

aerosol source apportionment: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary...

373

aerosolized bacillus anthracis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and remotely sensed aerosol observations. William D. Collins; Phillip J. Rasch; Brian E. Eaton; Boris V. Khattatov; Jean-francois Lamarque; C. Zender 2001-01-01 118 THESE DE...

374

Aerosol Optical Depth Value-Added Product Report  

SciTech Connect (OSTI)

This document describes the process applied to retrieve aerosol optical depth (AOD) from multifilter rotating shadowband radiometers (MFRSR) and normal incidence multifilter radiometers (NIMFR) operated at the ARM Climate Research Facility’s ground-based facilities.

Koontz, A; Hodges, G; Barnard, J; Flynn, C; Michalsky, J

2013-03-17T23:59:59.000Z

375

Aerosol-Cloud interactions : a new perspective in precipitation enhancement  

E-Print Network [OSTI]

Increased industrialization and human activity modified the atmospheric aerosol composition and size-distribution during the last several decades. This has affected the structure and evolution of clouds, and precipitation ...

Gunturu, Udaya Bhaskar

2010-01-01T23:59:59.000Z

376

MICS Asia Phase II - Sensitivity to the aerosol module  

E-Print Network [OSTI]

In the framework of the model inter-comparison study - Asia Phase II (MICS2), where eight models are compared over East Asia, this paper studies the influence of different parameterizations used in the aerosol module on the aerosol concentrations of sulfate and nitrate in PM10. An intracomparison of aerosol concentrations is done for March 2001 using different configurations of the aerosol module of one of the model used for the intercomparison. Single modifications of a reference setup for model configurations are performed and compared to a reference case. These modifications concern the size distribution, i.e. the number of sections, and physical processes, i.e. coagulation, condensation/evaporation, cloud chemistry, heterogeneous reactions and sea-salt emissions. Comparing monthly averaged concentrations at different stations, the importance of each parameterization is first assessed. It is found that sulfate concentrations are little sensitive to sea-salt emissions and to whether condensation is computed...

Sartelet, Karine; Sportisse, Bruno

2007-01-01T23:59:59.000Z

377

aerosol optical depths: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AERONET, AVHRR and 3 MODIS 4 A. Hauser, D. Oesch have been used to 9 retrieve the spatial distribution of aerosol optical depth for 10 central Europe. At eight AERONET sites,...

378

aerosol optical depth: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AERONET, AVHRR and 3 MODIS 4 A. Hauser, D. Oesch have been used to 9 retrieve the spatial distribution of aerosol optical depth for 10 central Europe. At eight AERONET sites,...

379

aerosol strong acidity: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nucleation theories. Citation: Erupe, M. E., et al Lee, Shan-Hu 12 Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia Geosciences...

380

Results from simulated upper-plenum aerosol transport tests  

SciTech Connect (OSTI)

A series of eight aerosol transport experiments, designated as Aerosol Transport Tests (ATT) A101 through A108, has recently been completed at the Oak Ridge National Laboratory (ORNL). These tests provide a data base for validation of aerosol transport modeling used in the TRAP-MELT2 computer code (Jordan and Kuhlman, 1985), which was developed at Battelle Columbus Laboratories to calculate aerosol/fission-product transport in the reactor coolant system in postulated light-water reactor (LWR) core-melt accidents. Results from tests A103 and A104 have been summarized in a previous paper (Wright and Pattison, 1985a); the present paper discusses results from tests A105 through A108.

Wright, A.L.; Pattison, W.L.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermophoresis and Its Thermal Parameters for Aerosol Collection  

E-Print Network [OSTI]

K/cm (a) Figure 3. (a). Thermophoretic collection ratio vs.Lin, J. , et al. , Thermophoretic deposition of particles inof a plate- to-plate thermophoretic precipitator, Aerosol

Huang, Z.

2008-01-01T23:59:59.000Z

382

aerosol particle deposition: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits...

383

An investigation of aerosol physical properties in Houston, Texas  

E-Print Network [OSTI]

From June through October 2001, three Tandem Differential Mobility Analyzer (TDMA) systems were operated around Houston, Texas, to obtain a large, high-quality dataset in order to explore characteristics of aerosol size distributions...

Gasparini, Roberto

2002-01-01T23:59:59.000Z

384

Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms  

E-Print Network [OSTI]

In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within...

Tang, Yingjie

2012-07-16T23:59:59.000Z

385

Climate impacts of carbonaceous and other non-sulfate aerosols: A proposed study  

SciTech Connect (OSTI)

In addition to sulfate aerosols, carbonaceous and other non-sulfate aerosols are potentially significant contributors to global climate change. We present evidence that strongly suggests that current assessments of the effects of aerosols on climate may be inadequate because major aerosol components, especially carbonaceous aerosols, are not included in these assessments. Although data on the properties and distributions of anthropogenic carbonaceous aerosols are insufficient to allow quantification of their climate impacts, the existing information suggests that climate forcing by this aerosol component may be significant and comparable to that by sulfate aerosols. We propose that a research program be undertaken to support a quantitative assessment of the role in climate forcing of non-sulfate, particularly carbonaceous, aerosols.

Andreae, M.O.; Crutzen, P.J. [Max Planck Institute for Chemistry, Mainz (Germany); Cofer, W.R. III; Hollande, J.M. [NASA Langley Research Center, Hampton, VA (United States). Atmospheric Sciences Division] [and others

1995-06-01T23:59:59.000Z

386

Balloon-borne photometric studies of the stratospheric aerosol layer after Mt. Pinatubo eruption  

SciTech Connect (OSTI)

Using Sun-tracking photometers on board balloons, the Pinatubo volcanic aerosol layer has been studied over Hyderabad (17.5 deg N) during October 1991 and April 1992. From the angular distribution of the scattered radiation intensity measurements the aerosol size parameters is derived. Over a decade of aerosol measurements at Hyderabad, aerosol extinction and number density obtained during October 1991 in the stratosphere are found to be the highest ever obtained with a distinct aerosol layer between 16 and 30 km. The derived aerosol size parameter shows layered structures. Analysis of the size parameter obtained during April 1992 indicates formation of aerosols at higher altitudes by coagulation with a subsequent reduction in the aerosol number density. The obtained results are found to agree well with that of an independent lidar measurement made over Ahmedabad (23 deg N) and with the stratospheric aerosol and gas experiment II (SAGE II) results.

Ramachandran, S.; Jayaraman, A.; Acharya, Y.B.; Subbaraya, B.H. [Physical Research Laboratory, Ahmedabad (India)

1994-08-01T23:59:59.000Z

387

Development of Glass Resistive Plate Chambers for INO  

E-Print Network [OSTI]

The India-based Neutrino Observatory (INO) collaboration is planning to build a massive 50kton magnetised Iron Calorimeter (ICAL) detector, to study atmospheric neutrinos and to make precision measurements of the parameters related to neutrino oscillations. Glass Resistive Plate Chambers (RPCs) of about 2m X 2m in size are going to be used as active elements for the ICAL detector. We have fabricated a large number of glass RPC prototypes of 1m X 1m in size and have studied their performance and long term stability. In the process, we have developed and produced a number of materials and components required for fabrication of RPCs. We have also designed and optimised a number of fabrication and quality control procedures for assembling the gas gaps. In this paper we will review our activities towards development of glass RPCs for the INO ICAL detector and will present results of the characterisation studies of the RPCs.

Satyanarayana Bheesette; for the INO collaboration

2008-10-26T23:59:59.000Z

388

E-Print Network 3.0 - anterior chamber angle Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

pits face anteriorly, wide "detection range + anterior... angle - records ambient air Higher Sensitivity dual chamber pit improves sensitivity detect 0.001 deg. C... are...

389

Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor  

DOE Patents [OSTI]

The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

2014-03-04T23:59:59.000Z

390

Mixed reactant single chamber fuel cell, using products generated from the electrolysis of an aqueous electrolyte.  

E-Print Network [OSTI]

??A Mixed Reactant Single Chamber (MRSC) Fuel Cell is a relatively recent concept in the field of fuel cell engineering originally developed in the late… (more)

Jost, William C.

2008-01-01T23:59:59.000Z

391

E-Print Network 3.0 - atlas vacuum chamber Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Particle Physics Summary: monoxide and dioxide. Hydrocarbons are pumped with lumped ion pumps. The ATLAS experimental vacuum chamber... ). There will be 4 big experiments operating...

392

Methane ionization chamber to search for spin-dependent dark matter interactions  

E-Print Network [OSTI]

A liquid-methane ionization chamber is proposed as a setup to search for spin-dependent interactions of dark-matter particles with hydrogen

B. M. Ovchinnikov; V. V. Parusov; V. A. Bednyakov

2005-08-04T23:59:59.000Z

393

IMPEDANCE OF ELECTRON BEAM VACUUM CHAMBERS FOR THE NSLS-II STORAGE RING.  

SciTech Connect (OSTI)

In this paper we discuss computation of the coupling impedance of the vacuum chambers for the NSLS-II storage ring using the electromagnetic simulator GdfidL [1]. The impedance of the vacuum chambers depends on the geometric dimensions of the cross-section and height of the slot in the chamber wall. Of particular concern is the complex geometry of the infrared extraction chambers to be installed in special large-gap dipole magnets. In this case, wakefields are generated due to tapered transitions and large vertical-aperture ports with mirrors near the electron beam.

BLEDNYKH,A.; KRINSKY, S.

2007-06-25T23:59:59.000Z

394

E-Print Network 3.0 - acoustic spark chambers Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurements of a Laser- Summary: -sectional view of waterline PFL, liquid load resistor, and spark gap chamber. The electrodes are copper... a pulse- forming line (PFL)...

395

Representing Cloud Processing of Aerosol in Numerical Models  

SciTech Connect (OSTI)

The satellite imagery in Figure 1 provides dramatic examples of how aerosol influences the cloud field. Aerosol from ship exhaust can serve as nucleation centers in otherwise cloud-free regions, forming ship tracks (top image), or can enhance the reflectance/albedo in already cloudy regions. This image is a demonstration of the first indirect effect, in which changes in aerosol modulate cloud droplet radius and concentration, which influences albedo. It is thought that, through the effects it has on precipitation (drizzle), aerosol can also affect the structure and persistence of planetary boundary layer (PBL) clouds. Regions of cellular convection, or open pockets of cloudiness (bottom image) are thought to be remnants of strongly drizzling PBL clouds. Pockets of Open Cloudiness (POCs) (Stevens et al. 2005) or Albrecht's ''rifts'' are low cloud fraction regions characterized by anomalously low aerosol concentrations, implying they result from precipitation. These features may in fact be a demonstration of the second indirect effect. To accurately represent these clouds in numerical models, we have to treat the coupled cloud-aerosol system. We present the following series of mesoscale and large eddy simulation (LES) experiments to evaluate the important aspects of treating the coupled cloud-aerosol problem. 1. Drizzling and nondrizzling simulations demonstrate the effect of drizzle on a mesoscale forecast off the California coast. 2. LES experiments with explicit (bin) microphysics gauge the relative importance of the shape of the aerosol spectrum on the 3D dynamics and cloud structure. 3. Idealized mesoscale model simulations evaluate the relative roles of various processes, sources, and sinks.

Mechem, D.B.; Kogan, Y.L.

2005-03-18T23:59:59.000Z

396

Simulation of aerosol dynamics: a comparative review of mathematical models  

SciTech Connect (OSTI)

Three modeling approaches used are based-continuous, discrete (sectional), and parameterized representations of the aerosol size distribution. Simulations of coagulation and condensation are performed with the three models for clear, hazy, and urban atmospheric conditions. Relative accuracies and computational costs are compared. Reference for the comparison is the continuous approach. The results of the study provide useful information for the selection of an aerosol model, depending on the accuracy requirements and computational constraints associated with a specific application.

Seigneur, C.; Hudischewskyj, A.B.; Seinfeld, J.H.; Whitby, K.T.; Whitby, E.R.

1986-01-01T23:59:59.000Z

397

Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report  

SciTech Connect (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2009-03-05T23:59:59.000Z

398

Cloud-Driven Changes in Aerosol Optical Properties - Final Technical Report  

SciTech Connect (OSTI)

The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

2007-09-30T23:59:59.000Z

399

Simulation of Enhanced-Explosive Devices in Chambers and Tunnels  

SciTech Connect (OSTI)

Introduction: Shock-dispersed fuel (SDF) explosives use a small chemical charge to disperse a combustible fuel that burns in the post-detonation environment. The energy released in the combustion process has the potential for generating higher pressures and temperatures than conventional explosives. However, the development of these types of novel explosive systems requires a detailed understanding of all of the modes of energy release. Objective: The objective of this project is develop a simulation capability for predicting explosion and combustion phase of SDF charges and apply that capability to quantifying the behavior of these types of explosives. Methodology: We approximate the dynamics of an SDF charge using high Reynolds number, fast chemistry model that effectively captures the thermodynamic behavior of SDF charges and accurately models the key modes of energy release. The overall computational model is combined with Adaptive Mesh Refinement (AMR) , implemented in a parallel adaptive framework suited to the massively parallel computer systems. Results: We have developed a multiphase version of the model and used it to simulate an SDF charge in which the dispersed fuel is aluminum flakes. Flow visualizations show that the combustion field is turbulent for the chamber and tunnel cases studied. During the 3 milli-seconds of simulation, over 90% of the Al fuel was consumed for the chamber case, while about 40% was consumed in the tunnel case in agreement with Al-SDF experiments. Significance to DoD: DoD has a requirement to develop enhanced energetic materials to support future military systems. The SDF charges described here utilize the combustion mechanism to increase energy per gram of fuel by a factor of 7 to 10 over conventional (detonating) charges, and increase the temperature of the explosion cloud to 2,000-4,000 K (depending on the SDF fuel). Accurate numerical simulation of such SDF explosions allows one to understand the energy release mechanism, and thereby design full-scale systems with greatly improved explosive efficiency.

Bell, J B; Kuhl, A L; Beckner, V E

2007-06-05T23:59:59.000Z

400

The modeling of aerosol dynamics during degraded core events  

SciTech Connect (OSTI)

There is substantial interest in developing simple, yet accurate, models for the prediction of aerosol dynamics during degraded core events. The exact aerosol transport equation is given by {partial derivative}n(v,t)/{partial derivative}t = 1/2 {integral}{sub 0}{sup {infinity}} K(u,v {minus} u)n(u,t)n(v {minus} u,t)du {minus} {integral}{sub 0}{sup {infinity}} K(u,v)n(v,t)n(u,t)du {minus} n(v,t)c(v)/h + n{sub p}(v), where n(v,t) is the particle size density distribution function. The kernel, K(v,u), is related to the frequency of coagulation between aerosol particles of volume u and v, and the quantity c(v) is the deposition velocity. The quantity h is the effective height for deposition of aerosol; it is the volume of the aerosol cloud divided by the projected horizontal area A. Finally, the term n{sub p} (v) is the source rate of aerosol. Evaluation of the above equation is discussed.

Clausse, A.; Lahey, R.T. Jr.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Investigations of cloud altering effects of atmospheric aerosols using a new mixed Eulerian-Lagrangian aerosol model  

E-Print Network [OSTI]

Industry, urban development, and other anthropogenic influences have substantially altered the composition and size-distribution of atmospheric aerosol particles over the last century. This, in turn, has altered cloud ...

Steele, Henry Donnan, 1974-

2004-01-01T23:59:59.000Z

402

Kinetic Modeling of Microbiological Processes  

SciTech Connect (OSTI)

Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

Liu, Chongxuan; Fang, Yilin

2012-09-17T23:59:59.000Z

403

Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust  

E-Print Network [OSTI]

Response of the Photo-Electric Aerosol Sensor (PAS) to2008 Abstract. A photo-electric aerosol sensor, a diffusionthe measured photo-electric aerosol sensor signal (fA) was

Polidori, A.; Hu, S.; Biswas, S.; Delfino, R. J; Sioutas, C.

2008-01-01T23:59:59.000Z

404

Ganges Valley Aerosol Experiment: Science and Operations Plan  

SciTech Connect (OSTI)

The Ganges Valley region is one of the largest and most rapidly developing sections of the Indian subcontinent. The Ganges River, which provides the region with water needed for sustaining life, is fed primarily by snow and rainfall associated with Indian summer monsoons. Impacts of changes in precipitation patterns, temperature, and the flow of the snow-fed rivers can be immense. Recent satellite-based measurements have indicated that the upper Ganges Valley has some of the highest persistently observed aerosol optical depth values. The aerosol layer covers a vast region, extending across the Indo-Gangetic Plain to the Bay of Bengal during the winter and early spring of each year. The persistent winter fog in the region is already a cause of much concern, and several studies have been proposed to understand the economic, scientific, and societal dimensions of this problem. During the INDian Ocean EXperiment (INDOEX) field studies, aerosols from this region were shown to affect cloud formation and monsoon activity over the Indian Ocean. This is one of the few regions showing a trend toward increasing surface dimming and enhanced mid-tropospheric warming. Increasing air pollution over this region could modify the radiative balance through direct, indirect, and semi-indirect effects associated with aerosols. The consequences of aerosols and associated pollution for surface insolation over the Ganges Valley and monsoons, in particular, are not well understood. The proposed field study is designed for use of (1) the ARM Mobile Facility (AMF) to measure relevant radiative, cloud, convection, and aerosol optical characteristics over mainland India during an extended period of 9–12 months and (2) the G-1 aircraft and surface sites to measure relevant aerosol chemical, physical, and optical characteristics in the Ganges Valley during a period of 6–12 weeks. The aerosols in this region have complex sources, including burning of coal, biomass, and biofuels; automobile emissions; and dust. The extended AMF deployment will enable measurements under different regimes of the climate and aerosol abundance—in the wet monsoon period with low aerosol loading; in the dry, hot summer with aerosols dispersed throughout the atmospheric column; and in the cool, dry winter with aerosols confined mostly to the boundary later and mid-troposphere. Each regime, in addition, has its own distinct radiative and atmospheric dynamic drivers. The aircraft operational phase will assist in characterizing the aerosols at times when they have been observed to be at the highest concentrations. A number of agencies in India will collaborate with the proposed field study and provide support in terms of planning, aircraft measurements, and surface sites. The high concentration of aerosols in the upper Ganges Valley, together with hypotheses involving several possible mechanisms with direct impacts on the hydrologic cycle of the region, gives us a unique opportunity to generate data sets that will be useful both in understanding the processes at work and in providing answers regarding the effects of aerosols on climate in a region where the perturbation is the highest.

Kotamarthi, VR

2010-06-21T23:59:59.000Z

405

An Aerosol Condensation Model for Sulfur Trioxide  

SciTech Connect (OSTI)

This document describes a model for condensation of sulfuric acid aerosol given an initial concentration and/or source of gaseous sulfur trioxide (e.g. fuming from oleum). The model includes the thermochemical effects on aerosol condensation and air parcel buoyancy. Condensation is assumed to occur heterogeneously onto a preexisting background aerosol distribution. The model development is both a revisiting of research initially presented at the Fall 2001 American Geophysical Union Meeting [1] and a further extension to provide new capabilities for current atmospheric dispersion modeling efforts [2]. Sulfuric acid is one of the most widely used of all industrial chemicals. In 1992, world consumption of sulfuric acid was 145 million metric tons, with 42.4 Mt (mega-tons) consumed in the United States [10]. In 2001, of 37.5 Mt consumed in the U.S., 74% went into producing phosphate fertilizers [11]. Another significant use is in mining industries. Lawuyi and Fingas [7] estimate that, in 1996, 68% of use was for fertilizers and 5.8% was for mining. They note that H{sub 2}SO{sub 4} use has been and should continue to be very stable. In the United States, the elimination of MTBE (methyl tertiary-butyl ether) and the use of ethanol for gasoline production are further increasing the demand for petroleum alkylate. Alkylate producers have a choice of either a hydrofluoric acid or sulfuric acid process. Both processes are widely used today. Concerns, however, over the safety or potential regulation of hydrofluoric acid are likely to result in most of the growth being for the sulfuric acid process, further increasing demand [11]. The implication of sulfuric acid being a pervasive industrial chemical is that transport is also pervasive. Often, this is in the form of oleum tankers, having around 30% free sulfur trioxide. Although sulfuric acid itself is not a volatile substance, fuming sulfuric acid (referred to as oleum) is [7], the volatile product being sulfur trioxide. Sulfate aerosols and mist may form in the atmosphere on tank rupture. From chemical spill data from 1990-1996, Lawuyi02 and Fingas [7] prioritize sulfuric acid as sixth most serious. During this period, they note 155 spills totaling 13 Mt, out of a supply volume of 3700 Mt. Lawuyi and Fingas [7] summarize information on three major sulfuric acid spills. On 12 February 1984, 93 tons of sulfuric acid were spilled when 14 railroad cars derailed near MacTier, Parry Sound, Ontario. On 13 December 1978, 51 railroad cars derailed near Springhill, Nova Scotia. One car, containing 93% sulfuric acid, ruptured, spilling nearly its entire contents. In July 1993, 20 to 50 tons of fuming sulfuric acid spilled at the General Chemical Corp. plant in Richmond, California, a major industrial center near San Francisco. The release occurred when oleum was being loaded into a nonfuming acid railroad tank car that contained only a rupture disk as a safety device. The tank car was overheated and this rupture disk blew. The resulting cloud of sulfuric acid drifted northeast with prevailing winds over a number of populated areas. More than 3,000 people subsequently sought medical attention for burning eyes, coughing, headaches, and nausea. Almost all were treated and released on the day of the spill. By the day after the release, another 5,000 people had sought medical attention. The spill forced the closure of five freeways in the region as well as some Bay Area Rapid Transit System stations. Apart from corrosive toxicity, there is the additional hazard that the reactions of sulfur trioxide and sulfuric acid vapors with water are extremely exothermic [10, 11]. While the vapors are intrinsically denser than air, there is thus the likelihood of strong, warming-induced buoyancy from reactions with ambient water vapor, water-containing aerosol droplets, and wet environmental surface. Nordin [12] relates just such an occurrence following the Richmond, CA spill, with the plume observed to rise to 300 m. For all practical purposes, sulfur trioxide was the constituent released from the heated tank

Grant, K E

2008-02-07T23:59:59.000Z

406

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov (indexed) [DOE]

improved gasoline surrogate fuels for HCCI engines * Development of very efficient software to reduce the size of detailed chemical kinetic models for transportation fuels...

407

CLEERS Coordination & Development of Catalyst Process Kinetic...  

Broader source: Energy.gov (indexed) [DOE]

& coordinate DOE research efforts (CLEERS Coordination) * Develop detailed technical data required to simulate energy efficient emission controls (LNT & SCR Kinetics, Sulfur &...

408

Kinetic bounding volume hierarchies for deformable objects  

E-Print Network [OSTI]

We present novel algorithms for updating bounding volume hierarchies of objects undergoing arbitrary deformations. Therefore, we introduce two new data structures, the kinetic AABB tree and the kinetic BoxTree. The event-based approach of the kinetic data structures framework enables us to show that our algorithms are optimal in the number of updates. Moreover, we show a lower bound for the total number of BV updates, which is independent of the number of frames. We used our kinetic bounding volume hierarchies for collision detection and performed a comparison with the classical bottomup update method. The results show that our algorithms perform up to ten times faster in practically relevant scenarios.

Gabriel Zachmann; Tu Clausthal

2006-01-01T23:59:59.000Z

409

The Fractional Kinetic Equation and Thermonuclear Functions  

E-Print Network [OSTI]

The paper discusses the solution of a simple kinetic equation of the type used for the computation of the change of the chemical composition in stars like the Sun. Starting from the standard form of the kinetic equation it is generalized to a fractional kinetic equation and its solutions in terms of H-functions are obtained. The role of thermonuclear functions, which are also represented in terms of G- and H-functions, in such a fractional kinetic equation is emphasized. Results contained in this paper are related to recent investigations of possible astrophysical solutions of the solar neutrino problem.

H. J. Haubold; A. M. Mathai

2000-01-16T23:59:59.000Z

410

CLEERS Coordination & Development of Catalyst Process Kinetic...  

Energy Savers [EERE]

CLEERS Coordination & Development of Catalyst Process Kinetic Data - Pres. 1: Coordination of CLEERS Project; Pres. 2: ORNL Research on LNT Sulfation & Desulfation CLEERS...

411

Combustion kinetics and reaction pathways  

SciTech Connect (OSTI)

This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

1993-12-01T23:59:59.000Z

412

Kinetics of actinide complexation reactions  

SciTech Connect (OSTI)

Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

Nash, K.L.; Sullivan, J.C.

1997-09-01T23:59:59.000Z

413

Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall  

DOE Patents [OSTI]

The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

Roberts Jr., Charles E.; Chadwell, Christopher J.

2004-09-21T23:59:59.000Z

414

In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells  

E-Print Network [OSTI]

In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells D.05.118 #12;Abstract Single chamber anode-supported fuel cells are investigated under several methane under methane-to-oxygen ratio (Rmix) of 2. Anode-supported fuel cells are investigated regarding

Paris-Sud XI, Université de

415

Source of methane and methods to control its formation in single chamber microbial electrolysis cells  

E-Print Network [OSTI]

Source of methane and methods to control its formation in single chamber microbial electrolysis online 31 March 2009 Keywords: Hydrogen Microbial electrolysis cell (MEC) Methane Single chamber Exoelectrogenic a b s t r a c t Methane production occurs during hydrogen gas generation in microbial electrolysis

416

A simple analytical model to study and control azimuthal instabilities in annular combustion chambers  

E-Print Network [OSTI]

A simple analytical model to study and control azimuthal instabilities in annular combustion analytical method to compute the azimuthal modes appearing in annular combustion chambers and help analyzing exper- imental, acoustic and LES (Large Eddy Simulation) data obtained in these combustion chambers

Paris-Sud XI, Université de

417

Boundary conditions for the computation of thermo-acoustic modes in combustion chambers  

E-Print Network [OSTI]

Boundary conditions for the computation of thermo-acoustic modes in combustion chambers Camilo F LES or Helmholtz solver computations in aeronautical combustion chambers, it is crucial to impose the right boundary conditions at both inlet and outlet of the combustion system. This means providing

418

Plasma Chamber and APEX Budget Plans for FY 2000 (and FY 2001)  

E-Print Network [OSTI]

Plasma Chamber and APEX Budget Plans for FY 2000 (and FY 2001) Spokesperson: Mohamed Abdou OFES: Plasma Chamber Spokesperson: M. Abdou Part I: VLT Director's Proposed Budget: $2200K Task Description Plans and Budgets Technology Area: APEX Spokesperson: M. Abdou Part I: VLT Director's Proposed Budget

Abdou, Mohamed

419

Hydrogen production using single-chamber membrane-free microbial electrolysis cells  

E-Print Network [OSTI]

efficiencies of hydrogen fuel cells in converting hydrogen to electricity. The development of advancedHydrogen production using single-chamber membrane-free microbial electrolysis cells Hongqiang Hu., Hydrogen production using single-chamber membrane-free microbial electrol- ysis cells, Water Research (2008

Tullos, Desiree

420

Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations  

E-Print Network [OSTI]

Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow. For the non-equilibrium flow computations, i.e., the nozzle flow and hypersonic rarefied flow over flat plate-kinetic method; Hypersonic and rarefied flows 1. Introduction The development of aerospace technology has

Xu, Kun

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Testing the kinetic energy functional: Kinetic energy density as a density functional  

E-Print Network [OSTI]

is to the exchange-correlation energy as a functional of the density. A large part of the total energy, the kinetic contexts. For finite systems these forms integrate to the same global ki- netic energy, but they differTesting the kinetic energy functional: Kinetic energy density as a density functional Eunji Sim

Burke, Kieron

422

Fluid intensifier having a double acting power chamber with interconnected signal rods  

DOE Patents [OSTI]

A fluid driven reciprocating apparatus having a double acting power chamber with signal rods serving as high pressure pistons, or to transmit mechanical power. The signal rods are connected to a double acting piston in the power chamber thereby eliminating the need for pilot valves, with the piston being controlled by a pair of intake-exhaust valves. The signal rod includes two spaced seals along its length with a vented space therebetween so that the driving fluid and driven fluid can't mix, and performs a switching function to eliminate separate pilot valves. The intake-exhaust valves can be integrated into a single housing with the power chamber, or these valves can be built into the cylinder head only of the power chamber, or they can be separate from the power chamber.

Whitehead, John C. (Davis, CA)

2001-01-01T23:59:59.000Z

423

E-Print Network 3.0 - assessing aerosol retention Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sources of aerosol OC and assessing its transformations before... ACPD 8, 6539-6569, 2008 ESI FT-ICR MS characterization of aerosol WSOC A. S. Wozniak et al. Title... .0 License....

424

Investigation of the aerosol-cloud interaction using the WRF framework  

E-Print Network [OSTI]

. Simulations with various aerosol profiles demonstrate that the response of precipitation to the increase of aerosol concentrations is non-monotonic. The maximal cloud cover, core updraft, and maximal vertical velocity exhibit similar responses as precipitation...

Li, Guohui

2009-05-15T23:59:59.000Z

425

Aerodynamic Focusing of High-Density Aerosols D.E. Ruiza,  

E-Print Network [OSTI]

Aerodynamic Focusing of High-Density Aerosols D.E. Ruiza, , L. Gundersona , M.J. Haya , E. Merinob-density aerosol focusing for 1µm silica spheres. Preliminary results recover previous findings on aerodynamic

426

Investigation of the optical and cloud forming properties of pollution, biomass burning, and mineral dust aerosols  

E-Print Network [OSTI]

properties of a biomass burning aerosol generated from fires on the Yucatan Peninsula. Measured aerosol size distributions and size-resolved hygroscopicity and volatility were used to infer critical supersaturation distributions of the distinct particle types...

Lee, Yong Seob

2006-08-16T23:59:59.000Z

427

Climate effects of seasonally varying Biomass Burning emitted Carbonaceous Aerosols (BBCA)  

E-Print Network [OSTI]

The climate impact of the seasonality of Biomass Burning emitted Carbonaceous Aerosols (BBCA) is studied using an aerosol-climate model coupled with a slab ocean model in a set of 60-year long simulations, driven by BBCA ...

Jeong, Gill-Ran

428

E-Print Network 3.0 - aerosolized red tide Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

characteristics of desert dust and biomass burning aerosols Summary: in the right panel of Fig. 6. The aerosol scenes spectra are drawn in green, the clear sky scenes in...

429

High Flash-point Fluid Flow System Aerosol Flammability Study and Combustion Mechanism Analysis  

E-Print Network [OSTI]

understanding of this combustion process. The potential application of the ignition delay will be beneficial to the mitigation timing and detector sensor setting of facilities to prevent aerosol cloud fires. Finally, the scientific method of aerosol...

Huang, Szu-Ying

2013-12-02T23:59:59.000Z

430

CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate  

E-Print Network [OSTI]

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. ...

Rosenfeld, Daniel

431

Mechanisms of aerosol-forced AMOC variability in a state of the art climate model  

E-Print Network [OSTI]

with a new state-of-the-art Earth system model. Anthropogenic aerosols have previously been highlighted anthropogenic aerosols force a strengthening of the AMOC by up to 20% in our state-of-the-art Earth system model

432

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network [OSTI]

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

433

The effects of volcanic aerosols on mid-latitude ozone recovery  

E-Print Network [OSTI]

In this paper, comparisons between the derived Chemistry Climate Model Initiative aerosol data set to balloon sonde measurements of aerosols made in Laramie, Wyoming are made between 1979- 2012. Using the derived CCMI ...

Haskins, Jessica D

2014-01-01T23:59:59.000Z

434

E-Print Network 3.0 - aerosol pool scrubbing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sensing of non-aerosol absorption in cloud free atmosphere Yoram J. Kaufman,1 Summary: Remote sensing of non-aerosol absorption in cloud free atmosphere Yoram J. Kaufman,1 Oleg...

435

Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign  

E-Print Network [OSTI]

In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module ...

Li, Guohui

436

Kinetic Theory of Dynamical Systems  

E-Print Network [OSTI]

It is generally believed that the dynamics of simple fluids can be considered to be chaotic, at least to the extent that they can be modeled as classical systems of particles interacting with short range, repulsive forces. Here we give a brief introduction to those parts of chaos theory that are relevant for understanding some features of non-equilibrium processes in fluids. We introduce the notions of Lyapunov exponents, Kolmogorov-Sinai entropy and related quantities using some simple low-dimensional systems as "toy" models of the more complicated systems encountered in the study of fluids. We then show how familiar methods used in the kinetic theory of gases can be employed for explicit, analytical calculations of the largest Lyapunov exponent and KS entropy for dilute gases composed of hard spheres in d dimensions. We conclude with a brief discussion of interesting, open problems.

R. van Zon; H. van Beijeren; J. R. Dorfman

1999-06-24T23:59:59.000Z

437

ADVANCES IN ENVIRONMENTAL REACTION KINETICS AND THERMODYNAMICS  

E-Print Network [OSTI]

1262 ADVANCES IN ENVIRONMENTAL REACTION KINETICS AND THERMODYNAMICS: LONG-TERM FATE thermodynamic and kinetic data is available with regard to the formation of these mixed metal precipitate phases to six months from the initial addition of aqueous nickel. Additionally, we have determined thermodynamic

Sparks, Donald L.

438

Chemical kinetics and oil shale process design  

SciTech Connect (OSTI)

Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

Burnham, A.K.

1993-07-01T23:59:59.000Z

439

CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan  

SciTech Connect (OSTI)

The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

Zaveri, RA; Shaw, WJ; Cziczo, DJ

2010-07-12T23:59:59.000Z

440

Aerosol Data Sources and Their Roles within PARAGON  

SciTech Connect (OSTI)

We briefly but systematically review major sources of aerosol data, emphasizing suites of measurements that seem most likely to contribute to assessments of global aerosol climate forcing. The strengths and limitations of existing satellite, surface, and aircraft remote-sensing systems are described, along with those of direct sampling networks and ship-based stations. It is evident that an enormous number of aerosol-related observations have been made, on a wide range of spatial and temporal sampling scales, and that many of the key gaps in this collection of data could be filled by technologies that either exist or are expected in the near future. Emphasis must be given to combining remote sensing, in situ, active and passive observations, and integrating them with aerosol chemical transport models, in order to create a more complete environmental picture having sufficient detail to address current climate-forcing questions. The Progressive Aerosol Retrieval and Assimilation Global Observing Network (PARAGON) initiative would provide an organizational framework to meet this goal.

Kahn, Ralph A.; Ogren, J. A.; Ackerman, Thomas P.; Bosenberg, Jens; Charlson, Robert J.; Diner, David J.; Holben, B. N.; Menzies, Robert T.; Miller, Mark A.; Seinfeld, John H.

2004-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Secondary Aerosol: Precursors and Formation Mechanisms. Technical Report on Grant  

SciTech Connect (OSTI)

This project focused on studying trace gases that participate in chemical reactions that form atmospheric aerosols. Ammonium sulfate is a major constituent of these tiny particles, and one important pathway to sulfate formation is oxidation of dissolved sulfur dioxide by hydrogen peroxide in cloud, fog and rainwater. Sulfate aerosols influence the number and size of cloud droplets, and since these factors determine cloud radiative properties, sulfate aerosols also influence climate. Peroxide measurements, in conjunction with those of other gaseous species, can used to distinguish the contribution of in-cloud reaction to new sulfate aerosol formation from gas-phase nucleation reactions. This will lead to more reliable global climate models. We constructed and tested a new 4-channel fluorescence detector for airborne detection of peroxides. We integrated the instrument on the G-1 in January, 2006 and took a test flight in anticipation of the MAX-Mex field program, where we planned to fly under pressurized conditions for the first time. We participated in the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) - Megacity Aerosol EXperiment â?? Mexico City (MAX-Mex) field measurement campaign. Peroxide instrumentation was deployed on the DOE G-1 research aircraft based in Veracruz, and at the surface site at Tecamac University.

Weinstein-Lloyd, Judith B

2009-05-04T23:59:59.000Z

442

Kinetic advantage of controlled intermediate nuclear fusion  

SciTech Connect (OSTI)

The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

Guo Xiaoming [Physics and Computer Science Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5 (Canada)

2012-09-26T23:59:59.000Z

443

E-Print Network 3.0 - arctic aerosol burden Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and surface... generally exhibits low aerosol ... Source: National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Atmopsheric Chemistry and...

444

E-Print Network 3.0 - aerosol sellest rgivad Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

445

E-Print Network 3.0 - aerosol biokinetics concentrations Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

446

E-Print Network 3.0 - aerosols Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 4, 2004 Abstract Atmospheric aerosol particles scatter and absorb shortwave (solar) radiation and Source: Brookhaven National Laboratory, Environmental Chemistry...

447

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES  

E-Print Network [OSTI]

BNL-65388-AB PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW TEMPERATURES: WHY ARE THE MODELS SO of Energy under Contract No. DE-AC02-98CH10886. #12;PROPERTIES OF AMMONIATED SULFATE AEROSOLS AT LOW will present a study of the properties of ammoniated sulfate aerosols ((NH4)2SO4, NH4HSO4, and in- between

448

REPRESENTING AEROSOL DYNAMICS AND PROPERTIES IN CHEMICAL TRANSPORT MODELS BY THE METHOD OF MOMENTS  

E-Print Network [OSTI]

understanding of the key processes that govern the aerosol size distribution: · Gas-to-particle conversion--conversion, suspensions of solid or liquid particles, are an important multi- phase system. Aerosols scatter and absorb retrospectively and prospectively for different emissions scenarios. Important aerosol properties and processes

449

Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude of injection  

E-Print Network [OSTI]

Sensitivity of stratospheric geoengineering with black carbon to aerosol size and altitude geoengineering with black carbon (BC) aerosols using a general circulation model with fixed sea surface involving sulfate aerosols, black carbon geoengineering likely carries too many risks to make it a viable

450

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS  

E-Print Network [OSTI]

Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from such as cloud mask, atmos- pheric profiles, aerosol properties, total precipitable water, and cloud properties vapor amount, aerosol particles, and the subsequently formed clouds [9]. Barnes et al. [2] provide

Sheridan, Jennifer

451

Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China  

E-Print Network [OSTI]

Significant reduction of surface solar irradiance induced by aerosols in a suburban region in northeastern China Xiangao Xia,1 Hongbin Chen,1 Zhanqing Li,1,2 Pucai Wang,1 and Jiankai Wang1 Received 25 May region in northeastern China. Aerosol properties derived from Sun photometer measurements and aerosol

Li, Zhanqing

452

Speciation of Fe in ambient aerosol and cloudwater  

SciTech Connect (OSTI)

Atmospheric iron (Fe) is thought to play an important role in cloudwater chemistry (e.g., S(IV) oxidation, oxidant production, etc.), and is also an important source of Fe to certain regions of the worlds oceans where Fe is believed to be a rate-limiting nutrient for primary productivity. This thesis focuses on understanding the chemistry, speciation and abundance of Fe in cloudwater and aerosol in the troposphere, through observations of Fe speciation in the cloudwater and aerosol samples collected over the continental United States and the Arabian Sea. Different chemical species of atmospheric Fe were measured in aerosol and cloudwater samples to help assess the role of Fe in cloudwater chemistry.

Siefert, L. [California Institute of Technology, Pasadena, CA (United States)

1996-08-15T23:59:59.000Z

453

Aerosols and Clouds: In Cahoots to Change Climate  

SciTech Connect (OSTI)

Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

Berg, Larry

2014-03-29T23:59:59.000Z

454

Aerosols and Clouds: In Cahoots to Change Climate  

ScienceCinema (OSTI)

Key knowledge gaps persist despite advances in the scientific understanding of how aerosols and clouds evolve and affect climate. The Two-Column Aerosol Project, or TCAP, was designed to provide a detailed set of observations to tackle this area of unknowns. Led by PNNL atmospheric scientist Larry Berg, ARM's Climate Research Facility was deployed in Cape Cod, Massachusetts for the 12-month duration of TCAP, which came to a close in June 2013. "We are developing new tools to look at particle chemistry, like our mass spectrometer used in TCAP that can tell us the individual chemical composition of an aerosol," said Berg. "Then, we'll run our models and compare it with the data that we have to make sure we're getting correct answers and make sure our climate models are reflecting the best information."

Berg, Larry

2014-06-02T23:59:59.000Z

455

Lognormal Size Distribution Theory for Deposition of Polydisperse Aerosol Particles  

SciTech Connect (OSTI)

The moments method of the lognormal size distribution theory was applied to the deposition equation of a radioactive aerosol within a liquid-metal fast breeder reactor for analysis of postulated accidents. The deposition coefficient of Crump and Seinfeld was utilized to represent the Brownian and turbulent diffusions and the gravitational sedimentation. The deposition equation was converted into a set of three ordinary differential equations. This approach takes the view point that the size distribution of an aerosol is represented by a time-dependent lognormal size distribution function during the deposition process. Numerical calculations have been performed, and the results were found to be in good agreement with the exact solution. The derived model for aerosol deposition is convenient to use in a numerical general dynamic equation solution routine based on the moments method, where nucleation, condensation, coagulation, and deposition need to be solved simultaneously.

Park, S.H.; Lee, K.W. [Kwangju Institute of Science and Technology (Korea, Republic of)

2000-07-15T23:59:59.000Z

456

Using large environmental chamber technique for gaseous contaminant removal equipment test  

SciTech Connect (OSTI)

The US Association of Home Appliance Manufacturers (AHAM) has set a voluntary standard for testing the initial dust-removal capacity of portable air cleaners. In the authors` test of portable air cleaners for the local consumer council, the AHAM method was extended to test the initial removal capacity for gaseous phase pollutants. Also, carbon filters` efficiency change over time in toluene removal on a number of air cleaners was tested. In using a large chamber to carry out these tests, the chamber wall adsorption and re-emission effects were experimentally quantified. These tests indicated that a large chamber, with its wall surface adsorption controlled, is simple and robust to use to quantify the initial cleaning capacity for gaseous phase pollutants. Based on these test results, a large chamber method is proposed to test the performance lifetimes of portable air cleaners. The system advantages of the method over the in-duct performance life test methods are that no continuous air-cleaning system is required and that the chamber`s humidity and temperature can be maintained at the desired values more easily with the combination of a unitary dehumidifier and a bubbler system. This paper will present the trial results with portable air cleaner tests and discuss the large environmental chamber techniques.

Niu, J.; Tung, T.C.W.; Chui, V.W.Y. [Hong Kong Polytechnic Univ. (Hong Kong). Dept. of Building Services Engineering

1998-12-31T23:59:59.000Z

457

Plastic ball and streamer chamber experiments at the Bevalac  

SciTech Connect (OSTI)

Single particle inclusive experiments, and experiments that additionally measure a few correlations like the associated multiplicity, have provided the main contribution to our present understanding of high energy heavy ion collisions. The results from those experiments are in overall agreement with calculations of the cascade and hydrodynamical models. In the cascade model the collision of two nuclei is simulated as a cascade of nucleon-nucleon collisions using measured N-N cross sections. The hydrodynamical model, on the other hand, describes the nuclear collision as that of two fluids and makes use of a nuclear equation of state relating thermal and compressional energy densities to pressure. The pressure field dominates the expansion phase and leads to collective flow of the reaction products in a preferred direction. The observation of such effects in inclusive experiments is not well established. Collective effects that manifest themselves in the shape of the event in phase space are expected to be seen best in the new complete event detectors that measure the final state as exclusively as presently possible by measuring most of the charged particles emitted in the reaction. In addition, those detectors are well suited to test macroscopic concepts such as equilibrium and temperature. Global methods like the sphericity or thrust analysis take into account all the correlations measured in the event and are specially designed to determine the shape of an event in phase space and thus to define a reaction plane. Recent data from the Plastic Ball and the streamer chamber experiments, the first complete event detectors in use at the Bevalac, are presented in this report.

Ritter, H.G.

1982-07-01T23:59:59.000Z

458

Distinguishing Aerosol Impacts on Climate Over the Past Century  

SciTech Connect (OSTI)

Aerosol direct (DE), indirect (IE), and black carbon-snow albedo (BAE) effects on climate between 1890 and 1995 are compared using equilibrium aerosol-climate simulations in the Goddard Institute for Space Studies General Circulation Model coupled to a mixed layer ocean. Pairs of control(1890)-perturbation(1995) with successive aerosol effects allow isolation of each effect. The experiments are conducted both with and without concurrent changes in greenhouse gases (GHG's). A new scheme allowing dependence of snow albedo on black carbon snow concentration is introduced. The fixed GHG experiments global surface air temperature (SAT) changed -0.2, -1.0 and +0.2 C from the DE, IE, and BAE. Ice and snow cover increased 1.0% from the IE and decreased 0.3% from the BAE. These changes were a factor of 4 larger in the Arctic. Global cloud cover increased by 0.5% from the IE. Net aerosol cooling effects are about half as large as the GHG warming, and their combined climate effects are smaller than the sum of their individual effects. Increasing GHG's did not affect the IE impact on cloud cover, however they decreased aerosol effects on SAT by 20% and on snow/ice cover by 50%; they also obscure the BAE on snow/ice cover. Arctic snow, ice, cloud, and shortwave forcing changes occur mostly during summer-fall, but SAT, sea level pressure, and long-wave forcing changes occur during winter. An explanation is that aerosols impact the cryosphere during the warm-season but the associated SAT effect is delayed until winter.

Koch, Dorothy; Menon, Surabi; Del Genio, Anthony; Ruedy, Reto; Alienov, Igor; Schmidt, Gavin A.

2008-08-22T23:59:59.000Z

459

Long-term Kinetics of Uranyl Desorption from Sediments Under...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions. Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions. Abstract: Long-term...

460

Direct Visualization of Initial SEI Morphology and Growth Kinetics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initial SEI Morphology and Growth Kinetics During Lithium Deposition by in situ Electrochemical Direct Visualization of Initial SEI Morphology and Growth Kinetics During Lithium...

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Abstract: Molecular simulation techniques...

462

Uncertainty analysis of multi-rate kinetics of uranium desorption...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Abstract: A...

463

Global Optimization of Chemical Reactors and Kinetic Optimization  

E-Print Network [OSTI]

Model; 3-D; Monolith; Reactor; Optimization Introduction TheAngeles Global Optimization of Chemical Reactors and KineticGlobal Optimization of Chemical Reactors and Kinetic

ALHUSSEINI, ZAYNA ISHAQ

2013-01-01T23:59:59.000Z

464

Transport-controlled kinetics of dissolution and precipitation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transport-controlled kinetics of dissolution and precipitation in the sediments under alkaline and saline conditions . Transport-controlled kinetics of dissolution and...

465

Microscale Electrode Design Using Coupled Kinetic, Thermal and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling 2010 DOE...

466

Microscale Electrode Design Using Coupled Kinetic, Thermal and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling 2009 DOE...

467

Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes 2010 DOE...

468

A Comparison of HCCI Engine Performance Data and Kinetic Modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of HCCI Engine Performance Data and Kinetic Modeling Results over a Wide Rangeof Gasoline Range Surrogate Fuel Blends A Comparison of HCCI Engine Performance Data and Kinetic...

469

Improving Combustion Software to Solve Detailed Chemical Kinetics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program...

470

The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol  

SciTech Connect (OSTI)

The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Köhler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Köhler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Köhler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The biases associated with these simplifications are compared for different supersaturations, and the variation of the biases is examined as a function of aerosol age. The results show that the simplification of internally mixed, size-independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

2010-03-15T23:59:59.000Z

471

Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol  

SciTech Connect (OSTI)

The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.

John A. Ogren

2010-04-05T23:59:59.000Z

472

Mercury capture by aerosol transformation in combustion environments. Appendix 5  

SciTech Connect (OSTI)

Aerosol transformation of elemental mercury by oxidizing mercury in the air is investigated in this study by varying temperature and residence time. The experimental results show that mercury oxidation is not important at the temperature range and time scale studied. The rate of mercury oxidation is too slow that the capture of mercury vapor by transforming it into mercury oxide in aerosol phase is not practical in real systems. Studies are needed for alternative approaches to capture mercury vapor such as the use of sorbent materials.

NONE

1997-02-01T23:59:59.000Z

473

Thermophoretic separation of aerosol particles from a sampled gas stream  

SciTech Connect (OSTI)

A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

Postma, Arlin K. (Halfway, OR)

1986-01-01T23:59:59.000Z

474

Thermophoretic separation of aerosol particles from a sampled gas stream  

DOE Patents [OSTI]

This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

Postma, A.K.

1984-09-07T23:59:59.000Z

475

Modeling of Reactor Kinetics and Dynamics  

SciTech Connect (OSTI)

In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

Matthew Johnson; Scott Lucas; Pavel Tsvetkov

2010-09-01T23:59:59.000Z

476

ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

Sivaraman, Chitra; Flynn, Connor

477

Kinetic limits of dynamical systems  

E-Print Network [OSTI]

Since the pioneering work of Maxwell and Boltzmann in the 1860s and 1870s, a major challenge in mathematical physics has been the derivation of macroscopic evolution equations from the fundamental microscopic laws of classical or quantum mechanics. Macroscopic transport equations lie at the heart of many important physical theories, including fluid dynamics, condensed matter theory and nuclear physics. The rigorous derivation of macroscopic transport equations is thus not only a conceptual exercise that establishes their consistency with the fundamental laws of physics: the possibility of finding deviations and corrections to classical evolution equations makes this subject both intellectually exciting and relevant in practical applications. The plan of these lectures is to develop a renormalisation technique that will allow us to derive transport equations for the kinetic limits of two classes of simple dynamical systems, the Lorentz gas and kicked Hamiltonians (or linked twist maps). The technique uses the ergodic theory of flows on homogeneous spaces (homogeneous flows for short), and is based on joint work with Andreas Str\\"ombergsson.

Jens Marklof

2014-08-06T23:59:59.000Z

478

Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant - 13183  

SciTech Connect (OSTI)

The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate, and the release fraction which is the ratio of generation rate to spray flow rate, of droplets suspended in a test chamber and droplet size distribution from prototypic sprays. A novel test method was developed to allow measurement of sprays from small to large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the release fraction decreases with increasing orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 ?m and increases the release fraction below this droplet size. (authors)

Gauglitz, P.A.; Mahoney, L.A.; Schonewill, P.P.; Bontha, J.R.; Blanchard, J.; Kurath, D.E.; Daniel, R.C.; Song, C. [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)] [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)

2013-07-01T23:59:59.000Z

479

A sun-tracking environmental chamber for the outdoor quantification of CPV modules  

SciTech Connect (OSTI)

The paper describes a sun-tracking environmental chamber and its associated fast electronics, devised for the accurate outdoor characterization of CPV cells, receivers, mono-modules, and modules. Some typical measurement results are presented.

Faiman, David, E-mail: faiman@bgu.ac.il; Melnichak, Vladimir, E-mail: faiman@bgu.ac.il; Bokobza, Dov, E-mail: faiman@bgu.ac.il; Kabalo, Shlomo, E-mail: faiman@bgu.ac.il [Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000 (Israel)

2014-09-26T23:59:59.000Z

480

E-Print Network 3.0 - atlas mdt chambers Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 CHRISTOPH AMELUNG Date of birth July 14, 1971 (DetmoldGermany) Summary: on the optical alignment system of the ATLAS MDT chambers July 2002 -...

Note: This page contains sample records for the topic "aerosol chamber kinetics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The design, fabrication, and implications of a solvothermal vapor annealing chamber  

E-Print Network [OSTI]

This thesis documents the design, fabrication, use, and benefits of a prototype aluminum solvothermal vapor annealing chamber which facilitates the self-assembly of block copolymers (BCPs) on silicon wafers which are then ...

Porter, Nathaniel R., Jr

2013-01-01T23:59:59.000Z

482

Conceptual Study of Integrated Chamber Core for Laser Fusion with Magnetic Intervention  

E-Print Network [OSTI]

pumping, tritium extraction, and chamber coolant coupling to a heat exchanger (to drive the final product plasma cloud. The j x B force on the electrons is thus transferred to the ions which appear to push

Raffray, A. René

483

Study of Low Speed Flow Cytometry for Diffraction Imaging with Different Chamber  

E-Print Network [OSTI]

for optimization of the chamber design and improvement of the cell positioning accuracy for study of slow moving utilize a sheath nozzle with a conical end or orifice for hydrodynamic focusing the fluid injected

484

Potential applications of the natural design of internal explosion chambers in the bombardier beetle (Carabidae, Brachinus)  

E-Print Network [OSTI]

The Bombardier Beetle (Carabidae, Brachinus) has a unique form of defense mechanism which involves the explosive mixing of hydroquinones and hydrogen peroxide in its internal explosion chambers and using the resultant high ...

Lai, Changquan

2010-01-01T23:59:59.000Z

485

Blood meal host preferences of Culex salinarius Coquillett (Diptera : culicidae) in Chambers County, Texas  

E-Print Network [OSTI]

on a monthly basis from three field sites in Chambers County, TX. The source of blood contained in each specimen was determined using a modified precipitin test. The results were used to calculate seasonal foraging ratios for mosquito populations...

Grieco, John Paul

1994-01-01T23:59:59.000Z

486

Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers  

DOE Patents [OSTI]

A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations in the particle beam.

Danby, Gordon T. (Wading River, NY); Jackson, John W. (Shoreham, NY)

1991-01-01T23:59:59.000Z

487

Method of correcting eddy current magnetic fields in particle accelerator vacuum chambers  

DOE Patents [OSTI]

A method for correcting magnetic field aberrations produced by eddy currents induced in a particle accelerator vacuum chamber housing is provided wherein correction windings are attached to selected positions on the housing and the windings are energized by transformer action from secondary coils, which coils are inductively coupled to the poles of electro-magnets that are powered to confine the charged particle beam within a desired orbit as the charged particles are accelerated through the vacuum chamber by a particle-driving rf field. The power inductively coupled to the secondary coils varies as a function of variations in the power supplied by the particle-accelerating rf field to a beam of particles accelerated through the vacuum chamber, so the current in the energized correction coils is effective to cancel eddy current flux fields that would otherwise be induced in the vacuum chamber by power variations (dB/dt) in the particle beam.

Danby, G.T.; Jackson, J.W.

1990-03-19T23:59:59.000Z

488

Kinetic description of mixtures of anisotropic fluids  

E-Print Network [OSTI]

A simple system of coupled kinetic equations for quark and gluon anisotropic systems is solved numerically. The solutions are compared with the predictions of the anisotropic hydrodynamics describing a mixture of anisotropic fluids. We find that the solutions of the kinetic equations can be well reproduced by anisotropic hydrodynamics if the initial distribution are oblate for both quarks and gluons. On the other hand, the solutions of the kinetic equations have a different qualitative behavior from those obtained in anisotropic hydrodynamics if the initial configurations are oblate-prolate or prolate-prolate. This suggests that an extension of the anisotropic hydrodynamics scheme for the mixture of anisotropic fluids is needed, where higher moments of the kinetic equations are used and present simplifications are avoided.

Wojciech Florkowski; Oskar Madetko

2014-02-11T23:59:59.000Z

489

The Effect of Heat Treatments and Coatings on the Outgassing Rate of Stainless Steel Chambers  

SciTech Connect (OSTI)

The outgassing rates of four nominally identical 304L stainless steel vacuum chambers were measured to determine the effect of chamber coatings and heat treatments. One chamber was coated with titanium nitride (TiN) and one with amorphous silicon (a-Si) immediately following fabrication. One chamber remained uncoated throughout, and the last chamber was first tested without any coating, and then coated with a-Si following a series of heat treatments. The outgassing rate of each chamber was measured at room temperatures between 15 and 30 deg C following bakes at temperatures between 90 and 400 deg C. Measurements for bare steel showed a significant reduction in the outgassing rate by more than a factor of 20 after a 400 deg C heat treatment (3.5 x 10{sup 12} TorrL s{sup -1}cm{sup -2} prior to heat treatment, reduced to 1.7 x 10{ sup -13} TorrL s{sup -1}cm{sup -2} following heat treatment). The chambers that were coated with a-Si showed minimal change in outgassing rates with heat treatment, though an outgassing rate reduced by heat treatments prior to a-Si coating was successfully preserved throughout a series of bakes. The TiN coated chamber exhibited remarkably low outgassing rates, up to four orders of magnitude lower than the uncoated stainless steel. An evaluation of coating composition suggests the presence of elemental titanium which could provide pumping and lead to an artificially low outgassing rate. The outgassing results are discussed in terms of diffusion-limited versus recombination-limited processes.

Mamum, Md Abdullah A. [Old Dominion Univ., Norfolk, VA (United States); Elmustafa, Abdelmageed A, [Old Dominion Univ., Norfolk, VA (United States); Stutzman, Marcy L. [JLAB, Newport News, VA (United States); Adderley, Philip A. [JLAB, Newport News, VA (United States); Poelker, Matthew [JLAB, Newport News, VA (United States)

2014-03-01T23:59:59.000Z

490

Invention and History of the Bubble Chamber (LBNL Summer Lecture Series)  

ScienceCinema (OSTI)

Summer Lecture Series 2006: Don Glaser won the 1960 Nobel Prize for Physics for his 1952 invention of the bubble chamber at Berkeley Lab, a type of particle detector that became the mainstay of high-energy physics research throughout the 1960s and 1970s. He discusses how, inspired by bubbles in a glass of beer, he invented the bubble chamber and detected cosmic-ray muons.

Glaser, Don

2011-04-28T23:59:59.000Z

491

Mechanistic studies using kinetic isotope effects  

E-Print Network [OSTI]

MECHANISTIC STUDIES USING KINETIC ISOTOPE EFFECTS A Thesis by BRIAN E. SCHULMFIER Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requtrements for the degree of MASTER OF SCIENCE December... 1999 Major Subject: Chemistry MECHANISTIC STUDIES USING KINETIC ISOTOPE EFFECTS A Thesis by BRIAN E. SCHULMEIER Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved...

Schulmeier, Brian E.

2012-06-07T23:59:59.000Z

492

Kinetic decoupling of WIMPs: analytic expressions  

E-Print Network [OSTI]

We present a general expression for the values of the average kinetic energy and of the temperature of kinetic decoupling of a WIMP, valid for any cosmological model. We show an example of the usage of our solution when the Hubble rate has a power-law dependence on temperature, and we show results for the specific cases of kination cosmology and low- temperature reheating cosmology.

Visinelli, Luca

2015-01-01T23:59:59.000Z

493

Modeling aerosols and their interactions with shallow cumuli during the 2007 CHAPS field study  

SciTech Connect (OSTI)

The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is used to simulate relationships between aerosols and clouds in the vicinity of Oklahoma City during the June 2007 Cumulus Humilis Aerosol Processing Study (CHAPS). The regional scale simulation completed using 2 km horizontal grid spacing evaluates four important relationships between aerosols and shallow cumulus clouds observed during CHAPS. First, the model reproduces the trends of higher nitrate volume fractions in cloud droplet residuals compared to interstitial non-activated aerosols, as measured using the Aerosol Mass Spectrometer. Comparing simulations with cloud chemistry turned on and off, we show that nitric acid vapor uptake by cloud droplets explains the higher nitrate content of cloud droplet residuals. Second, as documented using an offline code, both aerosol water and other inorganics (OIN), which are related to dust and crustal emissions, significantly affect predicted aerosol optical properties. Reducing the OIN content of wet aerosols by 50% significantly improves agreement of model predictions with measurements of aerosol optical properties. Third, the simulated hygroscopicity of aerosols is too high as compared to their hygroscopicity derived from cloud condensation nuclei and particle size distribution measurements, indicating uncertainties associated with simulating size-dependent chemical composition and treatment of aerosol mixing state within the model. Fourth, the model reasonably represents the observations of the first aerosol indirect effect where pollutants in the vicinity of Oklahoma City increase cloud droplet number concentrations and decrease the droplet effective radius. While previous studies have often focused on cloud-aerosol interactions in stratiform and deep convective clouds, this study highlights the ability of regional-scale models to represent some of the important aspects of cloud-aerosol interactions associated with fields of short-lived shallow cumuli.

Shrivastava, ManishKumar B.; Berg, Larry K.; Fast, Jerome D.; Easter, Richard C.; Laskin, Alexander; Chapman, Elaine G.; Gustafson, William I.; Liu, Ying; Berkowitz, Carl M.

2013-02-07T23:59:59.000Z

494

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols  

SciTech Connect (OSTI)

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; L.Vaghjiani, Ghanshyam; Leone, Stephen R.

2012-03-16T23:59:59.000Z

495

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles  

E-Print Network [OSTI]

Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton to "fresh" lubricating oil. The gas chromatography retention time data indicates that the cycloalkane ring with lubricating oil being the dominant source from both gasoline and diesel-powered vehicles, with an additional

Cohen, Ronald C.

496

LESSONS LEARNED IN AEROSOL MONITORING WITH THE RASA  

SciTech Connect (OSTI)

The Radionuclide Aerosol Sampler/Analyzer (RASA) is an automated aerosol collection and analysis system designed by Pacific Northwest National Laboratory (PNNL) in the 1990's and is deployed in several locations around the world as part of the International Monitoring System (IMS) required under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The RASA operates unattended, save for regularly scheduled maintenance, iterating samples through a three-step process on a 24-hour interval. In its 15-year history, much has been learned from the operation and maintenance of the RASA that can benefit engineering updates or future aerosol systems. On 11 March 2011, a 9.0 magnitude earthquake and tsunami rocked the eastern coast of Japan, resulting in power loss and cooling failures at the Daiichi nuclear power plants in Fukushima Prefecture. Aerosol collections were conducted with the RASA in Richland, WA. We present a summary of the lessons learned over the history of the RASA, including lessons taken from the Fukushima incident, regarding the RASA IMS stations operated by the United States.

Forrester, Joel B.; Bowyer, Ted W.; Carty, Fitz; Comes, Laura; Eslinger, Paul W.; Greenwood, Lawrence R.; Haas, Derek A.; Hayes, James C.; Kirkham, Randy R.; Lepel, Elwood A.; Litke, Kevin E.; Miley, Harry S.; Morris, Scott J.; Schrom, Brian T.; Van Davelaar, Peter; Woods, Vincent T.

2011-09-14T23:59:59.000Z

497

aerosol simulant test: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

aerosol simulant test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 6, 75197562, 2006 Simulating...

498

AIRBORNE HIGH SPECTRAL RESOLUTION LIDAR MEASUREMENTS OF ATMOSPHERIC AEROSOLS  

E-Print Network [OSTI]

the evolution and transport of pollution from Mexico City. The second major experiment was the Texas Air Quality Union 2007 Joint Assembly Acapulco, Mexico May 22-25, 2007 Environmental Sciences Department Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX

499

Boreal forests, aerosols and the impacts on clouds and climate  

E-Print Network [OSTI]

of energy, momentum, water, carbon dioxide and other trace gas and aerosol species (figure 1). Through due to the absorption of the Sun's heat by the dark forest canopy. However, these studies ignored shown in figure 2) have a dark canopy (with low albedo) that obscures the snow-covered ground (with high

Spracklen, Dominick

500

CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES  

E-Print Network [OSTI]

CLOUD DROPLET NUCLEATION AND ITS CONNECTION TO AEROSOL PROPERTIES STEPHEN E. SCHWARTZ Environmental in cloud-free conditions and indirectly, by increasing concentratiol1S of cloud droplets thereby enhancing cloud shortwave reflectivity. These effecls are thought to be significant in the context of changes