Sample records for aerosol campaign isdac

  1. Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008

    SciTech Connect (OSTI)

    SJ Ghan; B Schmid; JM Hubbe; CJ Flynn; A Laskin; AA Zelenyuk; DJ Czizco; CN Long; G McFarquhar; J Verlinde; J Harrington; JW Strapp; P Liu; A Korolev; A McDonald; M Wolde; A Fridlind; T Garrett; G Mace; G Kok; S Brooks; D Collins; D Lubin; P Lawson; M Dubey; C Mazzoleni; M Shupe; S Xie; DD Turner; Q Min; EJ Mlawer; D Mitchell

    2007-11-01T23:59:59.000Z

    The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and ice nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary conditions are likely to be very different because of the much more extensive ocean water during M-PACE. The uniformity of the surface conditions during ISDAC greatly simplifies the objective analysis (surface fluxes and precipitation are very weak), so that it can largely rely on the European Centre for Medium-Range Weather Forecasts analysis. The aerosol measurements can also be used as input to the cloud models and to evaluate the aerosol retrievals. By running the cloud models with and without solar absorption by the aerosols, we can determine the semidirect effect of the aerosol on the clouds.

  2. aerosol campaign isdac: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    driven process where already-detached, larger particles investigation The mineral dust size distribution was compared to aircraft measurements from the SAMUM campaign Oxford,...

  3. ARM - Field Campaign - Indirect and Semi-Direct Aerosol Campaign (ISDAC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric

  4. The Indirect and Semi-Direct Aerosol Campaign

    ScienceCinema (OSTI)

    Ghan, Steve

    2014-06-12T23:59:59.000Z

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  5. The Indirect and Semi-Direct Aerosol Campaign

    SciTech Connect (OSTI)

    Ghan, Steve

    2014-03-24T23:59:59.000Z

    Research projects like the Indirect and Semi-Direct Aerosol Campaign, or ISDAC, increase our knowledge of atmospheric aerosol particles and cloud physics.

  6. ARM - Field Campaign - ISDAC - Hemispheric Flux Spectroradiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric Flux

  7. ARM - Field Campaign - ISDAC - NASA ARCTAS Coordination with ARM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric Flux- NASA ARCTAS

  8. ARM - Field Campaign - ISDAC / RISCAM - Humidified Tandem Differential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric Flux- NASA

  9. ARM - Indirect and Semi-Direct Aerosol Campaign (ISDAC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, FeatureListGeneralPastIce Cores Outreach

  10. ISDAC Microphysics

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McFarquhar, Greg

    Best estimate of cloud microphysical parameters derived using data collected by the cloud microphysical probes installed on the National Research Council (NRC) of Canada Convair-580 during ISDAC. These files contain phase, liquid and ice crystal size distributions (Nw(D) and Ni(D) respectively), liquid water content (LWC), ice water content (IWC), extinction of liquid drops (bw), extinction of ice crystals (bi), effective radius of water drops (rew) and of ice crystals (rei) and median mass diameter of liquid drops (Dmml) and of ice crystals (Dmmi) at 30 second resolution.

  11. ARM - AAF ISDAC Field Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNewstt^APPLIANCETracer Forecast

  12. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds . Abstract:...

  13. ARM - Field Campaign - Cirrus Clouds and Aerosol Properties Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? WeCampaign 2

  14. The dependence of ice microphysics on aerosol concentration in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. The dependence of ice microphysics on aerosol...

  15. ARM - Field Campaign - Fall 1997 Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5

  16. ARM - Field Campaign - MASRAD - Aerosol Optical Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM Data

  17. Indirect and Semi-Direct Aerosol Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook link to twittersupport ofCampaign

  18. Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign

    E-Print Network [OSTI]

    Li, Guohui

    In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module ...

  19. ARM - Field Campaign - Aerosol Lidar Validation Experiment - ALIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006ObservationsInfraredgovCampaignsAerosol Lidar

  20. ARM - Field Campaign - Aerosol Life Cycle IOP at BNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006ObservationsInfraredgovCampaignsAerosol

  1. ARM - PI Product - ISDAC Microphysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheatProductsISDAC Microphysics ARM Data Discovery Browse

  2. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    SciTech Connect (OSTI)

    Liu X.; Lin W.; Xie, S.; Boyle, J.; Klein, S. A.; Shi, X.; Wang, Z.; Ghan, S. J.; Earle, M.; Liu, P. S. K.; Zelenyuk, A.

    2011-12-24T23:59:59.000Z

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m{sup -2}. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5 C to -40 C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  3. ARM - Field Campaign - Ganges Valley Aerosol Experiment (GVAX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 CloudgovCampaignsGanges

  4. Testing Cloud Microphysics Parameterizations in NCAR CAM5 with ISDAC and M-PACE Observations

    SciTech Connect (OSTI)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter; Zelenyuk, Alla

    2011-12-24T23:59:59.000Z

    Arctic clouds simulated by the NCAR Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic Spring and Fall seasons performed under the Cloud- Associated Parameterizations Testbed (CAPT) framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary layer mixed-phase stratocumulus, and multilayer or deep frontal clouds. However, for low-level clouds, the model significantly underestimates the observed cloud liquid water content in both seasons and cloud fraction in the Spring season. As a result, CAM5 significantly underestimates the surface downward longwave (LW) radiative fluxes by 20-40 W m-2. The model with a new ice nucleation parameterization moderately improves the model simulations by increasing cloud liquid water content in mixed-phase clouds through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron- Findeisen (WBF) process. The CAM5 single column model testing shows that change in the homogeneous freezing temperature of rain to form snow from -5 C to -40 C has a substantial impact on the modeled liquid water content through the slowing-down of liquid and rain-related processes. In contrast, collections of cloud ice by snow and cloud liquid by rain are of minor importance for single-layer boundary layer mixed-phase clouds in the Arctic.

  5. Project Overview: Cumulus Humilis Aerosol Processing Study (CHAPS): Proposed Summer 2007 ASP Field Campaign

    SciTech Connect (OSTI)

    Berkowitz, Carl M.; Berg, Larry K.; Ogren, J. A.; Hostetler, Chris A.; Ferrare, Richard

    2006-05-18T23:59:59.000Z

    This white paper presents the scientific motivation and preliminary logistical plans for a proposed ASP field campaign to be carried out in the summer of 2007. The primary objective of this campaign is to use the DOE Gulfstream-1 aircraft to make measurements characterizing the chemical, physical and optical properties of aerosols below, within and above large fields of fair weather cumulus and to use the NASA Langley Research Center’s High Spectral Resolution Lidar (HSRL) to make independent measurements of aerosol backscatter and extinction profiles in the vicinity of these fields. Separate from the science questions to be addressed by these observations will be information to add in the development of a parameterized cumulus scheme capable of including multiple cloud fields within a regional or global scale model. We will also be able to compare and contrast the cloud and aerosol properties within and outside the Oklahoma City plume to study aerosol processes within individual clouds. Preliminary discussions with the Cloud and Land Surface Interaction Campaign (CLASIC) science team have identified overlap between the science questions posed for the CLASIC Intensive Operation Period (IOP) and the proposed ASP campaign, suggesting collaboration would benefit both teams.

  6. ARM - Field Campaign - Carbonaceous Aerosol and Radiation Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love(CARES) -

  7. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love(CARES)

  8. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love(CARES)(CARES)

  9. ARM - Field Campaign - Carbonaceous Aerosol and Radiative Effects Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would

  10. ARM - Field Campaign - Two-Column Aerosol Project (TCAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model

  11. ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraft IntegrationIslandMarine

  12. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD Sensor TWST Cloud

  13. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD Sensor TWST

  14. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD Sensor

  15. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD SensorSnowfall

  16. ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARMField(MASRAD)

  17. ARM - Field Campaign - Pajarito Aerosol Coupling to Ecosystems PACE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010 ARM

  18. ARM - Field Campaign - Shortwave Radiation and Aerosol Intensive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGPObservation Periods

  19. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Aerial Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature StoriesgovCampaignsSurface Heat Budget

  20. Aerosol optical hygroscopicity measurements during the 2010 CARES Campaign

    SciTech Connect (OSTI)

    Atkinson, D. B.; Radney, J. G.; Lum, J.; Kolesar, K. R.; Cziczo, Daniel J.; Pekour, Mikhail S.; Zhang, Qi; Setyan, Ari; Zelenyuk, Alla; Cappa, Christopher

    2015-01-01T23:59:59.000Z

    Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter ?, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter ? for oxygenated organic aerosol (OA) and for supermicron particles, yielding ? = 0.1–0.15 and 0.9–1.0, respectively. The derived range of oxygenated OA ? values are in line with previous observations. The relatively large values for supermicron particles is consistent with substantial contributions of sea salt-containing particles in this size range. Analysis of time-dependent variations in the supermicron particle hygroscopicity suggest that atmospheric processing, specifically chloride displacement by nitrate and the accumulation of secondary organics on supermicron particles, can lead to substantial depression of the observed GF.

  1. ARM - Field Campaign - In-situ Aerosol Profiles (Cessna Aerosol Flights)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall- Hemispheric Flux-

  2. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Winter Aerosol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column ModelRSP MeasurementsRadiation

  3. SUPPLEMENTARY MATERIALS Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns

    E-Print Network [OSTI]

    Meskhidze, Nicholas

    values. #12;Figure S2: Scatter plot of observed acetonitrile and OA concentrations for seven campaigns in black. 80th percentile acetonitrile concentrations for each campaign are indicated with a dashed line

  4. DubeyISDAC-ARM09.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69ChristopherDrug-resistantEnergy

  5. Synthesis of in-situ microphysical measurements with remote retrievals and models

    SciTech Connect (OSTI)

    R. Paul Lawson; S. Lance; M. Qixu

    2013-02-11T23:59:59.000Z

    Final Report describes research analysis done relating to the DOE ASR ISDAC (Indirect and SemiDirect Aerosol Campaign) in Alaska April 2008.

  6. Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign

    E-Print Network [OSTI]

    Karydis, V. A.

    One of the most challenging tasks for chemical transport models (CTMs) is the prediction of the formation and partitioning of the major semi-volatile inorganic aerosol components (nitrate, chloride, ammonium) between the ...

  7. Chemical Composition and Sources of Coastal Marine Aerosol Particles during the 2008 VOCALS-REx Campaign

    SciTech Connect (OSTI)

    Lee, Y.- N.; Springston, S.; Jayne, John T.; Wang, Jian; Hubbe, John M.; Senum, Gunnar I.; Kleinman, Lawrence I.; Daum, Peter H.

    2014-05-23T23:59:59.000Z

    The chemical composition of aerosol particles (Dp 1.5 ?m) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO2?4, followed by Na+, Cl?, Org (total organics), NH+4 , and NO?3 , in decreasing order of importance; CH3SO?3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH+4 to SO2?4 equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl? deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO2?4. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol concentrations were negligible. The very low levels of CH3SO?3 observed as well as the correlation between SO2?4 and NO?3 (which is thought primarily anthropogenic) suggest a limited contribution of DMS to SO2?4 aerosol production during VOCALS.

  8. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Airborne HSRL and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column ModelRSP Measurements

  9. ARM - Field Campaign - Two-Column Aerosol Project (TCAP): Ground-Based

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column ModelRSP MeasurementsRadiation and

  10. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008

    SciTech Connect (OSTI)

    Shantz, Nicole C.; Gultepe, Ismail; Andrews, Elisabeth; Zelenyuk, Alla; Earle, Michael; MacDonald, A. M.; Liu, Peter S.; Leaitch, W. R.

    2014-03-06T23:59:59.000Z

    Airborne observations from four flights during the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) are used to examine some cloud-free optical, physical, and chemical properties of aerosol particles in the springtime Arctic troposphere. The number concentrations of particles larger than 0.12 ?m (Na>120), important for light extinction and cloud droplet formation, ranged from 15 to 2260 cm?3, with the higher Na>120 cases dominated by measurements from two flights of long-range transported biomass burning (BB) aerosols. The two other flights examined here document a relatively clean aerosol and an Arctic Haze aerosol impacted by larger particles largely composed of dust. For observations from the cleaner case and the BB cases, the particle light scattering coefficients at low relative humidity (RH<20%) increased nonlinearly with increasing Na>120, driven mostly by an increase in mean sizes of particles with increasing Na>120 (BB cases). For those three cases, particle light absorption coefficients also increased nonlinearly with increasing Na>120 and linearly with increasing submicron particle volume concentration. In addition to black carbon, brown carbon was estimated to have increased light absorption coefficients by 27% (450 nm wavelength) and 14% (550 nm) in the BB cases. For the case with strong dust influence, the absorption relative to submicron particle volume was small compared with the other cases. There was a slight gradient of Passive Cavity Aerosol Spectrometer Probe (PCASP) mean volume diameter (MVD) towards smaller sizes with increasing height, which suggests more scavenging of the more elevated particles, consistent with a typically longer lifetime of particles higher in the atmosphere. However, in approximately 10% of the cases, the MVD increased (>0.4 ?m) with increasing altitude, suggesting transport of larger fine particle mass (possibly coarse particle mass) at high levels over the Arctic. This may be because of transport of larger particles at higher elevations and relatively slow deposition to the surface.

  11. Measurements of submicron aerosols in Houston, Texas during the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of submicron aerosols in Houston, Texas during the 2009 SHARP field campaign. Measurements of submicron aerosols in Houston, Texas during the 2009 SHARP field campaign. Abstract:...

  12. Aircraft Observations of Aerosol Composition and Ageing in New England and Mid-Atlantic States during the Summer 2002 New England Air Quality Study Field Campaign

    SciTech Connect (OSTI)

    Kleinman, Lawrence I.; Daum, Peter H.; Lee, Y.- N.; Senum, Gunar; Springston, Stephen R.; Wang, Jian; Berkowitz, Carl M.; Hubbe, John M.; Zaveri, Rahul A.; Brechtel, Fred J.; Jayne, J. T.; Onasch, Timothy B.; Worsnop, Douglas R.

    2007-05-11T23:59:59.000Z

    Aerosol chemical composition, size distributions, and optical properties were measured during 17 aircraft flights in New England and Middle Atlantic States as part of the summer 2002 NEAQS field campaign. An Aerodyne Aerosol Mass Spectrometer (AMS) was operated with a measurement cycle of 30 s, about an order of magnitude faster than used for ground-based measurements. Noise levels within a single measurement period were sub ?g m-3. Volume data derived from the AMS were compared with volume measurements from a PCASP optical particle detector and an Scanning Mobility Particle Spectrometer (SMPS); calculated light scattering was compared with measured values from an integrating nephelometer. The median ratio for AMS/SMPS volume was 1.25; the median ratio for AMS/nephelometer scattering was 1.18. Size spectra were compared for subsets of samples with different effective diameters (Deff). There is good agreement between the AMS, PCASP, and SMPS spectra for larger values of Deff but an unexplained over-prediction in the AMS for small values. A dependence of the AMS collection efficiency on aerosol acidity was quantified by a comparison between AMS and PCASP volumes in 2 high sulfate plumes. Average aerosol concentrations were 11 ?g m-3. The organic content was high in comparison to monitoring data from the IMPROVE network, varying from 70% in clean air to 40% in high concentration sulfate plumes. The ratio of organic aerosol to CO and light absorption acting were examined as a function of photochemical age. CO is a conservative tracer for urban emissions and light absorption is a surrogate for black carbon which is also conservative. Comparisons were made to surface ratios measured under conditions where there is little secondary organic aerosol (SOA). An increase in these ratios relative to surface values indicates that 70 - 80% of the organic aerosol in polluted air masses was secondary. Most of this SOA is rapidly formed within a few hours. At longer time scales there is a slow accumulation of organic aerosol and a slow increase in light absorption per unit mass of black carbon. Our results demonstrate the utility of the AMS as a rapid response instrument suitable for aircraft operations.

  13. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsObservations and Modeling of the Green Ocean Amazon: CCN Activity of Aerosols Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014)...

  14. ISDAC Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernucleiNORTHWESTOfficeModeling Modeling

  15. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Gas chromatograph (SVTAG) Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear...

  16. ARM - Field Campaign - Aerosol IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006ObservationsInfrared

  17. Parameterization of the Extinction Coefficient in Ice and Mixed-Phase Arctic Clouds during the ISDAC Field Campaign

    SciTech Connect (OSTI)

    Korolev, A; Shashkov, A; Barker, H

    2012-03-06T23:59:59.000Z

    This report documents the history of attempts to directly measure cloud extinction, the current measurement device known as the Cloud Extinction Probe (CEP), specific problems with direct measurement of extinction coefficient, and the attempts made here to address these problems. Extinction coefficient is one of the fundamental microphysical parameters characterizing bulk properties of clouds. Knowledge of extinction coefficient is of crucial importance for radiative transfer calculations in weather prediction and climate models given that Earth's radiation budget (ERB) is modulated much by clouds. In order for a large-scale model to properly account for ERB and perturbations to it, it must ultimately be able to simulate cloud extinction coefficient well. In turn this requires adequate and simultaneous simulation of profiles of cloud water content and particle habit and size. Similarly, remote inference of cloud properties requires assumptions to be made about cloud phase and associated single-scattering properties, of which extinction coefficient is crucial. Hence, extinction coefficient plays an important role in both application and validation of methods for remote inference of cloud properties from data obtained from both satellite and surface sensors (e.g., Barker et al. 2008). While estimation of extinction coefficient within large-scale models is relatively straightforward for pure water droplets, thanks to Mie theory, mixed-phase and ice clouds still present problems. This is because of the myriad forms and sizes that crystals can achieve, each having their own unique extinction properties. For the foreseeable future, large-scale models will have to be content with diagnostic parametrization of crystal size and type. However, before they are able to provide satisfactory values needed for calculation of radiative transfer, they require the intermediate step of assigning single-scattering properties to particles. The most basic of these is extinction coefficient, yet it is rarely measured directly, and therefore verification of parametrizations is difficult. The obvious solution is to be able to measure microphysical properties and extinction at the same time and for the same volume. This is best done by in situ sampling by instruments mounted on either balloon or aircraft. The latter is the usual route and the one employed here. Yet the problem of actually measuring extinction coefficient directly for arbitrarily complicated particles still remains unsolved.

  18. Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign

    E-Print Network [OSTI]

    de Foy, B.

    The Mexico City Metropolitan Area (MCMA) experiences high loadings of atmospheric aerosols from anthropogenic sources, biomass burning and wind-blown dust. This paper uses a combination of measurements and numerical ...

  19. Ganges valley aerosol experiment.

    SciTech Connect (OSTI)

    Kotamarthi, V.R.; Satheesh, S.K. (Environmental Science Division); (Indian Institute of Science, Bangalore, India)

    2011-08-01T23:59:59.000Z

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  20. Final Technical Report for "Ice nuclei relation to aerosol properties: Data analysis and model parameterization for IN in mixed-phase clouds"Ă?Âť (DOE/SC00002354)

    SciTech Connect (OSTI)

    Paul J. DeMott, Anthony J. Prenni; Sonia M. Kreidenweis

    2012-09-28T23:59:59.000Z

    Clouds play an important role in weather and climate. In addition to their key role in the hydrologic cycle, clouds scatter incoming solar radiation and trap infrared radiation from the surface and lower atmosphere. Despite their importance, feedbacks involving clouds remain as one of the largest sources of uncertainty in climate models. To better simulate cloud processes requires better characterization of cloud microphysical processes, which can affect the spatial extent, optical depth and lifetime of clouds. To this end, we developed a new parameterization to be used in numerical models that describes the variation of ice nuclei (IN) number concentrations active to form ice crystals in mixed-phase (water droplets and ice crystals co-existing) cloud conditions as these depend on existing aerosol properties and temperature. The parameterization is based on data collected using the Colorado State University continuous flow diffusion chamber in aircraft and ground-based campaigns over a 14-year period, including data from the DOE-supported Mixed-Phase Arctic Cloud Experiment. The resulting relationship is shown to more accurately represent the variability of ice nuclei distributions in the atmosphere compared to currently used parameterizations based on temperature alone. When implemented in one global climate model, the new parameterization predicted more realistic annually averaged cloud water and ice distributions, and cloud radiative properties, especially for sensitive higher latitude mixed-phase cloud regions. As a test of the new global IN scheme, it was compared to independent data collected during the 2008 DOE-sponsored Indirect and Semi-Direct Aerosol Campaign (ISDAC). Good agreement with this new data set suggests the broad applicability of the new scheme for describing general (non-chemically specific) aerosol influences on IN number concentrations feeding mixed-phase Arctic stratus clouds. Finally, the parameterization was implemented into a regional cloud-resolving model to compare predictions of ice crystal concentrations and other cloud properties to those observed in two intensive case studies of Arctic stratus during ISDAC. Our implementation included development of a prognostic scheme of ice activation using the IN parameterization so that the most realistic treatment of ice nuclei, including their budget (gains and losses), was achieved. Many cloud microphysical properties and cloud persistence were faithfully reproduced, despite a tendency to under-predict (by a few to several times) ice crystal number concentrations and cloud ice mass, in agreement with some other studies. This work serves generally as the basis for improving predictive schemes for cloud ice crystal activation in cloud and climate models, and more specifically as the basis for such a scheme to be used in a Multi-scale Modeling Format (MMF) that utilizes a connected system of cloud-resolving models on a global grid in an effort to better resolve cloud processes and their influence on climate.

  1. Final Report for "Improved Representations of Cloud Microphysics for Model and Remote Sensing Evaluation using Data Collected during ISDAC, TWP-ICE and RACORO

    SciTech Connect (OSTI)

    McFarquhar, Greg M. [University of Illinois] University of Illinois

    2003-06-11T23:59:59.000Z

    We were funded by ASR to use data collected during ISDAC and TWP-ICE to evaluate models with a variety of temporal and spatial scales, to evaluate ground-based remote sensing retrievals and to develop cloud parameterizations with the end goal of improving the modeling of cloud processes and properties and their impact on atmospheric radiation. In particular, we proposed to: 1) Calculate distributions of microphysical properties observed in arctic stratus during ISDAC for initializing and evaluating LES and GCMs, and for developing parameterizations of effective particle sizes, mean fall velocities, and mean single-scattering properties for such models; 2) Improve representations of particle sizes, fall velocities and scattering properties for tropical and arctic cirrus using TWP-ICE, ISDAC and M-PACE data, and to determine the contributions that small ice crystals, with maximum dimensions D less than 50 ?m, make to mass and radiative properties; 3) Study fundamental interactions between clouds and radiation by improving representations of small quasi-spherical particles and their scattering properties. We were additionally funded 1-year by ASR to use RACORO data to develop an integrated product of cloud microphysical properties. We accomplished all of our goals.

  2. ARM - Field Campaign - IHOP Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997Launch

  3. ARM - Field Campaign - MWR Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE WebsitegovCampaignsMWR

  4. ARM - Field Campaign - SITAC Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP IcegovCampaignsSITAC

  5. aerodyne aerosol mass: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    independent measurements of fine particle volume or particle-into-liquid sampler (PILS) ion chromatography measurements for 3 field campaigns with different dominant aerosol...

  6. The Time Evolution of Aerosol Size Distribution Over the Mexico...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Size Distribution Over the Mexico City Plateau. The Time Evolution of Aerosol Size Distribution Over the Mexico City Plateau. Abstract: As part of the MILAGRO field campaign, the...

  7. ARM - Field Campaign - BDRF Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraft

  8. ARM - Field Campaign - MOPITT Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website

  9. ARM - Field Campaign - Photoacoustic Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010

  10. cuny.edu/campaign CUNY CAMPAIGN

    E-Print Network [OSTI]

    Qiu, Weigang

    cuny.edu/campaign 2012 Tomorrow Building Together THE CUNY CAMPAIGN for Voluntary Charitable Giving that assist New Yorkers. The 2012-13 CUNY Campaign, "Building Tomorrow Together," is our opportunity to make click "register me". Now you can login and make a pledge. Next: Make Your Pledge Enter your "NYS EMPLID

  11. Mexico City Aerosol Analysis During Milagro Using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0) - Part 1: Fine Particle Composition and Organic Source Apportionment.

    E-Print Network [OSTI]

    Aiken, A. C.

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive ...

  12. Indirect and Semi-Direct Aerosol Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Similar annual cycle for scattering, absorption, black carbon Decrease in black carbon and absorption due to decline of Soviet emissions? Quinn et al., TellusB, 2007....

  13. INDIRECT AND SEMI-DIRECT AEROSOL CAMPAIGN

    E-Print Network [OSTI]

    Shupe, Matthew

    . McFarquhar, Steven Ghan, JohanneS verlinde, alexei Korolev, J. Walter Strapp, beat SchMid, JaSon M surface (Walsh and Chapman 1998). However, GCM simulations and radiative transfer calculations show processes in GCMs. Data collected at the Department of Energy Atmospheric Radiation Measurement Program

  14. ARM - Campaign Instrument - aerosol-tower-eml

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATIONCLASIC Sciencecf

  15. ARM - Campaign Instrument - drum-aerosol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA.

  16. Indirect and Semi-Direct Aerosol Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link to facebook link to twittersupport

  17. ARM - Field Campaign - IPASRC II Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997LaunchgovCampaignsIPASRC II

  18. ARM - Field Campaign - Nauru99 Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-PhasegovCampaignsNauru99 Campaign

  19. ISDAC Data Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernucleiNORTHWESTOffice ofOffice-

  20. ISDAC poster 2008.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernucleiNORTHWESTOfficeModeling Modeling

  1. aerosol source apportionment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary...

  2. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings...

  3. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect (OSTI)

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31T23:59:59.000Z

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  4. ARM - Field Campaign - CLASIC - Radiosonde Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloudgovCampaignsCASES

  5. ARM - Field Campaign - CLEX-5 Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love to hear from

  6. ARM - Field Campaign - Spring UAV Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall

  7. ARM - Field Campaign - Replicator Sonde Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain

  8. ARM - Field Campaign - Summer UAV Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data Discovery Browse

  9. Atmospheric Aerosols Workshop | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Aerosols Workshop Atmospheric Aerosols Workshop EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality. Baer DR, BJ...

  10. New Chemical Aerosol Characterization Methods- Examples Using Agricultural and Urban Airborne Particulate Matter

    E-Print Network [OSTI]

    Zhou, Lijun

    2010-10-12T23:59:59.000Z

    This study explored different chemical characterization methods of agricultural and urban airborne particulate matter. Three different field campaigns are discussed. For the agricultural aerosols, measurement of the chemical composition of size...

  11. Used Fuel Disposition Campaign Preliminary Quality Assurance...

    Energy Savers [EERE]

    Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan Used Fuel Disposition Campaign Preliminary Quality Assurance Implementation Plan The primary...

  12. Atmospheric Aerosol Systems | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Themes Atmospheric Aerosol Systems Overview Atmospheric Aerosol Systems Biosystem Dynamics & Design Energy Materials & Processes Terrestrial & Subsurface Ecosystems...

  13. ARM - Campaign Backgrounders

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATIONCLASIC Science Team Related LinksMaterialsCampaign

  14. ARM - Campaign Journal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to heargovInstrumentstdma Comments? WeairgovInstrumentswsiCampaign Journal

  15. Rooftop Unit Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFundA l i c eRooftop Unit Campaign

  16. ARM - Field Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQualityAirbornealpacasgovCampaignsList

  17. Surface aerosol radiative forcing derived from collocated ground-based radiometric

    E-Print Network [OSTI]

    Liou, K. N.

    Surface aerosol radiative forcing derived from collocated ground-based radiometric observations-Filter Rotating Shadowband Radiometer data match closely with those from the Cimel sun- photometer data for two of the sunphotometer to retrieve aerosol optical depths, a, along with observed surface flux data from field campaigns

  18. Aerosol Cans? -Aerosol cans use a pressurized

    E-Print Network [OSTI]

    Jia, Songtao

    WHAT TO DO WITH... Aerosol Cans? -Aerosol cans use a pressurized propellant to distribute the product. Propellants are often flammable and/or toxic. Therefore, never store aerosol cans near ignition aerosol cans must be disposed of as hazardous waste. PROPER SAFETY EQUIPMENT Safety Glasses - Proper eye

  19. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8,3,9, 20153,7,8,24,Aerial

  20. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8,3,9,

  1. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8,3,9,Ship-Based Ice Nuclei

  2. ARM - Field Campaign - Biogenic Aerosols - Effects on Clouds and Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature Stories and8,3,9,Ship-Based

  3. ARM - Field Campaign - 2007 Cumulus Humilis Aerosol Process Study (CHAPS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under52 NEAQS (New7 Cumulus

  4. ARM - Field Campaign - ARM Cloud Aerosol Precipitation Experiment (ACAPEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYouQualityAirborne Carbon

  5. Bishop's Bottled Water Free Campaign

    E-Print Network [OSTI]

    water on Earth #12;Environmental Impacts Recycling...or lack there of! · In Toronto alone, as few as 50Bishop's Bottled Water Free Campaign #12;What's the point? Bottled water is deeply embedded not agree with bottled water free campaign, it is important to keep in mind that Bishop's University

  6. ISDAC Flight Planning Document: Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernucleiNORTHWESTOffice

  7. ARM - Field Campaign - Cloud LAnd Surface Interaction Campaign (CLASIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? WeCampaigngovCampaignsCloud

  8. The Arctic Lower Troposphere Observed Structure (ALTOS) Campaign

    SciTech Connect (OSTI)

    Verlinde, J

    2010-10-18T23:59:59.000Z

    The ALTOS campaign focuses on operating a tethered observing system for routine in situ sampling of low-level (< 2 km) Arctic clouds. It has been a long-term hope to fly tethered systems at Barrow, Alaska, but it is clear that the Federal Aviation Administration (FAA) will not permit in-cloud tether systems at Barrow, even if unmanned aerial vehicle (UAV) operations are allowed in the future. We have provided the scientific rationale for long-term, routine in situ measurements of cloud and aerosol properties in the Arctic. The existing restricted air space at Oliktok offers an opportunity to do so.

  9. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High Sensitivity Aerosol

  10. ARM - Field Campaign - Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? WeCampaign

  11. EMSL - Atmospheric Aerosol Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scienceatmospheric The Atmospheric Aerosol Systems Science Theme focuses on understanding the chemistry, physics and molecular-scale dynamics of aerosols for model...

  12. Multi-year observations of the tropical Atlantic atmosphere: Multidisciplinary applications of the NOAA Aerosols and Ocean

    E-Print Network [OSTI]

    of the NOAA Aerosols and Ocean Science Expeditions (AEROSE) Nicholas R. Nalli Dell Services, Federal Science Expedition (AEROSE) field campaigns. Following the original 2004 campaign onboard the Ronald H. Brown, AEROSE has operated on a yearly basis since 2006 in collaboration with the NOAA Prediction

  13. DUKE FORWARD CAMPAIGN REPORT 2013

    E-Print Network [OSTI]

    Ferrari, Silvia

    . . . . . . . . . . . . . . . . . . . . 34 CAMPAIGN GIVING AND PROGRESS The Numbers tomorrow's leaders. Interdisciplinary Education and Research . . . 16 Medicine effort involves every school at Duke, as well as Duke Athletics, the Libraries, and Duke Medicine. Every

  14. Field Campaign Guidelines (ARM Climate Research Facility)

    SciTech Connect (OSTI)

    Voyles, JW

    2011-01-17T23:59:59.000Z

    The purpose of this document is to establish a common set of guidelines for the Atmospheric Radiation Measurement (ARM) Climate Research Facility for planning, executing, and closing out field campaigns. The steps that guide individual field campaigns are described in the Field Campaign Tracking database tool and are tailored to meet the scope of each specific field campaign.

  15. ARM - PI Product - Niamey Aerosol Optical Depths

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadap Documentation TDMADAP : XDCnarrowbandheatProductsISDAC MicrophysicsProductsNauru

  16. ARM - Field Campaign - DC-8 Cloud Radar Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at

  17. CARES Helps Explain Secondary Organic Aerosols

    SciTech Connect (OSTI)

    Zaveri, Rahul

    2014-03-28T23:59:59.000Z

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  18. CARES Helps Explain Secondary Organic Aerosols

    ScienceCinema (OSTI)

    Zaveri, Rahul

    2014-06-02T23:59:59.000Z

    What happens when urban man-made pollution mixes with what we think of as pristine forest air? To know more about what this interaction means for the climate, the Carbonaceous Aerosol and Radiative Effects Study, or CARES, field campaign was designed in 2010. The sampling strategy during CARES was coordinated with CalNex 2010, another major field campaign that was planned in California in 2010 by the California Air Resources Board (CARB), the National Oceanic and Atmospheric Administration (NOAA), and the California Energy Commission (CEC). "We found two things. When urban pollution mixes with forest pollutions we get more secondary organic aerosols," said Rahul Zaveri, FCSD scientist and project lead on CARES. "SOAs are thought to be formed primarily from forest emissions but only when they interact with urban emissions. The data is saying that there will be climate cooling over the central California valley because of these interactions." Knowledge gained from detailed analyses of data gathered during the CARES campaign, together with laboratory experiments, is being used to improve existing climate models.

  19. ARM - Field Campaign - COSMOS Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love to

  20. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect (OSTI)

    Not Listed

    2012-11-01T23:59:59.000Z

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  1. Campaign Participation May 27, 2014

    E-Print Network [OSTI]

    Portman, Douglas

    % 60-School of Nursing 38% 24-Warner School of Education 35% 90-Health Sciences 33% Finance - URMC 100% University Health Service 59% University Communications 57% University Audit 50% Research & Project% Facilities & Services - Utility/Energy Mgmt 11% Career Center 9% Security & Traffic 7% Page 2 #12;Campaign

  2. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsObservations and Modeling of the Green Ocean Amazon: SKIP Pre-campaign Measurements Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON...

  3. Aerosol collection characteristics of ambient aerosol samplers

    E-Print Network [OSTI]

    Ortiz, Carlos A

    1978-01-01T23:59:59.000Z

    are contained in Appendix C. Dichotomous Sam ler The basic principle of operation of the dichotomous, Figure 9, is that aerosol particles are passed through an acceleration nozzle where the particle velocity is increased to a speed V. at the nozzle exit... AEROSOL COLLECTION CHARACTERISTICS OF AMBIENT AEROSOL SAMPLERS A Thesis by CARLOS A. ORTIZ Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1978...

  4. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect (OSTI)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12T23:59:59.000Z

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  5. Greater West Texas State Employee Charitable Campaign

    E-Print Network [OSTI]

    Rock, Chris

    together we changed lives Greater West Texas State Employee Charitable Campaign 2012 Annual Report campaign information 2012 Local Employee Committee Darcy Pollock (Chair), Texas Tech University Health Sciences Center David Abercia, Texas Tech University Dianah Ascencio, Texas Department of Transportation

  6. Aerosol mobility size spectrometer

    DOE Patents [OSTI]

    Wang, Jian (Port Jefferson, NY); Kulkarni, Pramod (Port Jefferson Station, NY)

    2007-11-20T23:59:59.000Z

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  7. The Two-Column Aerosol Project (TCAP) Science Plan

    SciTech Connect (OSTI)

    Berkowitz, CM; Berg, LK; Cziczo, DJ; Flynn, CJ; Kassianov, EI; Fast, JD; Rasch, PJ; Shilling, JE; Zaveri, RA; Zelenyuk, A; Ferrare, RA; Hostetler, CA; Cairns, B; Russell, PB; Ervens, B

    2011-07-27T23:59:59.000Z

    The Two-Column Aerosol Project (TCAP) field campaign will provide a detailed set of observations with which to (1) perform radiative and cloud condensation nuclei (CCN) closure studies, (2) evaluate a new retrieval algorithm for aerosol optical depth (AOD) in the presence of clouds using passive remote sensing, (3) extend a previously developed technique to investigate aerosol indirect effects, and (4) evaluate the performance of a detailed regional-scale model and a more parameterized global-scale model in simulating particle activation and AOD associated with the aging of anthropogenic aerosols. To meet these science objectives, the Atmospheric Radiation Measurement (ARM) Climate Research Facility will deploy the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) on Cape Cod, Massachusetts, for a 12-month period starting in the summer of 2012 in order to quantify aerosol properties, radiation, and cloud characteristics at a location subject to both clear and cloudy conditions, and clean and polluted conditions. These observations will be supplemented by two aircraft intensive observation periods (IOPs), one in the summer and a second in the winter. Each IOP will deploy one, and possibly two, aircraft depending on available resources. The first aircraft will be equipped with a suite of in situ instrumentation to provide measurements of aerosol optical properties, particle composition and direct-beam irradiance. The second aircraft will fly directly over the first and use a multi-wavelength high spectral resolution lidar (HSRL) and scanning polarimeter to provide continuous optical and cloud properties in the column below.

  8. Final Project Report - ARM CLASIC CIRPAS Twin Otter Aerosol

    SciTech Connect (OSTI)

    John A. Ogren

    2010-04-05T23:59:59.000Z

    The NOAA/ESRL/GMD aerosol group made three types of contributions related to airborne measurements of aerosol light scattering and absorption for the Cloud and Land Surface Interaction Campaign (CLASIC) in June 2007 on the Twin Otter research airplane operated by the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS). GMD scientists served as the instrument mentor for the integrating nephelometer and particle soot absorption photometer (PSAP) on the Twin Otter during CLASIC, and were responsible for (1) instrument checks/comparisons; (2) instrument trouble shooting/repair; and (3) data quality control (QC) and submittal to the archive.

  9. Greater West Texas State Employee Charitable Campaign

    E-Print Network [OSTI]

    Rock, Chris

    together we changed lives Greater West Texas State Employee Charitable Campaign 2011 Annual Report of Transportation Vickie Wilhite, Health and Human Services Commission Greater West Texas Campaign Manager Nicole campaign information 2011 Local Employee Committee Darcy Pollock (chair), Texas Tech University Health

  10. Inside this issue: Energy Campaign 1

    E-Print Network [OSTI]

    Kidd, William S. F.

    Energy Campaign enters fifth year October 2011Volume 5, Issue Office of Environmental Sustainability Sustainability Bulletin The University Energy Campaign has been going strong in its effort to decrease the amount to use and enjoy. #12;Page 2 Sustainability Bulletin Energy campaign (continued from page 1) Everyone

  11. CX Lyrae 2008 Observing Campaign

    E-Print Network [OSTI]

    de Ponthiere, Pierre; Hambsch, Franz-Josef

    2012-01-01T23:59:59.000Z

    The Blazhko effect in CX Lyr has been reported for the first time by Le Borgne et al. (2007). The authors have pointed out that the Blazhko period was not evaluated accurately due to dataset scarcity. The possible period values announced were 128 or 227 days. A newly conducted four-month observing campaign in 2008 (fifty-nine observation nights) has provided fourteen times of maximum. From a period analysis of measured times of maximum, a Blazhko period of 62 +/- 2 days can be suggested. However, the present dataset is still not densely sampled enough to exclude that the measured period is still a modulation of the real Blazhko period. Indeed the shape of the (O-C) curve does not repeat itself exactly during the campaign duration.

  12. Used Fuel Disposition Campaign Disposal Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign International Activities Implementation Plan Review of...

  13. ARM - Field Campaign - Radiative Heating in Underexplored Bands Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign(RHUBC)

  14. ARM - Field Campaign - TX-2002 AIRS Validation Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM

  15. ARM - Field Campaign - Supplemental Sondes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data

  16. ARM - Historical Field Campaign Statistics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, FeatureListGeneral ChangesField Campaign

  17. ARM - Propose a Field Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become a User RecoveryARMParticipantsgovCampaignsPropose a

  18. Modeling Atmospheric Aerosols V. Rao Kotamarthi

    E-Print Network [OSTI]

    Modeling Atmospheric Aerosols V. Rao Kotamarthi and Yan Feng Climate Research Section Environmental Science Division Argonne National Laboratory #12;Outline Atmospheric Aerosols and gas phase heterogeneous reactions Regional Scales and Atmospheric Aerosols Regional Scale Aerosols: Ganges Valley Aerosol

  19. Quarterly Cybersecurity Awareness Campaigns and Toolkits | Department...

    Broader source: Energy.gov (indexed) [DOE]

    coordinates a variety of internal cybersecurity awareness campaigns to provide DOE employees with timely information on current cyber threats, recommended mitigations, and sound...

  20. The importance of aerosol composition and mixing state on predicted CCN concentration and the variation of the importance with atmospheric processing of aerosol

    SciTech Connect (OSTI)

    Wang, J.; Cubison, M.; Aiken, A.; Jimenez, J.; Collins, D.; Gaffney, J.; Marley, N.

    2010-03-15T23:59:59.000Z

    The influences of atmospheric aerosols on cloud properties (i.e., aerosol indirect effects) strongly depend on the aerosol CCN concentrations, which can be effectively predicted from detailed aerosol size distribution, mixing state, and chemical composition using Köhler theory. However, atmospheric aerosols are complex and heterogeneous mixtures of a large number of species that cannot be individually simulated in global or regional models due to computational constraints. Furthermore, the thermodynamic properties or even the molecular identities of many organic species present in ambient aerosols are often not known to predict their cloud-activation behavior using Köhler theory. As a result, simplified presentations of aerosol composition and mixing state are necessary for large-scale models. In this study, aerosol microphysics, CCN concentrations, and chemical composition measured at the T0 urban super-site in Mexico City during MILAGRO are analyzed. During the campaign in March 2006, aerosol size distribution and composition often showed strong diurnal variation as a result of both primary emissions and aging of aerosols through coagulation and local photochemical production of secondary aerosol species. The submicron aerosol composition was ~1/2 organic species. Closure analysis is first carried out by comparing CCN concentrations calculated from the measured aerosol size distribution, mixing state, and chemical composition using extended Köhler theory to concurrent CCN measurements at five supersaturations ranging from 0.11% to 0.35%. The closure agreement and its diurnal variation are studied. CCN concentrations are also derived using various simplifications of the measured aerosol mixing state and chemical composition. The biases associated with these simplifications are compared for different supersaturations, and the variation of the biases is examined as a function of aerosol age. The results show that the simplification of internally mixed, size-independent particle composition leads to substantial overestimation of CCN concentration for freshly emitted aerosols in early morning, but can reasonably predict the CCN concentration after the aerosols underwent atmospheric processing for several hours. This analysis employing various simplifications provides insights into the essential information of particle chemical composition that needs to be represented in models to adequately predict CCN concentration and cloud microphysics.

  1. Cloud-Scale Vertical Velocity and Turbulent Dissipation Rate Retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shupe, Matthew

    Time-height fields of retrieved in-cloud vertical wind velocity and turbulent dissipation rate, both retrieved primarily from vertically-pointing, Ka-band cloud radar measurements. Files are available for manually-selected, stratiform, mixed-phase cloud cases observed at the North Slope of Alaska (NSA) site during periods covering the Mixed-Phase Arctic Cloud Experiment (MPACE, late September through early November 2004) and the Indirect and Semi-Direct Aerosol Campaign (ISDAC, April-early May 2008). These time periods will be expanded in a future submission.

  2. 2013 State Employee Charitable Campaign serving the the campaign area of

    E-Print Network [OSTI]

    Rock, Chris

    2013 State Employee Charitable Campaign serving the the campaign area of grEatEr wESt tExaS Honorary Campaign CHairS David Dewhurst, Texas Lieutenant Governor Joe Straus, Texas Speaker of the House LoCaL EmpLoyEE CommittEE David Abercia Texas Tech University (chair) Dianah Ascencio Texas Department

  3. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14T23:59:59.000Z

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

  4. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2011-09-01T23:59:59.000Z

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  5. Advanced Fuels Campaign Execution Plan

    SciTech Connect (OSTI)

    Kemal Pasamehmetoglu

    2010-10-01T23:59:59.000Z

    The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the “Grand Challenge” for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

  6. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  7. Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-11-01T23:59:59.000Z

    Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

  8. Quinn for New York campaign Come and intern with the Quinn for New York campaign. The campaign is looking for bright, energetic

    E-Print Network [OSTI]

    Patel, Aniruddh D.

    Quinn for New York campaign Come and intern with the Quinn for New York campaign. The campaign is looking for bright, energetic individuals who want to learn the nuts and bolts of how a campaign works, and help elect the next Mayor of New York City. Hours are completely flexible with a small requirement

  9. 7, 55535593, 2007 Nitrate aerosols

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 5553­5593, 2007 Nitrate aerosols today and in 2030 S. E. Bauer et al. Title Page Abstract Discussions Nitrate aerosols today and in 2030: importance relative to other aerosol species and tropospheric, 5553­5593, 2007 Nitrate aerosols today and in 2030 S. E. Bauer et al. Title Page Abstract Introduction

  10. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  11. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  12. Toxicity of atmospheric aerosols on marine phytoplankton

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    metals added from these aerosols to the bioassay incubationsreleased to seawater from the aerosol filters after Author4605 CHEMISTRY Atmospheric aerosol deposition CHEMISTRY

  13. Radiative and climate impacts of absorbing aerosols

    E-Print Network [OSTI]

    Zhu, Aihua

    2010-01-01T23:59:59.000Z

    P.M. Forster (2004), The semi-direct aerosol effect: Impactof absorbing aerosols on marine stratocumulus. Q. J .2005), Global anthropogenic aerosol direct forcing derived

  14. Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles

    E-Print Network [OSTI]

    Beaucage, Gregory

    1 Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles can range in size from molecular-scale to hundreds of microns with a typical example be synthesized by aerosol routes where precursor species are dispersed either in a vapor or in micron

  15. ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS

    SciTech Connect (OSTI)

    Not Listed

    2013-10-01T23:59:59.000Z

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

  16. ARM - Field Campaign - Fall 1995 UAV IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2govCampaignsFIRE-ArcticSingle

  17. ARM - Field Campaign - Fall 2002 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOPgovCampaignsFall

  18. ARM - Field Campaign - Winter SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWatergovCampaignsWinter SCM

  19. Modal aerosol dynamics modeling

    SciTech Connect (OSTI)

    Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

    1991-02-01T23:59:59.000Z

    The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

  20. SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN

    SciTech Connect (OSTI)

    Vienna, John D.; Todd, Terry A.; Peterson, Mary E.

    2012-11-26T23:59:59.000Z

    This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.

  1. Aerosol Sampler Operations Manual

    E-Print Network [OSTI]

    Fischer, Emily V.

    -1123 Laboratory FAX (916) 752-4107 Standard Operating Procedures Technical Information Document TI 201A #12;TI 201.................................................................................................................................................. 3 1.0 Weekly Maintenance ProceduresIMPROVE Aerosol Sampler Operations Manual February 10, 1997 Air Quality Group Crocker Nuclear

  2. Microsoft Word - ISDAC_description.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8CO6About DOE TheI-5ALE-AMR:

  3. Microsoft Word - ISDAC_orientation_pkt.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA / USACE SWPAURTeC:8CO6About DOE

  4. Recycling Campaign Prizes for best project proposal to

    E-Print Network [OSTI]

    van der Torre, Leon

    Recycling Campaign Award Prizes for best project proposal to improve waste recycling The Guide #12;Recycling Campaign Award OIKOS Luxembourg in collaboration with the University of Luxembourg's Cell to participate in the Recycling Campaign Award. The Recycling Campaign Award invites you to work in teams

  5. Direct Aerosol Forcing: Sensitivity to Uncertainty in Measurements of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu,EnergyDimitriDiracAerosol Optical and

  6. THE CAMPAIGN TO TRANSFORM EINSTEIN 2 THE CAMPAIGN TO TRANSFORM EINSTEIN

    E-Print Network [OSTI]

    Yates, Andrew

    THE CAMPAIGN TO TRANSFORM EINSTEIN #12;2 THE CAMPAIGN TO TRANSFORM EINSTEIN #12;ALBERT EINSTEIN COLLEGE OF MEDICINE 1 F or more than five decades, Albert Einstein College of Medicine has responded to the changing landscape of biomedical research with a commitment to improving human health. Einstein's research

  7. The Campaign for McMaster University The Campaign for McMaster University

    E-Print Network [OSTI]

    Hitchcock, Adam P.

    Master University · Financial Procedure for Research Grants · Indirect Costs Associated with Research Funding fromThe Campaign for McMaster University The Campaign for McMaster University Research Integrity Policy Orientation Michelle Bennett University Secretariat Kimberly Mason Office of Academic Integrity Kathy Charters

  8. Development of Aerosol Models for Radiative Flux Calculations at ARM Sites: Utility of Trajectory Clustering for Characterizing Aerosol Climatology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application toDevelopingandDevelopment of Aerosol

  9. Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions

    E-Print Network [OSTI]

    Luo, Chao; Zender, Charles S; Bian, Huisheng; Metzger, Swen

    2007-01-01T23:59:59.000Z

    times of tropospheric aerosols inferred from a global three-sional simulation of 210Pb aerosols. Journal of Geophysicalof sulfate and nitrate aerosol. Atmospheric Environ- ment

  10. Climate implications of carbonaceous aerosols: An aerosol microphysical study using the GISS/MATRIX climate model

    E-Print Network [OSTI]

    Bauer, Susanne E.

    2010-01-01T23:59:59.000Z

    and R. Ruedy, Matrix (multiconfiguration aerosol tracker ofmixing state): An aerosol microphysical module for globalAn investigative review, Aerosol Sci. Technol. , Vol. 40,

  11. A New Aerosol Flow System for Photochemical and Thermal Studies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols. A New Aerosol Flow System for Photochemical and Thermal Studies of Tropospheric Aerosols....

  12. 6, 11791198, 2006 Aerosols closing

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 6, 1179­1198, 2006 Aerosols closing open Benard cells D. Rosenfeld et al. Title Page Abstract of precipitation by aerosols D. Rosenfeld1 , Y. J. Kaufman2 , and I. Koren3 1 Institute of Earth Sciences­1198, 2006 Aerosols closing open Benard cells D. Rosenfeld et al. Title Page Abstract Introduction

  13. 8, 14571503, 2008 The aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 1457­1503, 2008 The aerosol distribution in Europe V. Matthias Title Page Abstract Discussions The aerosol distribution in Europe derived with the Community Multiscale Air Quality (CMAQ) model.matthias@gkss.de) 1457 #12;ACPD 8, 1457­1503, 2008 The aerosol distribution in Europe V. Matthias Title Page Abstract

  14. 5, 79658026, 2005 Simulating aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    composition, number concentration, and size distribution of the global submicrometer aerosol. The present, coagulation, condensation, nucleation of sulfuric acid vapor, aerosol chemistry, cloud processing, and sizeACPD 5, 7965­8026, 2005 Simulating aerosol microphysics with ECHAM/MADE A. Lauer et al. Title Page

  15. VARIATION OF AEROSOL OPTICAL PROPERTIES

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    radiative forcing due to the aerosol, W m-2 FT is the solar constant, W m-2 Ac is the fractional cloud cover;APPROACH TO MODELING AEROSOL RADIATIVE EFFECTS Transport Chemistry Microphysics Removal ModelEmissions Size-distributed Composition Optical Properties Radiative Effects Optics Model Radiation Transfer Model #12;CLASSES OF AEROSOL

  16. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Fine Particle Composition and Organic Source Apportionment

    SciTech Connect (OSTI)

    Aiken, Allison; Salcedo, D.; Cubison, Michael J.; Huffman, J.; DeCarlo, Peter; Ulbrich, Ingrid M.; Docherty, Kenneth S.; Sueper, D. T.; Kimmel, Joel; Worsnop, Douglas R.; Trimborn, Achim; Northway, Megan; Stone, Elizabeth A.; Schauer, James J.; Volkamer, Rainer M.; Fortner, Edward; de Foy, B.; Wang, Jian; Laskin, Alexander; Shutthanandan, V.; Zheng, Junsheng; Zhang, Renyi; Gaffney, Jeffrey S.; Marley, Nancy A.; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luisa T.; Sosa, G.; Jimenez, Jose L.

    2009-09-11T23:59:59.000Z

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identifies three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning.

  17. Aerosol engineering: design and stability of aerosol reactors

    SciTech Connect (OSTI)

    Pratsinis, S.E.

    1985-01-01T23:59:59.000Z

    A theoretical study of the performance of aerosol reactors is presented. The goals of this study are (1) to identify the appropriate reactor types (batch, CSTR, and tubular) for production of aerosol with specific properties (for example, uniform size particles, high aerosol surface area, etc.) and (2) to investigate the effect of various process parameters on product aerosol characteristics and on the stability of operation of aerosol reactors. In all the reactors considered, the aerosol dynamics were detemined by chemical reaction, nucleation, and aerosol growth in the free molecule regime in the absence of coagulation at isothermal conditions. Formulation of the aerosol dynamics in terms of moments of the aerosol size distribution facilitated the numerical solution of the resulting systems of ordinary or partial differential equations. The stability characteristics of a continuous stirred tank aerosol reactor (CSTAR) were investigated since experimental data in the literature indicate that under certain conditions this reactor exhibits oscillatory behavior with respect to product aerosol concentration and size distribution.

  18. ARM - Field Campaign - CASES Data Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloudgovCampaignsCASES Data

  19. ARM - Field Campaign - CRYSTAL-FACE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love

  20. ARM - Field Campaign - Cloud Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments?

  1. ARM - Field Campaign - Diffuse Shortwave IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment

  2. ARM - Field Campaign - Fall 1997 Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP ARM Data

  3. ARM - Field Campaign - Fall 1997 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP ARM

  4. ARM - Field Campaign - Fall 1997 Shortwave IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP ARMShortwave IOP

  5. ARM - Field Campaign - Fall 1997 UAV IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP ARMShortwave

  6. ARM - Field Campaign - International Pyrgeometer Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall-

  7. ARM - Field Campaign - MWR Temporary Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACEgovCampaignsMWR Temporary

  8. ARM - Field Campaign - NSA Scanning Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic CloudgovCampaignsNSA

  9. ARM - Field Campaign - Spring 1994 UAV IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall Particles ingovCampaignsSpring

  10. ARM - Field Campaign - Spring Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOPgovCampaignsSpring

  11. ARM - Field Campaign - Summer 1996 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmallgovCampaignsSummer

  12. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater Cycle Pilot

  13. ARM - Field Campaign - Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater Cycle

  14. Highly stable aerosol generator

    DOE Patents [OSTI]

    DeFord, H.S.; Clark, M.L.

    1981-11-03T23:59:59.000Z

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  15. Aerosol collection characteristics of ambient aerosol samplers 

    E-Print Network [OSTI]

    Ortiz, Carlos A

    1978-01-01T23:59:59.000Z

    . These samplers have an effic1ency approach1ng 100 percent for particles for which the gravitational and 1nertial forces are small (less than approximately 5 um); however, for larger-sized part1cles the efficiency is quite variable and depends not only upon.... According to Agarwal, representative samples can be collected by an aerosol instrument without meeting the Davies criter1a. Raynor ( 7), with the aid of a wind tunnel, observed the effects of environmental and physical parameters on the entrance effic1...

  16. Geometrical Optics of Dense Aerosols

    SciTech Connect (OSTI)

    Hay, Michael J.; Valeo, Ernest J.; Fisch, Nathaniel J.

    2013-04-24T23:59:59.000Z

    Assembling a free-standing, sharp-edged slab of homogeneous material that is much denser than gas, but much more rare ed than a solid, is an outstanding technological challenge. The solution may lie in focusing a dense aerosol to assume this geometry. However, whereas the geometrical optics of dilute aerosols is a well-developed fi eld, the dense aerosol limit is mostly unexplored. Yet controlling the geometrical optics of dense aerosols is necessary in preparing such a material slab. Focusing dense aerosols is shown here to be possible, but the nite particle density reduces the eff ective Stokes number of the flow, a critical result for controlled focusing. __________________________________________________

  17. Niamey Aerosol Optical Depths

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Flynn, Connor

    MFRSR irradiance data collected during the ACRF AMF deployment in Niamey, Niger have been used to derive AOD for five wavelength channels of the MFRSR. These data have been corrected to adjust for filter drift over the course of the campaign and contamination due to forward scattering as a result of large dust particles in the atmosphere around Niamey.

  18. Absorbing Aerosol Index (AAI) The residue method for the detection of aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    Absorbing Aerosol Index (AAI) The residue method for the detection of aerosols from space reflection and absorption Surface Rayleigh atmosphere #12;TOA Multiple scattering Multiple scattering Aerosol layer satellite Surface reflection and absorption Surface Rayleigh atmosphere Rayleigh atmophere Aerosol

  19. Electrostatics and radioactive aerosol behavior

    SciTech Connect (OSTI)

    Clement, C.F.

    1994-12-31T23:59:59.000Z

    Radioactive aerosols differ from their nonradioactive counterparts by their ability to charge themselves by emitting charged particles during the radioactive decay process. Evidence that electrostatics, including this charging process, can affect the transport of the aerosols was summarized previously. Charge distributions and the mean charge for a monodisperse radioactive aerosol have been considered in detail. The principal results of theory to calculate charge distributions on a aerosol with a size distribution, changes to Brownian coagulation rates for an aerosol in a reactor containment, and possible changes to aerosol deposition resulting from the charging will be presented. The main purpose of the work has been to improve calculations of aerosol behavior in reactor containments, but behavior in less ionizing environments will be affected more strongly, and some problems remain to be solved in performing reliable calculations.

  20. Transmutation Fuels Campaign FY-09 Accomplishments Report

    SciTech Connect (OSTI)

    Lori Braase

    2009-09-01T23:59:59.000Z

    This report summarizes the fiscal year 2009 (FY-08) accomplishments for the Transmutation Fuels Campaign (TFC). The emphasis is on the accomplishments and relevance of the work. Detailed description of the methods used to achieve the highlighted results and the associated support tasks are not included in this report.

  1. What'sforLunch? Campaign Against Diabetes

    E-Print Network [OSTI]

    Qiu, Weigang

    What'sforLunch? n 1 n What's For Lunch at cunY? Campaign Against Diabetes City University of New and diabetes. #12;n 2 n What's for Lunch at cunY? Stacy, a psychology student at Queens College, is hungry, has just been diagnosed with pre-diabetes. She is trying hard to find food that will help her to lose

  2. aerosols and climate : uncertainties

    E-Print Network [OSTI]

    contributes to creating a level playing field. (BC emissions tradeble like CO2 emissions?) OUTLINE #12;size. policy measures, is even more uncertain (emissions & their chemical fingerprint are uncertain (not just aerosol emissions, not just climate impacts) OUTLINE #12;- Standardization doesn't reduce

  3. 6, 43414373, 2006 Cloud-borne aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Discussions Impact of cloud-borne aerosol representation on aerosol direct and indirect effects S. J. Ghan of aerosols employ a variety of rep- resentations of such cloud-borne particles. Here we use a global aerosol- ulated aerosol, cloud and radiation fields to various approximations to the representa- tion of cloud

  4. Competitive Energy Reduction (CER) Campaign at the University of Texas

    E-Print Network [OSTI]

    Hofmann, Hans A.

    1 Competitive Energy Reduction (CER) Campaign at the University of Texas Scientists and Engineers Reduction Campaign at the University of Texas Energy Reduced by Enlisting Volunteers and Promoting .................................................................................................................................................10 Appendix A ­ Lab Energy Audit Checklist

  5. Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics

    E-Print Network [OSTI]

    Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics Sarah A. Shull, Olivier Campaign Logistics by Sarah A. Shull B.S.E. Aerospace Engineering (2001) The University of Michigan) #12;4 Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics by Sarah A. Shull

  6. Matrix Modeling Methods for Spaceflight Campaign Logistics Analysis

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Matrix Modeling Methods for Spaceflight Campaign Logistics Analysis Afreen Siddiqi and Olivier L-based modeling approach for analyzing spaceflight campaign logistics. A campaign is considered to be a series logistics properties. A logistics strategy index is proposed for quantifying manifesting strategies

  7. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  8. Aerosol Retrieval Using Remote-sensed Observations

    E-Print Network [OSTI]

    Wang, Yueqing

    2012-01-01T23:59:59.000Z

    1.2 Aerosols Impacts on HumanBayesian Approach for Aerosol Retrieval Using MISR Data 2.1for Including a Richer Variety of Aerosol Compositions . 2.5

  9. Optical Properties of Secondary Organic Aerosols

    E-Print Network [OSTI]

    Kim, Hwajin

    2012-01-01T23:59:59.000Z

    Paulson, S. E. ; Chung, A. Aerosol Sci. Technol. 2007 , 41,Y. G. ; Daum, P. H. J. Aerosol Sci 2008 , 39, 974-986. (32)Accurate Monitoring of Terrestrial Aerosols and Total Solar

  10. Aerosol Observing System (AOS) Handbook

    SciTech Connect (OSTI)

    Jefferson, A

    2011-01-17T23:59:59.000Z

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  11. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign

  12. ARM - Field Campaign - RS-90 Transition IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign

  13. Nonequilibrium Atmospheric Secondary Organic Aerosol Formation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Formation and Growth. Abstract: Airborne particles play a critical role in air quality, human health effects, visibility and climate. Secondary organic aerosols (SOA)...

  14. Sunlight Changes Aerosols in Clouds | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunlight Changes Aerosols in Clouds Sunlight Changes Aerosols in Clouds Released: October 20, 2011 Scientists show how sunlight alters optical, chemical properties of atmospheric...

  15. Molecular Characterization of Biomass Burning Aerosols Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

  16. ARM - Field Campaign - 2004 NEAX (Northeast Aerosol Experiment), G-1 data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under52 NEAQS (New England4

  17. ARM - Field Campaign - 2006 MAX-Mex-Megacity Aerosol eXperiment - Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under52 NEAQS (New

  18. DOE/SC-ARM-14-011 Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOffice ofHale Plan24,7,INL is6

  19. 6, 75197562, 2006 Simulating aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , particle number concentration and aerosol size-distribution. The model takes into account sulfate (SO4. This model system enables explicit simulations of the particle number concentration and size-distribution of aerosol dynamical processes (nucleation, condensation, coagulation) is evaluated by comparison

  20. 7, 37193761, 2007 Aerosol indirect

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    effects and is defined as the difference in the top-of-the-atmosphere net radiation be- tween present when either a statistical cloud cover scheme or a different aerosol emission inventory are employed. 1ACPD 7, 3719­3761, 2007 Aerosol indirect effects in ECHAM5-HAM U. Lohmann et al. Title Page

  1. 4, 75617614, 2004 Indirect aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . While the cloud albedo enhance- ment (Twomey effect) of warm clouds received most attention so far, they can15 scatter, absorb and emit thermal radiation. Thirdly aerosol particles act as cloud con properties influenced by20 aerosols (e.g. semi-direct effect, suppression of convection). Clouds themselves

  2. 7, 1268712714, 2007 Aerosols' influence

    E-Print Network [OSTI]

    Boyer, Edmond

    in the polluted cloud is due to a more efficient collection process. 1 Introduction10 The effect of aerosol). Numerous studies have addressed the effect of aerosol on marine stratocumulus clouds, due to their key role in the global radiative energy. Marine stratocumuli, bounded by strong marine boundary layer inversion, have

  3. Aerosol Science and Technology, 42:115, 2008 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 42:1­15, 2008 Copyright c American Association for Aerosol Research of a Fast-Response Aerosol Size Spectrometer Jason S. Olfert and Jian Wang Atmospheric Science Department by the mixing of the aerosol in the inlet of the instrument, which `smears' the detected aerosol over a range

  4. Advanced Fuels Campaign Cladding & Coatings Meeting Summary

    SciTech Connect (OSTI)

    Not Listed

    2013-03-01T23:59:59.000Z

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) organized a Cladding and Coatings operational meeting February 12-13, 2013, at Oak Ridge National Laboratory (ORNL). Representatives from the U.S. Department of Energy (DOE), national laboratories, industry, and universities attended the two-day meeting. The purpose of the meeting was to discuss advanced cladding and cladding coating research and development (R&D); review experimental testing capabilities for assessing accident tolerant fuels; and review industry/university plans and experience in light water reactor (LWR) cladding and coating R&D.

  5. ARM - Field Campaign - ARRA AERI Comparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations ofgovCampaignsARM-FIRE

  6. ARM - Field Campaign - Boundary Layer Cloud IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud

  7. ARM - Field Campaign - Microwave Radiometer Profiler Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) CampaigngovCampaignsMicrowave Radiometer Profiler

  8. ARM - Field Campaign - NSA Snow IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic

  9. ARM - Field Campaign - PGS Validatation 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010 ARM Data Discovery

  10. ARM - Field Campaign - SGP99 IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP Ice

  11. ARM - Field Campaign - Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGPObservation

  12. ARM - Field Campaign - Spring 1996 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOP ARM Data

  13. ARM - Field Campaign - Spring 1996 UAV IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOP ARM DataUAV IOP

  14. ARM - Field Campaign - Spring 1997 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOP ARM DataUAV

  15. ARM - Field Campaign - Spring 2002 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM IOP ARM

  16. ARM - Field Campaign - Spring SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCM

  17. ARM - Field Campaign - Surface Albedo IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data02.09 - 2004.02.13 Lead

  18. ARM - Field Campaign - Surface Albedo IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data02.09 - 2004.02.13

  19. ARM - Field Campaign - Surface spectral albedo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM Data02.09

  20. ARM - Field Campaign - UAV Field Test IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column ModelRSP

  1. Employee Giving Campaign supports community partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater UseCElizabethTwo StatesEmployee ConcernsDec. 2014 -

  2. Rooftop Unit Campaign | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 <Department of ii iii2014 UpdateRobert E.Oversight AnnualCampaign

  3. The Nearby Supernova Factory Ozone + Aerosol + Rayleigh

    E-Print Network [OSTI]

    Rayleigh + Aerosol Extinction monitor filter Auxiliary Camera CCD Spectrograph picko ff mirror Umbra

  4. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    E-Print Network [OSTI]

    Koh, Christine J.

    2013-01-01T23:59:59.000Z

    + ][Dca ? ]. Figure 2. Aerosol particle size distribution ofhypergolic ionic liquid aerosols Christine J. Koh † , Chen-ionization of evaporated IL aerosols Isolated ion pairs of a

  5. Amine-Amine Exchange in Aminium-Methanesulfonate Aerosols. |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amine-Amine Exchange in Aminium-Methanesulfonate Aerosols. Amine-Amine Exchange in Aminium-Methanesulfonate Aerosols. Abstract: Aerosol particles are ubiquitous in the atmosphere...

  6. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of ?-Pinene. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

  7. Mexico City Aerosol Analysis during MILAGRO using High Resolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Abstract: Submicron aerosol was analyzed during...

  8. Mexico City Aerosol Analysis during MILAGRO using High Resolution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1: Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 1: Abstract: Submicron aerosol was analyzed during...

  9. aerosol particles collected: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Saller 2002-05-07 6 Nanomaterials from Aerosols Aerosols are suspensions of liquid or solid particles in a gas. Aerosol particles Materials Science Websites Summary: being clouds...

  10. Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging in Central California

    SciTech Connect (OSTI)

    Moffet, Ryan C.; Rodel, Tobias; Kelly, Stephen T.; Yu, Xiao-Ying; Carroll, Gregory; Fast, Jerome D.; Zaveri, Rahul A.; Laskin, Alexander; Gilles, Mary K.

    2013-10-29T23:59:59.000Z

    Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and adverse health effects. The Carbonaceous Aerosols and Radiative Effects Study (CARES) was designed to study carbonaceous aerosols in the natural environment of Central Valley, California, and learn more about their atmospheric formation and aging. This paper presents results from spectro-microscopic measurements of carbonaceous particles collected during CARES at the time of pollution accumulation event (June 27-29, 2010), when in situ measurements indicated an increase in the organic carbon content of aerosols as the Sacramento urban plume aged. Computer controlled scanning electron microscopy coupled with an energy dispersive X-ray detector (CCSEM/EDX) and scanning transmission X-ray microscopy coupled with near edge X-ray absorption spectroscopy (STXM/NEXAFS) were used to probe the chemical composition and morphology of individual particles. It was found that the mass of organic carbon on individual particles increased through condensation of secondary organic aerosol. STXM/NEXAFS indicated that the number fraction of homogenous organic particles lacking inorganic inclusions (greater than ~50 nm diameter) increased with plume age as did the organic mass per particle. Comparison of the CARES spectro-microscopic data set with a similar dataset obtained in Mexico City during the MILAGRO campaign showed that individual particles in Mexico City contained twice as much carbon as those sampled during CARES. The number fraction of soot particles at the Mexico City urban site (30%) was larger than at the CARES urban site (10%) and the most aged samples from CARES contained less carbon-carbon double bonds. Differences between carbonaceous particles in Mexico City and California result from different sources, photochemical conditions, gas phase reactants, and secondary organic aerosol precursors. The detailed results provided by these spectro-microscopic measurements will allow for a comprehensive evaluation of aerosol process models used in climate research.

  11. Effect of aerosols and NO2 concentration on ultraviolet actinic flux near Mexico City during MILAGRO: Measurements and model calculations

    SciTech Connect (OSTI)

    Palancar, Gustavo G.; Lefer, Barry; Hall, Samual R.; Shaw, William J.; Corr, Chelsea A.; Herndon, Scott C.; Slusser, J. R.; Madronich, Sasha

    2013-01-24T23:59:59.000Z

    Ultraviolet (UV) actinic ?uxes (AF) measured with three Scanning Actinic Flux Spectroradiometers (SAFS) are compared with the Tropospheric Ultraviolet-Visible (TUV) model v.5 in order to assess the effects of aerosols and NO2 concentrations on the radiation. Measurements were made during the MILAGRO campaign near Mexico City in March 2006, at a ground-based station near Mexico City (the T1 supersite) and from the NSF/NCAR C-130 aircraft. At the surface, measurements are typically smaller by up to 25 % in the morning, 10% at noon, and 40% in the afternoon, than actinic flux modeled for clean, cloud-free conditions. When measurements of PBL height, NO2 concentration and aerosols optical properties are included in the model, the agreement improves to within ±10% in the morning and afternoon, and ±3% at noon. Based on daily averages, aerosols account for 68%, NO2 for 25%, and residual uncertainties for 7% of these AF reductions observed at the surface. Several overpasses from the C-130 aircraft provided the opportunity to examine the actinic flux perturbations aloft, and also show better agreement with the model when aerosol and NO2 effects are included above and below the flight altitude. TUV model simulations show that the vertical structure of the actinic flux is sensitive to the choice of the aerosol single scattering albedo (SSA) at UV wavelengths. Typically, aerosols caused enhanced AF above the PBL and reduced AF near the surface. However, for highly scattering aerosols (SSA > 0.95), enhancements can penetrate well into the PBL, while for strongly absorbing aerosols (SSA<0.7) reductions in AF are computed in the free troposphere as well as in the PBL. Additional measurements of the SSA at these wavelengths are needed to better constrain the effect of aerosols on the vertical structure of the actinic flux.

  12. Transmutation Fuel Campaign Description and Status

    SciTech Connect (OSTI)

    Jon Carmack; Kemal O. Pasamehmetoglu

    2008-01-01T23:59:59.000Z

    This report contains a technical summary package in response to a Level 2 milestone in the transmutation fuel campaign (TFC) management work-package calling for input to the Secretarial decision. At present, the form of the Secretarial decision package is not fully defined, and it is not clear exactly what will be required from the TFC as a final input. However, it is anticipated that a series oftechnical and programmatic documents will need to be provided in support of a wider encompassing document on GNEP technology development activities. The TFC technical leadership team provides this report as initial input to the secretarial decision package which is being developed by the Technical Integration Office (TIO) in support of Secretarial decision. This report contains a summary of the TFC execution plan with a work breakdown structure, highlevel schedule, major milestones, and summary description of critical activities in support of campaign objectives. Supporting documents referenced in this report but provided under separate cover include: • An updated review of the state-of-the art for transmutation fuel development activities considering national as well as international fuel research and development testing activities. • A definition of the Technology Readiness Level (TRL) used to systematically define and execute the transmutation fuel development activities.

  13. NNSA Production Office tops Feds Feed Families campaign goal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production Office tops ... NNSA Production Office tops Feds Feed Families campaign goal Posted: September 16, 2013 - 9:45am Oak Ridge, Tenn. - Employees of the National Nuclear...

  14. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mass Spectrometer (TDCIMS) Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear...

  15. Human Assisted Robotic Team Campaigns for Aquatic Monitoring

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    W. J. (2007a). Autonomous robotic sensing experiments at sanand development of a wireless robotic networked aquaticHuman Assisted Robotic Team Campaigns for Aquatic Monitoring

  16. Creating an Energy Awareness Campaign - A Handbook for Federal...

    Broader source: Energy.gov (indexed) [DOE]

    to reduce energy shortages and reduce America's dependence on foreign oil. Creating an Energy Awareness Campaign: A Handbook for Federal Energy Managers More Documents &...

  17. Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions

    E-Print Network [OSTI]

    Zender, Charles

    1 Role of ammonia chemistry and coarse mode aerosols in global climatological inorganic aerosol distributions Chao Luo1 , Charles S. Zender1 , Huisheng Bian2 , Swen Metzger3 Abstract We use an inorganic aerosol thermodynamic equilibrium model

  18. AERONET: The Aerosol Robotic Network

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  19. Relating Aerosol Absorption due to Soot, Organic Carbon, and Dust to Emission Sources Determined from In-situ Chemical Measurements

    SciTech Connect (OSTI)

    Cazorla, Alberto; Bahadur, R.; Suski, Kaitlyn; Cahill, John F.; Chand, Duli; Schmid, Beat; Ramanathan, V.; Prather, Kimberly

    2013-09-17T23:59:59.000Z

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies, and using in-situ chemical mixing state measurements can help us to constrain the limitations of such an estimation. In this study, the Absorption Ĺngström Exponent (AAE) and the Scattering Ĺngström Exponent (SAE) are used to develop a new methodology for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns are combined in order to validate the methodology for the estimation of aerosol composition using spectral optical properties. Results indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear. On the other hand, the knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  20. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposed study will improve the understanding and representation in climate and Earth system models of clouds and aerosols as well as their interactions and coupling with the...

  1. Advanced Fuels Campaign FY 2011 Accomplishments Report

    SciTech Connect (OSTI)

    Not Listed

    2011-11-01T23:59:59.000Z

    One of the major research and development (R&D) areas under the Fuel Cycle Research and Development (FCRD) program is advanced fuels development. The Advanced Fuels Campaign (AFC) has the responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. Accomplishments made during fiscal year (FY 20) 2011 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section. The order of the accomplishments in this report is consistent with the AFC work breakdown structure (WBS).

  2. 8, 68456901, 2008 Aerosol optical

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance, Germany 2 Helmholtz Center Munich, German Research Center for Environmental Health, Institute

  3. Aerosol penetration through transport lines

    E-Print Network [OSTI]

    Dileep, V.R.

    1996-01-01T23:59:59.000Z

    to predict aerosol penetration thrush shrouded probes and transition fitting('s. Experimnents were carried Out to validate the code. The experiments were carried out for different flow rates for a particle size of IO lam aerodynamic diameter (AD...

  4. 6, 55435583, 2006 Aerosol nucleation

    E-Print Network [OSTI]

    Boyer, Edmond

    and cloud cover via the second indirect aerosol effect that would explain observed variations in global cloud cover. We esti- mate that the variation in radiative forcing resulting from a response of clouds

  5. EAS/CEE 6795 Atmospheric Aerosols Fall 2011

    E-Print Network [OSTI]

    Weber, Rodney

    EAS/CEE 6795 Atmospheric Aerosols Fall 2011 Mon Wed Fri ­ 11 concepts of aerosol physics with applications to atmospheric aerosols. Text Book: Hinds, Aerosol Technology: Properties, behavior and measurement of airborne particles

  6. Global observations of desert dust and biomass burning aerosols

    E-Print Network [OSTI]

    Graaf, Martin de

    Global observations of desert dust and biomass burning aerosols Martin de Graaf KNMI #12; Outline · Absorbing Aerosol Index - Theory · Absorbing Aerosol Index - Reality · Biomass burning and desert dust observations from GOME and SCIAMACHY · Conclusions and Outlook #12; · Absorbing Aerosol

  7. Method for producing monodisperse aerosols

    DOE Patents [OSTI]

    Ortiz, Lawrence W. (Los Alamos, NM); Soderholm, Sidney C. (Pittsford, NY)

    1990-01-01T23:59:59.000Z

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  8. AEROSOL, CLOUDS, AND CLIMATE CHANGE

    SciTech Connect (OSTI)

    SCHWARTZ, S.E.

    2005-09-01T23:59:59.000Z

    Earth's climate is thought to be quite sensitive to changes in radiative fluxes that are quite small in absolute magnitude, a few watts per square meter, and in relation to these fluxes in the natural climate. Atmospheric aerosol particles exert influence on climate directly, by scattering and absorbing radiation, and indirectly by modifying the microphysical properties of clouds and in turn their radiative effects and hydrology. The forcing of climate change by these indirect effects is thought to be quite substantial relative to forcing by incremental concentrations of greenhouse gases, but highly uncertain. Quantification of aerosol indirect forcing by satellite- or ground-based remote sensing has proved quite difficult in view of inherent large variation in the pertinent observables such as cloud optical depth, which is controlled mainly by liquid water path and only secondarily by aerosols. Limited work has shown instances of large magnitude of aerosol indirect forcing, with local instantaneous forcing upwards of 50 W m{sup 66}-2. Ultimately it will be necessary to represent aerosol indirect effects in climate models to accurately identify the anthropogenic forcing at present and over secular time and to assess the influence of this forcing in the context of other forcings of climate change. While the elements of aerosol processes that must be represented in models describing the evolution and properties of aerosol particles that serve as cloud condensation particles are known, many important components of these processes remain to be understood and to be represented in models, and the models evaluated against observation, before such model-based representations can confidently be used to represent aerosol indirect effects in climate models.

  9. Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics by Sarah A. Shull B #12;Integrated Modeling and Simulation of Lunar Exploration Campaign Logistics by Sarah A. Shull to establish a manned outpost on the lunar surface, it is essential to consider the logistics of both

  10. Status Report on the Development of Research Campaigns

    SciTech Connect (OSTI)

    Baer, Donald R.; Baker, Scott E.; Washton, Nancy M.; Linggi, Bryan E.

    2013-06-30T23:59:59.000Z

    Research campaigns were conceived as a means to focus EMSL research on specific scientific questions. Campaign will help fulfill the Environmental Molecular Sciences Laboratory (EMSL) strategic vision to develop and integrate, for use by the scientific community, world leading capabilities that transform understanding in the environmental molecular sciences and accelerate discoveries relevant to the Department of Energy’s (DOE’s) missions. Campaigns are multi-institutional multi-disciplinary projects with scope beyond those of normal EMSL user projects. The goal of research campaigns is to have EMSL scientists and users team on the projects in the effort to accelerate progress and increase impact in specific scientific areas by focusing user research, EMSL resources, and expertise in those areas. This report will give a history and update on the progress of those campaigns.

  11. Improving Bulk Microphysics Parameterizations in Simulations of Aerosol Effects

    SciTech Connect (OSTI)

    Wang, Yuan; Fan, Jiwen; Zhang, Renyi; Leung, Lai-Yung R.; Franklin, Charmaine N.

    2013-06-05T23:59:59.000Z

    To improve the microphysical parameterizations for simulations of the aerosol indirect effect (AIE) in regional and global climate models, a double-moment bulk microphysical scheme presently implemented in the Weather Research and Forecasting (WRF) model is modified and the results are compared against atmospheric observations and simulations produced by a spectral bin microphysical scheme (SBM). Rather than using prescribed aerosols as in the original bulk scheme (Bulk-OR), a prognostic doublemoment aerosol representation is introduced to predict both the aerosol number concentration and mass mixing ratio (Bulk-2M). The impacts of the parameterizations of diffusional growth and autoconversion and the selection of the embryonic raindrop radius on the performance of the bulk microphysical scheme are also evaluated. Sensitivity modeling experiments are performed for two distinct cloud regimes, maritime warm stratocumulus clouds (SC) over southeast Pacific Ocean from the VOCALS project and continental deep convective clouds (DCC) in the southeast of China from the Department of Energy/ARM Mobile Facility (DOE/AMF) - China field campaign. The results from Bulk-2M exhibit a much better agreement in the cloud number concentration and effective droplet radius in both the SC and DCC cases with those from SBM and field measurements than those from Bulk-OR. In the SC case particularly, Bulk-2M reproduces the observed drizzle precipitation, which is largely inhibited in Bulk-OR. Bulk-2M predicts enhanced precipitation and invigorated convection with increased aerosol loading in the DCC case, consistent with the SBM simulation, while Bulk-OR predicts the opposite behaviors. Sensitivity experiments using four different types of autoconversion schemes reveal that the autoconversion parameterization is crucial in determining the raindrop number, mass concentration, and drizzle formation for warm 2 stratocumulus clouds. An embryonic raindrop size of 40 ?m is determined as a more realistic setting in the autoconversion parameterization. The saturation adjustment employed in calculating condensation/evaporation in the bulk scheme is identified as the main factor responsible for the large discrepancies in predicting cloud water in the SC case, suggesting that an explicit calculation of diffusion growth with predicted supersaturation is necessary for further improvements of the bulk microphysics scheme. Lastly, a larger rain evaporation rate below cloud is found in the bulk scheme in comparison to the SBM simulation, which could contribute to a lower surface precipitation in the bulk scheme.

  12. Aerosol observing system platform integration and AAF instrumentation

    SciTech Connect (OSTI)

    Springston, S.; Sedlacek, A.

    2010-03-15T23:59:59.000Z

    As part of the federal government’s 2009 American Recovery and Reinvestment Act (ARRA), the U.S. DOE Office of Science allocated funds for the capital upgrade of the Atmospheric Radiation Measurement (ARM) Climate Research Facility to improve and expand observational capabilities related to cloud and aerosol properties. The ARM Facility was established as a national user facility for the global scientific community to conduct a wide range of interdisciplinary science. Part of the ARRA-funded expansion of the ARM Facility includes four new Aerosol Observing Systems (AOS) to be designed, instrumented, and mentored by BNL. The enclosures will be customized SeaTainers. These new platforms ([AMF2]: ARM Mobile Facility-2; [TWP-D]: Tropical Western Pacific at Darwin; and [MAOS-A]/[MAOS-C]: Mobile Aerosol Observing System-Aerosol/-Chemistry) will provide a laboratory environment for fielding instruments to collect data on aerosol life cycle, microphysics, and optical/physical properties. The extensive instrument suite includes both established methods and initial deployments of new techniques to add breadth and depth to the AOS data sets. The platforms are designed: (1) to have all instruments pre-installed before deployment, allowing a higher measurement duty cycle; (2) with a standardized configuration improving the robustness of data inter-comparability; (3) to provide remote access capability for instrument mentors; and (4) to readily accommodate guest instrumentation. The first deployment of the AMF2 platform will be at the upcoming StormVEx campaign held at Steamboat Springs, Colorado, October 15, 2010–March 31, 2011 while the TWP-D AOS will be stationed at the ARM Darwin site. The maiden deployments of the MAOS-A and MAOS-C platforms will be during the Ganges Valley Experiment (GVAX) scheduled for April 2011–April 2012. In addition to the ground-based AOS platforms, thee major instrument builds for the AAF are also being undertaken (new trace gas package [NO, NOx, NOy, CO, O3, and SO2]; Scanning Mobility Particle Sampler [SMPS]; and Particle into Liquid Sampler [PILS]). The current status of the AOS platforms, instrument suites, instituted QA/QC activities, projected AOS VAPs, and inlet design, as well as still-unresolved issues, will be presented.

  13. Development of a Fast Time-Resolved Aerosol Collector (Fast TRAC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential ApplicationYu, James Cowin PNNL Probing Aerosols in

  14. Aerosol Science and Technology, 43:641652, 2009 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 43:641­652, 2009 Copyright © American Association for Aerosol is the irreversibility of the hygroscopic growth fac- tor of aerosol particles. The instrument uses the hysteresis for ideal instrument performance in application to a test aerosol of fully deliquesce- able particles

  15. Aerosol Science and Technology, 43:799807, 2009 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 43:799­807, 2009 Copyright © American Association for Aerosol and Efflorescence of Potassium Salts Relevant to Biomass-Burning Aerosol Particles Evelyn J. Freney,1 Scot T. Martin mate- rial into the atmosphere. Such aerosol particles affect the climate in part because

  16. Aerosol Science and Technology, 47:9398, 2013 Copyright C American Association for Aerosol Research

    E-Print Network [OSTI]

    Huang, Jiaxing

    Aerosol Science and Technology, 47:93­98, 2013 Copyright C American Association for Aerosol of Pt-Nanoparticles-Laden Graphene Crumples by Aerosol Spray Pyrolysis and Evaluation of aqueous chloroplatinic acid (H2PtCl6) and graphene oxide (GO) sheets via aerosol spray pyrol- ysis (ASP

  17. Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals

    E-Print Network [OSTI]

    Zender, Charles

    Simulating aerosols using a chemical transport model with assimilation of satellite aerosol for simulating aerosols has been developed using a chemical transport model together with an assimilation of satellite aerosol retrievals. The methodology and model components are described in this paper

  18. Aerosol Science and Technology, 46:12391245, 2012 Copyright C American Association for Aerosol Research

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Aerosol Science and Technology, 46:1239­1245, 2012 Copyright C American Association for Aerosol of Surfactants in Nanoparticles Produced by an Electrospray Aerosol Generator Amanda C. MacMillan,1 John B, USA Electrospray aerosol generators (EAGs) disperse conducting solutions into air, promptly neutralize

  19. Aerosol Science and Technology, 41:10891101, 2007 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 41:1089­1101, 2007 Copyright c American Association for Aerosol Interferometric Aerosol Absorption Spectrometry Arthur Sedlacek and Jeonghoon Lee Brookhaven National Laboratory, Atmospheric Sciences, Upton, New York, USA Aerosol light absorption still remains a difficult quantity to mea

  20. Aerosol Science and Technology, 40:97106, 2006 Copyright c American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 40:97­106, 2006 Copyright c American Association for Aerosol the aerosol particles, namely by vaporizing and condensing granular sodium chloride and by electrospraying materials are available for this article. Go to the publisher's online edition of Aerosol Science and Tech

  1. Aerosol Science and Technology, 46:937949, 2012 Copyright C American Association for Aerosol Research

    E-Print Network [OSTI]

    Aerosol Science and Technology, 46:937­949, 2012 Copyright C American Association for Aerosol Distributions following Condensational Growth in Continuous Flow Aerosol Reactors as Derived from Residence Time Distributions: Theoretical Development and Application to Secondary Organic Aerosol Mikinori Kuwata and Scot T

  2. Aerosol Science and Technology, 44:11401145, 2010 Copyright American Association for Aerosol Research

    E-Print Network [OSTI]

    Huang, Jiaxing

    Aerosol Science and Technology, 44:1140­1145, 2010 Copyright © American Association for Aerosol-Assembly of Nanoparticles in Evaporating Aerosol Droplets: Preparation of Nanoporous Pt/TiO2 Composite Particles Hee Dong, USA Nanoporous Pt/TiO2 micro-particles were synthesized via an aerosol assisted co-assembly (AACA

  3. Single particle characterization, source apportionment, and aging effects of ambient aerosols in Southern California

    E-Print Network [OSTI]

    Shields, Laura Grace

    2008-01-01T23:59:59.000Z

    detection efficiencies of aerosol time of flight masscomposition of ambient aerosol particles. Environmentalsize dependent response of aerosol counters, Atmospheric

  4. Droplet Activation Properties of Organic Aerosols Observed at an Urban Site during CalNex-LA

    SciTech Connect (OSTI)

    Mei, Fan; Hayes, Patrick L.; Ortega, Amber; Taylor, Jonathan W.; Allan, James D.; Gilman, Jessica; Kuster, W. C.; de Gouw, Joost A.; Jimenez, Jose L.; Wang, Jian

    2013-04-11T23:59:59.000Z

    Size-resolved cloud condensation nuclei (CCN) spectra and aerosol chemical composition were characterized at an urban supersite in Pasadena, California from 15 May to 4 June, 2010, during the CalNex campaign. The derived hygroscopicity (?CCN) of CCN-active particles with diameter between 97 and 165 nm ranged from 0.05 to 0.4. Diurnal variation showed a slight decrease of ?CCN from 8:00 to 16:00 (from 0.24 to 0.20), which is attributed to increasing organics volume fraction resulted from secondary organic aerosol (SOA) formation. The derived hygroscopicity distribution and maximum activated fraction of the size selected particles were examined as functions of photochemical age. The result indicates that condensation of secondary species (e.g., SOA and sulfate) quickly converted hydrophobic particles to hydrophilic ones, and during daytime, nearly every particle became a CCN at ~0.4% in just a few hours. Based on ?CCN and aerosol chemical composition, the organic hygroscopicity (?org) was derived, and ranged from 0.05 to 0.23 with an average value of 0.13, consistent with the results from earlier studies. The derived ?org generally increased with the organic oxidation level, and most of the variation in ?org could be explained by the variation of the organic O:C atomic ratio alone. The least squares fit of the data yielded ?org =(0.83±0.06) ? (O:C) +(-0.19±0.02). Compared to previous results based on CCN measurements of laboratory generated aerosols, ?org derived from measurements during the CalNex campaign exhibited stronger increase with O:C atomic ratio, and therefore substantially higher values for organics with average O:C greater than 0.5.

  5. Voter competency, information, and campaign effects in representative and direct democracy

    E-Print Network [OSTI]

    Burnett, Craig Michael

    2010-01-01T23:59:59.000Z

    and Campaign Effects in Representative and Direct Democracyand Campaign Effects in Representative and Direct Democracyand make decisions in representative and direct democracy.

  6. Optimization of aerosol penetration through transport lines

    E-Print Network [OSTI]

    Wong Luque, Fermin Samuel

    1992-01-01T23:59:59.000Z

    function of Reynolds number for the aerosol transport system of Strom. Tube diameter = 15. 9 mm. 69 Figure Page 16. Comparison of model, experiments and Strom's data for aerosol penetration through the transport system of Strom. Tube diameter = 15. 9... mm, AED = 8 nm. 70 17. Comparison of model and experiments for aerosol penetration through the transport system of Strom. Tube diameter = 15. 9 mm, AED = 10 pm. . 71 18. Comparison of model, experiments and Strom's data for aerosol penetration...

  7. Advanced Fuels Campaign FY 2010 Accomplishments Report

    SciTech Connect (OSTI)

    Lori Braase

    2010-12-01T23:59:59.000Z

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

  8. ARM - Field Campaign - Chile: Radiative Heating in Underexplored Bands

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? WeCampaign 2 (RHUBC-II)

  9. ARM - Field Campaign - Cloudiness Inter-Comparison IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments?govCampaignsCloudiness

  10. ARM - Field Campaign - Deep Convective Clouds and Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment atgovCampaignsDeep

  11. ARM - Field Campaign - FIRE-Arctic Cloud Experiment/SHEBA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2govCampaignsFIRE-Arctic Cloud

  12. ARM - Field Campaign - Fall 1994 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2govCampaignsFIRE-Arctic

  13. ARM - Field Campaign - Fall 1995 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2govCampaignsFIRE-ArcticSingle Column

  14. ARM - Field Campaign - IR Cloud Camera Feasibility Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997LaunchgovCampaignsIPASRC

  15. ARM - Field Campaign - LASIC: Layered Atlantic Smoke Interactions with

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall-Clouds govCampaignsLASIC:

  16. ARM - Field Campaign - Long-Term Microwave Radiometer Intercomparison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall-CloudsgovCampaignsLong-Term

  17. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010CampaignCampaign

  18. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS ValidatationCampaignCampaign

  19. ARM - Field Campaign - Whole Sky Imager Cloud Fraction Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater CyclegovCampaignsWhole

  20. ARM - Field Campaign - Winter Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWatergovCampaignsWinter

  1. 6, 42134249, 2006 Organic aerosols in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 4213­4249, 2006 Organic aerosols in the Northeastern Pacific K. K. Crahan et al. Title Page Chemistry and Physics Discussions Organics in the Northeastern Pacific and their impacts on aerosol Organic aerosols in the Northeastern Pacific K. K. Crahan et al. Title Page Abstract Introduction

  2. 8, 7194, 2008 Sea salt aerosol

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 8, 71­94, 2008 Sea salt aerosol refractive indices R. Irshad et al. Title Page Abstract Discussions Laboratory measurements of the optical properties of sea salt aerosol R. Irshad 1 , R. G. Grainger salt aerosol refractive indices R. Irshad et al. Title Page Abstract Introduction Conclusions

  3. 4, 20552088, 2004 Aerosol-ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 4, 2055­2088, 2004 Aerosol-ozone correlations during dust transport episodes P. Bonasoni et al and Physics Discussions Aerosol-ozone correlations during dust transport episodes P. Bonasoni1 , P.bonasoni@isac.cnr.it) 2055 #12;ACPD 4, 2055­2088, 2004 Aerosol-ozone correlations during dust transport episodes P. Bonasoni

  4. ATI TDA 5A aerosol generator evaluation

    SciTech Connect (OSTI)

    Gilles, D.A.

    1998-07-27T23:59:59.000Z

    Oil based aerosol ``Smoke`` commonly used for testing the efficiency and penetration of High Efficiency Particulate Air filters (HEPA) and HEPA systems can produce flammability hazards that may not have been previously considered. A combustion incident involving an aerosol generator has caused an investigation into the hazards of the aerosol used to test HEPA systems at Hanford.

  5. 6, 93519388, 2006 Aerosol-cloud

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al Chemistry and Physics Discussions Aerosol-cloud interaction inferred from MODIS satellite data and global 6, 9351­9388, 2006 Aerosol-cloud interaction inferred from MODIS and models G. Myhre et al. Title

  6. 5, 50075038, 2005 Aerosol effect on

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and Physics Discussions Aerosol effect on the distribution of solar radiation over the clear-sky global oceansACPD 5, 5007­5038, 2005 Aerosol effect on solar radiation from MODIS L. A. Remer and Y. J. Kaufman the reflected sunlight by the aerosol over global oceans in cloud free conditions. The MODIS high spatial

  7. Atmospheric Radiation Measurement (ARM) Data from Manacapuru, Brazil for the Green Ocean Amazon (GOAMAZON) Field Campaign

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Amazon rain forest in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planet’s remaining rain forests, and comprises the most biodiverse tract of tropical rain forest on the planet. Due to the sheer size of the Amazon rain forest, the area has a strong impact on the climate in the Southern Hemisphere. To understand the intricacies of the natural state of the Amazon rain forest, the Green Ocean Amazon, or GOAMAZON, field campaign is a two-year scientific collaboration among U.S. and Brazilian research organizations. They are conducting a variety of different experiments with dozens of measurement tools, using both ground and aerial instrumentation, including the ARM Aerial Facility's G-1 aircraft. For more information on the holistic view of the campaign, see the Department of Energy’s GOAMAZON website. As a critical component of GOAMAZON, the ARM Mobile Facility (AMF) will obtain measurements near Manacapuru, south of Manaus, Brazil, from January to December 2014. The city of Manaus, with a population of 3 million, uses high-sulfur oil as their primary source of electricity. The AMF site is situated to measure the atmospheric extremes of a pristine atmosphere and the nearby cities’ pollution plume, as it regularly intersects with the site. Along with other instrument systems located at the Manacapuru site, this deployment will enable scientists to study how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity.

  8. Study of Mechanisms of Aerosol Indirect Effects on Glaciated Clouds: Progress during the Project Final Technical Report

    SciTech Connect (OSTI)

    None

    2013-10-18T23:59:59.000Z

    This 3-year project has studied how aerosol pollution influences glaciated clouds. The tool applied has been an 'aerosol-cloud model'. It is a type of Cloud-System Resolving Model (CSRM) modified to include 2-moment bulk microphysics and 7 aerosol species, as described by Phillips et al. (2009, 2013). The study has been done by, first, improving the model and then performing sensitivity studies with validated simulations of a couple of observed cases from ARM. These are namely the Tropical Warm Pool International Cloud Experiment (TWP-ICE) over the tropical west Pacific and the Cloud and Land Surface Interaction Campaign (CLASIC) over Oklahoma. During the project, sensitivity tests with the model showed that in continental clouds, extra liquid aerosols (soluble aerosol material) from pollution inhibited warm rain processes for precipitation production. This promoted homogeneous freezing of cloud droplets and aerosols. Mass and number concentrations of cloud-ice particles were boosted. The mean sizes of cloud-ice particles were reduced by the pollution. Hence, the lifetime of glaciated clouds, especially ice-only clouds, was augmented due to inhibition of sedimentation and ice-ice aggregation. Latent heat released from extra homogeneous freezing invigorated convective updrafts, and raised their maximum cloud-tops, when aerosol pollution was included. In the particular cases simulated in the project, the aerosol indirect effect of glaciated clouds was twice than of (warm) water clouds. This was because glaciated clouds are higher in the troposphere than water clouds and have the first interaction with incoming solar radiation. Ice-only clouds caused solar cooling by becoming more extensive as a result of aerosol pollution. This 'lifetime indirect effect' of ice-only clouds was due to higher numbers of homogeneously nucleated ice crystals causing a reduction in their mean size, slowing the ice-crystal process of snow production and slowing sedimentation. In addition to the known indirect effects (glaciation, riming and thermodynamic), new indirect effects were discovered and quantified due to responses of sedimentation, aggregation and coalescence in glaciated clouds to changing aerosol conditions. In summary, the change in horizontal extent of the glaciated clouds ('lifetime indirect effects'), especially of ice-only clouds, was seen to be of higher importance in regulating aerosol indirect effects than changes in cloud properties ('cloud albedo indirect effects').

  9. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marine Ice Nuclei Collections ARM Data Discovery Browse Data Related Campaigns Marine ARM GPCI Investigation of Clouds (MAGIC) 2012.10.01, Lewis, AMF Comments? We would love to...

  10. Campaign-level science traceability for Earth observation system architecting

    E-Print Network [OSTI]

    Seher, Theodore K. (Theodore Kimball)

    2009-01-01T23:59:59.000Z

    The Earth Sciences Decadal Survey of 2007 presented a comprehensive vision for the evolution of space-based Earth Science resources. The practical development of the Decadal campaign, however, has highlighted four challenges ...

  11. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NPSD Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note below...

  12. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser Luminescence Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a...

  13. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOx Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note below or...

  14. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cluster Air Ion Spectrometer (NAIS) Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear...

  15. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxidation Flow Reactor Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send...

  16. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organic Compounds in the Amazon Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear...

  17. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHUVA Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note below...

  18. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Harvard Bounce Apparatus Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you...

  19. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sampling Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note...

  20. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LIDAR Comparison Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a...

  1. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sounding Enhancement Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us...

  2. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxidation Flow Reactor 2 Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you...

  3. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particulate Matter and Gases Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you...

  4. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OHCIMS Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note below...

  5. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRI-PTR-ToFMS Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note...

  6. ARM - Field Campaign - Observations and Modeling of the Green...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parsivel2 Related Campaigns Observations and Modeling of the Green Ocean Amazon (GOAMAZON 2014) 2014.01.01, Martin, AMF Comments? We would love to hear from you Send us a note...

  7. Conceptual Design - Polar Drive Ignition Campaign

    SciTech Connect (OSTI)

    Hansen, R

    2012-04-05T23:59:59.000Z

    The Laboratory for Laser Energetics (LLE) at the University of Rochester is proposing a collaborative effort with Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratories (LANL), the Naval Research Laboratory (NRL), and General Atomics (GA) with the goal of developing a cryogenic polar drive (PD) ignition platform on the National Ignition Facility (NIF). The scope of this proposed project requires close discourse among theorists, experimentalists, and laser and system engineers. This document describes how this proposed project can be broken into a series of parallel independent activities that, if implemented, could deliver this goal in the 2017 timeframe. This Conceptual Design document is arranged into two sections: mission need and design requirements. Design requirements are divided into four subsystems: (1) A point design that details the necessary target specifications and laser pulse requirements; (2) The beam smoothing subsystem that describes the MultiFM 1D smoothing by spectral dispersion (SSD); (3) New optical elements that include continuous phase plates (CPP's) and distributed polarization rotators (DPR's); and (4) The cryogenic target handling and insertion subsystem, which includes the design, fabrication, testing, and deployment of a dedicated PD ignition target insertion cryostat (PD-ITIC). This document includes appendices covering: the primary criteria and functional requirements, the system design requirements, the work breakdown structure, the target point design, the experimental implementation plan, the theoretical unknowns and technical implementation risks, the estimated cost and schedule, the development plan for the DPR's, the development plan for MultiFM 1D SSD, and a list of acronym definitions. While work on the facility modifications required for PD ignition has been in progress for some time, some of the technical details required to define the specific modifications for a Conceptual Design Review (CDR) remain to be defined. In all cases, the facility modifications represent functional changes to existing systems or capabilities. The bulk of the scope yet to be identified is associated with the DPR's and MultiFM beam smoothing. Detailed development plans for these two subsystems are provided in Appendices H and I; additional discussion of subsystem requirements based on the physics of PD ignition is given in Section 3. Accordingly, LLE will work closely with LLNL to develop detailed conceptual designs for the PD-specific facility modifications, including assessments of the operational impact of implementation (e.g., changing optics for direct rather than indirect-drive illumination and swapping from a hohlraum-based ITIC to one that supports PD). Furthermore, the experimental implementation plan represents the current best understanding of the experimental campaigns required to achieve PD ignition. This plan will evolve based on the lessons learned from the National Ignition Campaign (NIC) and ongoing indirect-drive ignition experiments. The plan does not take the operational realities of the PD configuration into account; configuration planning for the proposed PD experiments is beyond the scope of this document.

  8. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A. (Countryside, IL); Reedy, Gerald T. (Bourbonnais, IL); Kumar, Romesh (Naperville, IL)

    1990-01-01T23:59:59.000Z

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  9. Review of models applicable to accident aerosols

    SciTech Connect (OSTI)

    Glissmeyer, J.A.

    1983-07-01T23:59:59.000Z

    Estimations of potential airborne-particle releases are essential in safety assessments of nuclear-fuel facilities. This report is a review of aerosol behavior models that have potential applications for predicting aerosol characteristics in compartments containing accident-generated aerosol sources. Such characterization of the accident-generated aerosols is a necessary step toward estimating their eventual release in any accident scenario. Existing aerosol models can predict the size distribution, concentration, and composition of aerosols as they are acted on by ventilation, diffusion, gravity, coagulation, and other phenomena. Models developed in the fields of fluid mechanics, indoor air pollution, and nuclear-reactor accidents are reviewed with this nuclear fuel facility application in mind. The various capabilities of modeling aerosol behavior are tabulated and discussed, and recommendations are made for applying the models to problems of differing complexity.

  10. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    SciTech Connect (OSTI)

    Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

    2010-03-15T23:59:59.000Z

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model calculations appeared to underestimate sulfate concentrations based on an existing emission inventory. The agreement between observations and model predictions of CO as well as total sulfur is reexamined in this work with a new emission inventory made available recently.

  11. Honey Bee Behavior: A Multi-agent Approach for Multiple Campaigns Assignment Problem

    E-Print Network [OSTI]

    Cho, Sung-Bae

    simulation studies are carried out varying on the small to large scale of the customer-campaign assignment of companies ranging from small to large scale, to provide personalized services for customers. In order for a specific campaign tends to be inclined for other campaigns. If we conduct inde- pendent campaigns without

  12. 7, 71717233, 2007 Aerosol absorption

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    black carbon refractive indices, new cloud radiative properties considering the effect of aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations radiative properties re- sults in a small global annual-mean all-sky absorption of 0.05 W m-2 and a positive

  13. Detection of UV-absorbing aerosols using GOME and SCIAMACHY

    E-Print Network [OSTI]

    Graaf, Martin de

    Detection of UV-absorbing aerosols using GOME and SCIAMACHY Martin de Graaf KNMI #12; Outline · The Absorbing Aerosol Index: some theory · Detection of biomass burning aerosols and desert dust. -no clouds -no scattering aerosols Absorbing Aerosol Index AAI Algorithm LUT #12;GOME & SCIAMACHY

  14. DO AEROSOLS CHANGE CLOUD COVER AND AFFECT CLIMATE?

    E-Print Network [OSTI]

    Schwartz, Stephen E.

    BALANCE Global and annual average energy fluxes in watts per square meter Schwartz, 1996, modified from;AEROSOL INFLUENCES ON CLIMATE AND CLIMATE CHANGE #12;DMS #12;AEROSOL IN MEXICO CITY BASIN #12;AEROSOL IN MEXICO CITY BASIN Light scattering by aerosols decreases absorption of solar radiation. #12;AEROSOLS

  15. Development of Soft Ionization for Particulate Organic Detection with the Aerodyne Aerosol Mass Spectrometer

    SciTech Connect (OSTI)

    Trimborn, A; Williams, L R; Jayne, J T; Worsnop, D R

    2008-06-19T23:59:59.000Z

    During this DOE SBIR Phase II project, we have successfully developed several soft ionization techniques, i.e., ionization schemes which involve less fragmentation of the ions, for use with the Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS). Vacuum ultraviolet single photon ionization was demonstrated in the laboratory and deployed in field campaigns. Vacuum ultraviolet single photon ionization allows better identification of organic species in aerosol particles as shown in laboratory experiments on single component particles, and in field measurements on complex multi-component particles. Dissociative electron attachment with lower energy electrons (less than 30 eV) was demonstrated in the measurement of particulate organics in chamber experiments in Switzerland, and is now a routine approach with AMS systems configured for bipolar, negative ion detection. This technique is particularly powerful for detection of acidic and other highly oxygenated secondary organic aerosol (SOA) chemical functionality. Low energy electron ionization (10 to 12 eV) is also a softer ionization approach routinely available to AMS users. Finally, Lithium ion attachment has been shown to be sensitive to more alkyl-like chemical functionality in SOA. Results from Mexico City are particularly exciting in observing changes in SOA molecular composition under different photochemical/meteorological conditions. More recent results detecting biomass burns at the Montana fire lab have demonstrated quantitative and selective detection of levoglucosan. These soft ionization techniques provide the ToF-AMS with better capability for identifying organic species in ambient atmospheric aerosol particles. This, in turn, will allow more detailed study of the sources, transformations and fate of organic-containing aerosol.

  16. What makes some campaigns more effective than others?: An analysis of three mass media PSI HIV/AIDS campaigns in Kenya.

    E-Print Network [OSTI]

    Mabachi, Natabhona Marianne

    2008-12-15T23:59:59.000Z

    This study included interviews with campaign planners at a major social marketing organization in Kenya and an examination of three comprehensive HIV/AIDS health campaigns produced by the planners. Thematic and qualitative content analysis...

  17. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-01-01T23:59:59.000Z

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using European Monitoring and Evaluation Programme (EMEP) measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic. Total PM2.5 agrees well with the measurements, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that duringmore »the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had undergone significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne lidar measurements. Model results show that the pollution event transported aerosols into the Arctic (> 66.6° N) for a 4-day period. During this 4-day period, biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~ 1.5 km) and higher altitudes (~ 4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface in anthropogenic plumes. The European plumes sampled during the POLARCAT-France campaign were transported over the region of springtime snow cover in northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top-of-atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m?2, peaking at +3.3 W m?2 at noon over Scandinavia and Finland.« less

  18. Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Mass spectrometric approaches for chemical characterisation of atmospheric aerosols: critical. Atmospheric aerosols have profound effects on the environment through several physicochemical processes on the respiratory and cardiovascular systems. Understanding aerosol atmospheric chemistry and its environmental

  19. Intercomparison of 14C Analysis of Carbonaceous Aerosols: Exercise 2009

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    analysis of carbonaceous aerosols: recent developments.Source apportionment of aerosols by 14 C measurements inAnalysis of Carbonaceous Aerosols Table 2a 14 C(TC) results

  20. Enhanced photolysis in aerosols: evidence for important surface effects.

    E-Print Network [OSTI]

    Nissenson, Paul; Knox, Christopher J H; Finlayson-Pitts, Barbara J; Phillips, Leon F; Dabdub, Donald

    2006-01-01T23:59:59.000Z

    irradiated for 30 s in the aerosol phase, (b) Mo(CO) 6 in 1-irradiation for both aerosols and the bulk-liquid solution.Enhanced photolysis in aerosols: evidence for important

  1. Remote sensing of terrestrial tropospheric aerosols from aircraft and satellites

    E-Print Network [OSTI]

    Remote sensing of terrestrial tropospheric aerosols from aircraft and satellites M I Mishchenko1 instruments suitable for aerosol remote sensing and give examples of aerosol retrievals obtained forcing directly by absorbing and reflecting sunlight, thereby cooling or heating the atmosphere

  2. Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008

    SciTech Connect (OSTI)

    Marelle, L.; Raut, Jean-Christophe; Thomas, J. L.; Law, K. S.; Quennehen, Boris; Ancellet, G.; Pelon, J.; Schwarzenboeck, A.; Fast, Jerome D.

    2015-01-01T23:59:59.000Z

    During the POLARCAT-France airborne campaign in April 2008, pollution originating from anthropogenic and biomass burning emissions was measured in the European Arctic. We compare these aircraft measurements with simulations using the WRF-Chem model to investigate model representation of aerosols transported from Europe to the Arctic. Modeled PM2.5 is evaluated using EMEP measurements in source regions and POLARCAT aircraft measurements in the Scandinavian Arctic, showing a good agreement, although the model overestimates nitrate and underestimates organic carbon in source regions. Using WRF-Chem in combination with the Lagrangian model FLEXPART-WRF, we find that during the campaign the research aircraft sampled two different types of European plumes: mixed anthropogenic and fire plumes from eastern Europe and Russia transported below 2 km, and anthropogenic plumes from central Europe uplifted by warm conveyor belt circulations to 5–6 km. Both modeled plume types had significant wet scavenging (> 50% PM10) during transport. Modeled aerosol vertical distributions and optical properties below the aircraft are evaluated in the Arctic using airborne LIDAR measurements. Evaluating the regional impacts in the Arctic of this event in terms of aerosol vertical structure, we find that during the 4 day presence of these aerosols in the lower European Arctic (< 75° N), biomass burning emissions have the strongest influence on concentrations between 2.5 and 3 km altitudes, while European anthropogenic emissions influence aerosols at both lower (~1.5 km) and higher altitudes (~4.5 km). As a proportion of PM2.5, modeled black carbon and SO4= concentrations are more enhanced near the surface. The European plumes sampled during POLARCAT-France were transported over the region of springtime snow cover in Northern Scandinavia, where they had a significant local atmospheric warming effect. We find that, during this transport event, the average modeled top of atmosphere (TOA) shortwave direct and semi-direct radiative effect (DSRE) north of 60° N over snow and ice-covered surfaces reaches +0.58 W m?˛, peaking at +3.3 W m?˛ at noon over Scandinavia and Finland.

  3. Update of the Used Fuel Disposition Campaign Implementation Plan

    SciTech Connect (OSTI)

    Jens Birkholzer; Robert MacKinnon; Kevin McMahon; Sylvia Saltzstein; Ken Sorenson; Peter Swift

    2014-09-01T23:59:59.000Z

    This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign (UFDC) supports achievement of the overarching mission and objectives of the Department of Energy Office of Nuclear Energy Fuel Cycle Technologies Program The implementation plan begins with the assumption of target dates that are set out in the January 2013 DOE Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (http://energy.gov/downloads/strategy-management-and-disposal-used-nuclear-fuel-and-high-level-radioactive-waste). These target dates and goals are summarized in section III. This implementation plan will be maintained as a living document and will be updated as needed in response to progress in the Used Fuel Disposition Campaign and the Fuel Cycle Technologies Program.

  4. Molecular Characterization of Organic Aerosols Using Nanospray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in OA, which is important for understanding chemical aging phenomena. Citation: Roach PJ, J Laskin, and A Laskin.2010."Molecular Characterization of Organic Aerosols Using...

  5. Researchers Model Impact of Aerosols Over California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Aerosols Over California Research may clarify the effectiveness of regional pollution controls May 28, 2013 | Tags: Climate Research, Hopper Contact: Linda Vu,...

  6. Photolytic processing of secondary organic aerosols dissolved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processing of secondary organic aerosols dissolved in cloud droplets. Abstract: The effect of UV irradiation on the molecular composition of aqueous extracts of secondary...

  7. An investigation of the sub-grid variability of trace gases and aerosols for global climate modeling

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Fast, Jerome D.

    2010-07-29T23:59:59.000Z

    One fundamental property and limitation of grid based models is their inability to identify spatial details smaller than the grid cell size. While decades of work have gone into developing sub-grid treatments for clouds and land surface processes in climate models, the quantitative understanding of sub-grid processes and variability for aerosols and their precursors is much poorer. In this study, WRF-Chem is used to simulate the trace gases and aerosols over central Mexico during the 2006 MILAGRO field campaign, with multiple spatial resolutions and emission/terrain scenarios. Our analysis focuses on quantifying the sub-grid variability (SGV) of trace gases and aerosols within a typical global climate model grid cell, i.e. 75x75 km2. Our results suggest that a simulation with 3-km horizontal grid spacing adequately reproduces the overall transport and mixing of trace gases and aerosols downwind of Mexico City, while 75-km horizontal grid spacing is insufficient to represent local emission and terrain-induced flows along the mountain ridge, subsequently affecting the transport and mixing of plumes from nearby sources. Therefore, the coarse model grid cell average may not correctly represent aerosol properties measured over polluted areas. Probability density functions (PDFs) for trace gases and aerosols show that secondary trace gases and aerosols, such as O3, sulfate, ammonium, and nitrate, are more likely to have a relatively uniform probability distribution (i.e. smaller SGV) over a narrow range of concentration values. Mostly inert and long-lived trace gases and aerosols, such as CO and BC, are more likely to have broad and skewed distributions (i.e. larger SGV) over polluted regions. Over remote areas, all trace gases and aerosols are more uniformly distributed compared to polluted areas. Both CO and O3 SGV vertical profiles are nearly constant within the PBL during daytime, indicating that trace gases are very efficiently transported and mixed vertically by turbulence. But, simulated horizontal variability indicates that trace gases and aerosols are not well mixed horizontally in the PBL. During nighttime the SGV for trace gases is maximum at the surface, and quickly decreases with height. Unlike the trace gases, the SGV of BC and secondary aerosols reaches a maximum at the PBL top during the day. The SGV decreases with distance away from the polluted urban area, has a more rapid decrease for long-lived trace gases and aerosols than for secondary ones, and is greater during daytime than nighttime. The SGV of trace gases and aerosols is generally larger than for meteorological quantities. Emissions can account for up to 50% of the SGV over urban areas such as Mexico City during daytime for less-reactive trace gases and aerosols, such as CO and BC. The impact of emission spatial variability on SGV decays with altitude in the PBL and is insignificant in the free troposphere. The emission variability affects SGV more significantly during daytime (rather than nighttime) and over urban (rather than rural or remote) areas. The terrain, through its impact on meteorological fields such as wind and the PBL structure, affects dispersion and transport of trace gases and aerosols and their SGV.

  8. ARM - Field Campaign - Boundary Layer CO2 Using CW Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud ODgovCampaignsBoundary

  9. ARM - Field Campaign - COPS - Initiation of Convection and the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We would love to hear

  10. ARM - Field Campaign - Characterization of Black Carbon Mixing State

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 Campaign Comments? We

  11. ARM - Field Campaign - Colorado: The Storm Peak Lab Cloud Property

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at StormVEx ARM

  12. ARM - Field Campaign - Complex Layered Cloud Experiment (CLEX)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2 Deployment at StormVEx

  13. ARM - Field Campaign - Evaluation of Routine Atmospheric Scientific

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5 CampaignSP2

  14. ARM - Field Campaign - Fall 1997 Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall 1997 Cloud IOP

  15. ARM - Field Campaign - IRSI Inter-Comparison Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall

  16. ARM - Field Campaign - Lidar support for ICECAPS at Summit, Greenland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8LigovCampaignsCLEX-5govCampaignsFall-Clouds

  17. ARM - Field Campaign - Macquarie Island Cloud and Radiation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACEgovCampaignsMWR

  18. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010Campaign

  19. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS ValidatationCampaign

  20. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign govCampaignsPrecision Gas

  1. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign govCampaignsPrecision

  2. ARM - Field Campaign - RAdiative Divergence using AMF, GERB and AMMA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign govCampaignsPrecisionSTations

  3. ARM - Field Campaign - SUbsonic Aircraft: Contrail & Cloud Effects Special

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP IcegovCampaignsSITACStudy

  4. ARM - Field Campaign - Spring Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall ParticlesSCMgovCampaignsSpring

  5. ARM - Field Campaign - Summer 1994 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmallgovCampaignsSummer 1994 Single

  6. ARM - Field Campaign - Summer 1995 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmallgovCampaignsSummer 1994

  7. ARM - Field Campaign - The ARM Pilot Radiation Observation Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM(PROBE) govCampaignsThe

  8. ARM - Field Campaign - Thin Cloud Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column Model IOP ARM(PROBE)govCampaignsThin

  9. ARM - Field Campaign - Unmanned Aerospace Vehicle (UAV) IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single Column ModelRSPgovCampaignsUnmanned Aerospace

  10. ARM - Field Campaign - Water Cycle Pilot Study Intensive Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater Cycle Pilot Study

  11. ARM - Field Campaign - Winter 1994 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- PolarizationgovCampaignsSummer Single ColumngovCampaignsWater

  12. Quantifying aerosol direct radiative effect with Multiangle Imaging Spectroradiometer observations: Top-of-atmosphere albedo change by aerosols based on land surface types

    E-Print Network [OSTI]

    Chen, Yang; Li, Qinbin; Kahn, Ralph A; Randerson, James T; Diner, David J

    2009-01-01T23:59:59.000Z

    coincident MISR and MODIS aerosol optical depths over land2003), Estimates of the spectral aerosol single scatteringalbedo and aerosol radiative effects during SAFARI 2000, J.

  13. Synergy between Secondary Organic Aerosols and Long Range Transport...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between Secondary Organic Aerosols and Long Range Transport of Polycyclic Aromatic Hydrocarbons. Synergy between Secondary Organic Aerosols and Long Range Transport of Polycyclic...

  14. acid aerosol exposure: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nenes, Athanasios 8 Neutralization of soil aerosol and its impact on the distribution of acid rain over east Asia Geosciences Websites Summary: Neutralization of soil aerosol and...

  15. Spectro-Microscopic Measurements of Carbonaceous Aerosol Aging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Carbonaceous Aerosol Aging in Central California. Abstract: Carbonaceous aerosols are responsible for large uncertainties in climate models, degraded visibility, and...

  16. Building America Webinar: Sealing of Home Enclosures with Aerosol...

    Energy Savers [EERE]

    Sealing of Home Enclosures with Aerosol Particles Building America Webinar: Sealing of Home Enclosures with Aerosol Particles This webinar was presented by research team Building...

  17. Reduction in biomass burning aerosol light absorption upon humidificat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, Reduction in biomass burning aerosol light absorption upon...

  18. aerosols iii morphologic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Websites Summary: of aerosols. Keywords: metal waste recycling; aerosols; fire hazard; explosion hazard. 1. OVERVIEW ProductsRisks generated by the treatment of...

  19. Molecular Chemistry of Organic Aerosols Through the Application...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry of Organic Aerosols Through the Application of High Resolution Mass Spectrometry. Molecular Chemistry of Organic Aerosols Through the Application of High Resolution Mass...

  20. Comparative Analysis of Urban Atmospheric Aerosol by Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Urban Atmospheric Aerosol by Particle-Induced X-ray Emission (PIXE), Proton Elastic Scattering Analysis Comparative Analysis of Urban Atmospheric Aerosol by...

  1. ambient aerosol concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer...

  2. ambient ultrafine aerosols: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    soluble in water: 2. Isolation of acid, neutral, and basic fractions by modified size Weber, Rodney 4 Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer...

  3. aerosol flow reactor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APPROACH TO SPACEBORN HYPERSPECTRAL OPTICAL FLOW ESTIMATION ON DUST AEROSOLS Fabian E, Canada ABSTRACT The significant role dust aerosols play in the earth's climate sys- tem and...

  4. aerosol formation durint: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XI, Universit de 86 8, 68456901, 2008 Aerosol optical Physics Websites Summary: of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy...

  5. aerosol ratio program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contribute a major portion of atmospheric aerosol mass loading 5. The estimated global annual Liou, K. N. 2 Studying Clouds and Aerosols with Lidar Depolarization Ratio and...

  6. aerosol optical thickness: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

  7. aerosol black carbon: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar radiation by atmospheric aerosols is a key el- ement of the Earth's radiative energy balance and climate. The optical properties of aerosol particles are, however,...

  8. aerosol samples collected: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elements analysis of aerosol samples from some CiteSeer Summary: Aerosols deposits on filters from ten Romanian towns with different kinds and levels of industrial development...

  9. aerosol particles emitted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerosols scatter and absorb solar, estimates of the impact of aerosols on visibility, the solar radiation balance, and crop production is presented. 1. INTRODUCTION The attenuation...

  10. aerosol size classification: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2006 Aerosol size Physics Websites Summary: ACPD 6, 10493-10522, 2006 Aerosol size distribution source identification T. W. Chan and M Esc Printer-friendly Version...

  11. aerosolized pentamidine effect: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  12. aerosol monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  13. aerosols radioactifs artificiels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  14. aerosolized polymerized type: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  15. aerosol concentration enrichment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  16. aerosol direct radiative: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  17. aerosol biokinetics concentrations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  18. aerosol particle analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: data analysis algorithm is presented. Our earlier algorithm assumed a monomodal aerosol size distribution, while the new algorithm allows us to partition the aerosol...

  19. aerosol radiative forcing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  20. aerosol research study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in atmospheric thermal structure, burning, bio-sources changes? 12;Aerosol microphysics: size distribution, mixing state, morphology, shape 9 Aerosol Science and Technology,...

  1. aerosol chemical composition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON CCN CONCENTRATION AND AEROSOL FIRST INDIRECT RADIATIVE composition, aerosol size distribution is the more dominant parameter on CCN activation Feingold, GRL 2003;...

  2. Ice-condenser aerosol tests

    SciTech Connect (OSTI)

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. (Pacific Northwest Lab., Richland, WA (United States))

    1991-09-01T23:59:59.000Z

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  3. Simultaneous Retrieval of Effective Refractive Index and Density from Size Distribution and Light Scattering Data: Weakly-Absorbing Aerosol

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Shilling, John E.; Flynn, Connor J.; Mei, Fan; Jefferson, Anne

    2014-10-01T23:59:59.000Z

    We propose here a novel approach for retrieving in parallel the effective density and real refractive index of weakly absorbing aerosol from optical and size distribution measurements. Here we define “weakly absorbing” as aerosol single-scattering albedos that exceed 0.95 at 0.5 um.The required optical measurements are the scattering coefficient and the hemispheric backscatter fraction, obtained in this work from an integrating nephelometer. The required size spectra come from a Scanning Mobility Particle Sizer and an Aerodynamic Particle Sizer. The performance of this approach is first evaluated using a sensitivity study with synthetically generated but measurement-related inputs. The sensitivity study reveals that the proposed approach is robust to random noise; additionally the uncertainties of the retrieval are almost linearly proportional to the measurement errors, and these uncertainties are smaller for the real refractive index than for the effective density. Next, actual measurements are used to evaluate our approach. These measurements include the optical, microphysical, and chemical properties of weakly absorbing aerosol which are representative of a variety of coastal summertime conditions observed during the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/). The evaluation includes calculating the root mean square error (RMSE) between the aerosol characteristics retrieved by our approach, and the same quantities calculated using the conventional volume mixing rule for chemical constituents. For dry conditions (defined in this work as relative humidity less than 55%) and sub-micron particles, a very good (RMSE~3%) and reasonable (RMSE~28%) agreement is obtained for the retrieved real refractive index (1.49±0.02) and effective density (1.68±0.21), respectively. Our approach permits discrimination between the retrieved aerosol characteristics of sub-micron and sub-10micron particles. The evaluation results also reveal that the retrieved density and refractive index tend to decrease with an increase of the relative humidity.

  4. Heterogeneous Chemistry: Understanding Aerosol/Oxidant Interactions

    SciTech Connect (OSTI)

    Joyce E. Penner

    2005-03-14T23:59:59.000Z

    Global radiative forcing of nitrate and ammonium aerosols has mostly been estimated from aerosol concentrations calculated at thermodynamic equilibrium or using approximate treatments for their uptake by aerosols. In this study, a more accurate hybrid dynamical approach (DYN) was used to simulate the uptake of nitrate and ammonium by aerosols and the interaction with tropospheric reactive nitrogen chemistry in a three-dimensional global aerosol and chemistry model, IMPACT, which also treats sulfate, sea salt and mineral dust aerosol. 43% of the global annual average nitrate aerosol burden, 0.16 TgN, and 92% of the global annual average ammonium aerosol burden, 0.29 TgN, exist in the fine mode (D<1.25 {micro}m) that scatters most efficiently. Results from an equilibrium calculation differ significantly from those of DYN since the fraction of fine-mode nitrate to total nitrate (gas plus aerosol) is 9.8%, compared to 13% in DYN. Our results suggest that the estimates of aerosol forcing from equilibrium concentrations will be underestimated. We also show that two common approaches used to treat nitrate and ammonium in aerosol in global models, including the first-order gas-to-particle approximation based on uptake coefficients (UPTAKE) and a hybrid method that combines the former with an equilibrium model (HYB), significantly overpredict the nitrate uptake by aerosols especially that by coarse particles, resulting in total nitrate aerosol burdens higher than that in DYN by +106% and +47%, respectively. Thus, nitrate aerosol in the coarse mode calculated by HYB is 0.18 Tg N, a factor of 2 more than that in DYN (0.086 Tg N). Excessive formation of the coarse-mode nitrate in HYB leads to near surface nitrate concentrations in the fine mode lower than that in DYN by up to 50% over continents. In addition, near-surface HNO{sub 3} and NO{sub x} concentrations are underpredicted by HYB by up to 90% and 5%, respectively. UPTAKE overpredicts the NO{sub x} burden by 56% and near-surface NO{sub x} concentrations by a factor of 2-5. These results suggest the importance of using the more accurate hybrid dynamical method in the estimates of both aerosol forcing and tropospheric ozone chemistry.

  5. Characterization of aerosols produced by surgical procedures

    SciTech Connect (OSTI)

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States); Turner, R.S. [Lovelace Health Systems, Albuquerque, NM (United States)

    1994-07-01T23:59:59.000Z

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  6. Effect of Aerosol Humidification on the Column Aerosol Optical Thickness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11ComputationalEdNERSC: DeliveringEdwinover the ARM

  7. ISDAC - NRC Convair-580 Flight Hours Date Flight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh School footballHydrogen andHypernucleiNORTHWESTOffice ofOffice- NRC

  8. Recycling Campaign Award Prizes for best project proposal to improve

    E-Print Network [OSTI]

    van der Torre, Leon

    Recycling Campaign Award Prizes for best project proposal to improve waste recycling. Recycling bins contain inappropriate waste that cannot be recycled and thus are not picked up. THE REASON for picking up the waste. 60% of the waste budget. Your task: - To develop a new project to improve recycling

  9. 1-pin blanket mockup: Results of the extended test campaign

    SciTech Connect (OSTI)

    Ferrari, M.; Talarico, C. [EURATOM-ENEA, Frascati (Italy); Furrer, M.; Simbolotti, G. [ENEA, S. Maria in Galeria (Italy)

    1996-12-31T23:59:59.000Z

    Following a preliminary test campaign (200 thermal cycles) on a solid breeder blanket mockup, an extended test campaign (about 1000 thermal cycles) has been carried out by ENEA. The duration of the test campaign represents a significant fraction of the blanket module lifetime in the ITER device. In particular, these out-of-pile experiments have been performed in order to test (both functional and endurance testing) the thermal-hydraulic and thermo-mechanical performance of a water cooled breeder-in-tube blanket mockup (1-PIN) using Li{sub 2}ZrO{sub 3} pebbles as a breeder material. The test campaign has been completed and the resulting data concerning thermal and thermal-hydraulic parameters have been elaborated and analyzed by means of a comparison with theoretical predictions based on a proper thermal-hydraulic model. The post test examination of the pebbles is in progress in order to investigate the thermo-mechanical behavior of the breeder material under cycling. The paper deals with the first part of the results. 6 refs., 11 figs., 1 tab.

  10. THE CAMPAIGN FOR UC SANTA CRUZ THE GENOMICS

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    THE CAMPAIGN FOR UC SANTA CRUZ THE GENOMICS INSTITUTE #12;OVERVIEW The UC Santa Cruz Genomics Institute provides the framework for the next great leap in the science of genomics. ensured it would genomic science and speed the benefits of discoveries that improve and save lives. Cancer, autoimmune

  11. Evaluation of 2012/13 programme Mentor recruitment campaign begins

    E-Print Network [OSTI]

    Pym, David J.

    May 2013 · Evaluation of 2012/13 programme June 2013 · Mentor recruitment campaign begins July 2013 · Mentor applications open online · Supporting companies identified and recruited (Law and Engineering streams) Aug 2013 · Mentor and mentee resources for 2013-2014 programme developed · Menu of supporters

  12. The Combined Federal Campaign: Scoring a Touchdown in Giving

    Broader source: Energy.gov [DOE]

    It has been said that Federal employees are big-hearted people. We could not agree more, and nothing demonstrates that caring spirit year after year better than the Combined Federal Campaign (CFC), the Federal government’s annual giving drive.

  13. Aerosol Condensational Growth in Cloud Formation

    E-Print Network [OSTI]

    Geng, Jun

    2010-10-12T23:59:59.000Z

    A code for the quasi-stationary solution of the coupled heat and mass transport equations for aerosols in a finite volume was developed. Both mass and heat are conserved effectively in the volume, which results in a competitive aerosol condensation...

  14. 6, 32653319, 2006 Study aerosol with

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 6, 3265­3319, 2006 Study aerosol with two emission inventories and time factors A. de Meij et in Europe to two different emission inventories and temporal distribution of emissions A. de Meij 1 , M Study aerosol with two emission inventories and time factors A. de Meij et al. Title Page Abstract

  15. 5, 75777611, 2005 A look at aerosol

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 5, 7577­7611, 2005 A look at aerosol formation using data mining techniques S. Hyv and Physics Discussions A look at aerosol formation using data mining techniques S. Hyv¨onen1 , H. Junninen2 Korkeakoski, Finland 4 Department of Forest Ecology, Faculty of Agriculture and Forestry, P.O. Box 27, FIN

  16. 2, 12871315, 2002 Aerosol sources and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in climate variability and climate change studies (IPCC, 2001). Radiative forcing of natural and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime J aerosol sources in the Eastern Mediterranean5 Basin could be investigated at this location since the site

  17. 6, 1217912197, 2006 Aerosol formation in

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    troposphere and lower stratosphere. The model implements a first order scheme for resolving the aerosol size distribution within its geometric size10 sections, which efficiently suppresses numerical diffusion. We operate removes freshly nucleated particles by coagulation. The observation of high ultrafine aerosol

  18. CAMPAIGNING, CANVASSING AND PETITION DRIVES ON THE MICHIGAN STATE UNIVERSITY CAMPUS

    E-Print Network [OSTI]

    Liu, Taosheng

    CAMPAIGNING, CANVASSING AND PETITION DRIVES ON THE MICHIGAN STATE UNIVERSITY CAMPUS - GUIDELINES - Michigan State University encourages students to be informed about and participate in the political process campaigning, canvassing and petitioning drives on the Michigan State University campus. These statements

  19. ARM - AOS Aerosol Properties Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearchSOLICITATIONIMODI FICATION OF CONTRACTOperations AMF2ViewersAOS Aerosol

  20. Aerosol Releases from the ICPP July 2005 FINAL REPORT

    E-Print Network [OSTI]

    Aerosol Releases from the ICPP July 2005 FINAL REPORT AEROSOL RELEASES FROM THE IDAHO CHEMICAL, Inc. July 2005 #12;Aerosol Releases from the ICPP July 2005 TABLE OF CONTENTS 1.0 Introduction ......................................... 5-1 5.1 Beta-minus Iodine Aerosol Formation Mechanism

  1. Exploring matrix effects on photochemistry of organic aerosols

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    Exploring matrix effects on photochemistry of organic aerosols Hanna Lignella,b,1 , Mallory L of photochemical processes in organic aerosols will depend on both relative humidity and temperature and thus and impacts. aerosol aging | particle viscosity | organic photochemistry Aqueous droplets and aerosol

  2. Message in a Bottle: An Advertising Campaign's Appropriation of Obama's Inclusive Rhetoric, and What This Reveals About National Identity

    E-Print Network [OSTI]

    Naman, Tyler

    2011-01-01T23:59:59.000Z

    Message in a Bottle: An Advertising Campaign’s Appropriationtitle of my research is “Message in a Bottle: An Advertisingthese advertisements’ messages, as conveyed through text,

  3. AEROSOL OPTICAL AND CHEMICAL PROPERTIES WITHIN AND WITHOUT CLOUDS DURING AN AIRBORNE FIELD CAMPAIGN IN CENTRAL OKLAHOMA

    E-Print Network [OSTI]

    , Upton, NY 11973 Alexander, M L , lizabeth.alexander@pnl.gov , PNNL, PNNL PO Box 999, Richland, WA 99352 Hubbe, J M , john.hubbe@pnl.gov , PNNL, PNNL PO Box 999, Richland, WA 99352, Ogren, J A , John

  4. Development of a Detailed Microphysics Cirrus Model Tracking Aerosol Particles' Histories for Interpretation of the Recent INCA Campaign

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    radiation; the mag- nitude of this effect is controlled by their vertical struc- ture and particularly- tude of this effect. The net effect of these processes can lead to negative but also positive radiative Project (ISCCP) Re- gional Experiment (FIRE), the Subsonic Aircraft Con- trail and Cloud Effects Special

  5. Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation

    E-Print Network [OSTI]

    Tosca, M. G; Randerson, J. T; Zender, C. S

    2013-01-01T23:59:59.000Z

    of biomass burn- ing aerosol on the monsoon circulationA. , and Rudich, Y. : Aerosol invigoration and restructuring2011. Albrecht, B. A. : Aerosols, cloud microphysics, and

  6. Characterization of the Molecular Composition of Secondary Organic Aerosols using High Resolution Mass Spectrometry

    E-Print Network [OSTI]

    Sellon, Rachel Elizabeth

    2012-01-01T23:59:59.000Z

    in secondary organic aerosol formation from isoprene, Proc.biogenic secondary organic aerosol, J. Phys. Chem. A, 112(in secondary organic aerosol, Environ. Sci. Technol. , 41(

  7. Chapter 3: Evaluating the impacts of carbonaceous aerosols on clouds and climate

    E-Print Network [OSTI]

    Menon, Surabi

    2008-01-01T23:59:59.000Z

    Cloud susceptibility and the first aerosol indirect forcing:Sensitivity to BC and aerosol concentrations. J. Geophys.of cloud droplet and aerosols number concentrations:

  8. Correlations between Optical, Chemical and Physical Properties of Biomass Burn Aerosols

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    instruments and photoelectric aerosol sensors in source-sampling of black carbon aerosol and particle-bound PAHsAirborne minerals and related aerosol particles: Effects on

  9. Real time in situ detection of organic nitrates in atmospheric aerosols

    E-Print Network [OSTI]

    Rollins, Andrew W.

    2011-01-01T23:59:59.000Z

    Biogenic Secondary Organic Aerosol. J. Phys. Chem. A 2008,H. Secondary organic aerosol (SOA) formation from reactionsec- ondary organic aerosol yields. Atmospheric Chemistry

  10. Composition, sources, and formation of secondary organic aerosols from urban emissions

    E-Print Network [OSTI]

    Liu, Shang; Liu, Shang

    2012-01-01T23:59:59.000Z

    organonitrate functional groups in aerosol particles200 5.1v aerosol Chapter 3 Meteorological conditions during theSecondary organic aerosol formation from fossil fuel sources

  11. Particles, Aerosols, and Their Transport in Built Environment Particles, aerosols, or collectively called particulate matters (PM) are ubiquitous indoor

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Editorial Particles, Aerosols, and Their Transport in Built Environment Particles, aerosols or aerosols and their transport in built environment. The first five papers in this special issue addressed influences ozone removal and the secondary organic aerosols generation. The study from Zuraimi et al

  12. Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols in our Atmosphere

    E-Print Network [OSTI]

    Einat, Aharonov

    Sources and Formation of OrganicSources and Formation of Organic Aerosols in our AtmosphereAerosols Department of Chemical Engineering University of Patras, Greece #12;Sources of Organic AerosolSources of Organic Aerosol Primary Secondary Anthropogenic ·Gasoline ·Diesel ·Biomass burning ·Meat Cooking Biogenic

  13. Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME, SCIAMACHY, and GOME-2

    E-Print Network [OSTI]

    Tilstra, Gijsbert

    Studying trends in biomass burning aerosol using the Absorbing Aerosol Index derived from GOME the resulting time series, we use tropospheric NO2 data as a reference in the regions dominated by biomass sensitive to desert dust aerosols (DDA) and biomass burning aerosols (BBA). See Figure 1. The AAI

  14. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect (OSTI)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27T23:59:59.000Z

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  15. The behavior of constant rate aerosol reactors

    SciTech Connect (OSTI)

    Friedlander, S.K.

    1982-01-01T23:59:59.000Z

    An aerosol reactor is a gaseous system in which fine particles are formed by chemical reaction in either a batch or flow process. The particle sizes of interest range from less than 10 angstrom (molecular clusters) to 10 ..mu..m. Such reactors may be operated to study the aerosol formation process, as in a smog reactor, or to generate a product such as a pigment or a catalytic aerosol. Aerosol reactors can be characterized by three temporal or spatial zones or regions of operation for batch and flow reactors, respectively. In zone I, chemical reaction results in the formation of condensable molecular products which nucleate and form very high concentrations of small particles. The number density depends on the concentration of preexisting aerosol. Zone II is a transition region in which the aerosol number concentration levels off as a result of hetergeneous condensation by the stable aerosol. In zone III coagulation becomes sufficiently rapid to reduce the particle number concentration. There may be a zone IV in which agglomerates form.

  16. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: Fine particle composition and organic source apportionment

    SciTech Connect (OSTI)

    Aiken, A.C.; Wang, J.; Salcedo, D.; Cubison, M. J.; Huffman, J. A.; DeCarlo, P. F.; Ulbrich, I. M.; Docherty, K. S.; Sueper, D.; Kimmel, J. R.; Worsnop, D. R.; Trimborn, A.; Northway, M.; Stone, E. A.; Schauer, J. J.; Volkamer, R. M.; Fortner, E.; de Foy, B.; Laskin, A.; Shutthanandan, V.; Zheng, J.; Zhang, R.; Gaffney, J.; Marley, N. A.; Paredes-Miranda, G.; Arnott, W. P.; Molina, L. T.; Sosa, G.; Jimenez, J. L.

    2009-09-01T23:59:59.000Z

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identified three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning. A fourth OA component is a small local nitrogen-containing reduced OA component (LOA) which accounts for 9% of the OA mass but one third of the organic nitrogen, likely as amines. OOA accounts for almost half of the OA on average, consistent with previous observations. OA apportionment results from PMF-AMS are compared to the PM{sub 2.5} chemical mass balance of organic molecular markers (CMB-OMM, from GC/MS analysis of filters). Results from both methods are overall consistent. Both assign the major components of OA to primary urban, biomass burning/woodsmoke, and secondary sources at similar magnitudes. The 2006 Mexico City emissions inventory underestimates the urban primary PM{sub 2.5} emissions by a factor of {approx}4, and it is {approx}16 times lower than afternoon concentrations when secondary species are included. Additionally, the forest fire contribution is at least an order-of-magnitude larger than in the inventory.

  17. Prolongation technologies for campaign life of tall oven

    SciTech Connect (OSTI)

    Doko, Yoshiji; Saji, Takafumi; Kitayama, Yoshiteru; Yoshida, Shuhei [Sumitomo Metal Industries, Ltd., Kashima, Ibaraki (Japan). Kashima Steel Works

    1997-12-31T23:59:59.000Z

    In Kashima Steel Works, 25-year-old 7-meter-high coke ovens have damage on their walls. However, by using new methods of internal in-situ investigation, ceramic welding for the extended central and upper portions of coke ovens has prolonged the campaign life for over 40 years without large-scale hot repair. In this paper, introduction of these new methods, its application in Kashima and the policy of repairing the tall coke oven are reported.

  18. ARM - Field Campaign - Marine ARM GPCI Investigation of Clouds (MAGIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links

  19. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation

  20. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS

  1. ARM - Field Campaign - Spring 1995 Single Column Model IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarizationgovCampaignsSmall Particles

  2. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect (OSTI)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19T23:59:59.000Z

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  3. A shrouded probe aerosol sampling cyclone

    E-Print Network [OSTI]

    Little, Stewart Craig

    1992-01-01T23:59:59.000Z

    AED at three different flow rates. The results would then be interpolated to give the needed flow rate value. The collection efficiency of the cyclone was characterized by the approach of generating liquid aerosols containing an analytical tracer... was neutralized by passing the aerosol flow through a chamber which contained a 10 mCi krypton 85 line source. Aerosol size produced by this apparatus depends on the concentration of the non-volatile solute, the size of the orifice, and the frequency applied...

  4. Radiation Isotope Identification Device (RIIDs) Field Test and Evaluation Campaign

    SciTech Connect (OSTI)

    Christopher Hodge, Raymond Keegan

    2007-08-01T23:59:59.000Z

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named 'Anole', it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

  5. ANOLE Portable Radiation Detection System Field Test and Evaluation Campaign

    SciTech Connect (OSTI)

    Chris A. Hodge

    2007-07-12T23:59:59.000Z

    Handheld, backpack, and mobile sensors are elements of the Global Nuclear Detection System for the interdiction and control of illicit radiological and nuclear materials. They are used by the U.S. Department of Homeland Security (DHS) and other government agencies and organizations in various roles for border protection, law enforcement, and nonproliferation monitoring. In order to systematically document the operational performance of the common commercial off-the-shelf portable radiation detection systems, the DHS Domestic Nuclear Detection Office conducted a test and evaluation campaign conducted at the Nevada Test Site from January 18 to February 27, 2006. Named “Anole,” it was the first test of its kind in terms of technical design and test complexities. The Anole test results offer users information for selecting appropriate mission-specific portable radiation detection systems. The campaign also offered manufacturers the opportunity to submit their equipment for independent operationally relevant testing to subsequently improve their detector performance. This paper will present the design, execution, and methodologies of the DHS Anole portable radiation detection system test campaign.

  6. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01T23:59:59.000Z

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  7. The 2nd campaign of Pohang No. 2 B.F. and its relining plan for the 3rd campaign

    SciTech Connect (OSTI)

    Lee, Y. [POSCO, Pohang (Korea, Republic of). Ironmaking Dept.

    1997-12-31T23:59:59.000Z

    Pohang No. 2 blast furnace will be relined on April 1997. This project will spend 105 days in preparation for the next campaign. Pohang No. 2 blast furnace started all-coke consuming operation from the birth of the 2nd campaign, and started PCI operation 10 years later in 1993 in pursuit of energy-saving and cut-down manufacturing cost. However, in 1994, the furnace condition got worse than ever before due to unbalanced gas flow in the blast furnace. The main reason was that worn-out refractories disturbed the gas flow in the upper shaft wall area. There was no choice but to repair the worn-out refractories by castable gunning with pre-inserted supporting bars (POSCO-originated). The paper describes the process.

  8. Aerosol Best Estimate Value-Added Product

    SciTech Connect (OSTI)

    Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

    2012-07-19T23:59:59.000Z

    The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

  9. 5, 90399063, 2005 Arctic aerosol effect

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Radiation Measurement (ARM) data, we find surface cloud radiative forcing (SCRF) is -22 W/m 2 for shortwave. If aerosols are taken into account, the SCRF has been increased during winter while15 negative SCRF has been

  10. Aerosol remote sensing in polar regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomasi, C.; Wagener, R.; Kokhanovsky, A. A.; Lupi, A.; Ritter, C.; Smirnov, A.; O Neill, N. T.; Stone, R. S.; Holben, B. N.; Nyeki, S.; Wehrli, C.; Stohl, A.; Mazzola, M.; Lanconelli, C.; Vitale, V.; Stebel, K.; Aaltonen, V.; de Leeuw, G.; Rodriguez, E.; Herber, A. B.; Radionov, V. F.; Zielinski, T.; Petelski, T.; Sakerin, S. M.; Kabanov, D. M.; Xue, Y.; Mei, L.; Istomina, L.; Wagener, R.; McArthur, B.; Sobolewski, P. S.; Kivi, R.; Courcoux, Y.; Larouche, P.; Broccardo, S.; Piketh, S. J.

    2015-01-01T23:59:59.000Z

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of Ĺngström's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i) a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winter–spring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ĺlesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.

  11. Aerosol remote sensing in polar regions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tomasi, C.; Wagener, R.; Kokhanovsky, A. A.; Lupi, A.; Ritter, C.; Smirnov, A.; O Neill, N. T.; Stone, R. S.; Holben, B. N.; Nyeki, S.; et al

    2015-01-01T23:59:59.000Z

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness ?(?) at visible and near-infrared wavelengths, from which best-fit values of Ĺngström's exponent ? were calculated. Analysing these data, the monthly mean values of ?(0.50 ?m) and ? and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of ? versus ?(0.50 ?m) showed: (i)more »a considerable increase in ?(0.50 ?m) for the Arctic aerosol from summer to winter–spring, without marked changes in ?; and (ii) a marked increase in ?(0.50 ?m) passing from the Antarctic Plateau to coastal sites, whereas ? decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of ?(?) and ? at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ĺlesund. Satellite-based MODIS, MISR, and AATSR retrievals of ?(?) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei, accumulation and coarse mode particles for Arctic haze, summer background aerosol, Asian dust and boreal forest fire smoke, and for various background austral summer aerosol types at coastal and high-altitude Antarctic sites. The main columnar aerosol optical characteristics were determined for all 14 particle modes, based on in-situ measurements of the scattering and absorption coefficients. Diurnally averaged direct aerosol-induced radiative forcing and efficiency were calculated for a set of multimodal aerosol extinction models, using various Bidirectional Reflectance Distribution Function models over vegetation-covered, oceanic and snow-covered surfaces. These gave a reliable measure of the pronounced effects of aerosols on the radiation balance of the surface–atmosphere system over polar regions.« less

  12. Electrically Driven Technologies for Radioactive Aerosol Abatement

    SciTech Connect (OSTI)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28T23:59:59.000Z

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  13. Apparatus for sampling and characterizing aerosols

    DOE Patents [OSTI]

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11T23:59:59.000Z

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  14. Aerosol fabrication methods for monodisperse nanoparticles

    DOE Patents [OSTI]

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21T23:59:59.000Z

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  15. Development of plutonium aerosol fractionation system 

    E-Print Network [OSTI]

    Mekala, Malla R.

    1993-01-01T23:59:59.000Z

    DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August... 1993 Major Subject: Mechanical Engineering DEVELOPMENT OP A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Approved as to style and content by: A. R. McFarland (Chair of Committee) N. K. Anand (Mer toer) (', & C. B...

  16. Development of plutonium aerosol fractionation system

    E-Print Network [OSTI]

    Mekala, Malla R.

    1993-01-01T23:59:59.000Z

    microns), inhalation accidents occurring during maintenance operations can be expected to result in long term retention of 20% to 30% of the inhaled aerosol. Thind"' performed experiments over a span of one year to observe the consistency...DEVELOPMENT OF A PLUTONIUM AEROSOL FRACTIONATION SYSTEM A Thesis by MALLA R. MEKALA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August...

  17. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect (OSTI)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01T23:59:59.000Z

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  18. aerosol properties in-canopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerosol, cloud condensation nuclei, water accommodation coefficient, organic of aerosol size distribution, chemical composition and cloud condensation nuclei (CCN) concentration...

  19. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06T23:59:59.000Z

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  20. Aerosols in Central California: Unexpectedly Large Contribution of Coarse Mode to Aerosol Radiative Forcing

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Pekour, Mikhail S.; Barnard, James C.

    2012-10-20T23:59:59.000Z

    The majority of previous studies dealing with effect of coarse-mode aerosols on the radiation budget have focused primary on polluted regions with substantial aerosol loadings. We reexamine this effect for a relatively "pristine" area using a unique 1-month dataset collected during recent Carbonaceous Aerosol and Radiative Effects Study (CARES). We demonstrate that the coarse-mode (supermicron) particles can contribute substantially (more than 50%) and frequently (up to 85% of time) to the total volume. In contrast to the conventional expectations that the radiative impact of coarse-mode aerosols should be small for "pristine" regions, we find that the neglecting of the large particles may lead to significant overestimation (up to 45%) of direct aerosol radiative forcing at the top-of atmosphere despite of very small aerosol optical depth (about 0.05 at 0.5 ). Our findings highlight the potential for widespread impacts of the coarse-mode aerosols on the pristine radiative properties over land and the need for more explicit inclusion of the coarse-mode aerosols in climate-related observational and model studies.

  1. AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL

    E-Print Network [OSTI]

    AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL SPECIATION MONITOR Yin-Nan Lee1 , Fan Mei1 , Stephanie DeJong1 , Anne Jefferson2 1 Atmospheric Sciences Division, Brookhaven National Lab, Upton, NY 2 CIRES, University of Colorado, Boulder, CO

  2. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  3. Direct and semidirect aerosol effects of southern African biomass burning aerosol

    E-Print Network [OSTI]

    Wood, Robert

    radiative effects associated with increased low cloud cover dominate over a weaker positive allsky direct 2011; published 21 June 2011. [1] Direct and semidirect radiative effects of biomass burning aerosols radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers

  4. Microscopic Characterization of Carbonaceous Aerosol Particle Aging in the Outflow from Mexico City

    SciTech Connect (OSTI)

    Moffet, R. C.; Henn, T. R.; Tivanski, A. V.; Hopkins, R. J.; Desyaterik, Y.; Kilcoyne, A. L. D.; Tyliszczak, T.; Fast, J.; Barnard, J.; Shutthanandan, V.; Cliff, S.S.; Perry, K. D.; Laskin, A.; Gilles, M. K.

    2009-09-16T23:59:59.000Z

    This study was part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) field campaign conducted in Mexico City Metropolitan Area during spring 2006. The physical and chemical transformations of particles aged in the outflow from Mexico City were investigated for the transport event of 22 March 2006. A detailed chemical analysis of individual particles was performed using a combination of complementary microscopy and micro-spectroscopy techniques. The applied techniques included scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure spectroscopy (NEXAFS) and computer controlled scanning electron microscopy with an energy dispersive X-ray analyzer (CCSEM/EDX). As the aerosol plume evolves from the city center, the organic mass per particle increases and the fraction of carbon-carbon double bonds (associated with elemental carbon) decreases. Organic functional groups enhanced with particle age include: carboxylic acids, alkyl groups, and oxygen bonded alkyl groups. At the city center (T0) the most prevalent aerosol type contained inorganic species (composed of sulfur, nitrogen, oxygen, and potassium) coated with organic material. At the T1 and T2 sites, located northeast of T0 (~;;29 km and ~;;65 km, respectively), the fraction of homogenously mixed organic particles increased in both size and number. These observations illustrate the evolution of the physical mixing state and organic bonding in individual particles in a photochemically active environment.

  5. The NIF x-ray spectrometer calibration campaign at Omega

    SciTech Connect (OSTI)

    Pérez, F.; Kemp, G. E.; Barrios, M. A.; Pino, J.; Scott, H.; Ayers, S.; Chen, H.; Emig, J.; Colvin, J. D.; Fournier, K. B., E-mail: fournier2@llnl.gov [Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, California 94551 (United States); Regan, S. P.; Bedzyk, M.; Shoup, M. J.; Agliata, A.; Yaakobi, B.; Marshall, F. J.; Hamilton, R. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Jaquez, J.; Farrell, M.; Nikroo, A. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

    2014-11-15T23:59:59.000Z

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the OMEGA laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2–18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  6. ARM - Cloud and Land Surface Interaction Campaign (CLASIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492air Comments? We would love to heargovInstrumentstdma Comments?History OrganizationTwist OutreachCampaign

  7. ARM - Field Campaign - Year of Tropical Convection (YOTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m DocumentationJanuary 9, 2009 [Events, Feature StoriesgovCampaignsSurface Heat

  8. ARM - Field Campaign - AIRS Validation Soundings - Phases 6 and 7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMission Under52govCampaignsAIRS

  9. ARM - Field Campaign - AIRS Validation Soundings Phase III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMissiongovCampaignsAIRS Validation

  10. ARM - Field Campaign - AIRS Validation Soundings Phase III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMissiongovCampaignsAIRS

  11. ARM - Field Campaign - AIRS Validation Soundings Phase III

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006 [FacilityMissiongovCampaignsAIRSIII ARM Data

  12. ARM - Field Campaign - ARM MJO Investigation Experiment on Gan Island

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations of thegovCampaignsARM MJO

  13. ARM - Field Campaign - ARM-FIRE Water Vapor Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations ofgovCampaignsARM-FIRE Water Vapor

  14. ARM - Field Campaign - ARM-UAV Fall 2002

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006Observations ofgovCampaignsARM-FIRE Water

  15. ARM - Field Campaign - Arctic Lower Troposphere Observed Structure (ALTOS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraft Integration and

  16. ARM - Field Campaign - Arctic Winter Water Vapor IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraft Integration

  17. ARM - Field Campaign - Biomass Burning Observation Project - BBOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2,govCampaignsAircraftCloud OD

  18. ARM - Field Campaign - M-PACE - Polarization Diversity Lidar (PDL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM Data Discovery

  19. ARM - Field Campaign - M-PACE HSR Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM Data DiscoveryHSR

  20. ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM

  1. ARM - Field Campaign - MWR Inter-Comparison Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE

  2. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High Sensitivity

  3. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High SensitivityBridge

  4. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High SensitivityBridgeCloud

  5. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-High

  6. ARM - Field Campaign - Marine ARM GPCI Investigations of Clouds (MAGIC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-HighParsivel Disdrometer

  7. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogrammetry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign LinksUltra-HighParsivel

  8. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) CampaigngovCampaignsMicrowave Radiometer

  9. ARM - Field Campaign - Midlatitude Continental Convective Clouds Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) CampaigngovCampaignsMicrowave Radiometer(MC3E):

  10. ARM - Field Campaign - Millimeter-wave Radiometric Arctic Winter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) CampaigngovCampaignsMicrowave

  11. ARM - Field Campaign - Mixed-Phase Arctic Cloud Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic Cloud Experiment

  12. ARM - Field Campaign - NSF-Sponsored Aerosonde Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase

  13. ARM - Field Campaign - PGS Validation 2011-2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGS Validatation 2010 ARM Data

  14. ARM - Field Campaign - Radon Measurements of Atmospheric Mixing (RAMIX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity LidargovCampaignsPGSCampaign(RHUBC)2008)

  15. ARM - Field Campaign - Rain Microphysics Study with Disdrometer and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain Microphysics Study with

  16. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain Microphysics Study

  17. ARM - Field Campaign - Remote Cloud Sensing (RCS) Field Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain Microphysics

  18. ARM - Field Campaign - Routine AAF CLOWD Optical Radiative Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization Radar govCampaignsRain(RACORO)

  19. ARM - Field Campaign - SGP Ice Nuclei Characterization Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP Ice Nuclei

  20. ARM - Field Campaign - Semi-Continuous OCEC Particulate Measurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization DiversityPolarization RadargovCampaignsSGP