National Library of Energy BETA

Sample records for aerobic bacteria microorganisms

  1. Aerobic microorganism for the degradation of chlorinated aliphatic hydrocarbons

    DOE Patents [OSTI]

    Fliermans, Carl B.

    1989-01-01

    A chlorinated aliphatic hydrocarbon-degrading microorganism, having American Type Culture Collection accession numbers ATCC 53570 and 53571, in a biologically pure culture aseptically collected from a deep subsurface habitat and enhanced, mineralizes trichloroethylene and tetrachloroethylene to HCl, H.sub.2 O and Co.sub.2 under aerobic conditions stimulated by methane, acetate, methanol, tryptone-yeast extract, propane and propane-methane.

  2. Microorganism immobilization

    DOE Patents [OSTI]

    Compere, Alicia L.; Griffith, William L.

    1981-01-01

    Live metabolically active microorganisms are immobilized on a solid support by contacting particles of aggregate material with a water dispersible polyelectrolyte such as gelatin, crosslinking the polyelectrolyte by reacting it with a crosslinking agent such as glutaraldehyde to provide a crosslinked coating on the particles of aggregate material, contacting the coated particles with live microorganisms and incubating the microorganisms in contact with the crosslinked coating to provide a coating of metabolically active microorganisms. The immobilized microorganisms have continued growth and reproduction functions.

  3. Aerobic microbial enhanced oil recovery

    SciTech Connect (OSTI)

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  4. Degradation of azo dyes by environmental microorganisms and helminths

    SciTech Connect (OSTI)

    Kingthom Chung; Stevens, S.E. Jr. . Dept. of Biology)

    1993-11-01

    The degradation of azo dyes by environmental microorganisms, fungi, and helminths is reviewed. Azo dyes are used in a wide variety of products and can be found in the effluent of most sewage treatment facilities. Substantial quantities of these dyes have been deposited in the environment, particularly in streams and rivers. Azo dyes were shown to affect microbial activities and microbial population sizes in the sediments and in the water columns of aquatic habitats. Only a few aerobic bacteria have been found to reduce azo dyes under aerobic conditions, and little is known about the process. A substantial number of anaerobic bacteria capable of azo dye reduction have been reported. The enzyme responsible for azo dye reduction has been partially purified, and characterization of the enzyme is proceeding. The nematode Ascaris lumbricoides and the cestode Moniezia expanza have been reported to reduce azo dyes anaerobically. Recently the fungus Phanerochaete chrysoporium was reported to mineralize azo dyes via a peroxidation-mediated pathway. A possible degradation pathway for the mineralization of azo dye is proposed and future research needs are discussed.

  5. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOE Patents [OSTI]

    Buelter, Thomas; Meinhold, Peter; Feldman, Reid M. Renny; Hawkins, Andrew C.; Urano, Jun; Bastian, Sabine; Arnold, Frances

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  6. Argonne scientists use bacteria to power simple machines | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University and placed in the solution along with the common aerobic bacteria Bacillus subtilis. Andrey Sokolov of Princeton University and Igor Aronson from Argonne, along...

  7. Deep subsurface life from North Pond: Enrichment, isolation, characterization and genomes of heterotrophic bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Russell, Joseph A.; Leon-Zayas, Rosa; Wrighton, Kelly; Biddle, Jennifer F.

    2016-05-10

    Studies of subsurface microorganisms have yielded few environmentally relevant isolates for laboratory studies. In order to address this lack of cultivated microorganisms, we initiated several enrichments on sediment and underlying basalt samples from North Pond, a sediment basin ringed by basalt outcrops underlying an oligotrophic watercolumn west of the Mid-Atlantic Ridge at 22° N. In contrast to anoxic enrichments, growth was observed in aerobic, heterotrophic enrichments from sediment of IODP Hole U1382B at 4 and 68 m below seafloor (mbsf). These sediment depths, respectively, correspond to the fringes of oxygen penetration from overlying seawater in the top of the sedimentmore » column and upward migration of oxygen from oxic seawater from the basalt aquifer below the sediment. Here we report the enrichment, isolation, initial characterization and genomes of three isolated aerobic heterotrophs from North Pond sediments; an Arthrobacter species from 4 mbsf, and Paracoccus and Pseudomonas species from 68 mbsf. These cultivated bacteria are represented in the amplicon 16S rRNA gene libraries created from whole sediments, albeit at low (up to 2%) relative abundance. We provide genomic evidence from our isolates demonstrating that the Arthrobacter and Pseudomonas isolates have the potential to respire nitrate and oxygen, though dissimilatory nitrate reduction could not be confirmed in laboratory cultures. Furthermore, the cultures from this study represent members of abundant phyla, as determined by amplicon sequencing of environmental DNA extracts, and allow for further studies into geochemical factors impacting life in the deep subsurface.« less

  8. Photosynthetic microorganisms expressing thermostable lipase

    DOE Patents [OSTI]

    Curtiss, Roy; Liu, Xinyao

    2016-04-05

    The present invention encompasses a photosynthetic microorganism that produces biofuels and biofuel precursors.

  9. Microorganisms for producing organic acids

    SciTech Connect (OSTI)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  10. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  11. Aerobic landfill bioreactor

    DOE Patents [OSTI]

    Hudgins, Mark P; Bessette, Bernard J; March, John C; McComb, Scott T.

    2002-01-01

    The present invention includes a system of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  12. Proteolysis in hyperthermophilic microorganisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ward, Donald E.; Shockley, Keith R.; Chang, Lara S.; Levy, Ryan D.; Michel, Joshua K.; Conners, Shannon B.; Kelly, Robert M.

    2002-01-01

    Proteases are found in every cell, where they recognize and break down unneeded or abnormal polypeptides or peptide-based nutrients within or outside the cell. Genome sequence data can be used to compare proteolytic enzyme inventories of different organisms as they relate to physiological needs for protein modification and hydrolysis. In this review, we exploit genome sequence data to compare hyperthermophilic microorganisms from the euryarchaeotal genus Pyrococcus , the crenarchaeote Sulfolobus solfataricus , and the bacterium Thermotoga maritima . An overview of the proteases in these organisms is given based on those proteases that have been characterized and on putativemore » proteases that have been identified from genomic sequences, but have yet to be characterized. The analysis revealed both similarities and differences in the mechanisms utilized for proteolysis by each of these hyperthermophiles and indicated how these mechanisms relate to proteolysis in less thermophilic cells and organisms.« less

  13. Aerobic versus anaerobic wastewater treatment

    SciTech Connect (OSTI)

    Robinson, D.G.; White, J.E.; Callier, A.J.

    1997-04-01

    Biological wastewater treatment facilities are designed to emulate the purification process that occurs naturally in rivers, lakes and streams. In the simulated environment, conditions are carefully manipulated to spur the degradation of organic contaminants and stabilize the residual sludge. Whether the treatment process is aerobic or anaerobic is determined by a number of factors, including the composition of the wastewater, the degree of stabilization required for environmental compliance and economic viability. Because anaerobic digestion is accomplished without oxygen in a closed system, it is economical for pretreatment of high-strength organic sludge. Before the effluent can be discharged, however, followup treatment using an aerobic process is required. Though it has the drawback of being energy intensive, aerobic processing, the aeration of organic sludges in an open tank, is the primary method for treatment of industrial and municipal wastewater. Aerobic processes are more stable than anaerobic approaches and can be done rather simply, particularly with trickling filters. Gradually, the commercialization of modular systems that are capable of aerobic and anaerobic digestion will blur the distinctions between the two processes. Systems that boast those capabilities are available now.

  14. Anaerobic metabolism of nitroaromatic compounds by sulfate-reducing and methanogenic bacteria

    SciTech Connect (OSTI)

    Boopathy, R.; Kulpa, C.F.

    1994-06-01

    Ecological observations suggest that sulfate-reducing and methanogenic bacteria might metabolize nitroaromatic compounds under anaerobic conditions if appropriate electron donors and electron acceptors are present in the environment, but this ability had not been demonstrated until recently. Most studies on the microbial metabolism of nitroaromatic compounds used aerobic microorganisms. In most cases no mineralization of nitroaromatics occurs, and only superficial modifications of the structures are reported. However, under anaerobic sulfate-reducing conditions, the nitroaromatic compounds reportedly undergo a series of reductions with the formation of amino compounds. For example, trinitrotoluene under sulfate-reducing conditions is reduced to triaminotoluene by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of ammonia from triaminotoluene is achieved by reductive deamination catalyzed by the enzyme reductive deaminase, with the production of ammonia and toluene. Some sulfate reducers can metabolize toluene to CO{sub 2}. Similar metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. Many methanogenic bacteria can reduce nitroaromatic compounds to amino compounds. In this paper we review the anaerobic metabolic processes of nitroaromatic compounds under sulfate-reducing And methanogenic conditions.

  15. Engineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    SciTech Connect (OSTI)

    James C. Liao

    2012-05-22

    This project is a collaboration with F. R. Tabita of Ohio State. Our major goal is to understand the factors and regulatory mechanisms that influence hydrogen production. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Our part of the project was to develop a modeling technique to investigate the metabolic network in connection to hydrogen production and regulation. Organisms must balance the pathways that generate and consume reducing power in order to maintain redox homeostasis to achieve growth. Maintaining this homeostasis in the nonsulfur purple photosynthetic bacteria is a complex feat with many avenues that can lead to balance, as these organisms possess versatile metabolic capabilities including anoxygenic photosynthesis, aerobic or anaerobic respiration, and fermentation. Growth is achieved by using H{sub 2} as an electron donor and CO{sub 2} as a carbon source during photoautotrophic and chemoautotrophic growth, where CO{sub 2} is fixed via the Calvin-Benson-Bassham (CBB) cycle. Photoheterotrophic growth can also occur when alternative organic carbon compounds are utilized as both the carbon source and electron donor. Regardless of the growth mode, excess reducing equivalents generated as a result of oxidative processes, must be transferred to terminal electron acceptors, thus insuring that redox homeostasis is maintained in the cell. Possible terminal acceptors include O{sub 2}, CO{sub 2}, organic carbon, or various oxyanions. Cells possess regulatory mechanisms to balance the activity of the pathways which supply energy, such as photosynthesis, and those that consume energy, such as CO{sub 2} assimilation or N{sub 2} fixation. The major route for CO{sub 2} assimilation is the CBB

  16. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  17. Cellulase producing microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  18. Oil Production by a Consortium of Oleaginous Microorganisms grown on primary effluent wastewater

    SciTech Connect (OSTI)

    Hall, Jacqueline; Hetrick, Mary; French, Todd; Hernandez, Rafael; Donaldson, Janet; Mondala, Andro; Holmes, William

    2011-01-01

    Municipal wastewater could be a potential growth medium that has not been considered for cultivating oleaginous microorganisms. This study is designed to determine if a consortium of oleaginous microorganism can successfully compete for carbon and other nutrients with the indigenous microorganisms contained in primary effluent wastewater. RESULTS: The oleaginous consortium inoculated with indigenous microorganisms reached stationary phase within 24 h, reaching a maximum cell concentration of 0.58 g L -1. Water quality post-oleaginous consortium growth reached a maximum chemical oxygen demand (COD) reduction of approximately 81%, supporting the consumption of the glucose within 8 h. The oleaginous consortium increased the amount of oil produced per gram by 13% compared with indigenous microorganisms in raw wastewater. Quantitative polymerase chain reaction (qPCR) results show a substantial population increase in bacteria within the first 24 h when the consortium is inoculated into raw wastewater. This result, along with the fatty acid methyl esters (FAMEs) results, suggests that conditions tested were not sufficient for the oleaginous consortium to compete with the indigenous microorganisms.

  19. Contribution of microorganisms to corrosion

    SciTech Connect (OSTI)

    Thorp, K.E.G.; Crasto, A.S. [Univ. of Dayton Research Inst., OH (United States); Gu, J.D.; Mitchell, R. [Harvard Univ., Cambridge, MA (United States). Div. of Applied Sciences

    1997-08-01

    Current metal primers utilized by the US Air Force contain chromates to inhibit corrosion of the underlying metal. These chromates are both highly toxic and carcinogenic and pose a severe health risk to personnel involved in their application, stripping and disposal. Environmentally-friendly primers with chromate replacements have historically performed poorly with respect to corrosion inhibition. The purpose of this study was to investigate the interaction of chromates with microorganisms in an environment not traditionally associated with biologically-enhanced corrosion to determine if corrosion inhibition by a chromate pigment is, in part, through its action as a biocide. Inoculation of panels which had been coated with a nonchromated primer prior to salt fog exposure and storage in humid conditions resulted in a significant growth of filiform corrosion around a scribe mark. The presence of chromate in the primer severely limited the formation of this corrosion. Likewise, in the absence of the inoculation procedure, the extent of corrosion was strongly diminished. These results suggest that the chromate may be acting as a biocide to limit corrosion which is enhanced by the presence of biological activity.

  20. Global prevalence and distribution of genes and microorganisms...

    Office of Scientific and Technical Information (OSTI)

    Global prevalence and distribution of genes and microorganisms involved in mercury methylation Prev Next Title: Global prevalence and distribution of genes and microorganisms ...

  1. Bacteria isolated from amoebae/bacteria consortium

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1995-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  2. Bacteria isolated from amoebae/bacteria consortium

    DOE Patents [OSTI]

    Tyndall, R.L.

    1995-05-30

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  3. Engineered microorganisms having resistance to ionic liquids

    DOE Patents [OSTI]

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  4. Recombinant microorganisms for increased production of organic acids

    DOE Patents [OSTI]

    Yi, Jian; Kleff, Susanne; Guettler, Michael V.

    2012-02-21

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  5. Recombinant microorganisms for increased production of organic acids

    DOE Patents [OSTI]

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  6. Assessment of microorganisms from Indonesian Oil Fields

    SciTech Connect (OSTI)

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H.

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  7. Consolidated bioprocessing method using thermophilic microorganisms

    DOE Patents [OSTI]

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  8. Impacts of Shewanella oneidensis c-type cytochromes on aerobic...

    Office of Scientific and Technical Information (OSTI)

    Impacts of Shewanella oneidensis c-type cytochromes on aerobic and anaerobic respiration Citation Details In-Document Search Title: Impacts of Shewanella oneidensis c-type ...

  9. Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms

    SciTech Connect (OSTI)

    Nevin, KP; Hensley, SA; Franks, AE; Summers, ZM; Ou, JH; Woodard, TL; Snoeyenbos-West, OL; Lovley, DR

    2011-04-20

    Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one organism, the acetogen Sporomusa ovata, has been shown to be capable of electrosynthesis. The purpose of this study was to determine if a wider range of microorganisms is capable of this process. Several other acetogenic bacteria, including two other Sporomusa species, Clostridium ljungdahlii, Clostridium aceticum, and Moorella thermoacetica, consumed current with the production of organic acids. In general acetate was the primary product, but 2-oxobutyrate and formate also were formed, with 2-oxobutyrate being the predominant identified product of electrosynthesis by C. aceticum. S. sphaeroides, C. ljungdahlii, and M. thermoacetica had high (> 80%) efficiencies of electrons consumed and recovered in identified products. The acetogen Acetobacterium woodii was unable to consume current. These results expand the known range of microorganisms capable of electrosynthesis, providing multiple options for the further optimization of this process.

  10. Bacteria-Mineral Interactions on the Surfaces of Metal-Resistant Bacteria

    SciTech Connect (OSTI)

    Malkin, A J

    2010-03-24

    The extraordinary ability of indigenous microorganisms, like metal-resistant bacteria, for biotransformation of toxic compounds is of considerable interest for the emerging area of environmental bioremediation. However, the underlying mechanisms by which metal-resistant bacteria transform toxic compounds are currently unknown and await elucidation. The project's objective was to study stress-induced responses of metal-resistant bacteria to environmental changes and chemical stimulants. This project involved a multi-institutional collaboration of our LLNL group with the group of Dr. H.-Y. Holman (Lawrence Berkeley National Laboratory). In this project, we have utilized metal-resistant bacteria Arthrobacter oxydans as a model bacterial system. We have utilized atomic force microscopy (AFM) to visualize for the first time at the nanometer scale formation of stress-induced structures on bacterial surfaces in response to Cr (VI) exposure. We have demonstrated that structure, assembly, and composition of these stress-induced structures are dependent on Cr (VI) concentrations. Our AFM observations of the appearance and development of stress-induced layers on the surfaces of Arthrobacter oxydans bacteria exposed to Cr (VI) were confirmed by Dr. Holman's biochemical, electron microscopy, and synchrotron infrared spectromicroscopy studies. In general, in vitro imaging of live microbial and cellular systems represents one of the most challenging issues in application of AFM. Various approaches for immobilization of bacteria on the substrate for in vitro imaging were tested in this project. Imaging of live bacteria was achieved, however further optimization of experimental methods are needed for high-resolution visualization of the cellular environmental structural dynamics by AFM. This project enhanced the current insight into molecular architecture, structural and environmental variability of bacterial systems. The project partially funded research for two book chapters (1

  11. Bioprocessing of lignite coals using reductive microorganisms

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  12. RNA polymerase gene, microorganism having said gene and the production of RNA polymerase by the use of said microorganism

    DOE Patents [OSTI]

    Kotani, Hirokazu; Hiraoka, Nobutsugu; Obayashi, Akira

    1991-01-01

    SP6 bacteriophage RNA polymerase is produced by cultivating a new microorganism (particularly new strains of Escherichia coli) harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene and recovering SP6 bacteriophage RNA polymerase from the culture broth. SP6 bacteriophage RNA polymerase gene is provided as are new microorganisms harboring a plasmid that carries SP6 bacteriophage RNA polymerase gene.

  13. Apparatus and method for the desulfurization of petroleum by bacteria

    DOE Patents [OSTI]

    Lizama, H.M.; Scott, T.C.; Scott, C.D.

    1995-10-17

    A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

  14. Apparatus and method for the desulfurization of petroleum by bacteria

    DOE Patents [OSTI]

    Lizama, Hector M.; Scott, Timothy C.; Scott, Charles D.

    1995-01-01

    A method for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the "Sulfate Reducing Bacteria." These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing.

  15. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOE Patents [OSTI]

    Gaddy, J.L.; Clausen, E.C.

    1992-12-22

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H[sub 2]O and/or CO[sub 2] and H[sub 2] in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate. 3 figs.

  16. Clostridiumm ljungdahlii, an anaerobic ethanol and acetate producing microorganism

    DOE Patents [OSTI]

    Gaddy, James L.; Clausen, Edgar C.

    1992-01-01

    A newly discovered microorganism was isolated in a biologically pure culture and designated Clostridium ljungdahlii, having the identifying characteristics of ATCC No. 49587. Cultured in an aqueous nutrient medium under anaerobic conditions, this microorganism is capable of producing ethanol and acetate from CO and H.sub.2 O and/or CO.sub.2 and H.sub.2 in synthesis gas. Under optimal growth conditions, the microorganism produces acetate in preference to ethanol. Conversely, under non-growth conditions, ethanol production is favored over acetate.

  17. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vishnivetskaya, Tatiana A.; Hamilton-Brehm, Scott D.; Podar, Mircea; Mosher, Jennifer J.; Palumbo, Anthony V.; Phelps, Tommy J.; Keller, Martin; Elkins, James G.

    2014-10-16

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this paper, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversitymore » in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55–85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Finally, independent of substrate, Caloramator was enriched at lower (<65 °C) temperatures while highly active cellulolytic bacteria Caldicellulosiruptor were dominant at high (>65 °C) temperatures.« less

  18. Material to Efficiently and Economically Obtain Microorganism and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microalgae - Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Material to Efficiently and Economically Obtain Microorganism and Microalgae Ames Laboratory Contact AMES About This Technology Technology Marketing SummaryTechnology provides an economical and efficient process to harvest microorganisms like microalgae from its growth media.Description The interest in using algae as feedstock for biofuel

  19. Microorganisms to Speed Production of Biofuels - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microorganisms to Speed Production of Biofuels Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryResearchers at ORNL developed microorganisms that can quickly overcome the resistance of biomass to breakdown, and improved both the cost and efficiency of the biofuel conversion process.DescriptionConventional biomass pretreatment methods release sugars, weak acids, and metabolic by-products that slow down or even stop fermentation, resulting in slower

  20. Microorganisms having enhanced tolerance to inhibitors and stress

    DOE Patents [OSTI]

    Brown, Steven D.; Yang, Shihui

    2014-07-29

    The present invention provides genetically modified strains of microorganisms that display enhanced tolerance to stress and/or inhibitors such as sodium acetate and vanillin. The enhanced tolerance can be achieved by increasing the expression of a protein of the Sm-like superfamily such as a bacterial Hfq protein and a fungal Sm or Lsm protein. Further, the present invention provides methods of producing alcohol from biomass materials by using the genetically modified microorganisms of the present invention.

  1. Microorganisms having enhanced resistance to acetate and methods of use

    DOE Patents [OSTI]

    Brown, Steven D; Yang, Shihui

    2014-10-21

    The present invention provides isolated or genetically modified strains of microorganisms that display enhanced resistance to acetate as a result of increased expression of a sodium proton antiporter. The present invention also provides methods for producing such microbial strains, as well as related promoter sequences and expression vectors. Further, the present invention provides methods of producing alcohol from biomass materials by using microorganisms with enhanced resistance to acetate.

  2. Bioengineering and Coordination of Regulatory Networks and Intracellular Complexes to Maximize Hydrogen Production by Phototrophic Microorganisms

    SciTech Connect (OSTI)

    Tabita, F. Robert [The Ohio State University] [The Ohio State University

    2013-07-30

    In this study, the Principal Investigator, F.R. Tabita has teemed up with J. C. Liao from UCLA. This project's main goal is to manipulate regulatory networks in phototrophic bacteria to affect and maximize the production of large amounts of hydrogen gas under conditions where wild-type organisms are constrained by inherent regulatory mechanisms from allowing this to occur. Unrestrained production of hydrogen has been achieved and this will allow for the potential utilization of waste materials as a feed stock to support hydrogen production. By further understanding the means by which regulatory networks interact, this study will seek to maximize the ability of currently available unrestrained organisms to produce hydrogen. The organisms to be utilized in this study, phototrophic microorganisms, in particular nonsulfur purple (NSP) bacteria, catalyze many significant processes including the assimilation of carbon dioxide into organic carbon, nitrogen fixation, sulfur oxidation, aromatic acid degradation, and hydrogen oxidation/evolution. Moreover, due to their great metabolic versatility, such organisms highly regulate these processes in the cell and since virtually all such capabilities are dispensable, excellent experimental systems to study aspects of molecular control and biochemistry/physiology are available.

  3. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; Bennett, Philip C.

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO2 conditions and identify factors that may influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure to acidic water, biomassmore » can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  4. Biofuels from Solar Energy and Bacteria: Electrofuels Via Direct Electron Transfer from Electrodes to Microbes

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UMass is feeding renewable electricity to bacteria to provide the microorganisms with the energy they need to turn carbon dioxide (CO2) directly into liquid fuels. UMass’ energy-to-fuels conversion process is anticipated to be more efficient than current biofuels approaches in part because this process will leverage the high efficiency of photovoltaics to convert solar energy into electricity. UMass is using bacteria already known to produce biofuel from electric current and CO2 and working to increase the amount of electric current those microorganisms will accept and use for biofuels production. In collaboration with scientists at University of California, San Diego, the UMass team is also investigating the use of hydrogen sulfide as a source of energy to power biofuel production.

  5. Novel microorganism for selective separation of coal from pyrite and ash. Final report

    SciTech Connect (OSTI)

    Misra, M.; Smith, R.W.

    1995-09-01

    The separation of fine coal from ash and pyrite was evaluated using a microorganism Mycobacterium phlei.

  6. Expansion of the Genomic Encyclopedia of Bacteria and Archaea

    SciTech Connect (OSTI)

    Rinke, Christian; Sczyrba, Alex; Malfatti, Stephanie; Lee, Janye; Cheng, Jan-Fang; Stepanauskas, Ramunas; Eisen, Jonathan A.; Hallam, Steven; Inskeep, William P.; Hedlund, Brian P.; Sievert, Stefan M.; Liu, Wen-Tso; Tsiamis, George; Hugenholtz, Philip; Woyke, Tanja

    2011-03-20

    To date the vast majority of bacterial and archaeal genomes sequenced are of rather limited phylogenetic diversity as they were chosen based on their physiology and/ or medical importance. The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project (Wu et al. 2009) is aimed to systematically filling the gaps of the tree of life with phylogenetically diverse reference genomes. However more than 99percent of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes of these largely mysterious species. These limitations gave rise to the GEBA uncultured project. Here we propose to use single cell genomics to massively expand the Genomic Encyclopedia of Bacteria and Archaea by targeting 80 single cell representatives of uncultured candidate phyla which have no or very few cultured representatives. Generating these reference genomes of uncultured microbes will dramatically increase the discovery rate of novel protein families and biological functions, shed light on the numerous underrepresented phyla that likely play important roles in the environment, and will assist in improving the reconstruction of the evolutionary history of Bacteria and Archaea. Moreover, these data will improve our ability to interpret metagenomics sequence data from diverse environments, which will be of tremendous value for microbial ecology and evolutionary studies to come.

  7. Expansion of the Genomic Encyclopedia of Bacteria and Archaea

    SciTech Connect (OSTI)

    Rinke, Christian; Sczyrba, Alex; Malfatti, Stephanie; Lee, Janey; Cheng, Jan-Fang; Stepanauskas, Ramunas; Eisen, Jonathan A.; Hallam, Steven; Inskeep, William P.; Hedlund, Brian P.; Sievert, Stefan M.; Liu, Wen-Tso; Tsiamis, George; Hugenholtz, Philip; Woyke, Tanja

    2011-06-02

    To date the vast majority of bacterial and archaeal genomes sequenced are of rather limited phylogenetic diversity as they were chosen based on their physiology and/ or medical importance. The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project (Wu et al. 2009) is aimed at systematically filling the gaps of the tree of life with phylogenetically diverse reference genomes. However more than 99 percent of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes of these largely mysterious species. These limitations gave rise to the GEBA uncultured project. Here we propose to use single cell genomics to massively expand the Genomic Encyclopedia of Bacteria and Archaea by targeting 80 single cell representatives of uncultured candidate phyla which have no or very few cultured representatives. Generating these reference genomes of uncultured microbes will dramatically increase the discovery rate of novel protein families and biological functions, shed light on the numerous underrepresented phyla that likely play important roles in the environment, and will assist in improving the reconstruction of the evolutionary history of Bacteria and Archaea. Moreover, these data will improve our ability to interpret metagenomics sequence data from diverse environments, which will be of tremendous value for microbial ecology and evolutionary studies to come.

  8. Novel microorganism for selective separation of coal from ash and pyrite; First quarterly technical progress report, September 1, 1993--November 30, 1993

    SciTech Connect (OSTI)

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1993-12-31

    This report summarizes the progress made during the first quarter of the research project entitled ``A Novel Microorganism for Selective Separation of Coal from Ash and Pyrite,`` DOE Grant No. DE-FG22-93PC93215. The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash-forming minerals. During the reporting period, three different coal samples: Illinois No. 6 coal, Kentucky No. 9 coal and Pittsburgh No. 8 coal, were collected to be used in the investigation. The microorganism, M. phlei, was obtained as freeze-dried cultures and the growth characteristics of the bacteria were studied. Scanning electron microphotographs revealed that M. phlei cells are coccal in shape and are approximately 1 {mu}m in diameter. Electrokinetic measurements showed that the Illinois No. 6 and Pittsburgh No. 8 coal samples had an isoelectric point (IEP) around pH 6 whereas M. phlei had an IEP around pH 1.5. Electrokinetic measurements of the ruptured microorganisms exhibited an increase in IEP. The increase in IEP of the ruputured cells was due to the release of fatty acids and polar groups from the cell membrane.

  9. NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy | NREL NREL Explains the Higher Cellulolytic Activity of a Vital Microorganism Wide range of cellulase modalities in C. thermocellum makes it one of the most efficient biomass degraders February 5, 2016 Researchers at the Energy Department's National Renewable Energy Laboratory (NREL) and the BioEnergy Science Center (BESC) say better understanding of a bacterium could lead to cheaper production of cellulosic ethanol and other advanced biofuels. Their discovery was made during an

  10. Cofermentation with Cooperative Microorganisms for More Efficient Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion - Energy Innovation Portal Startup America Startup America Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Cofermentation with Cooperative Microorganisms for More Efficient Biomass Conversion Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryIt is well known that biomass has primarily two sources of fermentable carbohydrates, cellulose and hemicelluloses. Research has been underway for decades aimed at both

  11. Use of Stable Isotopes in Forensic Analysis of Microorganisms

    SciTech Connect (OSTI)

    Kreuzer-Martin, Helen W.; Hegg, Eric L.

    2012-01-18

    The use of isotopic signatures for forensic analysis of biological materials is well-established, and the same general principles that apply to interpretation of stable isotope content of C, N, O, and H apply to the analysis of microorganisms. Heterotrophic microorganisms derive their isotopic content from their growth substrates, which are largely plant and animal products, and the water in their culture medium. Thus the isotope signatures of microbes are tied to their growth environment. The C, N, O, and H isotope ratios of spores have been demonstrated to constitute highly discriminating signatures for sample matching. They can rule out specific samples of media and/or water as possible production media, and can predict isotope ratio ranges of the culture media and water used to produce a given sample. These applications have been developed and tested through analyses of approximately 250 samples of Bacillus subtilis spores and over 500 samples of culture media, providing a strong statistical basis for data interpretation. A Bayesian statistical framework for integrating stable isotope data with other types of signatures derived from microorganisms has been able to characterize the culture medium used to produce spores of various Bacillus species, leveraging isotopic differences in different medium types and demonstrating the power of data integration for forensic investigations.

  12. Potential of Diazorphic, Endophytic Bacteria Associated with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane ...

  13. Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen...

    Office of Scientific and Technical Information (OSTI)

    for Rapid Bacteria Pathogen Detection in Human Blood. Citation Details In-Document Search Title: Functionalized Polyacrylamide Monolith for Rapid Bacteria Pathogen ...

  14. Computational modeling of drug-resistant bacteria. Final report

    SciTech Connect (OSTI)

    MacDougall, Preston

    2015-03-12

    Initial proposal summary: The evolution of antibiotic-resistant mutants among bacteria (superbugs) is a persistent and growing threat to public health. In many ways, we are engaged in a war with these microorganisms, where the corresponding arms race involves chemical weapons and biological targets. Just as advances in microelectronics, imaging technology and feature recognition software have turned conventional munitions into smart bombs, the long-term objectives of this proposal are to develop highly effective antibiotics using next-generation biomolecular modeling capabilities in tandem with novel subatomic feature detection software. Using model compounds and targets, our design methodology will be validated with correspondingly ultra-high resolution structure-determination methods at premier DOE facilities (single-crystal X-ray diffraction at Argonne National Laboratory, and neutron diffraction at Oak Ridge National Laboratory). The objectives and accomplishments are summarized.

  15. Synthesis of poly-(P-aryleneethynylene)s in neat water under aerobic conditions

    DOE Patents [OSTI]

    Kang, Youn K; Deria, Pravas; Therien, Michael J

    2012-10-16

    Provided are ethyne synthons comprising boron and related methods. Also provided are related water-soluble arylethynylene polymers capable of being synthesized in neat water under aerobic conditions.

  16. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria

    SciTech Connect (OSTI)

    Jiang, Q.Q.; Bakken, L.R.

    1999-06-01

    Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N{sub 2}O production and methane oxidation in soils. Most knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. The authors have conducted a comparative study of levels of aerobic N{sub 2}O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N{sub 2}O during aerobic growth was remarkably constant for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N{sub 2}O when they were supplied with ample amounts of substrates, but the fractions rose sharply when they were restricted by a low pH or substrate limitation. Phosphate buffer doubled the N{sub 2}O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH{sub 4} oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH{sub 4} in soils.

  17. Effects of remediation amendments on vadose zone microorganisms

    SciTech Connect (OSTI)

    Miller, Hannah M.; Tilton, Fred A.

    2012-08-10

    Surfactant-based foam delivery technology has been studied to remediate Hanford 200 area deep vadose zone sediment. However, the surfactants and remediation amendments have an unknown effect on indigenous subsurface microorganisms. Microbial populations are important factors to consider in remediation efforts due to their potential to alter soil geochemistry. This project focuses on measuring microbial metabolic responses to remediation amendments in batch and column studies using Deep Vadose Zone Sediments. Initial studies of the microbes from Hanford 200 area deep vadose zone sediment showed surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CAPB) and remediation amendment calcium polysulfide (CPS) had no affect on microbial growth using BiologTM Ecoplates. To move towards a more realistic field analog, soil columns were packed with Hanford 200 Area sediment. Once microbial growth in the column was verified by observing growth of the effluent solution on tryptic soy agar plates, remedial surfactants were injected into the columns, and the resulting metabolic diversity was measured. Results suggest surfactant sodium dodecyl sulfate (SDS) stimulates microbial growth. The soil columns were also visualized using X-ray microtomography to inspect soil packing and possibly probe for evidence of biofilms. Overall, BiologTM Ecoplates provide a rapid assay to predict effects of remediation amendments on Hanford 200 area deep vadose zone microorganisms.

  18. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    SciTech Connect (OSTI)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  19. Methods for identifying an essential gene in a prokaryotic microorganism

    DOE Patents [OSTI]

    Shizuya, Hiroaki

    2006-01-31

    Methods are provided for the rapid identification of essential or conditionally essential DNA segments in any species of haploid cell (one copy chromosome per cell) that is capable of being transformed by artificial means and is capable of undergoing DNA recombination. This system offers an enhanced means of identifying essential function genes in diploid pathogens, such as gram-negative and gram-positive bacteria.

  20. Sensory Transduction in Microorganisms 2008 Gordon Research Conference (January 2008)

    SciTech Connect (OSTI)

    Ann M. Stock

    2009-04-08

    Research into the mechanisms involved in the sensing and responses of microorganisms to changes in their environments is currently very active in a large number of laboratories worldwide. An increasingly wide range of prokaryotic and eukaryotic species are being studied with regard to their sensing of diverse chemical and physical stimuli, including nutrients, toxins, intercellular signaling molecules, redox indicators, light, pressure, magnetic fields, and surface contact, leading to adaptive responses affecting motile behavior, gene expression and/or development. The ease of manipulation of microorganisms has facilitated application of a broad range of techniques that have provided comprehensive descriptions of cellular behavior and its underlying molecular mechanisms. Systems and their molecular components have been probed at levels ranging from the whole organism down to atomic resolution using behavioral analyses; electrophysiology; genetics; molecular biology; biochemical and biophysical characterization; structural biology; single molecule, fluorescence and cryo-electron microscopy; computational modeling; bioinformatics and genomic analyses. Several model systems such as bacterial chemotaxis and motility, fruiting body formation in Myxococcus xanthus, and motility and development in Dictyostelium discoideum have traditionally been a focus of this meeting. By providing a basis for assessment of similarities and differences in mechanisms, understanding of these pathways has advanced the study of many other microbial sensing systems. This conference aims to bring together researchers investigating different prokaryotic and eukaryotic microbial systems using diverse approaches to compare data, share methodologies and ideas, and seek to understand the fundamental principles underlying sensory responses. Topic areas include: (1) Receptor Sensing and Signaling; (2) Intracellular Signaling (two-component, c-di-GMP, c-AMP, etc.); (3) Intracellular Localization and

  1. Re-engineering bacteria for ethanol production

    DOE Patents [OSTI]

    Yomano, Lorraine P; York, Sean W; Zhou, Shengde; Shanmugam, Keelnatham; Ingram, Lonnie O

    2014-05-06

    The invention provides recombinant bacteria, which comprise a full complement of heterologous ethanol production genes. Expression of the full complement of heterologous ethanol production genes causes the recombinant bacteria to produce ethanol as the primary fermentation product when grown in mineral salts medium, without the addition of complex nutrients. Methods for producing the recombinant bacteria and methods for producing ethanol using the recombinant bacteria are also disclosed.

  2. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for ...

  3. Engineering Biofuels from Photosynthetic Bacteria | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Engineering Biofuels from Photosynthetic Bacteria Technology available for licensing: Using photosynthetic bacteria to produce biofuels. 30-70% of the fuel's waste can be used to create other fuel sources Combines both engineered and natural photosynthetic mechanisms to generate the fuel PDF icon biofuels_from_bacteria

  4. EIA - Greenhouse Gas Emissions Overview

    Gasoline and Diesel Fuel Update (EIA)

    A2. Glossary Acid stabilization: A circumstance where the pH of the waste mixture in an animal manure management system is maintained near 7.0, optimal conditions for methane production. Aerobic bacteria: Microorganisms living, active, or occurring only in the presence of oxygen. Aerobic decomposition: The breakdown of a molecule into simpler molecules or atoms by microorganisms under favorable conditions of oxygenation. Aerosols: Airborne particles. Afforestation: Planting of new forests on

  5. Metabolic engineering in methanotrophic bacteria

    SciTech Connect (OSTI)

    Kalyuzhnaya, MG; Puri, AW; Lidstrom, ME

    2015-05-01

    Methane, as natural gas or biogas, is the least expensive source of carbon for (bio)chemical synthesis. Scalable biological upgrading of this simple alkane to chemicals and fuels can bring new sustainable solutions to a number of industries with large environmental footprints, such as natural gas/petroleum production, landfills, wastewater treatment, and livestock. Microbial biocatalysis with methane as a feedstock has been pursued off and on for almost a half century, with little enduring success. Today, biological engineering and systems biology provide new opportunities for metabolic system modulation and give new optimism to the concept of a methane-based bio-industry. Here we present an overview of the most recent advances pertaining to metabolic engineering of microbial methane utilization. Some ideas concerning metabolic improvements for production of acetyl-CoA and pyruvate, two main precursors for bioconversion, are presented. We also discuss main gaps in the current knowledge of aerobic methane utilization, which must be solved in order to release the full potential of methane-based biosystems. (C) 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    SciTech Connect (OSTI)

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip window surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.

  7. Correlative Electron and Fluorescence Microscopy of Magnetotactic Bacteria in Liquid: Toward In Vivo Imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Woehl, Taylor J.; Kashyap, Sanjay; Firlar, Emre; Perez-Gonzalez, Teresa; Faivre, Damien; Trubitsyn, Denis; Bazylinski, Dennis A.; Prozorov, Tanya

    2014-10-31

    Magnetotactic bacteria biomineralize ordered chains of uniform, membrane-bound magnetite or greigite nanocrystals that exhibit nearly perfect crystal structures and species-specific morphologies. Transmission electron microscopy (TEM) is a critical technique for providing information regarding the organization of cellular and magnetite structures in these microorganisms. However, conventional TEM can only be used to image air-dried or vitrified bacteria removed from their natural environment. Here we present a correlative scanning TEM (STEM) and fluorescence microscopy technique for imaging viable cells of Magnetospirillum magneticum strain AMB-1 in liquid using an in situ fluid cell TEM holder. Fluorescently labeled cells were immobilized on microchip windowmore » surfaces and visualized in a fluid cell with STEM, followed by correlative fluorescence imaging to verify their membrane integrity. Notably, the post-STEM fluorescence imaging indicated that the bacterial cell wall membrane did not sustain radiation damage during STEM imaging at low electron dose conditions. We investigated the effects of radiation damage and sample preparation on the bacteria viability and found that approximately 50% of the bacterial membranes remained intact after an hour in the fluid cell, decreasing to ~30% after two hours. These results represent a first step toward in vivo studies of magnetite biomineralization in magnetotactic bacteria.« less

  8. New Metabolic Pathway Discovered in Methane-Consuming Bacteria...

    Office of Science (SC) Website

    To better understand microbial CH4 utilization, researchers used a multifaceted systems biology approach to examine Methylomicrobium alcaliphilum, a methanotroph (i.e., an aerobic ...

  9. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    SciTech Connect (OSTI)

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    2013-09-28

    Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and the formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor

  10. Transformation of gram positive bacteria by sonoporation

    DOE Patents [OSTI]

    Yang, Yunfeng; Li, Yongchao

    2014-03-11

    The present invention provides a sonoporation-based method that can be universally applied for delivery of compounds into Gram positive bacteria. Gram positive bacteria which can be transformed by sonoporation include, for example, Bacillus, Streptococcus, Acetobacterium, and Clostridium. Compounds which can be delivered into Gram positive bacteria via sonoporation include nucleic acids (DNA or RNA), proteins, lipids, carbohydrates, viruses, small organic and inorganic molecules, and nano-particles.

  11. Spectroscopic diagnostics for bacteria in biologic sample

    DOE Patents [OSTI]

    El-Sayed, Mostafa A.; El-Sayed, Ivan H.

    2002-01-01

    A method to analyze and diagnose specific bacteria in a biologic sample using spectroscopy is disclosed. The method includes obtaining the spectra of a biologic sample of a non-infected patient for use as a reference, subtracting the reference from the spectra of an infected sample, and comparing the fingerprint regions of the resulting differential spectrum with reference spectra of bacteria in saline. Using this diagnostic technique, specific bacteria can be identified sooner and without culturing, bacteria-specific antibiotics can be prescribed sooner, resulting in decreased likelihood of antibiotic resistance and an overall reduction of medical costs.

  12. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect (OSTI)

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  13. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    DOE Patents [OSTI]

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  14. Synthetic Design Microorganisms for Lignin Fuels and Chemicals Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Synthetic Design Microorganisms for Lignin Fuels and Chemicals 3/26/2015 Synthetic Biology Joshua S. Yuan Associate Professor and Director Texas A&M University This presentation does contain proprietary information 1 Project Goal: Design of Microorganisms for Lignin Fuel * The proposed research aims to address one of the most challenging issues in biofuel production: the utilization of lignin for fungible fuels. * Project Outcome: A viable biological platform for conversion of lignin into

  15. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-09-24

    A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  16. Method of dispersing a hydrocarbon using bacteria

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1996-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  17. Hydrogen metabolism of photosynthetic bacteria and algae

    SciTech Connect (OSTI)

    Kumazawa, S.; Mitsui, A.

    1982-01-01

    The metabolism, metabolic pathways and biochemistry of hydrogen in photosynthetic bacteria and algae are reviewed. Detailed information on the occurrence and measurement of hydrogenase activity is presented. Hydrogen production rates for different species of algae and bacteria are presented. 173 references, 1 figure, 7 tables.

  18. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  19. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Jiao, Y.; Navid, A.

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial

  20. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    SciTech Connect (OSTI)

    Valentine, David

    2012-09-30

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this

  1. Copy of Synthetic Biology of Novel Thermophilic Bacteria for...

    Office of Scientific and Technical Information (OSTI)

    Copy of Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of ... Title: Copy of Synthetic Biology of Novel Thermophilic Bacteria for Enhanced Production of ...

  2. Discovery of functional toxin/antitoxin systems in bacteria by...

    Office of Scientific and Technical Information (OSTI)

    ...antitoxin systems in bacteria by shotgun cloning Citation Details In-Document Search Title: Discovery of functional toxinantitoxin systems in bacteria by shotgun cloning ...

  3. Bacteria increase arid-land soil surface temperature through...

    Office of Scientific and Technical Information (OSTI)

    Bacteria increase arid-land soil surface temperature through the production of sunscreens Prev Next Title: Bacteria increase arid-land soil surface temperature through the ...

  4. Xylan utilization in human gut commensal bacteria is orchestrated...

    Office of Scientific and Technical Information (OSTI)

    Xylan utilization in human gut commensal bacteria is orchestrated by unique modular ... Title: Xylan utilization in human gut commensal bacteria is orchestrated by unique modular ...

  5. Estimating Bacteria Emissions from Inversion of Atmospheric Transport...

    Office of Scientific and Technical Information (OSTI)

    Bacteria Emissions from Inversion of Atmospheric Transport: Sensitivity to Modelled Particle Characteristics Citation Details In-Document Search Title: Estimating Bacteria ...

  6. Advanced Biofuels: How Scientists are Engineering Bacteria to...

    Office of Environmental Management (EM)

    Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - ...

  7. Methane and Methanotrophic Bacteria as a Biotechnological Platform...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: NewEmerging Pathways ...

  8. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1996-01-01

    A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.

  9. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-11-26

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  10. How Bacteria Make Magnets | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Bacteria Make Magnets For a number of animals, including birds, fish and mammals, there is evidence that magnets are used for orientation. However, little is known about how...

  11. Comparative genomics of the lactic acid bacteria

    SciTech Connect (OSTI)

    Makarova, K.; Slesarev, A.; Wolf, Y.; Sorokin, A.; Mirkin, B.; Koonin, E.; Pavlov, A.; Pavlova, N.; Karamychev, V.; Polouchine, N.; Shakhova, V.; Grigoriev, I.; Lou, Y.; Rokhsar, D.; Lucas, S.; Huang, K.; Goodstein, D. M.; Hawkins, T.; Plengvidhya, V.; Welker, D.; Hughes, J.; Goh, Y.; Benson, A.; Baldwin, K.; Lee, J. -H.; Diaz-Muniz, I.; Dosti, B.; Smeianov, V; Wechter, W.; Barabote, R.; Lorca, G.; Altermann, E.; Barrangou, R.; Ganesan, B.; Xie, Y.; Rawsthorne, H.; Tamir, D.; Parker, C.; Breidt, F.; Broadbent, J.; Hutkins, R.; O'Sullivan, D.; Steele, J.; Unlu, G.; Saier, M.; Klaenhammer, T.; Richardson, P.; Kozyavkin, S.; Weimer, B.; Mills, D.

    2006-06-01

    Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.

  12. Fuel from Bacteria: Bioconversion of Carbon Dioxide to Biofuels by Facultatively Autotrophic Hydrogen Bacteria

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Ohio State is genetically modifying bacteria to efficiently convert carbon dioxide directly into butanol, an alcohol that can be used directly as a fuel blend or converted to a hydrocarbon, which closely resembles a gasoline. Bacteria are typically capable of producing a certain amount of butanol before it becomes too toxic for the bacteria to survive. Ohio State is engineering a new strain of the bacteria that could produce up to 50% more butanol before it becomes too toxic for the bacteria to survive. Finding a way to produce more butanol more efficiently would significantly cut down on biofuel production costs and help make butanol cost competitive with gasoline. Ohio State is also engineering large tanks, or bioreactors, to grow the biofuel-producing bacteria in, and they are developing ways to efficiently recover biofuel from the tanks.

  13. Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site

    SciTech Connect (OSTI)

    Kerkhoff, Lee; Williams, Kenneth H.; Long, Philip E.; McGuinness, L.

    2011-02-15

    Uranium contaminated groundwaters are a legacy concern for the U.S. Department of Energy. Previous experiments at the Rifle, Colorado Integrated Field Challenge (IFC) site have demonstrated that field-scale addition of acetate to groundwater reduces the ambient soluable uranium concentration, sequestering the radionuclide as uraninite. However, questions remain regarding which microorganism(s) are consuming this acetate and if active groundwater microorganisms are different from active particle-associated bacteria. In this report, 13-C acetate was used to assess the active microbes that synthesize DNA on 3 size fractions [coarse sand, fines (8-approximately 150 micron), groundwater (0.2-8 micron)] over a 24 -day time frame. Results indicated a stronger signal from 13-C acetate associated with the fines fraction compared with smaller amounts of 13-C uptake on the sand fraction and groundwater samples during the SIP incubations. TRFLP analysis of this 13-C-labeled DNA, indicated 31+ 9 OTU's with 6 peaks dominating the active profiles (166, 187, 210, 212, and 277 bp peaks using MnlI). Cloning/sequencing of the amplification products indicated a Geobacter-like group (187, 210, 212 bp) primarily synthesized DNA from acetate in the groundwater phase, an alpha Proteobacterium (166 bp) primarily grew on the fines/sands, and an Acinetobacter sp. (277 bp) utilized much of the 13C acetate in both groundwater and particle-associated phases. These findings will help to delineate the acetate utilization patterns of bacteria during field-scale acetate addition and can lead to improved methods for stimulating distinct microbial populations in situ.

  14. Chemotactic selection of pollutant degrading soil bacteria

    DOE Patents [OSTI]

    Hazen, Terry C.

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  15. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles

    SciTech Connect (OSTI)

    Wang, C.J.K.; Worrall, J.J. . Coll. of Environmental Science and Forestry)

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  16. Soft rot decay capabilities and interactions of fungi and bacteria from fumigated utility poles. Final report

    SciTech Connect (OSTI)

    Wang, C.J.K.; Worrall, J.J.

    1992-11-01

    The objectives were to (1) identify microfungi and bacterial associates isolated from fumigated southern pine poles from EPRI project RP 1471-72, (2) study the soft-rot capabilities of predominant fungi, and (3) study interactions among microorganisms in relation to wood decay. Methods for identification followed standard techniques using morphological and physiological criteria. Soft-rot by microfungi alone and with bacteria was determined as weight loss and anatomical examination of wood blocks using light microscopy and limited electron microscopy. Acinetobacter calcoaceticus was the predominant bacterium. Twenty-one species of microfungi were identified including four new species. A book entitled IDENTIFICATION MANUAL FOR FUNGI FROM UTILITY POLES IN THE EASTERN UNITED STATES was published. An improved soft-rot test was devised. Fifty-one of 84 species (60%) of microfungi from poles tested were soft-rot positive; that is much greater than previously reported. Three types of anatomical damage of wood of pine or birch caused by soft-rot fungi were described. Interaction tests showed that, in some cases, there was a strong synergism between bacteria and fungi in causing weight loss, but results were inconsistent. Although soft rot is often most apparent under conditions of very high moisture, intermediate moisture levels appear to be optimal, as with basidiomycete decayers.

  17. Functional Encyclopedia of Bacteria and Archaea

    SciTech Connect (OSTI)

    Blow, M. J.; Deutschbauer, A. M.; Hoover, C. A.; Lamson, J.; Lamson, J.; Price, M. N.; Waters, J.; Wetmore, K. M.; Bristow, J.; Arkin, A. P.

    2013-03-20

    Bacteria and Archaea exhibit a huge diversity of metabolic capabilities with fundamental importance in the environment, and potential applications in biotechnology. However, the genetic bases of these capabilities remain unclear due largely to an absence of technologies that link DNA sequence to molecular function. To address this challenge, we are developing a pipeline for high throughput annotation of gene function using mutagenesis, growth assays and DNA sequencing. By applying this pipeline to annotate gene function in 50 diverse microbes we hope to discover thousands of new gene functions and produce a proof of principle `Functional Encyclopedia of Bacteria and Archaea?.

  18. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  19. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    SciTech Connect (OSTI)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  20. Chemotactic selection of pollutant degrading soil bacteria (Patent...

    Office of Scientific and Technical Information (OSTI)

    RADIATION SOURCES; BACTERIA; EVALUATION; POLLUTANTS; BIODEGRADATION; SOILS; NUTRIENTS; COLONY FORMATION; INVENTIONS; SOIL CHEMISTRY; MINERALIZATION; LAND POLLUTION 540120; 053003; ...

  1. Engineering Biofuels from Photosynthetic Bacteria - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Engineering Biofuels from Photosynthetic Bacteria Argonne National Laboratory Contact ANL About This Technology <em>Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors.</em> Schematic of the overall approach including the invented method for production of co-factors and anchors as biofuel precursors. Technology Marketing

  2. Comparative evolution of the recA gene of surface and deep subsurface microorganisms (an evolutionary clock of intermediate rate). Final report

    SciTech Connect (OSTI)

    Miller, R.V.

    1998-04-01

    Because of the ability of the recA protein product to maintain both DNA integrity and increase genetic diversity, this gene may be essential to the survival of microorganisms following the damaging effects of numerous environmental stresses such as exposure to solar UV radiation, exposure to gamma radiation, starvation, and changing environments. While the various activities and amino-acid sequence of recA have been highly conserved among the eubacteria and archaea, little is known as to whether a strict structure-function relationship has been conserved. In other words, are the same regions of this highly plastic, functionally heterogeneous protein involved in the same catalytic capacities throughout the bacterial kingdom? While it is reasonable to assume that this type of conservation has also occurred, we felt it necessary to test the assumption by demonstrating that mutations in different genera of bacteria which eliminate similar functions (i.e., lead to similar phenotypes) are caused by changes in the amino-acid sequence in the same regions of their recA proteins. Therefore, we located the changes in nucleotide sequence in two recA mutants of P. aeruginosa which displayed mutant phenotypes in recombination and UV resistance. Our assumption was that if structure-function relationships held, these mutations would be found in areas already identified as essential for the function of the E. coli recA protein.

  3. Biochemistry and physiology of anaerobic bacteria

    SciTech Connect (OSTI)

    2000-05-18

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  4. Design and mechanism of action of a novel bacteria-selective antimicrobial peptide from the cell-penetrating peptide Pep-1

    SciTech Connect (OSTI)

    Zhu, W.L.; Lan Hongliang; Park, Il-Seon; Kim, Jae Il; Jin, H.Z.; Hahm, Kyung-Soo; Shin, S.Y. . E-mail: syshin@chosun.ac.kr

    2006-10-20

    Here, we report the successful design of a novel bacteria-selective antimicrobial peptide, Pep-1-K (KKTWWKTWWTKWSQPKKKRKV). Pep-1-K was designed by replacing Glu-2, Glu-6, and Glu-11 in the cell-penetrating peptide Pep-1 with Lys. Pep-1-K showed strong antibacterial activity against reference strains (MIC = 1-2 {mu}M) of Gram-positive and Gram-negative bacteria as well as against clinical isolates (MIC = 1-8 {mu}M) of methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa. In contrast, Pep-1-K did not cause hemolysis of human erythrocytes even at 200 {mu}M. These results indicate that Pep-1-K may be a good candidate for antimicrobial drug development, especially as a topical agent against antibiotic-resistant microorganisms. Tryptophan fluorescence studies indicated that the lack of hemolytic activity of Pep-1-K correlated with its weak ability to penetrate zwitterionic phosphatidylcholine/cholesterol (10:1, w/w) vesicles, which mimic eukaryotic membranes. Furthermore, Pep-1-K caused little or no dye leakage from negatively charged phosphatidylethanolamine/phosphatidylglycerol (7:3, w/w) vesicles, which mimic bacterial membranes but had a potent ability to cause depolarization of the cytoplasmic membrane potential of intact S. aureus cells. These results suggested that Pep-1-K kills microorganisms by not the membrane-disrupting mode but the formation of small channels that permit transit of ions or protons but not molecules as large as calcein.

  5. International symposium on cellular and molecular biology of phosphate and phosphorylated compounds in microorganisms: Proceedings

    SciTech Connect (OSTI)

    1993-12-31

    This report contains the abstracts of papers presented at the conference. Attention is focused on the following topics: regulation of phosphate metabolism in bacteria; structure-function of alkaline phosphatase; regulation of phosphate metabolism in yeast; transport of phosphate and phosphorylated compounds; and phosphate regulation in pathogenesis and secondary metabolism.

  6. Detection of phenols using engineered bacteria

    DOE Patents [OSTI]

    Wise, Arlene A.; Kuske, Cheryl R.; Terwilliger, Thomas C.

    2004-08-10

    Detection of phenols using engineered bacteria. A biosensor can be created by placing a reporter gene under control of an inducible promoter. The reporter gene produces a signal when a cognate transcriptional activator senses the inducing chemical. Creation of bacterial biosensors is currently restricted by limited knowledge of the genetic systems of bacteria that catabolize xenobiotics. By using mutagenic PCR to change the chemical specificity of the Pseudomonas species CF600 DmpR protein, the potential for engineering novel biosensors for detection of phenols has been demonstrated. DmpR, a well-characterized transcriptional activator of the P. CF600's dmp operon mediates growth on simple phenols. Transcription from Po, the promoter heading the dmp operon, is activated when the sensor domain of DmpR interacts with phenol and mono-substituted phenols. By altering the sensor domain of the DmpR, a group of DmpR derivatives that activate transcription of a Po-lacZ fusion in response to eight of the EPA's eleven priority pollutant phenols has been created. The assays and the sensor domain mutations that alter the chemical specificity of DmpR is described.

  7. Detection of phenols using engineered bacteria

    DOE Patents [OSTI]

    Wise, Arlene A.; Kuske, Cheryl R.; Terwilliger, Thomas C.

    2007-12-04

    Detection of phenols using engineered bacteria. A biosensor can be created by placing a reporter gene under control of an inducible promoter. The reporter gene produces a signal when a cognate transcriptional activator senses the inducing chemical. Creation of bacterial biosensors is currently restricted by limited knowledge of the genetic systems of bacteria that catabolize xenobiotics. By using mutagenic PCR to change the chemical specificity of the Pseudomonas species CF600 DmpR protein, the potential for engineering novel biosensors for detection of phenols has been demonstrated. DmpR, a well-characterized transcriptional activator of the P. CF600's dmp operon mediates growth on simple phenols. Transcription from Po, the promoter heading the dmp operon, is activated when the sensor domain of DmpR interacts with phenol and mono-substituted phenols. By altering the sensor domain of the DmpR, a group of DmpR derivatives that activate transcription of a Po-lacZ fusion in response to eight of the EPA's eleven priority pollutant phenols has been created. The assays and the sensor domain mutations that alter the chemical specificity of DmpR is described.

  8. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOE Patents [OSTI]

    Apel, W.A.

    1998-08-18

    A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

  9. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOE Patents [OSTI]

    Apel, William A.

    1998-01-01

    A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

  10. Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass

    DOE Patents [OSTI]

    Liao, James C.; Cho, Kwang Myung; Yan, Yajun; Huo, Yixin

    2016-03-15

    Provided herein are metabolically modified microorganisms characterized by having an increased keto-acid flux when compared with the wild-type organism and comprising at least one polynucleotide encoding an enzyme that when expressed results in the production of a greater quantity of a chemical product when compared with the wild-type organism. The recombinant microorganisms are useful for producing a large number of chemical compositions from various nitrogen containing biomass compositions and other carbon sources. More specifically, provided herein are methods of producing alcohols, acetaldehyde, acetate, isobutyraldehyde, isobutyric acid, n-butyraldehyde, n-butyric acid, 2-methyl-1-butyraldehyde, 2-methyl-1-butyric acid, 3-methyl-1-butyraldehyde, 3-methyl-1-butyric acid, ammonia, ammonium, amino acids, 2,3-butanediol, 1,4-butanediol, 2-methyl-1,4-butanediol, 2-methyl-1,4-butanediamine, isobutene, itaconate, acetoin, acetone, isobutene, 1,5-diaminopentane, L-lactic acid, D-lactic acid, shikimic acid, mevalonate, polyhydroxybutyrate (PHB), isoprenoids, fatty acids, homoalanine, 4-aminobutyric acid (GABA), succinic acid, malic acid, citric acid, adipic acid, p-hydroxy-cinnamic acid, tetrahydrofuran, 3-methyl-tetrahydrofuran, gamma-butyrolactone, pyrrolidinone, n-methylpyrrolidone, aspartic acid, lysine, cadeverine, 2-ketoadipic acid, and/or S-adenosyl-methionine (SAM) from a suitable nitrogen rich biomass.

  11. Field application of a genetically engineered microorganism for polycyclic aromatic hydrocarbon bioremediation process monitoring and control

    SciTech Connect (OSTI)

    Sayler, G.S.; Cox, C.D.; Ripp, S.; Nivens, D.E.; Werner, C.; Ahn, Y.; Matrubutham, U.; Burlage, R.

    1998-11-01

    On October 30, 1996, the US Environmental Protection Agency (EPA) commenced the first test release of genetically engineered microorganisms (GEMs) for use in bioremediation. The specific objectives of the investigation were multifaceted and include (1) testing the hypothesis that a GEM can be successfully introduced and maintained in a bioremediation process, (2) testing the concept of using, at the field scale, reporter organisms for direct bioremediation process monitoring and control, and (3) acquiring data that can be used in risk assessment decision making and protocol development for future field release applications of GEMs. The genetically engineered strain under investigation is Pseudomonas fluorescens strain HK44 (King et al., 1990). The original P. fluorescens parent strain was isolated from polycyclic aromatic hydrocarbon (PAH) contaminated manufactured gas plant soil. Thus, this bacterium is able to biodegrade naphthalene (as well as other substituted naphthalenes and other PAHs) and is able to function as a living bioluminescent reporter for the presence of naphthalene contamination, its bioavailability, and the functional process of biodegradation. A unique component of this field investigation was the availability of an array of large subsurface soil lysimeters. This article describes the experience associated with the release of a genetically modified microorganism, the lysimeter facility and its associated instrumentation, as well as representative data collected during the first eighteen months of operation.

  12. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Utilizing Bacteria for Sustainable Manufacturing of Low Cost Nanoparticles - Chad Duty, Oak Ridge National Laboratory (1.94 MB) More Documents & Publications Sustainable Nanomaterials Workshop Integrating Environmental, Safety, and Quality Management System Audits Performance Analysis of Air-Source Variable Speed Heat

  13. SOME BACTERIA ARE ESPECIALLY TOUGH. For billions of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOME BACTERIA ARE ESPECIALLY TOUGH. For billions of years, bacteria have evolved numerous mechanisms to protect themselves from toxic chemicals in their environment-some of which we humans now use as antibiotics. Applying their time-tested methods of thwarting chemical threats, these hardy microbes are responsible for nearly two million antibiotic- resistant infections annually in the United States. Bacteria have developed many types of defenses. Like layering for winter, some microbes wear

  14. Methane and Methanotrophic Bacteria as a Biotechnological Platform |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Methane and Methanotrophic Bacteria as a Biotechnological Platform Methane and Methanotrophic Bacteria as a Biotechnological Platform Breakout Session 2-B: New/Emerging Pathways Methane and Methanotrophic Bacteria as a Biotechnological Platform Dr. Lori Giver, Vice President of Biological Engineering, Calysta Energy, Inc. giver_bioenergy_2015.pdf (1.68 MB) More Documents & Publications CX-100166 Categorical Exclusion Determination Biobased Chemicals Landscape in

  15. Conversion of cellulose to ethanol by mesophilic bacteria. Progress report, July 15, 1983-February 15, 1985

    SciTech Connect (OSTI)

    Canale-Parola, E.

    1985-03-15

    Highlights of accomplishments during the period from July 1983 to February 1985 are summarized. Research has dealt primarily with strains of obligately anaerobic, mesophilic cellulolytic bacteria that we isolated from various natural environments. Eight strains (referred to as C strains) were isolated from mud of freshwater environments. As described in the previous progress report, the C strains represented a species of Clostridium that was different from other described species. The C strains fermented cellulose with formation of ethanol. They differed from thermophilic cellulolytic clostridia (e.g. Clostridium thermocellum) not only in growth temperature range, but also because they fermented xylan and pentoses with formation of ethanol. This result indicated that these mesophilic clostridia can convert to ethanol both cellulosic and hemicellulosic components of biomass. In contrast, monocultures of Clostridium thermocellum ferment only the cellulosic component of biomass. Furthermore, cellulose was degraded by the C strains at a rate comparable to that of thermophilic cellulolytic clostridia. These observations indicated that the mesophilic cellulolytic isolates constituted potentially useful microorganisms for ethanol production from biomass.

  16. Field experiences in on-line bacteria monitoring

    SciTech Connect (OSTI)

    Smart, J.; Pickthall, T.; Wright, T.G.

    1996-08-01

    The results of field testing for bacteria and related corrosion are presented for three crude oil and one gas pipeline. Large numbers of bacteria were usually found in the crude oil pipelines, but large bacteria populations did not result in accelerated corrosion in these lines. Crude oil pipeline corrosion was found to be most rapid in sediment deposits, which consisted of oil wet corrosion products, paraffins, and water. Both bacteria populations and corrosion rates were low in the gas pipeline studied, due to a high residual di-amine corrosion inhibitor content in the pipeline water.

  17. Bacteria mix it up at the microscopic level | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Technology and now postdoctoral researcher at Princeton University, piled Bacillus subtillis bacteria into thin films to decode the physics that govern how they move....

  18. Rapid quantification of mutant fitness in diverse bacteria by...

    Office of Scientific and Technical Information (OSTI)

    Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons Citation Details In-Document Search Title: Rapid quantification of mutant...

  19. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect (OSTI)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  20. Evaluation of sulfur-reducing microorganisms for organic desulfurization. [Pyrococcus furiosus

    SciTech Connect (OSTI)

    Miller, K.W.

    1991-01-01

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  1. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70.degree. C. to 90.degree. C., at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%.

  2. Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1996-02-20

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70 C to 90 C, at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%. 68 figs.

  3. How sulphate-reducing microorganisms cope with stress: Lessons from systems biology

    SciTech Connect (OSTI)

    Zhou, J.; He, Q.; Hemme, C.L.; Mukhopadhyay, A.; Hillesland, K.; Zhou, A.; He, Z.; Nostrand, J.D. Van; Hazen, T.C.; Stahl, D.A.; Wall, J.D.; Arkin, A.P.

    2011-04-01

    Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.

  4. Method of separating bacteria from free living amoebae

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1994-01-01

    New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.

  5. Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energycane Production | Department of Energy Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production Potential of Diazorphic, Endophytic Bacteria Associated with Sugarcane for Energycane Production This presentation by Michal Gisham was given at the Symbiosis Conference. symbiosis_conference_grisham.pdf (5.18 MB) More Documents & Publications Symbiosis Biofeedstock Conference: Expanding Commercialization of Mutualistic Microbes to Increase

  6. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-01-01

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments,more » and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.« less

  7. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    SciTech Connect (OSTI)

    Podar, Mircea; Gilmour, C C; Brandt, Craig C; Bullock, Allyson L; Brown, Steven D; Crable, Bryan R; Palumbo, Anthony Vito; Somenahally, Anil C; Elias, Dwayne A

    2015-01-01

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones , soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.

  8. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    SciTech Connect (OSTI)

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; Soren, Allyson; Brown, Steven D.; Crable, Bryan R.; Palumbo, Anthony Vito; Somenahally, Anil C.; Elias, Dwayne A.

    2015-01-01

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments, and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.

  9. Identification of bacteria synthesizing ribosomal RNA in response to uranium addition during biostimulation at the Rifle, CO Integrated Field Research site

    SciTech Connect (OSTI)

    McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Boyanov, Maxim I.

    2015-09-18

    Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this research, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two active bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.

  10. Identification of bacteria synthesizing ribosomal RNA in response to uranium addition during biostimulation at the Rifle, CO Integrated Field Research site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGuinness, Lora R.; Wilkins, Michael J.; Williams, Kenneth H.; Long, Philip E.; Kerkhof, Lee J.; Boyanov, Maxim I.

    2015-09-18

    Understanding which organisms are capable of reducing uranium at historically contaminated sites provides crucial information needed to evaluate treatment options and outcomes. One approach is determination of the bacteria which directly respond to uranium addition. In this research, uranium amendments were made to groundwater samples from a site of ongoing biostimulation with acetate. The active microbes in the planktonic phase were deduced by monitoring ribosomes production via RT-PCR. The results indicated several microorganisms were synthesizing ribosomes in proportion with uranium amendment up to 2 μM. Concentrations of U (VI) >2 μM were generally found to inhibit ribosome synthesis. Two activemore » bacteria responding to uranium addition in the field were close relatives of Desulfobacter postgateii and Geobacter bemidjiensis. Since RNA content often increases with growth rate, our findings suggest it is possible to rapidly elucidate active bacteria responding to the addition of uranium in field samples and provides a more targeted approach to stimulate specific populations to enhance radionuclide reduction in contaminated sites.« less

  11. Monitoring sulfide and sulfate-reducing bacteria

    SciTech Connect (OSTI)

    Tanner, R.S.

    1995-12-31

    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  12. Metal Cycling by Bacteria: Moving Electrons Around

    SciTech Connect (OSTI)

    Nealson, Ken

    2009-07-06

    About 20 years ago, Shewanella oneidensis MR-1 was isolated from a manganese-rich lack in upstate New York, and subsequently shown to utilize solid forms of oxidized manganese or iron as an electron acceptor. Recent studies of metal-reducing bacterial have unveiled a number of unexpected properties of microbes that have enlarged our view of microbes and their role(s) in natural ecosystems. For example, the processes of metal reduction themselves are fundamental to the carbon cycle in many lakes and sediments, where iron and manganese account for the major portion of organic carbon oxidation in many sediments. On more modest spatial scales, iron and manganese reduction can be linked to the oxidation of a wide variety of carbon compounds, many of them recalcitrant and/or toxic. One remarkable property of metal reducers is their ability to reduce solid, often highly crystalline substrates such as iron and manganese oxides and oxyhydroxides. It is now clear that this is done via the utilization of enzymes located on the outer wall of the bacteria - enzymes that apparently interact directly with these solid substrates. Molecular and genomic studies combined have revealed the genes and protoeins responsible for these activities, and many facets of the regulation. This talk focuses on the general features and properties of these remarkable organisms that seem to communicate via electron transfer across a wide variety of soluable, insoluable, and even "inert" substrates, and the way that these processes may be mechanistically linked.

  13. Metal Cycling by Bacteria: Moving Electrons Around

    ScienceCinema (OSTI)

    Nealson, Ken

    2010-01-08

    About 20 years ago, Shewanella oneidensis MR-1 was isolated from a manganese-rich lack in upstate New York, and subsequently shown to utilize solid forms of oxidized manganese or iron as an electron acceptor. Recent studies of metal-reducing bacterial have unveiled a number of unexpected properties of microbes that have enlarged our view of microbes and their role(s) in natural ecosystems. For example, the processes of metal reduction themselves are fundamental to the carbon cycle in many lakes and sediments, where iron and manganese account for the major portion of organic carbon oxidation in many sediments. On more modest spatial scales, iron and manganese reduction can be linked to the oxidation of a wide variety of carbon compounds, many of them recalcitrant and/or toxic. One remarkable property of metal reducers is their ability to reduce solid, often highly crystalline substrates such as iron and manganese oxides and oxyhydroxides. It is now clear that this is done via the utilization of enzymes located on the outer wall of the bacteria - enzymes that apparently interact directly with these solid substrates. Molecular and genomic studies combined have revealed the genes and protoeins responsible for these activities, and many facets of the regulation. This talk focuses on the general features and properties of these remarkable organisms that seem to communicate via electron transfer across a wide variety of soluable, insoluable, and even "inert" substrates, and the way that these processes may be mechanistically linked.

  14. Method for sustaining microorganism culture in syngas fermentation process in decreased concentration or absence of various substrates

    DOE Patents [OSTI]

    Adams, Stephen S.; Scott, Syrona; Ko, Ching-Whan

    2015-05-19

    The present invention relates to methods for sustaining microorganism culture in a syngas fermentation reactor in decreased concentration or absence of various substrates comprising: adding carbon dioxide and optionally alcohol; maintaining free acetic acid concentrations; and performing the above mentioned steps within specified time.

  15. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  16. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H.C.

    1998-05-26

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  17. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H. Craig

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  18. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOE Patents [OSTI]

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  19. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    SciTech Connect (OSTI)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  20. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors

    SciTech Connect (OSTI)

    Wei Yanjie; Ji Min; Li Ruying; Qin Feifei

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Aerobic granular sludge SBR was used to treat real landfill leachate. Black-Right-Pointing-Pointer COD removal was analyzed kinetically using a modified model. Black-Right-Pointing-Pointer Characteristics of nitrogen removal at different ammonium inputs were explored. Black-Right-Pointing-Pointer DO variations were consistent with the GSBR performances at low ammonium inputs. - Abstract: Granule sequencing batch reactors (GSBR) were established for landfill leachate treatment, and the COD removal was analyzed kinetically using a modified model. Results showed that COD removal rate decreased as influent ammonium concentration increasing. Characteristics of nitrogen removal at different influent ammonium levels were also studied. When the ammonium concentration in the landfill leachate was 366 mg L{sup -1}, the dominant nitrogen removal process in the GSBR was simultaneous nitrification and denitrification (SND). Under the ammonium concentration of 788 mg L{sup -1}, nitrite accumulation occurred and the accumulated nitrite was reduced to nitrogen gas by the shortcut denitrification process. When the influent ammonium increased to a higher level of 1105 mg L{sup -1}, accumulation of nitrite and nitrate lasted in the whole cycle, and the removal efficiencies of total nitrogen and ammonium decreased to only 35.0% and 39.3%, respectively. Results also showed that DO was a useful process controlling parameter for the organics and nitrogen removal at low ammonium input.

  1. MNeu NABIR Apr05 2.ppt

    Office of Scientific and Technical Information (OSTI)

    John Priester, Scott Olson, Patricia Holden Chemistry & Biology Divisions, Los Alamos ... Accumulation by Aerobic Bacteria * EPS and Cell Adsorption by Aerobic Bacteria * Reduction ...

  2. Natural analogue studies of the role of colloids, natural organics and microorganisms on radionuclide transport

    SciTech Connect (OSTI)

    McCarthy, J.F.

    1994-10-01

    Colloids may be important as a geochemical transport mechanism for radionuclides at geological repositories if they are (1) present in the groundwater, (2) stable with respect to both colloidal and chemical stabilities, (3) capable of adsorbing radionuclides, especially if the sorption is irreversible, and (4) mobile in the subsurface. The available evidence from natural analogue and other field studies relevant to these issues is reviewed, as is the potential role of mobile microorganisms ({open_quotes}biocolloids{close_quotes}) on radionuclide migration. Studies have demonstrated that colloids are ubiquitous in groundwater, although colloid concentrations in deep, geochemically stable systems may be too low to affect radionuclide transport. However, even low colloid populations cannot be dismissed as a potential concern because colloids appear to be stable, and many radionuclides that adsorb to colloids are not readily desorbed over long periods. Field studies offer somewhat equivocal evidence concerning colloid mobility and cannot prove or disprove the significance of colloid transport in the far-field environment. Additional research is needed at new sites to properly represent a repository far-field. Performance assessment would benefit from natural analogue studies to examine colloid behavior at sites encompassing a suite of probable groundwater chemistries and that mimic the types of formations selected for radioactive waste repositories.

  3. Small Talk: Cell-to-Cell Communication in Bacteria

    ScienceCinema (OSTI)

    Bassler, Bonnie [Princeton University, Princeton, New Jersey, United States

    2010-01-08

    Cell-cell communication in bacteria involves the production, release, and subsequent detection of chemical signaling molecules called autoinducers. This process, called quorum sensing, allows bacteria to regulate gene expression on a population-wide scale. Processes controlled by quorum sensing are usually ones that are unproductive when undertaken by an individual bacterium but become effective when undertaken by the group. For example, quorum sensing controls bioluminescence, secretion of virulence factors, biofilm formation, sporulation, and the exchange of DNA. Thus, quorum sensing is a mechanism that allows bacteria to function as multi-cellular organisms. Bacteria make, detect, and integrate information from multiple autoinducers, some of which are used exclusively for intra-species communication while others enable communication between species. Research is now focused on the development of therapies that interfere with quorum sensing to control bacterial virulence.

  4. Multiple Species of Bacteria Convert Elemental Mercury to Toxic...

    Office of Science (SC) Website

    Researchers are studying how bacteria transform mercury into a toxic form in the environment that can accumulate in the food web, posing a threat to wildlife and people. The ...

  5. Utilizing Bacteria for Sustainable Manufacturing of Low-Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bacteria for Sustainable Manufacturing of Low-Cost Nanoparticles Chad Duty, Ph.D. Technical Lead Additive Manufacturing Roll-to-Roll Processing June 26, 2012 2 Managed by ...

  6. Material and method for promoting the growth of anaerobic bacteria

    DOE Patents [OSTI]

    Adler, Howard I.

    1984-01-01

    A material and method for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10.degree. to about 60.degree. C. until the dissolved oxygen is removed.

  7. Material and method for promoting the growth of anaerobic bacteria

    DOE Patents [OSTI]

    Adler, H.I.

    1984-10-09

    A material and method is disclosed for promoting the growth of anaerobic bacteria which includes a nutrient media containing a hydrogen donor and sterile membrane fragments of bacteria having an electron transfer system which reduces oxygen to water. Dissolved oxygen in the medium is removed by adding the sterile membrane fragments to the nutrient medium and holding the medium at a temperature of about 10 to about 60 C until the dissolved oxygen is removed. No Drawings

  8. Influence of microorganisms on the oxidation state distribution of multivalent actinides under anoxic conditions

    SciTech Connect (OSTI)

    Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois; Ams, David; Richmann, M. K.; Khaing, H.; Swanson, J. S.

    2010-12-10

    The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity. Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.

  9. An Approach for Assessing the Signature Quality of Various Chemical Assays when Predicting the Culture Media Used to Grow Microorganisms

    SciTech Connect (OSTI)

    Holmes, Aimee E.; Sego, Landon H.; Webb-Robertson, Bobbie-Jo M.; Kreuzer, Helen W.; Anderson, Richard M.; Unwin, Stephen D.; Weimar, Mark R.; Tardiff, Mark F.; Corley, Courtney D.

    2013-02-01

    We demonstrate an approach for assessing the quality of a signature system designed to predict the culture medium used to grow a microorganism. The system was comprised of four chemical assays designed to identify various ingredients that could be used to produce the culture medium. The analytical measurements resulting from any combination of these four assays can be used in a Bayesian network to predict the probabilities that the microorganism was grown using one of eleven culture media. We evaluated combinations of the signature system by removing one or more of the assays from the Bayes network. We measured and compared the quality of the various Bayes nets in terms of fidelity, cost, risk, and utility, a method we refer to as Signature Quality Metrics

  10. Biodesulfurization techniques: Application of selected microorganisms for organic sulfur removal from coals. Final report

    SciTech Connect (OSTI)

    Elmore, B.B.

    1993-08-01

    As an alternative to post-combustion desulfurization of coal and pre-combustion desulfurization using physicochemical techniques, the microbial desulfurization of coal may be accomplished through the use of microbial cultures that, in an application of various microbial species, may remove both the pyritic and organic fractions of sulfur found in coal. Organisms have been isolated that readily depyritize coal but often at prohibitively low rates of desulfurization. Microbes have also been isolated that may potentially remove the organic-sulfur fraction present in coal (showing promise when acting on organic sulfur model compounds such as dibenzothiophene). The isolation and study of microorganisms demonstrating a potential for removing organic sulfur from coal has been undertaken in this project. Additionally, the organisms and mechanisms by which coal is microbially depyritized has been investigated. Three cultures were isolated that grew on dibenzothiophene (DBT), a model organic-sulfur compound, as the sole sulfur source. These cultures (UMX3, UMX9, and IGTS8) also grew on coal samples as the sole sulfur source. Numerous techniques for pretreating and ``cotreating`` coal for depyritization were also evaluated for the ability to improve the rate or extent of microbial depyritization. These include prewashing the coal with various solvents and adding surfactants to the culture broth. Using a bituminous coal containing 0.61% (w/w) pyrite washed with organic solvents at low slurry concentrations (2% w/v), the extent of depyritization was increased approximately 25% in two weeks as compared to controls. At slurry concentrations of 20% w/v, a tetrachloroethylene treatment of the coal followed by depyritization with Thiobacillus ferrooxidans increased both the rate and extent of depyritization by approximately 10%.

  11. Bacteria transport through porous media. Annual report, December 31, 1984

    SciTech Connect (OSTI)

    Yen, T.F.

    1986-09-01

    The following five chapters in this report have been processed separately for inclusion in the Energy Data Base: (1) theoretical model of convective diffusion of motile and non-motile bacteria toward solid surfaces; (2) interfacial electrochemistry of oxide surfaces in oil-bearing sands and sandstones; (3) effects of sodium pyrophosphate additive on the ''huff and puff''/nutrient flooding MEOR process; (4) interaction of Escherichia coli B, B/4, and bacteriophage T4D with Berea sandstone rock in relation to enhanced oil recovery; and (5) transport of bacteria in porous media and its significance in microbial enhanced oil recovery.

  12. Hairlike appendages on ultra-small bacteria cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hairlike appendages on ultra-small bacteria cell Click to share on Facebook (Opens in new window) Click to share on Twitter (Opens in new window) Click to share on Reddit (Opens in new window) Click to share on Pinterest (Opens in new window) Cryo-transmission electron microscopy captured numerous hairlike appendages radiating from the surface of this ultra-small bacteria cell. The scientists theorize the pili-like structures enable the cell to connect with other microbes and obtain life-giving

  13. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production

    SciTech Connect (OSTI)

    Yazdani, Ramin; Barlaz, Morton A.; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  14. High-Potential Electrocatalytic O2 Reduction with Nitroxyl / NOx Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis

    SciTech Connect (OSTI)

    Gerken, James B.; Stahl, Shannon S.

    2015-07-15

    Efficient reduction of O2 to water is a central challenge in energy conversion and aerobic oxidation catalysis. In the present study, we investigate the electrochemical reduction of O2 with soluble organic nitroxyl and nitrogen oxide (NOx) mediators. When used alone, neither organic nitroxyls, such as TEMPO (2,2,6,6-tetramethyl-1-piperidinyl-N-oxyl), nor NOx species, such as sodium nitrite, are effective mediators of electrochemical O2 reduction. The combination of nitroxyl/NOx species, however, mediates sustained O2 reduction at electrochemical potentials of 0.19–0.33 V (vs. Fc/Fc+) in acetonitrile containing trifluoroacetic acid. Mechanistic analysis of the coupled redox reactions supports a process in which the nitrogen oxide catalyst drives aerobic oxidation of a nitroxyl mediator to an oxoammonium species, which then is reduced back to the nitroxyl at the cathode. The electrolysis potential is dictated by the oxoammonium/nitroxyl reduction potential. The high potentials observed with this ORR system benefit from the mechanism-based specificity for four-electron reduction of oxygen to water mediated by NOx species, together with kinetically efficient reduction of oxidized NOx species by TEMPO and other organic nitroxyls. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  15. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    SciTech Connect (OSTI)

    Brooks, Brandon; Mueller, R. S.; Young, Jacque C.; Morowitz, Michael J.; Robert L. Hettich; Banfield, Jillian F.

    2015-07-01

    While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13 21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.

  16. Use of Advanced Oxidation and Aerobic Degradation for Remediation of Various Hydrocarbon Contaminates

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-03-06

    results from a study with TCE contaminated-clay indicate that electrochemically inducing reductive dechlorination of TCE in a saturated matrix may offer an effective and viable alternative to remediation TCE and other contaminants with potential of being reduced. Another study focused on steel wool oxidation to electrochemically increase population of hydrocarbon-degrading denitrifying bacteria. Significantly larger denitrifying activity was observed in the cathode chamber of a treatment unit setup like an MFC with steel wool as the anode. This enhanced nitrate reduction could be due to direct electron utilization by denitrifying bacteria on the cathode, thereby stimulating microbial denitrification or a combination of electron transfer directly to NO{sub 3}{sup -} and electron transfer to nitrate reducing bacteria, which may serve as a type of bio-catalyst on the cathode for nitrate reduction. Overall, the studies conducted under Task 72 demonstrated different innovative methods to enhance petroleum hydrocarbon degradation and associated contaminants.

  17. Method for establishing the presence of salmonella bacteria in eggs

    DOE Patents [OSTI]

    Johnston, Roger G.; Sinha, Dipen N.

    1995-01-01

    Measurement of the acoustical resonances in eggs is shown to provide a rapid, noninvasive technique for establishing the presence of Salmonella bacteria. The technique is also sensitive to yolk puncture, shell cracks, and may be sensitive to other yolk properties and to egg freshness. Remote characterization, potentially useful for characterizing large numbers of eggs, has been demonstrated.

  18. Methods for targetted mutagenesis in gram-positive bacteria

    DOE Patents [OSTI]

    Yang, Yunfeng

    2014-05-27

    The present invention provides a method of targeted mutagenesis in Gram-positive bacteria. In particular, the present invention provides a method that effectively integrates a suicide integrative vector into a target gene in the chromosome of a Gram-positive bacterium, resulting in inactivation of the target gene.

  19. Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase

    SciTech Connect (OSTI)

    French, C.E.; Bruce, N.C.; Nicklin, S.

    1998-08-01

    Enterobacter cloacae PB2 was originally isolated on the basis of its ability to utilize nitrate esters, such as pentaerythritol tetranitrate (PETN) and glycerol trinitrate, as the sole nitrogen source for growth. The enzyme responsible is an NADPH-dependent reductase designated PETN reductase. E. cloacae PB2 was found to be capable of slow aerobic growth with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. Dinitrotoluenes were not produced and could not be used as nitrogen sources. Purified PETN reductase was found to reduce TNT to its hydride-Meisenheimer complex, which was further reduced to the dihydride-Meisenheimer complex. Purified PETN reductase and recombinant Escherichia coli expressing PETN reductase were able to liberate nitrogen as nitrite from TNT. The ability to remove nitrogen from TNT suggests that PB2 or recombinant organisms expressing PETN reductase may be useful for bioremediation of TNT-contaminated soil and water.

  20. A vast collection of microbial genes that are toxic to bacteria...

    Office of Scientific and Technical Information (OSTI)

    A vast collection of microbial genes that are toxic to bacteria Citation Details In-Document Search Title: A vast collection of microbial genes that are toxic to bacteria In the ...

  1. Toxin-eating bacteria and bioremediation (Patent) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Toxin-eating bacteria and bioremediation Citation Details In-Document Search Title: Toxin-eating bacteria and bioremediation Methods are provided for reducing a level of one or ...

  2. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    SciTech Connect (OSTI)

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    2011-03-15

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

  3. Universal Gene Transfer Technology for Gram Positive Bacteria - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Biomass and Biofuels Biomass and Biofuels Advanced Materials Advanced Materials Find More Like This Return to Search Universal Gene Transfer Technology for Gram Positive Bacteria Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00255_ID2139_rev.pdf (493 KB) Technology Marketing SummaryA genetic engineering technology invented at ORNL facilitates DNA delivery to a cell by using ultrasound to permeate the cell's

  4. Evaluation of sulfur-reducing microorganisms for organic desulfurization. Final technical report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Miller, K.W.

    1991-12-31

    Because of substantial portion of the sulfur in Illinois coal is organic, microbial desulfurization of sulfidic and thiophenic functionalities could hold great potential for completing pyritic sulfur removal. We are testing the hypothesis that organic sulfur can be reductively removed as H{sub 2}S through the activities of anaerobic microorganisms. Our objectives for this year include the following: (1) To obtain cultures that will reductively desulfurize thiophenic model compounds. In addition to crude oil enrichments begun last year, we sampled municipal sewage sludge. (2) To continue to work toward optimizing the activity of the DBDS-reducing cultures obtained during the previous year. (3) To expand coal desulfurization work to include other coals including Illinois Basin Coal 101 and a North Dakota lignite, which might be more susceptible to the dibenzyldisulfide reducing cultures due to its lower rank. (4) To address the problem of sulfide sorption, by investigating the sorption capacity of coals in addition to Illinois Basin Coal 108.

  5. Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuelmaking them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once theyre pumped out of the tank.

  6. Engineering Bacteria for Efficient Fuel Production: Novel Biological Conversion of Hydrogen and Carbon Dioxide Directly into Free Fatty Acids

    SciTech Connect (OSTI)

    2010-07-12

    Electrofuels Project: OPX Biotechnologies is engineering a microorganism currently used in industrial biotechnology to directly produce a liquid fuel from hydrogen and carbon dioxide (CO2). The microorganism has the natural ability to use hydrogen and CO2 for growth. OPX Biotechnologies is modifying the microorganism to divert energy and carbon away from growth and towards the production of liquid fuels in larger, commercially viable quantities. The microbial system will produce a fuel precursor that can be chemically upgraded to various hydrocarbon fuels.

  7. Elimination of mercury and organomercurials by nitrogen-fixing bacteria

    SciTech Connect (OSTI)

    Ghosh, S.; Sadhukhan, P.C.; Ghosh, D.K.

    1997-06-01

    Bacteria isolated from mercury-polluted environments are often resistant to mercuric ions (Hg{sup 2+}) and organomercurials. Plasmids determining mercury resistance have been well characterized in gram-negative system. However, in Staphylococcus aureus mercury resistance has been found to be chromosomally determined. The known mechanism of bacterial Hg{sup 2+}-resistance is detoxification of the toxic Hg{sup 2+} by its enzymatic transformation by mercuric reductase to Hg (o). Organomercurial lyase mediates the degradation of organomercurial compounds to Hg{sup 2+}. Mercury and organomercurial resistances have been studied in different bacterial genera. There is little information on Hg-resistance in N{sub 2}-fixing soil bacteria, however, in many developing countries, including India, mercury pollution is still a problem because Hg-based pesticides and fungicides are still used routinely as seed-dressers in agriculture to control soil-borne and seed-borne fungal diseases. Volatilization of Hg from laboratory media by mercury-resistant bacteria containing low levels of mercury has been reported by several workers. It is interesting to note that N{sub 2}-fixing, Hg-resistant soil isolates could volatilize Hg from medium containing very high amounts of HgCl{sub 2}. In the present paper we report the volatilization patterns of five N{sub 2}-fixing bacterial strains, the effect of different inducers on mercuric reductase, and the pattern of substrate utilization by organomercurial lyase. In the presence of a low concentration of HgCl{sub 2}. enzymatic detoxification is sufficient to combat the adverse situation created by the presence of Hg{sup 2+} ions. In the presence of a high concentration of HgCl{sub 2}, intracellular sequestration by Hg{sup 2+} binding components may play an additional role in counteracting Hg-toxicity.

  8. Genetics of Bacteria That Oxidize On-Carbon Compounds

    SciTech Connect (OSTI)

    Hanson, Richard S.

    2001-01-01

    Facultative methanol oxidizing bacteria contain large amounts of methanol dehydrogenase which is expressed only in the presence of methanol. This technical report describes two-two component regulatory systems encoding histidine kinases and response regulators and another response regulator all of which are required for the expression of mxaF, the open reading frame encoding methanol dehydrogenase. The response regulators bind to sequences upstream of the mxaF when phosphoryled in a reaction catalyzed by the histidine kinases. The binding of the response regulators is required for the transcription of mxaF.

  9. Biofuels from Bacteria, Electricity, and CO2: Biofuels from CO2 Using Ammonia or Iron-Oxidizing Bacteria in Reverse Microbial Fuel Cells

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Electrofuels Project: Columbia University is using carbon dioxide (CO2) from ambient air, ammoniaan abundant and affordable chemical, and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the systemcreating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

  10. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOE Patents [OSTI]

    Dees, H.C.

    1998-07-14

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  11. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOE Patents [OSTI]

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  12. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    SciTech Connect (OSTI)

    Wall, Judy D.

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  13. Prediction of substrate removal rates of attached microorganisms and of relative contributions of attached and suspended communities at field sites

    SciTech Connect (OSTI)

    Lewis, D.L.; Gattie, D.K.

    1988-02-01

    A mathematical model composed of a direct proportionality relationship between bulk water velocities and field-determined second-order microbial transformation rate coefficients, and the relative rate coefficient of a benchmark chemical, was developed for estimating the substrate removal rates of rapidly degraded chemicals by attached microorganisms in shallow (less than 1 m deep) aquatic ecosystems. Data from 31 field experiments involving the addition of 2,4-dichlorophenoxyacetic acid methyl ester (2,4-DME) in nine field areas were used to determine a field-derived second-order rate coefficient for microbial transformation of the ester. By using 2,4-DME as a benchmark chemical, the model was used to predict microbial transformation rates of the butoxyethyl ester of 2,4-dichlorophenoxyacetic acid (2,4-DBE) at five other field sites. The predicted half-lives of 2,4-DBE varied 1500-fold and were within about a 3-fold range or less of the measured half-lives.

  14. Virtual Institute of Microbial Stress and Survival: Deduction of Stress Response Pathways in Metal and Radionuclide Reducing Microorganisms

    SciTech Connect (OSTI)

    2004-04-17

    The projects application goals are to: (1) To understand bacterial stress-response to the unique stressors in metal/radionuclide contamination sites; (2) To turn this understanding into a quantitative, data-driven model for exploring policies for natural and biostimulatory bioremediation; (3) To implement proposed policies in the field and compare results to model predictions; and (4) Close the experimental/computation cycle by using discrepancies between models and predictions to drive new measurements and construction of new models. The projects science goals are to: (1) Compare physiological and molecular response of three target microorganisms to environmental perturbation; (2) Deduce the underlying regulatory pathways that control these responses through analysis of phenotype, functional genomic, and molecular interaction data; (3) Use differences in the cellular responses among the target organisms to understand niche specific adaptations of the stress and metal reduction pathways; (4) From this analysis derive an understanding of the mechanisms of pathway evolution in the environment; and (5) Ultimately, derive dynamical models for the control of these pathways to predict how natural stimulation can optimize growth and metal reduction efficiency at field sites.

  15. Process for generation of hydrogen gas from various feedstocks using thermophilic bacteria

    DOE Patents [OSTI]

    Ooteghem, Suellen Van

    2005-09-13

    A method for producing hydrogen gas is provided comprising selecting a bacteria from the Order Thermotogales, subjecting the bacteria to a feedstock and to a suitable growth environment having an oxygen concentration below the oxygen concentration of water in equilibrium with air; and maintaining the environment at a predetermined pH and at a temperature of at least approximately 45.degree. C. for a time sufficient to allow the bacteria to metabolize the feedstock.

  16. Using Rhodobacter Bacteria to Express Membrane Proteins (ANL-IN-99-089) -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Using Rhodobacter Bacteria to Express Membrane Proteins (ANL-IN-99-089) Argonne National Laboratory Contact ANL About This Technology <p> A strategy to express heterologous membrane proteins by using photosynthetic bacteria</p> A strategy to express heterologous membrane proteins by using photosynthetic bacteria Technology Marketing Summary Cell membranes serve as the

  17. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    SciTech Connect (OSTI)

    Katsenovich, Yelena P.; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel E.

    2012-05-01

    The bacterial effect on U(VI) release from the autunite mineral (Ca[(UO2)(PO4)]2•3H2O) was investigated to provide a more comprehensive understanding of the important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of the Arthrobacter oxydans G975 strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorous-limiting sterile media were amended with bicarbonate (ranging between 1 and 10 mM) in glass reactor bottles and inoculated with the G975 strain after the dissolution of autunite was at steady state. SEM observations indicated that G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile culture-ware with inserts was used in non-contact dissolution experiments where autunite and bacteria cells were kept separately. The data suggest that G975 bacteria is able to enhance the release of U(VI) from autunite without direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the release of U(VI) from autunite in bicarbonate-amended media.

  18. Establishment of stable synthetic mutualism without co-evolution between microalgae and bacteria demonstrated by mutual transfer of metabolites (NanoSIMS isotopic imaging) and persistent physical association (Fluorescent in situ hybridization)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    de-Bashan, Luz E.; Mayali, Xavier; Bebout, Brad M.; Weber, Peter K.; Detweiler, Angela M.; Hernandez, Juan- Pablo; Prufert-Bebout, Leslie; Bashan, Yoav

    2016-03-03

    The demonstration of a mutualistic interaction requires evidence of benefits for both partners as well as stability of the association over multiple generations. A synthetic mutualism between the freshwater microalga Chlorella sorokiniana and the soil-derived plant growth-promoting bacterium (PGPB) Azospirillum brasilense was created when both microorganisms were co-immobilized in alginate beads. Using stable isotope enrichment experiments followed by high-resolution secondary ion mass spectrometry (SIMS) imaging of single cells, we demonstrated transfer of carbon and nitrogen compounds between the two partners. Further, using fluorescent in situ hybridization (FISH), mechanical disruption and scanning electron microscopy, we demonstrated the stability of their physicalmore » association for a period of 10 days after the aggregated cells were released from the beads. The bacteria significantly enhanced the growth of the microalgae while the microalgae supported growth of the bacteria in a medium where it could not otherwise grow. In conclusion, we propose that this microalga-bacterium association is a true synthetic mutualism independent of co-evolution. (155 words).« less

  19. Selection against spurious promoter motifs correlates withtranslational efficiency across bacteria

    SciTech Connect (OSTI)

    Froula, Jeffrey L.; Francino, M. Pilar

    2007-05-01

    Because binding of RNAP to misplaced sites could compromise the efficiency of transcription, natural selection for the optimization of gene expression should regulate the distribution of DNA motifs capable of RNAP-binding across the genome. Here we analyze the distribution of the -10 promoter motifs that bind the {sigma}{sup 70} subunit of RNAP in 42 bacterial genomes. We show that selection on these motifs operates across the genome, maintaining an over-representation of -10 motifs in regulatory sequences while eliminating them from the nonfunctional and, in most cases, from the protein coding regions. In some genomes, however, -10 sites are over-represented in the coding sequences; these sites could induce pauses effecting regulatory roles throughout the length of a transcriptional unit. For nonfunctional sequences, the extent of motif under-representation varies across genomes in a manner that broadly correlates with the number of tRNA genes, a good indicator of translational speed and growth rate. This suggests that minimizing the time invested in gene transcription is an important selective pressure against spurious binding. However, selection against spurious binding is detectable in the reduced genomes of host-restricted bacteria that grow at slow rates, indicating that components of efficiency other than speed may also be important. Minimizing the number of RNAP molecules per cell required for transcription, and the corresponding energetic expense, may be most relevant in slow growers. These results indicate that genome-level properties affecting the efficiency of transcription and translation can respond in an integrated manner to optimize gene expression. The detection of selection against promoter motifs in nonfunctional regions also implies that no sequence may evolve free of selective constraints, at least in the relatively small and unstructured genomes of bacteria.

  20. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect (OSTI)

    Rigby, H.; Smith, S.R.

    2013-12-15

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  1. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2007-01-09

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  2. Radiation-resistant microorganism

    DOE Patents [OSTI]

    Fliermans, Carl B.

    2010-06-15

    An isolated and purified bacterium is provided which was isolated from a high-level radioactive waste site of mixed waste. The isolate has the ability to degrade a wide variety of organic contaminants while demonstrating high tolerance to ionizing radiation. The organism is uniquely suited to bioremediation of a variety or organic contaminants while in the presence of ionizing radiation.

  3. Butanol tolerance in microorganisms

    DOE Patents [OSTI]

    Bramucci, Michael G.; Nagarajan, Vasantha

    2016-03-01

    Provided herein are recombinant yeast host cells and methods for their use for production of fermentation products from a pyruvate utilizing pathway. Yeast host cells provided herein comprise reduced pyruvate decarboxylase activity and modified adenylate cyclase activity. In embodiments, yeast host cells provided herein comprise resistance to butanol and increased biomass production.

  4. Liquid Fuel from Heat-Loving Microorganisms: H2-Dependent Conversion of CO2 to Liquid Electrofuels by Extremely Thermophilic Archaea

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: NC State is working with the University of Georgia to create Electrofuels from primitive organisms called extremophiles that evolved before photosynthetic organisms and live in extreme, hot water environments with temperatures ranging from 167-212 degrees Fahrenheit The team is genetically engineering these microorganisms so they can use hydrogen to turn carbon dioxide directly into alcohol-based fuels. High temperatures are required to distill the biofuels from the water where the organisms live, but the heat-tolerant organisms will continue to thrive even as the biofuels are being distilledmaking the fuel-production process more efficient. The microorganisms dont require light, so they can be grown anywhereinside a dark reactor or even in an underground facility.

  5. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOE Patents [OSTI]

    Bavykin, Sergei G.; Mirzabekov, Andrei D.

    2007-10-30

    The present invention is directed to a novel method of discriminating a highly infectious bacterium Bacillus anthracis from a group of closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations. The identification and analysis of these sequence variations enables positive discrimination of isolates of the B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed probes, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  6. Discrimination of Bacillus anthracis from closely related microorganisms by analysis of 16S and 23S rRNA with oligonucleotide microchips

    DOE Patents [OSTI]

    Bavykin, Sergei G.; Mirzabekova, legal representative, Natalia V.; Mirzabekov, deceased, Andrei D.

    2007-12-04

    The present invention relates to methods and compositions for using nucleotide sequence variations of 16S and 23S rRNA within the B. cereus group to discriminate a highly infectious bacterium B. anthracis from closely related microorganisms. Sequence variations in the 16S and 23S rRNA of the B. cereus subgroup including B. anthracis are utilized to construct an array that can detect these sequence variations through selective hybridizations and discriminate B. cereus group that includes B. anthracis. Discrimination of single base differences in rRNA was achieved with a microchip during analysis of B. cereus group isolates from both single and in mixed samples, as well as identification of polymorphic sites. Successful use of a microchip to determine the appropriate subgroup classification using eight reference microorganisms from the B. cereus group as a study set, was demonstrated.

  7. Final technical report for project titled Quantitative Characterization of Cell Aggregation/Adhesion as Predictor for Distribution and Transport of Microorganisms in Subsurface Environment

    SciTech Connect (OSTI)

    Gu, April Z; Wan, Kai-tak

    2014-09-02

    This project aims to explore and develop enabling methodology and techniques for nano-scale characterization of microbe cell surface contact mechanics, interactions and adhesion quantities that allow for identification and quantification of indicative properties related to microorganism migration and transport behavior in porous media and in subsurface environments. Microbe transport has wide impact and therefore is of great interest in various environmental applications such as in situ or enhanced subsurface bioremediation,filtration processes for water and wastewater treatments and protection of drinking water supplies. Although great progress has been made towards understanding the identities and activities of these microorganisms in the subsurface, to date, little is known of the mechanisms that govern the mobility and transport of microorganisms in DOE’s contaminated sites, making the outcomes of in situ natural attenuation or contaminant stability enhancement unpredictable. Conventionally, movement of microorganisms was believed to follows the rules governing solute (particle) transport. However, recent studies revealed that cell surface properties, especially those pertaining to cell attachment/adhesion and aggregation behavior, can cause the microbe behavior to deviate from non-viable particles and hence greatly influence the mobility and distribution of microorganisms in porous media.This complexity highlights the need to obtain detailed information of cell-cell and cell-surface interactions in order to improve and refine the conceptual and quantitative model development for fate and transport of microorganisms and contaminant in subsurface. Traditional cell surface characterization methods are not sufficient to fully predict the deposition rates and transport behaviors of microorganism observed. A breakthrough of methodology that would allow for quantitative and molecular-level description of intrinsic cell surface properties indicative for cell

  8. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOE Patents [OSTI]

    Apel, William A.; Dugan, Patrick R.

    1995-01-01

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  9. Clay enhancement of methane, low molecular weight hydrocarbon and halocarbon conversion by methanotrophic bacteria

    DOE Patents [OSTI]

    Apel, William A.; Dugan, Patrick R.

    1995-04-04

    An apparatus and method for increasing the rate of oxidation of toxic vapors by methanotrophic bacteria. The toxic vapors of interest are methane and trichloroethylene. The apparatus includes a gas phase bioreactor within a closed loop pumping system or a single pass system. The methanotrophic bacteria include Methylomonas methanica, Methylosinus trichosporium, and uncharacterized environmental enrichments.

  10. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pepe-Ranney, Charles; Campbell, Ashley N.; Koechli, Chantal N.; Berthrong, Sean; Buckley, Daniel H.

    2016-05-12

    We explored microbial contributions to decomposition using a sophisticated approach to DNA Stable Isotope Probing (SIP). Our experiment evaluated the dynamics and ecological characteristics of functionally defined microbial groups that metabolize labile and structural C in soils. We added to soil a complex amendment representing plant derived organic matter substituted with either 13C-xylose or 13C-cellulose to represent labile and structural C pools derived from abundant components of plant biomass. We found evidence for 13C-incorporation into DNA from 13C-xylose and 13C-cellulose in 49 and 63 operational taxonomic units (OTUs), respectively. The types of microorganisms that assimilated 13C in the 13C-xylose treatmentmore » changed over time being predominantly Firrnicutes at day 1 followed by Bacteroidetes at day 3 and then Actinobacteria at day 7. These 13C-labeling dynamics suggest labile C traveled through different trophic levels. In contrast, microorganisms generally metabolized cellulose-C after 14 days and did not change to the same extent in phylogenetic composition over time. Furthermore, microorganisms that metabolized cellulose-C belonged to poorly characterized but cosmopolitan soil lineages including Verrucomicrobia, Chlorotlexi, and Planctomycetes.« less

  11. On-line monitoring of aerobic bioremediation with bioluminescent reporter microbes. Final report, July 1991--December 1994

    SciTech Connect (OSTI)

    Sayler, G.S.

    1995-03-01

    A critical issue in the biological characterization of contaminated sites and in the evaluation of relative bioremediation treatment efficiencies is the development of appropriate monitoring methods for the assessment of pollutant bioavailability and microbial in situ activity potential. In nature, pollutants are found dispersed among the solid, liquid and gaseous phases of the complex environments rendering the analytical estimation of their bioavailability and degradation more difficult and irrelevant. Ex situ and extractive analytical techniques have only been misrepresentative of the natural conditions and often resulted in inaccurate estimates of pollutants mass transfer. In this project, the bioluminescent bioreporter bacterium P. Fluorescens HK44 was integrated to an optical device, capable of conducting emitted light, and used as an online biosensor of naphthalene and salicylate. The physiological requirements of the bacteria and the physical limitations of the biosensor were also determined.

  12. Production of ethanol from lignocellulosic materials using thermophilic bacteria

    SciTech Connect (OSTI)

    Lynd, L.R.

    1987-01-01

    The production of ethanol from lignocellulosic materials, e.g. wood, agricultural residues, and municipal solid wastes, is considered. The conversion of these materials to ethanol in the US could annually yield approximately 430 million tons ethanol, or about 9.8 quads, within the next 20 years. Thermophilic bacteria have advantages over yeasts for ethanol production because various species produce an active cellulase enzyme and utilize pentose sugars. However thermophiles have lower ethanol tolerance and usually lower ethanol yields. The potential of thermophilic ethanol production from hardwood chips is examined in detail. It is concluded that if high ethanol yield can be achieved this process could have economics competitive with either ethanol production from corn via yeast or synthetic production from ethylene. Low ethanol tolerance is not a major problem provided concentrations {ge} 1.5% are produced, ethanol is continuously removed from the fermentor, and IHOSR/extractive distillation is employed. Research was undertaken aimed at closing the gap between the attractive potential of thermophiles for ethanol production, and that which is possible based on present knowledge, which is not practical. Major topics were the activity of Clostridium thermocellum cellulase on pretreated mixed hardwood and Avicel in vivo, continuous culture of C. thermocellum on pretreated mixed hardwood and Avicel, and the continuous culture of Clostridium thermosaccharolyticum at high xylose concentrations in the presence and absence of ethanol removal.

  13. Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Trembath-Reichert, Elizabeth; Case, David H.; Orphan, Victoria J.

    2016-04-18

    Methane seep systems along continental margins host diverse and dynamic microbial assemblages, sustained in large part through the microbially mediated process of sulfate-coupled Anaerobic Oxidation of Methane (AOM). This methanotrophic metabolism has been linked to consortia of anaerobic methane-oxidizing archaea (ANME) and sulfate-reducing bacteria (SRB). These two groups are the focus of numerous studies; however, less is known about the wide diversity of other seep associated microorganisms. We selected a hierarchical set of FISH probes targeting a range ofDeltaproteobacteriadiversity. Using the Magneto-FISH enrichment technique, we then magnetically captured CARD-FISH hybridized cells and their physically associated microorganisms from a methane seepmore » sediment incubation. DNA from nested Magneto-FISH experiments was analyzed using Illumina tag 16S rRNA gene sequencing (iTag). Enrichment success and potential bias with iTag was evaluated in the context of full-length 16S rRNA gene clone libraries, CARD-FISH, functional gene clone libraries, and iTag mock communities. We determined commonly used Earth Microbiome Project (EMP) iTAG primers introduced bias in some common methane seep microbial taxa that reduced the ability to directly compare OTU relative abundances within a sample, but comparison of relative abundances between samples (in nearly all cases) and whole community-based analyses were robust. The iTag dataset was subjected to statistical co-occurrence measures of the most abundant OTUs to determine which taxa in this dataset were most correlated across all samples. In addition, many non-canonical microbial partnerships were statistically significant in our co-occurrence network analysis, most of which were not recovered with conventional clone library sequencing, demonstrating the utility of combining Magneto-FISH and iTag sequencing methods for hypothesis generation of associations within complex microbial communities. Network analysis pointed

  14. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    SciTech Connect (OSTI)

    Labbe, Jessy L.; Weston, David J.; Dunkirk, Nora; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-10-24

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite trophic interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two other Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were also included as reference in the screening process. We analyzed Laccaria bicolor S238N growth rate, mycelial architecture and transcriptional changes induced by the contrasting Pseudomonas strains (i.e., inhibitory, neutral and beneficial). We characterized 17 out of the 21 Pseudomonas strains from the Populus rhizosphere with positive effects on L. bicolor S238N growth, as well as on Populus root architecture and colonization by L. bicolor S238N across three Populus species. Four of seven reporter genes, Tra1, Tectonin2, Gcn5 and Cipc1, thought to be specific to the interaction with strain BBc6R8, were induced or repressed while interacting with six (i.e., GM17, GM33, GM41, GM48, Pf-5 and BBc6R8) of the tested Pseudomonas strains. GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise, poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve roots colonization. This tripartite relationship could be exploited in nursery production for target Populus species/genotypes as a means of improving establishment and survival in marginal lands.

  15. Newly identified helper bacteria stimulate ectomycorrhizal formation in Populus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Labbe, Jessy L.; Weston, David J.; Dunkirk, Nora; Pelletier, Dale A.; Tuskan, Gerald A.

    2014-10-24

    Mycorrhiza helper bacteria (MHB) are known to increase host root colonization by mycorrhizal fungi but the molecular mechanisms and potential tripartite trophic interactions are poorly understood. Through an effort to study Populus microbiome, we isolated 21 Pseudomonas strains from native Populus deltoides roots. These bacterial isolates were characterized and screened for MHB effectiveness on the Populus-Laccaria system. Two other Pseudomonas strains (i.e., Pf-5 and BBc6R8) from existing collections were also included as reference in the screening process. We analyzed Laccaria bicolor S238N growth rate, mycelial architecture and transcriptional changes induced by the contrasting Pseudomonas strains (i.e., inhibitory, neutral and beneficial).more » We characterized 17 out of the 21 Pseudomonas strains from the Populus rhizosphere with positive effects on L. bicolor S238N growth, as well as on Populus root architecture and colonization by L. bicolor S238N across three Populus species. Four of seven reporter genes, Tra1, Tectonin2, Gcn5 and Cipc1, thought to be specific to the interaction with strain BBc6R8, were induced or repressed while interacting with six (i.e., GM17, GM33, GM41, GM48, Pf-5 and BBc6R8) of the tested Pseudomonas strains. GM41 promoted the highest roots colonization across three Populus species but most notably in P. deltoides, which is otherwise, poorly colonized by L. bicolor. Here we report novel MHB strains isolated from native Populus that improve roots colonization. This tripartite relationship could be exploited in nursery production for target Populus species/genotypes as a means of improving establishment and survival in marginal lands.« less

  16. Amoebae/bacteria consortia and uses for degrading wastes and contaminants

    DOE Patents [OSTI]

    Tyndall, Richard L.

    1996-01-01

    A method of altering trinitrotoluene includes the steps of: providing an amoeba/bacteria consortium, particularly ATCC 40908 or a mutant thereof possessing all the identifying characteristics thereof; and contacting the consortium with trinitrotoluene to alter the trinitrotoluene.

  17. Geek-Up[09.24.10] -- Magical BEANs, Combating Bacteria's Resistance...

    Energy Savers [EERE]

    and crystallized the membrane proteins that make up an E. coli bacteria's efflux pump. These pumps, which are comprised of crystal structures in the membrane, remove heavy-metal ...

  18. Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America

    Broader source: Energy.gov [DOE]

    Researchers at the Energy Department's Joint BioEnergy Institute (JBEI) have engineered the first strains of the bacteria to digest switchgrass biomass and synthesize its sugars into all three types of transportation fuels -- gasoline, diesel and jet fuels.

  19. Purple Bacteria Develops Its Own Form of Sunscreen | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Purple Bacteria Develops Its Own Form of "Sunscreen" Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home 05.03.12 Purple Bacteria Develops Its Own Form of "Sunscreen" Print Text Size: A A A FeedbackShare Page Scientific Achievement Found that specific pigments in the light harvesting complex of a photosynthetic bacterium act primarily to protect the

  20. Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

  1. Geek-Up[09.24.10] -- Magical BEANs, Combating Bacteria's Resistance to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Antibiotics and the ChemCam's Journey to Mars | Department of Energy 9.24.10] -- Magical BEANs, Combating Bacteria's Resistance to Antibiotics and the ChemCam's Journey to Mars Geek-Up[09.24.10] -- Magical BEANs, Combating Bacteria's Resistance to Antibiotics and the ChemCam's Journey to Mars September 24, 2010 - 5:19pm Addthis Check out the ChemCam close-up, which will reveal which elements are present in Mars' rocks and soils. Elizabeth Meckes Elizabeth Meckes Director of User Experience

  2. Geek-Up[12.03.2010]: Halomonadaceae Bacteria and the Return of Quark Gluon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasma | Department of Energy 2.03.2010]: Halomonadaceae Bacteria and the Return of Quark Gluon Plasma Geek-Up[12.03.2010]: Halomonadaceae Bacteria and the Return of Quark Gluon Plasma December 3, 2010 - 4:59pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs As a fellow geek, you probably heard NASA's big news yesterday. If not, here's a recap: It was once assumed that all life on Earth, from humans and giraffes to scorpions and plankton, are all based

  3. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  4. ENZYME ACTIVITY PROBE AND GEOCHEMICAL ASSESSMENT FOR POTENTIAL AEROBIC COMETABOLISM OF TRICHLOROETHENE IN GROUNDWATER OF THE NORTHWEST PLUME, PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B; M. Hope Lee, M; S. K. Hampson, S

    2008-06-27

    The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If

  5. Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect (OSTI)

    Reeve, Wayne

    2013-03-01

    Wayne Reeve of Murdoch University on "Genomics Encyclopedia of Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB): a resource for microsymbiont genomes" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  6. Amoebae/bacteria consortia and uses for degrading wastes and contaminants

    DOE Patents [OSTI]

    Tyndall, R.L.

    1996-05-21

    A method is disclosed of altering trinitrotoluene. The steps include the following: providing an amoeba/bacteria consortium, particularly ATCC 40908 or a mutant which possesses all the identifying characteristics thereof; and contacting the consortium with trinitrotoluene to alter the trinitrotoluene.

  7. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    DOE Patents [OSTI]

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  8. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    SciTech Connect (OSTI)

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; Deutschbauer, Adam

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with any transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes

  9. Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wetmore, Kelly M.; Price, Morgan N.; Waters, Robert J.; Lamson, Jacob S.; He, Jennifer; Hoover, Cindi A.; Blow, Matthew J.; Bristow, James; Butland, Gareth; Arkin, Adam P.; et al

    2015-05-12

    Transposon mutagenesis with next-generation sequencing (TnSeq) is a powerful approach to annotate gene function in bacteria, but existing protocols for TnSeq require laborious preparation of every sample before sequencing. Thus, the existing protocols are not amenable to the throughput necessary to identify phenotypes and functions for the majority of genes in diverse bacteria. Here, we present a method, random bar code transposon-site sequencing (RB-TnSeq), which increases the throughput of mutant fitness profiling by incorporating random DNA bar codes into Tn5 and mariner transposons and by using bar code sequencing (BarSeq) to assay mutant fitness. RB-TnSeq can be used with anymore » transposon, and TnSeq is performed once per organism instead of once per sample. Each BarSeq assay requires only a simple PCR, and 48 to 96 samples can be sequenced on one lane of an Illumina HiSeq system. We demonstrate the reproducibility and biological significance of RB-TnSeq with Escherichia coli, Phaeobacter inhibens, Pseudomonas stutzeri, Shewanella amazonensis, and Shewanella oneidensis. To demonstrate the increased throughput of RB-TnSeq, we performed 387 successful genome-wide mutant fitness assays representing 130 different bacterium-carbon source combinations and identified 5,196 genes with significant phenotypes across the five bacteria. In P. inhibens, we used our mutant fitness data to identify genes important for the utilization of diverse carbon substrates, including a putative D-mannose isomerase that is required for mannitol catabolism. RB-TnSeq will enable the cost-effective functional annotation of diverse bacteria using mutant fitness profiling. A large challenge in microbiology is the functional assessment of the millions of uncharacterized genes identified by genome sequencing. Transposon mutagenesis coupled to next-generation sequencing (TnSeq) is a powerful approach to assign phenotypes and functions to genes. However, the current strategies for TnSeq are

  10. From Nanowires to Biofilms: An Exploration of Novel Mechanisms of Uranium Transformation Mediated by Geobacter Bacteria

    SciTech Connect (OSTI)

    REGUERA, GEMMA

    2014-01-16

    One promising strategy for the in situ bioremediation of radioactive groundwater contaminants that has been identified by the SBR Program is to stimulate the activity of dissimilatory metal-reducing microorganisms to reductively precipitate uranium and other soluble toxic metals. The reduction of U(VI) and other soluble contaminants by Geobacteraceae is directly dependent on the reduction of Fe(III) oxides, their natural electron acceptor, a process that requires the expression of Geobacter’s conductive pili (pilus nanowires). Expression of conductive pili by Geobacter cells leads to biofilm development on surfaces and to the formation of suspended biogranules, which may be physiological closer to biofilms than to planktonic cells. Biofilm development is often assumed in the subsurface, particularly at the matrix-well screen interface, but evidence of biofilms in the bulk aquifer matrix is scarce. Our preliminary results suggest, however, that biofilms develop in the subsurface and contribute to uranium transformations via sorption and reductive mechanisms. In this project we elucidated the mechanism(s) for uranium immobilization mediated by Geobacter biofilms and identified molecular markers to investigate if biofilm development is happening in the contaminated subsurface. The results provided novel insights needed in order to understand the metabolic potential and physiology of microorganisms with a known role in contaminant transformation in situ, thus having a significant positive impact in the SBR Program and providing novel concept to monitor, model, and predict biological behavior during in situ treatments.

  11. Experimental Test Of Whether Electrostatically Charged Micro-organisms And Their Spores Contribute To The Onset Of Arcs Across Vacuum Gaps

    SciTech Connect (OSTI)

    none,; Grisham, Larry R.

    2014-02-24

    Recently it was proposed [L.R. Grisham, A. vonHalle, A.F. Carpe, Guy Rossi, K.R. Gilton, E.D. McBride, E.P. Gilson, A. Stepanov, T.N. Stevenson, Physics of Plasma 19 023107 (2012)] that one of the initiators of vacuum voltage breakdown between condu cting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which tnen become electrostatically charged when an electric potential is applied across the vacuum gap. The note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maxium operating voltage across a gap between two metallic conductors in a vacuum, comparing cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance

  12. Novel microorganism for selective separation of coal from ash and pyrite. Second quarterly technical progress report, 1 December 1993--28 February 1994

    SciTech Connect (OSTI)

    Misra, M.; Smith, R.W.; Raichur, A.M.

    1994-05-01

    The objective of this project is to study the effectiveness of a novel hydrophobic microorganism, Mycobacterium phlei (M. phlei), for the selective flocculation of coal from pyrite and ash forming minerals. During the reporting period, the hydrophobicity of different coal samples was studied both in the presence and absence of M. phlei cells. In the absence of M. Phlei, Illinois No. 6 and Pennsylvania No. 8 exhibited higher contact angles as compared to Kentucky No. 9 coal. All the coal samples exhibited a maximum in contact angle around pH 5--7, which roughly coincides with the iso-electric point (iep) of different coals studied in this investigation. In the presence of M. phlei, maximum contact angle shifted to lower pH range of 2--3 which coincides with the iep of the M. phlei. These measurements reinforce the notion that good flocculation of coal with M. phlei can be achieved around pH 2--3. The amount of soluble fraction released during rupturing of M. phlei cells was studied as a function of sonication time. The rupturing experiments showed that the whole cells (unruptured cells) contain nearly 40% by weight of soluble fractions. Also, during the reporting period, the fabrication of the counter-current flocculation device was completed.

  13. Experimental test of whether electrostatically charged micro-organisms and their spores contribute to the onset of arcs across vacuum gaps

    SciTech Connect (OSTI)

    Grisham, L. R.; Halle, A. von; Carpe, A. F.; Gilton, K. R.; Rossi, Guy; Stevenson, T. N.

    2013-12-15

    Recently it was proposed [L. R. Grisham et al. Phys. Plasmas 19, 023107 (2012)] that one of the initiators of vacuum voltage breakdown between conducting electrodes might be micro-organisms and their spores, previously deposited during exposure to air, which then become electrostatically charged when an electric potential is applied across the vacuum gap. This note describes a simple experiment to compare the number of voltage-conditioning pulses required to reach the nominal maximum operating voltage across a gap between two metallic conductors in a vacuum, comparing cases in which biological cleaning was done just prior to pump-down with cases where this was not done, with each case preceded by exposure to ambient air for three days. Based upon these results, it does not appear that air-deposited microbes and their spores constitute a major pathway for arc initiation, at least for exposure periods of a few days, and for vacuum gaps of a few millimeters, in the regime where voltage holding is usually observed to vary linearly with gap distance.

  14. Biofuel from Bacteria and Sunlight: Shewanella as an Ideal Platform for Producing Hydrocarbons

    SciTech Connect (OSTI)

    None

    2010-01-01

    Broad Funding Opportunity Announcement Project: The University of Minnesota is developing clean-burning, liquid hydrocarbon fuels from bacteria. The University is finding ways to continuously harvest hydrocarbons from a type of bacteria called Shewanella by using a photosynthetic organism to constantly feed Shewanella the sugar it needs for energy and hydrocarbon production. The two organisms live and work together as a system. Using Shewanella to produce hydrocarbon fuels offers several advantages over traditional biofuel production methods. First, it eliminates many of the time-consuming and costly steps involved in growing plants and harvesting biomass. Second, hydrocarbon biofuels resemble current petroleum-based fuels and would therefore require few changes to the existing fuel refining and distribution infrastructure in the U.S.

  15. Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels

    SciTech Connect (OSTI)

    2010-01-01

    Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUs approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

  16. Pathway engineering and organism development for ethanol production from cellulosic biomass using thermophilic bacteria

    SciTech Connect (OSTI)

    Hogsett, D.A.L.; Klapatch, T.A.; Lynd, L.R.

    1995-12-01

    Thermophilic bacteria collectively exemplify organisms that produce both cellulose and ethanol while fermenting both the cellulose and hemicellulose components of biomass. As a result, thermophiles could be the basis for highly streamlined and cost-effective processes for production of renewable fuels and chemicals. Recent research results involving ethanol production from thermophilic bacteria will be presented, with a primary focus on work pursuant to molecularly-based pathway engineering to increase ethanol selectivity. Specifically, we will describe the restriction endonuclease systems operative in Clostridium thermocellum and C. thermosaccharolyticum, as well as efforts to document and improve transformation of these organisms and to clone key catabolic enzymes. In addition, selected results from fermentation studies will be presented as necessary in order to present a perspective on the status of thermophilic ethanol production.

  17. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    SciTech Connect (OSTI)

    Davey, R.A.; Lappin-Scott, H.

    1995-12-31

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  18. Stimulate Bacteria to Stop Chromium in Groundwater | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Stimulate Bacteria to Stop Chromium in Groundwater Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC 20585

  19. Structure of the DUF2233 Domain in Bacteria and the Stuttering-associated

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UCE Glycoprotein | Stanford Synchrotron Radiation Lightsource the DUF2233 Domain in Bacteria and the Stuttering-associated UCE Glycoprotein Wednesday, July 31, 2013 UCE figure DUF2233, a Domain of Unknown Function (DUF), is present in ~1200 bacterial and several viral and eukaryotic proteins. DUF2233 has been identified in proteins ranging in size from ~300-2000 residues. The 515 amino acid mammalian transmembrane glycoprotein α-N-acetylglucosamine-1-phosphodiester N-acetylglucosaminidase

  20. Cycling of DOC and DON by Novel Heterotrophic and Photoheterotrophic Bacteria in the Ocean: Final Report

    SciTech Connect (OSTI)

    Kirchman, David L

    2008-12-09

    The flux of dissolved organic matter (DOM) through aquatic bacterial communities is a major process in carbon cycling in the oceans and other aquatic systems. Our work addressed the general hypothesis that the phylogenetic make-up of bacterial communities and the abundances of key types of bacteria are important factors influencing the processing of DOM in aquatic ecosystems. Since most bacteria are not easily cultivated, the phylogenetic diversity of these microbes has to be assessed using culture-independent approaches. Even if the relevant bacteria were cultivated, their activity in the lab would likely differ from that under environmental conditions. This project found variation in DOM uptake by the major bacterial groups found in coastal waters. In brief, the data suggest substantial differences among groups in the use of high and molecular weight DOM components. It also made key discoveries about the role of light in affecting this uptake especially by cyanobacteria. In the North Atlantic Ocean, for example, over half of the light-stimulated uptake was by the coccoid cyanobacterium, Prochlorococcus, with the remaining uptake due to Synechococcus and other photoheterotrophic bacteria. The project also examined in detail the degradation of one organic matter component, chitin, which is often said to be the second most abundant compound in the biosphere. The findings of this project contribute to our understanding of DOM fluxes and microbial dynamics supported by those fluxes. It is possible that these findings will lead to improvements in models of the carbon cycle that have compartments for dissolved organic carbon (DOC), the largest pool of organic carbon in the oceans.

  1. Development of Microarrays-Based Metagenomics Technology for Monitoring Sulfate-Reducing Bacteria in Subsurface Environments

    SciTech Connect (OSTI)

    Cindy, Shi

    2015-07-17

    At the contaminated DOE sites, sulfate-reducing bacteria (SRB) are a significant population and play an important role in the microbial community during biostimulation for metal reduction. However, the diversity, structure and dynamics of SRB communities are poorly understood. Therefore, this project aims to use high throughput sequencing-based metagenomics technologies for characterizing the diversity, structure, functions, and activities of SRB communities by developing genomic and bioinformatics tools to link the SRB biodiversity with ecosystem functioning.

  2. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    SciTech Connect (OSTI)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  3. A Scanning Auger Microprobe analysis of corrosion products associated with sulfate reducing bacteria

    SciTech Connect (OSTI)

    Sadowski, R.A.; Chen, G.; Clayton, C.R.; Kearns, J.R.; Gillow, J.B.; Francis, A.J.

    1995-03-01

    A Scanning Auger Microprobe analysis was performed on the corrosion products of an austenitic AISI type 304 SS after a potentiostatic polarization of one volt for ten minutes in a modified Postgate`s C media containing sulfate reducing bacteria. The corrosion products were characterized and mapped in local regions where pitting was observed. A critical evaluation of the applicability of this technique for the examination of microbially influenced corrosion (MIC) is presented.

  4. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    SciTech Connect (OSTI)

    Wear, J.E. Jr.

    1993-05-01

    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.

  5. Isolation of butyrate-utilizing bacteria from thermophilic and mesophilic methane-producing ecosystems

    SciTech Connect (OSTI)

    Henson, J.M.

    1983-01-01

    The ability of various ecosystems to convert butyrate to methane was studied in order to isolate the bacteria responsible for the conversion. When thermophilic digester sludge was enriched with butyrate, methane was produced without a lag period. Marine sediments enriched with butyrate required a 2-week incubation period before methanogenesis began. A thermophilic digester was studied in more detail and found by most-probable-number enumeration to have ca. 5 x 10/sup 6/ butyrate-utilizing bactera/ml of sludge. A thermophilic butyrate-utilizing bacterium was isolated in coculture with Methanobacterium thermoautotrophicum and a Methanosarcina sp. This bacterium was a gram-negative, slightly curved rod that occurred singly, was nonmotile, and did not appear to produce spores. The thermophilic digester was infused with butyrate at the rate of 10 ..mu..moles/ml of sludge per day. Biogas production increased by 150%, with the percentage of methane increasing from 58% to 68%. Acetate, propionate, and butyrate did not accumulate. Butyrate-utilizing enrichments from mesophilic ecosystems were used in obtaining cocultures of butyrate-utilizing bacteria. These cocultures served as inocula for attempts to isolate pure cultures of butyrate-utilizing bacteria by use of hydrogenase-containing membrane fragments of Escherichia coli. After a 3-week incubation period, colonies appeared only in inoculated tubes that contained membrane fragments and butyrate.

  6. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulationmore » of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.« less

  7. Hormetic effect of ionic liquid 1-ethyl-3-methylimidazolium acetate on bacteria

    SciTech Connect (OSTI)

    Nancharaiah, Y. V.; Francis, A. J.

    2015-02-19

    The biological effect of ionic liquids (ILs) is one of the highly debated topics as they are being contemplated for various industrial applications. 1-ethyl-2-methylimidazolium acetate ([EMIM][Ac]) showed remarkable hormesis on anaerobic Clostridium sp. and aerobic Psueudomonas putida. Bacterial growth was stimulated at up to 2.5 g L-1 and inhibited at > 2.5 g L-1 of ([EMIM][Ac]). The growth of Clostridium sp. and P. putida were higher by 0.4 and 4-fold respectively, in the presense of 0.5 g L-1 of ([EMIM][Ac]). Assessment of the effect of [EMIM][Ac] under different growth conditions showed that the hormesis of [EMIM][Ac] was mediated via regulation of medium pH. Hormetic effect of [EMIM][Ac] was evident only in medium with poor buffering capacity and in the presence of a fermentable substrate as the carbon source. The hormetic effect of [EMIM][Ac] on bacterial growth is most likely associated with the buffering capacity of acetate anion. These observations have implications in ILs toxicity studies and ecological risk assessment.

  8. Liquid Fuel From Bacteria: Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from CO2, Hydrogen, and Oxygen

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using solar-derived hydrogen and common soil bacteria called Ralstonia eutropha to turn carbon dioxide (CO2) directly into biofuel. This bacteria already has the natural ability to use hydrogen and CO2 for growth. MIT is engineering the bacteria to use hydrogen to convert CO2 directly into liquid transportation fuels. Hydrogen is a flammable gas, so the MIT team is building an innovative reactor system that will safely house the bacteria and gas mixture during the fuel-creation process. The system will pump in precise mixtures of hydrogen, oxygen, and CO2, and the online fuel-recovery system will continuously capture and remove the biofuel product.

  9. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema (OSTI)

    Gallivan, Justin [Emory University

    2013-01-22

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  10. Reprogramming Bacteria to Seek and Destroy Small Molecules (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect (OSTI)

    Gallivan, Justin [Emory University] [Emory University

    2012-03-21

    Justin Gallivan, of Emory University presents a talk titled "Reprogramming Bacteria to Seek and Destroy Small Molecules" at the JGI User 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, Calif

  11. MOLECULAR APPROACHES FOR IN SITU IDENTIFCIATION OF NITRATE UTILIZATION BY MARINE BACTERIA AND PHYTOPLANKTON

    SciTech Connect (OSTI)

    Frischer, Marc E.; Verity, Peter G.; Gilligan, Mathew R.; Bronk, Deborah A.; Zehr, Jonathan P.; Booth, Melissa G.

    2013-09-12

    Traditionally, the importance of inorganic nitrogen (N) for the nutrition and growth of marine phytoplankton has been recognized, while inorganic N utilization by bacteria has received less attention. Likewise, organic N has been thought to be important for heterotrophic organisms but not for phytoplankton. However, accumulating evidence suggests that bacteria compete with phytoplankton for nitrate (NO3-) and other N species. The consequences of this competition may have a profound effect on the flux of N, and therefore carbon (C), in ocean margins. Because it has been difficult to differentiate between N uptake by heterotrophic bacterioplankton versus autotrophic phytoplankton, the processes that control N utilization, and the consequences of these competitive interactions, have traditionally been difficult to study. Significant bacterial utilization of DIN may have a profound effect on the flux of N and C in the water column because sinks for dissolved N that do not incorporate inorganic C represent mechanisms that reduce the atmospheric CO2 drawdown via the ?biological pump? and limit the flux of POC from the euphotic zone. This project was active over the period of 1998-2007 with support from the DOE Biotechnology Investigations ? Ocean Margins Program (BI-OMP). Over this period we developed a tool kit of molecular methods (PCR, RT-PCR, Q-PCR, QRT-PCR, and TRFLP) and combined isotope mass spectrometry and flow-cytometric approaches that allow selective isolation, characterization, and study of the diversity and genetic expression (mRNA) of the structural gene responsible for the assimilation of NO3- by heterotrophic bacteria (nasA). As a result of these studies we discovered that bacteria capable of assimilating NO3- are ubiquitous in marine waters, that the nasA gene is expressed in these environments, that heterotrophic bacteria can account for a significant fraction of total DIN uptake in different ocean margin systems, that the expression of nasA is

  12. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells

    SciTech Connect (OSTI)

    Wu, Zhigang; Willing, Ben; Bjerketorp, Joakim; Jansson, Janet K.; Hjort, Klas

    2009-01-05

    We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect were visualized and verified using a fluorescent dye primed in the device. First the particle behavior was studied in detail using 9.9 and 1.0 {micro}m particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm{sup 2}. The soft inertial effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re{sub p}), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above 10{sup 8}/mL), using a sample flow rate of up to 18 {micro}L/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.

  13. Palladium nanoparticles produced by fermentatively cultivated bacteria as catalyst for diatrizoate removal with biogenic hydrogen

    SciTech Connect (OSTI)

    Hennebel, T.; Fitts, J.; Nevel, S. V.; Verschuere, S.; DeCorte, S.; DeGusseme, B.; Cuvelier, C.; vanderLelie, D.; Boon, N.; Verstraete, W.

    2011-05-17

    A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 {+-} 0.02 h{sup -1} and 5.58 {+-} 0.6 h{sup -1} in batches with initial concentrations of 10 and 50 mg L{sup -1} Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L{sup -1} diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg{sup -1} Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants.

  14. Exploration of Simple Analytical Approaches for Rapid Detection of Pathogenic Bacteria

    SciTech Connect (OSTI)

    Salma Rahman

    2005-12-17

    Many of the current methods for pathogenic bacterial detection require long sample-preparation and analysis time, as well as complex instrumentation. This dissertation explores simple analytical approaches (e.g., flow cytometry and diffuse reflectance spectroscopy) that may be applied towards ideal requirements of a microbial detection system, through method and instrumentation development, and by the creation and characterization of immunosensing platforms. This dissertation is organized into six sections. In the general Introduction section a literature review on several of the key aspects of this work is presented. First, different approaches for detection of pathogenic bacteria will be reviewed, with a comparison of the relative strengths and weaknesses of each approach, A general overview regarding diffuse reflectance spectroscopy is then presented. Next, the structure and function of self-assembled monolayers (SAMs) formed from organosulfur molecules at gold and micrometer and sub-micrometer patterning of biomolecules using SAMs will be discussed. This section is followed by four research chapters, presented as separate manuscripts. Chapter 1 describes the efforts and challenges towards the creation of imunosensing platforms that exploit the flexibility and structural stability of SAMs of thiols at gold. 1H, 1H, 2H, 2H-perfluorodecyl-1-thiol SAM (PFDT) and dithio-bis(succinimidyl propionate)-(DSP)-derived SAMs were used to construct the platform. Chapter 2 describes the characterization of the PFDT- and DSP-derived SAMs, and the architectures formed when it is coupled to antibodies as well as target bacteria. These studies used infrared reflection spectroscopy (IRS), X-ray photoelectron spectroscopy (XPS), and electrochemical quartz crystal microbalance (EQCM), Chapter 3 presents a new sensitive, and portable diffuse reflection based technique for the rapid identification and quantification of pathogenic bacteria. Chapter 4 reports research efforts in the

  15. Molecular Regulation of Photosynthetic Carbon Dioxide Fixation in Nonsulfur Purple Bacteria

    SciTech Connect (OSTI)

    Tabita, Fred Robert

    2015-12-01

    The overall objective of this project is to determine the mechanism by which a transcriptional activator protein affects CO2 fixation (cbb) gene expression in nonsulfur purple photosynthetic bacteria, with special emphasis to Rhodobacter sphaeroides and with comparison to Rhodopseudomonas palustris. These studies culminated in several publications which indicated that additional regulators interact with the master regulator CbbR in both R. sphaeroides and R. palustris. In addition, the interactive control of the carbon and nitrogen assimilatory pathways was studied and unique regulatory signals were discovered.

  16. Lubricating bacteria model for the growth of bacterial colonies exposed to ultraviolet radiation

    SciTech Connect (OSTI)

    Zhang Shengli; Zhang Lei; Liang Run; Zhang Erhu; Liu Yachao; Zhao Shumin

    2005-11-01

    In this paper, we study the morphological transition of bacterial colonies exposed to ultraviolet radiation by modifying the bacteria model proposed by Delprato et al. Our model considers four factors: the lubricant fluid generated by bacterial colonies, a chemotaxis initiated by the ultraviolet radiation, the intensity of the ultraviolet radiation, and the bacteria's two-stage destruction rate with given radiation intensities. Using this modified model, we simulate the ringlike pattern formation of the bacterial colony exposed to uniform ultraviolet radiation. The following is shown. (1) Without the UV radiation the colony forms a disklike pattern and reaches a constant front velocity. (2) After the radiation is switched on, the bacterial population migrates to the edge of the colony and forms a ringlike pattern. As the intensity of the UV radiation is increased the ring forms faster and the outer velocity of the colony decreases. (3) For higher radiation intensities the total population decreases, while for lower intensities the total population increases initially at a small rate and then decreases. (4) After the UV radiation is switched off, the bacterial population grows both outward as well as into the inner region, and the colony's outer front velocity recovers to a constant value. All these results agree well with the experimental observations [Phys. Rev. Lett. 87, 158102 (2001)]. Along with the chemotaxis, we find that lubricant fluid and the two-stage destruction rate are critical to the dynamics of the growth of the bacterial colony when exposed to UV radiation, and these were not previously considered.

  17. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. Inmore » comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.« less

  18. Thiol-facilitated cell export and desorption of methylmercury by anaerobic bacteria

    SciTech Connect (OSTI)

    Lin, Hui; Lu, Xia; Liang, Liyuan; Gu, Baohua

    2015-09-04

    Neurotoxic methylmercury (MeHg), formed by anaerobic bacteria, is shown to be rapidly excreted from the cell, but the mechanism of this process is unclear. Using both Geobacter sulfurreducens PCA and Desulfovibrio desulfuricans ND132 strains, we investigated the factors affecting export and distribution of MeHg in mercury methylation and MeHg sorption-desorption assays. Thiols, such as cysteine, were found to greatly facilitate desorption and export of MeHg, particularly by PCA cells. However, in cysteine-free assays (4 h) >90% of the synthesized MeHg was associated with PCA, among which ~73% was sorbed on the cell surface and 19% remained inside the cells. In comparison, a majority of the MeHg (70%) was exported by ND132, leaving ~20% of the MeHg sorbed on the surface and 10% inside the cells. When MeHg was added directly to the cell suspensions, ND132 adsorbed much lower MeHg but took up more MeHg inside cells than PCA did. These results demonstrate that MeHg export is bacteria strain-specific, time dependent, and is influenced by thiols, implicating important roles of ligand complexation in facilitating MeHg production and mobilization in the environment.

  19. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogeneticmore » distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.« less

  20. Discovery of novel plant interaction determinants from the genomes of 163 root nodule bacteria

    SciTech Connect (OSTI)

    Seshadri, Rekha; Reeve, Wayne G.; Ardley, Julie K.; Tennessen, Kristin; Woyke, Tanja; Kyrpides, Nikos C.; Ivanova, Natalia N.

    2015-11-20

    Root nodule bacteria (RNB) or “rhizobia” are a type of plant growth promoting bacteria, typified by their ability to fix nitrogen for their plant host, fixing nearly 65% of the nitrogen currently utilized in sustainable agricultural production of legume crops and pastures. In this study, we sequenced the genomes of 110 RNB from diverse hosts and biogeographical regions, and undertook a global exploration of all available RNB genera with the aim of identifying novel genetic determinants of symbiotic association and plant growth promotion. Specifically, we performed a subtractive comparative analysis with non-RNB genomes, employed relevant transcriptomic data, and leveraged phylogenetic distribution patterns and sequence signatures based on known precepts of symbioticand host-microbe interactions. A total of 184 protein families were delineated, including known factors for nodulation and nitrogen fixation, and candidates with previously unexplored functions, for which a role in host-interaction, -regulation, biocontrol, and more, could be posited. Lastly, these analyses expand our knowledge of the RNB purview and provide novel targets for strain improvement in the ultimate quest to enhance plant productivity and agricultural sustainability.

  1. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; Ivanov, Ilia N.; Meyer, III, Harry M.; Kidder, Michelle; Joshi, Pooran C.; Jellison, Jr, Gerald Earle; Phelps, Tommy Joe; Graham, David E.; et al

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicatedmore » well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.« less

  2. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    SciTech Connect (OSTI)

    Jang, Gyoung Gug; Jacobs, Christopher B; Gresback, Ryan G; Ivanov, Ilia N; Meyer III, Harry M; Kidder, Michelle; Joshi, Pooran C; Jellison Jr, Gerald Earle; Phelps, Tommy Joe; Graham, David E; Moon, Ji Won

    2015-01-01

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicated well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.

  3. Bacteria increase arid-land soil surface temperature through the production of sunscreens

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Couradeau, Estelle; Karaoz, Ulas; Lim, Hsiao Chien; Nunes da Rocha, Ulisses; Northen, Trent; Brodie, Eoin; Garcia-Pichel, Ferran

    2016-01-20

    Soil surface temperature, an important driver of terrestrial biogeochemical processes, depends strongly on soil albedo, which can be significantly modified by factors such as plant cover. In sparsely vegetated lands, the soil surface can be colonized by photosynthetic microbes that build biocrust communities. Here we use concurrent physical, biochemical and microbiological analyses to show that mature biocrusts can increase surface soil temperature by as much as 10 °C through the accumulation of large quantities of a secondary metabolite, the microbial sunscreen scytonemin, produced by a group of late-successional cyanobacteria. Scytonemin accumulation decreases soil albedo significantly. Such localized warming has apparentmore » and immediate consequences for the soil microbiome, inducing the replacement of thermosensitive bacterial species with more thermotolerant forms. In conclusion, these results reveal that not only vegetation but also microorganisms are a factor in modifying terrestrial albedo, potentially impacting biosphere feedbacks on past and future climate, and call for a direct assessment of such effects at larger scales.« less

  4. Turning Bacteria into Biofuel: Development of an Integrated Microbial Electrocatalytic (MEC) System for Liquid Biofuel Production from CO2

    SciTech Connect (OSTI)

    2010-08-01

    Electrofuels Project: LBNL is improving the natural ability of a common soil bacteria called Ralstonia eutropha to use hydrogen and carbon dioxide for biofuel production. First, LBNL is genetically modifying the bacteria to produce biofuel at higher concentrations. Then, LBNL is using renewable electricity obtained from solar, wind, or wave power to produce high amounts of hydrogen in the presence of the bacteria—increasing the organism’s access to its energy source and improving the efficiency of the biofuel-creation process. Finally, LBNL is tethering electrocatalysts to the bacteria’s surface which will further accelerate the rate at which the organism creates biofuel. LBNL is also developing a chemical method to transform the biofuel that the bacteria produce into ready-to-use jet fuel.

  5. Activated sludge as substrate for sulfate-reducing bacteria in acid mine drainage treatment

    SciTech Connect (OSTI)

    Al-Ani, W.A.G.; Henry, J.G.; Prasad, D.

    1996-11-01

    Acid mine drainage (AMD), characterized by high concentrations of sulfates and heavy metals and low pH, presents a potential hazard to the environment.Several treatment processes (chemical precipitation, ion exchange, reverse osmosis, electrodialysis and electrolytic recovery) are available, but these are often too expensive. Biological treatment of AMD, mediated by sulfate-reducing bacteria (SRB), seems promising. The objective of this study was to use activated sludge as a carbon source for the SRB and determine the most effective COD/sulfate ratio and hydraulic retention time (HRT) for reducing sulfate. Such information would be useful for the application of the proposed two-stage system to AMD treatment. Since the aim of this study was to obtain sulfate reduction and to avoid methane production, it was decided to operate the digesters initially at low COD/SO{sub 4}{sup 2{minus}} ratios of 1.0, 1.5, and 2.0.

  6. Mechanism of biocorrosion of low-alloy steel in a thionic bacteria medium

    SciTech Connect (OSTI)

    Baru, R.L.; Starosvetskaya, Z.O.; Timonin, V.A.

    1986-07-01

    This paper models the process of biocorrosion of Armco iron,low alloy steel 10KhSND (0.69 mass % Ni, 0.7 Cr, 0.55 Cu), and also alloys of Armco iron with chromium, copper, and nickel in concentrations corresponding to the level of their content in steel (of order 0.7%) in a medium of the thionic bacteria of the form Thiobacillus thiooxidans. Biocorrosion of metals inflicts losses on systems of water supply and recirculation in industrial plants, in the oil and gas industry, and in hydraulic structures. Investigations of the surface composition of the steel with the aid of a Cameca scanning electron microanalyzer and analysis of the corrosion products by the atomic absorption method revealed that, in contrast with the model, in the culture liquid the surface of steel 10KhSND and its corrosion products are depleted of nickel.

  7. Structure, Function, and Regulation of Antenna Complexes of Green Photosynthetic Bacteria

    SciTech Connect (OSTI)

    Robert E. Blankenship

    2001-04-27

    This project is concerned with the structure and function of the chlorosome antennas found in green photosynthetic bacteria. Chlorosomes are ellipsoidal structures attached to the cytoplasmic side of the inner cell membrane. These antenna complexes provide a very large absorption cross section for light capture. Evidence is overwhelming that the chlorosome represents a very different type of antenna from that found in any other photosynthetic system yet studied. It is now clear that chlorosomes do not contain traditional pigment-proteins, in which the pigments bind to specific sites on proteins. Instead, the chlorosome pigments are organized in vivo into pigment oligomers in which direct pigment-pigment interactions are of dominant importance. Our group has used a multidisciplinary approach to investigate this unique system, including model systems, ultrafast spectroscopy, molecular biology, protein chemistry and X-ray crystallography.

  8. Impact of bacteria and bacterial components on osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells

    SciTech Connect (OSTI)

    Fiedler, Tomas; Salamon, Achim; Adam, Stefanie; Herzmann, Nicole; Taubenheim, Jan; Peters, Kirsten

    2013-11-01

    Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions. - Highlights: Staphylococcus aureus, Streptococcus pyogenes and Escherichia coli bind to and internalize into adMSC. Heat-inactivated cells of these bacterial species trigger proliferation of adMSC. Heat-inactivated E. coli and LPS induce osteogenic differentiation of adMSC. Heat-inactivated E. coli and LPS reduce adipogenic differentiation of adMSC. LTA does not influence adipogenic or osteogenic differentiation of adMSC.

  9. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    SciTech Connect (OSTI)

    Boedicker, J.; Li, L; Kline, T; Ismagilov, R

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  10. Bioenergetic studies of coal sulfur oxidation by extremely thermophilic bacteria. Final report, September 15, 1992--August 31, 1997

    SciTech Connect (OSTI)

    Kelly, R.M.; Han, C.J.

    1997-12-31

    Thermoacidophilic microorganisms have been considered for inorganic sulfur removal from coal because of expected improvements in rates of both biotic and abiotic sulfur oxidation reactions with increasing temperature. In this study, the bioenergetic response of the extremely thermoacidophilic archaeon, Metallosphaera sedula, to environmental changes have been examined in relation to its capacity to catalyze pyrite oxidation in coal. Given an appropriate bioenergetic challenge, the metabolic response was to utilize additional amounts of energy sources (i.e., pyrite) to survive. Of particular interest were the consequences of exposing the organism to various forms of stress (chemical, nutritional, thermal, pH) in the presence of coal pyrite. Several approaches to take advantage of stress response to accelerate pyrite oxidation by this organism were examined, including attempts to promote acquired thermal tolerance to extend its functional range, exposure to chemical uncouplers and decouplers, and manipulation of heterotrophic and chemolithotrophic tendencies to optimize biomass concentration and biocatalytic activity. Promising strategies were investigated in a continuous culture system. This study identified environmental conditions that promote better coupling of biotic and abiotic oxidation reactions to improve biosulfurization rates of thermoacidophilic microorganisms.