Sample records for aerial vehicles program

  1. Aerial Work Platform Safety Program

    E-Print Network [OSTI]

    Holland, Jeffrey

    Aerial Work Platform Safety Program Updated: July 22, 2013 #12;Aerial Work Platform Safety Program ..........................................................................................................11 #12;Aerial Work Platform Safety Program 1 The official version of this information will only for establishing and maintaining the Aerial Work Platform Safety Program. Appropriate safety equipment (e

  2. Final Technical Report for Chief Scientist for Atmospheric Radiation Measurement (ARM) Aerial Vehicle Program (AVP)

    SciTech Connect (OSTI)

    Greg M. McFarquhar

    2011-10-21T23:59:59.000Z

    The major responsibilities of the PI were identified as 1) the formulation of campaign plans, 2) the representation of AVP in various scientific communities inside and outside of ARM and the associated working groups, 3) the coordination and selection of the relative importance of the three different focus areas (routine observations, IOPs, instrument development program), 4) the examination and quality control of the data collected by AVP, and 5) providing field support for flight series. This report documents the accomplishments in each of these focus areas for the 3 years of funding for the grant that were provided.

  3. Design Methodology for Unmannded Aerial Vehicle (UAV) Team Coordination

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    1 Design Methodology for Unmannded Aerial Vehicle (UAV) Team Coordination F.B. da Silva S.D. Scott-mail: halab@mit.edu #12;2 Design Methodology for Unmannded Aerial Vehicle (UAV) Team Coordination by F.B. da Silva, S.D. Scott, and M.L. Cummings Executive Summary Unmanned Aerial Vehicle (UAV) systems, despite

  4. Robust trajectory planning for unmanned aerial vehicles in uncertain environments

    E-Print Network [OSTI]

    Luders, Brandon (Brandon Douglas)

    2008-01-01T23:59:59.000Z

    As unmanned aerial vehicles (UAVs) take on more prominent roles in aerial missions, it becomes necessary to increase the level of autonomy available to them within the mission planner. In order to complete realistic mission ...

  5. Unmanned Aerial Vehicle Instrumentation for Rapid Aerial Photo System

    E-Print Network [OSTI]

    Adiprawita, Widyawardana; Semibiring, Jaka

    2008-01-01T23:59:59.000Z

    This research will proposed a new kind of relatively low cost autonomous UAV that will enable farmers to make just in time mosaics of aerial photo of their crop. These mosaics of aerial photo should be able to be produced with relatively low cost and within the 24 hours of acquisition constraint. The autonomous UAV will be equipped with payload management system specifically developed for rapid aerial mapping. As mentioned before turn around time is the key factor, so accuracy is not the main focus (not orthorectified aerial mapping). This system will also be equipped with special software to post process the aerial photos to produce the mosaic aerial photo map

  6. Modeling and adaptive control of indoor unmanned aerial vehicles

    E-Print Network [OSTI]

    Michini, Bernard (Bernard J.)

    2009-01-01T23:59:59.000Z

    The operation of unmanned aerial vehicles (UAVs) in constrained indoor environments presents many unique challenges in control and planning. This thesis investigates modeling, adaptive control and trajectory optimization ...

  7. Trajectory optimization for target localization using small unmanned aerial vehicles

    E-Print Network [OSTI]

    Ponda, Sameera S

    2008-01-01T23:59:59.000Z

    Small unmanned aerial vehicles (UAVs), equipped with navigation systems and video capability, are currently being deployed for intelligence, reconnaissance and surveillance missions. One particular mission of interest ...

  8. Motion Planning for Unmanned Aerial Vehicles with Resource Constraints

    E-Print Network [OSTI]

    Sundar, Kaarthik

    2012-10-19T23:59:59.000Z

    Small Unmanned Aerial Vehicles (UAVs) are currently used in several surveillance applications to monitor a set of targets and collect relevant data. One of the main constraints that characterize a small UAV is the maximum amount of fuel the vehicle...

  9. Development of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle

    E-Print Network [OSTI]

    Zimmer, Uwe

    stage to prevent potential danger to workforce and material, and carbon capture and sequestration (CCSDevelopment of a Carbon Dioxide Monitoring Rotorcraft Unmanned Aerial Vehicle Florian Poppa and Uwe the development of a carbon dioxide (CO2) sensing rotorcraft unmanned aerial vehicle (RUAV) and the experiences

  10. E-Print Network 3.0 - aerial vehicles uav Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uav Search Powered by Explorit Topic List Advanced Search Sample search results for: aerial vehicles uav...

  11. DESIGN OF SMALL SCALE GAS TURBINE SYSTEMS FOR UNMANNED-AERIAL VEHICLES

    E-Print Network [OSTI]

    Camci, Cengiz

    Aerial Vehicles (UAV) (4) Turbomachinery Component Design Centrifugal compressor design for reduced size

  12. Solar-powered unmanned aerial vehicles

    SciTech Connect (OSTI)

    Reinhardt, K.C.; Lamp, T.R.; Geis, J.W. [Wright Lab., Wright Patterson AFB, OH (United States). Aero Propulsion and Power Directorate; Colozza, A.J. [NYMA Corp., Brookpark, OH (United States). Aerospace Technology Development

    1996-12-31T23:59:59.000Z

    An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time of year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.

  13. Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring

    E-Print Network [OSTI]

    Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV The use of unmanned aerial vehicles (UAVs) for natural resource applications has increased considerably a UAV relatively quickly and repeatedly at low altitudes. Additional advantages over piloted aircraft

  14. E-Print Network 3.0 - aerial vehicle uav Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uav Search Powered by Explorit Topic List Advanced Search Sample search results for: aerial vehicle uav Page: << < 1 2 3 4 5 > >> 1 Swarm Control in Unmanned Aerial Vehicles Henry...

  15. Avionics and control system development for mid-air rendezvous of two unmanned aerial vehicles

    E-Print Network [OSTI]

    Park, Sanghyuk, 1973-

    2004-01-01T23:59:59.000Z

    A flight control system was developed to achieve mid-air rendezvous of two unmanned aerial vehicles (UAVs) as a part of the Parent Child Unmanned Aerial Vehicle (PCUAV) project at MIT and the Draper Laboratory. A lateral ...

  16. Experimental Cooperative Control of Fixed-Wing Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Fainekos, Georgios E.

    Experimental Cooperative Control of Fixed-Wing Unmanned Aerial Vehicles Selcuk Bayraktar, Georgios architecture (Cloud cap technologies) Hybrid Modeling (of the Piccolo autopilot) Experiments Autonomous Flight - 20min #12;UAVs @ Penn Servos controlling the payload LaptopPC Dell X200 3.5HP fuel engine Deployable

  17. Hybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Fainekos, Georgios E.

    focused on single aerial vehicles. In particular, we have witnessed autonomous or aggressive control autonomous formation flying of autonomous aerial vehicles (UAVs) are [20]­[24]. In [22] and [23], the authorsHybrid Modeling and Experimental Cooperative Control of Multiple Unmanned Aerial Vehicles Selcuk

  18. E-Print Network 3.0 - aerial vehicle instrumentation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. McLain, Randal W. Beard, "Maximizing miniature aerial vehicles," IEEE Robotics and Automation... Unexpected Obstacle Research Overview Guidance, Navigation, Vehicle...

  19. Aggressive landing maneuvers for unmanned aerial vehicles

    E-Print Network [OSTI]

    Bayraktar, Selcuk

    2006-01-01T23:59:59.000Z

    VTOL (Vertical Take Off and Landing) vehicle landing is considered to be a critically difficult task for both land, marine, and urban operations. This thesis describes one possible control approach to enable landing of ...

  20. Photovoltaic electric power applied to Unmanned Aerial Vehicles (UAV)

    SciTech Connect (OSTI)

    Geis, J.; Arnold, J.H. [Rockwell International Corp., Canoga Park, CA (United States)

    1994-09-01T23:59:59.000Z

    Photovoltaic electric-powered flight is receiving a great deal of attention in the context of the United States` Unmanned Aerial Vehicle (UAV) program. This paper addresses some of the enabling technical areas and their potential solutions. Of particular interest are the long-duration, high-altitude class of UAV`s whose mission it is to achieve altitudes between 60,000 and 100,000 feet, and to remain at those altitudes for prolonged periods performing various mapping and surveillance activities. Addressed herein are studies which reveal the need for extremely light-weight and efficient solar cells, high-efficiency electric motor-driven propeller modules, and power management and distribution control elements. Since the potential payloads vary dramatically in their power consumption and duty cycles, a typical load profile has been selected to provide commonality for the propulsion power comparisons. Since missions vary widely with respect to ground coverage requirements, from repeated orbiting over a localized target to long-distance routes over irregular terrain, the authors have also averaged the power requirements for on-board guidance and control power, as well as ground control and communication link utilization. In the context of the national technology reinvestment program, wherever possible they modeled components and materials which have been qualified for space and defense applications, yet are compatible with civilian UAV activities. These include, but are not limited to, solar cell developments, electric storage technology for diurnal operation, local and ground communications, power management and distribution, and control servo design. And finally, the results of tests conducted by Wright Laboratory on ultralight, highly efficient MOCVD GaAs solar cells purchased from EPI Materials Ltd. (EML) of the UK are presented. These cells were also used for modeling the flight characteristics of UAV aircraft.

  1. Situational Awareness of a Ground Robot from an Unmanned Aerial Vehicle

    E-Print Network [OSTI]

    Kochersberger, Kevin

    possible without the support of the Defense Threat Reduction Agency and the partnership of Savannah River an Unmanned Aerial Vehicle Daniel Hager ABSTRACT In the operation of unmanned vehicles, safety is a primary system that allows for safe deployment and operation of a ground robot from an unmanned aerial vehicle

  2. E-Print Network 3.0 - aerial vehicles formulation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Powered by Explorit Topic List Advanced Search Sample search results for: aerial vehicles formulation Page: << < 1 2 3 4 5 > >> 1 George Vachtsevanos, Panos Antsaklis, Kimon...

  3. E-Print Network 3.0 - aerial vehicle radome Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Panos Antsaklis, Kimon Valavanis, "Modeling and Control of Unmanned Aerial Vehicles Current Status and Future Directions," Chapter 9, Modeling and Control of Complex...

  4. Practical strategies of wind energy utilization for uninhabited aerial vehicles in loiter flights.

    E-Print Network [OSTI]

    Singhania, Hong Yang

    2008-01-01T23:59:59.000Z

    ??Uninhabited Aerial Vehicle (UAV) is becoming increasingly attractive in missions where human presence is undesirable or impossible. Agile maneuvers and long endurance are among the… (more)

  5. E-Print Network 3.0 - aerial vehicle systems Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 11, 2005 Summary: highways, formations of unmanned aerial vehicles or arrays of micro-cantilevers for massively parallel data... , Spain CONTROL, ESTIMATION, AND...

  6. E-Print Network 3.0 - aerial vehicle air Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search results for: aerial vehicle air Page: << < 1 2 3 4 5 > >> 1 The Center for Control, Dynamical Systems, and Computation University of California at Santa Barbara...

  7. Use of Micro Unmanned Aerial Vehicles in Transportation Infrastructure Condition Surveys

    E-Print Network [OSTI]

    Hart, William Scott

    2011-02-22T23:59:59.000Z

    Collection Methods????????????????.......................... 9 2.4 Evolution of the Micro-Unmanned Aerial Vehicle??????............. 10 2.5 Current Uses of Micro-Unmanned Aerial Vehicles??????..........? 12 2.6 Types of MUAVs...?s Potential for Creating a Safer Work Environment....................................................................................... 10 2.4. Dragan Fly Innovations Tango Plane Type MUAV (Dragan Fly 2010...

  8. Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes

    E-Print Network [OSTI]

    Smith, Ryan N.

    Wind-Energy based Path Planning For Unmanned Aerial Vehicles Using Markov Decision Processes Wesam H. Al-Sabban, Luis F. Gonzalez and Ryan N. Smith Abstract-- Exploiting wind-energy is one possible way to extend the flight duration of an Unmanned Aerial Vehicle. Wind-energy can also be used

  9. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV) Images

    E-Print Network [OSTI]

    Kelly, Maggi

    2013-01-01T23:59:59.000Z

    10 | e77151 Weed Maps with UAV Images References 1. ECPA (of unmanned aerial vehicle (UAV) imagery for rangelandUnmanned Aerial Vehicle (UAV) for Early Site Specific Weed

  10. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  11. ReseaRch at the University of Maryland Unmanned Aerial Vehicle Technology

    E-Print Network [OSTI]

    Hill, Wendell T.

    -wing vehicles that can monitor atmospheric data without using fossil fuels. J. Sean Humbert tests autonomous varieties of autonomous aerial vehicles, and new ways of utilizing them, offer the potential for making for autonomous bio-inspired micro-vehicles capable of penetrating caves and tunnels, and of reducing the human

  12. Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle-mounted

    E-Print Network [OSTI]

    Minnesota, University of

    Safety First Safety Last Safety Always Aerial lifts include the following types of vehicle, if they can be installed safely. Aerial Lifts Safety Tip #11 A spill, a slip, a hospital trip #12;Additional Information for Presenters Review the information provided on the reverse side of this safety tip sheet

  13. An Onboard Monocular Vision System for Autonomous Takeoff, Hovering and Landing of a Micro Aerial Vehicle

    E-Print Network [OSTI]

    Zell, Andreas

    An Onboard Monocular Vision System for Autonomous Takeoff, Hovering and Landing of a Micro Aerial monocular vision system for autonomous takeoff, hovering and landing of a Micro Aerial Vehicle (MAV). Since pose, yaw angle of the MAV, is estimated from the ellipse fitted from the letter "H". The efficiency

  14. Vision-Based Following of Structures Using an Unmanned Aerial Vehicle (UAV)

    E-Print Network [OSTI]

    Rathinam, Sivakumar; Kim, ZuWhan; Sengupta, Raja

    2006-01-01T23:59:59.000Z

    is shown in ?gures 16. The UAV was able to track a curvedan Unmanned Aerial Vehicle (UAV) Sivakumar Rathinam, ZuWhanof Structures using an UAV Sivakumar Rathinam*, ZuWhan Kim

  15. Autonomous navigation and tracking of dynamic surface targets on-board a computationally impoverished aerial vehicle

    E-Print Network [OSTI]

    Selby, William Clayton

    2011-01-01T23:59:59.000Z

    This thesis describes the development of an independent, on-board visual servoing system which allows a computationally impoverished aerial vehicle to autonomously identify and track a dynamic surface target. Image ...

  16. Embedded avionics with Kalman state estimation for a novel micro-scale unmanned aerial vehicle

    E-Print Network [OSTI]

    Tzanetos, Theodore

    2013-01-01T23:59:59.000Z

    An inertial navigation system leveraging Kalman estimation techniques and quaternion dynamics is developed for deployment to a micro-scale unmanned aerial vehicle (UAV). The capabilities, limitations, and requirements of ...

  17. E-Print Network 3.0 - aerial vehicle piloting Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the European Union under the 7th Framework Programme Summary: design of a Personal Aerial Vehicle The myCopter project will investigate User-centered design of human... , Max...

  18. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

  19. Evaluation of Bare Ground on Rangelands using Unmanned Aerial Vehicles

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Maxine Dakins

    2011-01-01T23:59:59.000Z

    Attention is currently being given to methods that assess the ecological condition of rangelands throughout the United States. There are a number of different indicators that assess ecological condition of rangelands. Bare Ground is being considered by a number of agencies and resource specialists as a lead indicator that can be evaluated over a broad area. Traditional methods of measuring bare ground rely on field technicians collecting data along a line transect or from a plot. Unmanned aerial vehicles (UAVs) provide an alternative to collecting field data, can monitor a large area in a relative short period of time, and in many cases can enhance safety and time required to collect data. In this study, both fixed wing and helicopter UAVs were used to measure bare ground in a sagebrush steppe ecosystem. The data were collected with digital imagery and read using the image analysis software SamplePoint. The approach was tested over seven different plots and compared against traditional field methods to evaluate accuracy for assessing bare ground. The field plots were located on the Idaho National Laboratory (INL) site west of Idaho Falls, Idaho in locations where there is very little disturbance by humans and the area is grazed only by wildlife. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  20. An optical water vapor sensor for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Timothy A. Berkoff; Paul L. Kebabian; Robert A. McClatchy; Charles E. Kolb; Andrew Freedman

    1998-12-01T23:59:59.000Z

    The water vapor sensor developed by Aerodyne Research, based on the optical absorption of light at {approximately}935 nm, has been successfully demonstrated on board the Pacific Northwest National Laboratory's Gulfstream-1 research aircraft during the Department of Energy's ARM Intensive Operations Period in August 1998. Data taken during this field campaign show excellent agreement with a chilled mirror and Lyman-alpha hygrometers and measurements confirm the ability to measure rapid, absolute water vapor fluctuations with a high degree of instrument stability and accuracy, with a noise level as low 10 ppmv (1 Hz measurement bandwidth). The construction of this small, lightweight sensor contains several unique elements which result in several significant advantages when compared to other techniques. First, the low power consumption Argon discharge lamp provides an optical beam at a fixed wavelength without a need for temperature or precision current control. The multi-pass absorption cell developed for this instrument provides a compact, low cost method that can survive deployment in the field. Fiber-optic cables, which are used to convey to light between the absorption cell, light source, and detection modules enable remote placement of the absorption cell from the opto-electronics module. Finally, the sensor does not use any moving parts which removes a significant source of potential malfunction. The result is an instrument which maintained its calibration throughout the field measurement campaign, and was not affected by high vibration and large uncontrolled temperature excursions. We believe that the development of an accurate, fast response water vapor monitor described in this report will open up new avenues of aerial-vehicle-based atmospheric research which have been relatively unexplored due to the lack of suitable low-cost, light-weight instrumentation.

  1. Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes

    E-Print Network [OSTI]

    Smith, Ryan N.

    Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy sources of wind energy available to exploit for this problem [5]: 1) Vertical air motion, such as thermal

  2. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Scheiman, D.A.; Colozza, A.J. [NYMA Setar Inc., Brookpark, OH (United States); Brinker, D.J.; Bents, D.J. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center

    1994-12-31T23:59:59.000Z

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  3. Design of a GaAs/Ge solar array for unmanned aerial vehicles

    SciTech Connect (OSTI)

    Scheiman, D.A.; Brinker, D.J.; Bents, D.J.; Colozza, A.J.

    1995-03-01T23:59:59.000Z

    Unmanned Aerial Vehicles (UAV) are being proposed for many applications including surveillance, mapping and atmospheric studies. These applications require a lightweight, low speed, medium to long duration airplane. Due to the weight, speed, and altitude constraints imposed on such aircraft, solar array generated electric power is a viable alternative to air-breathing engines. Development of such aircraft is currently being funded under the Environmental Research Aircraft and Sensor Technology (ERAST) program. NASA Lewis Research Center (LeRC) is currently building a Solar Electric Airplane to demonstrate UAV technology. This aircraft utilizes high efficiency Applied Solar Energy Corporation (ASEC) GaAs/Ge space solar cells. The cells have been provided by the Air Force through the ManTech Office. Expected completion of the plane is early 1995, with the airplane currently undergoing flight testing using battery power.

  4. Hybrid Vehicle Program. Final report

    SciTech Connect (OSTI)

    None

    1984-06-01T23:59:59.000Z

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  5. Preprint version 2011 IEEE International Conference on Robotics and Automation, Shanghai, CN Haptic Teleoperation of Multiple Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Preprint version 2011 IEEE International Conference on Robotics and Automation, Shanghai, CN Haptic Teleoperation of Multiple Unmanned Aerial Vehicles over the Internet Dongjun Lee, Antonio Franchi, Paolo Robuffo control framework for multiple unmanned aerial vehicles (UAVs) over the Internet, consisting of the three

  6. Vehicle Management Driver Safety Program

    E-Print Network [OSTI]

    Machel, Hans

    Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

  7. Optimal Complete Terrain Coverage using an Unmanned Aerial Vehicle Anqi Xu, Chatavut Viriyasuthee, and Ioannis Rekleitis

    E-Print Network [OSTI]

    Rekleitis, Ioannis

    in a bounded environment, while: · avoiding a set of obstacle regions with arbitrary shape · preventing from of coverage using an aerial vehicle has many applications, including: environmental inspection, search] for the general class of non-holonomic robots. We compute a set of waypoints outlining the desired cover- age path

  8. Design and characterization of Hover Nano Aerial Vehicle (HNAV) propulsion system

    E-Print Network [OSTI]

    Sato, Sho, Ph. D. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    On October 4th 2005, DARPA released a request for proposals for a Nano-Air Vehicle (NAV) program. The program sought to develop an advanced urban reconnaissance vehicle. According the requirement imposed by DARPA, the NAV ...

  9. Advanced Technology Vehicles Manufacturing Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Technology Vehicles Manufacturing Incentive Program Advanced Technology Vehicles Manufacturing Incentive Program This is an interim final rule that establishes the...

  10. Utility vehicle safety Operator training program

    E-Print Network [OSTI]

    Minnesota, University of

    Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

  11. Collaborative Exploration with a Micro Aerial Vehicle: A Novel Interaction Method for Controlling a MAV with a Hand-Held Device

    E-Print Network [OSTI]

    Pitman, David

    2012-01-01T23:59:59.000Z

    In order to collaboratively explore an environment with a Micro Aerial Vehicle (MAV), an operator needs a mobile interface, which can support the operator’s divided attention. To this end, we developed the Micro Aerial ...

  12. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27T23:59:59.000Z

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  13. Electric Vehicle Site Operator Program

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

  14. Comparison of Unmanned Aerial Vehicle Platforms for Assessing Vegetation Cover in Sagebrush Steppe Ecosystems

    SciTech Connect (OSTI)

    Robert P. Breckenridge; Maxine Dakins; Stephen Bunting; Jerry Harbour; Sera White

    2011-09-01T23:59:59.000Z

    In this study, the use of unmanned aerial vehicles (UAVs) as a quick and safe method for monitoring biotic resources was evaluated. Vegetation cover and the amount of bare ground are important factors in understanding the sustainability of many ecosystems and assessment of rangeland health. Methods that improve speed and cost efficiency could greatly improve how biotic resources are monitored on western lands. Sagebrush steppe ecosystems provide important habitat for a variety of species (including sage grouse and pygmy rabbit). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluations. In this project, two UAV platforms, fixed wing and helicopter, were used to collect still-frame imagery to assess vegetation cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate percent cover for six different vegetation types (shrub, dead shrub, grass, forb, litter, and bare ground) and (2) locate sage grouse using representative decoys. The field plots were located on the Idaho National Engineering (INL) site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetation cover. A software program called SamplePoint was used along with visual inspection to evaluate percent cover for the six cover types. Results were compared against standard field measurements to assess accuracy. The comparison of fixed-wing and helicopter UAV technology against field estimates shows good agreement for the measurement of bare ground. This study shows that if a high degree of detail and data accuracy is desired, then a helicopter UAV may be a good platform to use. If the data collection objective is to assess broad-scale landscape level changes, then the collection of imagery with a fixed-wing system is probably more appropriate.

  15. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    SciTech Connect (OSTI)

    Robert P. Breckenridge

    2005-09-01T23:59:59.000Z

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  16. Simultaneous Localization and Mapping for an Unmanned Aerial Vehicle Using Radar and Radio Transmitters; Lokalisering och kartläggning för en UAV med hjälp av radar och radiosändare.

    E-Print Network [OSTI]

    Dahlin, Alfred

    2014-01-01T23:59:59.000Z

    ?? The Global Positioning System (GPS) is a cornerstone in Unmanned Aerial Vehicle (UAV) navigation and is by far the most common way to obtain… (more)

  17. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  18. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

  19. Weed Mapping in Early-Season Maize Fields Using Object-Based Analysis of Unmanned Aerial Vehicle (UAV)

    E-Print Network [OSTI]

    Kelly, Maggi

    (UAV) Images José Manuel Peña1* , Jorge Torres-Sánchez1 , Ana Isabel de Castro1 , Maggi Kelly2 of remote imagery captured by unmanned aerial vehicles (UAV) has tremendous potential for designing detailed) procedure was developed on a series of UAV images using a six-band multispectral camera (visible and near

  20. Implementation of an Onboard Visual Tracking System with Small Unmanned Aerial Vehicle (UAV)

    E-Print Network [OSTI]

    Qadir, Ashraf; Neubert, Jeremiah

    2012-01-01T23:59:59.000Z

    This paper presents a visual tracking system that is capable or running real time on-board a small UAV (Unmanned Aerial Vehicle). The tracking system is computationally efficient and invariant to lighting changes and rotation of the object or the camera. Detection and tracking is autonomously carried out on the payload computer and there are two different methods for creation of the image patches. The first method starts detecting and tracking using a stored image patch created prior to flight with previous flight data. The second method allows the operator on the ground to select the interest object for the UAV to track. The tracking system is capable of re-detecting the object of interest in the events of tracking failure. Performance of the tracking system was verified both in the lab and during actual flights of the UAV. Results show that the system can run on-board and track a diverse set of objects in real time.

  1. Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle

    SciTech Connect (OSTI)

    Ryan C. Hruska; Jessica J. Mitchell; Matthew O. Anderson; Nancy F. Glenn

    2012-09-01T23:59:59.000Z

    In the summer of 2010, an Unmanned Aerial Vehicle (UAV) hyperspectral in-flight calibration and characterization experiment of the Resonon PIKA II imaging spectrometer was conducted at the U.S. Department of Energy’s Idaho National Laboratory (INL) UAV Research Park. The purpose of the experiment was to validate the radiometric calibration of the spectrometer and determine the georegistration accuracy achievable from the on-board global positioning system (GPS) and inertial navigation sensors (INS) under operational conditions. In order for low-cost hyperspectral systems to compete with larger systems flown on manned aircraft, they must be able to collect data suitable for quantitative scientific analysis. The results of the in-flight calibration experiment indicate an absolute average agreement of 96.3%, 93.7% and 85.7% for calibration tarps of 56%, 24%, and 2.5% reflectivity, respectively. The achieved planimetric accuracy was 4.6 meters (based on RMSE).

  2. Advanced Electric Drive Vehicle Education Program

    Broader source: Energy.gov (indexed) [DOE]

    Training Consortium (NAFTC), together with its partners, will develop an Advanced Electric Drive Vehicle Education Program that will help accelerate mass market introduction...

  3. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations 2010...

  4. MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS

    E-Print Network [OSTI]

    MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS Observe Speed Limits and Traffic Laws ­ Allow - Employees who drive Institute or privately owned vehicles on Institute business must possess and carry person. Insurance - Employees who operate their privately owned vehicles on Institute business shall

  5. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

  6. Design of a four rotor unmanned aerial vehicle capable of sustaining zero-roll and zero-pitch flight using vector thrusting

    E-Print Network [OSTI]

    Hilton, Danny Charles

    2005-01-01T23:59:59.000Z

    In recent decades, remote controlled airplanes and helicopters equipped with video cameras have been used by the movie industry, photographers, and for surveillance. The military deploys these unmanned aerial vehicles ...

  7. PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010

    E-Print Network [OSTI]

    Bertini, Robert L.

    PSU ­ TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010 Purpose: The University State University ­ Toyota Electric Vehicle Program under which Toyota Motor Sales, U.S.A., Inc. (Toyota Agreement PSU ­ Toyota Electric Vehicle Program Procedures Manual for Individual Users Duration

  8. Design of a reconfigurable liquid hydrogen fuel tank for use in the Genii unmanned aerial vehicle

    SciTech Connect (OSTI)

    Adam, Patrick; Leachman, Jacob [HYdrogen Properties for Energy Research (HYPER) Laboratory, Washington State University, Pullman, WA 99164-2920 (United States)

    2014-01-29T23:59:59.000Z

    Long endurance flight, on the order of days, is a leading flight performance characteristic for Unmanned Aerial Vehicles (UAVs). Liquid hydrogen (LH2) is well suited to providing multi-day flight times with a specific energy 2.8 times that of conventional kerosene based fuels. However, no such system of LH2 storage, delivery, and use is currently available for commercial UAVs. In this paper, we develop a light weight LH2 dewar for integration and testing in the proton exchange membrane (PEM) fuel cell powered, student designed and constructed, Genii UAV. The fuel tank design is general for scaling to suit various UAV platforms. A cylindrical vacuum-jacketed design with removable end caps was chosen to incorporate various fuel level gauging, pressurizing, and slosh mitigation systems. Heat and mechanical loadings were modeled to compare with experimental results. Mass performance of the fuel tank is characterized by the fraction of liquid hydrogen to full tank mass, and the insulation performance was characterized by effective thermal conductivity and boil-off rate.

  9. DOE Vehicle Technologies Program 2009 Merit Review Report - Energy...

    Energy Savers [EERE]

    Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview2.pdf...

  10. DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweigh...

    Broader source: Energy.gov (indexed) [DOE]

    6.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  11. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    4.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  12. DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms...

    Energy Savers [EERE]

    Acronyms DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview11.pdf More...

  13. DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion...

    Broader source: Energy.gov (indexed) [DOE]

    7.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  14. DOE Vehicle Technologies Program 2009 Merit Review Report - PI...

    Energy Savers [EERE]

    PI and Project Cross Reference DOE Vehicle Technologies Program 2009 Merit Review Report - PI and Project Cross Reference Merit review of DOE Vehicle Technologies Program research...

  15. DOE Vehicle Technologies Program 2009 Merit Review Report - Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Codes and Standards DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards Merit review of DOE Vehicle Technologies Program research efforts...

  16. Modeling, Simulation and Control System Design for Civil Unmanned Aerial Vehicle (UAV).

    E-Print Network [OSTI]

    Bagheri, Shahriar

    2014-01-01T23:59:59.000Z

    ?? Unmanned aerial systems have been widely used for variety of civilian applications over the past few years. Some of these applications require accurate guidance… (more)

  17. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    SciTech Connect (OSTI)

    Robert P. Breckenridge

    2006-04-01T23:59:59.000Z

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  18. Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    Fact sheet describes the Vehicle Technologies Program and its goals, strategies and top accomplishments.

  19. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. E-Print Network 3.0 - autonomous aerial vehicle Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    we integrate thousands of autonomous flying vehicles--to be used for homeland security... networks for teams of autonomous vehicles. We have demonstrated fully-autonomous UAV...

  1. Application of active flow control technology in an unmanned aerial vehicle

    E-Print Network [OSTI]

    Gaurav,

    2009-05-15T23:59:59.000Z

    A low speed wind tunnel experimental investigation was conducted to determine the effectiveness of the leading edge pulsed blowing and the trailing edge jet blowing/ Gurney flap on the improvement of aerodynamic performance of an unmanned aerial...

  2. Improving Rangeland Monitoring and Assessment: Integrating Remote Sensing, GIS, and Unmanned Aerial Vehicle Systems

    SciTech Connect (OSTI)

    Robert Paul Breckenridge

    2007-05-01T23:59:59.000Z

    Creeping environmental changes are impacting some of the largest remaining intact parcels of sagebrush steppe ecosystems in the western United States, creating major problems for land managers. The Idaho National Laboratory (INL), located in southeastern Idaho, is part of the sagebrush steppe ecosystem, one of the largest ecosystems on the continent. Scientists at the INL and the University of Idaho have integrated existing field and remotely sensed data with geographic information systems technology to analyze how recent fires on the INL have influenced the current distribution of terrestrial vegetation. Three vegetation mapping and classification systems were used to evaluate the changes in vegetation caused by fires between 1994 and 2003. Approximately 24% of the sagebrush steppe community on the INL was altered by fire, mostly over a 5-year period. There were notable differences between methods, especially for juniper woodland and grasslands. The Anderson system (Anderson et al. 1996) was superior for representing the landscape because it includes playa/bare ground/disturbed area and sagebrush steppe on lava as vegetation categories. This study found that assessing existing data sets is useful for quantifying fire impacts and should be helpful in future fire and land use planning. The evaluation identified that data from remote sensing technologies is not currently of sufficient quality to assess the percentage of cover. To fill this need, an approach was designed using both helicopter and fixed wing unmanned aerial vehicles (UAVs) and image processing software to evaluate six cover types on field plots located on the INL. The helicopter UAV provided the best system compared against field sampling, but is more dangerous and has spatial coverage limitations. It was reasonably accurate for dead shrubs and was very good in assessing percentage of bare ground, litter and grasses; accuracy for litter and shrubs is questionable. The fixed wing system proved to be feasible and can collect imagery for very large areas in a short period of time. It was accurate for bare ground and grasses. Both UAV systems have limitations, but these will be reduced as the technology advances. In both cases, the UAV systems collected data at a much faster rate than possible on the ground. The study concluded that improvements in automating the image processing efforts would greatly improve use of the technology. In the near future, UAV technology may revolutionize rangeland monitoring in the same way Global Positioning Systems have affected navigation while conducting field activities.

  3. The FreedomCAR & Vehicle Technologies Health Impacts Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FreedomCAR & Vehicle Technologies Health Impacts Program - The Collaborative Lubricating Oil Study on Emissions (CLOSE) Project The FreedomCAR & Vehicle Technologies Health Impacts...

  4. aerial density distributions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unmanned Aerial Vehicles MIT - DSpace Summary: In order to deploy intelligent, next-generation applications on Unmanned Aerial Vehicles (UAVs), we must first develop a software...

  5. 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...

    Broader source: Energy.gov (indexed) [DOE]

    Office Plenary Session Program Analysis Ward Analyst Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

  6. Alternative Fuel and Advanced Technology Vehicles Pilot Program...

    Open Energy Info (EERE)

    Program Emissions Benefit Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuel and Advanced Technology Vehicles Pilot Program Emissions Benefit Tool...

  7. Vehicle Technologies Office Merit Review 2014: SuperTruck Program...

    Energy Savers [EERE]

    SuperTruck Program: Engine Project Review Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine Project Review Presentation given by Detroit Diesel Corporation...

  8. System design of an unmanned aerial vehicle (UAV) for marine environmental sensing

    E-Print Network [OSTI]

    Leighton, Joshua (Joshua C.)

    2013-01-01T23:59:59.000Z

    Technological improvements over the past decade have led to the widespread use of autonomous surface and underwater vehicles for data collection in marine environmental sensing and modeling in coastal environments. However, ...

  9. The ARM unpiloted aerospace vehicle (UAV) program

    SciTech Connect (OSTI)

    Sowle, D. [Mission Research Corporation, Santa Barbara, CA (United States)

    1995-09-01T23:59:59.000Z

    Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

  10. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Peer Evaluation Meeting arravt053tibolton2012o.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

  11. New York State-wide Alternative Fuel Vehicle Program for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation arravt053tibolton2011p.pdf More Documents & Publications New York State-wide Alternative Fuel Vehicle Program for Vehicles and Fueling Stations New...

  12. Aerial robotic data acquisition system

    SciTech Connect (OSTI)

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M. [Westinghouse Savannah River Co., Aiken, SC (United States); Corban, J.E. [Guided Systems Technologies, Atlanta, GA (United States)

    1993-12-31T23:59:59.000Z

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  13. Vision-Based Target Geolocation and Optimal Surveillance on an Unmanned Aerial Vehicle

    E-Print Network [OSTI]

    of ground vehicles include Hanford and Long,3 Hanford et al.4 and Janrathitikarn and Long.5 One important Dobrokhodov et al.6 In their paper, all image processing work is done on the ground. This allows them to use, Aerospace Engineering, AIAA Student Member. Graduate Research Assistant, Electrical Engineering, AIAA

  14. Statistical techniques applied to aerial radiometric surveys (STAARS): principal components analysis user's manual. [NURE program

    SciTech Connect (OSTI)

    Koch, C.D.; Pirkle, F.L.; Schmidt, J.S.

    1981-01-01T23:59:59.000Z

    A Principal Components Analysis (PCA) has been written to aid in the interpretation of multivariate aerial radiometric data collected by the US Department of Energy (DOE) under the National Uranium Resource Evaluation (NURE) program. The variations exhibited by these data have been reduced and classified into a number of linear combinations by using the PCA program. The PCA program then generates histograms and outlier maps of the individual variates. Black and white plots can be made on a Calcomp plotter by the application of follow-up programs. All programs referred to in this guide were written for a DEC-10. From this analysis a geologist may begin to interpret the data structure. Insight into geological processes underlying the data may be obtained.

  15. Aerial vehicle with paint for detection of radiological and chemical warfare agents

    DOE Patents [OSTI]

    Farmer, Joseph C.; Brunk, James L.; Day, S. Daniel

    2013-04-02T23:59:59.000Z

    A paint that warns of radiological or chemical substances comprising a paint operatively connected to the surface, an indicator material carried by the paint that provides an indication of the radiological or chemical substances, and a thermo-activation material carried by the paint. In one embodiment, a method of warning of radiological or chemical substances comprising the steps of painting a surface with an indicator material, and monitoring the surface for indications of the radiological or chemical substances. In another embodiment, a paint is operatively connected to a vehicle and an indicator material is carried by the paint that provides an indication of the radiological or chemical substances.

  16. 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy...

    Energy Savers [EERE]

    Energy Storage 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Energy storage research and development merit review results 2010amr02.pdf More Documents...

  17. DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    5.pdf More Documents & Publications 2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels Technologies 2011 Annual Merit Review Results Report - Fuels & Lubricants DOE...

  18. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Energy Savers [EERE]

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf More Documents &...

  19. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Broader source: Energy.gov (indexed) [DOE]

    8.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation 2008 Annual Merit Review Results Summary - 16. Technology...

  20. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf...

  1. 2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...

    Energy Savers [EERE]

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results 2010amr08.pdf More...

  2. Electric and Hybrid Vehicle Program; Site Operator Program

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-01-01T23:59:59.000Z

    Activities during the first quarter centered around integrating the new participants into the program. A meeting of the Site Operators, in conjunction with the first meeting of the Electric Vehicle Users Task Force, was held in October. A second meeting of the Task Force was held in December. During these meetings the new contractual requirements were explained to the participants. The Site Operator Data Base was distributed and explained. The Site Operators will begin using the data base in December 1991 and will supply the operating and maintenance data to the INEL on a monthly basis. The Operators requested that they be able to have access to the data of the other Operators and it was agreed that they would be provided this on floppy disk monthly from the INEL. Presentations were made to the DOE sponsored Automotive Technology Development-Contractors Coordination Meeting in October. An overview of the program was given by EG G. Representatives from Arizona Public Service, Texas A M University, and York Technical College provided details of their programs and the results and future goals. Work was begun on commercializing the Versatile Data Acquisition System (VDAS). A Scope of Work has been written for a Cooperative Research and Development Agreement (CRADA) to be submitted to the USABC. If implemented, the CRADA will provide funds for the development and commercialization of the VDAS. Participants in the Site Operator Program will test prototypes of the system within their fleets, making the data available to the USABC and other interested organizations. The USABC will provide recommendations on the data to be collected. Major activities by the majority of the Operators were involved with the continued operation and demonstration of existing vehicles. In addition, several of the operators were involved in identifying and locating vehicles to be added to their fleets. A list of the vehicles in each Site Operator fleet is included as Appendix A to this report.

  3. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

  4. DOE Vehicle Technologies Program 2009 Merit Review Report

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

  5. Electric Vehicle Service Personnel Training Program

    SciTech Connect (OSTI)

    Bernstein, Gerald

    2013-06-21T23:59:59.000Z

    As the share of hybrid, plug-in hybrid (PHEV), electric (EV) and fuel-cell (FCV) vehicles grows in the national automotive fleet, an entirely new set of diagnostic and technical skills needs to be obtained by the maintenance workforce. Electrically-powered vehicles require new diagnostic tools, technique and vocabulary when compared to existing internal combustion engine-powered models. While the manufacturers of these new vehicles train their own maintenance personnel, training for students, independent working technicians and fleet operators is less focused and organized. This DOE-funded effort provided training to these three target groups to help expand availability of skills and to provide more competition (and lower consumer cost) in the maintenance of these hybrid- and electric-powered vehicles. Our approach was to start locally in the San Francisco Bay Area, one of the densest markets in the United States for these types of automobiles. We then expanded training to the Los Angeles area and then out-of-state to identify what types of curriculum was appropriate and what types of problems were encountered as training was disseminated. The fact that this effort trained up to 800 individuals with sessions varying from 2- day workshops to full-semester courses is considered a successful outcome. Diverse programs were developed to match unique time availability and educational needs of each of the three target audiences. Several key findings and observations arising from this effort include: • Recognition that hybrid and PHEV training demand is immediate; demand for EV training is starting to emerge; while demand for FCV training is still over the horizon • Hybrid and PHEV training are an excellent starting point for all EV-related training as they introduce all the basic concepts (electric motors, battery management, controllers, vocabulary, testing techniques) that are needed for all EVs, and these skills are in-demand in today’s market. • Faculty training is widely available and can be relatively quickly achieved. Equipment availability (vehicles, specialized tools, diagnostic software and computers) is a bigger challenge for funding-constrained colleges. • A computer-based emulation system that would replicate vehicle and diagnostic software in one package is a training aid that would have widespread benefit, but does not appear to exist. This need is further described at the end of Section 6.5. The benefits of this project are unique to each of the three target audiences. Students have learned skills they will use for the remainder of their careers; independent technicians can now accept customers who they previously needed to turn away due to lack of familiarity with hybrid systems; and fleet maintenance personnel are able to lower costs by undertaking work in-house that they previously needed to outsource. The direct job impact is estimated at 0.75 FTE continuously over the 3 ˝ -year duration of the grant.

  6. Aerial Measuring System

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-09-20T23:59:59.000Z

    To establish policy for the Department of Energy's (DOE) Aerial Measuring System (AMS) Program. This directive does not cancel another directive. Canceled by DOE O 153.1.

  7. U.S. Department of Energy: State of Clean Cities Program Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy: State of Clean Cities Program Vehicle Technology Deployment Efforts U.S. Department of Energy: State of Clean Cities Program Vehicle Technology...

  8. Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by GenTherm at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermoelectric waste heat recovery...

  9. Hydrogen-Enhanced Natural Gas Vehicle Program

    SciTech Connect (OSTI)

    Hyde, Dan; Collier, Kirk

    2009-01-22T23:59:59.000Z

    The project objective is to demonstrate the viability of HCNG fuel (30 to 50% hydrogen by volume and the remainder natural gas) to reduce emissions from light-duty on-road vehicles with no loss in performance or efficiency. The City of Las Vegas has an interest in alternative fuels and already has an existing hydrogen refueling station. Collier Technologies Inc (CT) supplied the latest design retrofit kits capable of converting nine compressed natural gas (CNG) fueled, light-duty vehicles powered by the Ford 5.4L Triton engine. CT installed the kits on the first two vehicles in Las Vegas, trained personnel at the City of Las Vegas (the City) to perform the additional seven retrofits, and developed materials for allowing other entities to perform these retrofits as well. These vehicles were used in normal service by the City while driver impressions, reliability, fuel efficiency and emissions were documented for a minimum of one year after conversion. This project has shown the efficacy of operating vehicles originally designed to operate on compressed natural gas with HCNG fuel incorporating large quantities of exhaust gas recirculation (EGR). There were no safety issues experienced with these vehicles. The only maintenance issue in the project was some rough idling due to problems with the EGR valve and piping parts. Once the rough idling was corrected no further maintenance issues with these vehicles were experienced. Fuel economy data showed no significant changes after conversion even with the added power provided by the superchargers that were part of the conversions. Driver feedback for the conversions was very favorable. The additional power provided by the HCNG vehicles was greatly appreciated, especially in traffic. The drivability of the HCNG vehicles was considered to be superior by the drivers. Most of the converted vehicles showed zero oxides of nitrogen throughout the life of the project using the State of Nevada emissions station.

  10. Gasoline Ultra Fuel Efficient Vehicle Program Update

    Broader source: Energy.gov (indexed) [DOE]

    1 Phase 2 2 3 HCCI MCE October 16, 2012 Slide 16 2011 Sonata 6MT, 2.0L GDi Theta Turbo Technologies on Vehicle: EMS Control Algorithms Calibration GDi Pump ECM...

  11. Heavy Vehicle Propulsion Materials Program: Progress and Highlights

    SciTech Connect (OSTI)

    D. Ray Johnson; Sidney Diamond

    2000-06-19T23:59:59.000Z

    The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.

  12. PROGRAM OPPORTUNITY NOTICE Alternative and Renewable Fuel and Vehicle

    E-Print Network [OSTI]

    Alternative Fuel Readiness Plans PON-13-603 http://www.energy.ca.gov/contracts State of California California Energy Commission August 12, 2013 #12;8-9-13 Page i PON-13-603 Alternative Fuel Readiness Plans TablePROGRAM OPPORTUNITY NOTICE Alternative and Renewable Fuel and Vehicle Technology Program

  13. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXVIII-1/C22 UAV-g 2011, Conference on Unmanned Aerial Vehicle in Geomatics, Zurich, Switzerland

    E-Print Network [OSTI]

    Schindler, Konrad

    . XXXVIII-1/C22 UAV-g 2011, Conference on Unmanned Aerial Vehicle in Geomatics, Zurich, Switzerland DIRECT GEOREFERENCING OF UAVS M. Bláha *, H. Eisenbeiss, D. Grimm, P. Limpach Institute of Geodesy and Photogrammetry.limpach)@geod.baug.ethz.ch and mblaha@student.ethz.ch Commission VI, WG VI/4 KEY WORDS: UAV, Falcon 8, direct georeferencing, GPS

  14. Salt River Project electric vehicle program

    SciTech Connect (OSTI)

    Morrow, K.P.

    1994-11-01T23:59:59.000Z

    Electric vehicles (EV) promise to be a driving force in the future of America. The quest for cleaner air and efforts to trim the nation's appetite for foreign oil are among the reasons why. America's EV future is rapidly approaching, with major automakers targeting EV mass production and sales before the end of the decade. This article describes the Salt River Project (SRP), a leader among electric utilities involved in EV research and development (R and D). R and D efforts are underway to plan and prepare for a significant number of EVs in SRP's service territory and to understand the associated recharging requirements for EVs.

  15. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  16. Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.

    SciTech Connect (OSTI)

    Singh, M.; Energy Systems; TA Engineering

    2008-02-29T23:59:59.000Z

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

  17. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect (OSTI)

    NONE

    1994-03-01T23:59:59.000Z

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  18. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

  19. Field Operations Program Neighborhood Electric Vehicles - Fleet Survey

    SciTech Connect (OSTI)

    Francfort, James Edward; Carroll, M.

    2001-07-01T23:59:59.000Z

    This report summarizes a study of 15 automotive fleets that operate neighborhood electric vehicles(NEVs) in the United States. The information was obtained to help Field Operations Program personnel understand how NEVs are being used, how many miles they are being driven, and if they are being used to replace other types of fleet vehicles or as additions to fleets. (The Field Operations Program is a U.S. Department of Energy Program within the DOE Office of Energy Efficiency and Renewable Energy, Transportation Technologies). The NEVs contribution to petroleum avoidance and cleaner air can be estimated based on the miles driven and by assuming gasoline use and air emissions values for the vehicles being replaced. Gasoline and emissions data for a Honda Civic are used as the Civic has the best fuel use for a gasoline-powered vehicle and very clean emissions. Based on these conservation assumptions, the 348 NEVs are being driven a total of about 1.2 million miles per year. This equates to an average of 3,409 miles per NEV annually or 9 miles per day. It is estimated that 29,195 gallons of petroleum use is avoided annually by the 348 NEVs. This equates to 87 gallons of petroleum use avoided per NEV, per year. Using the 348 NEVs avoids the generation of at least 775 pounds of smog- forming emissions annually.

  20. Field Operations Program - Neighborhood Electric Vehicle Fleet Use

    SciTech Connect (OSTI)

    Francfort, J. E.; Carroll, M. R.

    2001-07-02T23:59:59.000Z

    This report summarizes a study of 15 automotive fleets that operate neighborhood electric vehicles (NEVs) in the United States. The information was obtained to help Field Operations Program personnel understand how NEVs are being used, how many miles they are being driven, and if they are being used to replace other types of fleet vehicles or as additions to fleets. (The Field Operations Program is a U.S. Department of Energy Program within the DOE Office of Energy Efficiency and Renewable Energy, Transportation Technologies). The NEVs contribution to petroleum avoidance and cleaner air can be estimated based on the miles driven and by assuming gasoline use and air emissions values for the vehicles being replaced. Gasoline and emissions data for a Honda Civic are used as the Civic has the best fuel use for a gasoline-powered vehicle and very clean emissions. Based on these conservation assumptions, the 348 NEVs are being driven a total of about 1.2 million miles per year. This equates to an average of 3,409 miles per NEV annually or 9 miles per day. It is estimated that 29,195 gallons of petroleum use is avoided annually by the 348 NEVs. This equates to 87 gallons of petroleum use avoided per NEV, per year. Using the 348 NEVs avoids the generation of at least 775 pounds of smog-forming emissions annually.

  1. Assessment of US electric vehicle programs with ac powertrains

    SciTech Connect (OSTI)

    Kevala, R.J. (Booz, Allen and Hamilton, Inc., Bethesda, MD (USA). Transportation Consulting Div.)

    1990-02-01T23:59:59.000Z

    AC powertrain technology is a promising approach to improving the performance of electric vehicles. Four major programs are now under way in the United States to develop ac powertrains: the Ford/General Electric single-shaft electric propulsion system (ETX-II), the Eaton dual-shaft electric propulsion system (DSEP), the Jet Propulsion Laboratories (JPL) integrated ac motor drive and recharge system, and the Massachusetts Institute of Technology (MIT) variable reluctance motor (VRM) drive. The JPL program is sponsored by EPRI; the other three programs are funded by the US Department of Energy. This preliminary assessment of the four powertrain programs focuses on potential performance, costs, safety, and commercial feasibility. Interviews with program personnel were supplemented by computer simulations of electric vehicle performance using the four systems. Each of the four powertrains appears superior to standard dc powertrain technology in terms of performance and weight. The powertrain technologies studied in this assessment are at varying degrees of technological maturity. One or more of the systems may be ready for incorporation into an advanced electric vehicle during the early 1990s. Each individual report will have a separate abstract. 5 refs., 37 figs., 29 tabs.

  2. Unmanned Aerial Vehicle (UAV) Dynamic-Tracking Directional Wireless Antennas for Low Powered Applications that Require Reliable Extended Range Operations in Time Critical Scenarios

    SciTech Connect (OSTI)

    Scott G. Bauer; Matthew O. Anderson; James R. Hanneman

    2005-10-01T23:59:59.000Z

    The proven value of DOD Unmanned Aerial Vehicles (UAVs) will ultimately transition to National and Homeland Security missions that require real-time aerial surveillance, situation awareness, force protection, and sensor placement. Public services first responders who routinely risk personal safety to assess and report a situation for emergency actions will likely be the first to benefit from these new unmanned technologies. ‘Packable’ or ‘Portable’ small class UAVs will be particularly useful to the first responder. They require the least amount of training, no fixed infrastructure, and are capable of being launched and recovered from the point of emergency. All UAVs require wireless communication technologies for real- time applications. Typically on a small UAV, a low bandwidth telemetry link is required for command and control (C2), and systems health monitoring. If the UAV is equipped with a real-time Electro-Optical or Infrared (EO/Ir) video camera payload, a dedicated high bandwidth analog/digital link is usually required for reliable high-resolution imagery. In most cases, both the wireless telemetry and real-time video links will be integrated into the UAV with unity gain omni-directional antennas. With limited on-board power and payload capacity, a small UAV will be limited with the amount of radio-frequency (RF) energy it transmits to the users. Therefore, ‘packable’ and ‘portable’ UAVs will have limited useful operational ranges for first responders. This paper will discuss the limitations of small UAV wireless communications. The discussion will present an approach of utilizing a dynamic ground based real-time tracking high gain directional antenna to provide extend range stand-off operation, potential RF channel reuse, and assured telemetry and data communications from low-powered UAV deployed wireless assets.

  3. What's New with the NGNGV Program? Next Generation Natural Gas Vehicle Program Newsletter, June 2002

    SciTech Connect (OSTI)

    Not Available

    2002-06-01T23:59:59.000Z

    A newsletter about what's new with the Next Generation Natural Gas Vehicle Program (NGNGV). This June 2002 update includes Phase II RFPs, Phase I update, and near-term engine development projects.

  4. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, January--March 1996

    SciTech Connect (OSTI)

    Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Briasco, S. [Los Angeles City Dept. of Water and Power, CA (United States)] [and others

    1996-08-01T23:59:59.000Z

    Goals of the site operator program include field evaluation of electric vehicles (EVs) in real-world applications and environments, advancement of electric vehicle technologies, development of infrastructure elements necessary to support significant EV use, and increasing the awareness and acceptance of EVs by the public. The site operator program currently consists of 11 participants under contract and two other organizations with data-sharing agreements with the program. The participants (electric utilities, academic institutions, Federal agencies) are geographically dispersed within US and their vehicles see a broad spectrum of service conditions. Current EV inventories of the site operators exceeds 250 vehicles. Several national organizations have joined DOE to further the introduction and awareness of EVs, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for EVs; (2) DOE, DOT, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of EVs. Current focus of the program is collection and dissemination of EV operations and performance data to aid in the evaluation of real- world EV use. This report contains several sections with vehicle evaluation as a focus: EV testing results, energy economics of EVs, and site operators activities.

  5. BetterBuildings Webinar Transcription- Financial Vehicles within an Integrated Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    "Financial Vehicles Within an Integrated Energy Efficiency Program," webinar transcript from the U.S. Department of Energy's Better Buildings program.

  6. Estimation algorithm for autonomous aerial refueling using a vision based relative navigation system

    E-Print Network [OSTI]

    Bowers, Roshawn Elizabeth

    2005-11-01T23:59:59.000Z

    A new impetus to develop autonomous aerial refueling has arisen out of the growing demand to expand the capabilities of unmanned aerial vehicles (UAVs). With autonomous aerial refueling, UAVs can retain the advantages of being small, inexpensive...

  7. UAVs in climate research: The ARM Unmanned Aerospace Vehicle Program

    SciTech Connect (OSTI)

    Bolton, W.R.

    1994-05-01T23:59:59.000Z

    In the last year, a Department of Energy/Strategic Environmental Research and Development Program project known as ``ARM-UAV`` has made important progress in developing and demonstrating the utility of unmanned aerospace vehicles as platforms for scientific measurements. Recent accomplishments include a series of flights using an atmospheric research payload carried by a General Atomics Gnat UAV at Edwards AFB, California, and over ground instruments located in north-central Oklahoma. The reminder of this discussion will provide background on the program and describe the recent flights.

  8. Recovery Act - Sustainable Transportation: Advanced Electric Drive Vehicle Education Program

    SciTech Connect (OSTI)

    Caille, Gary

    2013-12-13T23:59:59.000Z

    The collective goals of this effort include: 1) reach all facets of this society with education regarding electric vehicles (EV) and plug–in hybrid electric vehicles (PHEV), 2) prepare a workforce to service these advanced vehicles, 3) create web–based learning at an unparalleled level, 4) educate secondary school students to prepare for their future and 5) train the next generation of professional engineers regarding electric vehicles. The Team provided an integrated approach combining secondary schools, community colleges, four–year colleges and community outreach to provide a consistent message (Figure 1). Colorado State University Ventures (CSUV), as the prime contractor, plays a key program management and co–ordination role. CSUV is an affiliate of Colorado State University (CSU) and is a separate 501(c)(3) company. The Team consists of CSUV acting as the prime contractor subcontracted to Arapahoe Community College (ACC), CSU, Motion Reality Inc. (MRI), Georgia Institute of Technology (Georgia Tech) and Ricardo. Collaborators are Douglas County Educational Foundation/School District and Gooru (www.goorulearning.org), a nonprofit web–based learning resource and Google spin–off.

  9. RACORO: ROUTINE AERIAL VEHICLE PROGRAM (AVP) CLOUDS WITH LOW OPTICAL WATER DEPTHS (CLOWD) OPTICAL RADIATIVE OBSERVATIONS

    E-Print Network [OSTI]

    is common globally, and the Earth's radiative energy balance is particularly sensitive to small changes for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable so, for United States Government purposes. BNL-82213-2009-AB #12;

  10. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    None

    2013-12-31T23:59:59.000Z

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  11. Transportation Data Programs:Transportation Energy Data Book,Vehicle Technologies Market Report, and VT Fact of the Week

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Dr. Jeremy Martin Senior Scientist, Clean Vehicles Program

    E-Print Network [OSTI]

    Firestone, Jeremy

    impacts of advanced vehicles, specifically hybrid-electric, plug-in electric, and fuel cell vehicles and advanced battery electric and fuel cell vehicles. UDEI Seminar March 19, 2014 10:30 a.m. 322 ISE Lab #12; and innovative clean fuels and advanced vehicles. Jeremy will focus on biomass based fuels, vehicle and fuel

  13. DOE/BNL Liquid Natural Gas Heavy Vehicle Program

    SciTech Connect (OSTI)

    James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

    1998-08-11T23:59:59.000Z

    As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

  14. Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of

    E-Print Network [OSTI]

    Gille, Sarah T.

    12/10/01 Zero Emission Vehicle Program Changes In 1990, California embarked on a plan to reduce vehicle emissions to zero through the gradual introduction of zero emission vehicles (ZEVs). Specifically, and in 1998 to allow partial ZEV (PZEV) credits for extremely clean vehicles that were not pure ZEVs

  15. Vehicle Technologies Office Merit Review 2014: EPAct State and Alternative Fuel Transportation Program

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EPAct...

  16. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

  17. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  18. Atmospheric radiation measurement unmanned aerospace vehicle (ARM-UAV) program

    SciTech Connect (OSTI)

    Bolton, W.R. [Sandia National Laboratories, Livermore, CA (United States)

    1996-11-01T23:59:59.000Z

    ARM-UAV is part of the multi-agency U.S. Global Change Research Program and is addressing the largest source of uncertainty in predicting climatic response: the interaction of clouds and the sun`s energy in the Earth`s atmosphere. An important aspect of the program is the use of unmanned aerospace vehicles (UAVs) as the primary airborne platform. The ARM-UAV Program has completed two major flight series: The first series conducted in April, 1994, using an existing UAV (the General Atomics Gnat 750) consisted of eight highly successful flights at the DOE climate site in Oklahoma. The second series conducted in September/October, 1995, using two piloted aircraft (Egrett and Twin Otter), featured simultaneous measurements above and below clouds and in clear sky. Additional flight series are planned to continue study of the cloudy and clear sky energy budget in the Spring and Fall of 1996 over the DOE climate site in Oklahoma. 3 refs., 4 figs., 1 tab.

  19. Multiyear Program Plan: Reducing Friction and Wear in Heavy Vehicles

    SciTech Connect (OSTI)

    R.R. Fessler; G.R. Fenske

    1999-12-13T23:59:59.000Z

    As described in its multiyear program plan for 1998-2000, the Office of Heavy Vehicle Technologies (OHVT) envisions the development of a fuel-flexible, energy-efficient, near-zero-emissions, heavy-duty U.S. diesel engine technology devolving into all truck classes as a real and viable strategy for reducing energy requirements for commercial transport services and the rapidly growing multipurpose vehicle market (pickups, vans, and sport utility vehicles). Implementation of the OHVT program plan will have significant national benefits in energy savings, cleaner air, more jobs, and increased gross domestic product (GDP). Successful implementation will reduce the petroleum consumption of Class 1-8 trucks by 1.4 million barrels of oil per day by 2020 and over 1.8 million by 2030, amounting to a reduction in highway petroleum consumption of 13.2% and 18.6%, respectively. All types of regulated emissions will be reduced, that is, 20% drop in PM10 emissions (41,000 metric tons per year) by 203 0, 17% reduction in CO2 greenhouse gases (205 million metric tons per year), 7% reduction in NOx, 20% reduction in NMHC, and 30% reduction in CO. An increase of 15,000 jobs by 2020 is expected, as is an increase of $24 billion in GDP. The strategy of OHVT is to focus primarily on the diesel engine since it has numerous advantages. It has the highest efficiency of any engine today, 45% versus 30% for production gasoline engines; and it can be made more efficient at least to 55% and possibly up to 63%. It is the engine of choice for heavy vehicles (trucks), because it offers power, efficiency, durability, and reliability and is used extensively in rail, marine, and off-road applications. Its emission can be ultra-low to near zero, and the production infrastructure is already in place. The primary goals of OHVT are as follows: (1) Develop by 2002 the diesel-engine enabling technologies to support large-scale industry dieselization of light trucks, achieving a 35% fuel efficiency improvement over equivalent gasoline-fueled trucks. (2) Develop by 2004 the enabling technology for a Class 7-8 truck with a fuel efficiency of 10 mpg (at 65 mph) that will meet prevailing emission standards, using either diesel or a liquid alternative fuel. (3) Develop by 2006 diesel engines with fuel flexibility and a thermal efficiency of 55% with liquid alternative fuels, and a thermal efficiency of 55% with dedicated gaseous fuels. (4) Develop a methodology for analyzing and evaluating the operation of a heavy vehicle as an integrated system, considering such factors as engine efficiency; emissions; rolling resistance; aerodynamic drag; friction, wear, and lubrication effects; auxiliary power units; material substitutions for reducing weight; and other sources of parasitic energy losses. Overarching these considerations is the need to preserve system functionality, cost, competitiveness, reliability, durability, and safety.

  20. The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

    SciTech Connect (OSTI)

    Kevin Walkowicz; Denny Stephens; Kevin Stork

    2001-05-14T23:59:59.000Z

    This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.

  1. Environmental Assessment of the US Department of Energy Electric and Hybrid Vehicle Program

    SciTech Connect (OSTI)

    Singh, M.K.; Bernard, M.J. III; Walsh, R.F

    1980-11-01T23:59:59.000Z

    This environmental assessment (EA) focuses on the long-term (1985-2000) impacts of the US Department of Energy (DOE) electric and hybrid vehicle (EHV) program. This program has been designed to accelerate the development of EHVs and to demonstrate their commercial feasibility as required by the Electric and Hybrid Vehicle Research, Development and Demonstration Act of 1976 (P.L. 94-413), as amended (P.L. 95-238). The overall goal of the program is the commercialization of: (1) electric vehicles (EVs) acceptable to broad segments of the personal and commercial vehicle markets, (2) hybrid vehicles (HVs) with range capabilities comparable to those of conventional vehicles (CVs), and (3) advanced EHVs completely competitive with CVs with respect to both cost and performance. Five major EHV projects have been established by DOE: market demonstration, vehicle evaluation and improvement, electric vehicle commercialization, hybrid vehicle commercialization, and advanced vehicle development. Conclusions are made as to the effects of EV and HV commercialization on the: consumption and importation of raw materials; petroleum and total energy consumption; ecosystems impact from the time of obtaining raw material through vehicle use and materials recycling; environmental impacts on air and water quality, land use, and noise; health and safety aspects; and socio-economic factors. (LCL)

  2. MIXED INTEGER PROGRAMMING FOR MULTI-VEHICLE PATH PLANNING

    E-Print Network [OSTI]

    How, Jonathan P.

    .up.pt http://www.fe.up.pt/ecc2001/ Keywords: autonomous vehicles, path planning, collision avoidance Abstract This paper presents a new approach to fuel-optimal path plan- ning of multiple vehicles using a combination will be optimized with respect to both fuel and/or time, and must ensure that the vehicles do not collide with each

  3. California's Zero Emission Vehicle Program Cleaner air needed

    E-Print Network [OSTI]

    Gille, Sarah T.

    that are powered by a combination of electric motors and internal combustion engines, and fuel cell vehicles and other alternative fueled vehicles, super-clean gasoline vehicles, fuel-efficient hybrids powered by electricity created from pollution-free hydrogen. ARB is not suggesting that every Californian

  4. Electric and Hybrid Vehicle Program; Site Operator Program. Quarterly progress report, October--December 1991

    SciTech Connect (OSTI)

    Warren, J.F.

    1992-01-01T23:59:59.000Z

    Activities during the first quarter centered around integrating the new participants into the program. A meeting of the Site Operators, in conjunction with the first meeting of the Electric Vehicle Users Task Force, was held in October. A second meeting of the Task Force was held in December. During these meetings the new contractual requirements were explained to the participants. The Site Operator Data Base was distributed and explained. The Site Operators will begin using the data base in December 1991 and will supply the operating and maintenance data to the INEL on a monthly basis. The Operators requested that they be able to have access to the data of the other Operators and it was agreed that they would be provided this on floppy disk monthly from the INEL. Presentations were made to the DOE sponsored Automotive Technology Development-Contractors Coordination Meeting in October. An overview of the program was given by EG&G. Representatives from Arizona Public Service, Texas A&M University, and York Technical College provided details of their programs and the results and future goals. Work was begun on commercializing the Versatile Data Acquisition System (VDAS). A Scope of Work has been written for a Cooperative Research and Development Agreement (CRADA) to be submitted to the USABC. If implemented, the CRADA will provide funds for the development and commercialization of the VDAS. Participants in the Site Operator Program will test prototypes of the system within their fleets, making the data available to the USABC and other interested organizations. The USABC will provide recommendations on the data to be collected. Major activities by the majority of the Operators were involved with the continued operation and demonstration of existing vehicles. In addition, several of the operators were involved in identifying and locating vehicles to be added to their fleets. A list of the vehicles in each Site Operator fleet is included as Appendix A to this report.

  5. APAWSAN: Actor Positioning for Aerial Wireless Sensor and Actor Networks

    E-Print Network [OSTI]

    Turgut, Damla

    to be autonomous during deployment. The recent advances in development of small unmanned aerial vehicles (UAVs stations can improve network performance measures such as energy consumption and traffic load balancing vehicles (UAVs) with built in sensors made it possible to deploy aerial sensor and actor networks

  6. Actor Positioning Based on Molecular Geometry in Aerial Sensor Networks

    E-Print Network [OSTI]

    Turgut, Damla

    as central data collectors, can improve network performance in terms of energy consumption or traffic load Florida Email: {miakbas,gsolmaz,turgut}@eecs.ucf.edu Abstract-- Advances in unmanned aerial vehicle (UAV the collected information and react accordingly. The recent advances in unmanned aerial vehicles (UAVs

  7. Freedom car and vehicle technologies heavy vehicle program : FY 2007 benefits analysis, methodology and results -- final report.

    SciTech Connect (OSTI)

    SIngh, M.; Energy Systems; TA Engineering

    2008-02-29T23:59:59.000Z

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the FreedomCar and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in subsequent activities. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY07 Budget Request. The energy savings models are utilized by the FCVT program for internal project management purposes.

  8. Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005

    SciTech Connect (OSTI)

    None

    2000-07-01T23:59:59.000Z

    This report contains the program plan and background information for the Heavy Vehicle Hybrid Propulsion R and D Program sponsored by the Department of Energy's Office of Heavy Vehicle Technologies. The program is a collaboration between industry and government established for the development of advanced hybrid-electric propulsion technology for urban cycle trucks and buses. It targets specific applications to enhance potential market success. Potential end-users are also involved.

  9. NCS EMP (National Communications System Electromagnetic Pulse) mitigation program: Aerial TI System test plan. Final report

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    This program mitigates the damaging effects of nuclear weapons on regional and national telecommunications capabilities. To meet this objective, the OMNCS has sponsored efforts to create a network level model to assess the effects of High-Altitude EMP (HEMP). In addition, the OMNCS has sponsored efforts to collect the level HEMP effects to data required to support the network-level model. The products of this model will assist the NCS in identifying potential vulnerabilities of national telecommunications capabilities to HEMP and to support National Security and Emergency Preparedness (NSEP) initiatives.

  10. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    10% Phase 5 Objectives Improve cylindrical TEG prototype manufacture with improved tooling and subassembly component manufacture Integrate TEGs into BMW and Ford vehicles for...

  11. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

  12. FreedomCAR and vehicle technologies heavy vehicle program FY 2006. Benefits analysis : methodology and results - final report.

    SciTech Connect (OSTI)

    Singh, M.; Energy Systems; TA Engineering, Inc.

    2006-01-31T23:59:59.000Z

    This report describes the approach to estimating benefits and the analysis results for the Heavy Vehicle Technologies activities of the Freedom Car and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identification of technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in the activities planned for FY 06. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. These benefits estimates, along with market penetrations and other results, are then modeled as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY06 Budget Request.

  13. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    SciTech Connect (OSTI)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01T23:59:59.000Z

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  14. Concurrent constraint programming-based path planning for uninhabited air vehicles

    E-Print Network [OSTI]

    Bonaventure, Olivier

    Concurrent constraint programming-based path planning for uninhabited air vehicles Stefano Gualandi path length, fuel consumption, and path risk are given as well. 1. INTRODUCTION Path planning is a well, it becomes relevant when defining an air vehicle mission. Due to all the domain constraints to be considered

  15. Vehicle Technologies Office Merit Review 2014: Southeast Regional Alternative Fuels Market Initiatives Program

    Broader source: Energy.gov [DOE]

    Presentation given by Center for Transportation and the Environment, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  16. Phase I of the Near Term Hybrid Passenger Vehicle Development Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    The results of Phase I of the Near-Term Hybrid Vehicle Program are summarized. This phase of the program ws a study leading to the preliminary design of a 5-passenger hybrid vehicle utilizing two energy sources (electricity and gasoline/diesel fuel) to minimize petroleum usage on a fleet basis. This report presents the following: overall summary of the Phase I activity; summary of the individual tasks; summary of the hybrid vehicle design; summary of the alternative design options; summary of the computer simulations; summary of the economic analysis; summary of the maintenance and reliability considerations; summary of the design for crash safety; and bibliography.

  17. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle Basics August 20,

  18. Financial Vehicles within an Integrated Energy Efficiency Program...

    Energy Savers [EERE]

    1 Financial mechanisms within Integrated Energy Efficiency Programs Every successful energy efficiency program depends on four functional pillars - Demand Creation - Workforce...

  19. Technology in Motion Vehicle (TMV) To promote truck and bus safety programs and

    E-Print Network [OSTI]

    Technology in Motion Vehicle (TMV) Goal To promote truck and bus safety programs and technologies messages at multiple venues Demonstrate proven and emerging safety technologies to state and motor carrier stakeholders Promote deployment of safety technologies by fleets and state MCSAP agencies Evaluate program

  20. Evaluation & Contact Info Building NOAA's Weather & Water Social Science Program

    E-Print Network [OSTI]

    Observation Systems (GEOSS) Autonomous Underwater Vehicles (AUVs) Unmanned Aerial Systems (UAS) Environmental

  1. E-Print Network 3.0 - autonomous unmanned aerial Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Miniature Helicopters with Summary: -based autonomous landing of an unmanned aerial vehicle. In IEEE Intl. Conf. on Robotics and Automation (ICRA... flying robots (MFRs)....

  2. 2008 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021STATE6 DRAFTResearch:VEHICLE

  3. Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program- Forwarding Wisconsin’s Fuel Choice

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Department of Administration at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  4. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

  5. Financial Vehicles within an Integrated Energy Efficiency Program...

    Energy Savers [EERE]

    and Considerations for Approaching Lenders Better Buildings Neighborhood Program Home Accomplishments History Better Buildings Partners Stories Interviews Videos Contact Us...

  6. Vehicle Technologies Office Merit Review 2014: Penn State DOE Graduate GATE Program for In-Vehicle, High-Power Energy Storage Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Penn State DOE...

  7. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWindEECBGSE DOE/IG-480Vehicle

  8. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartmentDepartment of

  9. [Electric and hybrid vehicle site operators program]: Thinking of the future

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants' names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State's campus.

  10. Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

  11. PON08010 American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program

    E-Print Network [OSTI]

    and Renewable Fuel and Vehicle Technology Program Questions and Answers 4/27/09 to 5/1/09 Two questions (How far's solicitation "seek and obtain an award" through a federal ARRA solicitation. 3) May a project producing bio and Renewable Fuel and Vehicle Technology Program. The Energy Commission recommends that you submit a pre

  12. DOE Vehicle Technologies Program 2009 Merit Review Report - Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies (BATT) Program Venkat Srinivasan (Lawrence Berkeley National Laboratory (LBNL)) 2-40 3.50 3.25 3.50 2.75 3.28 Electrode Construction and Analysis Vince Battaglia...

  13. Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle-Based

    E-Print Network [OSTI]

    California at Davis, University of

    ,931.44 Total Project Cost $98,931.44 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates November 1Project Information Form Project Title Program for Vehicle Regulatory Reform: Assessing Life Cycle, 2014 ­ October 31, 2015 Brief Description of Research Project Current greenhouse gas emissions

  14. Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities

    E-Print Network [OSTI]

    Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

  15. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  16. New York State-wide Alternative Fuel Vehicle Program for Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |Million DOEYellow SchoolNew York

  17. New York State-wide Alternative Fuel Vehicle Program for Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |Million DOEYellow SchoolNew YorkFueling

  18. New York State-wide Alternative Fuel Vehicle Program for Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |Million DOEYellow SchoolNew

  19. Electric Vehicle Site Operator Program. Year 1 third quarter report, January 1, 1992--March 31, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

  20. Heavy vehicle propulsion system materials program: Semiannual progress report, April 1996--September 1996

    SciTech Connect (OSTI)

    Johnson, D.R.

    1997-04-01T23:59:59.000Z

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OTT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1, 2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. Separate abstracts have been submitted to the database for contributions to this report.

  1. Vehicle Technologies Program Merit Review | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReport |(GATE)Department ofEducation |Program

  2. Advanced Electric Drive Vehicle Education Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fuel Cells Program and

  3. Advanced Electric Drive Vehicle Education Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fuel Cells Program and1

  4. Advanced Electric Drive Vehicle Education Program: CSU Ventures |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen and Fuel Cells Program

  5. Path Planning Algorithms for Multiple Heterogeneous Vehicles

    E-Print Network [OSTI]

    Oberlin, Paul V.

    2010-01-16T23:59:59.000Z

    Unmanned aerial vehicles (UAVs) are becoming increasingly popular for surveillance in civil and military applications. Vehicles built for this purpose vary in their sensing capabilities, speed and maneuverability. It is therefore natural to assume...

  6. Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998

    SciTech Connect (OSTI)

    Johnson, D.R.

    1999-01-01T23:59:59.000Z

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  7. myCopter Enabling Technologies for Personal Aerial Transportation Systems

    E-Print Network [OSTI]

    towards a Personal Aerial Transportation System, in which vehicles would also have vertical space into account the required operational infrastructure, instead of starting with the design of a vehicle. By investigating human-machine interfaces and training, automation technologies, and socio-economic impact, the my

  8. Human Power Vehicle Program. Final report, June 15, 1993--June 14, 1995

    SciTech Connect (OSTI)

    Crowell, J.; Graves, P.

    1995-11-01T23:59:59.000Z

    The Human Power Vehicle Program was an intensive, five day a week, four week program designed to give middle school students the opportunity to ``be engineers``. During the month of July, Delta College, the Macro Michigan Multicultural Pre-Technical Education Partnership (M3PEP), and the United States Department of Energy sponsored a four-week learning experience in human-powered vehicles. This unique experience introduced students to the physiology of exercise, the mechanics of the bicycle, and the physics and mathematics of the bicycle. Students also participated in a three day bike tour. The Program used the Bike Lab facility at Delta College`s International Centre in Saginaw, Michigan. Students had the opportunity to explore the development and refinement of the bicycle design and to investigate it`s power machine-the human body. Interactive instruction was conducted in groups to assure that all students experienced the satisfaction of understanding the bicycle. The purpose of the Program was to increase minority students` awareness and appreciation of mathematics and science. The premise behind the Program was that engineers and scientists are made, not born. The Program was open to all minority youth, grades 8 and 9, and was limited to 25 students. Students were selected to participate based upon their interest, desire, maturity, and attitude.

  9. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    SciTech Connect (OSTI)

    Nigle N. Clark

    2006-12-31T23:59:59.000Z

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  10. Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999

    SciTech Connect (OSTI)

    Johnson, D.R.

    2000-01-01T23:59:59.000Z

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

  11. Heavy Vehicle Propulsion System Materials Program Semiannual Progress Report for October 1998 Through March 1999

    SciTech Connect (OSTI)

    Johnson, R.D.

    1999-06-01T23:59:59.000Z

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OIT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55% efficiency and low emissions levels of 2.0 g/bhp-h NOX and 0.05 g/bhp-h particulate. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55% efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies. OIT OHVT also recognizes a significant opportunity for reduction in petroleum consumption by dieselization of pickup trucks, vans, and sport utility vehicles. Application of the diesel engine to class 1,2, and 3 trucks is expected to yield a 35% increase in fuel economy per vehicle. The foremost barrier to diesel use in this market is emission control. Once an engine is made certifiable, subsequent challenges will be in cost; noise, vibration, and harshness (NVH); and performance. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designer; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) Cost Effective High Performance Materials and Processing; (2) Advanced Manufacturing Technology; (3)Testing and Characterization; and (4) Materials and Testing Standards.

  12. Vehicle technologies program Government Performance and Results Act (GPA) report for fiscal year 2012

    SciTech Connect (OSTI)

    Ward, J.; Stephens, T. S.; Birky, A. K. (Energy Systems); (DOE-EERE); (TA Engineering)

    2012-08-10T23:59:59.000Z

    The U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy has defined milestones for its Vehicle Technologies Program (VTP). This report provides estimates of the benefits that would accrue from achieving these milestones relative to a base case that represents a future in which there is no VTP-supported vehicle technology development. Improvements in the fuel economy and reductions in the cost of light- and heavy-duty vehicles were estimated by using Argonne National Laboratory's Autonomie powertrain simulation software and doing some additional analysis. Argonne also estimated the fraction of the fuel economy improvements that were attributable to VTP-supported development in four 'subsystem' technology areas: batteries and electric drives, advanced combustion engines, fuels and lubricants, and materials (i.e., reducing vehicle mass, called 'lightweighting'). Oak Ridge National Laboratory's MA{sup 3}T (Market Acceptance of Advanced Automotive Technologies) tool was used to project the market penetration of light-duty vehicles, and TA Engineering's TRUCK tool was used to project the penetrations of medium- and heavy-duty trucks. Argonne's VISION transportation energy accounting model was used to estimate total fuel savings, reductions in primary energy consumption, and reductions in greenhouse gas emissions that would result from achieving VTP milestones. These projections indicate that by 2030, the on-road fuel economy of both light- and heavy-duty vehicles would improve by more than 20%, and that this positive impact would be accompanied by a reduction in oil consumption of nearly 2 million barrels per day and a reduction in greenhouse gas emissions of more than 300 million metric tons of CO{sub 2} equivalent per year. These benefits would have a significant economic value in the U.S. transportation sector and reduce its dependency on oil and its vulnerability to oil price shocks.

  13. Electric and Hybrid Vehicles Program. Seventeenth annual report to Congress for Fiscal Year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This program, in cooperation with industry, is conducting research, development, testing, and evaluation activities to develop the technologies that would lead to production and introduction of low-and zero-emission electric and hybrid vehicles into the Nation`s transportation fleet. This annual report describes program activities in the areas of advanced battery, fuel cell, and propulsion systems development. Testing and evaluation of new technology in fleet site operations and laboratories are also provided. Also presented is status on incentives (CAFE, 1992 Energy Policy Act) and use of foreign components, and a listing of publications by DOE, national laboratories, and contractors.

  14. Electric and Hybrid Vehicles Program 18th annual report to Congress for Fiscal Year 1994

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Department remains focused on the technologies that are critical to making electric and hybrid vehicles commercially viable and competitive with current production gasoline-fueled vehicles in performance, reliability, and affordability. During Fiscal Year 1994, significant progress was made toward fulfilling the intent of Congress. The Department and the United States Advanced Battery Consortium (a partnership of the three major domestic automobile manufacturers) continued to work together and to focus the efforts of battery developers on the battery technologies that are most likely to be commercialized in the near term. Progress was made in industry cost-shared contracts toward demonstrating the technical feasibility of fuel cells for passenger bus and light duty vehicle applications. Two industry teams which will develop hybrid vehicle propulsion technologies have been selected through competitive procurement and have initiated work, in Fiscal Year 1994. In addition, technical studies and program planning continue, as required by the Energy Policy Act of 1992, to achieve the goals of reducing the transportation sector dependence on imported oil, reducing the level of environmentally harmful emissions, and enhancing industrial productivity and competitiveness.

  15. Numerical Simulation and Laboratory Testing of Time-Frequency MUSIC Beamforming for Identifying Continuous and Impulsive Ground Targets from a Mobile Aerial Platform

    E-Print Network [OSTI]

    Silva, Ramon Alejandro

    2013-04-25T23:59:59.000Z

    When a microphone array is mounted on a mobile aerial platform, such as an unmanned aerial vehicle (UAV), most existing beamforming methods cannot be used to adequately identify continuous and impulsive ground. Here, numerical simulation results...

  16. Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Vehicle Technologies Office Merit Review 2014: Thermoelectric...

    Broader source: Energy.gov (indexed) [DOE]

    Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

  18. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  19. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01T23:59:59.000Z

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  20. Digital autoland system for unmanned aerial vehicles

    E-Print Network [OSTI]

    Wagner, Thomas William, Jr.

    2007-09-17T23:59:59.000Z

    Identification (OKID) [23] is used to determine a linear time-invariant (LTI) state-space representation of the C700. The linear state-space model is in the form ?x = Ax+Bu state equation y = Cx+Du output equation (3.1) 9 where x?Rn×1 is a state vector with n... states, u?Rm×1 is an input vector with m inputs, y ? Rp×1 is an output vector with p outputs, A ? Rn×n is a plant matrix, B ? Rn×m is a control distribution matrix, and C ? Rp×n and D ? Rp×m are matrices that determine the elements of the output vector...

  1. Wireless Relay Communications with Unmanned Aerial Vehicles

    E-Print Network [OSTI]

    Swindlehurst, A. Lee

    Transmission Rate (ENTR) for the links between the ground nodes and the relay, and derive a closed platforms to form equivalent "cellular towers" in the sky for implementing rapidly deployable, broadband. The feasibility of using Orthogonal Frequency Division Multiplexing (OFDM) transmission techniques for UAV

  2. Reachability Calculations for Vehicle Safety during Manned/Unmanned Vehicle Interaction

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Reachability Calculations for Vehicle Safety during Manned/Unmanned Vehicle Interaction Jerry Ding by unmanned aerial vehicles (UAVs) under supervision of human operators, with applications to safety for refining or designing protocols for multi-UAV and/or manned vehicle interaction. The mathematical

  3. Designation Order No. 00-12.00 to the Executive Director of Loan Programs and Director of the Advanced Technology Vehicles Manufacturing Incentive Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-30T23:59:59.000Z

    Secretary or Energy designates each of the Executive Director of Loan Programs and the Director of the Advanced Technology Vehicles Manufacturing Incentive Program, as their designee, as the term is used in the Internal Revenue Manual, Part 11, Chapter 3, Section 29.6, acting separately to request tax delinquency account status and other tax related information from the Internal Revenue Service, pursuant to 26 U .S.C. 6103(1)(3), for applicants to the Department's Advanced Technology Vehicles Manufacturing Incentive Program under Section 136 of the Energy Independence and Security Act of2007 (P. L. 110-140), as amended.

  4. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01T23:59:59.000Z

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  5. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

  6. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

  7. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy Savers [EERE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  8. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Energy Savers [EERE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  9. Autonomous vehicles

    SciTech Connect (OSTI)

    Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

    1996-08-01T23:59:59.000Z

    There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

  10. Heavy Vehicle Propulsion System Materials Program semiannual progress report for October 1996 through March 1997

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks. The design of advanced components for high-efficiency diesel engines has, in some cases, pushed the performance envelope for materials of construction past the point of reliable operation. Higher mechanical and tribological stresses and higher temperatures of advanced designs limit the engine designers; advanced materials allow the design of components that may operate reliably at higher stresses and temperatures, thus enabling more efficient engine designs. Advanced materials also offer the opportunity to improve the emissions, NVH, and performance of diesel engines for pickup trucks, vans, and sport utility vehicles. The principal areas of research are: (1) cost effective high performance materials and processing; (2) advanced manufacturing technology; (3) testing and characterization; and (4) materials and testing standards.

  11. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  12. ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC, ARCHITECTURAL, ENGINEERING, AND FACILITY MANAGEMENT RECORDS ADMINISTRATIVE RECORDS SCHEDULE 17: CARTOGRAPHIC, AERIAL PHOTOGRAPHIC,...

  13. Vehicle Technologies Program - Multi-Year Program Plan 2011-2015

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness forMulti-Year Program

  14. LOCOMOTION (TERRESTRIAL AND AERIAL) AND COMMUNICATION OF AUTONOMOUS ROBOT NETWORKS

    E-Print Network [OSTI]

    Kansas, University of

    , flying robots, micro-air vehicles, robot communication, autonomous robot networks. #12;2 1. TERRESTRIAL1 LOCOMOTION (TERRESTRIAL AND AERIAL) AND COMMUNICATION OF AUTONOMOUS ROBOT NETWORKS Arvin Agah This report focuses on locomotion and communication aspects of mobile robot networks for harsh polar

  15. American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program.

    E-Print Network [OSTI]

    and other matching funds instead of federal dollars, does this exclude us from the process? Will the Energy and Renewable Fuel and Vehicle Technology Program. Questions and Answers as of 4/27/09 1 1) Our county is working on a joint proposal for American Recovery and Reinvestment Act (ARRA) funds with other agencies

  16. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Real-Time Planning for Multiple Autonomous Vehicles in Dynamic Uncertain Environments

    E-Print Network [OSTI]

    Washington at Seattle, University of

    ), unmanned aerial vehicles (UAVs), and unmanned underwater vehicles (U). #12;Interest in the use of unmanned vehicles is increasing. The Department of Defense has a variety vehicles. The DoD envisions using various types of unmanned vehicles; unmanned ground vehicles (UGVs

  19. U.S. Department of Energy electric and hybrid vehicle Site Operator Program at Platte River Power Authority. Final report, July 3, 1991--August 31, 1996

    SciTech Connect (OSTI)

    Emmert, R.A.

    1996-12-31T23:59:59.000Z

    The Platte River Power Authority (Platte River) is a political subdivision of the state of Colorado, owned by the four municipalities of Fort Collins, Loveland, Longmont and Estes Park, Colorado. Platte River is a non-profit, publicly owned, joint-action agency formed to construct, operate and maintain generating plants, transmission systems and related facilities for the purpose of delivering to the four municipalities electric energy for distribution and resale. Platte River, as a participant in the US Department of Energy (DOE) Site Operator Program, worked to accomplish the Site Operator Program goals and objectives to field test and evaluate electric and electric-hybrid vehicles and electric vehicle systems in a real world application/environment. This report presents results of Platte River`s program (Program) during the five-years Platte River participated in the DOE Site Operator Program. Platte River participated in DOE Site Operator Program from July 3, 1991 through August 31, 1996. During its Program, Platte River conducted vehicle tests and evaluations, and electric vehicle demonstrations in the Front Range region of Northern Colorado. Platte River also investigated electric vehicle infrastructure issues and tested infrastructure components. Platte River`s Program objectives were as follows: evaluate the year round performance, operational costs, reliability, and life cycle costs of electric vehicles in the Front Range region of Northern Colorado; evaluate an electric vehicle`s usability and acceptability as a pool vehicle; test any design improvements or technological improvements on a component level that may be made available to PRPA and which can be retrofit into vehicles; and develop, test and evaluate, and demonstrate components to be used in charging electric vehicles.

  20. Electric and hybrid vehicle program: Site operator program. Quarterly progress report, April--June, 1994 (3rd quarter of FY-1994)

    SciTech Connect (OSTI)

    Kiser, D.M.; Brown, H.L.

    1994-10-01T23:59:59.000Z

    The DOE Site Operator Program was initially established to meet the requirements of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976. The Program has since evolved in response to new legislation and interests. Its mission now includes three major activity categories; advancement of Electric Vehicle (EV) technologies, development of infrastructure elements needed to support significant EV use, and increasing public awareness and acceptance of EVs. The 13 Program participants, their geographic locations, and the principal thrusts of their efforts are identified. The EV inventories of each participant are summarized. This third quarter report (FY-94) will include a summary of activities from the previous three quarters. The report section sequence has been revised to provide a more easily seen program overview, and specific operator activities are now included.

  1. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  3. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  4. Vehicle Technologies Office: Annual Progress Reports | Department...

    Energy Savers [EERE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

  5. Heavy vehicle propulsion system materials program semi-annual progress report for October 1997 through March 1998

    SciTech Connect (OSTI)

    Johnson, D.R.

    1998-06-01T23:59:59.000Z

    The purpose of the Heavy Vehicle Propulsion System materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

  6. ARPA-E Program Takes an Innovative Approach to Electric Vehicle...

    Office of Environmental Management (EM)

    vehicle design from a holistic level. Through RANGE, ARPA-E is working to make EVs cost and performance competitive with internal combustion engines, while also allowing them...

  7. U.S. Department of Energy: State of Clean Cities Program Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    vehicle & infrastructure * Electricity * Ethanol * Propane * Natural Gas * Hydrogen * Biodiesel (B100) Idle Reduction Increase Technology UsePractices * Heavy-duty trucks *...

  8. Vehicle Technologies Office: Multi-Year Program Plan 2011-2015...

    Energy Savers [EERE]

    undertaken to help meet the Administrations goals for reductions in oil consumption and carbon emissions from the ground transport vehicle sector of the economy....

  9. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  10. The ANL electric vehicle battery R D program for DOE-EHP

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  11. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents’

  12. The DOE ARM Aerial Facility

    SciTech Connect (OSTI)

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01T23:59:59.000Z

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  13. Development and validation of a conceptual design program for unmanned underwater vehicles

    E-Print Network [OSTI]

    Laun, Alexander Walter, Ensign

    2013-01-01T23:59:59.000Z

    With a renewed focus on the Asia-Pacific region, the United States Navy will increasingly rely on high-endurance unmanned underwater vehicles (UUVs) to support successful operations in a challenging threat environment. ...

  14. Aerial Measuring System in Japan

    SciTech Connect (OSTI)

    Lyons, C., Colton, D. P.

    2012-05-01T23:59:59.000Z

    The U.S. Department of Energy National Nuclear Security Agency’s Aerial Measuring System deployed personnel and equipment to partner with the U.S. Air Force in Japan to conduct multiple aerial radiological surveys. These were the first and most comprehensive sources of actionable information for U.S. interests in Japan and provided early confirmation to the government of Japan as to the extent of the release from the Fukushima Daiichi Nuclear Power Generation Station. Many challenges were overcome quickly during the first 48 hours; including installation and operation of Aerial Measuring System equipment on multiple U.S. Air Force Japan aircraft, flying over difficult terrain, and flying with talented pilots who were unfamiliar with the Aerial Measuring System flight patterns. These all combined to make for a dynamic and non-textbook situation. In addition, the data challenges of the multiple and on-going releases, and integration with the Japanese government to provide valid aerial radiological survey products that both military and civilian customers could use to make informed decisions, was extremely complicated. The Aerial Measuring System Fukushima response provided insight in addressing these challenges and gave way to an opportunity for the expansion of the Aerial Measuring System’s mission beyond the borders of the US.

  15. Updated: March 22, 2011 Alternative and Renewable Fuel and Vehicle Technologies Program

    E-Print Network [OSTI]

    Department of Resources Recycling and Recovery Brian McMahon ­ California Employment Training Panel Jack ­ California Air Resources Board Tim Carmichael ­ California Natural Gas Vehicle Coalition Brooke Coleman ­ New-Gen ­ American Lung Association Roland Hwang ­ Natural Resources Defense Council Steve Kaffka ­ California

  16. Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

  17. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

  18. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  19. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Medium and Heavy Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Houston Zero Emission Delivery Vehicle Deployment Project

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Vehicle to Grid Communications Field Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Multi-Material Lightweight Prototype Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Vehicle Mass and Fuel Efficiency Impact Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Codes and Standards to Support Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150

    SciTech Connect (OSTI)

    James E. Francfort

    2003-11-01T23:59:59.000Z

    Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

  11. Ultracapacitor Technologies and Application in Hybrid and Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andy

    2009-01-01T23:59:59.000Z

    Moderate Hybrid-electric Vehicles. ESScap06, Switzerland,GH. SIMPLEV: A Simple Electric Vehicle Simulation Program-20 th International Electric Vehicle Symposium, Long Beach,

  12. The ANL electrochemical program for DOE on electric vehicle R D

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of January 1 through March 31, 1991. The work is organized into the following six task areas: Project management; battery systems technology; lithium/sulfide batteries; advanced sodium/metal chloride battery; aqueous batteries; and EV Battery performance/life evaluation.

  13. An empirical analysis on the adoption of alternative fuel vehicles:The case of natural gas vehicles

    E-Print Network [OSTI]

    Yeh, Sonia

    2007-01-01T23:59:59.000Z

    lessons learned from alternative fuel vehicle programs inShirk, C. , 2000. Alternative Fuel Vehicles Made Available,for sustained adoption of alternative fuel vehicles and

  14. Getting Ready for the Challenges for the Air Traffic Management for Unmanned Aerial Systems (UAS) C.W. Johnson,

    E-Print Network [OSTI]

    Johnson, Chris

    for a lost link profile. If communications are lost, the vehicle will autonomously cross the airspace between as EUROCONTROL's Spec-0102 on the Use of Military Unmanned Aerial Vehicles as Operational Air Traffic Outside interaction between ATCOs and UAS platforms. These are the flight patterns that are executed autonomously when

  15. An Almost Global Tracking Control Scheme for Maneuverable Autonomous Vehicles and its

    E-Print Network [OSTI]

    Chyba, Monique

    . While applications of this control scheme include autonomous aerial and underwater vehicles, we focus on an autonomous underwater vehicle (AUV) application because of its richer, more nonlinearly coupled, dynamics of unmanned vehicles are expanding as these vehicles become more maneuverable with the passage of time. Recent

  16. Distributed 3D Navigation and Collision Avoidance for Nonholonomic Aircraft-like Vehicles

    E-Print Network [OSTI]

    Dimarogonas, Dimos

    Vehicles (AUVs) and Unmanned Aerial Vehicles (UAVs), or automated Air Traffic Control (ATC) in general, Massachusetts Institute of Technology, Cambridge, MA, U.S.A. ddimar@mit.edu underwater vehicles, the aboveDistributed 3D Navigation and Collision Avoidance for Nonholonomic Aircraft-like Vehicles Giannis P

  17. Preprint version 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vilamoura, Portugal Aerial Grasping of a Moving Target with a Quadrotor UAV

    E-Print Network [OSTI]

    Aerial Grasping of a Moving Target with a Quadrotor UAV Riccardo Spica, Antonio Franchi, Giuseppe Oriolo of planning a trajectory that connects two arbitrary states while allowing the UAV to grasp a moving target-scale Unmanned Aerial Vehicles (UAVs) are popu- lar robotic platforms because of their low cost, versatility

  18. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

  19. U.S. Department of Energy FreedomCar & Vehicle Technologies Program CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion engine Vehicle -- Status Report

    SciTech Connect (OSTI)

    Not Available

    2008-04-01T23:59:59.000Z

    The CARB Executive Order Exemption Process for a Hydrogen-fueled Internal Combustion Engine Vehicle was undertaken to define the requirements to achieve a California Air Resource Board Executive Order for a hydrogenfueled vehicle retrofit kit. A 2005 to 2006 General Motors Company Sierra/Chevrolet Silverado 1500HD pickup was assumed to be the build-from vehicle for the retrofit kit. The emissions demonstration was determined not to pose a significant hurdle due to the non-hydrocarbon-based fuel and lean-burn operation. However, significant work was determined to be necessary for Onboard Diagnostics Level II compliance. Therefore, it is recommended that an Experimental Permit be obtained from the California Air Resource Board to license and operate the vehicles for the durability of the demonstration in support of preparing a fully compliant and certifiable package that can be submitted.

  20. Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis

    SciTech Connect (OSTI)

    Cheriyadat, Anil M [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected by high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.

  1. Blog Feed: Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Pat Davis, the Director of our Vehicle Technologies Program, doles out the facts on the costs and benefits of owning an electric vehicle. December 14, 2010 Nanotechnology: Small...

  2. Clean Cities Recovery Act: Vehicle & Infrastructure Deployment

    Broader source: Energy.gov (indexed) [DOE]

    project through collection of vehicle, infrastructure and training information. RELEVANCE Alternative Fuel & Advance Technology Vehicles Pilot Program Clean Cities Recovery Act:...

  3. Vehicle Technologies Office Merit Review 2014: Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  4. [Electric and hybrid vehicle site operators program]: Thinking of the future. Second year third quarter report, January 1--March 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy`s Electric Vehicle Site Operator Program. Through participation in this program, Kansas State is displaying, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid vans and two (2) electric cars during the first two years of this five-year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1993 Ford EVcort station wagons. The G-Van has been signed in order for the public to be aware that this is an electric drive vehicle. Financial participants` names have been stenciled on the back door of the van. This vehicle is available for short term loan to interested utilities and companies. When other vehicles are obtained, the G-Van will be maintained on K-State`s campus.

  5. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Integrated Vehicle Thermal Management ? Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Atmospheric Radiation Measurement Program - unmanned aerospace vehicle: The follow-on phase

    SciTech Connect (OSTI)

    Vitko, J. Jr. [Sandia National Labs., Livermore, CA (United States)

    1995-04-01T23:59:59.000Z

    Unmanned Aerospace Vehicle (UAV) demonstration flights (UDF) are designed to provide an early demonstration of the scientific utility of UAVs by using an existing UAV and instruments to measure broadband radiative flux profiles under clear sky conditions. UDF is but the first of three phases of ARM-UAV. The second phase significantly extends both the UAV measurement techniques and the available instrumentation to allow both multi-UAV measurements in cloudy skies and extended duration measurements in the tropopause. These activities build naturally to the third and final phase, that of full operational capability, i.e., UAVs capable of autonomous operations at 20-km altitudes for multiple days with a full suite of instrumentation for measuring radiative flux, cloud properties, and water vapor profiles.

  8. Electric-Drive Vehicle engineering

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

  9. This program is designed to loan bicycles to employees that are staying on-site and have no vehicle for transportation.

    E-Print Network [OSTI]

    Ohta, Shigemi

    of the use of this bicycle, including any claim for personal injury or property damage. I further agree off-the-shelf from Property & Procurement Management conform to this standard. Only staff who rideThis program is designed to loan bicycles to employees that are staying on-site and have no vehicle

  10. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss021francfort2011o.pdf More Documents & Publications Vehicle...

  11. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells...

  12. Acquisition and registration of aerial video imagery of urban traffic

    SciTech Connect (OSTI)

    Loveland, Rohan C [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    The amount of information available about urban traffic from aerial video imagery is extremely high. Here we discuss the collection of such video imagery from a helicopter platform with a low-cost sensor, and the post-processing used to correct radial distortion in the data and register it. The radial distortion correction is accomplished using a Harris model. The registration is implemented in a two-step process, using a globally applied polyprojective correction model followed by a fine scale local displacement field adjustment. The resulting cleaned-up data is sufficiently well-registered to allow subsequent straight-forward vehicle tracking.

  13. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  14. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  15. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  16. Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households

    E-Print Network [OSTI]

    Abbanat, Brian A.

    2001-01-01T23:59:59.000Z

    same circumstances. iii ALTERNATIVE FUEL VEHICLES: THE CASEDoug; Chelius, Michael, “Alternative Fuel Vehicle Programs:Conventional and Alternative Fuel Response Simulator: A

  17. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Broader source: Energy.gov (indexed) [DOE]

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  18. Vehicle Technologies Office Merit Review 2014: SuperTruck Program: Engine

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLab Benchmarking -Project Review |

  19. Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLabReport |Motors R&D Annual

  20. Vehicle Technologies Office: Multi-Year Program Plan 2011-2015 | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLabReportEnergy Ethanol can be|of

  1. Intelligent Systems Software for Unmanned Air Vehicles

    E-Print Network [OSTI]

    are used, for example, to find missing persons, fight forest fires, and for aerial photography. Military. Hanford and Long4 discuss how to evaluate cognitive architectures for unmanned vehicles and mobile robots. Also, Hanford et al5 and Janrathitikarn and Long6 describe the use of cognitive architectures

  2. Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    SciTech Connect (OSTI)

    Gutman, W.M.; Silver, R.J. [New Mexico State Univ., Las Cruces, NM (United States). Physical Science Lab.

    1994-12-01T23:59:59.000Z

    The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists.

  3. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01T23:59:59.000Z

    production of further hybrid cars. ” Similarly, Larry Rhodesbuying Priuses as commute cars—hybrids were “fairly popularhybrid vehicles are being made available to (predominately new-car

  4. The ANL electric vehicle battery R&D program for DOE-EHP. Quarterly progress report, October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE`s Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  5. Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems

    E-Print Network [OSTI]

    Sadeh, Norman M.

    Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems Jasper Schuijbroek School station, and designing (near-)optimal vehicle routes to rebalance the inventory. Since finding provably : vehicle routing and scheduling, inventory, queues: applications, programming: integer, programming

  6. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  7. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  8. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy Savers [EERE]

    & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  9. Collaborative Micro Aerial Vehicle exploration of outdoor environments

    E-Print Network [OSTI]

    Pitman, David (David J.)

    2010-01-01T23:59:59.000Z

    Field personnel, such as soldiers, police SWAT teams, and first responders, face challenging, dangerous environments, often with little advance knowledge or information about their surroundings. Currently, this Intelligence, ...

  10. Cooperative Task Assignment of Unmanned Aerial Vehicles in Adversarial Environments

    E-Print Network [OSTI]

    How, Jonathan P.

    stochastic formulation of the UAV task assignment problem. This formulation ex- plicitly accounts to maximize the mission value as an expectation, this stochastic formulation designs coordinated plans are not constant and change with time due to the removal of SAM sites by other UAVs. This allocation recovers

  11. Telesurgery Via Unmanned Aerial Vehicle (UAV) with a Field Deployable

    E-Print Network [OSTI]

    saving human lives in disaster areas, on the battlefield or in other remote environments. 1. Introduction). This has implications for battlefield trauma, disaster response and rural or remote telesurgery. #12 in the desert heat. Clean power is not a primary concern in a hospital or lab, but in the field

  12. Civilian applications and policy implications of commercial unmanned aerial vehicles

    E-Print Network [OSTI]

    Sprague, Kara Lynn, 1980-

    2004-01-01T23:59:59.000Z

    As UAV capabilities continue to improve the technology will spill out of the military sector and into commercial and civil applications. Already, UAVs have demonstrated commercial marketability in such diverse areas as ...

  13. An Unmanned Aerial Vehicle as Human-Assistant Robotics System

    E-Print Network [OSTI]

    Chingtham, Tejbanta Singh; Ghose, M K; 10.1109/ICCIC.2010.5705731

    2011-01-01T23:59:59.000Z

    According to the American Heritage Dictionary [1],Robotics is the science or study of the technology associated with the design, fabrication, theory, and application of Robots. The term Hoverbot is also often used to refer to sophisticated mechanical devices that are remotely controlled by human beings even though these devices are not autonomous. This paper describes a remotely controlled hoverbot by installing a transmitter and receiver on both sides that is the control computer (PC) and the hoverbot respectively. Data is transmitted as signal or instruction via a infrastructure network which is converted into a command for the hoverbot that operates at a remote site.

  14. Sandia National Laboratories: Sierra Unmanned Aerial Vehicle to Begin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US PatentOperational EnergyScientific ResearchSensingFlights

  15. Rev: 29 March 2011 Aerial Lift Operator Job Performance Measure (TQ-AERIAL-P)

    E-Print Network [OSTI]

    Ohta, Shigemi

    . Approximate total observation hours: ______. Administer the JPM. Equipment Qualifications Aerial Platform Manufacturer: _______________________________ Model: _____________ Maximum Capacity: ______ Note: Qualification successfully demonstrated. Type Propulsion Elevating Mechanism Qualification CodesANSI/SIA Standard Aerial

  16. Advanced Technology Vehicle Testing

    SciTech Connect (OSTI)

    James Francfort

    2004-06-01T23:59:59.000Z

    The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

  17. AERIAL PHOTO INTERPRETATION NATIONAL INVENTORY OF LANDSCAPES

    E-Print Network [OSTI]

    MANUAL FOR AERIAL PHOTO INTERPRETATION IN THE NATIONAL INVENTORY OF LANDSCAPES IN SWEDEN NILS YEAR.................................................................................................. 10 2.1.4 Information for directed field inventories

  18. Unmanned Aerial Vehicle Unmanned Aerial Vehicle, or UAV, is a game for the PC. The player controls a UAV, which

    E-Print Network [OSTI]

    Li, Mo

    (#) and Civilians Killed (#). The level is a map built on a constant grid-pattern of uniform buildings. The map will remain constant after every playthrough. Although we don't have a definite size for the map, it should take five or so seconds to reach one end of the map to the other. There are three types of NPCs

  19. Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Updating and Enhancing the MA3T Vehicle Choice Model

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Low Cost Carbon Fiber Composites for Lightweight Vehicle Parts

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Vehicle Technologies Office Merit Review 2013: KIVA Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Overview of Vehicle and Systems Simulation and Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. DC Fast Charge Impacts on Battery Life and Vehicle Performance

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Relationships between Vehicle Mass, Footprint, and Societal Risk

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt067vssbazzi2011o.pdf More Documents & Publications...

  11. 2012 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    Merit Review 2012 DOE Vehicle Technologies Office Annual Merit Review The 2012 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  12. 2011 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    Merit Review 2011 DOE Vehicle Technologies Office Annual Merit Review The 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  13. 2009 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    Annual Merit Review 2009 DOE Vehicle Technologies Office Annual Merit Review The 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  14. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

  15. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

  16. Vehicle Technologies Office Merit Review 2014: Refuel Colorado...

    Broader source: Energy.gov (indexed) [DOE]

    Refuel Colorado Vehicle Technologies Office Merit Review 2014: Refuel Colorado Presentation given by Colorado Energy Office at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  17. Vehicle Technologies Office Merit Review 2014: Multi-Material...

    Energy Savers [EERE]

    Lightweight Vehicles Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  18. Vehicle Technologies Office Merit Review 2014: Development and...

    Office of Environmental Management (EM)

    Class 8 Highway Vehicle Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  19. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Energy Savers [EERE]

    Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

  20. Abstract--In the control of heterogeneous unmanned vehicles in future military operations, it will be critical to provide goal-

    E-Print Network [OSTI]

    Cummings, Mary "Missy"

    of unmanned underwater and aerial vehicles, which included the automatic target recognition acknowledgement1 Abstract-- In the control of heterogeneous unmanned vehicles in future military operations heterogeneous unmanned vehicles (UVs). The DCDT was applied to several decision making processes involving a mix

  1. Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

  2. Control of Multiple Robotic Sentry Vehicles

    SciTech Connect (OSTI)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01T23:59:59.000Z

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  3. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

  4. Automated Coordinator Synthesis for Mission Control of Autonomous Underwater Vehicles

    E-Print Network [OSTI]

    Kumar, Ratnesh

    Automated Coordinator Synthesis for Mission Control of Autonomous Underwater Vehicles S vehicles. The approach is aided by tools that allow graphical design, iterative redesign, and code autonomous underwater vehicle (AUV) programs to meet evolving requirements and capabilities. The hierarchical

  5. Aerial reconstructions via probabilistic data fusion

    E-Print Network [OSTI]

    Cabezas, Randi

    2013-01-01T23:59:59.000Z

    In this thesis we propose a probabilistic model that incorporates multi-modal noisy measurements: aerial images and Light Detection and Ranging (LiDAR) to recover scene geometry and appearance in order to build a 3D ...

  6. Utilization of Local Law Enforcement Aerial Resources in Consequence Management (CM) Response

    SciTech Connect (OSTI)

    Wasiolek, Piotr T.; Malchow, Russell L.

    2013-03-12T23:59:59.000Z

    During the past decade the U.S. Department of Homeland Security (DHS) was instrumental in enhancing the nation’s ability to detect and prevent a radiological or nuclear attack in the highest risk cities. Under the DHS Securing the Cities initiative, nearly 13,000 personnel in the New York City region have been trained in preventive radiological and nuclear detection operations, and nearly 8,500 pieces of radiological detection equipment have been funded. As part of the preventive radiological/nuclear detection (PRND) mission, several cities have received funding to purchase commercial aerial radiation detection systems. In 2008, the U.S. Department of Energy, National Nuclear Security Administration Aerial Measuring System (AMS) program started providing Mobile Aerial Radiological Surveillance (MARS) training to such assets, resulting in over 150 HAZMAT teams’ officers and pilots from 10 law enforcement organizations and fire departments being trained in the aerial radiation detection. From the beginning, the MARS training course covered both the PRND and consequence management (CM) missions. Even if the law enforcement main focus is PRND, their aerial assets can be utilized in the collection of initial radiation data for post-event radiological CM response. Based on over 50 years of AMS operational experience and information collected during MARS training, this presentation will focus on the concepts of CM response using aerial assets as well as utilizing law enforcement/fire department aerial assets in CM. Also discussed will be the need for establishing closer relationships between local jurisdictions’ aerial radiation detection capabilities and state and local radiation control program directors, radiological health department managers, etc. During radiological events these individuals may become primary experts/advisers to Incident Commanders for radiological emergency response, especially in the early stages of a response. The knowledge of the existence, specific capabilities, and use of local aerial radiation detection systems would be critical in planning the response, even before federal assets arrive on the scene. The relationship between local and federal aerial assets and the potential role for the further use of the MARS training and expanded AMS Reachback capabilities in facilitating such interactions will be discussed.

  7. Aerial Measuring System (AMS) Baseline Surveys for Emergency Planning

    SciTech Connect (OSTI)

    Lyons, C

    2012-06-04T23:59:59.000Z

    Originally established in the 1960s to support the Nuclear Test Program, the AMS mission is to provide a rapid and comprehensive worldwide aerial measurement, analysis, and interpretation capability in response to a nuclear/radiological emergency. AMS provides a responsive team of individuals whose processes allow for a mission to be conducted and completed with results available within hours. This presentation slide-show reviews some of the history of the AMS, summarizes present capabilities and methods, and addresses the value of the surveys.

  8. Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle 2011 DOE Hydrogen and Fuel Cells Program,...

  9. The ANL electrochemical program for DOE on electric vehicle R&D. Quarterly progress report, January--March 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of January 1 through March 31, 1991. The work is organized into the following six task areas: Project management; battery systems technology; lithium/sulfide batteries; advanced sodium/metal chloride battery; aqueous batteries; and EV Battery performance/life evaluation.

  10. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  11. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  12. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  13. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit...

  14. Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 DEER Overview of the U.S. DOE Vehicle Technologies Program Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE Vehicle Technologies Program DOE rationale for...

  15. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Fifth Quarterly Report October - December 2003

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort

    2004-02-01T23:59:59.000Z

    This Oil Bypass Filter Technology Evaluation quarterly report (October-December 2003) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 324,091 test miles. This represents an avoidance of 27 oil changes, which equate to 952 quarts (238 gallons) of new oil not conserved and therefore, 952 quarts of waste oil not generated. To validate the extended oil-drain intervals, an oil-analysis regime is used to evaluate the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. The test fleet has been expanded to include six Chevrolet Tahoe sport utility vehicles with gasoline engines.

  16. Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  17. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles.

  18. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles: Mach II Design

    Broader source: Energy.gov [DOE]

    Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles:...

  19. Richmond Electric Vehicle Initiative Electric Vehicle Readiness...

    Office of Environmental Management (EM)

    MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

  20. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  1. Light Duty Vehicle CNG Tanks

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite Manufacturing...

  2. Vehicle Technologies Office Merit Review 2014: Electrochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrochemical Modeling of LMR-NMC Materials and Electrodes Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  3. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting arravt034tiferdowsi2012o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  4. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Evaluation arravt034tiferdowsi2011p.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  5. Advanced Electric Drive Vehicles ? A Comprehensive Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. tiarravt034ferdowsi2010o.pdf More Documents & Publications Advanced Electric Drive Vehicles A Comprehensive Education, Training, and Outreach Program...

  6. Vehicle Technologies Office Merit Review 2014: Manufacturability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Batteries Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  7. DOD/NREL Model Integrates Vehicles, Renewables & Microgrid (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01T23:59:59.000Z

    Fact sheet on microgrid model created by the Electric Vehicle Grid Integration program at the Fort Carson Army facility.

  8. www.ave.kth.se Rail Vehicles

    E-Print Network [OSTI]

    Haviland, David

    www.ave.kth.se Rail Vehicles Part of the Masters program in Vehicle Engineering Master's Thesis: Validation of wheel wear calculation code Background Rail vehicle operators have a genuine concern about wheel and rail wear prediction methodologies, due to the influence of worn profiles in the cost of both

  9. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A. A.

    2011-05-01T23:59:59.000Z

    This presentation describes NREL's computer aided engineering program for electric drive vehicle batteries.

  10. Electric vehicle repairs and modifications

    SciTech Connect (OSTI)

    Buffett, R.K.

    1982-11-01T23:59:59.000Z

    This informal report describes the electric vehicle (EV) inspection and the necessary maintenance and repairs required to improve reliable operation of five Volkswagen (VW) Electrotransporter vans and five VW EV buses. The recommendations of TVA, EPRI, GES, Volkswagen, Siemens, and Hoppecke have been carried out in this effort. These modifications were necessary before entering the EPRI/TVA phase II and III continuing program. As new energy storage systems are explored using the VW test-bed vehicles in the battery field testing program, additional modifications may be required. All modifications will be submitted to the vehicle and component manufacturer for general assessment and recommendations. At present three different types of battery systems are being evaluated in six VW vehicles. The two Hoppecke and Exide utilize the modified Hoppecke charging systems. The other batteries being tested require off-board chargers specified by their manufacturer and are separate from the vehicle system.

  11. Aggregate vehicle travel forecasting model

    SciTech Connect (OSTI)

    Greene, D.L.; Chin, Shih-Miao; Gibson, R. [Tennessee Univ., Knoxville, TN (United States)

    1995-05-01T23:59:59.000Z

    This report describes a model for forecasting total US highway travel by all vehicle types, and its implementation in the form of a personal computer program. The model comprises a short-run, econometrically-based module for forecasting through the year 2000, as well as a structural, scenario-based longer term module for forecasting through 2030. The short-term module is driven primarily by economic variables. It includes a detailed vehicle stock model and permits the estimation of fuel use as well as vehicle travel. The longer-tenn module depends on demographic factors to a greater extent, but also on trends in key parameters such as vehicle load factors, and the dematerialization of GNP. Both passenger and freight vehicle movements are accounted for in both modules. The model has been implemented as a compiled program in the Fox-Pro database management system operating in the Windows environment.

  12. Battery Energy Availability and Consumption during Vehicle Charging across Ambient Temperatures and Battery Temperature (conditioning)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Analysis of In-Motion Power Transfer for Multiple Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Intelligent Unmanned Vehicle Systems Suitable For Individual or Cooperative Missions

    SciTech Connect (OSTI)

    Matthew O. Anderson; Mark D. McKay; Derek C. Wadsworth

    2007-04-01T23:59:59.000Z

    The Department of Energy’s Idaho National Laboratory (INL) has been researching autonomous unmanned vehicle systems for the past several years. Areas of research have included unmanned ground and aerial vehicles used for hazardous and remote operations as well as teamed together for advanced payloads and mission execution. Areas of application include aerial particulate sampling, cooperative remote radiological sampling, and persistent surveillance including real-time mosaic and geo-referenced imagery in addition to high resolution still imagery. Both fixed-wing and rotary airframes are used possessing capabilities spanning remote control to fully autonomous operation. Patented INL-developed auto steering technology is taken advantage of to provide autonomous parallel path swathing with either manned or unmanned ground vehicles. Aerial look-ahead imagery is utilized to provide a common operating picture for the ground and air vehicle during cooperative missions. This paper will discuss the various robotic vehicles, including sensor integration, used to achieve these missions and anticipated cost and labor savings.

  6. UAS Minor Program UNLV's new UAS minor program introduces students to basic knowledge of the field's various components,

    E-Print Network [OSTI]

    Hemmers, Oliver

    -performance and low-energy consumption, reconfigurable computing platform and software architecture for cooperative designation as one of six regional sites for unmanned aerial vehicles (UAV) development, students who complete engineering is presently conducting research on a robotic aerial platform that operates autonomously in GPS

  7. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption...

    Broader source: Energy.gov (indexed) [DOE]

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt025apeshives2012...

  8. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt028apeboan2011...

  9. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt028apeboan2012...

  10. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption...

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt025apeshives2011...

  11. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

  12. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

  13. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

  14. Low Cost Carbon Fiber Composites for Lightweight Vehicle Parts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation lm047stike2011...

  15. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Final Report

    SciTech Connect (OSTI)

    L. R. Zirker; J. E. Francfort; J. J. Fielding

    2006-03-01T23:59:59.000Z

    This Oil Bypass Filter Technology Evaluation final report documents the feasibility of using oil bypass filters on 17 vehicles in the Idaho National Laboratory (INL) fleet during a 3-year test period. Almost 1.3 million test miles were accumulated, with eleven 4-cycle diesel engine buses accumulating 982,548 test miles and six gasoline-engine Chevrolet Tahoes accumulating 303,172 test miles. Two hundred and forty oil samples, taken at each 12,000-mile bus servicing event and at 3,000 miles for the Tahoes, documented the condition of the engine oils for continued service. Twenty-eight variables were normally tested, including the presence of desired additives and undesired wear metals such as iron and chrome, as well as soot, water, glycol, and fuel. Depending on the assumptions employed, the INL found that oil bypass filter systems for diesel engine buses have a positive payback between 72,000 and 144,000 miles. For the Tahoes, the positive payback was between 66,000 and 69,000 miles.

  16. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  17. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  18. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program: Oil Bypass Filter Technology Evaluation Seventh Quarterly Report April - June 2004

    SciTech Connect (OSTI)

    Larry Zirker; James Francfort; Jordan Fielding

    2004-08-01T23:59:59.000Z

    This Oil Bypass Filter Technology Evaluation quarterly report (April–June 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s (DOE) FreedomCAR & Vehicle Technologies Program. Eight INEEL four-cycle diesel engine buses used to transport INEEL employees on various routes and six INEEL Chevrolet Tahoes with gasoline engines are equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the eight diesel engine buses traveled 85,632 miles. As of the end of June 2004, the eight buses have accumulated 498,814 miles since the beginning of the test and 473,192 miles without an oil change. This represents an avoidance of 39 oil changes, which equates to 1,374 quarts (343 gallons) of new oil not consumed and, furthermore, 1,374 quarts of waste oil not generated. One bus had its oil changed due to the degraded quality of the engine oil. Also this quarter, the six Tahoe test vehicles traveled 48,193 miles; to date, the six Tahoes have accumulated 109,708 total test miles. The oil for all six of the Tahoes was changed this quarter due to low Total Base Numbers (TBN). The oil used initially in the Tahoe testing was recycled oil; the recycled oil has been replaced with Castrol virgin oil, and the testing was restarted. However, the six Tahoe’s did travel a total of 98,266 miles on the initial engine oil. This represents an avoidance of 26 oil changes, which equates to 130 quarts (32.5 gallons) of new oil not consumed and, consequently, 130 quarts of waste oil not generated. Based on the number of oil changes avoided by the test buses and Tahoes to date, the potential engine oil savings if an oil bypass filter system were used was estimated for the INEEL, DOE complex and all Federal fleets of on-road vehicles. The estimated potential annual engine oil savings for the three fleets are: INEEL – 3,400 gallons, all DOE fleets – 32,000 gallons, and all Federal fleet – 1.7 million gallons.

  19. Environmental effects on composite airframes: A study conducted for the ARM UAV Program (Atmospheric Radiation Measurement Unmanned Aerospace Vehicle)

    SciTech Connect (OSTI)

    Noguchi, R.A.

    1994-06-01T23:59:59.000Z

    Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.

  20. Advanced Technology Vehicle Lab Benchmarking - Level 1

    Broader source: Energy.gov (indexed) [DOE]

    3 U.S. DOE Hydrogen and Fuel Cell Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting Henning Lohse-Busch, Ph.D. - Principal Investigator...

  1. Approximate Dynamic Programming -II: Warren B. Powell

    E-Print Network [OSTI]

    Powell, Warren B.

    , recently, the Chinese game of Go. · Controlling a device - This might be a robot or unmanned aerial vehicle, but there is a need for autonomous devices to manage themselves for tasks ranging from vacuuming the floor are managing blood inventories, financial portfolios or fleets of vehicles, we often have to move, transform

  2. Plug-In Electric Vehicle Handbook for Electrical

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Electrical Contractors #12;Plug-In Electric Vehicle Handbook Infrastructure Installing plug-in electric vehicle (PEV) charg- ing infrastructure requires unique knowledge Thanks to the Electric Vehicle Infrastructure Training Program for assisting with the production

  3. Electric Drive Vehicles: A Huge New Distributed Energy Resource

    E-Print Network [OSTI]

    Firestone, Jeremy

    with electric power generation and storage capabilities · Three Vehicle Types in Program ­ Full ZEV: true zero) #12;Electric Drive in Vehicles -- All the Ingredients for a Distributed Power System #12;Vehicle and energy storage potential · Electric vehicle charge stations: grid connection points for power

  4. Vehicle Technologies Office Merit Review 2014: Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  5. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  6. Vehicle Technologies Office Merit Review 2014: Pennsylvania Partnership for Promoting Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Delaware Valley Regional Planning Commission at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  7. Vehicle Technologies Office Merit Review 2014: Trip Prediction and Route-Based Vehicle Energy Management

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about trip prediction...

  8. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification – Ram 1500 PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  9. Vehicle Technologies Office Merit Review 2014: ParaChoice: Parametric Vehicle Choice Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about parametric...

  10. Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

  11. Vehicle Technologies Office Merit Review 2014: Relationships between Vehicle Mass, Footprint, and Societal Risk

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  12. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    commitment to hydrogen and fuel cell vehicles has beenand storage R&D and fuel cell vehicle program, whilepower applications of fuel cells. Congress has recently re-

  13. In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2012-07-01T23:59:59.000Z

    This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

  14. Argonne National Laboratory puts alternative-fuel vehicles to the test

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    This paper describes the participation in the alternative-fueled vehicles (AFV) program at Argonne National Laboratory. Argonne maintains a fleet of 300 vehicles, including AFV`s.

  15. Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicles driving schedules

    E-Print Network [OSTI]

    Cardoso, Goncalo

    2014-01-01T23:59:59.000Z

    R. Firestone, “Optimal Technology Selection and Operation ofDOE - Energy Vehicle Technologies Program. Plug-in HybridUsing vehicle-to-grid technology for frequency regulation

  16. Hydrogen ICE Vehicle Testing Activities

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

  17. Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

    2005-01-01T23:59:59.000Z

    of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

  18. Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

  19. Sandia National Laboratories: unmanned aerial system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNationalhydrogen components Energyunmanned aerial

  20. Remotely deployable aerial inspection using tactile sensors

    SciTech Connect (OSTI)

    MacLeod, C. N.; Cao, J.; Pierce, S. G.; Dobie, G.; Summan, R. [Centre for Ultrasonic Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom); Sullivan, J. C.; Pipe, A. G. [Bristol Robotics Laboratory, University of the West of England, Bristol, BS16 1QY (United Kingdom)

    2014-02-18T23:59:59.000Z

    For structural monitoring applications, the use of remotely deployable Non-Destructive Evaluation (NDE) inspection platforms offer many advantages, including improved accessibility, greater safety and reduced cost, when compared to traditional manual inspection techniques. The use of such platforms, previously reported by researchers at the University Strathclyde facilitates the potential for rapid scanning of large areas and volumes in hazardous locations. A common problem for both manual and remote deployment approaches lies in the intrinsic stand-off and surface coupling issues of typical NDE probes. The associated complications of these requirements are obviously significantly exacerbated when considering aerial based remote inspection and deployment, resulting in simple visual techniques being the preferred sensor payload. Researchers at Bristol Robotics Laboratory have developed biomimetic tactile sensors modelled on the facial whiskers (vibrissae) of animals such as rats and mice, with the latest sensors actively sweeping their tips across the surface in a back and forth motion. The current work reports on the design and performance of an aerial inspection platform and the suitability of tactile whisking sensors to aerial based surface monitoring applications.

  1. Chevrolet Volt Vehicle Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    Chevrolet Volt Vehicle Demonstration Fleet Summary Report Reporting period: October 2011 through December 2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All...

  2. Development and Use of a Computer Program “Hyper-N” to Predict the Performance of Air Vehicles Traveling at Hypersonic Speeds.

    E-Print Network [OSTI]

    Baalla, Younes

    2010-01-01T23:59:59.000Z

    ??Abstract The main objective of this thesis was to develop a method than can be used to approximate the pressure forces on air vehicles traveling… (more)

  3. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation - Sixth Quarterly Report, January - March 2004

    SciTech Connect (OSTI)

    U.S. Department of Energy; Larry Zirker

    2004-06-01T23:59:59.000Z

    This Oil Bypass Filter Technology Evaluation quarterly report (January-March 2004) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. This quarter, the heavy-duty buses traveled 88,747 miles, and as of the end of March 2004, the eight buses have accumulated 412,838 total test miles without requiring an oil change. This represents an avoidance of 34 oil changes, which equates to 1,199 quarts (300 gallons) of new oil not consumed and, furthermore, 1,199 quarts of waste oil not generated.

  4. Clean Transportation Program | 919-515-3480 | www.ncsc.ncsu.edu How to tell if your vehicle is E85 compatible...

    E-Print Network [OSTI]

    FUEL VEHICLES FORD MOTOR COMPANY CONTINUED Make, Model, & Engine Size Year(s) 8th VIN Character Mercury Sable, 3.0L 2002-2004 2 Mercury Grand Marquis (2-valve), 4.6L 2007-2011 V GENERAL MOTORS *2008 & 2009 VEHICLES GENERAL MOTORS CONTINUED *2008 & 2009 FFV models have yellow fuel caps to identify them as E85

  5. Clean Transportation Program | 919-515-3480 | www.ncsc.ncsu.edu How to tell if your vehicle is E85 compatible...

    E-Print Network [OSTI]

    .cleantransportation.org #12;E85 CAPABLE FLEX FUEL VEHICLES General Motors CONTINUED Make, Model, & Engine Size Year(s) 8th VIN Marquis (2-valve), 4.6L 2007-2011 V GENERAL MOTORS *2008 & 2009 FFV models have yellow fuel caps compatible... Check to see if your vehicle is listed below. Be certain to check the ENGINE SIZE

  6. The future of electric two-wheelers and electric vehicles in China

    E-Print Network [OSTI]

    Weinert, Jonathan X.; Ogden, Joan M.; Sperling, Dan; Burke, Andy

    2008-01-01T23:59:59.000Z

    SAE Hybrid Vehicle Symposium, San Diego CA, 13–14 February.emissions from a plug-in hybrid vehicle (PHEV) in China has2008. Nissan’s Electric and Hybrid Electric Vehicle Program.

  7. Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Vehicle Technologies Office: AVTA - Electric Vehicle Community...

    Broader source: Energy.gov (indexed) [DOE]

    Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

  9. Vehicle Technologies Office: Advanced Vehicle Testing Activity...

    Energy Savers [EERE]

    initative. Together, these projects make up the largest ever deployment of all-electric vehicles, plug-in hybrid electric vehicles, and charging infrastructure in the...

  10. Dynamometer tests of the Ford Ecostar Electric Vehicle No. 41

    SciTech Connect (OSTI)

    Cole, G.H.; Richardson, R.A.; Yarger, E.J.

    1995-09-01T23:59:59.000Z

    A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over several standard driving regimes. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of several dynamometer driving cycle tests and a constant current discharge, and presents observations regarding the vehicle state-of-charge indicator and remaining range indicator.

  11. Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...

    Broader source: Energy.gov (indexed) [DOE]

    VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE...

  12. Identify Petroleum Reduction Strategies for Vehicles and Mobile Equipment

    Broader source: Energy.gov [DOE]

    As defined by the Federal Energy Management Program (FEMP), greenhouse gas (GHG) emission reduction strategies for Federal vehicles and equipment are based on the three driving principles of petroleum reduction: Reduce vehicle miles traveled Improve fuel efficiency Use alternative fuels.

  13. Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov (indexed) [DOE]

    Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

  14. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  15. Alternative Fuel Transportation Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Merit Review: EPAct State and Alternative Fuel Provider Fleets "Alternative Fuel Transportation Program" Dana O'Hara, DOE Ted Sears, NREL Vehicle Technologies Program June 20,...

  16. Aerial Photography At Roosevelt Hot Springs Geothermal Area ...

    Open Energy Info (EERE)

    Exploration Technique Aerial Photography Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

  17. NNSA to conduct Aerial Radiation Assessment Survey over Phoenix...

    National Nuclear Security Administration (NNSA)

    conduct Aerial Radiation Assessment Survey over Phoenix, Scottsdale, Glendale, Tempe Areas | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  18. Aerial Photography At Nevada Test And Training Range Area (Sabin...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location...

  19. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Activity: Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area...

  20. aerial monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Monitoring System for the Dynamics of Lands Based on Aerial Photos Assessed by Artificial Neural Techniques Physics Websites Summary: interest in this direction is the...

  1. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  2. Tracking Progress Last updated 7/26/2013 Plug-in Electric Vehicle 1

    E-Print Network [OSTI]

    ) by 2025. ZEVs include all-electric vehicles, plug-in hybrid vehicles, and fuel cell electric vehicles. The Alternative and Renewable Fuel and Vehicle Technology Program (ARFVTP), authorized by Assembly Bill 118 (Nunez, advanced technology cars and trucks, vehicle manufacturing, and fueling infrastructure are intended

  3. E-Print Network 3.0 - aerial multispectral thermographic Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Ruijin Ma Summary: . A pilot shoreline-mapping project was carried out in the Lake Erie area using NOAANGS aerial images... , for instance, by digitizing from aerial...

  4. E-Print Network 3.0 - aerial photography scales Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    back into the mid 1930s... : aerial photography, rangelands, ecology, historic landscape legacies, vegetation change. 1 INTRODUCTION... . Acquisition of aerial photography,...

  5. E-Print Network 3.0 - aerial photo-based remote Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vol. 2, 023541 (2008) Page 2 12;Fig. 1. Enhanced aerial photo of a network... area, landscape perspective of the aerial photography. Journal of Applied ... Source: USDA, Jornada...

  6. E-Print Network 3.0 - aerial photography Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    back into the mid 1930s... : aerial photography, rangelands, ecology, historic landscape legacies, vegetation change. 1 INTRODUCTION... . Acquisition of aerial photography,...

  7. E-Print Network 3.0 - aerial remote sensing Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vol. 2, 023541 (2008) Page 2 12;Fig. 1. Enhanced aerial photo of a network... area, landscape perspective of the aerial photography. ... Source: USDA, Jornada Experimental Range...

  8. Mapping of Submerged Aquatic Vegetation Using Autonomous Underwater Vehicles in Nearshore Regions

    SciTech Connect (OSTI)

    Jones, Mark E.; Miller, Lee M.; Woodruff, Dana L.; Ewert, Daniel W.

    2007-10-02T23:59:59.000Z

    The use of an autonomous underwater vehicle (AUV) equipped with sidescan sonar was investigated for determining the boundaries of nearshore submerged aquatic vegetation beds, specifically eelgrass (Zostera marina). Shifts in eelgrass bed morphology, size, and distribution are used as indicators in monitoring programs to measure the impacts of coastal development and environmental stressors on eelgrass and to establish the efficacy of restoration programs. However, many monitoring programs necessarily extend over multiple-year time periods. Therefore, techniques that are easily reproducible, accurate, and cost-effective can demonstrate distinct advantages over some of the more traditional and labor-intensive methods, such as diver assessments and transects of shoot counts. Remote monitoring of eelgrass beds using satellite and aerial imagery has been demonstrated with moderate success, but requires groundtruthing, which can be costly and which frequently cannot delineate the deeper boundaries of eelgrass beds. One possible means for low-cost mapping is the use of AUVs equipped with acoustic imaging hardware. AUVs provide an ideal platform, because they can be deployed by small teams (two people), they are highly maneuverable, they can cover large areas over a relatively short time period (3knot operational speed), and they are equipped with multiple oceanographic instruments for correlated data collection. This paper describes the use of sidescan-equipped AUV technology deployed over multiple time periods at the same location where imagery of eelgrass beds was obtained and analyzed for comparative purposes.

  9. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology

    E-Print Network [OSTI]

    California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter "Program") to be administered by the California Energy Commission (Energy Commission).1 AB 118 authorizes

  10. California Energy Commission Alternative and Renewable Fuel and Vehicle Technology

    E-Print Network [OSTI]

    California Energy Commission Alternative and Renewable Fuel and Vehicle Technology Program Advisory by the Energy Commission. Under the Program, the following shall be eligible for funding: 3 · Alternative, Statutes of 2007) created the Alternative and Renewable Fuel and Vehicle Technology Program (hereinafter

  11. Electric Vehicle (EV) Carsharing in A Senior Adult Community

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Electric Vehicle (EV) Carsharing in A Senior Adult Community Susan with Nissan Motor Co. to study feasibility of EV carsharing program in senior adult

  12. Vehicle Technologies Office Merit Review 2014: Power Electronics Packaging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Power...

  13. Vehicle Technologies Office Merit Review 2014: Voltage Fade,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Voltage Fade, an ABR Deep Dive Project: Status and Outcomes Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  14. Vehicle Technologies Office Merit Review 2014: Development and...

    Energy Savers [EERE]

    Long-Term Energy and GHG Emission Macroeconomic Accounting Tool Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  15. Vehicle Technologies Office Merit Review 2014: Impact Analysis...

    Energy Savers [EERE]

    Impact Analysis: VTO Baseline and Scenario (BaSce) Activities Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  16. Vehicle Technologies Office Merit Review 2014: Advanced Nanolubricants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Improved Energy Efficiency and Reduced Emissions in Engines Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  17. Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

  18. Vehicle Technologies Office Merit Review 2014: Battery Safety Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

  19. Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment

    Broader source: Energy.gov (indexed) [DOE]

    pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifications Grid connection Hardwired Connector type J1772 Test...

  20. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. apearravt028boan2010...

  1. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  2. Vehicle Technologies Office Merit Review 2014: Refuel Colorado

    Broader source: Energy.gov [DOE]

    Presentation given by Colorado Energy Office at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Refuel Colorado.

  3. Vehicle Technologies Office Merit Review 2014: Unified Modeling...

    Energy Savers [EERE]

    FASTSim and ADOPT Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review...

  4. Vehicle Technologies Office Merit Review 2014: Design Optimization...

    Broader source: Energy.gov (indexed) [DOE]

    Injectors Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  5. Vehicle Technologies Office Merit Review 2014: Characterization of Catalysts Microstructures

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  6. Vehicle Technologies Office Merit Review 2014: Significant Cost...

    Broader source: Energy.gov (indexed) [DOE]

    Direct Separator Coating, and Fast Formation Technologies Presentation given by Johnson Controls at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office...

  7. Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  8. Vehicle Technologies Office Merit Review 2014: Engine Friction Reduction Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about engine friction...

  9. Vehicle Technologies Office: Alternative Fuels Research and Deployment...

    Office of Environmental Management (EM)

    (mainly state and utility fleets) under the Energy Policy Act of 1992, while the Federal Energy Management Program works with federal fleets. Test alternative fuel vehicles: VTO...

  10. Vehicle Technologies Office Merit Review 2014: Enhanced High...

    Broader source: Energy.gov (indexed) [DOE]

    Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enhanced...

  11. Vehicle Technologies Office Merit Review 2014: A Materials Approach...

    Broader source: Energy.gov (indexed) [DOE]

    PPG Industries at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a materials approach to...

  12. Vehicle Technologies Office Merit Review 2014: Wireless Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wireless Charging Vehicle Technologies Office Merit Review 2014: Wireless Charging Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program...

  13. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  14. Vehicle Technologies Office Merit Review 2014: A Combined Experimental...

    Energy Savers [EERE]

    2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined experimental and modeling approach for...

  15. Now Available: Evaluating Electric Vehicle Charging Impacts and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    changes that will be needed to handle large vehicle charging loads. Under OE's Smart Grid Investment Grant (SGIG) program, six utilities evaluated operations and...

  16. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

  17. Vehicle Technologies Office Merit Review 2014: Abuse Tolerance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about abuse tolerance...

  18. Vehicle Technologies Office Merit Review 2014: Dry Process Electrode Fabrication

    Broader source: Energy.gov [DOE]

    Presentation given by Navitas Systems at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about dry process electrode...

  19. Vehicle Technologies Office Merit Review 2014: Reliability of Electrical Interconnects

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office Merit Review 2014: Novel Anode Materials

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel anode...

  1. Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck Program Technology and System Level Demonstration of Highly Efficient and Clean, Diesel Powered Class 8 Trucks...

  2. Vehicle Technologies Office Merit Review 2014: DOE's Effort to...

    Energy Savers [EERE]

    Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  3. Vehicle Technologies Office Merit Review 2014: Benchmarking EV...

    Energy Savers [EERE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  4. Vehicle Technologies Office Merit Review 2014: Zero-Emission...

    Office of Environmental Management (EM)

    given by South Coast Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  5. Vehicle Technologies Office Merit Review 2014: High Speed Joining...

    Energy Savers [EERE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  6. Chevrolet Volt Vehicle Demonstration

    Broader source: Energy.gov (indexed) [DOE]

    Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

  7. Hydrogen Fuel Cell Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    1992-01-01T23:59:59.000Z

    Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

  8. Vehicle Technologies Office Merit Review 2014: Robust Nitrogen oxide/Ammonia Sensors for Vehicle on-board Emissions Control

    Broader source: Energy.gov [DOE]

    Presentation given by Los Alamos National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about robust...

  9. Vehicle Technologies Office Merit Review 2014: Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion concepts -...

  10. Vehicle Technologies Office Merit Review 2014: Unlocking Private Sector Financing for Alternative Fuel Vehicles and Fueling Infrastructure

    Broader source: Energy.gov [DOE]

    Presentation given by National Association of State Energy Officials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  11. Vehicle Technologies Office Merit Review 2014: Transportation Energy Data Book, Vehicle Technologies Market Report, and VT Fact of the Week

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the...

  12. Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about in...

  13. Vehicle Technologies Office Merit Review 2014: Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of...

  14. Vehicle Technologies Office Merit Review 2014: Consumer-Segmented Vehicle Choice Modeling: the MA3T Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  15. Development of Advanced Energy Storage Systems for High Power, Lower Energy ? Energy Storage System (LEESS) for Power Assist Hybrid Electric Vehicle (PAHEV) Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Aerial Measuring System Technical Integration Annual Report 2002

    SciTech Connect (OSTI)

    Bechtel Nevada Remote Sensing Laboratory

    2003-06-01T23:59:59.000Z

    Fiscal Year 2002 is the second year of a five-year commitment by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) to invest in development of new and state-of-the-art technologies for the Aerial Measuring Systems (AMS) project. In 2000, NNSA committed to two million dollars for AMS Technical Integration (TI) for each of five years. The tragedy of September 11, 2001, profoundly influenced the program. NNSA redirected people and funding resources at the Remote Sensing Laboratory (RSL) to more immediate needs. Funds intended for AMS TI were redirected to NNSA's new posture of leaning further forward throughout. AMS TI was brought to a complete halt on December 10, 2001. Then on April 30, 2002, NNSA Headquarters allowed the restart of AMS TI at the reduced level of $840,000. The year's events resulted in a slow beginning of several projects, some of which were resumed only a few weeks before the AMS TI Symposium held at RSL on July 30.

  17. Clean Transportation Program | 919-515-3480 | www.ncsc.ncsu.edu How to tell if your vehicle is E85 compatible...

    E-Print Network [OSTI]

    FUEL VEHICLES FORD MOTOR COMPANY CONTINUED Make, Model, & Engine Size Year(s) 8th VIN Character Lincoln.6L 2007-2011 V GENERAL MOTORS *2008 & 2009 FFV models have yellow fuel caps to identify them as E85 Motors CONTINUED Make, Model, & Engine Size Year(s) 8th VIN Character Chevy Malibu 2.4L 2.4L fleet

  18. Electric vehicle fleet operations in the United States

    SciTech Connect (OSTI)

    Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; O`Hara, D. [Dept. of Energy, Washington, DC (United States)

    1998-03-01T23:59:59.000Z

    The US Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, batteries, and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation testing of electric vehicles and supporting the development of an electric vehicle infrastructure. These efforts include the evaluation of electric vehicles in baseline performance, accelerated reliability, and fleet operations testing. The baseline performance testing focuses on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 16 electric vehicle models from 1994 through 1997. During 1997, the Chevrolet S10 and Ford Ranger electric vehicles were tested. During 1998, several additional electric vehicles from original equipment manufacturers will also be baseline performance tested. This and additional information is made available to the public via the Program`s web page (http://ev.inel.gov/sop). In conjunction with industry and other groups, the Program also supports the Infrastructure Working Council in its development of electric vehicle communications, charging, health and safety, and power quality standards. The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its qualified vehicle test partners: Electric Transportation Applications, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company at the Idaho National Engineering and Environmental Laboratory.

  19. Automotive Waste Heat Conversion to Power Program

    Broader source: Energy.gov (indexed) [DOE]

    or otherwise restricted information Project ID ace47lagrandeur Automotive Waste Heat Conversion to Power Program- 2009 Hydrogen Program and Vehicle Technologies Program...

  20. Automotive Waste Heat Conversion to Power Program

    Broader source: Energy.gov (indexed) [DOE]

    Start Date: Oct '04 Program End date: Oct '10 Percent Complete: 80% 2 Automotive Waste Heat Conversion to Power Program- Vehicle Technologies Program Annual Merit Review- June...

  1. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ti02erickson...

  2. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape08elrefaie...

  3. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ti007erickson2011o...

  4. SuperTruck Program: Engine Project Review | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Program: Engine Project Review SuperTruck Program: Engine Project Review 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  5. 2010 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, Jacob [U.S. Department of Energy; Davis, Stacy Cagle [ORNL; Diegel, Susan W [ORNL

    2011-06-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the U.S. Department of Energy s (DOE s) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop "leap frog" technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  6. 2008 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Ward, J.; Davis, S.

    2009-07-01T23:59:59.000Z

    In the past five years, vehicle technologies have advanced on a number of fronts: power-train systems have become more energy efficient, materials have become more lightweight, fuels are burned more cleanly, and new hybrid electric systems reduce the need for traditional petroleum-fueled propulsion. This report documents the trends in market drivers, new vehicles, and component suppliers. This report is supported by the Department of Energy's (DOE's) Vehicle Technologies Program, which develops energy-efficient and environmentally friendly highway transportation technologies that will reduce use of petroleum in the United States. The long-term aim is to develop 'leap frog' technologies that will provide Americans with greater freedom of mobility and energy security, while lowering costs and reducing impacts on the environment.

  7. U.S. Based HEV and PHEV Transaxle Program

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. 2011 Vehicle Technologies Market Report

    SciTech Connect (OSTI)

    Davis, Stacy Cagle [ORNL; Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL

    2012-02-01T23:59:59.000Z

    This report details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy s (DOE) Vehicle Technologies Program (VTP), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies. This third edition since this report was started in 2008 offers several marked improvements relative to its predecessors. Most significantly, where earlier editions of this report focused on supplying information through an examination of market drivers, new vehicle trends, and supplier data, this edition uses a different structure. After opening with a discussion of energy and economics, this report features a section each on the light-duty vehicle and heavy/medium truck markets, and concluding with a section each on technology and policy. In addition to making this sectional re-alignment, this year s edition of the report also takes a different approach to communicating information. While previous editions relied heavily on text accompanied by auxiliary figures, this third edition relies primarily on charts and graphs to communicate trends. Any accompanying text serves to introduce the trends communication by the graphic and highlight any particularly salient observations. The opening section on Energy and Economics discusses the role of transportation energy and vehicle markets on a national (and even international) scale. For example, Figures 11 through 13 discuss the connections between global oil prices and U.S. GDP, and Figures 20 and 21 show U.S. employment in the automotive sector. The following section examines Light-Duty Vehicle use, markets, manufacture, and supply chains. Figures 26 through 33 offer snapshots of major light-duty vehicle brands in the U.S. and Figures 38 through 43 examine the performance and efficiency characteristics of vehicles sold. The discussion of Medium and Heavy Trucks offers information on truck sales (Figures 58 through 61) and fuel use (Figures 64 through 66). The Technology section offers information on alternative fuel vehicles and infrastructure (Figures 68 through 77), and the Policy section concludes with information on recent, current, and near-future Federal policies like the Cash for Clunkers program (Figures 87 and 88) and the Corporate Automotive Fuel Economy standard (Figures 90 through 99) and. In total, the information contained in this report is intended to communicate a fairly complete understanding of U.S. highway transportation energy through a series of easily digestible nuggets.

  9. Powertrain & Vehicle Research Centre

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

  10. Massachusetts Electric Vehicle Efforts

    E-Print Network [OSTI]

    California at Davis, University of

    Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

  11. Alternative Fuel Vehicle Data

    Reports and Publications (EIA)

    2013-01-01T23:59:59.000Z

    Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

  12. An Innovative Approach for Data Collection and Handling to Enable Advancements in Micro Air Vehicle Persistent Surveillance

    E-Print Network [OSTI]

    Goodnight, Ryan David

    2010-10-12T23:59:59.000Z

    Vehicle Persistent Surveillance. (August 2009) Ryan David Goodnight, B.S., Texas A&M University Chair of Advisory Committee: Dr. Helen Reed The success of unmanned aerial vehicles (UAV) in the Iraq and Afghanistan conflicts has led to increased... .............................. 24 10 Paparazzi Tiny V2.1 Autopilot System ...................................................... 25 11 Aerovironment Black Widow MAV Subsystem Anatomy ........................ 28 12 Texas A&M University Integrated MAV (IMAV) Inventor...

  13. AVTA: 2010 Electric Vehicles International Neighborhood Electric...

    Energy Savers [EERE]

    10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

  14. Vehicle Technologies Office Merit Review 2013: Fleet DNA

    Broader source: Energy.gov [DOE]

    Presentation given by the National Renewable Energy Laboratory (NREL) at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a tool for analyzing fleet characteristics.

  15. Vehicle Technologies Office 2013 Merit Review: A System for Automatica...

    Broader source: Energy.gov (indexed) [DOE]

    A presentation given by PPG during the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on a system for...

  16. New York, NY Vehicle Purchase & Infrastructure Development Incentives

    Broader source: Energy.gov [DOE]

    The New York State Energy Research and Development Authority (NYSERDA) administers the New York City Private Fleet Alternative Fuel/Electric Vehicle Program (Program) in cooperation with New York...

  17. Vehicle Technologies Office Merit Review 2014: Overview of the...

    Energy Savers [EERE]

    R&D Program Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  18. Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Seeo, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high-voltage solid polymer...

  19. Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

  20. Vehicle Technologies Office Merit Review 2014: Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about level 2 (in-depth...