Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AEP Appalachian Power - Commercial and Industrial Rebate Programs (West  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Appalachian Power - Commercial and Industrial Rebate Programs AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $150,000/account/year Program Info Start Date 3/11/2011 State West Virginia Program Type Utility Rebate Program Rebate Amount Custom: 50% Unitary/Split AC/Air Source Heat Pumps: $40/ton Packaged Terminal A/C: $30/ton Water/Air Cooled Chillers: $30/ton Ground Source Heat Pump: $50/ton VFDs: $40/HP Programmable Thermostat: $25/unit T8 and T5 Fluorescent Retrofits: $2-$21/fixture T8 and T5 High Bay Fixtures: $28-$209/fixture

2

AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Appalachian Power - Residential Energy Efficiency Rebate AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) < Back Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Attic or Sidewall Insulation: $300 Basement or Crawl Space Insulation: $200 HVAC Maintenance: $100 Duct Sealing: $100 Envelope Air Infiltration Reduction: $200 Program Info Funding Source ApCo HomeSMART Program Start Date 3/11/2011 State West Virginia Program Type Utility Rebate Program Rebate Amount HVAC Maintenance: 50% of cost Insulation: $0.30/sq ft Air Source Heat Pump (replacing electric furnace): $100 or $200

3

American Energy Power Systems Inc AEPS | Open Energy Information  

Open Energy Info (EERE)

Inc AEPS Inc AEPS Jump to: navigation, search Name American Energy Power Systems Inc (AEPS) Place Sacramento, California Sector Solar Product Offered distributed power systems including PV panels, solar water heating, fuel cells and radiant floor heating applications. References American Energy Power Systems Inc (AEPS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Energy Power Systems Inc (AEPS) is a company located in Sacramento, California . References ↑ "American Energy Power Systems Inc (AEPS)" Retrieved from "http://en.openei.org/w/index.php?title=American_Energy_Power_Systems_Inc_AEPS&oldid=342116" Categories: Clean Energy Organizations

4

AEP Appalachian Power - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

showerheads, LED nightlights, two water heater temperature adjustments, water heater pipe insulation, refrigerator thermometer, refrigerator coil cleaning brush, and basic air...

5

Appalachian Power Co | Open Energy Information  

Open Energy Info (EERE)

APCO) APCO) Jump to: navigation, search Name Appalachian Power Co Abbreviation APCO Affiliate Of AEP Place Ohio Service Territory Virginia, West Virginia, Tennessee Website www.appalachianpower.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 733 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now!

6

AEP Appalachian Power - Commercial and Industrial Rebate Programs...  

Open Energy Info (EERE)

Programmable Thermostats, Commercial Refrigeration Equipment, Geothermal Heat Pumps, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

7

AEP Appalachian Power - Residential Home Retrofit Program (West...  

Open Energy Info (EERE)

Programs Amount HVAC Maintenance: 50% of cost Insulation: 0.30sq ft Air Source Heat Pump (replacing electric furnace): 100 or 200 Water Heater Insulation Jacket: 10...

8

AEP Appalachian Power - Commercial and Industrial Rebate Programs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pumps: 40ton Packaged Terminal AC: 30ton WaterAir Cooled Chillers: 30ton Ground Source Heat Pump: 50ton VFDs: 40HP Programmable Thermostat: 25unit T8 and T5...

9

Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).  

DOE Green Energy (OSTI)

AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

Nourai, Ali (American Electric Power Company, Columbus, OH)

2007-06-01T23:59:59.000Z

10

Appalachian Power Co | Open Energy Information  

Open Energy Info (EERE)

Power Co Power Co Abbreviation APCO Affiliate Of AEP Place Ohio Service Territory Virginia, West Virginia, Tennessee Website www.appalachianpower.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 733 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Buying Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

11

Columbus Southern Power Company (doing business as AEP Ohio) Smart Grid  

Open Energy Info (EERE)

doing business as AEP Ohio) Smart Grid doing business as AEP Ohio) Smart Grid Demonstration Project Jump to: navigation, search Project Lead Columbus Southern Power Company (doing business as AEP Ohio) Country United States Headquarters Location Columbus, Ohio Recovery Act Funding $75,161,246.00 Total Project Value $150,322,492.00 Coordinates 39.9611755°, -82.9987942° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

12

2012 SG Peer Review - Recovery Act: AEP Ohio gridSMART Demonstration Project - Karen Sloneker, Columbus Southern Power (AEP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Program Peer Review Meeting AEP Ohio gridSMART ® Demonstration Project Karen Sloneker AEP Ohio gridSMART Project Director ® December 2008 AEP Ohio gridSMART ® Demonstration Project Objectives * To build an integrated secure smart grid infrastructure. * Attract, educate, enlist and retain consumers using innovative business models that provide tools to reduce costs, consumption and peak demand. * Gather data on technology and smart grid business models to forecast national impact. Life-cycle Funding 2010 - 2013 $73,660,317 Technical Scope (Insert graphic here) * 110,000 AMI meters and associated infrastructure * Consumer Managed Energy Technology (experimental tariffs, consumer programs, web portal; smart appliances, and plug-in electric vehicles) * Innovative Demand Management * Distribution Automation and Reliability

13

American Electric Power (AEP) Smart Grid Demonstration Host-Site Project Description  

Science Conference Proceedings (OSTI)

This report provides a description of the American Electric Power (AEP) Smart Grid Demonstration Host-Site Project as part of the Electric Power Research Institute's (EPRI's) five-year smart grid demonstration initiative. The EPRI initiative includes core smart grid research and a number of large-scale smart grid projects with 19 funding utility members. The project is focused on integrating large-scale distributed energy resources (DER), including demand response, storage, distributed generation, and di...

2009-09-16T23:59:59.000Z

14

American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1)  

NLE Websites -- All DOE Office Websites (Extended Search)

American Electric Power (AEP): American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration (WITHDRAWN AT CONCLUSION OF PHASE 1) Background A need exists to further develop carbon management technologies that capture and store or beneficially reuse carbon dioxide (CO 2 ) that would otherwise be emitted into the atmosphere from coal-based electric power generating facilities. Carbon capture, utilization and storage (CCUS) technologies offer great potential for reducing CO

15

Appalachian Power Co (West Virginia) | Open Energy Information  

Open Energy Info (EERE)

Appalachian Power Co Appalachian Power Co Place West Virginia Utility Id 733 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png G.S. - T.O.D. Commercial L.G.S. Commercial R.S. Residential R.S. - T.O.D Residential Average Rates Residential: $0.0813/kWh Commercial: $0.0731/kWh Industrial: $0.0562/kWh The following table contains monthly sales and revenue data for Appalachian Power Co (West Virginia). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

16

AEP Wind Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Energy LLC Wind Energy LLC Jump to: navigation, search Name AEP Wind Energy LLC Place Dallas, Texas Zip 75266 1064 Sector Wind energy Product AEP Wind Energy LLC is a project developer in the wind industry. It is an affiliate of American Electric Power. References AEP Wind Energy LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. AEP Wind Energy LLC is a company located in Dallas, Texas . References ↑ "AEP Wind Energy LLC" Retrieved from "http://en.openei.org/w/index.php?title=AEP_Wind_Energy_LLC&oldid=341822" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link

17

AEP Interoperability Test Plan  

Science Conference Proceedings (OSTI)

To meet consumers' growing electricity demand and society's desire to reduce carbon dioxide emissions from electric generation while ensuring the continued availability of economical and reliable electricity, AEP has partnered with the U.S. Department of Energy (DOE) in the AEP Ohio gridSMARTsm Demonstration Project. The project will integrate commercially available products, new technologies, and new consumer products and services within a single, secure, two-way communication network between the utilit...

2010-08-10T23:59:59.000Z

18

AEP Texas - Commercial and Industrial Energy Efficiency Rebate...  

Open Energy Info (EERE)

Incentive Programs Amount 175kW for peak demand reduction and 0.060kWh for annual energy savings Program Administrator AEP Southwestern Electric Power Website http:...

19

PP-317 AEP Texas Central Company | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17 AEP Texas Central Company PP-317 AEP Texas Central Company Presidential permit authorizing AEP Texas Central Company to construct, operate, and maintain electric transmission...

20

"1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954  

U.S. Energy Information Administration (EIA) Indexed Site

West Virginia" West Virginia" "1. John E Amos","Coal","Appalachian Power Co",2900 "2. Harrison Power Station","Coal","Allegheny Energy Supply Co LLC",1954 "3. Mt Storm","Coal","Virginia Electric & Power Co",1571 "4. Mitchell","Coal","Ohio Power Co",1560 "5. Mountaineer","Coal","Appalachian Power Co",1310 "6. Pleasants Power Station","Coal","Allegheny Energy Supply Co LLC",1288 "7. Fort Martin Power Station","Coal","Monongahela Power Co",1107 "8. Philip Sporn","Coal","Appalachian Power Co",1020 "9. Kammer","Coal","Ohio Power Co",600

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Central Appalachian Coal Futures Overview  

U.S. Energy Information Administration (EIA)

Central Appalachian Coal Futures Overview In 1996, the New York Mercantile Exchange (NYMEX) began providing companies in the electric power industry with secure and ...

22

Building Energy Software Tools Directory: AEPS System Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

AEPS System Planning AEPS System Planning ASC logo The Alternative Energy Product Suite (AEPS) System Planning tool is a software application for the design, modeling, and simulation of electrical power systems with an emphasis on renewable energy sources (solar, wind, and hydro). The application calculates power generation, consumption, and storage for modeled systems. Power and cost data can be analyzed to optimize the modeled system based on user objectives and priorities. The Modeling capability supports graphically constructing an electrical power/alternative energy system consisting of site, generation, storage, and load components, including electrical conversion and control hardware. Models can support on-grid and off-grid systems. The Simulation capability generates, consumes, and uses grid and

23

Michael Heyeck  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

need in Eastern West Virginia and Southwestern 1 The AEP Operating Companies are AEP Texas North Company, AEP Texas Central Company, Appalachian Power Company, Columbus Southern...

24

AEP SWEPCO - SMART Source Solar PV Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program AEP SWEPCO - SMART Source Solar PV Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) systems on homes. Rebates may be assigned to the customer, a service provider, or a third party. Rebates are offered at a rate of $1.50 per watt (DC) for residential installations and $1.20 per watt (DC) for non-residential installations. The maximum per project and per customer rebate for residential systems is

25

AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) < Back Eligibility Construction Installer/Contractor Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Ventilation Maximum Rebate Project Sponsor Limits (Large Projects): $125,000 Project Sponsor Limits (Small Projects): $30,000 Program Info State Texas Program Type Utility Rebate Program Rebate Amount Tier 1: $245/kW; $0.08/kWh Tier 2: $270/kW; $0.09/kWh Tier 3: $300/kW; $0.10/kWh Tier 4: $350/kW; $0.11/kWh Provider Southwestern Electric Power Company The SWEPCO Residential Standard Offer Program provides incentives to

26

EA-318-A AEP Energy Partners, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Energy Partners, Inc. Order authorizing AEP Energy Partners, Inc to export electric energy to Mexico EA-318-A AEP Energy Partners, Inc. More Documents & Publications EA-318-C...

27

AEP Texas Central Company - SMART Source Solar PV Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Company - SMART Source Solar PV Rebate Program Central Company - SMART Source Solar PV Rebate Program AEP Texas Central Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $31,2500 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/W DC Non-residential: $1.25/W DC Provider Smart Source PV Program American Electric Power Texas Central Company (AEP-TCC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes are eligible to participate in the

28

AEP Generating Company | Open Energy Information  

Open Energy Info (EERE)

Company Company Jump to: navigation, search Name AEP Generating Company Place Ohio Service Territory Ohio Website www.aep.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 343 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

29

AEP Texas North Company | Open Energy Information  

Open Energy Info (EERE)

AEP Texas North Company AEP Texas North Company Place Texas Service Territory Texas Website www.aeptexas.com Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 20404 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates

30

Triaxial HTS Cable for the AEP Bixby Project  

Science Conference Proceedings (OSTI)

Ultera has installed a single 200-meter long high temperature superconducting (HTS) 3-phase triaxial design cable at the American Electric Power (AEP) Bixby substation in Columbus, Ohio. The cable connects a 132/13.8 kV transformer to the distribution switchgear serving seven outgoing circuits. It was designed to carry 3000 Arms. Testing of 3- to 5-meter length prototype cables, including a 5-meter prototype with full scale terminations tested at ORNL was conducted prior to the manufacture and installation of the AEP triaxial cable. These prototypes were used to demonstrate the crucial operating conditions including steady state operation at the 3000 Arms design current, high voltage operation, high voltage withstand and 110 kV impulse, and overcurrent fault capability. A summary of the results from the thermal analysis and testing conducted by Ultera and ORNL will be presented. Some analysis of the cable thermal-hydraulic response based on the testing that were used to determine some of the cable cryogenic system requirements are also presented.

Demko, Jonathan A [ORNL; Gouge, Michael J [ORNL; Lindsay, David T [ORNL; Roden, Mark L [ORNL; Tolbert, Jerry Carlton [ORNL

2007-01-01T23:59:59.000Z

31

Generator loss of field study for AEP's Rockport plant  

SciTech Connect

Generator loss of field (LOF) conditions occur rarely. However, when LOF and consequent out-of-step conditions occur, the resultant high currents and pulsating torques can damage the turbine-generator under some conditions. Also the electrical system near the disturbance can be impacted by abnormal levels and cyclic swings of power, VArs, and voltages. This article describes the computed performance of AEP's remotely-located 2600 MW Rockport plant after simulated LOF disturbances to one of its 1300 MW cross-compound units. It shows the transmission facilities near Rockport, as well as nearby plants. Because of this topology, LOF on one unit can significantly impact the adjacent Rockport unit, and the reactive power drain could impose a heavy burden on transmission, impacting local voltages.

Rana, R.D.; Schulz, R.P.; Heyeck, M.; Boyer, T.R. Jr. (American Electric Power, Inc., Canton, OH (USA))

1990-04-01T23:59:59.000Z

32

EA-318-B Emergency Order issued to AEP Energy Partners Inc |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-B Emergency Order issued to AEP Energy Partners Inc EA-318-B Emergency Order issued to AEP Energy Partners Inc Emergency Order authorizing AEP Energy Partners to export electric...

33

AEP (Central, North and SWEPCO) - Commercial Solutions Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP (Central, North and SWEPCO) - Commercial Solutions Program AEP (Central, North and SWEPCO) - Commercial Solutions Program AEP (Central, North and SWEPCO) - Commercial Solutions Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Windows, Doors, & Skylights Program Info Funding Source AEP Texas (Central, North and SWEPCO) Companies State Texas Program Type Utility Rebate Program Rebate Amount $0.060/kWh and $175/kW in first year savings Provider AEP Texas Central The no-cost Commercial Solutions Program is designed to help businesses,

34

AEP Ohio - Renewable Energy Credit (REC) Purchase Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Ohio - Renewable Energy Credit (REC) Purchase Program AEP Ohio - Renewable Energy Credit (REC) Purchase Program AEP Ohio - Renewable Energy Credit (REC) Purchase Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Wind Program Info Start Date 07/2011 State Ohio Program Type Performance-Based Incentive Rebate Amount 2011 Solar: $300/REC 2012-2013 Solar: $262.50/REC 2011-2013 Wind: $34/REC Provider AEP Ohio '''''Note: This program is currently closed. All RECs were required to be transfered into AEP Ohio's GATS account by July 15, 2013 in order to be eligible for the program. No information is available regarding future solicitations. Check the program web site for more information. '''''

35

AEP Ohio - Renewable Energy Technology Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Ohio - Renewable Energy Technology Program AEP Ohio - Renewable Energy Technology Program AEP Ohio - Renewable Energy Technology Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Wind Maximum Rebate Residential Solar: 50% or $12,000 Non-Residential Solar: 50% or $75,000 Residential Wind: 50% or $7,500 Non-Residential Wind: 40% or $12,000 Program Info Start Date 07/01/2011 Expiration Date 06/30/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Solar: $1.50/watt Wind: $0.275/kWh (estimated annual performance) Provider AEP Ohio As part of the Renewable Energy Technology (RET) Program, AEP Ohio offers incentives to customers that commit their Renewable Energy Credits (RECs)

36

AEP Texas Central Company | Open Energy Information  

Open Energy Info (EERE)

Company Company Jump to: navigation, search Name AEP Texas Central Company Place Texas Service Territory Texas Website www.aeptexas.com Green Button Landing Page www.smartmetertexas.com/C Green Button Reference Page www.emeter.com/smart-grid Green Button Implemented Yes Utility Id 3278 Utility Location Yes Ownership I NERC Location TRE NERC ERCOT Yes ISO Ercot Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available.

37

Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Response to Sierra's Club Response for Temporary AEP Response to Sierra's Club Response for Temporary Emergency Authorization Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: AEP Response to Sierra's Club Response for Temporary Emergency Authorization Application from AEP Energy Partners to export electric energy to Mexico. AEP Response to Sierra Club response for Temp Emergency Authorization.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: Sierra's Club Opposition to AEP Temporary Emergency Authorization Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: Comments of Sierra Club Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners, Inc: Emergency Filing from AEP Requesting Temporary Export

38

Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inc.:Answer of AEP Energy to Sierra Club's Motion to Inc.:Answer of AEP Energy to Sierra Club's Motion to Intervene and Protest Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc.:Answer of AEP Energy to Sierra Club's Motion to Intervene and Protest Application from AEP Energy Partner's Inc to export electric energy to Mexico. Answer of AEP to Sierra Club's Motion to Intervene 2-24-12.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: Comments of Sierra Club Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: AEP Response to Sierra's Club Response for Temporary Emergency Authorization Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: Sierra's Club Opposition to AEP Temporary Emergency

39

Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sierra's Club Opposition to AEP Temporary Emergency Sierra's Club Opposition to AEP Temporary Emergency Authorization Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: Sierra's Club Opposition to AEP Temporary Emergency Authorization Application from AEP Energy Partners Inc. to export electric energy to Mexico. Sierra's Club Opposition to AEP Request for Temporary Emergency Authorization 2-17-12.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: AEP Response to Sierra's Club Response for Temporary Emergency Authorization Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: Comments of Sierra Club Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners, Inc: Emergency Filing from AEP Requesting Temporary Export

40

Appalachian Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Appalachian Electric Coop Appalachian Electric Coop Jump to: navigation, search Name Appalachian Electric Coop Place Tennessee Utility Id 727 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial General Power rate (part 3) Commercial Commercial General Power rate (Part 2)- single phase self contained metering Commercial Commercial General Power rate (part 2)-single phase transformer rated metering Commercial Commercial General Power rate (part 2)-three phase transformer rated

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Generator loss of field; Experience and studies for AEP's Rockport Plant  

SciTech Connect

This paper describes the performance of American Electric Power (AEP) Company's remotely-located 2600 MW Rockport Plant after loss of field (LOF) disturbances to one of its 1300 MW cross-compound units. Loss of field conditions occur rarely, but the resultant high currents and pulsating torques can damage a turbine-generator, and the electrical system near the disturbance will be impacted by abnormal levels or cyclic swings of power, VArs, and voltages. Rockport LOF computer simulations were conducted with recently developed detailed models; the level of detail was suggested by analyses of recent LOF experience at AEP and by recent developments in generator and excitation system modeling. Simulation results are presented to illustrate the torques, current levels, voltages, speeds, and potential relay actions following loss of field.

Rana, R.D.; Schulz, R.P. (Bulk Transmission Planning Div., American Electric Power Service Corp., Columbus, OH (US))

1989-01-01T23:59:59.000Z

42

DOE Solar Decathlon: News Blog Appalachian State  

NLE Websites -- All DOE Office Websites (Extended Search)

Appalachian State Below you will find Solar Decathlon news from the Appalachian State archive, sorted by date. Appalachian State Wins People's Choice Award Saturday, October 1,...

43

AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Program Info State Ohio Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Homes Program: Contact AEP In-home Energy Audit: $100 Pin Based CFL Indoor Fixture: $20 Pin Based CFL-Outdoor Fixture: $35 CFL Torchieres: $20 Wall Insulation: $200 Air Sealing: $200 ENERGY STAR Window Replacement: $200 Attic Insulation: $200 Shower Start/Stop: $25

44

AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Ohio - Commercial New Construction Energy Efficiency Rebate AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) < Back Eligibility Commercial Industrial Local Government Municipal Utility Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate General: 50% of total project cost; Contact AEP Ohio Design Incentives: 50% of cost up to $50,000 Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Custom: $0.08/kWh first year savings and $100/peak kW reduction

45

AEP Ohio - Commercial Custom Project Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Commercial Custom Project Rebate Program - Commercial Custom Project Rebate Program AEP Ohio - Commercial Custom Project Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 50% of cost up to $300,000/project $600,000/year Sliding scale incentive reduction when calculated incentive exceeds $160,000/project. Program Info State Ohio Program Type Utility Rebate Program Rebate Amount 0.08/kWh (for one year energy savings) plus 100/kW AEP's demand reduction (at summer peak) Provider AEP Ohio AEP Ohio offers commercial customers incentives to upgrade inefficient

46

Microsoft Word - 0.5_Summary_AEP.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ammonia process (CAP) technology to capture approximately 90 percent of the carbon dioxide (CO 2 ) from a 235-megawatt (MW) portion of AEP's existing 1,300-MW Mountaineer Plant...

47

AEP Ohio - Commercial Custom Project Rebate Program (Ohio) |...  

Open Energy Info (EERE)

Energy Category Energy Efficiency Incentive Programs Amount 0.08kWh (for one year energy savings) plus 100kW AEP's demand reduction (at summer peak) Eligible System Size...

48

Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application to Export Electric Energy OE Docket No. EA-318-B AEP Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners, Inc: Emergency Filing from AEP Requesting Temporary Export Authorization Extension Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners, Inc: Emergency Filing from AEP Requesting Temporary Export Authorization Extension Application from AEP Energy requesting temporary export authorization extension to export electric energy to Mexico. Emergency Filing from AEP requesting temp ext.pdf More Documents & Publications Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners Inc: AEP Response to Sierra's Club Response for Temporary Emergency Authorization Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy

49

The Appalachian Trail MEGA-Transect  

E-Print Network (OSTI)

and electric power generation facilities, pollution from large cities and along major highways, and relatively use the water for residential uses or power generation. Monitoring water sources on the A.T. will also) Steve Kahl (Center for the Environment) Ken Kimball (Appalachian Mountain Club) Daniel Lambert (Vermont

Wang, Y.Q. "Yeqiao"

50

AEP Texas North Company - SMART Source Solar PV Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North Company - SMART Source Solar PV Rebate Program North Company - SMART Source Solar PV Rebate Program AEP Texas North Company - SMART Source Solar PV Rebate Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $15,000 Non-residential: $30,000 Program Info Start Date 08/01/2009 State Texas Program Type Utility Rebate Program Rebate Amount Residential: $1.50/watt DC Non-residential: $1.20/watt DC Provider Smart Source PV Program American Electric Power Texas North Company (AEP-TNC) offers rebates to customers that install photovoltaic (PV) systems on homes or other buildings. Customers of all rate classes (e.g., residential, commercial)

51

AEP Ohio - Commercial Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Ohio - Commercial Energy Efficiency Rebate Program AEP Ohio - Commercial Energy Efficiency Rebate Program AEP Ohio - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Construction Commercial Weatherization Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Small Business Express Approved Technologies: up to 100% of cost General Service Tariffs 1, 2 and 3: $600,000 per year General Service Tariff 4: $600,000 overall for years 2012-2014 Central Energy Management Controls: $10,000/facility Program Info State Ohio Program Type Utility Rebate Program Rebate Amount Custom: $0.08/kWh first year savings and $100/peak kW reduction

52

Advanced Energy Products Corp AEP | Open Energy Information  

Open Energy Info (EERE)

Products Corp AEP Products Corp AEP Jump to: navigation, search Name Advanced Energy Products Corp. (AEP) Place Davis, California Zip 95619 Product Created to commercialise energy saving products developed by Davis Energy Group. Coordinates 39.12868°, -79.465714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.12868,"lon":-79.465714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

53

AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Other Sealing Your Home Ventilation Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Design & Remodeling Maximum Rebate 20% of the annual C&I Standard Offer Program budget Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Air Compressors: $194.50/kW and $0.0750/kWh saved Duct Sealing: $188.40/kW and $0.0471 Air Infiltration: $143.20/kW and $0.0358/kWh saved

54

AEP (Central and North) - Residential Energy Efficiency Programs (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP (Central and North) - Residential Energy Efficiency Programs AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) < Back Eligibility Construction Installer/Contractor Multi-Family Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Ventilation Maximum Rebate SOP TCC: $150,000 (Large Projects); $150,000 (Small Projects); $25,000 (Small Projects Monthly Reservation Limit) SOP TNC: $40,000 (Large Projects); $20,000 (Small Projects); $5,000 (Small Projects Monthly Reservation Limit) SOP TCC (Hard to Reach): $75,000/sponsor SOP TNC (Hard to Reach): $50,000/sponsor Program Info State Texas Program Type

55

AEP Ohio (Gas) - Residential Energy Efficiency Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Gas) - Residential Energy Efficiency Rebate Program (Gas) - Residential Energy Efficiency Rebate Program AEP Ohio (Gas) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Other Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Program Info State Ohio Program Type Utility Rebate Program Rebate Amount ENERGY STAR New Homes Program: Contact AEP Ohio In-home Energy Audit: $75 Pin Based CFL Indoor Fixture: $20 Pin Based CFL Outdoor Fixture: $35 CFL Torchieres: $20 Wall Insulation: $75 Air Sealing: $50 Window Film: $45 ENERGY STAR Window Replacement: $75 Attic Insulation: $90 Shower Start/Stop: $25

56

Office of Sustainability Appalachian State University  

E-Print Network (OSTI)

Neutrality A 100kw wind turbine stands atop campus' highest point #12;sustain Appalachian Climate Action

Rose, Annkatrin

57

AEP SWEPCO - Residential Energy Efficiency Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SWEPCO - Residential Energy Efficiency Rebate Program SWEPCO - Residential Energy Efficiency Rebate Program AEP SWEPCO - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Other Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Windows, Doors, & Skylights Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount '''Home Performance with ENERGY STAR®''' Central AC Replacements: $125 - $800/system Heat Pump Replacements: $125 - $825/system Insulation: $0.12-$0.25/sq. ft. Duct Sealing/Replacement: $175 - $300/home Duct Insulation: $0.50/ln. ft. AC Tune-up: $80 Air Infiltration: $100 - $150

58

AEP Ohio - Commercial Self Direct Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Commercial Self Direct Rebate Program - Commercial Self Direct Rebate Program AEP Ohio - Commercial Self Direct Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate 75% of 50% of the total cost (additional measure caps may apply) A Tiered system, based on the total project costs, determines what percentage of the eligible calculated credit is available to the applicant Program Info Start Date 1/1/2008 Expiration Date 12/15/2013 State Ohio

59

Columbus Southern Power Company (doing business as AEP Ohio)...  

Open Energy Info (EERE)

smart grid infrastructure for 110,000 consumers in the state that will maximize distribution system efficiency and reliability and enable consumers to reduce their energy use...

60

Solar Decathlon Team Using Appalachian Mountain History to Model Home of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon Team Using Appalachian Mountain History to Model Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future March 31, 2011 - 10:52am Addthis Appalachian State University’s Solar Homestead design model |courtesy of The Solar Homestead’s official Facebook page Appalachian State University's Solar Homestead design model |courtesy of The Solar Homestead's official Facebook page April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. Join us there! In honor of the Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Solar Decathlon Team Using Appalachian Mountain History to Model Home of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon Team Using Appalachian Mountain History to Model Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future Solar Decathlon Team Using Appalachian Mountain History to Model Home of the Future March 31, 2011 - 10:52am Addthis Appalachian State University’s Solar Homestead design model |courtesy of The Solar Homestead’s official Facebook page Appalachian State University's Solar Homestead design model |courtesy of The Solar Homestead's official Facebook page April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs How can I participate? The next Solar Decathlon will be held Sept. 23-Oct. 2, 2011, at the National Mall's West Potomac Park in Washington, D.C. Join us there! In honor of the Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered

62

AEP Public Service Company of Oklahoma - Residential Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Service Company of Oklahoma - Residential Efficiency Public Service Company of Oklahoma - Residential Efficiency Rebate Program AEP Public Service Company of Oklahoma - Residential Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Duct Replacement: $1,200 Duct Sealing: $700 Solar Screens: $200 ENERGY STAR® Windows and Doors: $500 Air Conditioner/Heat Pump Replacement: $900 Existing Homes: $5,000 Program Info State Oklahoma Program Type Utility Rebate Program Rebate Amount Attic/Celing Insulation (0-7 inches pre-existing): $600

63

The Ohio River Valley CO2 Storage Project AEP Mountaineer Plan, West Virginia  

Science Conference Proceedings (OSTI)

This report includes an evaluation of deep rock formations with the objective of providing practical maps, data, and some of the issues considered for carbon dioxide (CO{sub 2}) storage projects in the Ohio River Valley. Injection and storage of CO{sub 2} into deep rock formations represents a feasible option for reducing greenhouse gas emissions from coal-burning power plants concentrated along the Ohio River Valley area. This study is sponsored by the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL), American Electric Power (AEP), BP, Ohio Coal Development Office, Schlumberger, and Battelle along with its Pacific Northwest Division. An extensive program of drilling, sampling, and testing of a deep well combined with a seismic survey was used to characterize the local and regional geologic features at AEP's 1300-megawatt (MW) Mountaineer Power Plant. Site characterization information has been used as part of a systematic design feasibility assessment for a first-of-a-kind integrated capture and storage facility at an existing coal-fired power plant in the Ohio River Valley region--an area with a large concentration of power plants and other emission sources. Subsurface characterization data have been used for reservoir simulations and to support the review of the issues relating to injection, monitoring, strategy, risk assessment, and regulatory permitting. The high-sulfur coal samples from the region have been tested in a capture test facility to evaluate and optimize basic design for a small-scale capture system and eventually to prepare a detailed design for a capture, local transport, and injection facility. The Ohio River Valley CO{sub 2} Storage Project was conducted in phases with the ultimate objectives of demonstrating both the technical aspects of CO{sub 2} storage and the testing, logistical, regulatory, and outreach issues related to conducting such a project at a large point source under realistic constraints. The site characterization phase was completed, laying the groundwork for moving the project towards a potential injection phase. Feasibility and design assessment activities included an assessment of the CO{sub 2} source options (a slip-stream capture system or transported CO{sub 2}); development of the injection and monitoring system design; preparation of regulatory permits; and continued stakeholder outreach.

Neeraj Gupta

2009-01-07T23:59:59.000Z

64

AEP (Central, North and SWEPCO) - SCORE Program for Schools | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central, North and SWEPCO) - SCORE Program for Schools Central, North and SWEPCO) - SCORE Program for Schools AEP (Central, North and SWEPCO) - SCORE Program for Schools < Back Eligibility Commercial Industrial Institutional Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Insulation Windows, Doors, & Skylights Program Info Funding Source AEP Texas (Central, North and SWEPCO) Companies State Texas Program Type Utility Rebate Program Rebate Amount $150/peak kW Provider AEP Texas Central The CitySmart Program is designed to help participants identify energy efficiency opportunities in existing and newly planned city facilities.

65

Appalachian Energy Center Appalachian State University  

E-Print Network (OSTI)

research. One such publication and presentation was the Revised Duct Design presentation and power point while reducing installation costs and saving space. The major potential benefit for two story homes with open stairwells would be the option to move the air handler from the attic into the space

Rose, Annkatrin

66

AEP (Central and SWEPCO) - Coolsaver A/C Tune Up | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP (Central and SWEPCO) - Coolsaver A/C Tune Up AEP (Central and SWEPCO) - Coolsaver A/C Tune Up AEP (Central and SWEPCO) - Coolsaver A/C Tune Up < Back Eligibility Commercial Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Program Info Funding Source AEP Texas (Central and SWEPCO) Companies State Texas Program Type Utility Rebate Program Rebate Amount $75 coupon/customer; contractor incentives Provider CLEAResult Consulting, Inc. Participating customers are eligible to receive a $75 coupon for use toward A/C and heat pump efficiency services performed as a result of the program's tune-up analysis. Residential and small commercial HVAC contractors that service customers served by SWEPCO may apply to

67

Solar Decathlon: Appalachian State Wins People's Choice Award...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Decathlon: Appalachian State Wins People's Choice Award Solar Decathlon: Appalachian State Wins People's Choice Award October 3, 2011 - 10:38am Addthis On Friday, Sept. 30,...

68

Appalachian State | Open Energy Information  

Open Energy Info (EERE)

State State Jump to: navigation, search Name Appalachian State Facility Appalachian State Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Location Boone NC Coordinates 36.21342836°, -81.69232965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.21342836,"lon":-81.69232965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

69

Chilled Ammonia Process Product Validation Facility at American Electric Power Mountaineer Station  

Science Conference Proceedings (OSTI)

A CO2 capture and storage (CCS) pilot plant was constructed at American Electric Powers (AEPs) 1300-MWe Mountaineer station in New Haven, West Virginia, employing Alstom Powers Chilled Ammonia Process (CAP). The CAP Product Validation Facility (PVF) treated a slipstream of flue gas from ...

2012-09-30T23:59:59.000Z

70

Appalachian No. 1 Refinery District Sulfur Content (Weighted ...  

U.S. Energy Information Administration (EIA)

Appalachian No. 1 Refinery District Sulfur Content (Weighted Average) of Crude Oil Input to Refineries (Percent)

71

Property:Incentive/ContEmail | Open Energy Information  

Open Energy Info (EERE)

ContEmail ContEmail Jump to: navigation, search Property Name Incentive/ContEmail Property Type String Pages using the property "Incentive/ContEmail" Showing 25 pages using this property. (previous 25) (next 25) 4 401 Certification (Vermont) + ron.shems@state.vt.us + A AEP (Central and North) - CitySmart Program (Texas) + mpcraig@aep.com + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + snunes@clearesult.com + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + AEP-Efficiency@CLEAResult.com + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + mpcraig@aep.com + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + rwtevebaugh@aep.com + AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + aeprebates@goodcents.com +

72

Property:Incentive/ContName | Open Energy Information  

Open Energy Info (EERE)

ContName ContName Jump to: navigation, search Property Name Incentive/ContName Property Type String Pages using the property "Incentive/ContName" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + Public Information - VT DOT + 4 401 Certification (Vermont) + Ron Shems + A AEP (Central and North) - CitySmart Program (Texas) + Monica Craig + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + Sean Nunes + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + Ben Crandall + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + Monica Craig + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + Ron Tevebaugh + AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + AEP/Appalachian Power Rebate Programs +

73

Property:EZFeed/ExpectedCapacity | Open Energy Information  

Open Energy Info (EERE)

ExpectedCapacity ExpectedCapacity Jump to: navigation, search Property Name EZFeed/ExpectedCapacity Property Type String Description EZFeed Expected Capacity property Subproperties This property has the following 6081 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) 4 401 Certification (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

74

Property:EZFeed/Relevant | Open Energy Information  

Open Energy Info (EERE)

EZFeed/Relevant EZFeed/Relevant Jump to: navigation, search Property Name Incentive/Relevant Property Type String Description EZFeed field to indicate whether a page is relevant to EZ Mapping Tool. Subproperties This property has the following 3633 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

75

Property:EZFeed/InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name EZFeed/InstalledCapacity Property Type String Description EZFeed Installed Capacity property Subproperties This property has the following 6079 subproperties: 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) 3 30% Business Tax Credit for Solar (Vermont) 4 401 Certification (Vermont) A AEP (Central and North) - CitySmart Program (Texas) AEP (Central and North) - Residential Energy Efficiency Programs (Texas) AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) AEP Appalachian Power - Residential Home Retrofit Program (West Virginia)

76

Selecting major Appalachian basin gas plays  

SciTech Connect

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-01-01T23:59:59.000Z

77

Selecting major Appalachian basin gas plays  

Science Conference Proceedings (OSTI)

Under a cooperative agreement with the Morgantown Energy Technology Center (METC) the Appalachian Oil and Natural Gas Research Consortium (AONGRC) is preparing a geologic atlas of the major gas plays in the Appalachian basin, and compiling a database for all fields in each geologic play. the first obligation under this agreement was to prepare a topical report that identifies the major gas plays, briefly describes each play, and explains how the plays were selected. Four main objectives have been defined for this initial task: assign each gas reservoir to a geologic play, based on age, trap type, degree of structural control, and depositional environment; organize all plays into geologically-similar groups based on the main criteria that defines each play; prepare a topical report for METC; and transfer this technology to industry through posters and talks at regional geological and engineering meetings including the Appalachian Petroleum Geology Symposium, Northeastern Section meeting of the Geological Society of America, the METC Gas Contractors Review meeting, the Kentucky Oil and Gas Association, and the Appalachian Energy Group.

Patchen, D.G.; Nuttall, B.C.; Baranoski, M.T.; Harper, J.A.; Schwietering, J.F.; Van Tyne, A.; Aminian, K.; Smosna, R.A.

1992-06-01T23:59:59.000Z

78

ECONOMIC IMPACT OF THE APPALACHIAN GATEWAY  

E-Print Network (OSTI)

, natural gas demand is forecast to increase through 2035. The Marcellus shale play and the new natural gas supply it represents is expected to meet this demand, provided that there is sufficient natural gas in the Appalachian region in West Virginia and Pennsylvania to meet the demand for natural gas from the residential

Mohaghegh, Shahab

79

AEP Systems  

Science Conference Proceedings (OSTI)

... Avoid costs of retrofitting systems to support secure access Produced by the Yankee Group http://www.yankeegroup.com Page 25. ...

2007-09-25T23:59:59.000Z

80

Appalachian States Low-Level Radioactive Waste Compact (Maryland)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes Maryland's entrance into the Appalachian States Low-Level Radioactive Waste Compact, which seeks to promote interstate cooperation for the proper management and disposal...

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Trading Point: Central Appalachian (CAPP) is the nation's ...  

U.S. Energy Information Administration (EIA)

Central Appalachian (CAPP) coal spot prices are the most widely referenced prices for eastern coal in the United States. Coal producers, electric utilities, merchant ...

82

NYMEX Central Appalachian coal futures near-month contract final...  

Annual Energy Outlook 2012 (EIA)

Release Date: January 7, 2013 Next Release Date: January 2014 NYMEX Central Appalachian coal futures near-month contract final settlement price history Data as of 12312012....

83

Spot price for Central Appalachian coal up since early 2010 ...  

U.S. Energy Information Administration (EIA)

Average spot prices for Central Appalachian (CAPP) coal are up about 36% since January, 2010. Contributing factors include: global supply disruptions, slightly ...

84

American Electric Power/Alstom Chilled Ammonia Process Validation Facility -- Material Inspection Report  

Science Conference Proceedings (OSTI)

A CO2 capture and storage (CCS) pilot plant was constructed at American Electric Powers (AEPs) 1300-MWe Mountaineer station in New Haven, West Virginia, employing Alstom Powers Chilled Ammonia Process (CAP). This CAP Process Validation Facility (PVF) was operated for 7900 hours between September 2009 and May 2011, when the demonstration ended. One of the objectives of the program was a determination of the adequacy of the materials that had been selected for the ...

2012-12-13T23:59:59.000Z

85

DOE Solar Decathlon: News Blog » Appalachian State  

NLE Websites -- All DOE Office Websites (Extended Search)

'Appalachian State' 'Appalachian State' Appalachian State Wins People's Choice Award Saturday, October 1, 2011 By Carol Anna Appalachian State University won the U.S. Department of Energy Solar Decathlon 2011 People's Choice Award for its Solar Homestead today. This award gives the public the opportunity to vote for its favorite house. This year, 92,538 votes were cast. The award was announced at a Victory Reception in the solar Village in West Potomac Park-the last official event of Solar Decathlon 2011. Photo of Steven Chu shaking hands with Jeffrey Tiller as David Lee looks on. On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State's Solar Decathlon team. (Credit: Stefano Paltera/U.S.

86

Solar Decathlon: Appalachian State Wins People's Choice Award |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon: Appalachian State Wins People's Choice Award Decathlon: Appalachian State Wins People's Choice Award Solar Decathlon: Appalachian State Wins People's Choice Award October 3, 2011 - 10:38am Addthis On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State’s Solar Decathlon team. | Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon On Friday, Sept. 30, 2011, U.S. Department of Energy Secretary Steven Chu spoke with Jeffrey Tiller, left, and David Lee, right, members of Appalachian State's Solar Decathlon team. | Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon Carol Anna Communications Manager for the 2011 Solar Decathlon EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on

87

Identification of Thermally Homogeneous Subunits in a Steep Appalachian Pasture  

Science Conference Proceedings (OSTI)

Pasture improvement in the central Appalachian region is facilitated by knowledge of spatial relationships in microclimate attributable to complex topography. A small, steep horseshoe-shaped pasture watershed, with aspects encompassing 210, in ...

Douglas G. Boyer; Charles M. Feldhake

1994-10-01T23:59:59.000Z

88

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application of Large Application of Large - - Scale Scale Energy Storage Systems Energy Storage Systems in AEP in AEP Ali Nourai Distributed Energy Resources American Electric...

89

Property:Incentive/ContPhone | Open Energy Information  

Open Energy Info (EERE)

ContPhone ContPhone Jump to: navigation, search Property Name Incentive/ContPhone Property Type String Pages using the property "Incentive/ContPhone" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + (802) 828-5723 + 4 401 Certification (Vermont) + 802-828-5440 + A AEP (Central and North) - CitySmart Program (Texas) + (361) 881-5673 + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + (512) 327-9200 + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + (512) 416-5903 + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + (361) 881-5673 + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + (903) 234-7334 + AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + (888) 446-7719 +

90

1 INTRODUCTION Appalachian coal recovered during mining fre-  

E-Print Network (OSTI)

1 INTRODUCTION Appalachian coal recovered during mining fre- quently contains diluting material be re- moved in order to produce a marketable product. This is compounded by the fact that current coal- ground room-and-pillar or longwall coal production do not allow for the separation of waste during coal

91

Low-Level Cloudiness in the Appalachian Region  

Science Conference Proceedings (OSTI)

Low-level (<2 km) cloud frequencies have been derived for the Appalachian Mountain region for the period 198588 based on in situ measurements by optical cloud and relative humidity sensors, and regional analyses incorporating the U.S. Air Force ...

Michael J. Markus; Bruce H. Bailey; Ronald Stewart; Perry J. Samson

1991-08-01T23:59:59.000Z

92

FUTURE POWER GRID INITIATIVE Next Generation Network  

E-Print Network (OSTI)

designed by PNNL and currently being deployed in the AEP gridSMART Demonstration Project, and » developed that will position PNNL as the leader in modeling and planning power grid data communication networks. External users scenarios and testing of communication requirements with smart grid investments. November 2012 PNNL-SA-90012

93

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Mountaineer Project - Mountaineer Project - Lessons Learned and Implications for Regional and Local Storage Potential and Path Forward in the Appalachian Basin Neeraj Gupta, Phil Jagucki, Joel Sminchak, Bruce Sass, Diana Bacon, and Danielle Meggyesy Battelle Memorial Institute, Columbus, Ohio, gupta@battelle.org; 614-424-3820 Abs. #175, 5 th Annual Conference on Carbon Capture and Storage, Alexandria, VA, May 8-11, 2006 2 The Ohio River Valley CO 2 Project - A Unique Public Private Collaboration * Battelle - Jim Dooley, Judith Bradbury, Diana Bacon, Prasad Saripalli, Mark Kelley, Mark White, Frank Spane, Ken Humphreys, et al. * DOE/NETL - Charlie Byrer and others * AEP - Mike Mudd, Dale Heydlauff, Gary Spitznogle, Charlie Powell, Chris Long, John Massey-Norton, Jeri Matheney, Tim Mallan, et al.

94

ENHANCING RESERVOIR MANAGEMENT IN THE APPALACHIAN BASIN BY IDENTIFYING TECHNICAL BARRIER AND PREFERRED PRACTICES  

SciTech Connect

The Preferred Upstream Management Practices (PUMP) project, a two-year study sponsored by the United States Department of Energy (USDOE), had three primary objectives: (1) the identification of problems, problematic issues, potential solutions and preferred practices related to oil production; (2) the creation of an Appalachian Regional Council to oversee and continue this investigation beyond the end of the project; and (3) the dissemination of investigative results to the widest possible audience, primarily by means of an interactive website. Investigation and identification of oil production problems and preferred management practices began with a Problem Identification Workshop in January of 2002. Three general issues were selected by participants for discussion: Data Management; Reservoir Engineering; and Drilling Practices. At the same meeting, the concept of the creation of an oversight organization to evaluate and disseminated preferred management practices (PMP's) after the end of the project was put forth and volunteers were solicited. In-depth interviews were arranged with oil producers to gain more insight into problems and potential solutions. Project members encountered considerable reticence on the part of interviewees when it came to revealing company-specific production problems or company-specific solutions. This was the case even though interviewees were assured that all responses would be held in confidence. Nevertheless, the following production issues were identified and ranked in order of decreasing importance: Water production including brine disposal; Management of production and business data; Oil field power costs; Paraffin accumulation; Production practices including cementing. An number of secondary issues were also noted: Problems associated with Enhanced Oil Recovery (EOR) and Waterflooding; Reservoir characterization; Employee availability, training, and safety; and Sale and Purchase problems. One item was mentioned both in interviews and in the Workshop, as, perhaps, the key issue related to oil production in the Appalachian region - the price of a barrel of oil. Project members sought solutions to production problems from a number of sources. In general, the Petroleum Technology Transfer Council (PTTC) website, both regional and national, proved to be a fertile source of information. Technical issues included water production, paraffin accumulation, production practices, EOR and waterflooding were addressed in a number of SPE papers. Articles on reservoir characterization were found in both the AAPG Bulletin and in SPE papers. Project members extracted topical and keyword information from pertinent articles and websites and combined them in a database that was placed on the PUMP website. Because of difficulties finding potential members with the qualifications, interests, and flexibility of schedule to allow a long-term commitment, it was decided to implement the PMP Regional Council as a subcommittee of the Producer Advisory Group (PAG) sponsored by Appalachian Region PTTC. The advantages of this decision are that the PAG is in already in existence as a volunteer group interested in problem identification and implementation of solutions and that PAG members are unpaid, so no outside funds will be required to sustain the group. The PUMP website became active in October of 2002. The site is designed to evolve; as new information becomes available, it can be readily added to the site or the site can be modified to accommodate it. The site is interactive allowing users to search within the PUMP site, within the Appalachian Region PTTC site, or within the whole internet through the input of user-supplied key words for information on oil production problems and solutions. Since its inception in the Fall of 2002, the PUMP site has experienced a growing number of users of increasingly diverse nature and from an increasing geographic area. This indicates that the site is reaching its target audience in the Appalachian region and beyond. Following up on a commitment to technology transfer, a tota

Ronald R. McDowell; Khashayar Aminian; Katharine L. Avary; John M. Bocan; Michael Ed. Hohn; Douglas G. Patchen

2003-09-01T23:59:59.000Z

95

VEA-0009 - In the Matter of American Electric Power Company, Inc. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

09 - In the Matter of American Electric Power Company, Inc. 09 - In the Matter of American Electric Power Company, Inc. VEA-0009 - In the Matter of American Electric Power Company, Inc. This Decision and Order considers an Appeal filed by American Electric Power Company, Inc. (AEP) from a determination issued on July 7, 1998, by the Office of Energy Efficiency and Renewable Energy (EE) of the Department of Energy (DOE), under provisions of 10 C.F.R. Part 490 (Alternative Fuel Transportation Program). In its determination, EE substantially denied a request filed by AEP for an exemption from the firm's 1998 Model Year (MY) alternative fuel vehicle (AFV) purchase requirements under the Part 490 program. If the present Appeal were granted, AEP would be exempted from its 1998 MY purchase requirements, as initially requested by the firm. As

96

VEA-0012 - In the Matter of American Electric Power Company, Inc. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12 - In the Matter of American Electric Power Company, Inc. 12 - In the Matter of American Electric Power Company, Inc. VEA-0012 - In the Matter of American Electric Power Company, Inc. This Decision and Order considers an Appeal filed by American Electric Power Company, Inc. (AEP) from a determination issued on October 15, 1999, by the Office of Energy Efficiency and Renewable Energy (EE) of the Department of Energy (DOE), under provisions of 10 C.F.R. Part 490 (Alternative Fuel Transportation Program). In its determination, EE granted in part a request filed by AEP for an exemption from the firm's 1998 and 1999 Model Year (MY) alternative fuel vehicle (AFV) purchase requirements under the Part 490 program. If the present Appeal were granted, AEP would be granted exemptions from its 1998 MY purchase requirements, in addition

97

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Application of Large Application of Large Application of Large - - Scale Scale Energy Storage Systems Energy Storage Systems in AEP in AEP Ali Nourai Distributed Energy Resources American Electric Power EESAT Conference September 2007 Funded in part by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL). 2 A Possible Future of Distribution A Possible Future of Distribution Energy Storage is a Key to our Future Grid Energy Storage is key to a controlled energy flow on the grid Transmission & Distribution Distribution Substation Commercial Industrial Gensets , FC, LM Gensets , Solar, Fuel Cells (FC), Load Management (LM) Residential Transmission Substation IGCC - FC Hybrid, Biomass, Solar, Nuclear, Direct Carbon FC Bulk Generation

98

Parametric and predictive analysis of horizontal well configurations for coalbed methane reservoirs in Appalachian Basin.  

E-Print Network (OSTI)

??It has been a well-established fact that the Appalachian Basin represents a high potential region for the Coalbed Methane (CBM) production. The thin coal beds (more)

Maricic, Nikola.

2004-01-01T23:59:59.000Z

99

Microsoft Word - MRCSP Appalachian Basin 2008 FactSheet _09-08_-2.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

R.E. Burger Site 1 September 2008 R.E. Burger Site 1 September 2008 FACT SHEET FOR PARTNERSHIP FIELD VALIDATION TEST Midwest Regional Carbon Sequestration Partnership (MRCSP) NETL Cooperative Agreement DE-FC26-05NT42589 DOE/NETL Project Manager: Lynn Brickett, Lynn.Brickett@NETL.DOE.GOV Submitted by Battelle September 2008 Appalachian Basin Geologic Test at R.E. Burger Power Plant Principal Investigator Dave Ball, Battelle (614-424-4901; balld@battelle.org) Test Location FirstEnergy R.E. Burger Plant, Shadyside, Ohio Amount and Source of CO 2 1,000-3,000 metric tons Source = commercial source FirstEnergy Ohio Geological Survey (Ohio Department of Natural Resources) Field Test Partners (Primary Sponsors) Summary of Field Test Site and Operations:

100

Property:ServiceTerritory | Open Energy Information  

Open Energy Info (EERE)

ServiceTerritory ServiceTerritory Jump to: navigation, search Property Name ServiceTerritory Property Type Page Description State(s) the utility company service territory is located in. Pages using the property "ServiceTerritory" Showing 25 pages using this property. (previous 25) (next 25) A AEP Generating Company + Ohio + AEP Texas Central Company + Texas + AEP Texas North Company + Texas + Ameren Illinois Company (Illinois) + Illinois + Appalachian Power Co + Virginia +, West Virginia +, Tennessee + Atlantic City Electric Co + New Jersey + Austin Energy + Texas + B Baltimore Gas & Electric Co + Maryland + Bangor Hydro-Electric Co + Maine + Barton Village, Inc (Utility Company) + Vermont + C CenterPoint Energy + Texas + Central Maine Power Co + Maine +

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An Analysis of the Impact of a Split-Front Rainband on Appalachian Cold-Air Damming  

Science Conference Proceedings (OSTI)

Appalachian cold-air damming (CAD) is characterized by the development of a cool, stable air mass that is advected southwestward along the eastern slopes of the Appalachian Mountains by low-level ageostrophic flow. Operational forecasters have ...

Michael J. Brennan; Gary M. Lackmann; Steven E. Koch

2003-10-01T23:59:59.000Z

102

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1  

E-Print Network (OSTI)

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

Standiford, Richard B.

103

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Delaware W $28.49 W $131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W $20.35 W $64.82 31.4% 1,715 W 75.9% Northern Appalachian Basin Maryland $19.73 $19.64 -0.4% $81.15 24.2% 4,650 24.8% 99.3% Northern Appalachian Basin Michigan W $14.02 W $76.22 18.4% 713 W 100.0% Northern Appalachian Basin New Hampshire W $43.43 W $90.90 47.8% 499 W 89.6% Northern Appalachian Basin New Jersey W $27.19 W $74.81 36.3% 1,864 W 44.1% Northern Appalachian Basin New York $20.08 $15.26 -24.0% $53.68 28.4% 3,726 39.2% 79.1%

104

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Florida W $38.51 W $140.84 27.3% 134 W 100.0% Florida W $38.51 W $140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W $16.14 W $63.35 25.5% 1,681 W 88.5% Northern Appalachian Basin Maryland $20.69 $19.60 -5.3% $74.23 26.4% 4,845 31.9% 97.7% Northern Appalachian Basin Michigan $13.74 $16.13 17.4% $99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W $40.18 W $94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W $32.44 W $89.13 36.4% 1,064 W 47.6% Northern Appalachian Basin New York $21.87 $18.86 -13.8% $59.40 31.7% 2,373 49.3% 91.9%

105

EIS-0445: American Electric Power Service Corporation's Mountaineer  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: American Electric Power Service Corporation's Mountaineer 5: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia EIS-0445: American Electric Power Service Corporation's Mountaineer Commercial Scale Carbon Capture and Storage Demonstration, New Haven, Mason County, West Virginia Summary This EIS evaluates the environmental impacts of a proposal to provide financial assistance for the construction and operation of a project proposed by American Electric Power Service Corporation (AEP). DOE selected tbis project for an award of financial assistance through a competitive process under the Clean Coal Power Initiative (CCPI) Program. AEP's Mountaineer Commercial Scale Carbon Capture and Storage Project (Mountaineer CCS II Project) would construct a commercial scale

106

Industrial structure and employment growth in the 1990s in Appalachian counties  

E-Print Network (OSTI)

Employment growth in the 1990s and its relationship with the initial industrial structure in 1990 are examined in the case of Appalachian counties, after controlling for labor-market conditions and other factors, such as ...

Tan, Zhijun (Zhijun Jeanne)

2005-01-01T23:59:59.000Z

107

Numerical Simulations of Cold Air Advection over the Appalachian Mountains and the Gulf Stream  

Science Conference Proceedings (OSTI)

Cold air advection over the Gulf Stream off the Carolinas and the Appalachian Mountains is studied using idealized two-dimensional cases for the Genesis of Atlantic Lows Experiment (GALE) lop 2 conditions. An anelastic hydrostatic mesoscale model ...

Ching-Yuang Huang; Sethu Raman

1990-02-01T23:59:59.000Z

108

A Collaborative Approach to Study Northwest Flow Snow in The Southern Appalachians  

Science Conference Proceedings (OSTI)

Upslope-enhanced snowfall events during periods of northwesterly flow in the southern Appalachians have been recognized as a significant winter forecasting problem for some time. However, only in recent years has this problem received noteworthy ...

Steve Keighton; Laurence Lee; Blair Holloway; David Hotz; Steven Zubrick; Jeffrey Hovis; Gary Votaw; L. Baker Perry; Gary Lackmann; Sandra E. Yuter; Charles Konrad; Douglas Miller; Brian Etherton

2009-07-01T23:59:59.000Z

109

Synoptic and Mesoscale Aspects of an Appalachian Ice Storm Associated with Cold-Air Damming  

Science Conference Proceedings (OSTI)

An interesting ice storm of moderate severity occurred along the east slopes of the Appalachians on 1314 January 1980. Though surface temperatures were initially below freezing in most of this region, objective guidance indicated that large-...

Gregory S. Forbes; Dennis W. Thomson; Richard A. Anthes

1987-02-01T23:59:59.000Z

110

Leffler's Method of Estimating Average Temperatures of Appalachian Summits: Evaluation in New York  

Science Conference Proceedings (OSTI)

R. J. Leffler recently presented regression equations to estimate average monthly temperatures of Appalachian summits based on the long-term average temperatures on Mt. Washington, New Hampshire, and temperature lapse rates as a function of ...

Thomas W. Schmidlin

1982-05-01T23:59:59.000Z

111

Modeling Pollutant Transport during High-Ozone Episodes in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Airflow patterns and pollution transport in the southern Appalachian Mountains region of the southeastern United States are examined using mesoscale meteorological models and a Lagrangian particle dispersion model (LPDM). The two primary goals of ...

Stephen F. Mueller; Aaron Song; William B. Noms; Shekar Gupta; Richard T. McNider

1996-11-01T23:59:59.000Z

112

Orographic Effects during a Severe Wintertime Rainstorm in the Appalachian Mountains  

Science Conference Proceedings (OSTI)

The evolution of precipitation features during a severe wintertime rainfall and flooding event associated with a cold front that crossed the central Appalachians on 19 January 1996 is illustrated through the analysis of radiosonde, rainfall, and ...

Ana P. Barros; Robert J. Kuligowski

1998-10-01T23:59:59.000Z

113

The Impact of the Appalachian Mountains on Cyclonic Weather Systems. Part I: A Climatology  

Science Conference Proceedings (OSTI)

A climatological study of cold fronts and cyclones crossing the Appalachian Mountains from the west through northwest has been performed. A sample size of 50 fronts and 40 cyclones was derived from the seven winter seasons (December through March)...

Christopher O'Handley; Lance F. Bosart

1996-07-01T23:59:59.000Z

114

Forecasting the Maintenance of Mesoscale Convective Systems Crossing the Appalachian Mountains  

Science Conference Proceedings (OSTI)

Forecasting the maintenance of mesoscale convective systems (MCSs) is a unique problem in the eastern United States due to the influence of the Appalachian Mountains. At times these systems are able to traverse the terrain and produce severe ...

Casey E. Letkewicz; Matthew D. Parker

2010-08-01T23:59:59.000Z

115

Property:Incentive/StartDateString | Open Energy Information  

Open Energy Info (EERE)

StartDateString StartDateString Jump to: navigation, search Property Name Incentive/StartDateString Property Type String Description Start Date string property. Use this property in queries until the Property:Incentive/StartDate property is populated with valid dates only. Currently, some are populated with additional notes included. Pages using the property "Incentive/StartDateString" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + 01/01/2009 + A AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + 3/11/2011 + AEP Appalachian Power - Residential Home Retrofit Program (West Virginia) + 3/11/2011 + AEP Ohio - Commercial Self Direct Rebate Program (Ohio) + 1/1/2008 +

116

Distribution System Reliability Practices: Noteworthy Practices at Georgia Power  

Science Conference Proceedings (OSTI)

In 2010, EPRI initiated a multi-year effort to identify and illustrate noteworthy practices that utilities are using to meet the service reliability expectations of their customers. EPRI research focused on four host utilities: Ameren Corporation, Central Hudson Gas & Electric Corporation, Alabama Power, and We Energies. In 2011, EPRI completed research at American Electric Power Company (AEP) and initiated research with Memphis Light, Gas and Water (MLGW) and Duke Energy. In 2012, EPRI ...

2013-11-25T23:59:59.000Z

117

Field Trial of AEP Sodium-Sulfur (NAS) Battery Demonstration Project: Interim Report - Plant Design and Expected Performance  

Science Conference Proceedings (OSTI)

The first stationary power demonstration of sodium-sulfur (NAS) batteries in the United States has been hosted by the American Electric Power Company. The battery system was co-developed by the Tokyo Electric Power Company (TEPCO) and NGK Insulators, Ltd. (NGK). This report defines the NAS technology, as well as the associated power conversion system (PCS) parameters and requirements that were necessary to convert the DC power from the NAS battery modules to AC power for connection to the utility grid sy...

2003-03-27T23:59:59.000Z

118

Variation and Trends of Landscape Dynamics, Land Surface Phenology and Net Primary Production of the Appalachian Mountains  

Science Conference Proceedings (OSTI)

The gradients of the Appalachian Mountains in elevations and latitudes provide a unique regional perspective of landscape variations in the eastern United States and a section of the southeastern Canada. This study reveals patterns and trends of landscape dynamics, land surface phenology and ecosystem production along the Appalachian Mountains using time series data from Global Inventory Modeling and Mapping Studies (GIMMS) and AVHRR Global Production Efficiency Model (GloPEM) datasets. We analyzed the spatial and temporal patterns of Normalized Difference Vegetation Index (NDVI), length of growing season (LOS) and net primary production (NPP) of selected ecoregions along the Appalachian Mountains regions. We compared the results out of the Appalachian Mountains regions in different spatial contexts including the North America and the Appalachian Trail corridor area. To reveal latitudinal variations we analyzed data and compared the results between 30N-40N and 40N-50N latitudes. The result revealed significant decreases in annual peak NDVI in the Appalachian Mountains regions. The trend for the Appalachian Mountains regions was -0.0018 (R2=0.55, P<0.0001) NDVI unit decrease per year during 25 years between 1982 and 2006. The LOS had prolonged 0.3 day yr-1 during 25 years over the Appalachian Mountains regions. The NPP increased by 2.68 gC m-2yr-2 in Appalachian Mountains regions from 1981 to 2000. The comparison with the North America reveals the effects of topography and ecosystem compositions of the Appalachian Mountains. The comparison with the Appalachian Trail corridor area provides a regional mega-transect view of the measured variables.

Wang, Yeqiao; Zhao, Jianjun; Zhou, Yuyu; Zhang, Hongyan

2012-12-15T23:59:59.000Z

119

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP Public Service Company of Oklahoma AEP Southwestern Electric Power AEP Texas Central AFC First Financial AFC First Financial Corporation Agence de l'efficacit...

120

Nuclear Power Plant License Renewal Environmental Compliance Program: Donald C. Cook Nuclear Case Study, Phase 1--Preliminary Planni ng  

Science Conference Proceedings (OSTI)

This report describes preliminary environmental compliance planning activities that American Electric Power (AEP) is taking to preserve the option of renewing the Donald C. Cook Nuclear Plant license. The activities are based on a program plan manual published previously by EPRI. The report includes an evaluation of the usefulness of that manual.

1997-07-08T23:59:59.000Z

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Forecasting of mine price for central Appalachian steam coal  

SciTech Connect

In reaction to Virginia's declining share of the steam coal market and the subsequent depression in southwest Virginia's economy, an optimization model of the central Appalachian steam coal market was developed. The input to the cost vector was the delivered cost of coal, which is comprised of the mine price (FOB) and transportation cost. One objective of the study was to develop a purchasing model that could be used to minimize the cost of coal procurement over a multi-period time span. The initial case study used a six-month period (7/86-12/86); this requires short-term, forecasts of the mine price of coal. Mine-cost equations and regression models were found to be inadequate for forecasting the mine price of coal. Instead forecasts were generated using modified time series models. This paper describes the application of classical time-series modeling to forecasting the mine price of coal in central Appalachia; in particular, the special modification to the classical methodology needed to generate short-term forecasts and their confidence limits and the need to take into account market-specific considerations such as the split between long-term contracts and the spot market. Special consideration is given to forecasting the spot market. 7 references, 4 figures, 3 tables.

Smith, M.L.

1988-01-01T23:59:59.000Z

122

Hydrology and geochemistry of thermal springs of the appalachians  

DOE Green Energy (OSTI)

Thermal springs in nine areas in the Appalachians from Georgia to New York were studied in 1975 and 1976 using satellite imagery, local well and spring data, and results of current and early studies by other investigators. All the springs investigated discharge from folded and faulted sandstone or carbonate rocks in valley areas. Where geologic structure is relatively uncomplicated, ground water discharging from thermal springs probably has circulated to great depths roughly parallel to the strike of the bedding and has moved upward rapidly where a fault or faults cross the bedding. Hydrologic and chemical data suggest that most of the water discharging from warm springs in the Devonian Oriskany Sandstone is derived from recharge entering and circulating through that formation. The discharge at springs where temperature fluctuates very little is primarily water from deep circulation. The discharge at springs where temperature fluctuates widely is warm water mixed with variable proportions of shallow-circulating cool water. Observed temperatures of the warm springs range from 18/sup 0/ to 41/sup 0/C; the highest chemical thermometer temperature is 84/sup 0/C. Agreement among observed, chalcedony, and cation temperatures of the warmest springs suggests reservoir temperatures of 30/sup 0/ to 50/sup 0/C. Dissolved helium, arsenic, potassium, and delta/sup 18/O are considered as geothermal indicators. Tritium analyses are used to calculate fractions of old and modern components of mixed waters. Computer calculations of carbonate saturation indices show (1) considerable undersaturation in silica-rock warm spring waters and (2) carbonate equilibrium in the limestone and dolomite thermal waters. Better values of saturation indices are obtained when analyzed carbon dioxide rather than field pH is used in the computer input data. A method is described for adjusting delta/sup 13/C to correct for carbon dioxide outgassing from water samples.

Hobba, W.A. Jr.; Fisher, D.W.; Pearson, F.J. Jr.; Chemerys, J.C.

1979-01-01T23:59:59.000Z

123

PUBLICATION 460-144 More than a million acres in the Appalachian region  

E-Print Network (OSTI)

PUBLICATION 460-144 More than a million acres in the Appalachian region were surface mined for coal: Soil physical properties on unused coal mine sites are often poorly suited for planting trees on older coal mine sites applied P fertilizers at levels that were adequate for establishing grasses

Liskiewicz, Maciej

124

An Unexpectedly Heavy and Complex Snowfall Event across the Southern Appalachian Region  

Science Conference Proceedings (OSTI)

On 26 March 1999, an unexpectedly heavy and complex snowfall event occurred across the southern Appalachian region. This event produced 2030 cm (812 in.) of snow across the Smoky Mountains and 1015 cm (46 in.) across other portions of ...

David M. Gaffin; Stephen S. Parker; Paul D. Kirkwood

2003-04-01T23:59:59.000Z

125

Property:CommercialAvgRate | Open Energy Information  

Open Energy Info (EERE)

CommercialAvgRate CommercialAvgRate Jump to: navigation, search Property Name CommercialAvgRate Property Type Number Description Commercial Average Rate Subproperties This property has the following 279 subproperties: A AEP Generating Company AEP Texas Central Company AEP Texas North Company AES Eastern Energy LP APN Starfirst, L.P. Accent Energy Holdings, LLC Alabama Municipal Elec Authority Alaska Electric & Energy Coop Alaska Energy Authority Alaska Power and Telephone Co Allegheny Electric Coop Inc Alliant Energy Ameren Energy Marketing Ameren Illinois Company American Electric Power Co., Inc. American Mun Power-Ohio, Inc American Samoa Power Authority American Transmission Systems Inc Anoka Electric Coop Appalachian Power Co Aquila Inc Aquila Inc (Missouri) Arizona Electric Pwr Coop Inc

126

Property:IndustrialAvgRate | Open Energy Information  

Open Energy Info (EERE)

IndustrialAvgRate IndustrialAvgRate Jump to: navigation, search Property Name IndustrialAvgRate Property Type Number Description Industrial Average Rate Subproperties This property has the following 279 subproperties: A AEP Generating Company AEP Texas Central Company AEP Texas North Company AES Eastern Energy LP APN Starfirst, L.P. Accent Energy Holdings, LLC Alabama Municipal Elec Authority Alaska Electric & Energy Coop Alaska Energy Authority Alaska Power and Telephone Co Allegheny Electric Coop Inc Alliant Energy Ameren Energy Marketing Ameren Illinois Company American Electric Power Co., Inc. American Mun Power-Ohio, Inc American Samoa Power Authority American Transmission Systems Inc Anoka Electric Coop Appalachian Power Co Aquila Inc Aquila Inc (Missouri) Arizona Electric Pwr Coop Inc

127

Category:Green Button Utility Companies | Open Energy Information  

Open Energy Info (EERE)

Utility Companies Utility Companies Jump to: navigation, search Pages in category "Green Button Utility Companies" The following 67 pages are in this category, out of 67 total. A AEP Generating Company AEP Texas Central Company AEP Texas North Company Ameren Illinois Company (Illinois) Appalachian Power Co Atlantic City Electric Co Austin Energy B Baltimore Gas & Electric Co Bangor Hydro-Electric Co Barton Village, Inc (Utility Company) C CenterPoint Energy Central Maine Power Co Central Vermont Pub Serv Corp City of Chattanooga, Georgia (Utility Company) City of Chattanooga, Tennessee (Utility Company) City of Glendale, California (Utility Company) Commonwealth Edison Co Connecticut Light & Power Co Consolidated Edison Co-NY Inc D Delmarva Power E EPB G Green Mountain Power Corp

128

Evaluation of Waterwall Corrosion Fatigue, Volume 2: Roadmap Case Study: Evaluation of AEP's Big Sandy Unit 1  

Science Conference Proceedings (OSTI)

As we continue to operate an ever-aging fleet of power plants, we experience increased boiler tube failures from failure mechanisms related to aging. One such failure mechanism is corrosion fatigue. Corrosion fatigue may result in failures in any water-touched surface in boilers and has been found in waterwalls, risers, and supply tubing, and drums. This report provides detailed research on the causes and actions to address corrosion fatigue in boiler waterwall tubing.

2011-05-31T23:59:59.000Z

129

Program on Technology Innovation: Application of a High Temperature Superconducting Fault Current Limiter at AEP's Sporn Substation  

Science Conference Proceedings (OSTI)

This report describes the application of a Superconducting Fault Current Limiter (SFCL) to address fault current over-duty problems in American Electric Power's 138kV Sporn Substation. EPRI is current developing SFCL technology targeted to address fault current over-duty problems at the transmission voltage level of 138kV and higher. The technology under development is termed the Matrix Fault Current Limiter (MFCL) due to the modular nature arrangements of its High Temperature Superconducting (HTS) eleme...

2007-10-30T23:59:59.000Z

130

The Impact of Forcing Datasets on the High-Resolution Simulation of Tropical Storm Ivan (2004) in the Southern Appalachians  

Science Conference Proceedings (OSTI)

The influence of large-scale forcing on the high-resolution simulation of Tropical Storm Ivan (2004) in the southern Appalachians was investigated using the Weather Research and Forecasting model (WRF). Two forcing datasets were employed: the ...

Xiaoming Sun; Ana P. Barros

2012-10-01T23:59:59.000Z

131

The Role of Airmass Types and Surface Energy Fluxes in Snow Cover Ablation in the Central Appalachians  

Science Conference Proceedings (OSTI)

A one-dimensional snowpack model, a unique airmass identification scheme, and surface weather observations are used to investigate large ablation events in the central Appalachian Mountains of North America. Data from cooperative observing ...

Daniel J. Leathers; Daniel Graybeal; Thomas Mote; Andrew Grundstein; David Robinson

2004-12-01T23:59:59.000Z

132

Near-Term Effects of the Lower Atmosphere in Simulated Northwest Flow Snowfall Forced over the Southern Appalachians  

Science Conference Proceedings (OSTI)

Northwest flow snowfall (NWFS) impacts the southern Appalachian Mountains after the upper-level trough has departed from the region, when moist northwesterly flow near the ground is lifted after encountering the mountains. Snowfall associated with ...

Douglas K. Miller

2012-10-01T23:59:59.000Z

133

List of Commercial Refrigeration Equipment Incentives | Open Energy  

Open Energy Info (EERE)

Refrigeration Equipment Incentives Refrigeration Equipment Incentives Jump to: navigation, search The following contains the list of 103 Commercial Refrigeration Equipment Incentives. CSV (rows 1 - 103) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment Ground Source Heat Pumps Yes AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Commercial Industrial Local Government Municipal Utility

134

List of Programmable Thermostats Incentives | Open Energy Information  

Open Energy Info (EERE)

Thermostats Incentives Thermostats Incentives Jump to: navigation, search The following contains the list of 525 Programmable Thermostats Incentives. CSV (rows 1-500) CSV (rows 501-525) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment Ground Source Heat Pumps Yes AEP Ohio (Electric) - Residential Energy Efficiency Rebate Program (Ohio) Utility Rebate Program Ohio Residential Building Insulation Ceiling Fan Central Air conditioners

135

List of Geothermal Heat Pumps Incentives | Open Energy Information  

Open Energy Info (EERE)

Heat Pumps Incentives Heat Pumps Incentives Jump to: navigation, search The following contains the list of 729 Geothermal Heat Pumps Incentives. CSV (rows 1-500) CSV (rows 501-729) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment Ground Source Heat Pumps Yes AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate Programs (Arkansas) Utility Rebate Program Arkansas Commercial Fed. Government Industrial Institutional Local Government

136

AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

2001-06-30T23:59:59.000Z

137

Assessment of Ice Plugging of the Cooling Water Intake at American Electric Power's Conesville Power Plant  

Science Conference Proceedings (OSTI)

The American Electrical Power (AEP) Conesville power plant is shutting down the last unit that uses a once-through cooling system. Currently, warm water from the existing cooling system is routed to the intake area to control ice buildup. After the last unit is shut down, there will be no control of the ice buildup in the trash racks, making complete blockage of the intake facility a possibility. A sediment-control structure was built in 2000 to prevent sediment buildup at the intake facility. The sedime...

2011-12-14T23:59:59.000Z

138

Subsurface stratigraphy and petrophysical analysis of the Middle Devonian interval, including the Marcellus Shale, of the central Appalachian basin; northwestern Pennsylvania.  

E-Print Network (OSTI)

??In the central Appalachian basin, the multiple organic-rich intervals of the Middle Devonian, including the Marcellus Shale, are an emerging large resource play with high (more)

Yanni, Anne.

2010-01-01T23:59:59.000Z

139

Sub-surface stratigraphy and petrophysical analysis of the Middle Devonian Interval of the Central Appalachian Basin; West Virginia and Southwest Pennsylvania.  

E-Print Network (OSTI)

??In the central Appalachian basin, the Middle Devonian organic-rich shale interval, including the Marcellus Shale, is an important target for natural gas exploration. It has (more)

Boyce, Matthew L. (Matthew Louis), 1985-

2010-01-01T23:59:59.000Z

140

Sedimentology of gas-bearing Devonian shales of the Appalachian Basin  

SciTech Connect

The Eastern Gas Shales Project (1976-1981) of the US DOE has generated a large amount of information on Devonian shale, especially in the western and central parts of the Appalachian Basin (Morgantown Energy Technology Center, 1980). This report summarizes this information, emphasizing the sedimentology of the shales and how it is related to gas, oil, and uranium. This information is reported in a series of statements each followed by a brief summary of supporting evidence or discussion and, where interpretations differ from our own, we include them. We believe this format is the most efficient way to learn about the gas-bearing Devonian shales of the Appalachian Basin and have organized our statements as follows: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas, oil, and uranium.

Potter, P.E.; Maynard, J.B.; Pryor, W.A.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Simulation of CO2 Sequestration and Enhanced Coalbed Methane Production in Multiple Appalachian Basin Coal Seams  

Science Conference Proceedings (OSTI)

A DOE-funded field injection of carbon dioxide is to be performed in an Appalachian Basin coal seam by CONSOL Energy and CNX Gas later this year. A preliminary analysis of the migration of CO2 within the Upper Freeport coal seam and the resulting ground movements has been performed on the basis of assumed material and geometric parameters. Preliminary results show that ground movements at the field site may be in a range that are measurable by tiltmeter technology.

Bromhal, G.S.; Siriwardane, H.J.; Gondle, R.K.

2007-11-01T23:59:59.000Z

142

American Electric Power Co., Inc. | Open Energy Information  

Open Energy Info (EERE)

Co., Inc. Co., Inc. (Redirected from AEP) Jump to: navigation, search Name American Electric Power (AEP) Address 1 Riverside Plaza Place Columbus, OH Zip 43215-2372 Year founded 1906 Number of employees 10,000+"+" is not declared as a valid unit of measurement for this property. Phone number (614) 716-1000 Website www.aep.com Coordinates 39.964959°, -83.005786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.964959,"lon":-83.005786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Markets expect Marcellus growth to drive Appalachian natural gas ...  

U.S. Energy Information Administration (EIA)

Financial market analysis and financial data for major energy companies. Environment. Greenhouse gas data, voluntary report- ing, electric power plant emissions.

144

West Virginia/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » West Virginia/Incentives < West Virginia Jump to: navigation, search Contents 1 Financial Incentive Programs for West Virginia 2 Rules, Regulations and Policies for West Virginia Download All Financial Incentives and Policies for West Virginia CSV (rows 1 - 62) Financial Incentive Programs for West Virginia Download Financial Incentives for West Virginia CSV (rows 1 - 12) Incentive Incentive Type Active AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program Yes AEP Appalachian Power - Residential Energy Efficiency Rebate Program (West Virginia) Utility Rebate Program Yes

145

Property:EIA/861/AltFuelVehicle | Open Energy Information  

Open Energy Info (EERE)

AltFuelVehicle AltFuelVehicle Jump to: navigation, search This is a property of type Boolean. Description: Alt Fuel Vehicle Entity operated alternative-fueled vehicles during the year (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/AltFuelVehicle" Showing 25 pages using this property. (previous 25) (next 25) A AEP Generating Company + true + AEP Texas Central Company + true + AEP Texas North Company + true + Access Energy Coop + true + Adams Electric Cooperative Inc + true + Agralite Electric Coop + true + Alabama Power Co + true + Ameren Illinois Company + true + Appalachian Power Co + true + Arizona Public Service Co + true + Atchison-Holt Electric Coop + true + Atlantic City Electric Co + true +

146

Property:EIA/861/AltFuelVehicle2 | Open Energy Information  

Open Energy Info (EERE)

AltFuelVehicle2 AltFuelVehicle2 Jump to: navigation, search This is a property of type Boolean. Description: Alt Fuel Vehicle2 Entity plans to operate alternative-fueled vehicles next year (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/AltFuelVehicle2" Showing 25 pages using this property. (previous 25) (next 25) A AEP Generating Company + true + AEP Texas Central Company + true + AEP Texas North Company + true + Access Energy Coop + true + Adams Electric Cooperative Inc + true + Agralite Electric Coop + true + Alabama Power Co + true + Ameren Illinois Company + true + Appalachian Power Co + true + Arizona Public Service Co + true + Atchison-Holt Electric Coop + true + Atlantic City Electric Co + true +

147

AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

2001-06-30T23:59:59.000Z

148

Comments by the American Electric Power System on Proposed Coordination of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by the American Electric Power System on Proposed by the American Electric Power System on Proposed Coordination of Federal Authorizations for Electric Transmission Facilities Comments by the American Electric Power System on Proposed Coordination of Federal Authorizations for Electric Transmission Facilities Proposed Coordination of Federal Authorizations for Electric Transmission Facilities - Interim Final Rule and Proposed Rule (DOE, 10 CR Part 900): The utility operating companies of the American Electric Power System ("AEP") commend the Department of Energy ("DOE") for its ongoing commitment to implement the provisions of the Energy Policy Act of 2005 ("EPAct"), specifically, as addressed here, the DOE's continuing effort to establish procedures under which entities may request that DOE

149

Climatological lightning characteristics of the Southern Rocky and Appalachian Mountain chains, a comparison of two distinct mountain effects  

E-Print Network (OSTI)

This study presents a high-resolution lightning climatology for southern portions of both the Rocky Mountains and the Appalachian Mountains. Data from the National Lightning Detection Network (NLDN) are analyzed to produce maps of average annual lightning flash density, positive flash density, percent positive flashes, median peak current, and multiplicity. Three-hourly increments are used to demonstrate the annual average diurnal evolution of flash density. Data are also divided into seasonal averages for the same three-hourly increments to describe the daily evolution of flash density for each of the four seasons: December-January-February, March-April-May, June-July-August, and September-October-November. The flash density analyses reveal opposite mountain-valley effects. In the Rocky Mountains, flash density enhancements occur over and near mountains and flash density minima occur in the valleys. In the Appalachians, the enhancements occur in the valleys, while minimums are noted over the mountains. The eastern edge of the Appalachian lightning suppression is determined to be a result of faster propagation of mountain-initiated convection. Weaker mountain breezes in the Appalachians are theorized to be the catalysts for this. The western edge of the suppression is the cumulative effect of consistent flash density gradients at the Appalachian's western slopes. A theory is presented which links this gradient to observations of high median peak currents. Statistical tests on flash density means show that the Appalachian suppression is significant. Multiple regressions predict lightning flash density from terrain characteristics. Vertical wind and thermodynamic profiles, horizontal temperature differences at summit levels, and average annual precipitation complete the study. From these data, a conceptual model is presented to describe the nature of the lightning evolution in each region, and explain the processes that lead to the end state. This study concludes that the differences between the patterns of lightning characteristics in the Southern Rockies and the Southern Appalachians are the cumulative effects of subtle differences in the diurnal evolution patterns. Furthermore, the Appalachian lightning suppression is a product of lightning propagation and storm evolution, rather than a suppression of convective initiation.

Phillips, Stephen Edward

2001-01-01T23:59:59.000Z

150

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

Science Conference Proceedings (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

151

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

152

Appalachian Rivers II Conference: Technology for Monitoring, Assessing, and Restoring Streams, Rivers, and Watersheds  

SciTech Connect

On July 28-29, 1999, the Federal Energy Technology Center (FETC) and the WMAC Foundation co-sponsored the Appalachian Rivers II Conference in Morgantown, West Virginia. This meeting brought together over 100 manufacturers, researchers, academicians, government agency representatives, watershed stewards, and administrators to examine technologies related to watershed assessment, monitoring, and restoration. Sessions included presentations and panel discussions concerning watershed analysis and modeling, decision-making considerations, and emerging technologies. The final session examined remediation and mitigation technologies to expedite the preservation of watershed ecosystems.

None available

1999-07-29T23:59:59.000Z

153

Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions  

SciTech Connect

This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

Hendryx, M.; Zullig, K.J. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

2009-11-15T23:59:59.000Z

154

INNOVATIVE METHODOLOGY FOR DETECTION OF FRACTURE-CONTROLLED SWEET SPOTS IN THE NORTHERN APPALACHIAN BASION  

Science Conference Proceedings (OSTI)

During this reporting period, Fortuna retrieved the first oriented horizontal core from the Trenton/Black River in the northern Appalachian Basin. The core came from central New York State, the ''hottest'' play in the Appalachian Basin. A complete well log suite was also collected in the horizontal hole, including an FMI log. After reassembling the core sections, and orienting the core, we analyzed the whole core before it was cut for full-diameter core analyses (e.g., permeability) and before the core was split, in order that we did not miss any features that may be lost during cutting. We recognized and mapped along the core 43 stylolites, 99 veins and several large partially filled vugs. Kinematic indicators suggest multiple phases of strike-slip motion. Master-abutting relationships at intersections (primarily determined from which feature ''cuts'' which other feature) show three stages of stylolite growth: sub horizontal, nearly vertical, and steeply dipping. These development stages reflect vertical loading, tectonic horizontal loading, and finally oblique loading. Hydrothermal dolomite veins cut and are cut by all three stages of the stylolites. A set of horizontal veins indicates vertical unloading. Analyses of the core will continue, as well as the well logs.

Rober Jacobi

2006-05-31T23:59:59.000Z

155

Remaining gross market potentials for the Appalachian District  

SciTech Connect

A survey provided a rank ordering of the 22 power distributors and each option's installations under the Revised Home Insulation Program (RHIP). A special cross tabulation from the Bureau of the Census was used to develop a housing base from which work completions from the RHIP data base could be subtracted. Key observations were: the largest percentage of remaining gross market potential for RHIP surveys lies in the service area of the Knoxville utilities Board (22.6%). Approximately 23% of the electrically heated and/or cooled living quarters have installed 1 or more measures under the Home Weatherization Option. In comparison to the number of RHIP surveys completed, 48.3% of the RHIP participants went on to install 1 or more of the recommended weatherization measures. Only 1.8% of the occupied living quarters have installed a heat pump under the Heat Pump Option of RHIP. The district penetration rate for heat pump water heater installation in living quarters with existing electric water heaters is 0.1%. The largest percentage of remaining solar water heater installations is found in the Knoxville Utilities Board's service area (43.3%). Of the distributors that offered all 4 options in addition to the survey, the municipality of Oak Ridge had the highest overall average in performance and closure.

Camp, W.A.

1985-11-01T23:59:59.000Z

156

Corrosion protection pays off for coal-fired power plants  

Science Conference Proceedings (OSTI)

Zinc has long been used to hot-dip galvanise steel to deliver protection in harsh environments. Powder River Basin or eastern coal-fired plants benefit from using galvanized steel for conveyors, vibratory feeders, coal hoppers, chutes, etc. because maintenance costs are essentially eliminated. When life cycle costs for this process are compared to an alternative three-coal paint system for corrosion protection, the latter costs 5-10 times more than hot-dip galvanizing. An AEP Power Plant in San Juan, Puerto Rico and the McDuffie Coal Terminal in Mobile, AL, USA have both used hot-dip galvanized steel. 1 fig., 1 tab.

Hansen, T.

2006-11-15T23:59:59.000Z

157

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

DOE Green Energy (OSTI)

Private- and public-sector stakeholders formed the new ''Trenton-Black River Appalachian Basin Exploration Consortium'' and began a two-year research effort that will lead to a play book for Trenton-Black River exploration throughout the Appalachian basin. The final membership of the Consortium includes 17 gas exploration companies and 6 research team members, including the state geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia, the New York State Museum Institute and West Virginia University. Seven integrated research tasks are being conducted by basin-wide research teams organized from this large pool of experienced professionals. More than 3400 miles of Appalachian basin digital seismic data have been quality checked. In addition, inquiries have been made regarding the availability of additional seismic data from government and industry partners in the consortium. Interpretations of the seismic data have begun. Error checking is being performed by mapping the time to various prominent reflecting horizons, and analyzing for any anomalies. A regional geological velocity model is being created to make time-to-depth conversions. Members of the stratigraphy task team compiled a generalized, basin-wide correlation chart, began the process of scanning geophysical logs and laid out lines for 16 regional cross sections. Two preliminary cross sections were constructed, a database of all available Trenton-Black River cores was created, and a basin-wide map showing these core locations was produced. Two cores were examined, described and photographed in detail, and were correlated to the network of geophysical logs. Members of the petrology team began the process of determining the original distribution of porous and permeable facies within a sequence stratigraphic framework. A detailed sedimentologic and petrographic study of the Union Furnace road cut in central Pennsylvania was completed. This effort will facilitate the calibration of subsurface core and log data. A core-sampling plan was developed cooperatively with members of the isotope geochemistry and fluid inclusion task team. One hundred thirty (130) samples were prepared for trace element and stable isotope analysis, and six samples were submitted for strontium isotope analysis. It was learned that there is a good possibility that carbon isotope stratigraphy may be a useful tool to locate the top of the Black River Formation in state-to-state correlations. Gas samples were collected from wells in Kentucky, New York and West Virginia. These were sent to a laboratory for compositional, stable isotope and hydrogen and radiogenic helium isotope analysis. Decisions concerning necessary project hardware, software and configuration of the website and database were made by the data, GIS and website task team. A file transfer protocol server was established for project use. The project website is being upgraded in terms of security.

Douglas G. Patchen; James Drahovzal; Larry Wickstrom; Taury Smith; Chris Laughery; Katharine Lee Avary

2004-04-01T23:59:59.000Z

158

Forest soil carbon inventories and dynamics along an elevation gradient in the southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Soil organic carbon (SOC) was partitioned between unprotected and protected pools in six forests along an elevation gradient in the southern Appalachian Mountains using two physical methods: flotation in aqueous CaCl{sub 2} (1.4 g/mL) and wet sieving through a 0.053 mm sieve. Both methods produced results that were qualitatively and quantitatively similar. Along the elevation gradient, 28 to 53% of the SOC was associated with an unprotected pool that included forest floor O-layers and other labile soil organic matter (SOM) in various stages of decomposition. Most (71 to 83%) of the C in the mineral soil at the six forest sites was identified as protected because of its association with a heavy soil fraction (> 1.4 g/mL) or a silt-clay soil fraction. Total inventories of SOC in the forests (to a depth of 30 cm) ranged from 384 to 1244 mg C/cm{sup 2}. The turnover time of the unprotected SOC was negatively correlated (r = -0.95, p < 0.05) with mean annual air temperature (MAT) across the elevation gradient. Measured SOC inventories, annual C returns to the forest floor, and estimates of C turnover associated with the protected soil pool were used to parameterize a simple model of SOC dynamics. Steady-state predictions with the model indicated that, with no change in C inputs, the low- (235-335 m), mid- (940-1000 m), and high- (1650-1670 m) elevation forests under study might surrender {approx} 40 to 45% of their current SOC inventory following a 4 C increase in MAT. Substantial losses of unprotected SOM as a result of a warmer climate could have long-term impacts on hydrology, soil quality, and plant nutrition in forest ecosystems throughout the southern Appalachian Mountains.

Garten Jr, Charles T [ORNL; Post, Wilfred M [ORNL; Hanson, Paul J [ORNL; Cooper, Lee W [ORNL

1999-05-01T23:59:59.000Z

159

Wheeling Power Co | Open Energy Information  

Open Energy Info (EERE)

Wheeling Power Co Wheeling Power Co Place Ohio Service Territory West Virginia Website www.aepohio.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 20521 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Wheeling

160

Kingsport Power Co | Open Energy Information  

Open Energy Info (EERE)

Kingsport Power Co Kingsport Power Co Place Ohio Service Territory Tennessee Website www.appalachianpower.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 10331 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for Kingsport

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Indiana Michigan Power Co | Open Energy Information  

Open Energy Info (EERE)

Indiana Michigan Power Co Indiana Michigan Power Co Place Ohio Service Territory Indiana, Michigan Website www.indianamichiganpower. Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 9324 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules

162

O:ELECTRICEA-200.PDF  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order No. EA-200 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C. §824a(e)). On December 22, 1998, as supplemented on February 3, 1999, American Electric Power Service Corporation (AEPSC), on behalf of its seven public utility affiliates, collectively known as the "AEP Operating Companies," applied to the Office of Fossil Energy (FE) of the Department of Energy (DOE) for authorization to transmit electric energy to Canada. The AEP Operating Companies are each investor-owned public utilities that serve retail and wholesale customers in Indiana, Kentucky, Michigan, Ohio, Tennessee, Virginia, and West Virginia. They include: Appalachian Power Company; Columbus Southern Power Company;

163

Investigation of vortex generators for augmentation of wind turbine power performance  

SciTech Connect

This study focuses on the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. The goal was to design a VG array which would increase annual energy production (AEP) by increasing power output at moderate wind speeds, without adversely affecting the loads or stall-regulation performance of the turbine. Wind tunnel experiments were conducted at the University of Washington to evaluate the effect of VGs on the AWT-26 blade, which is lofted from National Renewable Energy Laboratory (NREL) S-series airfoils. Based on wind-tunnel results and analysis, a VG array was designed and then tested on the AWT-26 prototype, designated P1. Performance and loads data were measured for P1, both with and without VGs installed. the turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a negligible effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for sites having annual average wind speeds up to 8.5 m/s. While the present work did not lead to improved AEP for the AWT-2 turbine, it does provide insight into performance augmentation of wind turbines with VGs. The safe design of a VG array for a stall-regulated turbine has been demonstrated, and several issues involving optimal performance with VGs have been identified and addressed. 15 refs., 34 figs., 10 tabs.

Griffin, D.A. [Lynette (R.) and Associates, Seattle, WA (United States)

1996-12-01T23:59:59.000Z

164

American Electric Power Co., Inc. | Open Energy Information  

Open Energy Info (EERE)

Co., Inc. Co., Inc. (Redirected from American Electric Power) Jump to: navigation, search Name American Electric Power (AEP) Address 1 Riverside Plaza Place Columbus, OH Zip 43215-2372 Year founded 1906 Number of employees 10,000+"+" is not declared as a valid unit of measurement for this property. Phone number (614) 716-1000 Website www.aep.com Coordinates 39.964959°, -83.005786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.964959,"lon":-83.005786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Fire Regimes of the Southern Appalachian Mountains: Temporal and Spatial Variability and Implications for Vegetation Dynamics  

E-Print Network (OSTI)

Ecologists continue to debate the role of fire in forests of the southern Appalachian Mountains. How does climate influence fire in these humid, temperate forests? Did fire regimes change during the transition from Native American settlement to Euro-American settlement? Are fire regime changes resulting in broad vegetation changes in the forests of eastern North America? I used several approaches to address these questions. First, I used digitized fire perimeter maps from Great Smoky Mountains National Park and Shenandoah National Park for 1930-2009 to characterize spatial and temporal patterns of wildfire by aspect, elevation, and landform. Results demonstrate that fuel moisture is a primary control, with fire occurring most frequently during dry years, in dry regions, and at dry topographic positions. Climate also modifies topographic control, with weaker topographic patterns under drier conditions. Second, I used dendroecological methods to reconstruct historical fire frequency in yellow pine (Pinus, subgenus Diploxylon Koehne) stands at three field sites in the southern Appalachian Mountains. The fire history reconstructions extend from 1700 to 2009, with composite fire return intervals ranging from 2-4 years prior to the fire protection period. The two longest reconstructions record frequent fire during periods of Native American land use. Except for the recent fire protection period, temporal changes in land use did not have a significant impact on fire frequency and there was little discernible influence of climate on past fire occurrence. Third, I sampled vegetation composition in four different stand types along a topographic moisture gradient, including mesic cove, sub-mesic white pine (Pinus strobus L.) hardwood, sub-xeric oak (Quercus L.), and xeric pine forests in an unlogged watershed with a reconstructed fire history. Stand age structures demonstrate changes in establishment following fire exclusion in xeric pine stands, sub-xeric oak stands, and sub-mesic white pine-hardwood stands. Fire-tolerant yellow pines and oaks are being replaced by shade-tolerant, fire sensitive species such as red maple (Acer rubrum L.) and hemlock (Tsuga canadensis L. Carr.). Classification analysis and ordination of species composition in different age classes suggest a trend of successional convergence in the absence of fire with a shift from four to two forest communities.

Flatley, William 1977-

2012-12-01T23:59:59.000Z

166

Engineering Feasibility of CO2 Capture on an Existing U.S. Coal-Fired Power Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

FEASIBILITY OF CO FEASIBILITY OF CO 2 CAPTURE ON AN EXISTING US COAL-FIRED POWER PLANT Nsakala ya Nsakala (nsakala.y.nsakala@power.alstom.com; 860-285-2018) John Marion (john.l.marion@power.alstom.com; 860-285-4539) Carl Bozzuto (carl.bozzuto@power.alstom.com; 860-285-5007) Gregory Liljedahl (greg.n.liljedahl@power.alstom.com; 860-285-4833) Mark Palkes (mark.palkes@power.alstom.com; 860-285-2676) ALSTOM Power Inc. US Power Plant Laboratories 2000 Day Hill Rd. Windsor, CT 06095 David Vogel (david.c.vogel@us.abb.com; 713-821-4312) J.C. Gupta (jcgupta@us.abb.com; 713-821-5093) ABB Lummus Global Inc. 3010 Briarpark Houston, TX 77042 Manoj Guha (mkguha@aep.com; 614-223-1285) American Electric Power 1 Riverside Plaza Columbus, OH 43215 Howard Johnson (hjohnson@odod.state.oh.us; 614-644-8368)

167

Southwestern Electric Power Co | Open Energy Information  

Open Energy Info (EERE)

(Redirected from SWEPCO) (Redirected from SWEPCO) Jump to: navigation, search Name Southwestern Electric Power Co Place Ohio Service Territory Arkansas, Louisiana, Texas Website www.swepco.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 17698 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

168

Mortality in Appalachian coal mining regions: the value of statistical life lost  

SciTech Connect

We examined elevated mortality rates in Appalachian coal mining areas for 1979-2005, and estimated the corresponding value of statistical life (VSL) lost relative to the economic benefits of the coal mining industry. We compared age-adjusted mortality rates and socioeconomic conditions across four county groups: Appalachia with high levels of coal mining, Appalachia with lower mining levels, Appalachia without coal mining, and other counties in the nation. We converted mortality estimates to VSL estimates and compared the results with the economic contribution of coal mining. We also conducted a discount analysis to estimate current benefits relative to future mortality costs. The heaviest coal mining areas of Appalachia had the poorest socioeconomic conditions. Before adjusting for covariates, the number of excess annual age-adjusted deaths in coal mining areas ranged from 3,975 to 10,923, depending on years studied and comparison group. Corresponding VSL estimates ranged from $18.563 billion to $84.544 billion, with a point estimate of $50.010 billion, greater than the $8.088 billion economic contribution of coal mining. After adjusting for covariates, the number of excess annual deaths in mining areas ranged from 1,736 to 2,889, and VSL costs continued to exceed the benefits of mining. Discounting VSL costs into the future resulted in excess costs relative to benefits in seven of eight conditions, with a point estimate of $41.846 billion.

Hendryx, M.; Ahern, M.M. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

2009-07-15T23:59:59.000Z

169

Climate controls on forest soil C isotope ratios in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

A large portion of terrestrial carbon (C) resides in soil organic carbon (SOC). The dynamics of this large reservoir depend on many factors, including climate. Measurements of {sup 13}C:{sup 12}C ratios, C concentrations, and C:N ratios at six forest sites in the Southern Appalachian Mountains (USA) were used to explore several hypotheses concerning the relative importance of factors that control soil organic matter (SOM) decomposition and SOC turnover. Mean {delta}{sup 13}C values increased with soil depth and decreasing C concentrations along a continuum from fresh litter inputs to more decomposed soil constituents. Data from the six forest sites, in combination with data from a literature review, indicate that the extent of change in {delta}{sup 13}C values from forest litter inputs to mineral soil is significantly associated with mean annual temperature. The findings support a conceptual model of vertical changes in forest soil {delta}{sup 13}C values, C concentrations, and C:N ratios that are interrelated through climate controls on decomposition. The authors hypothesize that, if other environmental factors are not limiting, then temperature and litter quality indirectly control the extent of isotopic fractionation during SOM decomposition in temperate forest ecosystems.

Garten, C.T. Jr.; Cooper, L.W.; Post, W.M. III; Hanson, P.J.

2000-04-01T23:59:59.000Z

170

Climate controls on forest soil C isotope ratios in the southern Appalachian Mountains  

SciTech Connect

A large portion of terrestrial carbon (C) resides in soil organic carbon (SOC). The dynamics of this large reservoir depend on many factors, including climate. Measurements of {sup 13}C:{sup 12}C ratios, C concentrations, and C:N ratios at six forest sites in the Southern Appalachian Mountains (USA) were used to explore several hypotheses concerning the relative importance of factors that control soil organic matter (SOM) decomposition and SOC turnover. Mean {delta}{sup 13}C values increased with soil depth and decreasing C concentrations along a continuum from fresh litter inputs to more decomposed soil constituents. Data from the six forest sites, in combination with data from a literature review, indicate that the extent of change in {delta}{sup 13}C values from forest litter inputs to mineral soil (20 cm deep) is significantly associated with mean annual temperature. The findings support a conceptual model of vertical changes in forest soil {delta}{sup 13}C values, C concentrations, and C:N ratios that are interrelated through climate controls on decomposition. We hypothesize that, if other environmental factors (like soil moisture) are not limiting, then temperature and litter quality indirectly control the extent of isotopic fractionation during SOM decomposition in temperate forest ecosystems.

Garten Jr, Charles T [ORNL; Cooper, Lee W [ORNL; Post, Wilfred M [ORNL; Hanson, Paul J [ORNL

2000-04-01T23:59:59.000Z

171

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alpena Power Co Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit En ergy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

172

Property:Incentive/InstallReqs | Open Energy Information  

Open Energy Info (EERE)

InstallReqs InstallReqs Jump to: navigation, search Property Name Incentive/InstallReqs Property Type Text Description Installation Requirements. Pages using the property "Incentive/InstallReqs" Showing 25 pages using this property. (previous 25) (next 25) A AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) + Self-installed measures with a rebate level greater than $1,000 and all applications over $20,000, and 5% of remaining applicants will be inspected. Funds can be reserved for a period of 180 days as long as the application includes an expected date of project completion. Customer must have an active account in WV with either Wheeling Power Company, American Electric Power or Appalachian Power Company.

173

Phases Energy Services County Electric Power Assn A N Electric Coop  

Open Energy Info (EERE)

Alliant Energy Alliant Energy Alpena Power Co Altamaha Electric Member Corp Amana Society Service Co Ambit Energy L P Ambit Energy L P Maryland Ambit Energy L P New York Ameren Energy Marketing Ameren Energy Marketing Illinois Ameren Illinois Company Ameren Illinois Company Illinois AmeriPower LLC American Electric Power Co Inc American Mun Power Ohio Inc American PowerNet American PowerNet District of Columbia American PowerNet Maine American PowerNet Maryland American PowerNet New Jersey American Samoa Power Authority American Transmission Systems Inc Amicalola Electric Member Corp Amigo Energy Anadarko Public Works Auth Anchorage Municipal Light and Power Aniak Light Power Co Inc Anoka Electric Coop Anthracite Power Light Anza Electric Coop Inc Appalachian Electric Coop

174

Geologic Controls of Hydrocarbon Occurrence in the Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect

This report summarizes the accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employed the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempted to characterize the P-T parameters driving petroleum evolution; (3) attempted to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is worked with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) geochemically characterized the hydrocarbons (cooperatively with USGS). Third-year results include: All project milestones have been met and addressed. We also have disseminated this research and related information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky are more extendible than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that has been successfully tested by a local independent and is now producing commercial amounts of hydrocarbons. If this structure is productive along strike, it will be one of the largest producing structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge and Cumberland Plateau than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Hatcher, Robert D

2005-11-30T23:59:59.000Z

175

Soil Carbon Dynamics Along an Elevation Gradient in the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

The role of soil C dynamics in the exchange of CO{sub 2} between the terrestrial biosphere and the atmosphere is at the center of many science questions related to global climate change. The purpose of this report is to summarize measured trends in environmental factors and ecosystem processes that affect soil C balance along elevation gradients in the southern Appalachian Mountains of eastern Tennessee and western North Carolina, USA. Three environmental factors that have potentially significant effects on soil C dynamics (temperature, precipitation, and soil N availability) vary in a predictable manner with altitude. Forest soil C stocks and calculated turnover times of labile soil C increase with elevation, and there is an apparent inverse relationship between soil C storage and mean annual temperature. Relationships between climate variables and soil C dynamics along elevation gradients must be interpreted with caution because litter chemistry, soil moisture, N availability, and temperature are confounded; all potentially interact in complex ways to regulate soil C storage through effects on decomposition. Some recommendations are presented for untangling these complexities. It is concluded that past studies along elevation gradients have contributed to a better but not complete understanding of environmental factors and processes that potentially affect soil C balance. Furthermore, there are advantages linked to the use of elevation gradients as an approach to climate change research when hypotheses are placed in a strong theoretical or mechanistic framework. Climate change research along elevation gradients can be both convenient and economical. More importantly, ecosystem processes and attributes affecting soil C dynamics along elevation gradients are usually the product of the long-term interactions between climate, vegetation, and soil type. Investigations along elevation gradients are a useful approach to the study of environmental change, and its effect on soil processes, which can complement data obtained from controlled, large-scale, field experiments as well as other empirical and theoretical approaches to climate change research.

Garten Jr., C.T.

2004-04-13T23:59:59.000Z

176

Multi-offset vertical seismic profiles: fracture and fault identification for Appalachian basin reservoirs - two case examples  

SciTech Connect

Many Appalachian basin reservoirs occur in older rocks that are commonly fractured and faulted. These fractures and faults very often act as the reservoir trapping mechanism, especially in lithologies with no log-detectable matrix porosity. Traditional logging techniques, although possibly showing fault or fracture presence in the well bore, seldom provide clues to the extent of fracturing or location of nearby faults. Surface seismic data should show faults and perhaps even fracturing, but showing these features is often not possible in rugged terrain or in areas with thick coverings of unconsolidated surface material. Traditional seismic also has resolutions lower than that needed to detect small faults (less than 70 ft). Two case examples are shown from the northern Appalachian basin. The first example utilizes Schlumberger's slim hole seismic tool in cased holes in an area of thick unconsolidated glacial material along the Bass Island trend of western New York. The second example utilizes Schlumberger's SAT tool in an open-hole environment in an area of northwestern Pennsylvania with disturbed surface bedding and poor conventional surface seismic returns. The slim hole tool provides good data but with only slightly greater resolution than surface Vibroseis data. The SAT tool provides excellent resolution (down to 25 ft) in highly disturbed bedding.

Wyatt, D.E.; Bennett, B.A.; Walsh, J.J.

1988-08-01T23:59:59.000Z

177

On High Winds and Foehn Warming Associated with Mountain-Wave Events in the Western Foothills of the Southern Appalachian Mountains  

Science Conference Proceedings (OSTI)

Extremely high winds of 4049 m s?1 [90110 miles per hour (mph)] were reported across the western foothills of the southern Appalachian Mountains on 2223 December 2004, 17 October 2006, 2425 February 2007, and 1 March 2007. The high winds in ...

David M. Gaffin

2009-02-01T23:59:59.000Z

178

List of Geothermal Incentives | Open Energy Information  

Open Energy Info (EERE)

Geothermal Incentives Geothermal Incentives Jump to: navigation, search The following contains the list of 1895 Geothermal Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1500) CSV (rows 1501-1895) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 401 Certification (Vermont) Environmental Regulations Vermont Utility Industrial Biomass/Biogas Coal with CCS Geothermal Electric Hydroelectric energy Small Hydroelectric Nuclear Yes AEP Appalachian Power - Commercial and Industrial Rebate Programs (West Virginia) Utility Rebate Program West Virginia Commercial Industrial Central Air conditioners Chillers Custom/Others pending approval Heat pumps Lighting Lighting Controls/Sensors Motor VFDs Programmable Thermostats Commercial Refrigeration Equipment

179

SECONDARY NATURAL GAS RECOVERY IN THE APPALACHIAN BASIN: APPLICATION OF ADVANCED TECHNOLOGIES IN A FIELD DEMONSTRATION SITE, HENDERSON DOME, WESTERN PENNSYLVANIA  

Science Conference Proceedings (OSTI)

The principal objectives of this project were to test and evaluate technologies that would result in improved characterization of fractured natural-gas reservoirs in the Appalachian Basin. The Bureau of Economic Geology (Bureau) worked jointly with industry partner Atlas Resources, Inc. to design, execute, and evaluate several experimental tests toward this end. The experimental tests were of two types: (1) tests leading to a low-cost methodology whereby small-scale microfractures observed in matrix grains of sidewall cores can be used to deduce critical properties of large-scale fractures that control natural-gas production and (2) tests that verify methods whereby robust seismic shear (S) waves can be generated to detect and map fractured reservoir facies. The grain-scale microfracture approach to characterizing rock facies was developed in an ongoing Bureau research program that started before this Appalachian Basin study began. However, the method had not been tested in a wide variety of fracture systems, and the tectonic setting of rocks in the Appalachian Basin composed an ideal laboratory for perfecting the methodology. As a result of this Appalachian study, a low-cost commercial procedure now exists that will allow Appalachian operators to use scanning electron microscope (SEM) images of thin sections extracted from oriented sidewall cores to infer the spatial orientation, relative geologic timing, and population density of large-scale fracture systems in reservoir sandstones. These attributes are difficult to assess using conventional techniques. In the Henderson Dome area, large quartz-lined regional fractures having N20E strikes, and a subsidiary set of fractures having N70W strikes, are prevalent. An innovative method was also developed for obtaining the stratigraphic and geographic tops of sidewall cores. With currently deployed sidewall coring devices, no markings from which top orientation can be obtained are made on the sidewall core itself during drilling. The method developed in this study involves analysis of the surface morphology of the broken end of the core as a top indicator. Together with information on the working of the tool (rotation direction), fracture-surface features, such as arrest lines and plume structures, not only give a top direction for the cores but also indicate the direction of fracture propagation in the tough, fine-grained Cataract/Medina sandstones. The study determined that microresistivity logs or other image logs can be used to obtain accurate sidewall core azimuths and to determine the precise depths of the sidewall cores. Two seismic S-wave technologies were developed in this study. The first was a special explosive package that, when detonated in a conventional seismic shot hole, produces more robust S-waves than do standard seismic explosives. The importance of this source development is that it allows S-wave seismic data to be generated across all of the Appalachian Basin. Previously, Appalachian operators have not been able to use S-wave seismic technology to detect fractured reservoirs because the industry-standard S-wave energy source, the horizontal vibrator, is not a practical source option in the heavy timber cover that extends across most of the basin. The second S-wave seismic technology that was investigated was used to verify that standard P-wave seismic sources can create robust downgoing S-waves by P-to-S mode conversion in the shallow stratigraphic layering in the Appalachian Basin. This verification was done by recording and analyzing a 3-component vertical seismic profile (VSP) in the Atlas Montgomery No. 4 well at Henderson Dome, Mercer County, Pennsylvania. The VSP data confirmed that robust S-waves are generated by P-to-S mode conversion at the basinwide Onondaga stratigraphic level. Appalachian operators can thus use converted-mode seismic technology to create S-wave images of fractured and unfractured rock systems throughout the basin.

BOB A. HARDAGE; ELOISE DOHERTY; STEPHEN E. LAUBACH; TUCKER F. HENTZ

1998-08-14T23:59:59.000Z

180

A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin  

NLE Websites -- All DOE Office Websites (Extended Search)

A Comparative Study of the A Comparative Study of the Mississippian Barnett Shale, Fort Worth Basin, and Devonian Marcellus Shale, Appalachian Basin DOE/NETL-2011/1478 Cover. Top left: The Barnett Shale exposed on the Llano uplift near San Saba, Texas. Top right: The Marcellus Shale exposed in the Valley and Ridge Province near Keyser, West Virginia. Photographs by Kathy R. Bruner, U.S. Department of Energy (USDOE), National Energy Technology Laboratory (NETL). Bottom: Horizontal Marcellus Shale well in Greene County, Pennsylvania producing gas at 10 million cubic feet per day at about 3,000 pounds per square inch. Photograph by Tom Mroz, USDOE, NETL, February 2010. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

SciTech Connect

The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the Trenton-Black River interval to delineation of regional limestone diagenesis in the basin. A consistent basin-wide pattern of marine and burial diagenesis that resulted in relatively low porosity and permeability in the subtidal facies of these rocks has been documented across the study area. Six diagenetic stages have been recognized: four marine diagenesis stages and two burial diagenesis stages. This dominance of extensive marine and burial diagenesis yielded rocks with low reservoir potential, with the exception of fractured limestone and dolostone reservoirs. Commercial amounts of porosity, permeability and petroleum accumulation appear to be restricted to areas where secondary porosity developed in association with hydrothermal fluid flow along faults and fractures related to basement tectonics. A broad range of geochemical and fluid inclusion analyses have aided in a better understanding of the origin of the dolomites in the Trenton and Black River Groups over the study area. The results of these analyses support a hydrothermal origin for all of the various dolomite types found to date. The fluid inclusion data suggest that all of the dolomite types analyzed formed from hot saline brines. The dolomite is enriched in iron and manganese, which supports a subsurface origin for the dolomitizing brine. Strontium isotope data suggest that the fluids passed through basement rocks or immature siliciclastic rocks prior to forming the dolomites. All of these data suggest a hot, subsurface origin for the dolomites. The project database continued to be redesigned, developed and deployed. Production data are being reformatted for standard relational database management system requirements. Use of the project intranet by industry partners essentially doubled during the reporting period.

Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

2005-04-01T23:59:59.000Z

182

NETL: CCPI - Demonstration of a Coal-Based Transport Gasifier...  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Electric Power Generation - Industrial Carbon Capture and Sequestration American Electric Power (AEP): Mountaineer Carbon Dioxide Capture and Storage Demonstration...

183

Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin  

SciTech Connect

To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

Mary Behling; Susan Pool; Douglas Patchen; John Harper

2008-12-31T23:59:59.000Z

184

APPLICATION OF A CATEGORICAL EXCLUSION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Electric Power (AEP) for the installation and maintenance of an overhead 7.2kv electrical power line from an existing AEP power pole located on U S Department of Energy...

185

CX-007786: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of a permit to American Electric Power (AEP) for the installation and maintenance of an overhead 7.2 kilovolt electrical power line from an existing AEP power pole located on U S...

186

Surface mining and reclamation effects on flood response of watersheds in the central Appalachian Plateau region - article no. W04407  

Science Conference Proceedings (OSTI)

Surface mining of coal and subsequent reclamation represent the dominant land use change in the central Appalachian Plateau (CAP) region of the United States. Hydrologic impacts of surface mining have been studied at the plot scale, but effects at broader scales have not been explored adequately. Broad-scale classification of reclaimed sites is difficult because standing vegetation makes them nearly indistinguishable from alternate land uses. We used a land cover data set that accurately maps surface mines for a 187-km{sup 2} watershed within the CAP. These land cover data, as well as plot-level data from within the watershed, are used with HSPF (Hydrologic Simulation Program-Fortran) to estimate changes in flood response as a function of increased mining. Results show that the rate at which flood magnitude increases due to increased mining is linear, with greater rates observed for less frequent return intervals. These findings indicate that mine reclamation leaves the landscape in a condition more similar to urban areas rather than does simple deforestation, and call into question the effectiveness of reclamation in terms of returning mined areas to the hydrological state that existed before mining.

Ferrari, J.R.; Lookingbill, T.R.; McCormick, B.; Townsend, P.A.; Eshleman, K.N. [University of Maryland, Frostburg, MD (United States)

2009-04-15T23:59:59.000Z

187

Communication Simulations for Power System Applications  

SciTech Connect

New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

2013-05-29T23:59:59.000Z

188

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

Science Conference Proceedings (OSTI)

This report summarizes the second-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). Second-year results include: All current milestones have been met and other components of the project have been functioning in parallel toward satisfaction of year-3 milestones. We also have been effecting the ultimate goal of the project in the dissemination of information through presentations at professional meetings, convening a major workshop in August 2003, and the publication of results. Our work in geophysical log correlation in the Middle Ordovician units is bearing fruit in recognition that the criteria developed locally in Tennessee and southern Kentucky have much greater extensibility than anticipated earlier. We have identified a major 60 mi-long structure in the western part of the Valley and Ridge thrust belt that is generating considerable exploration interest. If this structure is productive, it will be one of the largest structures in the Appalachians. We are completing a more quantitative structural reconstruction of the Valley and Ridge than has been made before. This should yield major dividends in future exploration in the southern Appalachian basin. Our work in mapping, retrodeformation, and modeling of the Sevier basin is a major component of the understanding of the Ordovician petroleum system in this region. Prior to our undertaking this project, this system was the least understood in the Appalachian basin. We have made numerous presentations, convened a workshop, and are beginning to disseminate our results in print. This project, in contrast to many if not most programs undertaken in DOE laboratories, has a major educational component wherein three Ph.D. students have been partially supported by this grant, one M.S. student partially supported, and another M.S. student fully supported by the project. These students will be well prepared for professional careers in the oil and gas industry.

Robert D. Hatcher

2004-05-31T23:59:59.000Z

189

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this segment of work, our goal was to review methods for estimating tree survival, growth, yield and value of forests growing on surface mined land in the eastern coalfields of the USA, and to determine the extent to which carbon sequestration is influenced by these factors. Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977 (SMCRA), mandates that mined land be reclaimed in a fashion that renders the land at least as productive after mining as it was before mining. In the central Appalachian region, where prime farmland and economic development opportunities for mined land are scarce, the most practical land use choices are hayland/pasture, wildlife habitat, or forest land. Since 1977, the majority of mined land has been reclaimed as hayland/pasture or wildlife habitat, which is less expensive to reclaim than forest land, since there are no tree planting costs. As a result, there are now hundreds of thousands of hectares of grasslands and scrublands in various stages of natural succession located throughout otherwise forested mountains in the U.S. A literature review was done to develop the basis for an economic feasibility study of a range of land-use conversion scenarios. Procedures were developed for both mixed hardwoods and white pine under a set of low product prices and under a set of high product prices. Economic feasibility is based on land expectation values. Further, our review shows that three types of incentive schemes might be important: (1) lump sum payment at planting (and equivalent series of annual payments); (2) revenue incentive at harvest; and (3) benefit based on carbon volume.

Jonathan Aggett

2003-12-15T23:59:59.000Z

190

Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystems Services  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During this quarter we worked on methodologies for analyzing carbon in mine soils. A unique property of mine soils is the presence of coal and carboniferous rock particles that are present in mine soils in various sizes, quantities, and qualities. There is no existing method in the literature that may be of use for quantitative estimation of soil organic carbon (SOC) in mine soils that can successfully differentiate between pedogenic and geogenic carbon forms. In this report we present a detailed description of a 16-step method for measuring SOC in mine soils designed for and tested on a total of 30 different mine soil mixtures representing a wide spectrum of mine soils in the hard-rock region of the Appalachian coalfield. The proposed method is a combination of chemical procedure for carbonates removal, a thermal procedure for pedogenic C removal, and elemental C analysis procedure at 900 C. Our methodology provides a means to correct for the carbon loss from the more volatile constituents of coal fragments in the mine soil samples and another correction factor for the protected organic matter that can also remain unoxidized following thermal pretreatment. The correction factors for coal and soil material-specific SOM were based on carbon content loss from coal and SOM determined by a parallel thermal oxidation analysis of pure ground coal fragments retrieved from the same mined site as the soil samples and of coal-free soil rock fragments of sandstone and siltstone origin.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2006-04-30T23:59:59.000Z

191

Sedimentology, petrology, and gas potential of the Brallier Formation: upper Devonian turbidite facies of the Central and Southern Appalachians  

SciTech Connect

The Upper Devonian Brallier Formation of the central and southern Appalachian basin is a regressive sequence of siltstone turbidites interbedded with mudstones, claystones, and shales. It reaches 1000 meters in thickness and overlies basinal mudrocks and underlies deltaic sandstones and mudrocks. Facies and paleocurrent analyses indicate differences between the depositional system of the Brallier Formation and those of modern submarine fans and ancient Alpine flysch-type sequences. The Brallier system is of finer grain size and lower flow intensity. In addition, the stratigraphic transition from turbidites to deltaic sediments is gradual and differs in its facies succession from the deposits of the proximal parts of modern submarine fans. Such features as massive and pebbly sandstones, conglomerates, debris flows, and massive slump structures are absent from this transition. Paleocurrents are uniformly to the west at right angles to basin isopach, which is atypical of ancient turbidite systems. This suggests that turbidity currents had multiple point sources. The petrography and paleocurrents of the Brallier Formation indicate an eastern source of sedimentary and low-grade metasedimentary rocks with modern relief and rainfall. The depositional system of the Brallier Formation is interpreted as a series of small ephemeral turbidite lobes of low flow intensity which coalesced in time to produce a laterally extensive wedge. The lobes were fed by deltas rather than submarine canyons or upper fan channel systems. This study shows that the present-day turbidite facies model, based mainly on modern submarine fans and ancient Alpine flysch-type sequences, does not adequately describe prodeltaic turbidite systems such as the Brallier Formation. Thickly bedded siltstone bundles are common features of the Brallier Formation and are probably its best gas reservoir facies, especially when fracture porosity is well developed.

Lundegard, P.D.; Samuels, N.D.; Pryor, W.A.

1980-03-01T23:59:59.000Z

192

Multi-scale and Integrated Characterization of the Marcellus Shale in the Appalachian Basin: From Microscopes to Mapping  

Science Conference Proceedings (OSTI)

Historic data from the Department of Energy Eastern Gas Shale Project (ESGP) were compiled to develop a database of geochemical analyses, well logs, lithological and natural fracture descriptions from oriented core, and reservoir parameters. The nine EGSP wells were located throughout the Appalachian Basin and intercepted the Marcellus Shale from depths of 750 meters (2500 ft) to 2500 meters (8200 ft). A primary goal of this research is to use these existing data to help construct a geologic framework model of the Marcellus Shale across the basin and link rock properties to gas productivity. In addition to the historic data, x-ray computerized tomography (CT) of entire cores with a voxel resolution of 240mm and optical microscopy to quantify mineral and organic volumes was performed. Porosity and permeability measurements in a high resolution, steady-state flow apparatus are also planned. Earth Vision software was utilized to display and perform volumetric calculations on individual wells, small areas with several horizontal wells, and on a regional basis. The results indicate that the lithologic character of the Marcellus Shale changes across the basin. Gas productivity appears to be influenced by the properties of the organic material and the mineral composition of the rock, local and regional structural features, the current state of in-situ stress, and lithologic controls on the geometry of induced fractures during stimulations. The recoverable gas volume from the Marcellus Shale is variable over the vertical stratigraphic section, as well as laterally across the basin. The results from this study are expected to help improve the assessment of the resource, and help optimize the recovery of natural gas.

Crandall, Dustin; Soeder, Daniel J; McDannell, Kalin T.; Mroz, Thomas

2010-01-01T23:59:59.000Z

193

Elevational trends in the fluxes of sulphur and nitrogen in throughfall in the southern Appalachian Mountains: some surprising results  

Science Conference Proceedings (OSTI)

From 1986-1989, a team of scientists measured atmospheric concentrations and fluxes in precipitation and throughfall, and modeled dry and cloudwater deposition in a spruce-fir forest of the Great Smoky Mountains National Park which is located in the Southern Appalachian Region of the United States. The work was part of the Integrated Forest Study (IFS) conducted at 12 forests in N. America and Europe. The spruce-fir forest at 1740 m consistently received the highest total deposition rates ({approx}2200, 1200, and 700 eq ha{sup -1} yr{sup -1} for SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, and NH{sub 4}{sup +}). During the summers of 1989 and 1990 we used multiple samplers to measure hydrologie, SO{sub 4}{sup 2-}, and NO{sub 3}{sup -} fluxes in rain and throughfall events beneath spruce forests above (1940 m) and below (1720 m) cloud base. Throughfall was used to estimate total deposition using relationships determined during the IFS. Although the SO{sub 4}{sup 2-} fluxes increased with elevation by a factor of 2 due to higher cloudwater interception at 1940 m, the NO{sub 3}{sup -} fluxes decreased with elevation by 30%. To investigate further, we began year round measurements of fluxes of all major ions in throughfall below spruce-fir forests at 1740 m and at 1920 m in 1993-1994. The fluxes of most ions showed a 10-50% increase with elevation due to the 70 cm yr{sup -1} cloudwater input at 1920 m. However, total inorganic nitrogen exhibited a 40% lower flux in throughfall at 1920 m than at 1740 m suggesting either higher dry deposition to trees at 1740 m or much higher canopy uptake of nitrogen by trees at 1920 m. Differential canopy absorption of N by trees at different elevations would have significant consequences for the use of throughfall N fluxes to estimate deposition. We used artificial trees to understand the foliar interactions of N.

Shubzda, John [ORNL; Lindberg, Steven Eric [ORNL; Garten Jr, Charles T [ORNL; Nodvin, S. [University of Tennessee, Knoxville (UTK)

1995-12-01T23:59:59.000Z

194

RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES  

DOE Green Energy (OSTI)

The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. During the reporting period (October-December 2004) we completed the validation of a forest productivity classification model for mined land. A coefficient of determination (R{sup 2}) of 0.68 confirms the model's ability to predict SI based on a selection of mine soil properties. To determine carbon sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio (Figure 1), West Virginia (Figure 2), and Virginia (Figure 3). The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). For hybrid poplar, total plant biomass differences increased significantly with the intensity of silvicultural input. Root, stem, and foliage biomass also increased with the level of silvicultural intensity. Financial feasibility analyses of reforestation on mined lands previously reclaimed to grassland have been completed for conversion to white pine and mixed hardwood species. Examination of potential policy instruments for promoting financial feasibility also have been completed, including lump sum payments at time of conversion, annual payments through the life of the stand, and payments based on carbon sequestration that provide both minimal profitability and fully offset initial reforestation outlays. We have compiled a database containing mine permit information obtained from permitting agencies in Virginia, West Virginia, Pennsylvania, Ohio, and Kentucky. Due to differences and irregularities in permitting procedures between states, we found it necessary to utilize an alternative method to determine mined land acreages in the Appalachian region. We have initiated a proof of concept study, focused in the State of Ohio, to determine the feasibility of using images from the Landsat Thematic Mapper (TM) and/or Enhanced Thematic Mapper Plus (ETM+) to accurately identify mined lands.

James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

2005-02-15T23:59:59.000Z

195

Data report: resource ratings of the RARE II tracts in the Idaho-Wyoming-Utah and the central Appalachian thrust belts  

DOE Green Energy (OSTI)

The assessment forms contained in this report constitute the data used in two resource assessments described in A Systematic Method for Resource Rating with Two Applications to Potential Wilderness Areas (Voelker et al. 1979). The assessments were performed for two geologic subprovinces containing proposed wilderness areas identified in the Forest Service Roadless Area Review and Evaluation (RARE II) program. The subprovinces studied are the Idaho-Wyoming-Utah thrust belt and the central Appalachians thrust belt. Each assessment form contains location data, resource ratings, and supporting information for a single tract. A unique dual rating that reflects geologic favorability and certainty of resource occurrence is assigned to each resource category evaluated. Individual ratings are synthesized into an overall tract-importance rating. Ratings created by others are included for comparative purposes wherever available. Supporting information consists of commentary and references that explain and document the ratings listed.

Voelker, A.H.; Wedow, H.; Oakes, E.; Scheffler, P.K.

1979-11-01T23:59:59.000Z

196

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect

This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

Robert D. Hatcher

2003-05-31T23:59:59.000Z

197

Energy Incentive Programs, West Virginia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Virginia West Virginia Energy Incentive Programs, West Virginia October 29, 2013 - 1:19pm Addthis Updated August 2013 West Virginia utilities budgeted $10 million in 2012 to promote energy efficiency in the state. What public-purpose-funded energy efficiency programs are available in my state? West Virginia has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? AEP Appalachian Power offers prescriptive rebates for an assortment of energy-efficient lighting and HVAC equipment, as well as variable frequency drives. The maximum amount obtainable for any one entity is $150,000 per year. Any installation with greater than $20,000 of rebates claimed will be inspected. First Energy (Potomac Edison and Mon Power) sponsors the Lighting for

198

Property:GreenButtonPlannedCompliant | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:GreenButtonPlannedCompliant Jump to: navigation, search Property Name GreenButtonPlannedCompliant Property Type Boolean Description Indicates if company is officially planning to be green button compliant. Pages using the property "GreenButtonPlannedCompliant" Showing 25 pages using this property. (previous 25) (next 25) A AEP Generating Company + true + Ameren Illinois Company (Illinois) + true + Appalachian Power Co + true + Atlantic City Electric Co + true + Austin Energy + true + B Baltimore Gas & Electric Co + true + Barton Village, Inc (Utility Company) + true + C Central Maine Power Co + true + Central Vermont Pub Serv Corp + true + City of Chattanooga, Georgia (Utility Company) + true +

199

NETL: Water-Energy Interface - Power Plant Water Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Fate of As, Se, Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater - Tennessee Valley Authority (TVA) Fate of As, Se, Hg in a Passive Integrated System for Treatment of Fossil Plant Wastewater - Tennessee Valley Authority (TVA) TVA, in cooperation with EPRI and the American Electric Power (AEP), is installing a demonstration passive treatment system at the Paradise Fossil Plant near Drakesboro, Kentucky, to treat ammonia in the flue gas desulfurization (FGD) effluent stream. The passive system is used to convert ammonia in the wastewater to nitrate in an aerobic component, followed by denitrification in anaerobic wetlands. In addition to NH 4, the wastewater stream also contains other hazardous pollutants captured from flue gas emissions, including arsenic (As), selenium (Se), and mercury (Hg). Biogeochemical reactions could affect the retention and speciation of As, Se, and Hg in the wastewater as it moves through the treatment system. A more thorough understanding of these transformations is needed. For this project, an extraction trench component is being used for removal of As, Se, and Hg. This extraction trench is integrated into the passive system components described above, which is installed and operated by TVA with support from EPRI.

200

Power Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Operations Outage Coordination Standards of Conduct Transmission Planning You are here: SN Home page > Power Operations Power Operations Western's Sierra Nevada Region...

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Grand Ridge III Wind Farm | Open Energy Information  

Open Energy Info (EERE)

III Wind Farm III Wind Farm Facility Grand Ridge III Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Beech Ridge Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Ridge Energy Wind Farm Ridge Energy Wind Farm Jump to: navigation, search Name Beech Ridge Energy Wind Farm Facility Beech Ridge Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status Under Construction Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location Greenbrier County WV Coordinates 38.06692°, -80.498571° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.06692,"lon":-80.498571,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 18980 of 28,905 results. 71 - 18980 of 28,905 results. Download Georgia Recovery Act State Memo http://energy.gov/downloads/georgia-recovery-act-state-memo Download Inspection Report: INS-O-01-01 Inspection of Lawrence Livermore National Laboratory Credit Card Usage and Property Management Concerns http://energy.gov/ig/downloads/inspection-report-ins-o-01-01 Article Fun Fact Friday: Plug-in Hybrid Edition With the ability to use their internal combustion engine after their batteries are depleted, plug-in hybrid electric vehicles offer consumers flexibility to run on electricity for short trips but still take longer trips using gasoline. http://energy.gov/eere/articles/fun-fact-friday-plug-hybrid-edition Rebate AEP Appalachian Power- Commercial and Industrial Rebate Programs (West Virginia)

204

Grand Ridge II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

II Wind Farm II Wind Farm Jump to: navigation, search Name Grand Ridge II Wind Farm Facility Grand Ridge II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Invenergy Developer Invenergy Energy Purchaser AEP-Appalachian Power Location La Salle County IL Coordinates 41.15496°, -88.750234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.15496,"lon":-88.750234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Building Energy Software Tools Directory: AEPS System Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Users New application with fewer than 500 users worldwide. Audience Alternative energy (solar, wind, hydro) system dealers, designers, installers, consultants, and contractors....

206

AEP SWEPCO - Commercial and Industrial Energy Efficiency Rebate...  

Open Energy Info (EERE)

DuctAir sealing, Lighting, Lighting ControlsSensors, Motor VFDs, Motors, Roofs, LED Exit Signs, Commercial Refrigeration Equipment, Geothermal Heat Pumps, LED Lighting,...

207

Microsoft Word - Final AEP EA, October 2010 ver 2  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ASSESSMENT DOE/EA-1727 DEPARTMENT OF ENERGY LOAN GUARANTEE TO AE POLYSILICON CORPORATION FOR CONSTRUCTION AND STARTUP OF THEIR PHASE 2 POLYSILICON PRODUCTION FACILITY IN FAIRLESS HILLS, PENNSYLVANIA U.S. Department of Energy Loan Guarantee Program Office Washington, DC 20585 November, 2010 TABLE OF CONTENTS Section Page November 2010 Final Environmental Assessment i EXECUTIVE SUMMARY ........................................................................................................... ES-1 1. PURPOSE AND NEED 1.1 Purpose and Need ................................................................................................................. 1-1 1.2 Background ............................................................................................................................ 1-1

208

Microsoft Word - 0.1_Coversheet_Abstract AEP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Responsible Federal Agency: U.S. Department of Energy (DOE) Responsible Federal Agency: U.S. Department of Energy (DOE) Title: Mountaineer Commercial Scale Carbon Capture and Storage Project, Draft Environmental Impact Statement (DOE/EIS-0445D) Location: New Haven, West Virginia, located in Mason County Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Mark W. Lusk Office of Project Facilitation & Compliance U.S. Department of Energy National Energy Technology Laboratory 3610 Collins Ferry Road Morgantown, WV 26507-0880 (304) 285-4145 or Mark.Lusk@netl.doe.gov Carol Borgstrom, Director Office of NEPA Policy and Compliance (GC-54) U.S. Department of Energy

209

Microsoft Word - 0.5_Summary_AEP.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mountaineer Commercial Scale Mountaineer Commercial Scale Carbon Capture and Storage Project Draft Environmental Impact Statement Summary February 2011 DOE/EIS-0445D Office of Fossil Energy National Energy Technology Laboratory COVER SHEET Responsible Federal Agency: U.S. Department of Energy (DOE) Title: Mountaineer Commercial Scale Carbon Capture and Storage Project, Draft Environmental Impact Statement (DOE/EIS-0445D) Location: New Haven, West Virginia, located in Mason County Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Mark W. Lusk Office of Project Facilitation & Compliance U.S. Department of Energy

210

AEP SWEPCO - Residential Energy Efficiency Rebate Program (Arkansas...  

Open Energy Info (EERE)

sq. ft. Electric Water Heater Replacement: 50 Water Heater Jacket: 25 Water Heater Pipe Insulation: 20 Energy Audit: Up to 300 CFLs: 10lamp for builders Standard...

211

AEP Public Service Company of Oklahoma - Residential Efficiency...  

Open Energy Info (EERE)

sealing, Equipment Insulation, Heat pumps, Lighting, Refrigerators, Water Heaters, Windows, Solar Film, Radiant Barrier, AC Tune-Up, Furnace ECM Active Incentive Yes...

212

AEP (Central & North) - CitySmart Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

is a voluntary program that offers objective, third party consulting in the areas of energy usage and energy efficiency. It is important to note that no products or services...

213

AEP Ohio - Commercial New Construction Energy Efficiency Rebate...  

Open Energy Info (EERE)

Chillers, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Heat pumps, Lighting, Lighting ControlsSensors,...

214

AEP Ohio - Commercial Energy Efficiency Rebate Program (Ohio...  

Open Energy Info (EERE)

Eligible Technologies Central Air conditioners, Chillers, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Equipment Insulation, Heat pumps, Lighting,...

215

AEP (Central, North and SWEPCO) - Commercial Solutions Program...  

Open Energy Info (EERE)

Chillers, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Furnaces, Heat pumps, Lighting, Lighting Controls...

216

AEP SWEPCO - SMART Source Solar PV Program (Texas) | Open Energy...  

Open Energy Info (EERE)

eligibility requirements. AC disconnect switches are required as are revenue grade solar meters. Service providers are also subject to ongoing quality assurance standards...

217

AEP (Central and North)- CitySmart Program  

Energy.gov (U.S. Department of Energy (DOE))

The CitySmart Program is designed to help participants identify energy efficiency opportunities in existing and newly planned city facilities. Monetary incentives are also available to help...

218

AEP Public Service Company of Oklahoma - Non-Residential Efficiency...  

Open Energy Info (EERE)

Heat pumps, Lighting, Lighting ControlsSensors, Motor VFDs, Motors, Kitchen and Hotel equipment, Retro Commissioning Services, Technical Services for new construction...

219

AEP Ohio - Renewable Energy Credit (REC) Purchase Program (Ohio...  

Open Energy Info (EERE)

less than 6 kW, customers can use the data tracking system that is built into their inverter if it is approved by the Public Utility Commission of Ohio. All systems must be...

220

AEP Public Service Company of Oklahoma - Non-Residential Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

range from 150-3,500. Custom projects pay 175kW for demand reduction and 0.06kWh for the total annual kWh savings in one year. Public Services Company's High...

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fowler Ridge Wind Farm Phase I (Vestas) | Open Energy Information  

Open Energy Info (EERE)

Fowler Ridge Wind Farm Phase I (Vestas) Fowler Ridge Wind Farm Phase I (Vestas) Jump to: navigation, search Name Fowler Ridge Wind Farm Phase I (Vestas) Facility Fowler Ridge Wind Farm Phase I (Vestas) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Alternative Energy/Dominion Energy Developer BP Alternative Energy/Dominion Energy Energy Purchaser AEP-Appalachian Power/AEP-Indiana Michigan Power Location Benton and Tippecanoe Counties IN Coordinates 40.613872°, -87.318692° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.613872,"lon":-87.318692,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Fowler Ridge Wind Farm Phase I (Clipper) | Open Energy Information  

Open Energy Info (EERE)

Phase I (Clipper) Phase I (Clipper) Jump to: navigation, search Name Fowler Ridge Wind Farm Phase I (Clipper) Facility Fowler Ridge Wind Farm Phase I (Clipper) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Alternative Energy/Dominion Energy Developer BP Alternative Energy/Dominion Energy Energy Purchaser AEP-Appalachian Power/AEP-Indiana Michigan Power Location Benton and Tippecanoe Counties IN Coordinates 40.613872°, -87.318692° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.613872,"lon":-87.318692,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

223

Energy Crossroads: Utility Energy Efficiency Programs West Virginia...  

NLE Websites -- All DOE Office Websites (Extended Search)

West Virginia Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing American Electric Power (AEP) Information for Businesses Allegheny Power...

224

Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes  

SciTech Connect

The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

1983-01-01T23:59:59.000Z

225

Property:Incentive/ContDept | Open Energy Information  

Open Energy Info (EERE)

ContDept ContDept Jump to: navigation, search Property Name Incentive/ContDept Property Type String Pages using the property "Incentive/ContDept" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + Vermont Department of Taxes + 4 401 Certification (Vermont) + Vermont Agency of Natural Resources + A AEP (Central and North) - CitySmart Program (Texas) + AEP Texas Central + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + CLEAResult Consulting + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + CLEAResult Consulting, Inc. + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + AEP Texas Central + AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + Southwestern Electric Power Company +

226

Agenda for San Francisco Workshop  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Cooperative Greg Peiper, Director, Transmission Systems Operations Center, Xcel Energy Manny Rahman, Manager, Transmission Interstate Planning, AEP 4:00 - 4:30 pm...

227

Texas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AEP SWEPCO - SMART Source Solar PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) systems on homes. Rebates may be...

228

Coordination of Federal Authorizations for Electric Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Facilities-Interim Final Rule and Proposed Rule The utility operating companies of the American Electric Power System1 ("AEP") commend the Department of Energy...

229

Power Electronics  

Energy.gov (U.S. Department of Energy (DOE))

Power electronics (PE) play a critical role in transforming the current electric grid into the next-generation grid. PE enable utilities to deliver power to their customers effectively while...

230

Wind Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains,...

231

Power Supplies  

Science Conference Proceedings (OSTI)

Figure: ...Fig. 5 Typical medium-frequency induction power supply incorporating (a) a parallel inverter and (b) a series inverter...

232

Power supply  

DOE Patents (OSTI)

A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

2007-12-04T23:59:59.000Z

233

Public Works for Water and Power Development and Energy Research Appropriation Bill, 1978. Report submitted to the 95th Congress, First Session to accompany H. R. 7553  

SciTech Connect

This publication is a report to the Senate by the Committee on Appropriations regarding the bill H.R. 7553, which provides appropriations for public works for water and power development and energy research for the fiscal year ending September 30, 1978. It provides funds for the Energy Research and Development Administration (except for Fossil Fuel and certain conservation programs) in Title I; for water resources development programs (including power) and related activities of the Department of the Army, Civil Functions--Army Corps of Engineers' Civil Works Program and the Department of the Interior's Bureau of Reclamation and power agencies in Titles II and III, respectively; and for related independent agencies and commissions, including the Appalachian Regional Commission and Appalachian Regional Development Programs, the Federal Power Commission, the Nuclear Regulatory Commission, the Tennessee Valley Authority, the Water Resources Council in Title IV. The bill recommended by the Committee which this report accompanies provides a total of $10,382,169,000 in new budget (obligational) authority. This is $195,423,000 more than the total of $10,186,746,000 passed by the House and $14,058,000 over the budget estimates of $10,368,111,000 submitted by the President. In subsequent budget recommendations to the Congress last February, the President initiated a review of ongoing water resource projects. After this review, the President announced on April 18, 1977 his decisions on Federal water resource programs and his specific decisions and recommendations on the 32 water projects which were subject to his review. Included in these specific decisions and recommendations were the deletion of funds for 18 projects, modification of 5 projects, and continuation of 9 projects. (MCW)

1977-01-01T23:59:59.000Z

234

Category:Rebates Grants Incentives | Open Energy Information  

Open Energy Info (EERE)

Rebates Grants Incentives Rebates Grants Incentives Jump to: navigation, search Category for Rebates Grants Incentives. Pages in category "Rebates Grants Incentives" The following 200 pages are in this category, out of 318 total. (previous 200) (next 200) A AEP Ohio - Renewable Energy Technology Program (Ohio) AEP SWEPCO - SMART Source Solar PV Program (Texas) AEP Texas Central Company - SMART Source Solar PV Rebate Program (Texas) AEP Texas North Company - SMART Source Solar PV Rebate Program (Texas) Alameda Municipal Power - Solar Photovoltaics Rebate Program (California) Alliant Energy (Wisconsin Power & Light) - Renewable Incentives Grant Program (Wisconsin) Alliant Energy Interstate Power and Light - Residential Renewable Energy Rebates Alternative and Clean Energy Program (Pennsylvania)

235

Putting Economic Power In Distributed Power t  

U.S. Energy Information Administration (EIA)

Putting Economic Power in Distributed Power. A distributed electricity generation system, often called distributed power, usually consists of ...

236

AppalachianSpring 2007 Appalachian State University's Magazine  

E-Print Network (OSTI)

projects. REI is also looking at the feasibility of installing a wind turbine near the Broyhill Inn of Trivette hall, is the first person to install a residential wind turbine in Watauga County. The project the potential for utilizing small- scale wind turbine technology, and educates the public about this renewable

Rose, Annkatrin

237

Photo courtesy of Appalachian State University Appalachian State University  

E-Print Network (OSTI)

additional composting initiatives and renewable energy projects. Currently only pre-consumer food waste, will level out. Currently we have several renewable energy installations and a forest preserve creating 2009 the Physical Plant began implementing energy saving measures. Emissions in FY 2009 dropped 6% from

Rose, Annkatrin

238

Power Marketing  

NLE Websites -- All DOE Office Websites (Extended Search)

Certificate Solicitations Benefit Review Energy Services Rates and Repayment WindHydro Integration Feasibility Study Send correspondence to: Power Marketing Manager Western...

239

Devonian Marcellus Shale, Appalachian Basin  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ACKNOWLEDGMENTS The authors greatly thank Daniel J. Soeder (U.S. Department of Energy) who kindly reviewed the manuscript. His criticisms,

Devonian Marcellus Shale; R. Bruner; Richard Smosna

2011-01-01T23:59:59.000Z

240

Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Power system  

DOE Patents (OSTI)

A power system includes a prime mover, a transmission, and a fluid coupler having a selectively engageable lockup clutch. The fluid coupler may be drivingly connected between the prime mover and the transmission. Additionally, the power system may include a motor/generator drivingly connected to at least one of the prime mover and the transmission. The power-system may also include power-system controls configured to execute a control method. The control method may include selecting one of a plurality of modes of operation of the power system. Additionally, the control method may include controlling the operating state of the lockup clutch dependent upon the mode of operation selected. The control method may also include controlling the operating state of the motor/generator dependent upon the mode of operation selected.

Hickam, Christopher Dale (Glasford, IL)

2008-03-18T23:59:59.000Z

242

Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Power Projects Contact SN Customers Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates You are here: SN Home page > About SNR Power Projects Central Valley: In California's Central Valley, 18 dams create reservoirs that can store 13 million acre-feet of water. The project's 615 miles of canals irrigate an area 400 miles long and 45 miles wide--almost one third of California. Powerplants at the dams have an installed capacity of 2,099 megawatts and provide enough energy for 650,000 people. Transmission lines total about 865 circuit-miles. Washoe: This project in west-central Nevada and east-central California was designed to improve the regulation of runoff from the Truckee and Carson river systems and to provide supplemental irrigation water and drainage, as well as water for municipal, industrial and fishery use. The project's Stampede Powerplant has a maximum capacity of 4 MW.

243

Public works for water and power development and energy research appropriations for Fiscal Year 1977. Part 7 (Pages 5561-6637). Nondepartmental witnesses. Hearings before the Committee on Appropriations, United States Senate, Ninety-Fourth Congress, Second Session on H. R. 14236  

SciTech Connect

H.R. 14236 is an act making appropriations for public works for water and power development and energy research, including the Corps of Civil Engineers, the Bureau of Reclamation, power agencies of the Department of the Interior, the Appalachian Regional Development Programs, the Federal Power Commission, the Tennessee Valley Authority, the Nuclear Regulatory Commission, the Energy Research and Development Administration, and related independent agencies and commissions for the fiscal year ending September 30, 1977. Hearings were conducted on April 1, 1976 with Senator John C. Stennis presiding, and on April 5, 1976 with Senator Milton R. Young presiding. At the hearings, after opening remarks were made by members of the U.S. Senate, nondepartmental witnesses were heard. Witnesses presenting statements, communications received, and prepared statements submitted at this series of hearings on this subject totaled approximately 1000. The listing concludes this publication. (MCW)

1976-01-01T23:59:59.000Z

244

Public works for water and power development and energy research appropriations for Fiscal Year 1977. Part 6 (Pages 4597-5559). Nondepartmental witnesses. Hearings before the Committee on Appropriations, United States Senate, Ninety-Fourth Congress, Second Session on H. R. 14236  

SciTech Connect

H.R. 14236 is an act making appropriations for public works for water and power development and energy research, including the Corps of Civil Engineers, the Bureau of Reclamation, power agencies of the Department of the Interior, the Appalachian Regional Development Programs, the Federal Power Commission, the Energy Research and Development Administration, and related independent agencies and commissions for the fiscal year ending September 30, 1977. Hearings were conducted on March 29, 30, and 31, 1976, with Senators Henry Bellmon, Birch Bayh, and Lawton Chiles presiding, respectively. At the hearings, after opening remarks were made by members of the U.S. Senate, nondepartmental witnesses were heard. Witnesses presenting statements, communications received, and prepared statements submitted for this series of hearings on this subject totaled approximately 1000. The list is presented. (MCW)

1976-01-01T23:59:59.000Z

245

Public works for water and power development and energy research appropriations for Fiscal Year 1977. Part 8 (Pages 6639-7316). Nondepartmental witnesses. Hearings before the Committee on Appropriations, United States Senate, Ninety-Fourth Congress, Second Session on H. R. 14236  

SciTech Connect

H.R. 14236 is an act making appropriations for public works for water and power development and energy research, including the Corps of Civil Engineers, the Bureau of Reclamation, power agencies of the Department of the Interior, the Appalachian Regional Development Programs, the Federal Power Commission, the Energy Research and Development Administration, and related independent agencies and commissions for the fiscal year ending September 30, 1977. Hearings were conducted on April 6, 1976, and April 7, 1976, with Senators J. Bennett Johnston and John C. Stennis presiding, respectively. At the hearings, after opening remarks were made by members of the U.S. Senate, nondepartmental witnesses were heard. Witnesses presenting statements, communications received, and prepared statements submitted at this series of hearings on this subject totaled approximately 1000. The listing concludes this publication. (MCW)

1976-01-01T23:59:59.000Z

246

Green Power Network: Green Power Marketing  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

247

Power inverters  

DOE Patents (OSTI)

Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

2011-11-15T23:59:59.000Z

248

Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Right. Power Smart. Efficient Computer Power Supplies and Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. March 10, 2009 - 6:00am Addthis John Lippert Power supplies convert the AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and durable. If they meet those criteria, then they're all alike, except for cost, right? Well, not exactly. You see, there's one other important feature that sets them apart: efficiency. And I don't know about you, but I believe waste is bad. For me, high efficiency is one important feature that's needed for something to be high quality. So isn't it ridiculous that most power

249

Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Right. Power Smart. Efficient Computer Power Supplies and Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. March 10, 2009 - 6:00am Addthis John Lippert Power supplies convert the AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and durable. If they meet those criteria, then they're all alike, except for cost, right? Well, not exactly. You see, there's one other important feature that sets them apart: efficiency. And I don't know about you, but I believe waste is bad. For me, high efficiency is one important feature that's needed for something to be high quality. So isn't it ridiculous that most power

250

Power Supplies  

Science Conference Proceedings (OSTI)

Table 2   Characteristics of the four major power sources for induction heating...state 180 Hz to 50 kHz 1 kW to 2 MW 75??95 No standby current; high efficiency; no moving parts;

251

Microsoft PowerPoint - AWWA Webinar Modeling talk Dec 8 2008...  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase III TAME Ethanol Plant Appalachian Basin FirstEnergy R.E. Burger Plant Phase III Duke Energy Edwardsport Plant Ohio CO 2 Seq. Test Well Cincinnati Arch Duke Energy East...

252

Microsoft PowerPoint - RIPEPI.FY13.CarbonStorageReview [Read...  

NLE Websites -- All DOE Office Websites (Extended Search)

Appalachian Basin Unconventional (CoalOrganic Shale) Reservoir Small-Scale CO2 Injection Test Project Number: DE-FE0006827 Nino Ripepi Michael Karmis Virginia Center for Coal and...

253

Power superconducting power transmission cable  

DOE Patents (OSTI)

The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

Ashworth, Stephen P. (Cambridge, GB)

2003-01-01T23:59:59.000Z

254

Nuclear Power  

E-Print Network (OSTI)

The world of the twenty first century is an energy consuming society. Due to increasing population and living standards, each year the world requires more energy and new efficient systems for delivering it. Furthermore, the new systems must be inherently safe and environmentally benign. These realities of today's world are among the reasons that lead to serious interest in deploying nuclear power as a sustainable energy source. Today's nuclear reactors are safe and highly efficient energy systems that offer electricity and a multitude of co-generation energy products ranging from potable water to heat for industrial applications. The goal of the book is to show the current state-of-the-art in the covered technical areas as well as to demonstrate how general engineering principles and methods can be applied to nuclear power systems.

Tsvetkov, Pavel

2010-08-01T23:59:59.000Z

255

Power supply  

SciTech Connect

An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

Hart, Edward J. (Albuquerque, NM); Leeman, James E. (Albuquerque, NM); MacDougall, Hugh R. (Albuquerque, NM); Marron, John J. (Albuquerque, NM); Smith, Calvin C. (Amarillo, TX)

1976-01-01T23:59:59.000Z

256

Power Search  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here: Find a Car Home > Power Search You are here: Find a Car Home > Power Search Power Search Expand any feature by selecting its title bar. Choose as many or as few features as you like. Model Year From: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 To: 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 1985 1984 MSRP Under $15,000 $15,000-$20,000 $20,000-$25,000 $25,000-$30,000 $30,000-$35,000 $35,000-$40,000 $40,000-$45,000 $45,000-$50,000 $50,000-$55,000 $55,000-$60,000 $60,000-$65,000 $65,000-$70,000 $70,000-$75,000 $75,000-$80,000 $80,000-$85,000 Over $85,000 - OR - Minimum: Select... $5,000 $6,000 $7,000 $8,000 $9,000 $10,000 $11,000

257

Arnold Schwarzenegger CERTS MICROGRID  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor CERTS MICROGRID LABORATORY TEST BED Summary of CERTS Microgrid Static Switch Power Quality Tests at AEP Dolan, CERTS Microgrid Static Switch Testing Prepared For of the information in this report. #12;#12;AEP DTC Proposed Test Plan ­ CERTS Micro-grid Static Switch Project

258

Low Power Design Low PowerLow Power  

E-Print Network (OSTI)

, correlations among system state transitions #12;Low Power Design USC/LPCAD Page 11 USCUSC Low PowerLow Power for the requestsIncoming rates for the requests 21,rr 12 ,rr, :, : State transition ratesState transition rates OS and hardware Abstract, hierarchical finite-state machine Each state represents power

Pedram, Massoud

259

Power management system  

DOE Patents (OSTI)

A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

2007-10-02T23:59:59.000Z

260

Solar powered desalination system  

E-Print Network (OSTI)

1.13: California Power Generation by Source31for hydro- electric power generation would be reached inother end users include the power generation industry (4%),

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solar powered desalination system  

E-Print Network (OSTI)

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

262

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

POTC Home Courses Instructors NERC Continuing Education Virtual University Power Operations Training Center You'll find the "Power" of learning at Southwestern's Power Operations...

263

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Schedules Skip Navigation Links Excess Energy Hydro Peaking Power Hydro Power and Energy Sold to Sam Rayburn Dam Electric Cooperative (Rayburn) Hydro Power and Energy Sold to Sam...

264

Hybrid-Intelligent POWER HI-POWER  

Science Conference Proceedings (OSTI)

... T T T A A A SMART-T Current Situation Current Situation ... Page 10. 22 Power Grid Plug & Play architecture Multiple power sources Renewables ...

2013-09-22T23:59:59.000Z

265

POWER REACTOR  

DOE Patents (OSTI)

A fast nuclear reactor system ls described for producing power and radioactive isotopes. The reactor core is of the heterogeneous, fluid sealed type comprised of vertically arranged elongated tubular fuel elements having vertical coolant passages. The active portion is surrounded by a neutron reflector and a shield. The system includes pumps and heat exchangers for the primary and secondary coolant circuits. The core, primary coolant pump and primary heat exchanger are disposed within an irapenforate tank which is filled with the primary coolant, in this case a liquid metal such as Na or NaK, to completely submerge these elements. The tank is completely surrounded by a thick walled concrete shield. This reactor system utilizes enriched uranium or plutonium as the fissionable material, uranium or thorium as a diluent and thorium or uranium containing less than 0 7% of the U/sup 235/ isotope as a fertile material.

Zinn, W.H.

1958-07-01T23:59:59.000Z

266

Power oscillator  

DOE Patents (OSTI)

An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

Gitsevich, Aleksandr (Montgomery Village, MD)

2001-01-01T23:59:59.000Z

267

Power plant  

SciTech Connect

A two stroke internal combustion engine is described that has at least one cylinder within which a piston reciprocates. The engine is joined to a gearbox which includes a ring gear. A pair of gears having diameters half that of the ring gear move within the latter. At least one of the pair of gears is connected to a piston by a pin extending between the piston and the periphery of said gear. An additional pair of gears are fixed to respective ones of the first-mentioned gear pair and are operatively joined to a pinion to which a drive shaft is secured. A turbine and filter arrangement is positioned on the side of the engine opposite the gearbox whereby exhaust gases from the engine are directed to the turbine to develop power at an output drive shaft joined to the turbine and to filter pollutants from the gases.

Finn, H.I. Jr.

1978-10-24T23:59:59.000Z

268

Electric Power Annual  

U.S. Energy Information Administration (EIA)

Electric Power Sector ; Period Total (all sectors) Electric Utilities Independent Power Producers Commercial Sector Industrial Sector; Annual Totals: ...

269

Electric Power Metrology Portal  

Science Conference Proceedings (OSTI)

... Electric Power Metrology and the Smart Grid Our country's way of life depends on the electric power distribution system. ...

2012-12-26T23:59:59.000Z

270

Putting Economic Power in Distributed Power  

Reports and Publications (EIA)

Electric Power Research Institute's Distributed Resources Week 1997 (October 22, 1997)AUTHOR: John Herbert

Information Center

1997-10-22T23:59:59.000Z

271

Property:Incentive/OwnRenewEnrgyCrdts | Open Energy Information  

Open Energy Info (EERE)

OwnRenewEnrgyCrdts OwnRenewEnrgyCrdts Jump to: navigation, search Property Name Incentive/OwnRenewEnrgyCrdts Property Type Text Description Ownership of Renewable Energy Credits. Pages using the property "Incentive/OwnRenewEnrgyCrdts" Showing 25 pages using this property. (previous 25) (next 25) A AEP Ohio - Renewable Energy Technology Program (Ohio) + Customers must commit RECs to AEP Ohio for 15 years. AEP SWEPCO - SMART Source Solar PV Program (Texas) + Customer-generator AEP Texas Central Company - SMART Source Solar PV Rebate Program (Texas) + Customer-generator AEP Texas North Company - SMART Source Solar PV Rebate Program (Texas) + Customer-generator APS - Renewable Energy Incentive Program (Arizona) + APS Alameda Municipal Power - Solar Photovoltaics Rebate Program (California) + Alameda Power and Telecom

272

Power-Pro: Programmable Power Management Architecture  

E-Print Network (OSTI)

This paper presents Power-Pro architecture (Programmable Power Management Architecture), a novel processor architecture for power reduction. Power-Pro architecture has following two functionalities, (i) Supply voltage and clock frequency can be dynamically varied, (ii) Active data-path width can be dynamically adjusted to requirement of application programs. For the application programs which require less performance or less data-path width, Power-Pro architecture realize dramatic power reduction. I. Introduction With recent popularizations in portable, batterypowered devices such as digital cellular telephones and personal digital assistants, minimizing power consumption of VLSI circuits becomes more important. As the system level power reduction techniques, the choice of optimal supply voltage(V DD ) and optimal active data-path width have strong impacts. In this paper we propose novel processor architecture Power-Pro [2] which can vary VDD and active data-path width of processor ...

Tohru Ishihara; Hiroto Yasuura; Programmable Power Management

1998-01-01T23:59:59.000Z

273

Electric power 2007  

SciTech Connect

Subjects covered include: power industry trends - near term fuel strategies - price/quality/delivery/opportunity; generating fleet optimization and plant optimization; power plant safety and security; coal power plants - upgrades and new capacity; IGCC, advanced combustion and CO{sub 2} capture technologies; gas turbine and combined cycle power plants; nuclear power; renewable power; plant operations and maintenance; power plant components - design and operation; environmental; regulatory issues, strategies and technologies; and advanced energy strategies and technologies. The presentations are in pdf format.

NONE

2007-07-01T23:59:59.000Z

274

SOLAR POWER  

DOE Green Energy (OSTI)

Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

PROJECT STAFF

2011-10-31T23:59:59.000Z

275

Power Tower Systems for Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

In power tower concentrating solar power systems, numerous large, flat, sun-tracking mirrors, known as heliostats, focus sunlight onto a receiver at the top of a tall tower. A heat-transfer fluid...

276

Resonant Power Conditioning and Compact Pulse Power ...  

Science Conference Proceedings (OSTI)

... (FEEDBACK) HV RECTIFIER AND FILTER NETWORK ... Los Alamos High Frequency Polyphase Resonant Power Conditioning ... 30 KW Loss ...

2012-10-31T23:59:59.000Z

277

Southwestern Electric Power Co | Open Energy Information  

Open Energy Info (EERE)

Ohio Ohio Service Territory Arkansas, Louisiana, Texas Website www.swepco.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 17698 Utility Location Yes Ownership I NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 2 Residential

278

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Screening for Performance and Safety Screening for Safety Screening for Performance and Safety Screening for the Ohio River Valley CO the Ohio River Valley CO 2 2 Storage Site Storage Site Using Features, Elements, and Using Features, Elements, and Processes Database Processes Database Joel Sminchak, Mark Kelley, and Neeraj Gupta Battelle, Columbus, Ohio, USA May 8-11, 2006 * Hilton Alexandria Mark Center * Alexandria, Virginia Fifth Annual Conference on Carbon Capture & Sequestration Fifth Annual Conference on Carbon Capture & Sequestration Acknowledgements Acknowledgements * Battelle -Phil Jagucki, Dannielle Meggyesy, Bruce Sass, Bob Janosy, Prasad Saripalli, Mark White, Jim Dooley, Diana Bacon, Judith Bradbury, Frank Spane * DOE/NETL - Charlie Byrer * AEP - Mike Mudd, Dale Heydlauff, Gary Spitznogle, Charlie Powell,

279

Kentucky Power Co | Open Energy Information  

Open Energy Info (EERE)

Ohio Ohio Service Territory Kentucky Website www.kentuckypower.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 22053 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RS Residential

280

Dynamic power management with hybrid power sources  

Science Conference Proceedings (OSTI)

DPM (Dynamic Power Management) is an effective technique for reducing the energy consumption of embedded systems that is based on migrating to a low power state when possible. While conventional DPM minimizes the energy consumption of the embedded system, ... Keywords: DPM, embedded system, fuel cell, hybrid power

Jianli Zhuo; Chaitali Chakrabarti; Kyungsoo Lee; Naehyuck Chang

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

LIFE Power Plant Fusion Power Associates  

E-Print Network (OSTI)

LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled near-term, NIF based, NIC-derivative fusion performance § 3 allows small, thin Fresnel lenses ­ enables

282

Dynamic power management in environmentally powered systems  

Science Conference Proceedings (OSTI)

In this paper a framework for energy management in energy harvesting embedded systems is presented. As a possible example scenario, we focus on wireless sensor nodes which are powered by solar cells. We demonstrate that classical power management solutions ... Keywords: embedded systems, energy harvesting, model predictive control, power management, real-time scheduling, reward maximization

Clemens Moser; Jian-Jia Chen; Lothar Thiele

2010-01-01T23:59:59.000Z

283

Power and energy  

Science Conference Proceedings (OSTI)

The author examines the development of nuclear power throughout the world, commencing with proposals for California, USA. Evidence that nuclear power remains viable in Asia include Japan Atomic Power Co.'s announcement of plans for a 1300 MW reactor ...

G. Zorpette

1995-01-01T23:59:59.000Z

284

Solar powered desalination system  

E-Print Network (OSTI)

photon capture area and electrical power consumption. Bothcapture area (m 2 ) Electrical power consumption (kWh/kg HType 2 Type 3 Type 4 Electrical power consumption for these

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

285

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

power module - High temperature operation - Size reduction - 3-kW 120V single-phase inverter (250 C+) Input Power Output Power > 90% efficiency (estimated) Phase I: Very High...

286

Green Power Network: Green Power Markets Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Markets Green Markets Search Search Help More Search Options Search Site Map News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports Green Pricing Green Power Marketing Green Certificates Carbon Offsets State Policies Overview The essence of green power marketing is to provide market-based choices for electricity consumers to purchase power from environmentally preferred sources. The term "green power" is used to define power generated from renewable energy sources, such as wind and solar power, geothermal, hydropower and various forms of biomass. Green power marketing has the potential to expand domestic markets for renewable energy technologies by fostering greater availability of renewable electric service options in retail markets. Although renewable energy development has traditionally been limited by cost considerations, customer choice allows consumer preferences for cleaner energy sources to be reflected in market transactions. In survey after survey, customers have expressed a preference and willingness to pay more, if necessary, for cleaner energy sources. You can find more information about purchase options on our "Buying Green Power" page.

287

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

302011 Essential PV power plant features Reliable power conversion Extensive service network Remote monitoring & diagnostics Plant level control Advanced grid-friendly features...

288

Siemens Power Generation, Inc.  

NLE Websites -- All DOE Office Websites (Extended Search)

Presented at the 2005 Pittsburgh Coal Conference Siemens Power Generation, Inc. Page 1 of 10 Siemens Power Generation, Inc., All Rights Reserved Development of a Catalytic...

289

Laser Radiometry: Powering Up  

Science Conference Proceedings (OSTI)

... Radiometry: Powering Up. June 11, 2012. ... Contact: Marla Dowell 303-497- 7455. Chris Cromer examines one of PML's next-generation power meters ...

2012-06-14T23:59:59.000Z

290

Sunrise II Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sunrise Power Company, LLC (Sunrise), has planned the modification of an existing power plant project to increase its generation capacity by 265 megawatts by 2003. The initial...

291

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

FOIAPrivacy Act Submit a FOIA Request DOE FOIA Requester Service Center Electronic Reading Room FOIA Links Power Marketing Administrations' FOIA Links Bonneville Power...

292

Electrolytes for power sources  

DOE Patents (OSTI)

Electrolytes for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids.

Doddapaneni, Narayan (Albuquerque, NM); Ingersoll, David (Albuquerque, NM)

1995-01-01T23:59:59.000Z

293

Electrolytes for power sources  

DOE Patents (OSTI)

Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

Doddapaneni, N.; Ingersoll, D.

1995-01-03T23:59:59.000Z

294

Radioisotope Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Radioisotope Power Generation Long lived power sources are needed for equipment that is too remote or inaccessible for replacement. By choosing a radioactive element with a long...

295

Electric Power Monthly  

U.S. Energy Information Administration (EIA)

Net Generation by Energy Source: Commercial Combined Heat and Power Sector . Table 1.5. Net Generation by Energy Source: Industrial Combined Heat and Power Sector .

296

Nuclear Fusion Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Nuclear fusion reactors, if they can be made to work, promise virtually unlimited power for the indefinite future. This is because the fuel, isotopes of hydrogen, are...

297

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

CT (USA), international presence in USA, Canada, Germany (Fraunhofer, IKTS) and South Korea (Posco) Delivering Direct FuelCell (DFC ) power plants for On-Site Power and...

298

Property:Incentive/AddlPlace | Open Energy Information  

Open Energy Info (EERE)

Incentive/AddlPlace Incentive/AddlPlace Jump to: navigation, search Property Name Incentive/AddlPlace Property Type Page Description Additional places or Utility that is associated with the incentive. Pages using the property "Incentive/AddlPlace" Showing 25 pages using this property. (previous 25) (next 25) A AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) + Southwestern Electric Power Company + AEP Ohio - Commercial New Construction Energy Efficiency Rebate Program (Ohio) + Columbus Southern Power Co + AEP Texas North Company - CitySmart Program (Texas) + AEP (Central and North) + Alliant Energy Interstate Power and Light (Electric) - Business Energy Efficiency Rebate Programs (Iowa) + Alliant Energy Interstate Power and Light, + Alliant Energy Interstate Power and Light (Electric) - Residential Energy Efficiency Rebate Program (Minnesota) + Alliant Energy Interstate Power and Light +

299

Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems...

300

Karnataka Power Corporation Limited and National Thermal Power...  

Open Energy Info (EERE)

Karnataka Power Corporation Limited and National Thermal Power Corporation JV Jump to: navigation, search Name Karnataka Power Corporation Limited and National Thermal Power...

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Water-Power Development, Conservation of Hydroelectric Power...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia) Water-Power Development, Conservation of Hydroelectric Power Dams and Works (Virginia)...

302

Flex power perspectives of indirect power system control through...  

Open Energy Info (EERE)

power perspectives of indirect power system control through dynamic power price (Smart Grid Project) Jump to: navigation, search Project Name Flex power perspectives of indirect...

303

ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

Richard E. Waryasz; Gregory N. Liljedahl

2004-09-08T23:59:59.000Z

304

ECONOMICS AND FEASIBILITY OF RANKINE CYCLE IMPROVEMENTS FOR COAL FIRED POWER PLANTS  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL), American Electric Company (AEP) and Parsons Energy and Chemical Group to conduct a comprehensive study evaluating coal fired steam power plants, known as Rankine Cycles, equipped with three different combustion systems: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}). Five steam cycles utilizing a wide range of steam conditions were used with these combustion systems. The motivation for this study was to establish through engineering analysis, the most cost-effective performance potential available through improvement in the Rankine Cycle steam conditions and combustion systems while at the same time ensuring that the most stringent emission performance based on CURC (Coal Utilization Research Council) 2010 targets are met: > 98% sulfur removal; < 0.05 lbm/MM-Btu NO{sub x}; < 0.01 lbm/MM-Btu Particulate Matter; and > 90% Hg removal. The final report discusses the results of a coal fired steam power plant project, which is comprised of two parts. The main part of the study is the analysis of ten (10) Greenfield steam power plants employing three different coal combustion technologies: Pulverized Coal (PC), Circulating Fluidized Bed (CFB), and Circulating Moving Bed (CMB{trademark}) integrated with five different steam cycles. The study explores the technical feasibility, thermal performance, environmental performance, and economic viability of ten power plants that could be deployed currently, in the near, intermediate, and long-term time frame. For the five steam cycles, main steam temperatures vary from 1,000 F to 1,292 F and pressures from 2,400 psi to 5,075 psi. Reheat steam temperatures vary from 1,000 F to 1,328 F. The number of feedwater heaters varies from 7 to 9 and the associated feedwater temperature varies from 500 F to 626 F. The main part of the study therefore determines the steam cycle parameters and combustion technology that would yield the lowest cost of electricity (COE) for the next generation of coal-fired steam power plants. The second part of the study (Repowering) explores the means of upgrading the efficiency and output of an older existing coal fired steam power plant. There are currently more than 1,400 coal-fired units in operation in the United States generating about 54 percent of the electricity consumed. Many of these are modern units are clean and efficient. Additionally, there are many older units in excellent condition and still in service that could benefit from this repowering technology. The study evaluates the technical feasibility, thermal performance, and economic viability of this repowering concept.

Richard E. Waryasz; Gregory N. Liljedahl

2004-09-08T23:59:59.000Z

305

Military power requirements and backup power considerations  

Science Conference Proceedings (OSTI)

All US Air Force (USAF) facilities have certain critical power requirements that must be met in order to carry out their mission successfully. Internal USAF studies have shown that the mission can degrade precipitously as the available power decreases below the mission critical level. Now, more than ever before, the military and private industry are finding that certain functions, such as automated data processing and automated process control, respond catastrophically to power reductions. Furthermore, increased reliance on electrical power means, in the case of the Air Force, that critical power requirements are anticipated to increase by half over the next 15 yr. For these reasons and others, the USAF is investigating several means of improving the availability of electric power under adverse conditions above that which can be provided by an off-base supplier. Among the approaches to this problem being pursued at this time are a program to improve all sorts of generator sets on a service-wide basis and the Multimegawatt Terrestrial Power (MTP) Program, which is pursuing the design and testing of a small dedicated nuclear power source to provide critical mission power. The purpose of this paper is to provide some insight into some of the issues associated with USAF power programs.

Botts, T.E.

1986-01-01T23:59:59.000Z

306

Camp Grove Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Grove Wind Farm Grove Wind Farm Jump to: navigation, search Name Camp Grove Wind Farm Facility Camp Grove Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner OEG (Orion Energy Group) Developer OEG (Orion Energy Group) Energy Purchaser AEP-Appalachian Power Location Marshall & Stark Counties IL Coordinates 41.088871°, -89.656684° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.088871,"lon":-89.656684,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

307

AEP Public Service Company of Oklahoma- Non-Residential Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Public Services Companys High Performance Business Program pays incentives to customers who install energy efficiency measures such as retrofitting existing equipment, new construction, major...

308

AEP (Central and North) - CitySmart Program (Texas) | Open Energy...  

Open Energy Info (EERE)

Chillers, Comprehensive MeasuresWhole Building, CustomOthers pending approval, Energy Mgmt. SystemsBuilding Controls, Furnaces, Heat pumps, Lighting, Lighting Controls...

309

Superconducting Power Equipment  

Science Conference Proceedings (OSTI)

The 2010 Electric Power Research Institute (EPRI) Technology Watch (Techwatch) report on superconducting power applications (EPRI report 1019995, Superconducting Power Equipment: Technology Watch 2010) introduced coverage about superconducting magnetic energy storage systems and superconducting transformers. The 2011 report contains additional information about superconducting power equipment, including progress to demonstrations in some projects. The 2011 report also includes a section on superconductin...

2011-12-22T23:59:59.000Z

310

Power Purchase Agreements  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the power purchase agreements taken from the FEMP Alternative Finance Options (AFO) webinar.

311

Transportation and Stationary Power  

E-Print Network (OSTI)

heat, hydrogen and power (CHHP) "trigeneration" systems can hypothetically be configured to provide (1

312

Green Power Network: Green Power Leadership Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Awards will highlight the accomplishments of green power suppliers (utilities, retail suppliers, REC marketers, and renewable energy project developers) that are innovators and...

313

High power fast ramping power supplies  

Science Conference Proceedings (OSTI)

Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

2009-05-04T23:59:59.000Z

314

Active Power Control from Wind Power (Presentation)  

DOE Green Energy (OSTI)

In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

Ela, E.; Brooks, D.

2011-04-01T23:59:59.000Z

315

Green Power Network: Green Power Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power Marketing Green Certificates Carbon Offsets State Policies govern_purch Community Choice Aggregation Disclosure Policies Green Power Policies Net Metering Policies Green Power Policies A number of state and local governments have policies in place that encourage the development of green power markets. Government green power purchasing mandates or goals have been established by the federal government, as well as state and local governments to procure renewable energy for the electricity used by government facilities or operations. Community choice aggregation allows communities to determine their electricity generation sources by aggregating the community load and purchasing electricity from an alternate electricity supplier while still receiving transmission and distribution service from their existing provider.

316

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Search EIA.gov. A-Z Index; ... PJM shows how smart appliances could help stabilize power systems. May 12, 2011 Spot price for Central Appalachian coal ...

317

NETL: Control Technology: Furnace Injection of Alkaline Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Technology Laboratory, under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corp., the Tennessee Valley...

318

MERLIN Analysis of Leesville Dam  

Science Conference Proceedings (OSTI)

Three sections of American Electric Power's (AEP's) Leesville Dam were analyzed with MERLIN, EPRI's fracture mechanics program. The Leesville Dam had previously been found to be unstable under probable maximum flood (PMF) loadings when analyzed using traditional gravity methods.

2000-06-27T23:59:59.000Z

319

CX-002291: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002291: Categorical Exclusion Determination Columbia Southern Power (AEP) Ohio Smart Grid Demonstration Project CX(s) Applied: B3.6, A1, A9, A11, B1.7,...

320

Data Center Power Consumption  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center Power Consumption Center Power Consumption A new look at a growing problem Fact - Data center power density up 10x in the last 10 years 2.1 kW/rack (1992); 14 kW/rack (2007) Racks are not fully populated due to power/cooling constraints Fact - Increasing processor power Moore's law Fact - Energy cost going up 3 yr. energy cost equivalent to acquisition cost Fact - Iterative power life cycle Takes as much energy to cool computers as it takes to power them. Fact - Over-provisioning Most data centers are over-provisioned with cooling and still have hot spots November 2007 SubZero Engineering An Industry at the Crossroads Conflict between scaling IT demands and energy efficiency Server Efficiency is improving year after year Performance/Watt doubles every 2 years Power Density is Going Up

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Power Management Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

additional savings of 1.3 billion are lost because power management is present, but disabled. In some cases, power management is not compatible with the application or doesn't...

322

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

resolved Power capture and conversion in line with prediction 11 CF16539GG 1 OCEAN POWER DELIVERY LTD PROJECTS 12 CF16539GG 1 Enersis - Project 1 Enersis Portugal's largest...

323

Power and energy  

Science Conference Proceedings (OSTI)

The design and manufacture of electric power equipment, the one electrotechnology in which Europe could gain worldwide dominance by the end of the century, is examined. All three power-equipment categories-generation, transmission, and distribution-are ...

G. Zorpette

1990-04-01T23:59:59.000Z

324

IBM POWER6 microarchitecture  

Science Conference Proceedings (OSTI)

This paper describes the implementation of the IBM POWER6 microprocessor, a two-way simultaneous multithreaded (SMT) dual-core chip whose key features include binary compatibility with IBM POWER5 microprocessor-based systems; increased ...

H. Q. Le; W. J. Starke; J. S. Fields; F. P. O'Connell; D. Q. Nguyen; B. J. Ronchetti; W. M. Sauer; E. M. Schwarz; M. T. Vaden

2007-11-01T23:59:59.000Z

325

2025 Power Marketing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

and is in the process of developing a plan for marketing and allocating LAP hydroelectric power after the FES contracts expire. We call this plan our 2025 Power Marketing...

326

Space Solar Power Program  

DOE Green Energy (OSTI)

Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

1992-08-01T23:59:59.000Z

327

Body powered thermoelectric systems  

E-Print Network (OSTI)

Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

Settaluri, Krishna Tej

2012-01-01T23:59:59.000Z

328

GEOLOGY FIELD TRIPS IN THE APPALACHIAN MOUNTAINS  

E-Print Network (OSTI)

-- Exploration for Petroleum and Natural Gas (optional laboratory) 87 -- The Obelisk: Revisited 96 -- References recording past events. Rather than letters and words, rock characteristics such as shape, color, composition of answers to questions about the nature of geological data gathered through the field trips and laboratory

Engelder, Terry

329

Concentrating Solar Power  

DOE Green Energy (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

330

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

disconnect switches, microprocessor relays, power transformers, surge arresters, and transformer bushings information resources management equipment and supplies such as monitors,...

331

Power Conversion System Architectures  

Science Conference Proceedings (OSTI)

... of Transformers Vacuum Pressure Impregnated (VPI) Oil Immersed Cast Coil Transformer Configurations Single winding 5/24/2012 Power ...

2012-11-13T23:59:59.000Z

332

Soldier power. Battery charging.  

E-Print Network (OSTI)

Soldier power. Marine. Battery charging. Advertising. Remote. SOFC (NanoDynamics, AMI) 60 watts q SOFC #12;

Hong, Deog Ki

333

Electric Power Metrology News  

Science Conference Proceedings (OSTI)

... Next-generation "smart" electrical meters for residential and commercial ... NIST Team Demystifies Utility of Power Factor Correction Devices Release ...

2010-05-24T23:59:59.000Z

334

Increased Power Flow Guidebook  

Science Conference Proceedings (OSTI)

The Increased Power Flow (IPF) Guidebook is a state-of-the-art and best practices guidebook on increasing power flow capacities of existing overhead transmission lines, underground cables, power transformers, and substation equipment without compromising safety and reliability. The Guidebook discusses power system concerns and limiting conditions to increasing capacity, reviews available technology options and methods, illustrates alternatives with case studies, and analyzes costs and benefits of differe...

2005-11-16T23:59:59.000Z

335

Superconducting Power Cables  

Science Conference Proceedings (OSTI)

Power cables constructed from superconducting materials are being realized in utility demonstrations within the United States. Cooled by liquid nitrogen, high temperature superconducting power cables can transfer large amounts of power through relatively small cross sections. The key to their high power capacity is the high current density inherent with superconductors; a superconducting wire can conduct several times as much current as copper or aluminum conductors of the same cross section. For the pas...

2006-11-30T23:59:59.000Z

336

Wind powering America: Colorado  

DOE Green Energy (OSTI)

This fact sheet contains information about green power programs in Colorado and a description of the Ponnequin Wind Farm.

O'Dell, K.

2000-04-03T23:59:59.000Z

337

Search for fusion power  

SciTech Connect

A brief review of the basics of fusion power is given. Both inertial confinement and magnetic confinement fusion are discussed.

Post, R.F.

1978-10-12T23:59:59.000Z

338

Peak power identification on power bumps during test application  

Science Conference Proceedings (OSTI)

Peak power during test can seriously impact circuit performance as well as the power safety for both CUT and tester. In this paper, we propose a method of layout-aware weighted switching activity identification flow that evaluates peak current/power ... Keywords: CMOS device, peak power identification, power bumps, test application, layout-aware weighted switching activity identification flow, dynamic power model, parasitic capacitance, resistance network, power bus, power delivery path, IR-drop, commercial power sign-off analysis tool

Wei Zhao; M. Tehranipoor

2011-07-01T23:59:59.000Z

339

Power Plant Cycling Costs  

Science Conference Proceedings (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

340

Soft Magnetic Materials for High Power and High Frequency Power ...  

Science Conference Proceedings (OSTI)

Symposium, Advanced Materials for Power Electronics, Power Conditioning, and ... are in high demand for the next generation of miniaturized power electronics.

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Wind Powering America Webinar: Wind Power Economics: Past, Present...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind...

342

Electric Power Monthly  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly Back Issues Monthly Excel files zipped 2010 January February March April May June July August September October November December 2009 January February March April May June July August September October November December 2008 January February March March Supplement April May June July August September October November December 2007 January February March April May June July August September October November December 2006 January February March April May June July August September October November December 2005 January February March April May June July August September October November December

343

ADEPT: Efficient Power Conversion  

SciTech Connect

ADEPT Project: In todays increasingly electrified world, power conversionthe process of converting electricity between different currents, voltage levels, and frequenciesforms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-Es ADEPT Project, short for Agile Delivery of Electrical Power Technology, are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

None

2011-01-01T23:59:59.000Z

344

Power factors revealed  

SciTech Connect

When it comes to power, not all electric appliances are equal. To find out how much power an appliance consumes, energy auditors occasionally multiply line voltage by the current reading obtained from a clamp-on ammeter. However, depending on the appliance, this simple calculation will not always reflect true power usages. Since utilities bill only for true energy usage, residential energy audits should reflect the true power usage. This article explains in detail measuring power usage, ending with a number of suggestions including use of a wattmeter rather than a ammeter. 2 figs.

Brule, P.

1997-05-01T23:59:59.000Z

345

Getting it right for customers  

SciTech Connect

As the race to deregulate heats up, one company has set the early pace. American Electric Power Company, Inc. (AEP), which serves 7 million people from Indiana to Tennessee, has already restructured itself, separating its power generation activities from its delivery of energy services. In the process, the company has wholeheartedly embraced competition, says E. Linn Draper, Jr., the chief executive officer of AEP, which is headquartered in Columbus, Ohio. {open_quotes}In fact, AEP was among the first electric power companies to offer access to its transmission grid to all parties under the same terms and conditions available to AEP subsidiary companies,{close_quotes} Draper says. Essential to the transition is the repeal of such antiquated federal laws as the Public Utilities Holding Company Act and the Public Utility Regulatory Policy Act. {open_quotes}Times change, and laws that once helped achieve worthwhile objectives can ultimately stand in the way of progress,{close_quotes} Draper says.

Draper, E.L. Jr. [American Electric Power Company, Columbus, OH (United States)

1997-10-01T23:59:59.000Z

346

Multimode power processor  

DOE Patents (OSTI)

In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

O' Sullivan, G.A.; O' Sullivan, J.A.

1999-07-27T23:59:59.000Z

347

Multimode power processor  

SciTech Connect

In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

O' Sullivan, George A. (Pottersville, NJ); O' Sullivan, Joseph A. (St. Louis, MO)

1999-01-01T23:59:59.000Z

348

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Northern Power Systems, Inc 6 Northern Power Systems, Inc Northern Power Systems 182 Mad River Park Waitsfield, VT 05673 Ultracapacitor EnergyBridge(tm) UPS for Palmdale Water District DOE/ESS PEER Review November 3, 2006 11/03/2006 Northern Power Systems, Inc © 2006 2 Northern Power  Distributed Energy Systems Corp (NASDAQ:DESC)  Energy Solutions since 1974  Products, Systems and Services Divisions  Hundreds of Projects around the World  HQ and Manufacturing in Vermont  Regional offices in NY, TX, CA, England, and Mexico 11/03/2006 Northern Power Systems, Inc © 2006 3 Project Overview  CEC - California Energy Commission  Funding agency  Palmdale Water District  Award recipient, host site  Northern Power  Technology provider  Black & Veatch  Owner's engineer

349

Solar thermal power  

DOE Green Energy (OSTI)

Solar thermal power is produced by three types of concentrating systems, which utilize parabolic troughs, dishes, and heliostats as the solar concentrators. These systems are at various levels of development and commercialization in the United States and in Europe. The U.S. Industry is currently developing these systems for export at the end of this century and at the beginning of the next one for remote power, village electrification, and grid-connected power. U.S. utilities are not forecasting to need power generation capacity until the middle of the first decade of the 21{sup st} century. At that time, solar thermal electric power systems should be cost competitive with conventional power generation in some unique U.S. markets. In this paper, the authors describe the current status of the development of trough electric, dish/engine, and power tower solar generation systems. 46 refs., 20 figs., 8 tabs.

Mancini, T.R.; Kolb, G.J.; Prairie, M.R. [Sandia National Labs., Albuquerque, NM (United States)

1997-12-31T23:59:59.000Z

350

Heat gain from power panelboard.  

E-Print Network (OSTI)

??This thesis focuses on estimating the power loss from power panelboards by means of power loss models. The model is intended to be used by (more)

Piesciorovsky, Emilio Carlos

2009-01-01T23:59:59.000Z

351

Vehicle Technologies Office: Power Electronics  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Electronics to Power Electronics to someone by E-mail Share Vehicle Technologies Office: Power Electronics on Facebook Tweet about Vehicle Technologies Office: Power Electronics on Twitter Bookmark Vehicle Technologies Office: Power Electronics on Google Bookmark Vehicle Technologies Office: Power Electronics on Delicious Rank Vehicle Technologies Office: Power Electronics on Digg Find More places to share Vehicle Technologies Office: Power Electronics on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Power Electronics Electrical Machines Thermal Control & System Integration Advanced Combustion Engines Fuels & Lubricants Materials Technologies Power Electronics The power electronics activity focuses on research and development (R&D)

352

Solartech Power | Open Energy Information  

Open Energy Info (EERE)

Solartech Power Jump to: navigation, search Name Solartech Power Place Cerritos, California Zip 90703 Sector Solar Product Solartech power is a distributer of solar modules....

353

Peak Power at Peak Efficiency  

Peak Power At Peak Efficiency. 21. st. Industry Growth Forum. October 2008. PJ Piper (857) 350?3100. ... At <$10/bbl oil, QM Powers electric ...

354

Microsoft PowerPoint - IP  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Topics covered have included: * Sustainable Energy Development * Power Reactors * Nuclear Power Plant Planning * Nuclear Power Plant Pre-Operational Support IAEA's 10 Years...

355

Green Power Network: News Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

to main content U.S. Department of Energy Energy Efficiency and Renewable Energy Green Power Network About the GPN Green Power Markets Buying Green Power Onsite Renewable...

356

Principle Power | Open Energy Information  

Open Energy Info (EERE)

Principle Power Place San Francisco, California Zip 94120 Sector Renewable Energy Product Principle Power is a global independent power producer committed to delivering green,...

357

Southwestern Power Administration One West...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the United States Department of Energy Southwestern Power Administration Strategic Plan March 2013 Administrator's Message The Southwestern Power Administration powers the...

358

Energy Harvesting Aware Power Management  

E-Print Network (OSTI)

and J. Schiller, Utilizing solar power in wireless sensorthat only the actual solar power available, and not anyconverted to electric power using solar cells. The magnitude

Kansal, Aman; Srivastava, Mani B

2005-01-01T23:59:59.000Z

359

Power Quality Aspects in a Wind Power Plant: Preprint  

SciTech Connect

Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

2006-01-01T23:59:59.000Z

360

Public works for water and power development and energy research appropriations for Fiscal Year 1977. Part 5 (Pages 3625-4596). Energy Research and Development Administration. Hearings before the Committee on Appropriations, United States Senate, Ninety-Fourth Congress, Second Session on H. R. 14236  

SciTech Connect

H.R. 14236 is an act making appropriations for public works for water and power development and energy research, including the Corps of Civil Engineers, the Bureau of Reclamation, power agencies of the Department of the Interior, the Appalachian Regional Development Programs, the Federal Power Commission, the Tennessee Valley Authority, the Nuclear Regulatory Commission, the Energy Research and Development Administration, and related independent agencies and commissions for the fiscal year ending September 30, 1977. The subcommittee meeting on March 16, 1976, Senator John C. Stennis presiding, dealt with the Solar, Geothermal, and Advanced Energy Systems of the Energy Research and Development Administration. The hearing on March 18, 1976 dealt with the Naval Reactor Development Program and the Nuclear Weapons and Related Programs of ERDA; Senator John C. Stennis presided. The hearing on March 23, 1976, dealt with the Fission Power Reactor Development Program, ERDA; Senator John C. Stennis presided. The March 24, 1976 hearing dealt with the Biomedical and Environmental and Safety Research, Conservation Research and Development, and Program Support Sections, ERDA, again with Senator John C. Stennis presiding. A total of 45 witnesses' statements, communications, and prepared statements served as information presented at this hearing.

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Magnetic Materials for High Frequency Power Electronics  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... Advanced Materials for Power Electronics, Power Conditioning, and Power ... in power conditioning, conversion, and generation applications.

362

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

363

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Power Electronics International, Inc. Arkansas Power Electronics International, Inc. DOE Peer Review November 2-3, 2006 Marcelo Schupbach, Ph.D. Senior Engineer APEI, Inc. 535 Research Center Blvd. Fayetteville, AR 72701 Phone: (479)-443-5759 Email: marcelo@apei.net Website: www.apei.net High Temperature and High Power Density SiC Power Electronic Converters Energy Storage Systems Program 2 Overview * APEI, Inc. Corporate Status * Broader Impact of SiC-based Power Converter * DOE Energy Storage System Program Phase I SBIR - SBIR Topic: Wide Band Gap Power Converter Application - APEI's Goals - Phase I Accomplishments * DOE Energy Storage System Program Phase II SBIR - APEI's Goals - Research Team and Partners - Project Status Energy Storage Systems Program 3 APEI, Inc. Mission Statement We are a small business dedicated to

364

DSW Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Power Projects Contact DSW Customers Customer Meetings Environmental Review-NEPA Operations & Maintenance Planning & Projects Power Marketing Rates DSW Power Projects Boulder Canyon: Straddling the Colorado River near the Arizona-Nevada border, Hoover Dam in Boulder Canyon creates Lake Mead. River waters turning turbines at Hoover Powerplant produce about 2,074 MW--enough electricity for nearly 8 million people. Western markets this power to public utilities in Arizona, California and Nevada over 53.30 circuit-miles of transmission line. Central Arizona: Authorized in 1968, the Central Arizona Project in Arizona and western New Mexico was built to improve water resources in the Colorado River Basin. Segments of the authorization allowed for Federal participation in the Navajo Generating Station. The Federal share of the powerplant's combined capacity is 547 MW.

365

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

11 North American Power Group, Ltd. 11 North American Power Group, Ltd. November 17, 2011 North American Power Group, Ltd. Two Elk Energy Park Carbon Site Characterization Study Preliminary Geologic Model-Update DOE NETL Annual Meeting November, 15-17, 2011 North American Power Group Copyright 2011 NAPG Two Elk Project Location 2 North American Power Group Copyright 2011 NAPG Work Flow and Project Integration 3 North American Power Group Copyright 2011 NAPG Modeling Approach  Model basin architecture is basically constructed from data within a 25 x 25 mile square area  Geologists reviewed data and correlated tops and surfaces  Porosity, permeability, petrophysics and other information correlated from that data to create a baseline model  Additional data has yet to be added from seismic information and from on-site penetrations

366

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country's first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

NONE

1998-04-01T23:59:59.000Z

367

Solar power towers  

DOE Green Energy (OSTI)

The high desert near Barstow, California, has witnessed the development of this country`s first two solar power towers. Solar One operated successfully from 1982 to 1988 and proved that power towers work efficiently to produce utility-scale power from sunlight. Solar Two was connected to the utility grid in 1996 and is operating today. Like its predecessor, Solar Two is rated at 10 megawatts. An upgrade of the Solar One plant, Solar Two demonstrates how solar energy can be stored in the form of heat in molten salt for power generation on demand. The experience gained with these two pilot power towers has established a foundation on which industry can develop its first commercial plants. These systems produce electricity on a large scale. They are unique among solar technologies because they can store energy efficiently and cost effectively. They can operate whenever the customer needs power, even after dark or during cloudy weather.

Not Available

1998-04-01T23:59:59.000Z

368

SaskPower Small Power Producers Program (Saskatchewan, Canada) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SaskPower Small Power Producers Program (Saskatchewan, Canada) SaskPower Small Power Producers Program (Saskatchewan, Canada) SaskPower Small Power Producers Program (Saskatchewan, Canada) < Back Eligibility Commercial Agricultural Industrial Residential Savings Category Solar Buying & Making Electricity Program Info Funding Source SaskPower State Saskatchewan Program Type Performance-Based Incentive Provider SaskPower The Small Power Producers Program accommodates customers who wish to generate up to 100 kilowatts (kW) of electricity for the purpose of offsetting power that would otherwise be purchased from SaskPower or for selling all of the power generated to SaskPower. At the beginning of the application process, you need to choose between one of two options: Sell all of the power you produce to SaskPower, or sell the

369

Karnataka Power Corporation Limited and National Thermal Power Corporation  

Open Energy Info (EERE)

Karnataka Power Corporation Limited and National Thermal Power Corporation Karnataka Power Corporation Limited and National Thermal Power Corporation JV Jump to: navigation, search Name Karnataka Power Corporation Limited and National Thermal Power Corporation JV Place India Sector Wind energy Product India-based wind power project developer. References Karnataka Power Corporation Limited and National Thermal Power Corporation JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Karnataka Power Corporation Limited and National Thermal Power Corporation JV is a company located in India . References ↑ "Karnataka Power Corporation Limited and National Thermal Power Corporation JV" Retrieved from "http://en.openei.org/w/index.php?title=Karnataka_Power_Corporation_Limited_and_National_Thermal_Power_Corporation_JV&oldid=3479

370

Power Quality Waveform Identification  

Science Conference Proceedings (OSTI)

This report describes the desired functionality, attributes and proposed development approach of a power quality (PQ) event identification tool that is planned to be developed under the Electric Power Research Institute (EPRI) Power Quality program P1.BackgroundPQ monitors capture a wide variety of disturbance events, ranging in frequency from direct current to a few megahertz. Advances in PQ monitoring and instrumentation allow continuous measurement and ...

2013-12-17T23:59:59.000Z

371

COSTS OF NUCLEAR POWER  

SciTech Connect

The discussion on the costs of nuclear power from stationary plants, designed primarily for the generation of electricity. deals with those plants in operation, being built, or being designed for construction at an early date. An attempt is made to consider the power costs on the basis of consistent definitions and assumptions for the various nuclear plants and for comparable fossil-fuel plants. Information on several new power reactor projects is included. (auth)

1961-01-01T23:59:59.000Z

372

Interleaved power converter  

DOE Patents (OSTI)

A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

Zhu, Lizhi (Canton, MI)

2007-11-13T23:59:59.000Z

373

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Market Monitoring Market Monitoring Tools Bernie Lesieutre - LBNL Bob Thomas - Cornell October 18, 2006 Washington, D.C. OE Visualization and Controls Peer Review Market Monitoring Tools: Overview Approach: Use dispatch, profit, revenue/offer price, withholding sensitivities to identify opportunities for local advantage that give some participants market power potential. 2006 Technical Work: Extend prior results to large, RTO-scale systems. Initiate large-scale analysis with RTO (PJM). Evaluate reactive power effects on energy markets. Publication and presentation of results. Market Power: Substitutability Market power boils down to the issue of substitutability Locational Advantage: "Load Pockets" Physical network constraints limit supply to certain loads, so that the incremental demand

374

EIA Electric Power Forms  

Gasoline and Diesel Fuel Update (EIA)

Electric Power Forms Electric Power Forms EIA Electric Power Forms Listing of Publicly Available and Confidential Data EIA's statistical surveys encompass each significant electric supply and demand activity in the United States. Most of the electric power survey forms resulting data elements are published, but respondent confidentiality is required. The chart below shows the data elements for each survey form and how each data element is treated in regard to confidentiality. Data Categories Data collection forms EIA- 411 EIA- 826 EIA- 860 EIA- 860M EIA- 861 EIA- 923 Frame Information Utility identification and iocation -- -- -- -- X -- Plant identification and iocation -- -- -- X -- X Generation and fuel Latitude and longitude -- -- X -- -- --

375

Magnets and Power Supplies  

NLE Websites -- All DOE Office Websites (Extended Search)

Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal Bibliography Up: APS Storage Ring Parameters Previous: Longitudinal bunch profile and Magnets and Power Supplies Dipole Magnets and Power Supplies Value Dipole Number 80+1 No. of power supplies 1 Magnetic length 3.06 m Core length 3.00 m Bending radius 38.9611 m Power supply limit 500.0 A Field at 7 GeV 0.599 T Dipole trim coils Number 80+1 No. of power supplies 80 Magnetic length 3.06 m Core length 3.00 m Power supply limit 20.0 A Maximum field 0.04 T Horizontal Correction Dipoles Number 317 No. of power supplies 317 Magnetic length 0.160 m Core length 0.07 m Power supply limit 150.0 A Maximum field 0.16 T Max. deflection at 7 GeV 1.1 mrad Vertical Corrector Dipoles Number 317 No. of power supplies 317

376

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

7 ANNUAL REPORT 7 ANNUAL REPORT Southwestern Power Administration Letter to the Secretary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 About Southwestern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Accomplishments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

377

Power Purchase Agreements Update  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers an update on power purchase agreements and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

378

Electric Power Annual  

Gasoline and Diesel Fuel Update (EIA)

Table 3.19. Net Generation from Geothermal by State, by Sector, 2011 and 2010 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric...

379

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

between alternative fuels and power plant communities needs to be improved Photosynthesis Biomass EtOH, Advanced biofuels Algae Pyrolysis oils Biodiesel, Advanced biofuels...

380

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conservation Technologies thrust area supports initiatives that enhance the core competencies of the Lawrence Livermore National Laboratory (LLNL) Engineering Directorate in the area of solid-state power electronics. Through partnerships with LLNL programs, projects focus on the development of enabling technologies for existing and emerging programs that have unique power conversion requirements. This year, a multi-disciplinary effort was supported which demonstrated solid-state, high voltage generation by using a dense, monolithic photovoltaic array. This effort builds upon Engineering's strengths in the core technology areas of power conversion, photonics, and microtechnologies.

Haigh, R E

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electric Power Annual  

Annual Energy Outlook 2012 (EIA)

7. Net Generation from Wind by State, by Sector, 2011 and 2010 (Thousand Megawatthours) Electric Power Sector Census Division and State All Sectors Electric Utilities Independent...

382

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

4. Useful Thermal Output by Energy Source: Industrial Combined Heat and Power, 2001 - 2011 (Billion Btus) Period Coal Petroleum Liquids Petroleum Coke Natural Gas Other Gas Other...

383

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

C. Natural Gas: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2001 - 2011 (Million Cubic Feet) Electric Power Sector Period Total (all sectors)...

384

Electric Power Annual  

U.S. Energy Information Administration (EIA) Indexed Site

F. Coal: Consumption for Electricity Generation and Useful Thermal Output, by Sector, 2001 - 2011 (Billion Btus) Electric Power Sector Period Total (all sectors) Electric Utilities...

385

PowerPoint ????  

NLE Websites -- All DOE Office Websites (Extended Search)

of methanesteam reforming Strong endothermic reaction reactor water boiler steam Thermal energy combustor coal Steam generation in conventional power plant Synthetic use...

386

Municipal Electric Power (Minnesota)  

Energy.gov (U.S. Department of Energy (DOE))

This section describes energy procurement for local utilities operating in Minnesota and provides a means for Minnesota cities to construct and operate hydroelectric power plants. The statute gives...

387

RM Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

in 1990. The projects serve Colorado, Kansas, Nebraska and Wyoming with 830 MW of installed capacity and 3,360 miles of transmission line. About Power Marketing...

388

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network (OSTI)

but the commercial electric vehicle industry continued tostrong interest in the electric vehicle industry to developTuyl, Effect of Electric Vehicles on the Power Industry, SAE

Cairns, Elton J.

2012-01-01T23:59:59.000Z

389

Electric Power Monthly  

U.S. Energy Information Administration (EIA)

Electric Power Monthly with Data for October 2012. December 2012 . Independent Statistics & Analysis . www.eia.gov . U.S. Department of Energy . ...

390

Electric Power Monthly  

U.S. Energy Information Administration (EIA)

Electric Power Monthly with Data for August 2012. October 2012 . Independent Statistics & Analysis . www.eia.gov . U.S. Department of Energy . ...

391

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

* Grain-oriented electrical steels for high efficiency power and distribution transformers. * Alloys for renewable energy systems. * Alloy design for optimization of...

392

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

June 7-8, 2006 Southwestern Power Administration Drought Operations Guides * Non-Hydro Guide Curve * Inflow trends * Drought Indices * Storage Remaining * Long-term weather...

393

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Objectives Program Objective: Develop novel solvent and process for post- combustion capture of CO 2 from coal-fired power plants with 90% Capture efficiency, and...

394

Electric Power Annual  

Annual Energy Outlook 2012 (EIA)

4. Weighted Average Cost of Fossil Fuels for the Electric Power Industry, 2002 through 2011 Coal Petroleum Natural Gas Total Fossil Bituminous Subbituminous Lignite All Coal Ranks...

395

PowerPoint ?????????  

NLE Websites -- All DOE Office Websites (Extended Search)

Yongchen Song Dalian University of Technology Dalian, Liaoning China powere@dlut.edu.cn 13889533878 CO 2 Reduction and Ocean Storage Background CO 2 Storage Technology ...

396

Electric Power Annual 2004  

U.S. Energy Information Administration (EIA)

Energy Information Administration/Electric Power Annual 2004 iii Contacts Questions regarding this report may be directed to: Energy Information Administration, EI-53

397

Balancing of Wind Power.  

E-Print Network (OSTI)

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

398

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

POTC Home Courses Instructors NERC Continuing Education Virtual University POTC Virtual University In an effort to expand electric power training opportunities while saving money...

399

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

POTC Home Courses Instructors NERC Continuing Education Virtual University Power Operations Training Center Instructors All instructors at Southwestern's POTC are NERC-approved...

400

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

POTC Home Courses Instructors NERC Continuing Education Virtual University 2013 Power Operations Training Center Courses Please follow the links on this page to view course...

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Chuck Herman and Guy Sliker * NGK - Hiroyuke Abe * EPRI funders (Con Edison, CPS Energy, HECO, Hydro One, NYISO, SDG&E, and TVA) 3 2009 Electric Power Research...

402

Generalized power domination of graphs  

Science Conference Proceedings (OSTI)

In this paper, we introduce the concept of k-power domination which is a common generalization of domination and power domination. We extend several known results for power domination to k-power domination. Concerning the complexity of the k-power domination ... Keywords: Domination, Electrical network monitoring, Power domination

Gerard Jennhwa Chang; Paul Dorbec; Mickael Montassier; Andr Raspaud

2012-08-01T23:59:59.000Z

403

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 25590 of 28,560 results. 81 - 25590 of 28,560 results. Rebate Savings by Design (Offered by five Utilities) In conjunction with the California Department of Public Utilities, Savings by Design offers services and incentives to help owners and designers of commercial buildings raise energy performance.... http://energy.gov/savings/savings-design-offered-five-utilities Rebate AEP SWEPCO- SMART Source Solar PV Program Southwestern Electric Power Company (SWEPCO) offers rebates to customers that install photovoltaic (PV) systems on homes. Rebates may be assigned to the customer, a service provider, or a third party. http://energy.gov/savings/aep-swepco-smart-source-solar-pv-program Rebate AEP Texas North Company- SMART Source Solar PV Rebate Program American Electric Power Texas North Company (AEP-TNC) offers rebates to

404

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 1170 of 26,777 results. 61 - 1170 of 26,777 results. Download Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners, Inc: Ercot Comments on AEP Export Authorization Application from AEP Energy Partners to export electric energy to Mexico. http://energy.gov/oe/downloads/application-export-electric-energy-oe-docket-no-ea-318-b-aep-energy-partners-inc-ercot Download EA-122-A Dynegy Power Marketing, Inc http://energy.gov/oe/downloads/ea-122-dynegy-power-marketing-inc Download EA-185-A Morgan Stanley Capital Group Inc. http://energy.gov/oe/downloads/ea-185-morgan-stanley-capital-group-inc-0 Download EA-248 AES NewEnergy Inc http://energy.gov/oe/downloads/ea-248-aes-newenergy-inc Download EA-264 ENMAX Energy Marketing Inc http://energy.gov/oe/downloads/ea-264-enmax-energy-marketing-inc-0

405

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Islanding Islanding Dynamic Islanding For Improving Electric Service Reliability with Energy Storage Ali Nourai American Electric Power Presentation to DOE Peer Review Meeting 2008 Funded in Part by the Power Electronics Program of the U.S. Department Of Energy (DOE/PE) through Sandia National Laboratories. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000. 2 Outline Outline 1. Existing AEP storage projects - performance data 2. New AEP storage projects - exploring new storage values DOE/Sandia has been sponsoring the innovative components of energy storage projects in AEP 3 AEP NaS Application #1

406

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 3220 of 26,777 results. 11 - 3220 of 26,777 results. Download Record of Categorical Exclusion (CX) Determination: Office of Electricity Delivery and Energy Reliability (OE): EA-385 Dynasty Power, Inc. Record of Categorical Exclusion (CX) Determination, Office of Electricity and Energy Reliability (OE): Application from Dynasty Power to export electric energy to Canada. http://energy.gov/oe/downloads/record-categorical-exclusion-cx-determination-office-electricity-delivery-and-energy-1 Download Application to Export Electric Energy OE Docket No. EA-318-B AEP Energy Partners, Inc: Emergency Filing from AEP Requesting Temporary Export Authorization Extension Application from AEP Energy requesting temporary export authorization extension to export electric energy to Mexico. http://energy.gov/oe/downloads/application-export-electric-energy-oe-docket-no-ea-318-b-aep-energy-partners-inc-2

407

Green Power Network: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports News Archive Subscribe to Green Power News TVA Seeks 126 MW of Renewables in 2014 The Tennessee Valley Authority (TVA) is increasing the capacity of its renewable energy power purchase programs by 7 peercent over 2013, with a total capacity of 126 megawatts (MW) being offered. The increase in capacity is being spread across two of TVA's three power purchase programs - Green Power Providers, Solar Solutions Initiative, and the Renewable Standard Offer. The Green Power Providers program has 10 MW of available capacity for the development of small-scale solar, wind, biomass and hydro generation systems that are 50 kilowatts (kW) or less. Within the Green Power Providers program TVA has doubled the residential capacity from 2 MW to 4 MW and will be paying all power providers a total of 14¢ per kilowatt-hour (kWh). The Solar Solutions Initiative program, which focuses on installations between 50 kW and 1 MW, has been expanded from 10 MW of capacity to 16 MW and now pays a premium of 6¢/kWh. TVA's third power purchase program, the Renewable Standard Offer continues to have 100 MW of available capacity for projects between 1 MW and 20 MW. Prior to these program expansions TVA's renewables portfolio consisted of 128 MW of operating or committed solar, 1,500 MW of wind, and 60 MW of biomass.

408

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Downscaling capacity Downscaling capacity Downscaling capacity Downscaling capacity estimates from a regional to a estimates from a regional to a site scale site scale - - Case study in the Case study in the South Eastern US South Eastern US Prepared by the Gulf Coast Carbon Center at the Bureau of Economic Geology The University of Texas at Austin Susan D. Hovorka, Rebecca C. Smyth,, Jeffery Paine, Scott Tinker, Director; Ian Duncan, Associate Director Funded through the Southern States Energy Board and EPRI in connection with the Southeast Regional Carbon Sequestration Partnership, Southern States Energy Board 5/9-11/2006, Alexandria, VA Appalachians and Gulf Coastal Plain Mid-south Interior Gulf Coast Region Atlantic Seaboard Florida - South Georgia Greens= known capacity Oranges and reds = capacity

409

NUCLEAR POWER PLANT  

DOE Patents (OSTI)

A nuclear power plant for use in an airless environment or other environment in which cooling is difficult is described. The power plant includes a boiling mercury reactor, a mercury--vapor turbine in direct cycle therewith, and a radiator for condensing mercury vapor. (AEC)

Carter, J.C.; Armstrong, R.H.; Janicke, M.J.

1963-05-14T23:59:59.000Z

410

Power Technologies Data Book  

SciTech Connect

This report, prepared by NREL's Energy Analysis Office, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts and comparisons, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, conversion factors, and selected congressional questions and answers.

Goldstein, L.

2002-09-01T23:59:59.000Z

411

Fusion Power Deployment  

DOE Green Energy (OSTI)

Fusion power plants could be part of a future portfolio of non-carbon dioxide producing energy supplies such as wind, solar, biomass, advanced fission power, and fossil energy with carbon dioxide sequestration. In this paper, we discuss key issues that could impact fusion energy deployment during the last half of this century. These include geographic issues such as resource availability, scale issues, energy storage requirements, and waste issues. The resource needs and waste production associated with fusion deployment in the U.S. should not pose serious problems. One important feature of fusion power is the fact that a fusion power plant should be locatable within most local or regional electrical distribution systems. For this reason, fusion power plants should not increase the burden of long distance power transmission to our distribution system. In contrast to fusion power, regional factors could play an important role in the deployment of renewable resources such as wind, solar and biomass or fossil energy with CO2 sequestration. We examine the role of these regional factors and their implications for fusion power deployment.

J.A. Schmidt; J.M. Ogden

2002-02-06T23:59:59.000Z

412

New baseload power plants  

Science Conference Proceedings (OSTI)

This is a listing of 221 baseload power plant units currently in the planning stage. The list shows the plant owner, capacity, fuel, engineering firm, constructor, major equipment suppliers (steam generator, turbogenerator, and flue gas desulfurization system), partner, and date the plant is to be online. This data is a result of a survey by the journal of power plant owners.

Not Available

1994-04-01T23:59:59.000Z

413

Optimizing Power Factor Correction  

E-Print Network (OSTI)

The optimal investment for power factor correcting capacitors for Kansas Power and Light Company large power contract customers is studied. Since the billing capacity is determined by dividing the real demand by the power factor (the minimum billing capacity is based on 80 percent of the summer peak billing capacity) and the billing capacity is used to determine the number of kilowatt-hours billed at each pricing tier, the power factor affects both the demand and the energy charge. There is almost no information available in the literature concerning recommended power factor corrections for this situation. The general advice commonly given in the past has been that power factor should be corrected to above 0.9 if it is below that value to begin with, but that does not take into account the facts of the situation studied here. Calculations relevant to a commercial consumer of electricity were made for demands of 200, 400, 800, 1,600, 3,200, and 6,400 kW and monthly energy consumption periods of 100, 150, 200, 300, 400, and 500 hours for several capacitor purchase and installation costs. The results are displayed in a series of graphs that enable annual cost savings and payback periods to be readily determined over a range of commonly encountered parameter values. It is found that it is often economically advantageous to correct a power factor to near unity.

Phillips, R. K.; Burmeister, L. C.

1986-06-01T23:59:59.000Z

414

Metagenomics Smart power grid  

E-Print Network (OSTI)

Metagenomics Smart power grid The new weapons workhorse Laser on Mars LOS ALAMOS SCIENCE'll read about a unique collaboration to create a "smart" power grid to accommodate an increasing, TECHNOLOGY, AND ENGINEERING 2 8 14 Dynamic Vision DARHT FULFILLS ITS DESTINY Solar Smart Grid in the Atomic

415

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

416

Fuel Cell Portable Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Power Department of Energy Workshop January 17, 2002 2 Portable Markets - Table of Contents 1. Opportunity Summary for Portable Markets 2. Commercialization Path and Resource Map 3. Value Chain Issues 4. Ballard "State of the Art" 5. Fuel Options and Issues 6. Where can the D.O.E. Help 3 Opportunity Summary - Portable Markets Infrequent Frequent Typical Applications Backup - Batteries & Gensets Peaking power and seasonal use; mobile power Preferred Fuels Hydrocarbon & Hydrogen Hydrocarbon (H2?) Total Available Market Large - But Fractured into many apps Moderate Price Target Low (Pockets willing to pay high $ for certain attributes) Moderate (Lifecycle) Environmental Impact Low Moderate Timing Short term Mid term 4 Technical Challenge Low High Micro Markets H2 Backup Power HC Frequent

417

EIA - Electric Power Data  

U.S. Energy Information Administration (EIA) Indexed Site

Survey-level Detail Data Files Survey-level Detail Data Files Electric power data are collected on survey instruments. Data collection is mandated by Congress to promote sound policymaking, efficient markets, and public understanding. The most widely used data are disseminated in reports, such as the Electric Power Monthly and the Electric Power Annual. Publicly available electric power data is available down to the plant level in the Electricity Data Browser and in detailed spreadsheets by survey below. Description Data availability State-level data (consolidated across forms) Contains electricity generation; fuel consumption; emissions; retail sales, revenue, number of customers, and retail prices; generating capacity; and financial data. 1990-2012 (monthly and annual) Electric power sales and revenue data - monthly (Form EIA-826)

418

Green Power Network: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

News News TVA Seeks 126 MW of Renewables in 2014 December 2013 More News More News Subscribe to E-Mail Update Subscribe to e-mail update Events EPA Webinar - The Power of Aggregated Purchasing: How to Green Your Electricity Supply & Save Money January 15, 2014 1:00-2:00 p.m. ET Previous Webinars More News Features Green Power Market Status Report (2011 Data) Featured Green Power Reports Publications Alphabetical Listing Categorical Listing Chronological Listing Featured Reports The Green Power Network library contains articles and reports on green power, green pricing, and related topics. Whenever possible, we provide a link to publications available online. The publications are grouped by the following topics to help you in your search. If you are aware of other documents that should be added to this list, please notify our Webmaster.

419

Introduction to MEAG Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Introduction to MEAG Power Introduction to MEAG Power Southeastern Federal Power Alliance Meeting October 9, 2013 Municipal Electric Authority of Georgia ■ Joint Action Agency ─ Formed in 1975 ─ Owns and operates electric generation and transmission facilities ─ Provides bulk electric power to 48 cities and 1 county in the State of Georgia ■ All 49 Participants have reaffirmed 50-year power sales extensions ■ Take-or-pay contracts with participants are court validated contracts with a General Obligation pledge from each city ■ Generation ownership interest in 10 generating units and a transmission system ─ 2,069 MW generating capacity online ─ 500 MW Plant Vogtle Units 3 & 4 under development ■ Schedules the output from the SEPA contracts for the 49 members

420

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Power module assembly  

SciTech Connect

A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

2011-11-15T23:59:59.000Z

422

Enel Green Power- Innovative Geothermal Power for Nevada | Open Energy  

Open Energy Info (EERE)

Enel Green Power- Innovative Geothermal Power for Nevada Enel Green Power- Innovative Geothermal Power for Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Periodical: Enel Green Power- Innovative Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of some 40 thousand American households. Author Hank Sennott Published Press Release, 04/15/2009 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Enel Green Power- Innovative Geothermal Power for Nevada Citation Hank Sennott. 04/15/2009. Enel Green Power- Innovative Geothermal Power for Nevada. Press Release. 1-2. Retrieved from "http://en.openei.org/w/index.php?title=Enel_Green_Power-_Innovative_Geothermal_Power_for_Nevada&oldid=680547"

423

It's all About Power and those Pesky Power Vampires  

Science Conference Proceedings (OSTI)

In this issue of New Products, the editors cover an energy source that provides power for emergency situations and a car that helps to train drivers to drive energy efficiently. They also examine a power strip that defeats so-called 'power vampires' ... Keywords: Power vampires, smart power, Belkin, Truevert, Honda Insight, Husqvarna, Automower Solar Hybrid, Freeplay, Weza

Maria Ebling; Mark Corner

2009-01-01T23:59:59.000Z

424

Electric power annual 1992  

SciTech Connect

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

425

Power Economic Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

CRSP Management Center CRSP Management Center Western Area Power Administration January 2011 Power Economic Analysis of Operational Restrictions at Glen Canyon Dam In February, 1997, the operating criteria for Glen Canyon Dam were changed. Operation was restricted to a Modified Low Fluctuating Flow as described in the Operation of Glen Canyon Dam, Colorado River Storage Project, Arizona, Final Environmental Impact Statement, March, 1995. These restrictions reduced the operating flexibility of the hydroelectric power plant and therefore the economic value of the electricity it produced. The Environmental Impact Statement provided impact information to support the Record of Decision governing dam operations. The impact

426

Wind Powering the Government  

DOE Green Energy (OSTI)

There are more than half a million Federal buildings with electric bills totaling about $3.5 billion per year. The Wind Powering America Initiative challenges the Federal government to reduce its use of energy produced by fossil fuels by obtaining at least 5% of its electricity from wind by 2010. As part of the current efforts to achieve the initiative's goal, NREL's Technical Information Services published Wind Powering the Government, a brochure that encourages the use of wind energy on Federal properties and the purchase of green power or green tags by Federal property managers.

Pitchford, P.

2000-08-02T23:59:59.000Z

427

Power supply apparatus  

SciTech Connect

The outputs of a plurality of modules or generators of electrical energy, such as fuel cells, chemical storage batteries, solar cells, MHD generators and the like, whose outputs are different are consolidated efficiently. The modules supply a power distribution system through an inverter. The efficiency is achieved by interconnecting the modules with an alternating voltage supply and electronic valves so controlled that the alternating-voltage supply absorbs power from modules whose output voltage is greater than the voltage at which the inverter operates and supplies this power as a booster to modules whose output voltage is less than the voltage at which the inverter operates.

Dickey, D. E.

1984-09-18T23:59:59.000Z

428

Computational power of correlations  

E-Print Network (OSTI)

We study the intrinsic computational power of correlations exploited in measurement-based quantum computation. By defining a general framework the meaning of the computational power of correlations is made precise. This leads to a notion of resource states for measurement-based \\textit{classical} computation. Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as optimal examples. Our work exposes an intriguing relationship between the violation of local realistic models and the computational power of entangled resource states.

Janet Anders; Dan E. Browne

2008-05-07T23:59:59.000Z

429

Power control system and method  

SciTech Connect

A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

Steigerwald, Robert Louis (Burnt Hills, NY); Anderson, Todd Alan (Niskayuna, NY)

2008-02-19T23:59:59.000Z

430

Gary Kaster  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRIC INDUSTRY PERSPECTIVE ELECTRIC INDUSTRY PERSPECTIVE ON CLIMATE CHANGE AND CARBON SEQUESTRATION APPALACHIAN COAL AND ELECTRIC UTILITIES INDUSTRIES Lexington, Kentucky November 6, 2001 Gary Kaster Manager, Forestry & Recreation Programs gkaster@aep.com Credentials v Chair of Edison Electric Institute's Utility Forest Carbon Management Program, representing 55 utility companies, and whose goal is to promote forest carbon management as a means of addressing climate change. v Chairman of the UtiliTree Carbon Company, a non profit corporation established by 41 companies which have

431

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Association Association S.2900 Reducing the Electric Power Carbon Footprint October 20, 2010 Richard S. Tuthill, Chair Board of Directors Gas Turbine Association 2 * Alstom Power * Florida Turbine Technologies * General Electric * Rolls Royce * Siemens Energy * Solar Turbines * Strategic Power Systems * United Technologies * Vibro Meter Gas Turbine Association 3 S.2900 * Introduced By Senator Kirsten Gillibrand (D-NY) * Prime Objective is to Fund Ground Power Gas Turbine Technologies - Raise Natural Gas Fired Gas Turbine Efficiencies ○ Phase One - Combined Cycle > 62%, Simple Cycle > 47% ○ Phase Two - Combined Cycle > 65%, Simple Cycle > 50% - Authorizes $340M Over Four Years ($85M per Year) - Combined Cycle, Simple Cycle, CHP, All Engine Sizes * Similar Bill Has Passed the US House (Under Suspension of Rules)

432

Wireless Power Transmission  

Office of Scientific and Technical Information (OSTI)

88 88 Lunar Wireless Power Transfer Feasibility Study March 2008 Prof. Zoya Popovic, University of Colorado, Boulder David R. Beckett, Scott R. Anderson, Diana Mann, Stuart Walker, Independent Consultants Sheldon Fried, Ph.D., National Security Technologies, LLC Abstract - This study examines the feasibility of a multi-kilowatt wireless radio frequency (RF) power system to transfer power between lunar base facilities. Initial analyses, show that wireless power transfer (WPT) systems can be more efficient and less expensive than traditional wired approaches for certain lunar and terrestrial applications. The study includes evaluations of the fundamental limitations of lunar WPT systems, the interrelationships of possible operational parameters, and a baseline design approach for a notionial system that could be used in the near

433

SOUTHWESTERN POWER ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9/01 9/01 SOUTHWESTERN POWER ADMINISTRATION CATEGORICAL EXCLUSION (CX) DETERMINATION BRIEF DESCRIPTION OF PROPOSED ACTION: Hydroelectric Power Rate Increase for the Integrated System of Hydropower Projects. PROPOSED BY: Southwestern Power Administration. NUMBER AND TITLE OF THE CATEGORICAL EXCLUSION BEING APPLIED: ( 10 CFR 1021, Appendix B to Subpart D, 1-1-03 Edition, Part B4.3 - Electric power marketing rate changes. REGULATORY REQUIREMENTS IN 10 CFR 1021.410(B): (1) The proposed action fits within a class of actions that is listed in Appendix, A or B to Subpart D. (2) There are no extraordinary circumstances related to the proposal that may affect the Significance of the environmental effects of the proposal; and (3) The proposal is not "connected" to other actions with potentially significant impacts, is not related to

434

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Skip Navigation Links Skip Navigation Links Annual Performance Plan Annual Report Mission Organization Strategic Plan SWPA - Overview Video System Map About the Agency Southwestern Power Administration was established in 1943 by the Secretary of the Interior as a Federal Agency that today operates within the Department of Energy under the authority of Section 5 of the Flood Control Act of 1944. As one of four Power Marketing Administrations in the United States, Southwestern markets hydroelectric power in Arkansas, Kansas, Louisiana, Missouri, Oklahoma, and Texas from 24 U.S. Army Corps of Engineers multipurpose dams. By law, Southwestern's power is marketed and delivered primarily to public bodies such as rural electric cooperatives and municipal utilities. Southwestern has over one hundred such "preference" customers, and these

435

PowerPoint Presentation  

U.S. Energy Information Administration (EIA) Indexed Site

David Sun, PhD David Sun, PhD david.sun@power.alstom.com Power Automation & Controls, Alstom Power Session: Intelligent Electric Systems Smart Power Future of Energy Sustainability © ALSTOM 2011. All rights reserved. Information contained in this document is provided without liability for information purposes only and is subject to change without notice. No representation or warranty is given or to be implied as to the completeness of information or fitness for any particular purpose. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited. EIA Conference April 26, 2011 - EIA Conference 26 A Drivers for New Energy Eco-system Emission Management Distributed Empowerment Energy Efficiency Generation 40%

436

Power Purchase Agreements  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Purchase Agreements Power Purchase Agreements Chandra Shah, NREL 303-384-7557 chandra.shah@nrel.gov February 2011 revised 2 | Federal Energy Management Program eere.energy.gov Overview * Customer-sited power purchase agreement (PPA) definition * Project process * Project examples * Utility Renewable Energy Services Contract (URESC) * Enhanced use lease (EUL) * PPA support, resources and key points 3 | Federal Energy Management Program eere.energy.gov * Private entity purchases, installs, owns, operates and maintains customer-sited renewable equipment * Site purchases electricity through power purchase agreement (PPA) * Pros - Renewable developer (or partner) eligible for tax incentives, accelerated depreciation - No agency up-front capital required - Renewable developer provides O&M - Minimal risk to government

437

Optimizing Power Using Transformations  

E-Print Network (OSTI)

: The increasing demand for portable computing has elevated power consumption to be one of the most critical design parameters. A high-level synthesis system, HYPER-LP, is presented for minimizing power consumption in application specific datapath intensive CMOS circuits using a variety of architectural and computational transformations. The synthesis environment consists of high-level estimation of power consumption, a library of transformation primitives, and heuristic/probabilistic optimization search mechanisms for fast and efficient scanning of the design space. Examples with varying degree of computational complexity and structures are optimized and synthesized using the HYPER-LP system. The results indicate that more than an order of magnitude reduction in power can be achieved over current-day design methodologies while maintaining the system throughput; in some cases this can be accomplished while preserving or reducing the implementation area. 1.0 Introduction VLSI research a...

Anantha P. Chandrakasan; Miodrag Potkonjak; Renu Mehra; Jan Rabaey; Robert W. Brodersen

1995-01-01T23:59:59.000Z

438

Linear Motor Powered Transportation  

E-Print Network (OSTI)

This special issue on linear-motor powered transportation covers both supporting technologies and innovative transport systems in various parts of the World, as this technology moves from the lab to commercial operations. ...

Thornton, Richard D.

439

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

Newton, M. A.

1997-02-01T23:59:59.000Z

440

Annual Power Electric  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Power Annual Revision Final Data for 2011 Released: January 30, 2013 Revison Date: May 16, 2013 May 16, 2013 Data revision. 2011 Total (all sectors) and electric utility...

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACTS Control for Long- and Short- FACTS Control for Long- and Short- Term Energy Storage Mehdi Ferdowsi Missouri University of Science and Technology Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOE/ESS) through Sandia National Laboratories (SNL). Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration, under contract DE-AC04-94AL85000. Issues * Short- and Long-Term Energy Storage * Storage Integration * Cyber Security 33 v v Transmission Line Generation FACTS Wind Power Energy Storage Solar Power Energy Storage FACTS Device Distributed Decisions Power Electronics Communications Sensing and monitoring Inputs Power Electronics

442

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochemical Membrane for CO 2 Capture and Power Generation DE-FE0007634 Hossein Ghezel-Ayagh FuelCell Energy, Inc. 2013 NETL CO 2 Capture Technology Meeting July 10, 2013 Pittsburgh, PA FuelCell Energy, Inc. 1.4 MW plant at a municipal building 2.4 MW plant owned by an Independent power producer 600 kW plant at a food processor 11.2 MW plant - largest fuel cell park in the world Delivering ultra-clean baseload distributed generation globally Premier developer of stationary fuel cell products, with >40 years of experience Headquarters in Danbury, CT (USA), international presence in USA, Canada, Germany (Fraunhofer, IKTS) and South Korea (Posco) Delivering Direct FuelCell ® (DFC ® ) power plants for On-Site Power and Utility Grid

443

PowerPoint Presentation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APPA and Federal Hydropower APPA and Federal Hydropower Will Coffman Senior Government Relations Representative American Public Power Association Atlanta, Georgia Oct. 20, 2013 Overview * APPA, the American Public Power Association (APPA): trade association for the more than 2,000 community-owned, not-for- profit electric utilities providing service to 47 mil Americans in 49 states. Many of our members purchase power from Corps projects - Approx. 1,200 public power systems and rural electric cooperatives in 33 states. * We, along with NRECA, advocate for federal hydro customers in Congress and with the Administration Areas of Advocacy 1. Congress - Provide background on PMA customer issues to Committees of jurisdiction * Senate: Energy and Natural Resources * House: Natural Resources

444

SOUTHWESTERN POWER ADMINISTRATION  

NLE Websites -- All DOE Office Websites (Extended Search)

01 01 SOUTHWESTERN POWER ADMINISTRATION CATEGORICAL EXCLUSION (CX) DETERMINATION BRIEF DESCRIPTION OF PROPOSED ACTION: Hydroelectric Power Rate Increase for the Integrated System of Hydropower Projects. PROPOSED BY: Southwestern Power Administration. NUMBER AND TITLE OF THE CATEGORICAL EXCLUSION BEING APPLIED: ( 10 CFR 1021, Appendix B to Subpart D, 1-1-03 Edition, Part B4.3 - Electric power marketing rate changes. REGULATORY REQUIREMENTS IN 10 CFR 1021.410(B): (1) The proposed action fits within a class of actions that is listed in Appendix, A or B to Subpart D. (2) There are no extraordinary circumstances related to the proposal that may affect the Significance of the environmental effects of the proposal; and (3) The proposal is not "connected" to other actions with potentially significant impacts, is not related to

445

Geothermal Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

1 GEOTHERMAL POWER GENERATION A PRIMER ON LOW-TEMPERATURE, SMALL-SCALE APPLICATIONS by Kevin Rafferty Geo-Heat Center January 2000 REALITY CHECK Owners of low-temperature...

446

The power tool  

Science Conference Proceedings (OSTI)

POWER Tool--Planning, Optimization, Waste Estimating and Resourcing tool, a hand-held field estimating unit and relational database software tool for optimizing disassembly and final waste form of contaminated systems and equipment.

HAYFIELD, J.P.

1999-02-01T23:59:59.000Z

447

Crowd-powered systems  

E-Print Network (OSTI)

Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

Bernstein, Michael Scott

2012-01-01T23:59:59.000Z

448

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

non-routine work to be performed at the Corps hydropower projects from which Southwestern markets power. Funding for this work averages a little over 20 million per year under an...

449

Southwestern Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us U.S. Department of Energy Southwestern Power Administration Gore Maintenance Office Mailing Address: P.O. Box 728 Gore, OK 74435-0728 Delivery Address: 14165 East 143rd...

450

Concentrating Solar Power  

Energy.gov (U.S. Department of Energy (DOE))

Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy can then be used to...

451

GENERAL ELECTRIC POWER SYSTEMS  

E-Print Network (OSTI)

Since last years GTC Conference, a considerable number of significant events have occurred in the gasification technology marketplace. New IGCC projects have come on stream with commercial operation, other new IGCC projects have been announced and started in development, environmental issues have gained emphasis, and energy prices, notably natural gas, have escalated dramatically. Directionally, all of these events appear to have created a more favorable atmosphere for IGCC projects. Related to an ongoing IGCC project currently in development, a joint analysis has been performed by Global Energy, General Electric Power Systems, and Praxair to evaluate technical and economic elements for the performance of BGL Gasification Technology based on solid hydrocarbon fuel feed to an IGCC for power generation. Results of the analysis provide a picture of the relative economics in todays environment for electrical power generation by conventional natural gas fired combined cycle power systems compared to using BGL Gasification Technology in an IGCC configuration. 2

Igcc Power Generation; Richard A. Olliver; John M. Wainwright; Raymond F. Drnevich Abstract

2000-01-01T23:59:59.000Z

452

Glucose-powered neuroelectronics  

E-Print Network (OSTI)

A holy grail of bioelectronics is to engineer biologically implantable systems that can be embedded without disturbing their local environments, while harvesting from their surroundings all of the power they require. As ...

Rapoport, Benjamin Isaac

2011-01-01T23:59:59.000Z

453

Kenneth W. Powers  

Energy.gov (U.S. Department of Energy (DOE))

Kenneth W. Powers, a member of the Senior Executive Service, is the Associate Administrator for Management and Budget. As Associate Administrator, he is responsible for managing NNSAs...

454

IBM POWER7 systems  

Science Conference Proceedings (OSTI)

This paper describes the system architectures and designs of the IBM POWER7 servers. From the smallest single-processor socket blade to the largest 32-processor-socket 256-core enterprise rack server, each system is designed to fully ...

R. X. Arroyo; R. J. Harrington; S. P. Hartman; T. Nguyen

2011-05-01T23:59:59.000Z

455

PowerPoint Presentation  

NLE Websites -- All DOE Office Websites (Extended Search)

- integrated emissions, DAQ, CAN, power analyzer 3 Testing Completed - Kokam Hymotion Prius, dedicated test vehicle - EnergyCS Prius ver.1 and ver.2, AVTA vehicle - A123 Hymotion...

456

UGP Power Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

River. Seven dams and powerplants have the installed capacity of 2,610 MW. That hydroelectric power is delivered across about 7,919 circuit-miles of Federal transmission line....

457

Wind Power Today  

SciTech Connect

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

2006-05-01T23:59:59.000Z

458

Wind powering America: Wyoming  

DOE Green Energy (OSTI)

This fact sheet contains a description of the green power programs in Wyoming, the state's efforts to promote wind energy, and a list of contacts for those interested in obtaining more information.

NREL

2000-04-10T23:59:59.000Z

459

Wind powering America: Nebraska  

DOE Green Energy (OSTI)

This fact sheet contains a description of Nebraska's wind energy resources and the state's green power programs. The fact sheet includes a list of contacts for those interested in obtaining more information.

NREL

2000-04-10T23:59:59.000Z

460

Power Plant Closure Guidebook  

Science Conference Proceedings (OSTI)

Organizations that are planning to decommission an aged power plant face a host of issues that must be addressed and many tasks that must be properly executed in order to ensure a successful closure of the facility.

2010-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electric Power Annual  

Gasoline and Diesel Fuel Update (EIA)

3. Electric Power Industry - U.S. Electricity Imports from and Electricity Exports to Canada and Mexico, 2001-2011 (Megawatthours) Canada Mexico U.S. Total Year Imports from...

462

Electric Power Industry Restructuring:  

U.S. Energy Information Administration (EIA)

Good morning. I was asked to speak to you today about EIAs data collection efforts in a more competitive electric power industry. I know that you want to hear ...

463

Solar Power International  

Energy.gov (U.S. Department of Energy (DOE))

Solar Power International (SPI) will be held October 21-24 at McCormick Place in Chicago, Illinois. The event attracts more than 15,000 professionals in solar energy and related fields and offers...

464

Solar powered desalination system  

E-Print Network (OSTI)

Desalination Systems Developers MIT BARC IMB Power Solar PVcells Solar PV cells 10 MW solar farm Solar pond FranciscoSolar Energy: PEC vs. PV Solar energy is just as important

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

465

Prsentation PowerPoint  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant * Clean power with entire flue gas treated to capture 2 Mty CO 2 * Biomass co-firing option leading to zero (or negative) CO 2 emissions * Anchor project for National...

466

Wind Power Today  

DOE Green Energy (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

467

Reactive Power Compensator.  

DOE Patents (OSTI)

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

1992-07-28T23:59:59.000Z

468

Reactive power compensator  

DOE Patents (OSTI)

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

1992-01-01T23:59:59.000Z

469

Solar Power Fact Book  

Science Conference Proceedings (OSTI)

In conjunction with research, testing, and demonstration activities at the Solar Technology Acceleration Center (SolarTAC), the Electric Power Research Institute (EPRI) maintains a database of commonly requested technical information on photovoltaic (PV) and concentrating solar thermal power (CSP) technologies. The database addresses cost and performance, resource assessment, project siting and development, environmental impacts, policy and market drivers, and other relevant issues. The data and informat...

2010-12-23T23:59:59.000Z

470

Cleco Power - Power Miser New Home Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cleco Power - Power Miser New Home Program Cleco Power - Power Miser New Home Program Cleco Power - Power Miser New Home Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Windows, Doors, & Skylights Ventilation Heating Heat Pumps Water Heating Program Info State Louisiana Program Type Utility Rate Discount Rebate Amount Discount: 10% discount on energy from November through April for the first five years that the customer lives in participating house. Heat Pump Bonus: Up to $1,000 for eligible heat pump installations Provider Cleco Power Louisiana's Cleco Power offers energy efficiency incentives to eligible

471

NREL: Concentrating Solar Power Research - Power Block R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

the potential of advanced power cycles to integrate with concentrating solar power (CSP) systems. This research increases the efficiency and reduces the levelized cost of...

472

Reliability Assessment of Power Systems with Wind Power Generation.  

E-Print Network (OSTI)

??Wind power generation, the most promising renewable energy, is increasingly attractive to power industry and the whole society and becomes more significant in the portfolio (more)

Wang, Shu

2008-01-01T23:59:59.000Z

473

Nuclear power has a significant role in the European power ...  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ... Because nuclear power does not emit greenhouse gases, ...

474

Brookfield Renewable Power Corp formerly Brascan Power Corp ...  

Open Energy Info (EERE)

Hydro, Wind energy Product Toronto-based owner, operator and developer of hydroelectric power facilities, co-generation and wind power assets. Coordinates 43.64856,...

475

Microsoft PowerPoint - Vicksburg District Federal Power Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Vicksburg District Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1...

476

Power Contracts - Sierra Nevada Region (SNR) - Western Area Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Operations Outage Coordination Standards of Conduct Transmission Planning You are here: SN Home page > Power Operations > Outage Coordination Outage Coordination Outage...

477

Real Power Regulation for the Utility Power Grid via ...  

Real Power Regulation for the Utility Power Grid via Responsive Loads Technology Summary A new methodology for dynamically managing an electrical ...

478

Microsoft PowerPoint - Vicksburg District Federal Power Projects...  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1 ll Rotor...

479

Photovoltaic Power Generation  

E-Print Network (OSTI)

This report is an overview of photovoltaic power generation. The purpose of the report is to provide the reader with a general understanding of photovoltaic power generation and how PV technology can be practically applied. There is a brief discussion of early research and a description of how photovoltaic cells convert sunlight to electricity. The report covers concentrating collectors, flat-plate collectors, thin-film technology, and building-integrated systems. The discussion of photovoltaic cell types includes single-crystal, poly-crystalline, and thin-film materials. The report covers progress in improving cell efficiencies, reducing manufacturing cost, and finding economic applications of photovoltaic technology. Lists of major manufacturers and organizations are included, along with a discussion of market trends and projections. The conclusion is that photovoltaic power generation is still more costly than conventional systems in general. However, large variations in cost of conventional electrical power, and other factors, such as cost of distribution, create situations in which the use of PV power is economically sound. PV power is used in remote applications such as communications, homes and villages in developing countries, water pumping, camping, and boating. Gridconnected applications such as electric utility generating facilities and residential rooftop installations make up a smaller but more rapidly expanding segment of PV use. Furthermore, as technological advances narrow the cost gap, more applications are becoming economically feasible at an accelerating rate. iii TABLE OF CONTENTS LIST OF TABLES AND FIGURES ...................................................................................v

Tom Penick; Gale Greenleaf Instructor; Thomas Penick; Bill Louk; Bill Louk

1998-01-01T23:59:59.000Z

480

Higher powers in gravitation  

SciTech Connect

We consider the Friedmann-Robertson-Walker cosmologies of theories of gravity that generalize the Einstein-Hilbert action by replacing the Ricci scalar R with some function f(R). The general asymptotic behavior of these cosmologies is found, at both early and late times, and the effects of adding higher and lower powers of R to the Einstein-Hilbert action is investigated. The assumption that the highest powers of R should dominate the Universe's early history, and that the lowest powers should dominate its future is found to be inaccurate. The behavior of the general solution is complicated, and while it can be the case that single powers of R dominate the dynamics at late times, it can be either the higher or lower powers that do so. It is also shown that it is often the lowest powers of R that dominate at early times, when approach to a bounce or a Tolman solution are generic possibilities. Various examples are considered, and both vacuum and perfect fluid solutions are investigated.

Clifton, Timothy [Department of Astrophysics, University of Oxford, Oxford, OX1 3RH (United Kingdom)

2008-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "aep appalachian power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The power of power-laws: Or how to save power in SoC  

Science Conference Proceedings (OSTI)

Power and energy issues have significantly gained in importance in computing environments in the last few decades. In a world of mobile devices and massive-scale data centers, low-power systems are crucial for cost, availability, and the environment. ... Keywords: power-efficient computers, power-laws, power saving, SoC, computing environments, mobile devices, massive-scale data centers, low-power systems, power consumption, system-on-chip, power-efficient network-on-chip topologies, nonlocal interconnect architectures, complex network perspective, optimization technique, small-world networks, power-law distance-dependent wire-length distributions

C. Teuscher; Haera Chung; A. Grimm; A. Amarnath; N. Parashar

2011-07-01T23:59:59.000Z

482

Appalachian Basin. The Central Appalachian Basin, a 10,000-square  

NLE Websites -- All DOE Office Websites (Extended Search)

cubic feet. SECARB initiated CO 2 injection in mid- January at its test site in Russell County, Virginia. An existing coalbed methane (CBM) well was converted for CO 2 injection...

483

Utility-Scale Smart Meter Deployments, Plans & Proposals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

edisonfoundation.net/IEE edisonfoundation.net/IEE Utility-Scale Smart Meter Deployments, Plans & Proposals April 2010 Utility State Target Number of Meters Notes Resources AEP 1 IN, KY, MI, OH, OK, TX, VA, WV 5,000,000 AEP plans on deploying smart meters to all customers within their service territory and have deployed 10,000 meters to customers in South Bend, IN, and are presently deploying another 700,000 to AEP-Texas customers. Timing for the remaining deployments will depend on specific conditions in each of the seven operating company subsidiaries. AEP Corporate Sustainability Report 2009 2 Allegheny Power MD, PA, WV 700,000 Allegheny launched pilots in Morgantown, WV and Urbana, MD to test smart meters and thermostats (1,140 meters installed). In PA, Act 129 (2008)

484

Slide 1  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EESAT 2009 EESAT 2009 October 4-7 Seattle Ali Nourai American Electric Power Chairman, Electricity Storage Association Energy Storage Projects in AEP - A Migratory Trend - 2 * 5.2 Million customers * 11 States * 39,000 MW Generation * 38,953 miles Transmission * 212,781 miles Distribution * $45.2 billion Assets (2008) * $14.4 billion revenue (2008) * 20,861 Employees AEP Overview 3 Migratory Path of Utility Energy Storage - in AEP Large Central Units Storage at Grid Edge Substation Batteries Graphics adapted from an EPRI Presentation by Joe Hughes This Migration Trend is Driven by Popularity of Customer-Owned Distributed Generation and Customers' demand for higher service quality 4 AEP's View of Energy Storage Value 120/240 V 69 kV 4 to 34 kV 480 V 138 kV 345 kV 765 kV CES (Community) NAS (Substation)

485

Duke Power | Open Energy Information  

Open Energy Info (EERE)

Power Jump to: navigation, search Name Duke Power Place Charlotte, NC Website http:www.duke-energy.com References Duke Power Website1 LinkedIn Connections CrunchBase Profile...

486

Flywheel Power Systems: Market Analysis  

Science Conference Proceedings (OSTI)

High speed flywheel power systems offer a new opportunity to provide power delivery systems. Such systems are very useful to mitigate power quality problems. This report focuses on the industrial market for flywheel storage systems.

1998-02-20T23:59:59.000Z

487

Improving Power Output . . . Energy Scavengers  

E-Print Network (OSTI)

Given appropriate power conditioning and capacitive storage, devices made from piezoelectric materials can scavenge power from low-level ambient sources to effectively support networks of ultra-low-power, peerto-peer wireless nodes.

Shad Roundy; Eli S. Leland; Jessy Baker; Eric Carleton; Elizabeth Reilly; Elaine Lai; Brian Otis; Jan M. Rabaey; Paul K. Wright; V. Sundararajan

2005-01-01T23:59:59.000Z

488

Energy Storage & Power Electronics 2008 Peer Review - Power Electronics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Power Electronics 2008 Peer Review - Power & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the DOE Energy Storage and Power Electronics Program (ESPE) was held in Washington DC on Sept. 29-30, 2008. Current and completed program projects were presented and reviewed by a group of industry professionals. The 2008 agenda was composed of 28 projects that covered a broad range of new and ongoing, state-of-the-art, energy storage and power electronics technologies, including updates on the collaborations among DOE/ESPE, CEC in California, and NYSERDA in New York. Power Electronics (PE) Systems presentations are available below. ESPE 2008 Peer Review - High Power Density Silicon Carbide Power Electronic

489

Power and Energy also called Power Energy | Open Energy Information  

Open Energy Info (EERE)

also called Power Energy also called Power Energy Jump to: navigation, search Name Power and Energy (also called Power+Energy) Place Bucks Country, Pennsylvania Sector Hydro, Hydrogen Product Power+Energy develops micro-channel hydrogen purifiers, hydrogen separators, and fuel processing technology. The company has signed development deals with the US Navy and has received USD 2.3m from the Defense Department for its research. References Power and Energy (also called Power+Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Power and Energy (also called Power+Energy) is a company located in Bucks Country, Pennsylvania . References ↑ "Power and Energy (also called Power+Energy)"

490

Green Power Network: Past National Green Power Marketing Conference  

NLE Websites -- All DOE Office Websites (Extended Search)

Fifth National Green Power Marketing Conference: Fifth National Green Power Marketing Conference: Powering the New Millennium Held August 7-8, 2000 in Denver, Colorado Fifth National Green Power Marketing Conference Summary (PDF 95.1 MB) Download Adobe Reader As the preeminent conference addressing green power marketing in the United States, the fifth annual conference provided an update of domestic green power marketing activities and address such topics as evolving perceptions of green power, why businesses and government agencies are buying green power, how to build demand for green power, what is working well in utility green pricing programs, and international green power markets. The conference was co-sponsored by the U.S. Department of Energy, U.S. Environmental Protection Agency, Electric Power Research Institute, and Edison Electric Institute

491

Power monitors provide quality power and service  

SciTech Connect

Today`s loads require much more reliability and quality of service than in the past. For example, whether Automatic Teller Machines (ATM) function properly may greatly influence the public image of the bank and the local electric utility. Steve Garnick, electrical engineer with the electric division, Westerville, Ohio, says, {open_quotes}We have a major bank`s data center located in Westerville that processes customer accounts and ATM network transactions over a multi-state area, as well as performing data processing for a number of other large companies. If our electric system were to experience a major disturbance, there could be a lot of ATM customers around the country that will be unable to get their money. Obviously, we want to prevent that from happening.{close_quotes} Power monitoring systems are used not only by electric utilities but industrial, institutional, and commercial facilities to manage their total electrical system. The systems provide information on energy costs and the costs of operation and maintenance, while providing information that helps users make the best use of the power equipment itself.

NONE

1995-05-01T23:59:59.000Z

492

Internal combustion electric power hybrid power plant  

SciTech Connect

An internal combustion-electric motor hybrid power plant for an automotive vehicle is disclosed. The power plant includes an internal combustion engine and a direct current electric motor generator which are connected to a drive shaft for the vehicle. A clutch mechanism is provided to connect the internal combustion engine, the direct current electric motor generator and the drive shaft for selectively engaging and disengaging the drive shaft with the internal combustion engine and the motor generator. A storage battery is electrically connected to the motor generator to supply current to and receive current therefrom. Thermoelectric semi-conductors are arranged to be heated by the waste heat of the internal combustion engine. These thermoelectric semi-conductors are electrically connected to the battery to supply current thereto. The thermoelectric semi-conductors are mounted in contact with the outer surfaces of the exhaust pipe of the internal combustion engine and also with the outer surfaces of the cylinder walls of the engine.

Cummings, T.A.

1979-04-10T23:59:59.000Z

493

Laser Power and Energy Calibrations  

Science Conference Proceedings (OSTI)

... calibration services for meters used with the lasers, wavelengths, and power ranges shown in the following table. Other laser wavelengths, power ...

2012-11-28T23:59:59.000Z

494

Electric Power Monthly January 2012  

U.S. Energy Information Administration (EIA)

Electric Power Monthly January 2012 With Data for November 2011 ... Electric Utility Power Generation Station (PGS) 2 CA 57696 1 3.8 OBG GT

495

Cenergy Power | Open Energy Information  

Open Energy Info (EERE)

Cenergy Power Jump to: navigation, search Name Cenergy Power Place San Diego, California Zip 92009 Sector Solar Product Developer and installer of photovoltaic solar projects for...

496

Alexis Powers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alexis Powers About Us Alexis Powers Most Recent Affordability Contest Adds New Dimension to Solar Decathlon 2011 September 27 Solar Decathlon Technology Spotlight: Structural...

497

NETL: Power Plant Improvement Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

PPII Major Demonstrations Power Plant Improvement Initiative (PPII) The Power Plant Improvement Initiative (PPII) was established in October 2000 to further the commercial-scale...

498

IKOR Power | Open Energy Information  

Open Energy Info (EERE)

search Name IKOR Power Place Fort Collins, Colorado Zip 80525 Product Colorado-based, technology-driven supplier of power delivery solutions for original equipment...

499

NREL: Water Power Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Economic and Power System Modeling and Analysis Grid Integration Read more about NREL's offshore wind research and development activities. Printable Version Water Power Research...